1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/vmstat.c
4 *
5 * Manages VM statistics
6 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
7 *
8 * zoned VM statistics
9 * Copyright (C) 2006 Silicon Graphics, Inc.,
10 * Christoph Lameter <christoph@lameter.com>
11 * Copyright (C) 2008-2014 Christoph Lameter
12 */
13 #include <linux/fs.h>
14 #include <linux/mm.h>
15 #include <linux/err.h>
16 #include <linux/module.h>
17 #include <linux/slab.h>
18 #include <linux/cpu.h>
19 #include <linux/cpumask.h>
20 #include <linux/vmstat.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/debugfs.h>
24 #include <linux/sched.h>
25 #include <linux/math64.h>
26 #include <linux/writeback.h>
27 #include <linux/compaction.h>
28 #include <linux/mm_inline.h>
29 #include <linux/page_owner.h>
30 #include <linux/sched/isolation.h>
31
32 #include <trace/hooks/mm.h>
33 #include "internal.h"
34
35 #ifdef CONFIG_NUMA
36 int sysctl_vm_numa_stat = ENABLE_NUMA_STAT;
37
38 /* zero numa counters within a zone */
zero_zone_numa_counters(struct zone * zone)39 static void zero_zone_numa_counters(struct zone *zone)
40 {
41 int item, cpu;
42
43 for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++) {
44 atomic_long_set(&zone->vm_numa_event[item], 0);
45 for_each_online_cpu(cpu) {
46 per_cpu_ptr(zone->per_cpu_zonestats, cpu)->vm_numa_event[item]
47 = 0;
48 }
49 }
50 }
51
52 /* zero numa counters of all the populated zones */
zero_zones_numa_counters(void)53 static void zero_zones_numa_counters(void)
54 {
55 struct zone *zone;
56
57 for_each_populated_zone(zone)
58 zero_zone_numa_counters(zone);
59 }
60
61 /* zero global numa counters */
zero_global_numa_counters(void)62 static void zero_global_numa_counters(void)
63 {
64 int item;
65
66 for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++)
67 atomic_long_set(&vm_numa_event[item], 0);
68 }
69
invalid_numa_statistics(void)70 static void invalid_numa_statistics(void)
71 {
72 zero_zones_numa_counters();
73 zero_global_numa_counters();
74 }
75
76 static DEFINE_MUTEX(vm_numa_stat_lock);
77
sysctl_vm_numa_stat_handler(const struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)78 int sysctl_vm_numa_stat_handler(const struct ctl_table *table, int write,
79 void *buffer, size_t *length, loff_t *ppos)
80 {
81 int ret, oldval;
82
83 mutex_lock(&vm_numa_stat_lock);
84 if (write)
85 oldval = sysctl_vm_numa_stat;
86 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
87 if (ret || !write)
88 goto out;
89
90 if (oldval == sysctl_vm_numa_stat)
91 goto out;
92 else if (sysctl_vm_numa_stat == ENABLE_NUMA_STAT) {
93 static_branch_enable(&vm_numa_stat_key);
94 pr_info("enable numa statistics\n");
95 } else {
96 static_branch_disable(&vm_numa_stat_key);
97 invalid_numa_statistics();
98 pr_info("disable numa statistics, and clear numa counters\n");
99 }
100
101 out:
102 mutex_unlock(&vm_numa_stat_lock);
103 return ret;
104 }
105 #endif
106
107 #ifdef CONFIG_VM_EVENT_COUNTERS
108 DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
109 EXPORT_PER_CPU_SYMBOL(vm_event_states);
110
sum_vm_events(unsigned long * ret)111 static void sum_vm_events(unsigned long *ret)
112 {
113 int cpu;
114 int i;
115
116 memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
117
118 for_each_online_cpu(cpu) {
119 struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
120
121 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
122 ret[i] += this->event[i];
123 }
124 }
125
126 /*
127 * Accumulate the vm event counters across all CPUs.
128 * The result is unavoidably approximate - it can change
129 * during and after execution of this function.
130 */
all_vm_events(unsigned long * ret)131 void all_vm_events(unsigned long *ret)
132 {
133 cpus_read_lock();
134 sum_vm_events(ret);
135 cpus_read_unlock();
136 }
137 EXPORT_SYMBOL_GPL(all_vm_events);
138
139 /*
140 * Fold the foreign cpu events into our own.
141 *
142 * This is adding to the events on one processor
143 * but keeps the global counts constant.
144 */
vm_events_fold_cpu(int cpu)145 void vm_events_fold_cpu(int cpu)
146 {
147 struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
148 int i;
149
150 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
151 count_vm_events(i, fold_state->event[i]);
152 fold_state->event[i] = 0;
153 }
154 }
155
156 #endif /* CONFIG_VM_EVENT_COUNTERS */
157
158 /*
159 * Manage combined zone based / global counters
160 *
161 * vm_stat contains the global counters
162 */
163 atomic_long_t vm_zone_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp;
164 atomic_long_t vm_node_stat[NR_VM_NODE_STAT_ITEMS] __cacheline_aligned_in_smp;
165 atomic_long_t vm_numa_event[NR_VM_NUMA_EVENT_ITEMS] __cacheline_aligned_in_smp;
166 EXPORT_SYMBOL(vm_zone_stat);
167 EXPORT_SYMBOL(vm_node_stat);
168
169 #ifdef CONFIG_NUMA
fold_vm_zone_numa_events(struct zone * zone)170 static void fold_vm_zone_numa_events(struct zone *zone)
171 {
172 unsigned long zone_numa_events[NR_VM_NUMA_EVENT_ITEMS] = { 0, };
173 int cpu;
174 enum numa_stat_item item;
175
176 for_each_online_cpu(cpu) {
177 struct per_cpu_zonestat *pzstats;
178
179 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
180 for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++)
181 zone_numa_events[item] += xchg(&pzstats->vm_numa_event[item], 0);
182 }
183
184 for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++)
185 zone_numa_event_add(zone_numa_events[item], zone, item);
186 }
187
fold_vm_numa_events(void)188 void fold_vm_numa_events(void)
189 {
190 struct zone *zone;
191
192 for_each_populated_zone(zone)
193 fold_vm_zone_numa_events(zone);
194 }
195 #endif
196
197 #ifdef CONFIG_SMP
198
calculate_pressure_threshold(struct zone * zone)199 int calculate_pressure_threshold(struct zone *zone)
200 {
201 int threshold;
202 int watermark_distance;
203
204 /*
205 * As vmstats are not up to date, there is drift between the estimated
206 * and real values. For high thresholds and a high number of CPUs, it
207 * is possible for the min watermark to be breached while the estimated
208 * value looks fine. The pressure threshold is a reduced value such
209 * that even the maximum amount of drift will not accidentally breach
210 * the min watermark
211 */
212 watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone);
213 threshold = max(1, (int)(watermark_distance / num_online_cpus()));
214
215 /*
216 * Maximum threshold is 125
217 */
218 threshold = min(125, threshold);
219
220 return threshold;
221 }
222
calculate_normal_threshold(struct zone * zone)223 int calculate_normal_threshold(struct zone *zone)
224 {
225 int threshold;
226 int mem; /* memory in 128 MB units */
227
228 /*
229 * The threshold scales with the number of processors and the amount
230 * of memory per zone. More memory means that we can defer updates for
231 * longer, more processors could lead to more contention.
232 * fls() is used to have a cheap way of logarithmic scaling.
233 *
234 * Some sample thresholds:
235 *
236 * Threshold Processors (fls) Zonesize fls(mem)+1
237 * ------------------------------------------------------------------
238 * 8 1 1 0.9-1 GB 4
239 * 16 2 2 0.9-1 GB 4
240 * 20 2 2 1-2 GB 5
241 * 24 2 2 2-4 GB 6
242 * 28 2 2 4-8 GB 7
243 * 32 2 2 8-16 GB 8
244 * 4 2 2 <128M 1
245 * 30 4 3 2-4 GB 5
246 * 48 4 3 8-16 GB 8
247 * 32 8 4 1-2 GB 4
248 * 32 8 4 0.9-1GB 4
249 * 10 16 5 <128M 1
250 * 40 16 5 900M 4
251 * 70 64 7 2-4 GB 5
252 * 84 64 7 4-8 GB 6
253 * 108 512 9 4-8 GB 6
254 * 125 1024 10 8-16 GB 8
255 * 125 1024 10 16-32 GB 9
256 */
257
258 mem = zone_managed_pages(zone) >> (27 - PAGE_SHIFT);
259
260 threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
261
262 /*
263 * Maximum threshold is 125
264 */
265 threshold = min(125, threshold);
266
267 return threshold;
268 }
269
270 /*
271 * Refresh the thresholds for each zone.
272 */
refresh_zone_stat_thresholds(void)273 void refresh_zone_stat_thresholds(void)
274 {
275 struct pglist_data *pgdat;
276 struct zone *zone;
277 int cpu;
278 int threshold;
279
280 /* Zero current pgdat thresholds */
281 for_each_online_pgdat(pgdat) {
282 for_each_online_cpu(cpu) {
283 per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold = 0;
284 }
285 }
286
287 for_each_populated_zone(zone) {
288 struct pglist_data *pgdat = zone->zone_pgdat;
289 unsigned long max_drift, tolerate_drift;
290
291 threshold = calculate_normal_threshold(zone);
292
293 for_each_online_cpu(cpu) {
294 int pgdat_threshold;
295
296 per_cpu_ptr(zone->per_cpu_zonestats, cpu)->stat_threshold
297 = threshold;
298
299 /* Base nodestat threshold on the largest populated zone. */
300 pgdat_threshold = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold;
301 per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold
302 = max(threshold, pgdat_threshold);
303 }
304
305 /*
306 * Only set percpu_drift_mark if there is a danger that
307 * NR_FREE_PAGES reports the low watermark is ok when in fact
308 * the min watermark could be breached by an allocation
309 */
310 tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone);
311 max_drift = num_online_cpus() * threshold;
312 if (max_drift > tolerate_drift)
313 zone->percpu_drift_mark = high_wmark_pages(zone) +
314 max_drift;
315 }
316 }
317
set_pgdat_percpu_threshold(pg_data_t * pgdat,int (* calculate_pressure)(struct zone *))318 void set_pgdat_percpu_threshold(pg_data_t *pgdat,
319 int (*calculate_pressure)(struct zone *))
320 {
321 struct zone *zone;
322 int cpu;
323 int threshold;
324 int i;
325
326 for (i = 0; i < pgdat->nr_zones; i++) {
327 zone = &pgdat->node_zones[i];
328 if (!zone->percpu_drift_mark)
329 continue;
330
331 threshold = (*calculate_pressure)(zone);
332 for_each_online_cpu(cpu)
333 per_cpu_ptr(zone->per_cpu_zonestats, cpu)->stat_threshold
334 = threshold;
335 }
336 }
337
338 /*
339 * For use when we know that interrupts are disabled,
340 * or when we know that preemption is disabled and that
341 * particular counter cannot be updated from interrupt context.
342 */
__mod_zone_page_state(struct zone * zone,enum zone_stat_item item,long delta)343 void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
344 long delta)
345 {
346 struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
347 s8 __percpu *p = pcp->vm_stat_diff + item;
348 long x;
349 long t;
350
351 /*
352 * Accurate vmstat updates require a RMW. On !PREEMPT_RT kernels,
353 * atomicity is provided by IRQs being disabled -- either explicitly
354 * or via local_lock_irq. On PREEMPT_RT, local_lock_irq only disables
355 * CPU migrations and preemption potentially corrupts a counter so
356 * disable preemption.
357 */
358 preempt_disable_nested();
359
360 x = delta + __this_cpu_read(*p);
361
362 t = __this_cpu_read(pcp->stat_threshold);
363
364 if (unlikely(abs(x) > t)) {
365 zone_page_state_add(x, zone, item);
366 x = 0;
367 }
368 __this_cpu_write(*p, x);
369
370 preempt_enable_nested();
371 }
372 EXPORT_SYMBOL(__mod_zone_page_state);
373
__mod_node_page_state(struct pglist_data * pgdat,enum node_stat_item item,long delta)374 void __mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
375 long delta)
376 {
377 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
378 s8 __percpu *p = pcp->vm_node_stat_diff + item;
379 long x;
380 long t;
381
382 if (vmstat_item_in_bytes(item)) {
383 /*
384 * Only cgroups use subpage accounting right now; at
385 * the global level, these items still change in
386 * multiples of whole pages. Store them as pages
387 * internally to keep the per-cpu counters compact.
388 */
389 VM_WARN_ON_ONCE(delta & (PAGE_SIZE - 1));
390 delta >>= PAGE_SHIFT;
391 }
392
393 /* See __mod_node_page_state */
394 preempt_disable_nested();
395
396 x = delta + __this_cpu_read(*p);
397
398 t = __this_cpu_read(pcp->stat_threshold);
399
400 if (unlikely(abs(x) > t)) {
401 node_page_state_add(x, pgdat, item);
402 x = 0;
403 }
404 __this_cpu_write(*p, x);
405
406 preempt_enable_nested();
407 }
408 EXPORT_SYMBOL(__mod_node_page_state);
409
410 /*
411 * Optimized increment and decrement functions.
412 *
413 * These are only for a single page and therefore can take a struct page *
414 * argument instead of struct zone *. This allows the inclusion of the code
415 * generated for page_zone(page) into the optimized functions.
416 *
417 * No overflow check is necessary and therefore the differential can be
418 * incremented or decremented in place which may allow the compilers to
419 * generate better code.
420 * The increment or decrement is known and therefore one boundary check can
421 * be omitted.
422 *
423 * NOTE: These functions are very performance sensitive. Change only
424 * with care.
425 *
426 * Some processors have inc/dec instructions that are atomic vs an interrupt.
427 * However, the code must first determine the differential location in a zone
428 * based on the processor number and then inc/dec the counter. There is no
429 * guarantee without disabling preemption that the processor will not change
430 * in between and therefore the atomicity vs. interrupt cannot be exploited
431 * in a useful way here.
432 */
__inc_zone_state(struct zone * zone,enum zone_stat_item item)433 void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
434 {
435 struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
436 s8 __percpu *p = pcp->vm_stat_diff + item;
437 s8 v, t;
438
439 /* See __mod_node_page_state */
440 preempt_disable_nested();
441
442 v = __this_cpu_inc_return(*p);
443 t = __this_cpu_read(pcp->stat_threshold);
444 if (unlikely(v > t)) {
445 s8 overstep = t >> 1;
446
447 zone_page_state_add(v + overstep, zone, item);
448 __this_cpu_write(*p, -overstep);
449 }
450
451 preempt_enable_nested();
452 }
453
__inc_node_state(struct pglist_data * pgdat,enum node_stat_item item)454 void __inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
455 {
456 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
457 s8 __percpu *p = pcp->vm_node_stat_diff + item;
458 s8 v, t;
459
460 VM_WARN_ON_ONCE(vmstat_item_in_bytes(item));
461
462 /* See __mod_node_page_state */
463 preempt_disable_nested();
464
465 v = __this_cpu_inc_return(*p);
466 t = __this_cpu_read(pcp->stat_threshold);
467 if (unlikely(v > t)) {
468 s8 overstep = t >> 1;
469
470 node_page_state_add(v + overstep, pgdat, item);
471 __this_cpu_write(*p, -overstep);
472 }
473
474 preempt_enable_nested();
475 }
476
__inc_zone_page_state(struct page * page,enum zone_stat_item item)477 void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
478 {
479 __inc_zone_state(page_zone(page), item);
480 }
481 EXPORT_SYMBOL(__inc_zone_page_state);
482
__inc_node_page_state(struct page * page,enum node_stat_item item)483 void __inc_node_page_state(struct page *page, enum node_stat_item item)
484 {
485 __inc_node_state(page_pgdat(page), item);
486 }
487 EXPORT_SYMBOL(__inc_node_page_state);
488
__dec_zone_state(struct zone * zone,enum zone_stat_item item)489 void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
490 {
491 struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
492 s8 __percpu *p = pcp->vm_stat_diff + item;
493 s8 v, t;
494
495 /* See __mod_node_page_state */
496 preempt_disable_nested();
497
498 v = __this_cpu_dec_return(*p);
499 t = __this_cpu_read(pcp->stat_threshold);
500 if (unlikely(v < - t)) {
501 s8 overstep = t >> 1;
502
503 zone_page_state_add(v - overstep, zone, item);
504 __this_cpu_write(*p, overstep);
505 }
506
507 preempt_enable_nested();
508 }
509
__dec_node_state(struct pglist_data * pgdat,enum node_stat_item item)510 void __dec_node_state(struct pglist_data *pgdat, enum node_stat_item item)
511 {
512 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
513 s8 __percpu *p = pcp->vm_node_stat_diff + item;
514 s8 v, t;
515
516 VM_WARN_ON_ONCE(vmstat_item_in_bytes(item));
517
518 /* See __mod_node_page_state */
519 preempt_disable_nested();
520
521 v = __this_cpu_dec_return(*p);
522 t = __this_cpu_read(pcp->stat_threshold);
523 if (unlikely(v < - t)) {
524 s8 overstep = t >> 1;
525
526 node_page_state_add(v - overstep, pgdat, item);
527 __this_cpu_write(*p, overstep);
528 }
529
530 preempt_enable_nested();
531 }
532
__dec_zone_page_state(struct page * page,enum zone_stat_item item)533 void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
534 {
535 __dec_zone_state(page_zone(page), item);
536 }
537 EXPORT_SYMBOL(__dec_zone_page_state);
538
__dec_node_page_state(struct page * page,enum node_stat_item item)539 void __dec_node_page_state(struct page *page, enum node_stat_item item)
540 {
541 __dec_node_state(page_pgdat(page), item);
542 }
543 EXPORT_SYMBOL(__dec_node_page_state);
544
545 #ifdef CONFIG_HAVE_CMPXCHG_LOCAL
546 /*
547 * If we have cmpxchg_local support then we do not need to incur the overhead
548 * that comes with local_irq_save/restore if we use this_cpu_cmpxchg.
549 *
550 * mod_state() modifies the zone counter state through atomic per cpu
551 * operations.
552 *
553 * Overstep mode specifies how overstep should handled:
554 * 0 No overstepping
555 * 1 Overstepping half of threshold
556 * -1 Overstepping minus half of threshold
557 */
mod_zone_state(struct zone * zone,enum zone_stat_item item,long delta,int overstep_mode)558 static inline void mod_zone_state(struct zone *zone,
559 enum zone_stat_item item, long delta, int overstep_mode)
560 {
561 struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
562 s8 __percpu *p = pcp->vm_stat_diff + item;
563 long n, t, z;
564 s8 o;
565
566 o = this_cpu_read(*p);
567 do {
568 z = 0; /* overflow to zone counters */
569
570 /*
571 * The fetching of the stat_threshold is racy. We may apply
572 * a counter threshold to the wrong the cpu if we get
573 * rescheduled while executing here. However, the next
574 * counter update will apply the threshold again and
575 * therefore bring the counter under the threshold again.
576 *
577 * Most of the time the thresholds are the same anyways
578 * for all cpus in a zone.
579 */
580 t = this_cpu_read(pcp->stat_threshold);
581
582 n = delta + (long)o;
583
584 if (abs(n) > t) {
585 int os = overstep_mode * (t >> 1) ;
586
587 /* Overflow must be added to zone counters */
588 z = n + os;
589 n = -os;
590 }
591 } while (!this_cpu_try_cmpxchg(*p, &o, n));
592
593 if (z)
594 zone_page_state_add(z, zone, item);
595 }
596
mod_zone_page_state(struct zone * zone,enum zone_stat_item item,long delta)597 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
598 long delta)
599 {
600 mod_zone_state(zone, item, delta, 0);
601 }
602 EXPORT_SYMBOL(mod_zone_page_state);
603
inc_zone_page_state(struct page * page,enum zone_stat_item item)604 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
605 {
606 mod_zone_state(page_zone(page), item, 1, 1);
607 }
608 EXPORT_SYMBOL(inc_zone_page_state);
609
dec_zone_page_state(struct page * page,enum zone_stat_item item)610 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
611 {
612 mod_zone_state(page_zone(page), item, -1, -1);
613 }
614 EXPORT_SYMBOL(dec_zone_page_state);
615
mod_node_state(struct pglist_data * pgdat,enum node_stat_item item,int delta,int overstep_mode)616 static inline void mod_node_state(struct pglist_data *pgdat,
617 enum node_stat_item item, int delta, int overstep_mode)
618 {
619 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
620 s8 __percpu *p = pcp->vm_node_stat_diff + item;
621 long n, t, z;
622 s8 o;
623
624 if (vmstat_item_in_bytes(item)) {
625 /*
626 * Only cgroups use subpage accounting right now; at
627 * the global level, these items still change in
628 * multiples of whole pages. Store them as pages
629 * internally to keep the per-cpu counters compact.
630 */
631 VM_WARN_ON_ONCE(delta & (PAGE_SIZE - 1));
632 delta >>= PAGE_SHIFT;
633 }
634
635 o = this_cpu_read(*p);
636 do {
637 z = 0; /* overflow to node counters */
638
639 /*
640 * The fetching of the stat_threshold is racy. We may apply
641 * a counter threshold to the wrong the cpu if we get
642 * rescheduled while executing here. However, the next
643 * counter update will apply the threshold again and
644 * therefore bring the counter under the threshold again.
645 *
646 * Most of the time the thresholds are the same anyways
647 * for all cpus in a node.
648 */
649 t = this_cpu_read(pcp->stat_threshold);
650
651 n = delta + (long)o;
652
653 if (abs(n) > t) {
654 int os = overstep_mode * (t >> 1) ;
655
656 /* Overflow must be added to node counters */
657 z = n + os;
658 n = -os;
659 }
660 } while (!this_cpu_try_cmpxchg(*p, &o, n));
661
662 if (z)
663 node_page_state_add(z, pgdat, item);
664 }
665
mod_node_page_state(struct pglist_data * pgdat,enum node_stat_item item,long delta)666 void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
667 long delta)
668 {
669 mod_node_state(pgdat, item, delta, 0);
670 }
671 EXPORT_SYMBOL(mod_node_page_state);
672
inc_node_state(struct pglist_data * pgdat,enum node_stat_item item)673 void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
674 {
675 mod_node_state(pgdat, item, 1, 1);
676 }
677
inc_node_page_state(struct page * page,enum node_stat_item item)678 void inc_node_page_state(struct page *page, enum node_stat_item item)
679 {
680 mod_node_state(page_pgdat(page), item, 1, 1);
681 }
682 EXPORT_SYMBOL(inc_node_page_state);
683
dec_node_page_state(struct page * page,enum node_stat_item item)684 void dec_node_page_state(struct page *page, enum node_stat_item item)
685 {
686 mod_node_state(page_pgdat(page), item, -1, -1);
687 }
688 EXPORT_SYMBOL(dec_node_page_state);
689 #else
690 /*
691 * Use interrupt disable to serialize counter updates
692 */
mod_zone_page_state(struct zone * zone,enum zone_stat_item item,long delta)693 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
694 long delta)
695 {
696 unsigned long flags;
697
698 local_irq_save(flags);
699 __mod_zone_page_state(zone, item, delta);
700 local_irq_restore(flags);
701 }
702 EXPORT_SYMBOL(mod_zone_page_state);
703
inc_zone_page_state(struct page * page,enum zone_stat_item item)704 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
705 {
706 unsigned long flags;
707 struct zone *zone;
708
709 zone = page_zone(page);
710 local_irq_save(flags);
711 __inc_zone_state(zone, item);
712 local_irq_restore(flags);
713 }
714 EXPORT_SYMBOL(inc_zone_page_state);
715
dec_zone_page_state(struct page * page,enum zone_stat_item item)716 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
717 {
718 unsigned long flags;
719
720 local_irq_save(flags);
721 __dec_zone_page_state(page, item);
722 local_irq_restore(flags);
723 }
724 EXPORT_SYMBOL(dec_zone_page_state);
725
inc_node_state(struct pglist_data * pgdat,enum node_stat_item item)726 void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
727 {
728 unsigned long flags;
729
730 local_irq_save(flags);
731 __inc_node_state(pgdat, item);
732 local_irq_restore(flags);
733 }
734 EXPORT_SYMBOL(inc_node_state);
735
mod_node_page_state(struct pglist_data * pgdat,enum node_stat_item item,long delta)736 void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
737 long delta)
738 {
739 unsigned long flags;
740
741 local_irq_save(flags);
742 __mod_node_page_state(pgdat, item, delta);
743 local_irq_restore(flags);
744 }
745 EXPORT_SYMBOL(mod_node_page_state);
746
inc_node_page_state(struct page * page,enum node_stat_item item)747 void inc_node_page_state(struct page *page, enum node_stat_item item)
748 {
749 unsigned long flags;
750 struct pglist_data *pgdat;
751
752 pgdat = page_pgdat(page);
753 local_irq_save(flags);
754 __inc_node_state(pgdat, item);
755 local_irq_restore(flags);
756 }
757 EXPORT_SYMBOL(inc_node_page_state);
758
dec_node_page_state(struct page * page,enum node_stat_item item)759 void dec_node_page_state(struct page *page, enum node_stat_item item)
760 {
761 unsigned long flags;
762
763 local_irq_save(flags);
764 __dec_node_page_state(page, item);
765 local_irq_restore(flags);
766 }
767 EXPORT_SYMBOL(dec_node_page_state);
768 #endif
769
770 /*
771 * Fold a differential into the global counters.
772 * Returns the number of counters updated.
773 */
fold_diff(int * zone_diff,int * node_diff)774 static int fold_diff(int *zone_diff, int *node_diff)
775 {
776 int i;
777 int changes = 0;
778
779 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
780 if (zone_diff[i]) {
781 atomic_long_add(zone_diff[i], &vm_zone_stat[i]);
782 changes++;
783 }
784
785 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
786 if (node_diff[i]) {
787 atomic_long_add(node_diff[i], &vm_node_stat[i]);
788 changes++;
789 }
790 return changes;
791 }
792
793 /*
794 * Update the zone counters for the current cpu.
795 *
796 * Note that refresh_cpu_vm_stats strives to only access
797 * node local memory. The per cpu pagesets on remote zones are placed
798 * in the memory local to the processor using that pageset. So the
799 * loop over all zones will access a series of cachelines local to
800 * the processor.
801 *
802 * The call to zone_page_state_add updates the cachelines with the
803 * statistics in the remote zone struct as well as the global cachelines
804 * with the global counters. These could cause remote node cache line
805 * bouncing and will have to be only done when necessary.
806 *
807 * The function returns the number of global counters updated.
808 */
refresh_cpu_vm_stats(bool do_pagesets)809 static int refresh_cpu_vm_stats(bool do_pagesets)
810 {
811 struct pglist_data *pgdat;
812 struct zone *zone;
813 int i;
814 int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
815 int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, };
816 int changes = 0;
817
818 for_each_populated_zone(zone) {
819 struct per_cpu_zonestat __percpu *pzstats = zone->per_cpu_zonestats;
820 struct per_cpu_pages __percpu *pcp = zone->per_cpu_pageset;
821
822 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
823 int v;
824
825 v = this_cpu_xchg(pzstats->vm_stat_diff[i], 0);
826 if (v) {
827
828 atomic_long_add(v, &zone->vm_stat[i]);
829 global_zone_diff[i] += v;
830 #ifdef CONFIG_NUMA
831 /* 3 seconds idle till flush */
832 __this_cpu_write(pcp->expire, 3);
833 #endif
834 }
835 }
836
837 if (do_pagesets) {
838 cond_resched();
839
840 changes += decay_pcp_high(zone, this_cpu_ptr(pcp));
841 #ifdef CONFIG_NUMA
842 /*
843 * Deal with draining the remote pageset of this
844 * processor
845 *
846 * Check if there are pages remaining in this pageset
847 * if not then there is nothing to expire.
848 */
849 if (!__this_cpu_read(pcp->expire) ||
850 !__this_cpu_read(pcp->count))
851 continue;
852
853 /*
854 * We never drain zones local to this processor.
855 */
856 if (zone_to_nid(zone) == numa_node_id()) {
857 __this_cpu_write(pcp->expire, 0);
858 continue;
859 }
860
861 if (__this_cpu_dec_return(pcp->expire)) {
862 changes++;
863 continue;
864 }
865
866 if (__this_cpu_read(pcp->count)) {
867 drain_zone_pages(zone, this_cpu_ptr(pcp));
868 changes++;
869 }
870 #endif
871 }
872 }
873
874 for_each_online_pgdat(pgdat) {
875 struct per_cpu_nodestat __percpu *p = pgdat->per_cpu_nodestats;
876
877 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
878 int v;
879
880 v = this_cpu_xchg(p->vm_node_stat_diff[i], 0);
881 if (v) {
882 atomic_long_add(v, &pgdat->vm_stat[i]);
883 global_node_diff[i] += v;
884 }
885 }
886 }
887
888 changes += fold_diff(global_zone_diff, global_node_diff);
889 return changes;
890 }
891
892 /*
893 * Fold the data for an offline cpu into the global array.
894 * There cannot be any access by the offline cpu and therefore
895 * synchronization is simplified.
896 */
cpu_vm_stats_fold(int cpu)897 void cpu_vm_stats_fold(int cpu)
898 {
899 struct pglist_data *pgdat;
900 struct zone *zone;
901 int i;
902 int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
903 int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, };
904
905 for_each_populated_zone(zone) {
906 struct per_cpu_zonestat *pzstats;
907
908 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
909
910 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
911 if (pzstats->vm_stat_diff[i]) {
912 int v;
913
914 v = pzstats->vm_stat_diff[i];
915 pzstats->vm_stat_diff[i] = 0;
916 atomic_long_add(v, &zone->vm_stat[i]);
917 global_zone_diff[i] += v;
918 }
919 }
920 #ifdef CONFIG_NUMA
921 for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++) {
922 if (pzstats->vm_numa_event[i]) {
923 unsigned long v;
924
925 v = pzstats->vm_numa_event[i];
926 pzstats->vm_numa_event[i] = 0;
927 zone_numa_event_add(v, zone, i);
928 }
929 }
930 #endif
931 }
932
933 for_each_online_pgdat(pgdat) {
934 struct per_cpu_nodestat *p;
935
936 p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
937
938 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
939 if (p->vm_node_stat_diff[i]) {
940 int v;
941
942 v = p->vm_node_stat_diff[i];
943 p->vm_node_stat_diff[i] = 0;
944 atomic_long_add(v, &pgdat->vm_stat[i]);
945 global_node_diff[i] += v;
946 }
947 }
948
949 fold_diff(global_zone_diff, global_node_diff);
950 }
951
952 /*
953 * this is only called if !populated_zone(zone), which implies no other users of
954 * pset->vm_stat_diff[] exist.
955 */
drain_zonestat(struct zone * zone,struct per_cpu_zonestat * pzstats)956 void drain_zonestat(struct zone *zone, struct per_cpu_zonestat *pzstats)
957 {
958 unsigned long v;
959 int i;
960
961 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
962 if (pzstats->vm_stat_diff[i]) {
963 v = pzstats->vm_stat_diff[i];
964 pzstats->vm_stat_diff[i] = 0;
965 zone_page_state_add(v, zone, i);
966 }
967 }
968
969 #ifdef CONFIG_NUMA
970 for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++) {
971 if (pzstats->vm_numa_event[i]) {
972 v = pzstats->vm_numa_event[i];
973 pzstats->vm_numa_event[i] = 0;
974 zone_numa_event_add(v, zone, i);
975 }
976 }
977 #endif
978 }
979 #endif
980
981 #ifdef CONFIG_NUMA
982 /*
983 * Determine the per node value of a stat item. This function
984 * is called frequently in a NUMA machine, so try to be as
985 * frugal as possible.
986 */
sum_zone_node_page_state(int node,enum zone_stat_item item)987 unsigned long sum_zone_node_page_state(int node,
988 enum zone_stat_item item)
989 {
990 struct zone *zones = NODE_DATA(node)->node_zones;
991 int i;
992 unsigned long count = 0;
993
994 for (i = 0; i < MAX_NR_ZONES; i++)
995 count += zone_page_state(zones + i, item);
996
997 return count;
998 }
999
1000 /* Determine the per node value of a numa stat item. */
sum_zone_numa_event_state(int node,enum numa_stat_item item)1001 unsigned long sum_zone_numa_event_state(int node,
1002 enum numa_stat_item item)
1003 {
1004 struct zone *zones = NODE_DATA(node)->node_zones;
1005 unsigned long count = 0;
1006 int i;
1007
1008 for (i = 0; i < MAX_NR_ZONES; i++)
1009 count += zone_numa_event_state(zones + i, item);
1010
1011 return count;
1012 }
1013
1014 /*
1015 * Determine the per node value of a stat item.
1016 */
node_page_state_pages(struct pglist_data * pgdat,enum node_stat_item item)1017 unsigned long node_page_state_pages(struct pglist_data *pgdat,
1018 enum node_stat_item item)
1019 {
1020 long x = atomic_long_read(&pgdat->vm_stat[item]);
1021 #ifdef CONFIG_SMP
1022 if (x < 0)
1023 x = 0;
1024 #endif
1025 return x;
1026 }
1027
node_page_state(struct pglist_data * pgdat,enum node_stat_item item)1028 unsigned long node_page_state(struct pglist_data *pgdat,
1029 enum node_stat_item item)
1030 {
1031 VM_WARN_ON_ONCE(vmstat_item_in_bytes(item));
1032
1033 return node_page_state_pages(pgdat, item);
1034 }
1035 #endif
1036
1037 /*
1038 * Count number of pages "struct page" and "struct page_ext" consume.
1039 * nr_memmap_boot_pages: # of pages allocated by boot allocator
1040 * nr_memmap_pages: # of pages that were allocated by buddy allocator
1041 */
1042 static atomic_long_t nr_memmap_boot_pages = ATOMIC_LONG_INIT(0);
1043 static atomic_long_t nr_memmap_pages = ATOMIC_LONG_INIT(0);
1044
memmap_boot_pages_add(long delta)1045 void memmap_boot_pages_add(long delta)
1046 {
1047 atomic_long_add(delta, &nr_memmap_boot_pages);
1048 }
1049
memmap_pages_add(long delta)1050 void memmap_pages_add(long delta)
1051 {
1052 atomic_long_add(delta, &nr_memmap_pages);
1053 }
1054
1055 #ifdef CONFIG_COMPACTION
1056
1057 struct contig_page_info {
1058 unsigned long free_pages;
1059 unsigned long free_blocks_total;
1060 unsigned long free_blocks_suitable;
1061 };
1062
1063 /*
1064 * Calculate the number of free pages in a zone, how many contiguous
1065 * pages are free and how many are large enough to satisfy an allocation of
1066 * the target size. Note that this function makes no attempt to estimate
1067 * how many suitable free blocks there *might* be if MOVABLE pages were
1068 * migrated. Calculating that is possible, but expensive and can be
1069 * figured out from userspace
1070 */
fill_contig_page_info(struct zone * zone,unsigned int suitable_order,struct contig_page_info * info)1071 static void fill_contig_page_info(struct zone *zone,
1072 unsigned int suitable_order,
1073 struct contig_page_info *info)
1074 {
1075 unsigned int order;
1076
1077 info->free_pages = 0;
1078 info->free_blocks_total = 0;
1079 info->free_blocks_suitable = 0;
1080
1081 for (order = 0; order < NR_PAGE_ORDERS; order++) {
1082 unsigned long blocks;
1083
1084 /*
1085 * Count number of free blocks.
1086 *
1087 * Access to nr_free is lockless as nr_free is used only for
1088 * diagnostic purposes. Use data_race to avoid KCSAN warning.
1089 */
1090 blocks = data_race(zone->free_area[order].nr_free);
1091 info->free_blocks_total += blocks;
1092
1093 /* Count free base pages */
1094 info->free_pages += blocks << order;
1095
1096 /* Count the suitable free blocks */
1097 if (order >= suitable_order)
1098 info->free_blocks_suitable += blocks <<
1099 (order - suitable_order);
1100 }
1101 }
1102
1103 /*
1104 * A fragmentation index only makes sense if an allocation of a requested
1105 * size would fail. If that is true, the fragmentation index indicates
1106 * whether external fragmentation or a lack of memory was the problem.
1107 * The value can be used to determine if page reclaim or compaction
1108 * should be used
1109 */
__fragmentation_index(unsigned int order,struct contig_page_info * info)1110 static int __fragmentation_index(unsigned int order, struct contig_page_info *info)
1111 {
1112 unsigned long requested = 1UL << order;
1113
1114 if (WARN_ON_ONCE(order > MAX_PAGE_ORDER))
1115 return 0;
1116
1117 if (!info->free_blocks_total)
1118 return 0;
1119
1120 /* Fragmentation index only makes sense when a request would fail */
1121 if (info->free_blocks_suitable)
1122 return -1000;
1123
1124 /*
1125 * Index is between 0 and 1 so return within 3 decimal places
1126 *
1127 * 0 => allocation would fail due to lack of memory
1128 * 1 => allocation would fail due to fragmentation
1129 */
1130 return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total);
1131 }
1132
1133 /*
1134 * Calculates external fragmentation within a zone wrt the given order.
1135 * It is defined as the percentage of pages found in blocks of size
1136 * less than 1 << order. It returns values in range [0, 100].
1137 */
extfrag_for_order(struct zone * zone,unsigned int order)1138 unsigned int extfrag_for_order(struct zone *zone, unsigned int order)
1139 {
1140 struct contig_page_info info;
1141
1142 fill_contig_page_info(zone, order, &info);
1143 if (info.free_pages == 0)
1144 return 0;
1145
1146 return div_u64((info.free_pages -
1147 (info.free_blocks_suitable << order)) * 100,
1148 info.free_pages);
1149 }
1150
1151 /* Same as __fragmentation index but allocs contig_page_info on stack */
fragmentation_index(struct zone * zone,unsigned int order)1152 int fragmentation_index(struct zone *zone, unsigned int order)
1153 {
1154 struct contig_page_info info;
1155
1156 fill_contig_page_info(zone, order, &info);
1157 return __fragmentation_index(order, &info);
1158 }
1159 #endif
1160
1161 #if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || \
1162 defined(CONFIG_NUMA) || defined(CONFIG_MEMCG)
1163 #ifdef CONFIG_ZONE_DMA
1164 #define TEXT_FOR_DMA(xx) xx "_dma",
1165 #else
1166 #define TEXT_FOR_DMA(xx)
1167 #endif
1168
1169 #ifdef CONFIG_ZONE_DMA32
1170 #define TEXT_FOR_DMA32(xx) xx "_dma32",
1171 #else
1172 #define TEXT_FOR_DMA32(xx)
1173 #endif
1174
1175 #ifdef CONFIG_HIGHMEM
1176 #define TEXT_FOR_HIGHMEM(xx) xx "_high",
1177 #else
1178 #define TEXT_FOR_HIGHMEM(xx)
1179 #endif
1180
1181 #ifdef CONFIG_ZONE_DEVICE
1182 #define TEXT_FOR_DEVICE(xx) xx "_device",
1183 #else
1184 #define TEXT_FOR_DEVICE(xx)
1185 #endif
1186
1187 #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
1188 TEXT_FOR_HIGHMEM(xx) xx "_movable", \
1189 TEXT_FOR_DEVICE(xx)
1190
1191 const char * const vmstat_text[] = {
1192 /* enum zone_stat_item counters */
1193 "nr_free_pages",
1194 "nr_zone_inactive_anon",
1195 "nr_zone_active_anon",
1196 "nr_zone_inactive_file",
1197 "nr_zone_active_file",
1198 "nr_zone_unevictable",
1199 "nr_zone_write_pending",
1200 "nr_mlock",
1201 "nr_bounce",
1202 "nr_zspages",
1203 "nr_free_cma",
1204 #ifdef CONFIG_UNACCEPTED_MEMORY
1205 "nr_unaccepted",
1206 #endif
1207
1208 /* enum numa_stat_item counters */
1209 #ifdef CONFIG_NUMA
1210 "numa_hit",
1211 "numa_miss",
1212 "numa_foreign",
1213 "numa_interleave",
1214 "numa_local",
1215 "numa_other",
1216 #endif
1217
1218 /* enum node_stat_item counters */
1219 "nr_inactive_anon",
1220 "nr_active_anon",
1221 "nr_inactive_file",
1222 "nr_active_file",
1223 "nr_unevictable",
1224 "nr_slab_reclaimable",
1225 "nr_slab_unreclaimable",
1226 "nr_isolated_anon",
1227 "nr_isolated_file",
1228 "workingset_nodes",
1229 "workingset_refault_anon",
1230 "workingset_refault_file",
1231 "workingset_activate_anon",
1232 "workingset_activate_file",
1233 "workingset_restore_anon",
1234 "workingset_restore_file",
1235 "workingset_nodereclaim",
1236 "nr_anon_pages",
1237 "nr_mapped",
1238 "nr_file_pages",
1239 "nr_dirty",
1240 "nr_writeback",
1241 "nr_writeback_temp",
1242 "nr_shmem",
1243 "nr_shmem_hugepages",
1244 "nr_shmem_pmdmapped",
1245 "nr_file_hugepages",
1246 "nr_file_pmdmapped",
1247 "nr_anon_transparent_hugepages",
1248 "nr_vmscan_write",
1249 "nr_vmscan_immediate_reclaim",
1250 "nr_dirtied",
1251 "nr_written",
1252 "nr_throttled_written",
1253 "nr_kernel_misc_reclaimable",
1254 "nr_foll_pin_acquired",
1255 "nr_foll_pin_released",
1256 "nr_kernel_stack",
1257 #if IS_ENABLED(CONFIG_SHADOW_CALL_STACK)
1258 "nr_shadow_call_stack",
1259 #endif
1260 "nr_page_table_pages",
1261 "nr_sec_page_table_pages",
1262 #ifdef CONFIG_IOMMU_SUPPORT
1263 "nr_iommu_pages",
1264 #endif
1265 #ifdef CONFIG_SWAP
1266 "nr_swapcached",
1267 #endif
1268 #ifdef CONFIG_NUMA_BALANCING
1269 "pgpromote_success",
1270 "pgpromote_candidate",
1271 #endif
1272 "pgdemote_kswapd",
1273 "pgdemote_direct",
1274 "pgdemote_khugepaged",
1275 /* system-wide enum vm_stat_item counters */
1276 "nr_dirty_threshold",
1277 "nr_dirty_background_threshold",
1278 "nr_memmap_pages",
1279 "nr_memmap_boot_pages",
1280
1281 #if defined(CONFIG_VM_EVENT_COUNTERS) || defined(CONFIG_MEMCG)
1282 /* enum vm_event_item counters */
1283 "pgpgin",
1284 "pgpgout",
1285 "pswpin",
1286 "pswpout",
1287
1288 TEXTS_FOR_ZONES("pgalloc")
1289 TEXTS_FOR_ZONES("allocstall")
1290 TEXTS_FOR_ZONES("pgskip")
1291
1292 "pgfree",
1293 "pgactivate",
1294 "pgdeactivate",
1295 "pglazyfree",
1296
1297 "pgfault",
1298 "pgmajfault",
1299 "pglazyfreed",
1300
1301 "pgrefill",
1302 "pgreuse",
1303 "pgsteal_kswapd",
1304 "pgsteal_direct",
1305 "pgsteal_khugepaged",
1306 "pgscan_kswapd",
1307 "pgscan_direct",
1308 "pgscan_khugepaged",
1309 "pgscan_direct_throttle",
1310 "pgscan_anon",
1311 "pgscan_file",
1312 "pgsteal_anon",
1313 "pgsteal_file",
1314
1315 #ifdef CONFIG_NUMA
1316 "zone_reclaim_success",
1317 "zone_reclaim_failed",
1318 #endif
1319 "pginodesteal",
1320 "slabs_scanned",
1321 "kswapd_inodesteal",
1322 "kswapd_low_wmark_hit_quickly",
1323 "kswapd_high_wmark_hit_quickly",
1324 "pageoutrun",
1325
1326 "pgrotated",
1327
1328 "drop_pagecache",
1329 "drop_slab",
1330 "oom_kill",
1331
1332 #ifdef CONFIG_NUMA_BALANCING
1333 "numa_pte_updates",
1334 "numa_huge_pte_updates",
1335 "numa_hint_faults",
1336 "numa_hint_faults_local",
1337 "numa_pages_migrated",
1338 #endif
1339 #ifdef CONFIG_MIGRATION
1340 "pgmigrate_success",
1341 "pgmigrate_fail",
1342 "thp_migration_success",
1343 "thp_migration_fail",
1344 "thp_migration_split",
1345 #endif
1346 #ifdef CONFIG_COMPACTION
1347 "compact_migrate_scanned",
1348 "compact_free_scanned",
1349 "compact_isolated",
1350 "compact_stall",
1351 "compact_fail",
1352 "compact_success",
1353 "compact_daemon_wake",
1354 "compact_daemon_migrate_scanned",
1355 "compact_daemon_free_scanned",
1356 #endif
1357
1358 #ifdef CONFIG_HUGETLB_PAGE
1359 "htlb_buddy_alloc_success",
1360 "htlb_buddy_alloc_fail",
1361 #endif
1362 #ifdef CONFIG_CMA
1363 "cma_alloc_success",
1364 "cma_alloc_fail",
1365 #endif
1366 "unevictable_pgs_culled",
1367 "unevictable_pgs_scanned",
1368 "unevictable_pgs_rescued",
1369 "unevictable_pgs_mlocked",
1370 "unevictable_pgs_munlocked",
1371 "unevictable_pgs_cleared",
1372 "unevictable_pgs_stranded",
1373
1374 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1375 "thp_fault_alloc",
1376 "thp_fault_fallback",
1377 "thp_fault_fallback_charge",
1378 "thp_collapse_alloc",
1379 "thp_collapse_alloc_failed",
1380 "thp_file_alloc",
1381 "thp_file_fallback",
1382 "thp_file_fallback_charge",
1383 "thp_file_mapped",
1384 "thp_split_page",
1385 "thp_split_page_failed",
1386 "thp_deferred_split_page",
1387 "thp_underused_split_page",
1388 "thp_split_pmd",
1389 "thp_scan_exceed_none_pte",
1390 "thp_scan_exceed_swap_pte",
1391 "thp_scan_exceed_share_pte",
1392 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1393 "thp_split_pud",
1394 #endif
1395 "thp_zero_page_alloc",
1396 "thp_zero_page_alloc_failed",
1397 "thp_swpout",
1398 "thp_swpout_fallback",
1399 #endif
1400 #ifdef CONFIG_MEMORY_BALLOON
1401 "balloon_inflate",
1402 "balloon_deflate",
1403 #ifdef CONFIG_BALLOON_COMPACTION
1404 "balloon_migrate",
1405 #endif
1406 #endif /* CONFIG_MEMORY_BALLOON */
1407 #ifdef CONFIG_DEBUG_TLBFLUSH
1408 "nr_tlb_remote_flush",
1409 "nr_tlb_remote_flush_received",
1410 "nr_tlb_local_flush_all",
1411 "nr_tlb_local_flush_one",
1412 #endif /* CONFIG_DEBUG_TLBFLUSH */
1413
1414 #ifdef CONFIG_SWAP
1415 "swap_ra",
1416 "swap_ra_hit",
1417 "swpin_zero",
1418 "swpout_zero",
1419 #ifdef CONFIG_KSM
1420 "ksm_swpin_copy",
1421 #endif
1422 #endif
1423 #ifdef CONFIG_KSM
1424 "cow_ksm",
1425 #endif
1426 #ifdef CONFIG_ZSWAP
1427 "zswpin",
1428 "zswpout",
1429 "zswpwb",
1430 #endif
1431 #ifdef CONFIG_X86
1432 "direct_map_level2_splits",
1433 "direct_map_level3_splits",
1434 #endif
1435 #ifdef CONFIG_PER_VMA_LOCK_STATS
1436 "vma_lock_success",
1437 "vma_lock_abort",
1438 "vma_lock_retry",
1439 "vma_lock_miss",
1440 #endif
1441 #ifdef CONFIG_DEBUG_STACK_USAGE
1442 "kstack_1k",
1443 #if THREAD_SIZE > 1024
1444 "kstack_2k",
1445 #endif
1446 #if THREAD_SIZE > 2048
1447 "kstack_4k",
1448 #endif
1449 #if THREAD_SIZE > 4096
1450 "kstack_8k",
1451 #endif
1452 #if THREAD_SIZE > 8192
1453 "kstack_16k",
1454 #endif
1455 #if THREAD_SIZE > 16384
1456 "kstack_32k",
1457 #endif
1458 #if THREAD_SIZE > 32768
1459 "kstack_64k",
1460 #endif
1461 #if THREAD_SIZE > 65536
1462 "kstack_rest",
1463 #endif
1464 #endif
1465 #endif /* CONFIG_VM_EVENT_COUNTERS || CONFIG_MEMCG */
1466 };
1467 #endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA || CONFIG_MEMCG */
1468
1469 #if (defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)) || \
1470 defined(CONFIG_PROC_FS)
frag_start(struct seq_file * m,loff_t * pos)1471 static void *frag_start(struct seq_file *m, loff_t *pos)
1472 {
1473 pg_data_t *pgdat;
1474 loff_t node = *pos;
1475
1476 for (pgdat = first_online_pgdat();
1477 pgdat && node;
1478 pgdat = next_online_pgdat(pgdat))
1479 --node;
1480
1481 return pgdat;
1482 }
1483
frag_next(struct seq_file * m,void * arg,loff_t * pos)1484 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
1485 {
1486 pg_data_t *pgdat = (pg_data_t *)arg;
1487
1488 (*pos)++;
1489 return next_online_pgdat(pgdat);
1490 }
1491
frag_stop(struct seq_file * m,void * arg)1492 static void frag_stop(struct seq_file *m, void *arg)
1493 {
1494 }
1495
1496 /*
1497 * Walk zones in a node and print using a callback.
1498 * If @assert_populated is true, only use callback for zones that are populated.
1499 */
walk_zones_in_node(struct seq_file * m,pg_data_t * pgdat,bool assert_populated,bool nolock,void (* print)(struct seq_file * m,pg_data_t *,struct zone *))1500 static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
1501 bool assert_populated, bool nolock,
1502 void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
1503 {
1504 struct zone *zone;
1505 struct zone *node_zones = pgdat->node_zones;
1506 unsigned long flags;
1507
1508 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
1509 if (assert_populated && !populated_zone(zone))
1510 continue;
1511
1512 if (!nolock)
1513 spin_lock_irqsave(&zone->lock, flags);
1514 print(m, pgdat, zone);
1515 if (!nolock)
1516 spin_unlock_irqrestore(&zone->lock, flags);
1517 }
1518 }
1519 #endif
1520
1521 #ifdef CONFIG_PROC_FS
frag_show_print(struct seq_file * m,pg_data_t * pgdat,struct zone * zone)1522 static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
1523 struct zone *zone)
1524 {
1525 int order;
1526
1527 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1528 for (order = 0; order < NR_PAGE_ORDERS; ++order)
1529 /*
1530 * Access to nr_free is lockless as nr_free is used only for
1531 * printing purposes. Use data_race to avoid KCSAN warning.
1532 */
1533 seq_printf(m, "%6lu ", data_race(zone->free_area[order].nr_free));
1534 seq_putc(m, '\n');
1535 }
1536
1537 /*
1538 * This walks the free areas for each zone.
1539 */
frag_show(struct seq_file * m,void * arg)1540 static int frag_show(struct seq_file *m, void *arg)
1541 {
1542 pg_data_t *pgdat = (pg_data_t *)arg;
1543 walk_zones_in_node(m, pgdat, true, false, frag_show_print);
1544 return 0;
1545 }
1546
pagetypeinfo_showfree_print(struct seq_file * m,pg_data_t * pgdat,struct zone * zone)1547 static void pagetypeinfo_showfree_print(struct seq_file *m,
1548 pg_data_t *pgdat, struct zone *zone)
1549 {
1550 int order, mtype;
1551
1552 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
1553 seq_printf(m, "Node %4d, zone %8s, type %12s ",
1554 pgdat->node_id,
1555 zone->name,
1556 migratetype_names[mtype]);
1557 for (order = 0; order < NR_PAGE_ORDERS; ++order) {
1558 unsigned long freecount = 0;
1559 struct free_area *area;
1560 struct list_head *curr;
1561 bool overflow = false;
1562
1563 area = &(zone->free_area[order]);
1564
1565 list_for_each(curr, &area->free_list[mtype]) {
1566 /*
1567 * Cap the free_list iteration because it might
1568 * be really large and we are under a spinlock
1569 * so a long time spent here could trigger a
1570 * hard lockup detector. Anyway this is a
1571 * debugging tool so knowing there is a handful
1572 * of pages of this order should be more than
1573 * sufficient.
1574 */
1575 if (++freecount >= 100000) {
1576 overflow = true;
1577 break;
1578 }
1579 }
1580 seq_printf(m, "%s%6lu ", overflow ? ">" : "", freecount);
1581 spin_unlock_irq(&zone->lock);
1582 cond_resched();
1583 spin_lock_irq(&zone->lock);
1584 }
1585 seq_putc(m, '\n');
1586 }
1587 }
1588
1589 /* Print out the free pages at each order for each migatetype */
pagetypeinfo_showfree(struct seq_file * m,void * arg)1590 static void pagetypeinfo_showfree(struct seq_file *m, void *arg)
1591 {
1592 int order;
1593 pg_data_t *pgdat = (pg_data_t *)arg;
1594
1595 /* Print header */
1596 seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
1597 for (order = 0; order < NR_PAGE_ORDERS; ++order)
1598 seq_printf(m, "%6d ", order);
1599 seq_putc(m, '\n');
1600
1601 walk_zones_in_node(m, pgdat, true, false, pagetypeinfo_showfree_print);
1602 }
1603
pagetypeinfo_showblockcount_print(struct seq_file * m,pg_data_t * pgdat,struct zone * zone)1604 static void pagetypeinfo_showblockcount_print(struct seq_file *m,
1605 pg_data_t *pgdat, struct zone *zone)
1606 {
1607 int mtype;
1608 unsigned long pfn;
1609 unsigned long start_pfn = zone->zone_start_pfn;
1610 unsigned long end_pfn = zone_end_pfn(zone);
1611 unsigned long count[MIGRATE_TYPES] = { 0, };
1612
1613 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
1614 struct page *page;
1615
1616 page = pfn_to_online_page(pfn);
1617 if (!page)
1618 continue;
1619
1620 if (page_zone(page) != zone)
1621 continue;
1622
1623 mtype = get_pageblock_migratetype(page);
1624
1625 if (mtype < MIGRATE_TYPES)
1626 count[mtype]++;
1627 }
1628
1629 /* Print counts */
1630 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1631 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1632 seq_printf(m, "%12lu ", count[mtype]);
1633 seq_putc(m, '\n');
1634 }
1635
1636 /* Print out the number of pageblocks for each migratetype */
pagetypeinfo_showblockcount(struct seq_file * m,void * arg)1637 static void pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
1638 {
1639 int mtype;
1640 pg_data_t *pgdat = (pg_data_t *)arg;
1641
1642 seq_printf(m, "\n%-23s", "Number of blocks type ");
1643 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1644 seq_printf(m, "%12s ", migratetype_names[mtype]);
1645 seq_putc(m, '\n');
1646 walk_zones_in_node(m, pgdat, true, false,
1647 pagetypeinfo_showblockcount_print);
1648 }
1649
1650 /*
1651 * Print out the number of pageblocks for each migratetype that contain pages
1652 * of other types. This gives an indication of how well fallbacks are being
1653 * contained by rmqueue_fallback(). It requires information from PAGE_OWNER
1654 * to determine what is going on
1655 */
pagetypeinfo_showmixedcount(struct seq_file * m,pg_data_t * pgdat)1656 static void pagetypeinfo_showmixedcount(struct seq_file *m, pg_data_t *pgdat)
1657 {
1658 #ifdef CONFIG_PAGE_OWNER
1659 int mtype;
1660
1661 if (!static_branch_unlikely(&page_owner_inited))
1662 return;
1663
1664 drain_all_pages(NULL);
1665
1666 seq_printf(m, "\n%-23s", "Number of mixed blocks ");
1667 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1668 seq_printf(m, "%12s ", migratetype_names[mtype]);
1669 seq_putc(m, '\n');
1670
1671 walk_zones_in_node(m, pgdat, true, true,
1672 pagetypeinfo_showmixedcount_print);
1673 #endif /* CONFIG_PAGE_OWNER */
1674 }
1675
1676 /*
1677 * This prints out statistics in relation to grouping pages by mobility.
1678 * It is expensive to collect so do not constantly read the file.
1679 */
pagetypeinfo_show(struct seq_file * m,void * arg)1680 static int pagetypeinfo_show(struct seq_file *m, void *arg)
1681 {
1682 pg_data_t *pgdat = (pg_data_t *)arg;
1683
1684 /* check memoryless node */
1685 if (!node_state(pgdat->node_id, N_MEMORY))
1686 return 0;
1687
1688 seq_printf(m, "Page block order: %d\n", pageblock_order);
1689 seq_printf(m, "Pages per block: %lu\n", pageblock_nr_pages);
1690 seq_putc(m, '\n');
1691 pagetypeinfo_showfree(m, pgdat);
1692 pagetypeinfo_showblockcount(m, pgdat);
1693 pagetypeinfo_showmixedcount(m, pgdat);
1694 trace_android_vh_pagetypeinfo_show(m);
1695
1696 return 0;
1697 }
1698
1699 static const struct seq_operations fragmentation_op = {
1700 .start = frag_start,
1701 .next = frag_next,
1702 .stop = frag_stop,
1703 .show = frag_show,
1704 };
1705
1706 static const struct seq_operations pagetypeinfo_op = {
1707 .start = frag_start,
1708 .next = frag_next,
1709 .stop = frag_stop,
1710 .show = pagetypeinfo_show,
1711 };
1712
is_zone_first_populated(pg_data_t * pgdat,struct zone * zone)1713 static bool is_zone_first_populated(pg_data_t *pgdat, struct zone *zone)
1714 {
1715 int zid;
1716
1717 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1718 struct zone *compare = &pgdat->node_zones[zid];
1719
1720 if (populated_zone(compare))
1721 return zone == compare;
1722 }
1723
1724 return false;
1725 }
1726
zoneinfo_show_print(struct seq_file * m,pg_data_t * pgdat,struct zone * zone)1727 static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
1728 struct zone *zone)
1729 {
1730 int i;
1731 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
1732 if (is_zone_first_populated(pgdat, zone)) {
1733 seq_printf(m, "\n per-node stats");
1734 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
1735 unsigned long pages = node_page_state_pages(pgdat, i);
1736
1737 if (vmstat_item_print_in_thp(i))
1738 pages /= HPAGE_PMD_NR;
1739 seq_printf(m, "\n %-12s %lu", node_stat_name(i),
1740 pages);
1741 }
1742 }
1743 seq_printf(m,
1744 "\n pages free %lu"
1745 "\n boost %lu"
1746 "\n min %lu"
1747 "\n low %lu"
1748 "\n high %lu"
1749 "\n promo %lu"
1750 "\n spanned %lu"
1751 "\n present %lu"
1752 "\n managed %lu"
1753 "\n cma %lu",
1754 zone_page_state(zone, NR_FREE_PAGES),
1755 zone->watermark_boost,
1756 min_wmark_pages(zone),
1757 low_wmark_pages(zone),
1758 high_wmark_pages(zone),
1759 promo_wmark_pages(zone),
1760 zone->spanned_pages,
1761 zone->present_pages,
1762 zone_managed_pages(zone),
1763 zone_cma_pages(zone));
1764
1765 seq_printf(m,
1766 "\n protection: (%ld",
1767 zone->lowmem_reserve[0]);
1768 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
1769 seq_printf(m, ", %ld", zone->lowmem_reserve[i]);
1770 seq_putc(m, ')');
1771
1772 /* If unpopulated, no other information is useful */
1773 if (!populated_zone(zone)) {
1774 seq_putc(m, '\n');
1775 return;
1776 }
1777
1778 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1779 seq_printf(m, "\n %-12s %lu", zone_stat_name(i),
1780 zone_page_state(zone, i));
1781
1782 #ifdef CONFIG_NUMA
1783 fold_vm_zone_numa_events(zone);
1784 for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++)
1785 seq_printf(m, "\n %-12s %lu", numa_stat_name(i),
1786 zone_numa_event_state(zone, i));
1787 #endif
1788
1789 seq_printf(m, "\n pagesets");
1790 for_each_online_cpu(i) {
1791 struct per_cpu_pages *pcp;
1792 struct per_cpu_zonestat __maybe_unused *pzstats;
1793
1794 pcp = per_cpu_ptr(zone->per_cpu_pageset, i);
1795 seq_printf(m,
1796 "\n cpu: %i"
1797 "\n count: %i"
1798 "\n high: %i"
1799 "\n batch: %i",
1800 i,
1801 pcp->count,
1802 pcp->high,
1803 pcp->batch);
1804 #ifdef CONFIG_SMP
1805 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, i);
1806 seq_printf(m, "\n vm stats threshold: %d",
1807 pzstats->stat_threshold);
1808 #endif
1809 }
1810 seq_printf(m,
1811 "\n node_unreclaimable: %u"
1812 "\n start_pfn: %lu",
1813 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES,
1814 zone->zone_start_pfn);
1815 seq_putc(m, '\n');
1816 }
1817
1818 /*
1819 * Output information about zones in @pgdat. All zones are printed regardless
1820 * of whether they are populated or not: lowmem_reserve_ratio operates on the
1821 * set of all zones and userspace would not be aware of such zones if they are
1822 * suppressed here (zoneinfo displays the effect of lowmem_reserve_ratio).
1823 */
zoneinfo_show(struct seq_file * m,void * arg)1824 static int zoneinfo_show(struct seq_file *m, void *arg)
1825 {
1826 pg_data_t *pgdat = (pg_data_t *)arg;
1827 walk_zones_in_node(m, pgdat, false, false, zoneinfo_show_print);
1828 return 0;
1829 }
1830
1831 static const struct seq_operations zoneinfo_op = {
1832 .start = frag_start, /* iterate over all zones. The same as in
1833 * fragmentation. */
1834 .next = frag_next,
1835 .stop = frag_stop,
1836 .show = zoneinfo_show,
1837 };
1838
1839 #define NR_VMSTAT_ITEMS (NR_VM_ZONE_STAT_ITEMS + \
1840 NR_VM_NUMA_EVENT_ITEMS + \
1841 NR_VM_NODE_STAT_ITEMS + \
1842 NR_VM_STAT_ITEMS + \
1843 (IS_ENABLED(CONFIG_VM_EVENT_COUNTERS) ? \
1844 NR_VM_EVENT_ITEMS : 0))
1845
vmstat_start(struct seq_file * m,loff_t * pos)1846 static void *vmstat_start(struct seq_file *m, loff_t *pos)
1847 {
1848 unsigned long *v;
1849 int i;
1850
1851 if (*pos >= NR_VMSTAT_ITEMS)
1852 return NULL;
1853
1854 BUILD_BUG_ON(ARRAY_SIZE(vmstat_text) < NR_VMSTAT_ITEMS);
1855 fold_vm_numa_events();
1856 v = kmalloc_array(NR_VMSTAT_ITEMS, sizeof(unsigned long), GFP_KERNEL);
1857 m->private = v;
1858 if (!v)
1859 return ERR_PTR(-ENOMEM);
1860 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1861 v[i] = global_zone_page_state(i);
1862 v += NR_VM_ZONE_STAT_ITEMS;
1863
1864 #ifdef CONFIG_NUMA
1865 for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++)
1866 v[i] = global_numa_event_state(i);
1867 v += NR_VM_NUMA_EVENT_ITEMS;
1868 #endif
1869
1870 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
1871 v[i] = global_node_page_state_pages(i);
1872 if (vmstat_item_print_in_thp(i))
1873 v[i] /= HPAGE_PMD_NR;
1874 }
1875 v += NR_VM_NODE_STAT_ITEMS;
1876
1877 global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD,
1878 v + NR_DIRTY_THRESHOLD);
1879 v[NR_MEMMAP_PAGES] = atomic_long_read(&nr_memmap_pages);
1880 v[NR_MEMMAP_BOOT_PAGES] = atomic_long_read(&nr_memmap_boot_pages);
1881 v += NR_VM_STAT_ITEMS;
1882
1883 #ifdef CONFIG_VM_EVENT_COUNTERS
1884 all_vm_events(v);
1885 v[PGPGIN] /= 2; /* sectors -> kbytes */
1886 v[PGPGOUT] /= 2;
1887 #endif
1888 return (unsigned long *)m->private + *pos;
1889 }
1890
vmstat_next(struct seq_file * m,void * arg,loff_t * pos)1891 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
1892 {
1893 (*pos)++;
1894 if (*pos >= NR_VMSTAT_ITEMS)
1895 return NULL;
1896 return (unsigned long *)m->private + *pos;
1897 }
1898
vmstat_show(struct seq_file * m,void * arg)1899 static int vmstat_show(struct seq_file *m, void *arg)
1900 {
1901 unsigned long *l = arg;
1902 unsigned long off = l - (unsigned long *)m->private;
1903
1904 seq_puts(m, vmstat_text[off]);
1905 seq_put_decimal_ull(m, " ", *l);
1906 seq_putc(m, '\n');
1907
1908 if (off == NR_VMSTAT_ITEMS - 1) {
1909 /*
1910 * We've come to the end - add any deprecated counters to avoid
1911 * breaking userspace which might depend on them being present.
1912 */
1913 seq_puts(m, "nr_unstable 0\n");
1914 }
1915 return 0;
1916 }
1917
vmstat_stop(struct seq_file * m,void * arg)1918 static void vmstat_stop(struct seq_file *m, void *arg)
1919 {
1920 kfree(m->private);
1921 m->private = NULL;
1922 }
1923
1924 static const struct seq_operations vmstat_op = {
1925 .start = vmstat_start,
1926 .next = vmstat_next,
1927 .stop = vmstat_stop,
1928 .show = vmstat_show,
1929 };
1930 #endif /* CONFIG_PROC_FS */
1931
1932 #ifdef CONFIG_SMP
1933 static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
1934 int sysctl_stat_interval __read_mostly = HZ;
1935
1936 #ifdef CONFIG_PROC_FS
refresh_vm_stats(struct work_struct * work)1937 static void refresh_vm_stats(struct work_struct *work)
1938 {
1939 refresh_cpu_vm_stats(true);
1940 }
1941
vmstat_refresh(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)1942 int vmstat_refresh(const struct ctl_table *table, int write,
1943 void *buffer, size_t *lenp, loff_t *ppos)
1944 {
1945 long val;
1946 int err;
1947 int i;
1948
1949 /*
1950 * The regular update, every sysctl_stat_interval, may come later
1951 * than expected: leaving a significant amount in per_cpu buckets.
1952 * This is particularly misleading when checking a quantity of HUGE
1953 * pages, immediately after running a test. /proc/sys/vm/stat_refresh,
1954 * which can equally be echo'ed to or cat'ted from (by root),
1955 * can be used to update the stats just before reading them.
1956 *
1957 * Oh, and since global_zone_page_state() etc. are so careful to hide
1958 * transiently negative values, report an error here if any of
1959 * the stats is negative, so we know to go looking for imbalance.
1960 */
1961 err = schedule_on_each_cpu(refresh_vm_stats);
1962 if (err)
1963 return err;
1964 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
1965 /*
1966 * Skip checking stats known to go negative occasionally.
1967 */
1968 switch (i) {
1969 case NR_ZONE_WRITE_PENDING:
1970 case NR_FREE_CMA_PAGES:
1971 continue;
1972 }
1973 val = atomic_long_read(&vm_zone_stat[i]);
1974 if (val < 0) {
1975 pr_warn("%s: %s %ld\n",
1976 __func__, zone_stat_name(i), val);
1977 }
1978 }
1979 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
1980 /*
1981 * Skip checking stats known to go negative occasionally.
1982 */
1983 switch (i) {
1984 case NR_WRITEBACK:
1985 continue;
1986 }
1987 val = atomic_long_read(&vm_node_stat[i]);
1988 if (val < 0) {
1989 pr_warn("%s: %s %ld\n",
1990 __func__, node_stat_name(i), val);
1991 }
1992 }
1993 if (write)
1994 *ppos += *lenp;
1995 else
1996 *lenp = 0;
1997 return 0;
1998 }
1999 #endif /* CONFIG_PROC_FS */
2000
vmstat_update(struct work_struct * w)2001 static void vmstat_update(struct work_struct *w)
2002 {
2003 if (refresh_cpu_vm_stats(true)) {
2004 /*
2005 * Counters were updated so we expect more updates
2006 * to occur in the future. Keep on running the
2007 * update worker thread.
2008 */
2009 queue_delayed_work_on(smp_processor_id(), mm_percpu_wq,
2010 this_cpu_ptr(&vmstat_work),
2011 round_jiffies_relative(sysctl_stat_interval));
2012 }
2013 }
2014
2015 /*
2016 * Check if the diffs for a certain cpu indicate that
2017 * an update is needed.
2018 */
need_update(int cpu)2019 static bool need_update(int cpu)
2020 {
2021 pg_data_t *last_pgdat = NULL;
2022 struct zone *zone;
2023
2024 for_each_populated_zone(zone) {
2025 struct per_cpu_zonestat *pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
2026 struct per_cpu_nodestat *n;
2027
2028 /*
2029 * The fast way of checking if there are any vmstat diffs.
2030 */
2031 if (memchr_inv(pzstats->vm_stat_diff, 0, sizeof(pzstats->vm_stat_diff)))
2032 return true;
2033
2034 if (last_pgdat == zone->zone_pgdat)
2035 continue;
2036 last_pgdat = zone->zone_pgdat;
2037 n = per_cpu_ptr(zone->zone_pgdat->per_cpu_nodestats, cpu);
2038 if (memchr_inv(n->vm_node_stat_diff, 0, sizeof(n->vm_node_stat_diff)))
2039 return true;
2040 }
2041 return false;
2042 }
2043
2044 /*
2045 * Switch off vmstat processing and then fold all the remaining differentials
2046 * until the diffs stay at zero. The function is used by NOHZ and can only be
2047 * invoked when tick processing is not active.
2048 */
quiet_vmstat(void)2049 void quiet_vmstat(void)
2050 {
2051 if (system_state != SYSTEM_RUNNING)
2052 return;
2053
2054 if (!delayed_work_pending(this_cpu_ptr(&vmstat_work)))
2055 return;
2056
2057 if (!need_update(smp_processor_id()))
2058 return;
2059
2060 /*
2061 * Just refresh counters and do not care about the pending delayed
2062 * vmstat_update. It doesn't fire that often to matter and canceling
2063 * it would be too expensive from this path.
2064 * vmstat_shepherd will take care about that for us.
2065 */
2066 refresh_cpu_vm_stats(false);
2067 }
2068
2069 /*
2070 * Shepherd worker thread that checks the
2071 * differentials of processors that have their worker
2072 * threads for vm statistics updates disabled because of
2073 * inactivity.
2074 */
2075 static void vmstat_shepherd(struct work_struct *w);
2076
2077 static DECLARE_DEFERRABLE_WORK(shepherd, vmstat_shepherd);
2078
vmstat_shepherd(struct work_struct * w)2079 static void vmstat_shepherd(struct work_struct *w)
2080 {
2081 int cpu;
2082
2083 cpus_read_lock();
2084 /* Check processors whose vmstat worker threads have been disabled */
2085 for_each_online_cpu(cpu) {
2086 struct delayed_work *dw = &per_cpu(vmstat_work, cpu);
2087
2088 /*
2089 * In kernel users of vmstat counters either require the precise value and
2090 * they are using zone_page_state_snapshot interface or they can live with
2091 * an imprecision as the regular flushing can happen at arbitrary time and
2092 * cumulative error can grow (see calculate_normal_threshold).
2093 *
2094 * From that POV the regular flushing can be postponed for CPUs that have
2095 * been isolated from the kernel interference without critical
2096 * infrastructure ever noticing. Skip regular flushing from vmstat_shepherd
2097 * for all isolated CPUs to avoid interference with the isolated workload.
2098 */
2099 if (cpu_is_isolated(cpu))
2100 continue;
2101
2102 if (!delayed_work_pending(dw) && need_update(cpu))
2103 queue_delayed_work_on(cpu, mm_percpu_wq, dw, 0);
2104
2105 cond_resched();
2106 }
2107 cpus_read_unlock();
2108
2109 schedule_delayed_work(&shepherd,
2110 round_jiffies_relative(sysctl_stat_interval));
2111 }
2112
start_shepherd_timer(void)2113 static void __init start_shepherd_timer(void)
2114 {
2115 int cpu;
2116
2117 for_each_possible_cpu(cpu)
2118 INIT_DEFERRABLE_WORK(per_cpu_ptr(&vmstat_work, cpu),
2119 vmstat_update);
2120
2121 schedule_delayed_work(&shepherd,
2122 round_jiffies_relative(sysctl_stat_interval));
2123 }
2124
init_cpu_node_state(void)2125 static void __init init_cpu_node_state(void)
2126 {
2127 int node;
2128
2129 for_each_online_node(node) {
2130 if (!cpumask_empty(cpumask_of_node(node)))
2131 node_set_state(node, N_CPU);
2132 }
2133 }
2134
vmstat_cpu_online(unsigned int cpu)2135 static int vmstat_cpu_online(unsigned int cpu)
2136 {
2137 refresh_zone_stat_thresholds();
2138
2139 if (!node_state(cpu_to_node(cpu), N_CPU)) {
2140 node_set_state(cpu_to_node(cpu), N_CPU);
2141 }
2142
2143 return 0;
2144 }
2145
vmstat_cpu_down_prep(unsigned int cpu)2146 static int vmstat_cpu_down_prep(unsigned int cpu)
2147 {
2148 cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu));
2149 return 0;
2150 }
2151
vmstat_cpu_dead(unsigned int cpu)2152 static int vmstat_cpu_dead(unsigned int cpu)
2153 {
2154 const struct cpumask *node_cpus;
2155 int node;
2156
2157 node = cpu_to_node(cpu);
2158
2159 refresh_zone_stat_thresholds();
2160 node_cpus = cpumask_of_node(node);
2161 if (!cpumask_empty(node_cpus))
2162 return 0;
2163
2164 node_clear_state(node, N_CPU);
2165
2166 return 0;
2167 }
2168
2169 #endif
2170
2171 struct workqueue_struct *mm_percpu_wq;
2172
init_mm_internals(void)2173 void __init init_mm_internals(void)
2174 {
2175 int ret __maybe_unused;
2176
2177 mm_percpu_wq = alloc_workqueue("mm_percpu_wq", WQ_MEM_RECLAIM, 0);
2178
2179 #ifdef CONFIG_SMP
2180 ret = cpuhp_setup_state_nocalls(CPUHP_MM_VMSTAT_DEAD, "mm/vmstat:dead",
2181 NULL, vmstat_cpu_dead);
2182 if (ret < 0)
2183 pr_err("vmstat: failed to register 'dead' hotplug state\n");
2184
2185 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "mm/vmstat:online",
2186 vmstat_cpu_online,
2187 vmstat_cpu_down_prep);
2188 if (ret < 0)
2189 pr_err("vmstat: failed to register 'online' hotplug state\n");
2190
2191 cpus_read_lock();
2192 init_cpu_node_state();
2193 cpus_read_unlock();
2194
2195 start_shepherd_timer();
2196 #endif
2197 #ifdef CONFIG_PROC_FS
2198 proc_create_seq("buddyinfo", 0444, NULL, &fragmentation_op);
2199 proc_create_seq("pagetypeinfo", 0400, NULL, &pagetypeinfo_op);
2200 proc_create_seq("vmstat", 0444, NULL, &vmstat_op);
2201 proc_create_seq("zoneinfo", 0444, NULL, &zoneinfo_op);
2202 #endif
2203 }
2204
2205 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
2206
2207 /*
2208 * Return an index indicating how much of the available free memory is
2209 * unusable for an allocation of the requested size.
2210 */
unusable_free_index(unsigned int order,struct contig_page_info * info)2211 static int unusable_free_index(unsigned int order,
2212 struct contig_page_info *info)
2213 {
2214 /* No free memory is interpreted as all free memory is unusable */
2215 if (info->free_pages == 0)
2216 return 1000;
2217
2218 /*
2219 * Index should be a value between 0 and 1. Return a value to 3
2220 * decimal places.
2221 *
2222 * 0 => no fragmentation
2223 * 1 => high fragmentation
2224 */
2225 return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages);
2226
2227 }
2228
unusable_show_print(struct seq_file * m,pg_data_t * pgdat,struct zone * zone)2229 static void unusable_show_print(struct seq_file *m,
2230 pg_data_t *pgdat, struct zone *zone)
2231 {
2232 unsigned int order;
2233 int index;
2234 struct contig_page_info info;
2235
2236 seq_printf(m, "Node %d, zone %8s ",
2237 pgdat->node_id,
2238 zone->name);
2239 for (order = 0; order < NR_PAGE_ORDERS; ++order) {
2240 fill_contig_page_info(zone, order, &info);
2241 index = unusable_free_index(order, &info);
2242 seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
2243 }
2244
2245 seq_putc(m, '\n');
2246 }
2247
2248 /*
2249 * Display unusable free space index
2250 *
2251 * The unusable free space index measures how much of the available free
2252 * memory cannot be used to satisfy an allocation of a given size and is a
2253 * value between 0 and 1. The higher the value, the more of free memory is
2254 * unusable and by implication, the worse the external fragmentation is. This
2255 * can be expressed as a percentage by multiplying by 100.
2256 */
unusable_show(struct seq_file * m,void * arg)2257 static int unusable_show(struct seq_file *m, void *arg)
2258 {
2259 pg_data_t *pgdat = (pg_data_t *)arg;
2260
2261 /* check memoryless node */
2262 if (!node_state(pgdat->node_id, N_MEMORY))
2263 return 0;
2264
2265 walk_zones_in_node(m, pgdat, true, false, unusable_show_print);
2266
2267 return 0;
2268 }
2269
2270 static const struct seq_operations unusable_sops = {
2271 .start = frag_start,
2272 .next = frag_next,
2273 .stop = frag_stop,
2274 .show = unusable_show,
2275 };
2276
2277 DEFINE_SEQ_ATTRIBUTE(unusable);
2278
extfrag_show_print(struct seq_file * m,pg_data_t * pgdat,struct zone * zone)2279 static void extfrag_show_print(struct seq_file *m,
2280 pg_data_t *pgdat, struct zone *zone)
2281 {
2282 unsigned int order;
2283 int index;
2284
2285 /* Alloc on stack as interrupts are disabled for zone walk */
2286 struct contig_page_info info;
2287
2288 seq_printf(m, "Node %d, zone %8s ",
2289 pgdat->node_id,
2290 zone->name);
2291 for (order = 0; order < NR_PAGE_ORDERS; ++order) {
2292 fill_contig_page_info(zone, order, &info);
2293 index = __fragmentation_index(order, &info);
2294 seq_printf(m, "%2d.%03d ", index / 1000, index % 1000);
2295 }
2296
2297 seq_putc(m, '\n');
2298 }
2299
2300 /*
2301 * Display fragmentation index for orders that allocations would fail for
2302 */
extfrag_show(struct seq_file * m,void * arg)2303 static int extfrag_show(struct seq_file *m, void *arg)
2304 {
2305 pg_data_t *pgdat = (pg_data_t *)arg;
2306
2307 walk_zones_in_node(m, pgdat, true, false, extfrag_show_print);
2308
2309 return 0;
2310 }
2311
2312 static const struct seq_operations extfrag_sops = {
2313 .start = frag_start,
2314 .next = frag_next,
2315 .stop = frag_stop,
2316 .show = extfrag_show,
2317 };
2318
2319 DEFINE_SEQ_ATTRIBUTE(extfrag);
2320
extfrag_debug_init(void)2321 static int __init extfrag_debug_init(void)
2322 {
2323 struct dentry *extfrag_debug_root;
2324
2325 extfrag_debug_root = debugfs_create_dir("extfrag", NULL);
2326
2327 debugfs_create_file("unusable_index", 0444, extfrag_debug_root, NULL,
2328 &unusable_fops);
2329
2330 debugfs_create_file("extfrag_index", 0444, extfrag_debug_root, NULL,
2331 &extfrag_fops);
2332
2333 return 0;
2334 }
2335
2336 module_init(extfrag_debug_init);
2337
2338 #endif
2339