1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/mm.h>
3 #include <linux/mmzone.h>
4 #include <linux/memblock.h>
5 #include <linux/page_ext.h>
6 #include <linux/memory.h>
7 #include <linux/vmalloc.h>
8 #include <linux/kmemleak.h>
9 #include <linux/page_owner.h>
10 #include <linux/page_pinner.h>
11 #include <linux/page_idle.h>
12 #include <linux/page_table_check.h>
13 #include <linux/rcupdate.h>
14 #include <linux/pgalloc_tag.h>
15
16 /*
17 * struct page extension
18 *
19 * This is the feature to manage memory for extended data per page.
20 *
21 * Until now, we must modify struct page itself to store extra data per page.
22 * This requires rebuilding the kernel and it is really time consuming process.
23 * And, sometimes, rebuild is impossible due to third party module dependency.
24 * At last, enlarging struct page could cause un-wanted system behaviour change.
25 *
26 * This feature is intended to overcome above mentioned problems. This feature
27 * allocates memory for extended data per page in certain place rather than
28 * the struct page itself. This memory can be accessed by the accessor
29 * functions provided by this code. During the boot process, it checks whether
30 * allocation of huge chunk of memory is needed or not. If not, it avoids
31 * allocating memory at all. With this advantage, we can include this feature
32 * into the kernel in default and can avoid rebuild and solve related problems.
33 *
34 * To help these things to work well, there are two callbacks for clients. One
35 * is the need callback which is mandatory if user wants to avoid useless
36 * memory allocation at boot-time. The other is optional, init callback, which
37 * is used to do proper initialization after memory is allocated.
38 *
39 * The need callback is used to decide whether extended memory allocation is
40 * needed or not. Sometimes users want to deactivate some features in this
41 * boot and extra memory would be unnecessary. In this case, to avoid
42 * allocating huge chunk of memory, each clients represent their need of
43 * extra memory through the need callback. If one of the need callbacks
44 * returns true, it means that someone needs extra memory so that
45 * page extension core should allocates memory for page extension. If
46 * none of need callbacks return true, memory isn't needed at all in this boot
47 * and page extension core can skip to allocate memory. As result,
48 * none of memory is wasted.
49 *
50 * When need callback returns true, page_ext checks if there is a request for
51 * extra memory through size in struct page_ext_operations. If it is non-zero,
52 * extra space is allocated for each page_ext entry and offset is returned to
53 * user through offset in struct page_ext_operations.
54 *
55 * The init callback is used to do proper initialization after page extension
56 * is completely initialized. In sparse memory system, extra memory is
57 * allocated some time later than memmap is allocated. In other words, lifetime
58 * of memory for page extension isn't same with memmap for struct page.
59 * Therefore, clients can't store extra data until page extension is
60 * initialized, even if pages are allocated and used freely. This could
61 * cause inadequate state of extra data per page, so, to prevent it, client
62 * can utilize this callback to initialize the state of it correctly.
63 */
64
65 #ifdef CONFIG_SPARSEMEM
66 #define PAGE_EXT_INVALID (0x1)
67 #endif
68
69 #if defined(CONFIG_PAGE_IDLE_FLAG) && !defined(CONFIG_64BIT)
need_page_idle(void)70 static bool need_page_idle(void)
71 {
72 return true;
73 }
74 static struct page_ext_operations page_idle_ops __initdata = {
75 .need = need_page_idle,
76 .need_shared_flags = true,
77 };
78 #endif
79
80 static struct page_ext_operations *page_ext_ops[] __initdata = {
81 #ifdef CONFIG_PAGE_OWNER
82 &page_owner_ops,
83 #endif
84 #if defined(CONFIG_PAGE_IDLE_FLAG) && !defined(CONFIG_64BIT)
85 &page_idle_ops,
86 #endif
87 #ifdef CONFIG_MEM_ALLOC_PROFILING
88 &page_alloc_tagging_ops,
89 #endif
90 #ifdef CONFIG_PAGE_PINNER
91 &page_pinner_ops,
92 #endif
93 #ifdef CONFIG_PAGE_TABLE_CHECK
94 &page_table_check_ops,
95 #endif
96 };
97
98 unsigned long page_ext_size;
99
100 static unsigned long total_usage;
101
102 #ifdef CONFIG_MEM_ALLOC_PROFILING_DEBUG
103 /*
104 * To ensure correct allocation tagging for pages, page_ext should be available
105 * before the first page allocation. Otherwise early task stacks will be
106 * allocated before page_ext initialization and missing tags will be flagged.
107 */
108 bool early_page_ext __meminitdata = true;
109 #else
110 bool early_page_ext __meminitdata;
111 #endif
setup_early_page_ext(char * str)112 static int __init setup_early_page_ext(char *str)
113 {
114 early_page_ext = true;
115 return 0;
116 }
117 early_param("early_page_ext", setup_early_page_ext);
118
invoke_need_callbacks(void)119 static bool __init invoke_need_callbacks(void)
120 {
121 int i;
122 int entries = ARRAY_SIZE(page_ext_ops);
123 bool need = false;
124
125 for (i = 0; i < entries; i++) {
126 if (page_ext_ops[i]->need()) {
127 if (page_ext_ops[i]->need_shared_flags) {
128 page_ext_size = sizeof(struct page_ext);
129 break;
130 }
131 }
132 }
133
134 for (i = 0; i < entries; i++) {
135 if (page_ext_ops[i]->need()) {
136 page_ext_ops[i]->offset = page_ext_size;
137 page_ext_size += page_ext_ops[i]->size;
138 need = true;
139 }
140 }
141
142 return need;
143 }
144
invoke_init_callbacks(void)145 static void __init invoke_init_callbacks(void)
146 {
147 int i;
148 int entries = ARRAY_SIZE(page_ext_ops);
149
150 for (i = 0; i < entries; i++) {
151 if (page_ext_ops[i]->init)
152 page_ext_ops[i]->init();
153 }
154 }
155
get_entry(void * base,unsigned long index)156 static inline struct page_ext *get_entry(void *base, unsigned long index)
157 {
158 return base + page_ext_size * index;
159 }
160
161 #ifndef CONFIG_SPARSEMEM
page_ext_init_flatmem_late(void)162 void __init page_ext_init_flatmem_late(void)
163 {
164 invoke_init_callbacks();
165 }
166
pgdat_page_ext_init(struct pglist_data * pgdat)167 void __meminit pgdat_page_ext_init(struct pglist_data *pgdat)
168 {
169 pgdat->node_page_ext = NULL;
170 }
171
lookup_page_ext(const struct page * page)172 static struct page_ext *lookup_page_ext(const struct page *page)
173 {
174 unsigned long pfn = page_to_pfn(page);
175 unsigned long index;
176 struct page_ext *base;
177
178 WARN_ON_ONCE(!rcu_read_lock_held());
179 base = NODE_DATA(page_to_nid(page))->node_page_ext;
180 /*
181 * The sanity checks the page allocator does upon freeing a
182 * page can reach here before the page_ext arrays are
183 * allocated when feeding a range of pages to the allocator
184 * for the first time during bootup or memory hotplug.
185 */
186 if (unlikely(!base))
187 return NULL;
188 index = pfn - round_down(node_start_pfn(page_to_nid(page)),
189 MAX_ORDER_NR_PAGES);
190 return get_entry(base, index);
191 }
192
alloc_node_page_ext(int nid)193 static int __init alloc_node_page_ext(int nid)
194 {
195 struct page_ext *base;
196 unsigned long table_size;
197 unsigned long nr_pages;
198
199 nr_pages = NODE_DATA(nid)->node_spanned_pages;
200 if (!nr_pages)
201 return 0;
202
203 /*
204 * Need extra space if node range is not aligned with
205 * MAX_ORDER_NR_PAGES. When page allocator's buddy algorithm
206 * checks buddy's status, range could be out of exact node range.
207 */
208 if (!IS_ALIGNED(node_start_pfn(nid), MAX_ORDER_NR_PAGES) ||
209 !IS_ALIGNED(node_end_pfn(nid), MAX_ORDER_NR_PAGES))
210 nr_pages += MAX_ORDER_NR_PAGES;
211
212 table_size = page_ext_size * nr_pages;
213
214 base = memblock_alloc_try_nid(
215 table_size, PAGE_SIZE, __pa(MAX_DMA_ADDRESS),
216 MEMBLOCK_ALLOC_ACCESSIBLE, nid);
217 if (!base)
218 return -ENOMEM;
219 NODE_DATA(nid)->node_page_ext = base;
220 total_usage += table_size;
221 memmap_boot_pages_add(DIV_ROUND_UP(table_size, PAGE_SIZE));
222 return 0;
223 }
224
page_ext_init_flatmem(void)225 void __init page_ext_init_flatmem(void)
226 {
227
228 int nid, fail;
229
230 if (!invoke_need_callbacks())
231 return;
232
233 for_each_online_node(nid) {
234 fail = alloc_node_page_ext(nid);
235 if (fail)
236 goto fail;
237 }
238 pr_info("allocated %ld bytes of page_ext\n", total_usage);
239 return;
240
241 fail:
242 pr_crit("allocation of page_ext failed.\n");
243 panic("Out of memory");
244 }
245
246 #else /* CONFIG_SPARSEMEM */
page_ext_invalid(struct page_ext * page_ext)247 static bool page_ext_invalid(struct page_ext *page_ext)
248 {
249 return !page_ext || (((unsigned long)page_ext & PAGE_EXT_INVALID) == PAGE_EXT_INVALID);
250 }
251
lookup_page_ext(const struct page * page)252 static struct page_ext *lookup_page_ext(const struct page *page)
253 {
254 unsigned long pfn = page_to_pfn(page);
255 struct mem_section *section = __pfn_to_section(pfn);
256 struct page_ext *page_ext = READ_ONCE(section->page_ext);
257
258 WARN_ON_ONCE(!rcu_read_lock_held());
259 /*
260 * The sanity checks the page allocator does upon freeing a
261 * page can reach here before the page_ext arrays are
262 * allocated when feeding a range of pages to the allocator
263 * for the first time during bootup or memory hotplug.
264 */
265 if (page_ext_invalid(page_ext))
266 return NULL;
267 return get_entry(page_ext, pfn);
268 }
269
alloc_page_ext(size_t size,int nid)270 static void *__meminit alloc_page_ext(size_t size, int nid)
271 {
272 gfp_t flags = GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN;
273 void *addr = NULL;
274
275 addr = alloc_pages_exact_nid(nid, size, flags);
276 if (addr)
277 kmemleak_alloc(addr, size, 1, flags);
278 else
279 addr = vzalloc_node(size, nid);
280
281 if (addr)
282 memmap_pages_add(DIV_ROUND_UP(size, PAGE_SIZE));
283
284 return addr;
285 }
286
init_section_page_ext(unsigned long pfn,int nid)287 static int __meminit init_section_page_ext(unsigned long pfn, int nid)
288 {
289 struct mem_section *section;
290 struct page_ext *base;
291 unsigned long table_size;
292
293 section = __pfn_to_section(pfn);
294
295 if (section->page_ext)
296 return 0;
297
298 table_size = page_ext_size * PAGES_PER_SECTION;
299 base = alloc_page_ext(table_size, nid);
300
301 /*
302 * The value stored in section->page_ext is (base - pfn)
303 * and it does not point to the memory block allocated above,
304 * causing kmemleak false positives.
305 */
306 kmemleak_not_leak(base);
307
308 if (!base) {
309 pr_err("page ext allocation failure\n");
310 return -ENOMEM;
311 }
312
313 /*
314 * The passed "pfn" may not be aligned to SECTION. For the calculation
315 * we need to apply a mask.
316 */
317 pfn &= PAGE_SECTION_MASK;
318 section->page_ext = (void *)base - page_ext_size * pfn;
319 total_usage += table_size;
320 return 0;
321 }
322
free_page_ext(void * addr)323 static void free_page_ext(void *addr)
324 {
325 size_t table_size;
326 struct page *page;
327
328 table_size = page_ext_size * PAGES_PER_SECTION;
329 memmap_pages_add(-1L * (DIV_ROUND_UP(table_size, PAGE_SIZE)));
330
331 if (is_vmalloc_addr(addr)) {
332 vfree(addr);
333 } else {
334 page = virt_to_page(addr);
335 BUG_ON(PageReserved(page));
336 kmemleak_free(addr);
337 free_pages_exact(addr, table_size);
338 }
339 }
340
__free_page_ext(unsigned long pfn)341 static void __free_page_ext(unsigned long pfn)
342 {
343 struct mem_section *ms;
344 struct page_ext *base;
345
346 ms = __pfn_to_section(pfn);
347 if (!ms || !ms->page_ext)
348 return;
349
350 base = READ_ONCE(ms->page_ext);
351 /*
352 * page_ext here can be valid while doing the roll back
353 * operation in online_page_ext().
354 */
355 if (page_ext_invalid(base))
356 base = (void *)base - PAGE_EXT_INVALID;
357 WRITE_ONCE(ms->page_ext, NULL);
358
359 base = get_entry(base, pfn);
360 free_page_ext(base);
361 }
362
__invalidate_page_ext(unsigned long pfn)363 static void __invalidate_page_ext(unsigned long pfn)
364 {
365 struct mem_section *ms;
366 void *val;
367
368 ms = __pfn_to_section(pfn);
369 if (!ms || !ms->page_ext)
370 return;
371 val = (void *)ms->page_ext + PAGE_EXT_INVALID;
372 WRITE_ONCE(ms->page_ext, val);
373 }
374
online_page_ext(unsigned long start_pfn,unsigned long nr_pages,int nid)375 static int __meminit online_page_ext(unsigned long start_pfn,
376 unsigned long nr_pages,
377 int nid)
378 {
379 unsigned long start, end, pfn;
380 int fail = 0;
381
382 start = SECTION_ALIGN_DOWN(start_pfn);
383 end = SECTION_ALIGN_UP(start_pfn + nr_pages);
384
385 if (nid == NUMA_NO_NODE) {
386 /*
387 * In this case, "nid" already exists and contains valid memory.
388 * "start_pfn" passed to us is a pfn which is an arg for
389 * online__pages(), and start_pfn should exist.
390 */
391 nid = pfn_to_nid(start_pfn);
392 VM_BUG_ON(!node_online(nid));
393 }
394
395 for (pfn = start; !fail && pfn < end; pfn += PAGES_PER_SECTION)
396 fail = init_section_page_ext(pfn, nid);
397 if (!fail)
398 return 0;
399
400 /* rollback */
401 end = pfn - PAGES_PER_SECTION;
402 for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION)
403 __free_page_ext(pfn);
404
405 return -ENOMEM;
406 }
407
offline_page_ext(unsigned long start_pfn,unsigned long nr_pages)408 static void __meminit offline_page_ext(unsigned long start_pfn,
409 unsigned long nr_pages)
410 {
411 unsigned long start, end, pfn;
412
413 start = SECTION_ALIGN_DOWN(start_pfn);
414 end = SECTION_ALIGN_UP(start_pfn + nr_pages);
415
416 /*
417 * Freeing of page_ext is done in 3 steps to avoid
418 * use-after-free of it:
419 * 1) Traverse all the sections and mark their page_ext
420 * as invalid.
421 * 2) Wait for all the existing users of page_ext who
422 * started before invalidation to finish.
423 * 3) Free the page_ext.
424 */
425 for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION)
426 __invalidate_page_ext(pfn);
427
428 synchronize_rcu();
429
430 for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION)
431 __free_page_ext(pfn);
432 }
433
page_ext_callback(struct notifier_block * self,unsigned long action,void * arg)434 static int __meminit page_ext_callback(struct notifier_block *self,
435 unsigned long action, void *arg)
436 {
437 struct memory_notify *mn = arg;
438 int ret = 0;
439
440 switch (action) {
441 case MEM_GOING_ONLINE:
442 ret = online_page_ext(mn->start_pfn,
443 mn->nr_pages, mn->status_change_nid);
444 break;
445 case MEM_OFFLINE:
446 offline_page_ext(mn->start_pfn,
447 mn->nr_pages);
448 break;
449 case MEM_CANCEL_ONLINE:
450 offline_page_ext(mn->start_pfn,
451 mn->nr_pages);
452 break;
453 case MEM_GOING_OFFLINE:
454 break;
455 case MEM_ONLINE:
456 case MEM_CANCEL_OFFLINE:
457 break;
458 }
459
460 return notifier_from_errno(ret);
461 }
462
page_ext_init(void)463 void __init page_ext_init(void)
464 {
465 unsigned long pfn;
466 int nid;
467
468 if (!invoke_need_callbacks())
469 return;
470
471 for_each_node_state(nid, N_MEMORY) {
472 unsigned long start_pfn, end_pfn;
473
474 start_pfn = node_start_pfn(nid);
475 end_pfn = node_end_pfn(nid);
476 /*
477 * start_pfn and end_pfn may not be aligned to SECTION and the
478 * page->flags of out of node pages are not initialized. So we
479 * scan [start_pfn, the biggest section's pfn < end_pfn) here.
480 */
481 for (pfn = start_pfn; pfn < end_pfn;
482 pfn = ALIGN(pfn + 1, PAGES_PER_SECTION)) {
483
484 if (!pfn_valid(pfn))
485 continue;
486 /*
487 * Nodes's pfns can be overlapping.
488 * We know some arch can have a nodes layout such as
489 * -------------pfn-------------->
490 * N0 | N1 | N2 | N0 | N1 | N2|....
491 */
492 if (pfn_to_nid(pfn) != nid)
493 continue;
494 if (init_section_page_ext(pfn, nid))
495 goto oom;
496 cond_resched();
497 }
498 }
499 hotplug_memory_notifier(page_ext_callback, DEFAULT_CALLBACK_PRI);
500 pr_info("allocated %ld bytes of page_ext\n", total_usage);
501 invoke_init_callbacks();
502 return;
503
504 oom:
505 panic("Out of memory");
506 }
507
pgdat_page_ext_init(struct pglist_data * pgdat)508 void __meminit pgdat_page_ext_init(struct pglist_data *pgdat)
509 {
510 }
511
512 #endif
513
514 /**
515 * page_ext_get() - Get the extended information for a page.
516 * @page: The page we're interested in.
517 *
518 * Ensures that the page_ext will remain valid until page_ext_put()
519 * is called.
520 *
521 * Return: NULL if no page_ext exists for this page.
522 * Context: Any context. Caller may not sleep until they have called
523 * page_ext_put().
524 */
page_ext_get(const struct page * page)525 struct page_ext *page_ext_get(const struct page *page)
526 {
527 struct page_ext *page_ext;
528
529 rcu_read_lock();
530 page_ext = lookup_page_ext(page);
531 if (!page_ext) {
532 rcu_read_unlock();
533 return NULL;
534 }
535
536 return page_ext;
537 }
538 EXPORT_SYMBOL_NS_GPL(page_ext_get, MINIDUMP);
539
540 /**
541 * page_ext_put() - Working with page extended information is done.
542 * @page_ext: Page extended information received from page_ext_get().
543 *
544 * The page extended information of the page may not be valid after this
545 * function is called.
546 *
547 * Return: None.
548 * Context: Any context with corresponding page_ext_get() is called.
549 */
page_ext_put(struct page_ext * page_ext)550 void page_ext_put(struct page_ext *page_ext)
551 {
552 if (unlikely(!page_ext))
553 return;
554
555 rcu_read_unlock();
556 }
557 EXPORT_SYMBOL_NS_GPL(page_ext_put, MINIDUMP);
558