1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * PCI Bus Services, see include/linux/pci.h for further explanation.
4 *
5 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
6 * David Mosberger-Tang
7 *
8 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
9 */
10
11 #include <linux/acpi.h>
12 #include <linux/kernel.h>
13 #include <linux/delay.h>
14 #include <linux/dmi.h>
15 #include <linux/init.h>
16 #include <linux/msi.h>
17 #include <linux/of.h>
18 #include <linux/pci.h>
19 #include <linux/pm.h>
20 #include <linux/slab.h>
21 #include <linux/module.h>
22 #include <linux/spinlock.h>
23 #include <linux/string.h>
24 #include <linux/log2.h>
25 #include <linux/logic_pio.h>
26 #include <linux/pm_wakeup.h>
27 #include <linux/device.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/pci_hotplug.h>
30 #include <linux/vmalloc.h>
31 #include <asm/dma.h>
32 #include <linux/aer.h>
33 #include <linux/bitfield.h>
34 #include "pci.h"
35
36 DEFINE_MUTEX(pci_slot_mutex);
37
38 const char *pci_power_names[] = {
39 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
40 };
41 EXPORT_SYMBOL_GPL(pci_power_names);
42
43 #ifdef CONFIG_X86_32
44 int isa_dma_bridge_buggy;
45 EXPORT_SYMBOL(isa_dma_bridge_buggy);
46 #endif
47
48 int pci_pci_problems;
49 EXPORT_SYMBOL(pci_pci_problems);
50
51 unsigned int pci_pm_d3hot_delay;
52
53 static void pci_pme_list_scan(struct work_struct *work);
54
55 static LIST_HEAD(pci_pme_list);
56 static DEFINE_MUTEX(pci_pme_list_mutex);
57 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
58
59 struct pci_pme_device {
60 struct list_head list;
61 struct pci_dev *dev;
62 };
63
64 #define PME_TIMEOUT 1000 /* How long between PME checks */
65
66 /*
67 * Following exit from Conventional Reset, devices must be ready within 1 sec
68 * (PCIe r6.0 sec 6.6.1). A D3cold to D0 transition implies a Conventional
69 * Reset (PCIe r6.0 sec 5.8).
70 */
71 #define PCI_RESET_WAIT 1000 /* msec */
72
73 /*
74 * Devices may extend the 1 sec period through Request Retry Status
75 * completions (PCIe r6.0 sec 2.3.1). The spec does not provide an upper
76 * limit, but 60 sec ought to be enough for any device to become
77 * responsive.
78 */
79 #define PCIE_RESET_READY_POLL_MS 60000 /* msec */
80
pci_dev_d3_sleep(struct pci_dev * dev)81 static void pci_dev_d3_sleep(struct pci_dev *dev)
82 {
83 unsigned int delay_ms = max(dev->d3hot_delay, pci_pm_d3hot_delay);
84 unsigned int upper;
85
86 if (delay_ms) {
87 /* Use a 20% upper bound, 1ms minimum */
88 upper = max(DIV_ROUND_CLOSEST(delay_ms, 5), 1U);
89 usleep_range(delay_ms * USEC_PER_MSEC,
90 (delay_ms + upper) * USEC_PER_MSEC);
91 }
92 }
93
pci_reset_supported(struct pci_dev * dev)94 bool pci_reset_supported(struct pci_dev *dev)
95 {
96 return dev->reset_methods[0] != 0;
97 }
98
99 #ifdef CONFIG_PCI_DOMAINS
100 int pci_domains_supported = 1;
101 #endif
102
103 #define DEFAULT_CARDBUS_IO_SIZE (256)
104 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024)
105 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
106 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
107 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
108
109 #define DEFAULT_HOTPLUG_IO_SIZE (256)
110 #define DEFAULT_HOTPLUG_MMIO_SIZE (2*1024*1024)
111 #define DEFAULT_HOTPLUG_MMIO_PREF_SIZE (2*1024*1024)
112 /* hpiosize=nn can override this */
113 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE;
114 /*
115 * pci=hpmmiosize=nnM overrides non-prefetchable MMIO size,
116 * pci=hpmmioprefsize=nnM overrides prefetchable MMIO size;
117 * pci=hpmemsize=nnM overrides both
118 */
119 unsigned long pci_hotplug_mmio_size = DEFAULT_HOTPLUG_MMIO_SIZE;
120 unsigned long pci_hotplug_mmio_pref_size = DEFAULT_HOTPLUG_MMIO_PREF_SIZE;
121
122 #define DEFAULT_HOTPLUG_BUS_SIZE 1
123 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
124
125
126 /* PCIe MPS/MRRS strategy; can be overridden by kernel command-line param */
127 #ifdef CONFIG_PCIE_BUS_TUNE_OFF
128 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF;
129 #elif defined CONFIG_PCIE_BUS_SAFE
130 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_SAFE;
131 #elif defined CONFIG_PCIE_BUS_PERFORMANCE
132 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PERFORMANCE;
133 #elif defined CONFIG_PCIE_BUS_PEER2PEER
134 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PEER2PEER;
135 #else
136 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
137 #endif
138
139 /*
140 * The default CLS is used if arch didn't set CLS explicitly and not
141 * all pci devices agree on the same value. Arch can override either
142 * the dfl or actual value as it sees fit. Don't forget this is
143 * measured in 32-bit words, not bytes.
144 */
145 u8 pci_dfl_cache_line_size __ro_after_init = L1_CACHE_BYTES >> 2;
146 u8 pci_cache_line_size __ro_after_init ;
147
148 /*
149 * If we set up a device for bus mastering, we need to check the latency
150 * timer as certain BIOSes forget to set it properly.
151 */
152 unsigned int pcibios_max_latency = 255;
153
154 /* If set, the PCIe ARI capability will not be used. */
155 static bool pcie_ari_disabled;
156
157 /* If set, the PCIe ATS capability will not be used. */
158 static bool pcie_ats_disabled;
159
160 /* If set, the PCI config space of each device is printed during boot. */
161 bool pci_early_dump;
162
pci_ats_disabled(void)163 bool pci_ats_disabled(void)
164 {
165 return pcie_ats_disabled;
166 }
167 EXPORT_SYMBOL_GPL(pci_ats_disabled);
168
169 /* Disable bridge_d3 for all PCIe ports */
170 static bool pci_bridge_d3_disable;
171 /* Force bridge_d3 for all PCIe ports */
172 static bool pci_bridge_d3_force;
173
pcie_port_pm_setup(char * str)174 static int __init pcie_port_pm_setup(char *str)
175 {
176 if (!strcmp(str, "off"))
177 pci_bridge_d3_disable = true;
178 else if (!strcmp(str, "force"))
179 pci_bridge_d3_force = true;
180 return 1;
181 }
182 __setup("pcie_port_pm=", pcie_port_pm_setup);
183
184 /**
185 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
186 * @bus: pointer to PCI bus structure to search
187 *
188 * Given a PCI bus, returns the highest PCI bus number present in the set
189 * including the given PCI bus and its list of child PCI buses.
190 */
pci_bus_max_busnr(struct pci_bus * bus)191 unsigned char pci_bus_max_busnr(struct pci_bus *bus)
192 {
193 struct pci_bus *tmp;
194 unsigned char max, n;
195
196 max = bus->busn_res.end;
197 list_for_each_entry(tmp, &bus->children, node) {
198 n = pci_bus_max_busnr(tmp);
199 if (n > max)
200 max = n;
201 }
202 return max;
203 }
204 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
205
206 /**
207 * pci_status_get_and_clear_errors - return and clear error bits in PCI_STATUS
208 * @pdev: the PCI device
209 *
210 * Returns error bits set in PCI_STATUS and clears them.
211 */
pci_status_get_and_clear_errors(struct pci_dev * pdev)212 int pci_status_get_and_clear_errors(struct pci_dev *pdev)
213 {
214 u16 status;
215 int ret;
216
217 ret = pci_read_config_word(pdev, PCI_STATUS, &status);
218 if (ret != PCIBIOS_SUCCESSFUL)
219 return -EIO;
220
221 status &= PCI_STATUS_ERROR_BITS;
222 if (status)
223 pci_write_config_word(pdev, PCI_STATUS, status);
224
225 return status;
226 }
227 EXPORT_SYMBOL_GPL(pci_status_get_and_clear_errors);
228
229 #ifdef CONFIG_HAS_IOMEM
__pci_ioremap_resource(struct pci_dev * pdev,int bar,bool write_combine)230 static void __iomem *__pci_ioremap_resource(struct pci_dev *pdev, int bar,
231 bool write_combine)
232 {
233 struct resource *res = &pdev->resource[bar];
234 resource_size_t start = res->start;
235 resource_size_t size = resource_size(res);
236
237 /*
238 * Make sure the BAR is actually a memory resource, not an IO resource
239 */
240 if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
241 pci_err(pdev, "can't ioremap BAR %d: %pR\n", bar, res);
242 return NULL;
243 }
244
245 if (write_combine)
246 return ioremap_wc(start, size);
247
248 return ioremap(start, size);
249 }
250
pci_ioremap_bar(struct pci_dev * pdev,int bar)251 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
252 {
253 return __pci_ioremap_resource(pdev, bar, false);
254 }
255 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
256
pci_ioremap_wc_bar(struct pci_dev * pdev,int bar)257 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
258 {
259 return __pci_ioremap_resource(pdev, bar, true);
260 }
261 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
262 #endif
263
264 /**
265 * pci_dev_str_match_path - test if a path string matches a device
266 * @dev: the PCI device to test
267 * @path: string to match the device against
268 * @endptr: pointer to the string after the match
269 *
270 * Test if a string (typically from a kernel parameter) formatted as a
271 * path of device/function addresses matches a PCI device. The string must
272 * be of the form:
273 *
274 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
275 *
276 * A path for a device can be obtained using 'lspci -t'. Using a path
277 * is more robust against bus renumbering than using only a single bus,
278 * device and function address.
279 *
280 * Returns 1 if the string matches the device, 0 if it does not and
281 * a negative error code if it fails to parse the string.
282 */
pci_dev_str_match_path(struct pci_dev * dev,const char * path,const char ** endptr)283 static int pci_dev_str_match_path(struct pci_dev *dev, const char *path,
284 const char **endptr)
285 {
286 int ret;
287 unsigned int seg, bus, slot, func;
288 char *wpath, *p;
289 char end;
290
291 *endptr = strchrnul(path, ';');
292
293 wpath = kmemdup_nul(path, *endptr - path, GFP_ATOMIC);
294 if (!wpath)
295 return -ENOMEM;
296
297 while (1) {
298 p = strrchr(wpath, '/');
299 if (!p)
300 break;
301 ret = sscanf(p, "/%x.%x%c", &slot, &func, &end);
302 if (ret != 2) {
303 ret = -EINVAL;
304 goto free_and_exit;
305 }
306
307 if (dev->devfn != PCI_DEVFN(slot, func)) {
308 ret = 0;
309 goto free_and_exit;
310 }
311
312 /*
313 * Note: we don't need to get a reference to the upstream
314 * bridge because we hold a reference to the top level
315 * device which should hold a reference to the bridge,
316 * and so on.
317 */
318 dev = pci_upstream_bridge(dev);
319 if (!dev) {
320 ret = 0;
321 goto free_and_exit;
322 }
323
324 *p = 0;
325 }
326
327 ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot,
328 &func, &end);
329 if (ret != 4) {
330 seg = 0;
331 ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end);
332 if (ret != 3) {
333 ret = -EINVAL;
334 goto free_and_exit;
335 }
336 }
337
338 ret = (seg == pci_domain_nr(dev->bus) &&
339 bus == dev->bus->number &&
340 dev->devfn == PCI_DEVFN(slot, func));
341
342 free_and_exit:
343 kfree(wpath);
344 return ret;
345 }
346
347 /**
348 * pci_dev_str_match - test if a string matches a device
349 * @dev: the PCI device to test
350 * @p: string to match the device against
351 * @endptr: pointer to the string after the match
352 *
353 * Test if a string (typically from a kernel parameter) matches a specified
354 * PCI device. The string may be of one of the following formats:
355 *
356 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
357 * pci:<vendor>:<device>[:<subvendor>:<subdevice>]
358 *
359 * The first format specifies a PCI bus/device/function address which
360 * may change if new hardware is inserted, if motherboard firmware changes,
361 * or due to changes caused in kernel parameters. If the domain is
362 * left unspecified, it is taken to be 0. In order to be robust against
363 * bus renumbering issues, a path of PCI device/function numbers may be used
364 * to address the specific device. The path for a device can be determined
365 * through the use of 'lspci -t'.
366 *
367 * The second format matches devices using IDs in the configuration
368 * space which may match multiple devices in the system. A value of 0
369 * for any field will match all devices. (Note: this differs from
370 * in-kernel code that uses PCI_ANY_ID which is ~0; this is for
371 * legacy reasons and convenience so users don't have to specify
372 * FFFFFFFFs on the command line.)
373 *
374 * Returns 1 if the string matches the device, 0 if it does not and
375 * a negative error code if the string cannot be parsed.
376 */
pci_dev_str_match(struct pci_dev * dev,const char * p,const char ** endptr)377 static int pci_dev_str_match(struct pci_dev *dev, const char *p,
378 const char **endptr)
379 {
380 int ret;
381 int count;
382 unsigned short vendor, device, subsystem_vendor, subsystem_device;
383
384 if (strncmp(p, "pci:", 4) == 0) {
385 /* PCI vendor/device (subvendor/subdevice) IDs are specified */
386 p += 4;
387 ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device,
388 &subsystem_vendor, &subsystem_device, &count);
389 if (ret != 4) {
390 ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count);
391 if (ret != 2)
392 return -EINVAL;
393
394 subsystem_vendor = 0;
395 subsystem_device = 0;
396 }
397
398 p += count;
399
400 if ((!vendor || vendor == dev->vendor) &&
401 (!device || device == dev->device) &&
402 (!subsystem_vendor ||
403 subsystem_vendor == dev->subsystem_vendor) &&
404 (!subsystem_device ||
405 subsystem_device == dev->subsystem_device))
406 goto found;
407 } else {
408 /*
409 * PCI Bus, Device, Function IDs are specified
410 * (optionally, may include a path of devfns following it)
411 */
412 ret = pci_dev_str_match_path(dev, p, &p);
413 if (ret < 0)
414 return ret;
415 else if (ret)
416 goto found;
417 }
418
419 *endptr = p;
420 return 0;
421
422 found:
423 *endptr = p;
424 return 1;
425 }
426
__pci_find_next_cap_ttl(struct pci_bus * bus,unsigned int devfn,u8 pos,int cap,int * ttl)427 static u8 __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
428 u8 pos, int cap, int *ttl)
429 {
430 u8 id;
431 u16 ent;
432
433 pci_bus_read_config_byte(bus, devfn, pos, &pos);
434
435 while ((*ttl)--) {
436 if (pos < 0x40)
437 break;
438 pos &= ~3;
439 pci_bus_read_config_word(bus, devfn, pos, &ent);
440
441 id = ent & 0xff;
442 if (id == 0xff)
443 break;
444 if (id == cap)
445 return pos;
446 pos = (ent >> 8);
447 }
448 return 0;
449 }
450
__pci_find_next_cap(struct pci_bus * bus,unsigned int devfn,u8 pos,int cap)451 static u8 __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
452 u8 pos, int cap)
453 {
454 int ttl = PCI_FIND_CAP_TTL;
455
456 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
457 }
458
pci_find_next_capability(struct pci_dev * dev,u8 pos,int cap)459 u8 pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
460 {
461 return __pci_find_next_cap(dev->bus, dev->devfn,
462 pos + PCI_CAP_LIST_NEXT, cap);
463 }
464 EXPORT_SYMBOL_GPL(pci_find_next_capability);
465
__pci_bus_find_cap_start(struct pci_bus * bus,unsigned int devfn,u8 hdr_type)466 static u8 __pci_bus_find_cap_start(struct pci_bus *bus,
467 unsigned int devfn, u8 hdr_type)
468 {
469 u16 status;
470
471 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
472 if (!(status & PCI_STATUS_CAP_LIST))
473 return 0;
474
475 switch (hdr_type) {
476 case PCI_HEADER_TYPE_NORMAL:
477 case PCI_HEADER_TYPE_BRIDGE:
478 return PCI_CAPABILITY_LIST;
479 case PCI_HEADER_TYPE_CARDBUS:
480 return PCI_CB_CAPABILITY_LIST;
481 }
482
483 return 0;
484 }
485
486 /**
487 * pci_find_capability - query for devices' capabilities
488 * @dev: PCI device to query
489 * @cap: capability code
490 *
491 * Tell if a device supports a given PCI capability.
492 * Returns the address of the requested capability structure within the
493 * device's PCI configuration space or 0 in case the device does not
494 * support it. Possible values for @cap include:
495 *
496 * %PCI_CAP_ID_PM Power Management
497 * %PCI_CAP_ID_AGP Accelerated Graphics Port
498 * %PCI_CAP_ID_VPD Vital Product Data
499 * %PCI_CAP_ID_SLOTID Slot Identification
500 * %PCI_CAP_ID_MSI Message Signalled Interrupts
501 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap
502 * %PCI_CAP_ID_PCIX PCI-X
503 * %PCI_CAP_ID_EXP PCI Express
504 */
pci_find_capability(struct pci_dev * dev,int cap)505 u8 pci_find_capability(struct pci_dev *dev, int cap)
506 {
507 u8 pos;
508
509 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
510 if (pos)
511 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
512
513 return pos;
514 }
515 EXPORT_SYMBOL(pci_find_capability);
516
517 /**
518 * pci_bus_find_capability - query for devices' capabilities
519 * @bus: the PCI bus to query
520 * @devfn: PCI device to query
521 * @cap: capability code
522 *
523 * Like pci_find_capability() but works for PCI devices that do not have a
524 * pci_dev structure set up yet.
525 *
526 * Returns the address of the requested capability structure within the
527 * device's PCI configuration space or 0 in case the device does not
528 * support it.
529 */
pci_bus_find_capability(struct pci_bus * bus,unsigned int devfn,int cap)530 u8 pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
531 {
532 u8 hdr_type, pos;
533
534 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
535
536 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & PCI_HEADER_TYPE_MASK);
537 if (pos)
538 pos = __pci_find_next_cap(bus, devfn, pos, cap);
539
540 return pos;
541 }
542 EXPORT_SYMBOL(pci_bus_find_capability);
543
544 /**
545 * pci_find_next_ext_capability - Find an extended capability
546 * @dev: PCI device to query
547 * @start: address at which to start looking (0 to start at beginning of list)
548 * @cap: capability code
549 *
550 * Returns the address of the next matching extended capability structure
551 * within the device's PCI configuration space or 0 if the device does
552 * not support it. Some capabilities can occur several times, e.g., the
553 * vendor-specific capability, and this provides a way to find them all.
554 */
pci_find_next_ext_capability(struct pci_dev * dev,u16 start,int cap)555 u16 pci_find_next_ext_capability(struct pci_dev *dev, u16 start, int cap)
556 {
557 u32 header;
558 int ttl;
559 u16 pos = PCI_CFG_SPACE_SIZE;
560
561 /* minimum 8 bytes per capability */
562 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
563
564 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
565 return 0;
566
567 if (start)
568 pos = start;
569
570 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
571 return 0;
572
573 /*
574 * If we have no capabilities, this is indicated by cap ID,
575 * cap version and next pointer all being 0.
576 */
577 if (header == 0)
578 return 0;
579
580 while (ttl-- > 0) {
581 if (PCI_EXT_CAP_ID(header) == cap && pos != start)
582 return pos;
583
584 pos = PCI_EXT_CAP_NEXT(header);
585 if (pos < PCI_CFG_SPACE_SIZE)
586 break;
587
588 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
589 break;
590 }
591
592 return 0;
593 }
594 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
595
596 /**
597 * pci_find_ext_capability - Find an extended capability
598 * @dev: PCI device to query
599 * @cap: capability code
600 *
601 * Returns the address of the requested extended capability structure
602 * within the device's PCI configuration space or 0 if the device does
603 * not support it. Possible values for @cap include:
604 *
605 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting
606 * %PCI_EXT_CAP_ID_VC Virtual Channel
607 * %PCI_EXT_CAP_ID_DSN Device Serial Number
608 * %PCI_EXT_CAP_ID_PWR Power Budgeting
609 */
pci_find_ext_capability(struct pci_dev * dev,int cap)610 u16 pci_find_ext_capability(struct pci_dev *dev, int cap)
611 {
612 return pci_find_next_ext_capability(dev, 0, cap);
613 }
614 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
615
616 /**
617 * pci_get_dsn - Read and return the 8-byte Device Serial Number
618 * @dev: PCI device to query
619 *
620 * Looks up the PCI_EXT_CAP_ID_DSN and reads the 8 bytes of the Device Serial
621 * Number.
622 *
623 * Returns the DSN, or zero if the capability does not exist.
624 */
pci_get_dsn(struct pci_dev * dev)625 u64 pci_get_dsn(struct pci_dev *dev)
626 {
627 u32 dword;
628 u64 dsn;
629 int pos;
630
631 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DSN);
632 if (!pos)
633 return 0;
634
635 /*
636 * The Device Serial Number is two dwords offset 4 bytes from the
637 * capability position. The specification says that the first dword is
638 * the lower half, and the second dword is the upper half.
639 */
640 pos += 4;
641 pci_read_config_dword(dev, pos, &dword);
642 dsn = (u64)dword;
643 pci_read_config_dword(dev, pos + 4, &dword);
644 dsn |= ((u64)dword) << 32;
645
646 return dsn;
647 }
648 EXPORT_SYMBOL_GPL(pci_get_dsn);
649
__pci_find_next_ht_cap(struct pci_dev * dev,u8 pos,int ht_cap)650 static u8 __pci_find_next_ht_cap(struct pci_dev *dev, u8 pos, int ht_cap)
651 {
652 int rc, ttl = PCI_FIND_CAP_TTL;
653 u8 cap, mask;
654
655 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
656 mask = HT_3BIT_CAP_MASK;
657 else
658 mask = HT_5BIT_CAP_MASK;
659
660 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
661 PCI_CAP_ID_HT, &ttl);
662 while (pos) {
663 rc = pci_read_config_byte(dev, pos + 3, &cap);
664 if (rc != PCIBIOS_SUCCESSFUL)
665 return 0;
666
667 if ((cap & mask) == ht_cap)
668 return pos;
669
670 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
671 pos + PCI_CAP_LIST_NEXT,
672 PCI_CAP_ID_HT, &ttl);
673 }
674
675 return 0;
676 }
677
678 /**
679 * pci_find_next_ht_capability - query a device's HyperTransport capabilities
680 * @dev: PCI device to query
681 * @pos: Position from which to continue searching
682 * @ht_cap: HyperTransport capability code
683 *
684 * To be used in conjunction with pci_find_ht_capability() to search for
685 * all capabilities matching @ht_cap. @pos should always be a value returned
686 * from pci_find_ht_capability().
687 *
688 * NB. To be 100% safe against broken PCI devices, the caller should take
689 * steps to avoid an infinite loop.
690 */
pci_find_next_ht_capability(struct pci_dev * dev,u8 pos,int ht_cap)691 u8 pci_find_next_ht_capability(struct pci_dev *dev, u8 pos, int ht_cap)
692 {
693 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
694 }
695 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
696
697 /**
698 * pci_find_ht_capability - query a device's HyperTransport capabilities
699 * @dev: PCI device to query
700 * @ht_cap: HyperTransport capability code
701 *
702 * Tell if a device supports a given HyperTransport capability.
703 * Returns an address within the device's PCI configuration space
704 * or 0 in case the device does not support the request capability.
705 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
706 * which has a HyperTransport capability matching @ht_cap.
707 */
pci_find_ht_capability(struct pci_dev * dev,int ht_cap)708 u8 pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
709 {
710 u8 pos;
711
712 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
713 if (pos)
714 pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
715
716 return pos;
717 }
718 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
719
720 /**
721 * pci_find_vsec_capability - Find a vendor-specific extended capability
722 * @dev: PCI device to query
723 * @vendor: Vendor ID for which capability is defined
724 * @cap: Vendor-specific capability ID
725 *
726 * If @dev has Vendor ID @vendor, search for a VSEC capability with
727 * VSEC ID @cap. If found, return the capability offset in
728 * config space; otherwise return 0.
729 */
pci_find_vsec_capability(struct pci_dev * dev,u16 vendor,int cap)730 u16 pci_find_vsec_capability(struct pci_dev *dev, u16 vendor, int cap)
731 {
732 u16 vsec = 0;
733 u32 header;
734 int ret;
735
736 if (vendor != dev->vendor)
737 return 0;
738
739 while ((vsec = pci_find_next_ext_capability(dev, vsec,
740 PCI_EXT_CAP_ID_VNDR))) {
741 ret = pci_read_config_dword(dev, vsec + PCI_VNDR_HEADER, &header);
742 if (ret != PCIBIOS_SUCCESSFUL)
743 continue;
744
745 if (PCI_VNDR_HEADER_ID(header) == cap)
746 return vsec;
747 }
748
749 return 0;
750 }
751 EXPORT_SYMBOL_GPL(pci_find_vsec_capability);
752
753 /**
754 * pci_find_dvsec_capability - Find DVSEC for vendor
755 * @dev: PCI device to query
756 * @vendor: Vendor ID to match for the DVSEC
757 * @dvsec: Designated Vendor-specific capability ID
758 *
759 * If DVSEC has Vendor ID @vendor and DVSEC ID @dvsec return the capability
760 * offset in config space; otherwise return 0.
761 */
pci_find_dvsec_capability(struct pci_dev * dev,u16 vendor,u16 dvsec)762 u16 pci_find_dvsec_capability(struct pci_dev *dev, u16 vendor, u16 dvsec)
763 {
764 int pos;
765
766 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DVSEC);
767 if (!pos)
768 return 0;
769
770 while (pos) {
771 u16 v, id;
772
773 pci_read_config_word(dev, pos + PCI_DVSEC_HEADER1, &v);
774 pci_read_config_word(dev, pos + PCI_DVSEC_HEADER2, &id);
775 if (vendor == v && dvsec == id)
776 return pos;
777
778 pos = pci_find_next_ext_capability(dev, pos, PCI_EXT_CAP_ID_DVSEC);
779 }
780
781 return 0;
782 }
783 EXPORT_SYMBOL_GPL(pci_find_dvsec_capability);
784
785 /**
786 * pci_find_parent_resource - return resource region of parent bus of given
787 * region
788 * @dev: PCI device structure contains resources to be searched
789 * @res: child resource record for which parent is sought
790 *
791 * For given resource region of given device, return the resource region of
792 * parent bus the given region is contained in.
793 */
pci_find_parent_resource(const struct pci_dev * dev,struct resource * res)794 struct resource *pci_find_parent_resource(const struct pci_dev *dev,
795 struct resource *res)
796 {
797 const struct pci_bus *bus = dev->bus;
798 struct resource *r;
799
800 pci_bus_for_each_resource(bus, r) {
801 if (!r)
802 continue;
803 if (resource_contains(r, res)) {
804
805 /*
806 * If the window is prefetchable but the BAR is
807 * not, the allocator made a mistake.
808 */
809 if (r->flags & IORESOURCE_PREFETCH &&
810 !(res->flags & IORESOURCE_PREFETCH))
811 return NULL;
812
813 /*
814 * If we're below a transparent bridge, there may
815 * be both a positively-decoded aperture and a
816 * subtractively-decoded region that contain the BAR.
817 * We want the positively-decoded one, so this depends
818 * on pci_bus_for_each_resource() giving us those
819 * first.
820 */
821 return r;
822 }
823 }
824 return NULL;
825 }
826 EXPORT_SYMBOL(pci_find_parent_resource);
827
828 /**
829 * pci_find_resource - Return matching PCI device resource
830 * @dev: PCI device to query
831 * @res: Resource to look for
832 *
833 * Goes over standard PCI resources (BARs) and checks if the given resource
834 * is partially or fully contained in any of them. In that case the
835 * matching resource is returned, %NULL otherwise.
836 */
pci_find_resource(struct pci_dev * dev,struct resource * res)837 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
838 {
839 int i;
840
841 for (i = 0; i < PCI_STD_NUM_BARS; i++) {
842 struct resource *r = &dev->resource[i];
843
844 if (r->start && resource_contains(r, res))
845 return r;
846 }
847
848 return NULL;
849 }
850 EXPORT_SYMBOL(pci_find_resource);
851
852 /**
853 * pci_resource_name - Return the name of the PCI resource
854 * @dev: PCI device to query
855 * @i: index of the resource
856 *
857 * Return the standard PCI resource (BAR) name according to their index.
858 */
pci_resource_name(struct pci_dev * dev,unsigned int i)859 const char *pci_resource_name(struct pci_dev *dev, unsigned int i)
860 {
861 static const char * const bar_name[] = {
862 "BAR 0",
863 "BAR 1",
864 "BAR 2",
865 "BAR 3",
866 "BAR 4",
867 "BAR 5",
868 "ROM",
869 #ifdef CONFIG_PCI_IOV
870 "VF BAR 0",
871 "VF BAR 1",
872 "VF BAR 2",
873 "VF BAR 3",
874 "VF BAR 4",
875 "VF BAR 5",
876 #endif
877 "bridge window", /* "io" included in %pR */
878 "bridge window", /* "mem" included in %pR */
879 "bridge window", /* "mem pref" included in %pR */
880 };
881 static const char * const cardbus_name[] = {
882 "BAR 1",
883 "unknown",
884 "unknown",
885 "unknown",
886 "unknown",
887 "unknown",
888 #ifdef CONFIG_PCI_IOV
889 "unknown",
890 "unknown",
891 "unknown",
892 "unknown",
893 "unknown",
894 "unknown",
895 #endif
896 "CardBus bridge window 0", /* I/O */
897 "CardBus bridge window 1", /* I/O */
898 "CardBus bridge window 0", /* mem */
899 "CardBus bridge window 1", /* mem */
900 };
901
902 if (dev->hdr_type == PCI_HEADER_TYPE_CARDBUS &&
903 i < ARRAY_SIZE(cardbus_name))
904 return cardbus_name[i];
905
906 if (i < ARRAY_SIZE(bar_name))
907 return bar_name[i];
908
909 return "unknown";
910 }
911
912 /**
913 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
914 * @dev: the PCI device to operate on
915 * @pos: config space offset of status word
916 * @mask: mask of bit(s) to care about in status word
917 *
918 * Return 1 when mask bit(s) in status word clear, 0 otherwise.
919 */
pci_wait_for_pending(struct pci_dev * dev,int pos,u16 mask)920 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
921 {
922 int i;
923
924 /* Wait for Transaction Pending bit clean */
925 for (i = 0; i < 4; i++) {
926 u16 status;
927 if (i)
928 msleep((1 << (i - 1)) * 100);
929
930 pci_read_config_word(dev, pos, &status);
931 if (!(status & mask))
932 return 1;
933 }
934
935 return 0;
936 }
937
938 static int pci_acs_enable;
939
940 /**
941 * pci_request_acs - ask for ACS to be enabled if supported
942 */
pci_request_acs(void)943 void pci_request_acs(void)
944 {
945 pci_acs_enable = 1;
946 }
947
948 static const char *disable_acs_redir_param;
949 static const char *config_acs_param;
950
951 struct pci_acs {
952 u16 cap;
953 u16 ctrl;
954 u16 fw_ctrl;
955 };
956
__pci_config_acs(struct pci_dev * dev,struct pci_acs * caps,const char * p,const u16 acs_mask,const u16 acs_flags)957 static void __pci_config_acs(struct pci_dev *dev, struct pci_acs *caps,
958 const char *p, const u16 acs_mask, const u16 acs_flags)
959 {
960 u16 flags = acs_flags;
961 u16 mask = acs_mask;
962 char *delimit;
963 int ret = 0;
964
965 if (!p)
966 return;
967
968 while (*p) {
969 if (!acs_mask) {
970 /* Check for ACS flags */
971 delimit = strstr(p, "@");
972 if (delimit) {
973 int end;
974 u32 shift = 0;
975
976 end = delimit - p - 1;
977 mask = 0;
978 flags = 0;
979
980 while (end > -1) {
981 if (*(p + end) == '0') {
982 mask |= 1 << shift;
983 shift++;
984 end--;
985 } else if (*(p + end) == '1') {
986 mask |= 1 << shift;
987 flags |= 1 << shift;
988 shift++;
989 end--;
990 } else if ((*(p + end) == 'x') || (*(p + end) == 'X')) {
991 shift++;
992 end--;
993 } else {
994 pci_err(dev, "Invalid ACS flags... Ignoring\n");
995 return;
996 }
997 }
998 p = delimit + 1;
999 } else {
1000 pci_err(dev, "ACS Flags missing\n");
1001 return;
1002 }
1003 }
1004
1005 if (mask & ~(PCI_ACS_SV | PCI_ACS_TB | PCI_ACS_RR | PCI_ACS_CR |
1006 PCI_ACS_UF | PCI_ACS_EC | PCI_ACS_DT)) {
1007 pci_err(dev, "Invalid ACS flags specified\n");
1008 return;
1009 }
1010
1011 ret = pci_dev_str_match(dev, p, &p);
1012 if (ret < 0) {
1013 pr_info_once("PCI: Can't parse ACS command line parameter\n");
1014 break;
1015 } else if (ret == 1) {
1016 /* Found a match */
1017 break;
1018 }
1019
1020 if (*p != ';' && *p != ',') {
1021 /* End of param or invalid format */
1022 break;
1023 }
1024 p++;
1025 }
1026
1027 if (ret != 1)
1028 return;
1029
1030 if (!pci_dev_specific_disable_acs_redir(dev))
1031 return;
1032
1033 pci_dbg(dev, "ACS mask = %#06x\n", mask);
1034 pci_dbg(dev, "ACS flags = %#06x\n", flags);
1035 pci_dbg(dev, "ACS control = %#06x\n", caps->ctrl);
1036 pci_dbg(dev, "ACS fw_ctrl = %#06x\n", caps->fw_ctrl);
1037
1038 /*
1039 * For mask bits that are 0, copy them from the firmware setting
1040 * and apply flags for all the mask bits that are 1.
1041 */
1042 caps->ctrl = (caps->fw_ctrl & ~mask) | (flags & mask);
1043
1044 pci_info(dev, "Configured ACS to %#06x\n", caps->ctrl);
1045 }
1046
1047 /**
1048 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities
1049 * @dev: the PCI device
1050 * @caps: default ACS controls
1051 */
pci_std_enable_acs(struct pci_dev * dev,struct pci_acs * caps)1052 static void pci_std_enable_acs(struct pci_dev *dev, struct pci_acs *caps)
1053 {
1054 /* Source Validation */
1055 caps->ctrl |= (caps->cap & PCI_ACS_SV);
1056
1057 /* P2P Request Redirect */
1058 caps->ctrl |= (caps->cap & PCI_ACS_RR);
1059
1060 /* P2P Completion Redirect */
1061 caps->ctrl |= (caps->cap & PCI_ACS_CR);
1062
1063 /* Upstream Forwarding */
1064 caps->ctrl |= (caps->cap & PCI_ACS_UF);
1065
1066 /* Enable Translation Blocking for external devices and noats */
1067 if (pci_ats_disabled() || dev->external_facing || dev->requires_dma_protection)
1068 caps->ctrl |= (caps->cap & PCI_ACS_TB);
1069 }
1070
1071 /**
1072 * pci_enable_acs - enable ACS if hardware support it
1073 * @dev: the PCI device
1074 */
pci_enable_acs(struct pci_dev * dev)1075 static void pci_enable_acs(struct pci_dev *dev)
1076 {
1077 struct pci_acs caps;
1078 bool enable_acs = false;
1079 int pos;
1080
1081 /* If an iommu is present we start with kernel default caps */
1082 if (pci_acs_enable) {
1083 if (pci_dev_specific_enable_acs(dev))
1084 enable_acs = true;
1085 }
1086
1087 pos = dev->acs_cap;
1088 if (!pos)
1089 return;
1090
1091 pci_read_config_word(dev, pos + PCI_ACS_CAP, &caps.cap);
1092 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &caps.ctrl);
1093 caps.fw_ctrl = caps.ctrl;
1094
1095 if (enable_acs)
1096 pci_std_enable_acs(dev, &caps);
1097
1098 /*
1099 * Always apply caps from the command line, even if there is no iommu.
1100 * Trust that the admin has a reason to change the ACS settings.
1101 */
1102 __pci_config_acs(dev, &caps, disable_acs_redir_param,
1103 PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC,
1104 ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC));
1105 __pci_config_acs(dev, &caps, config_acs_param, 0, 0);
1106
1107 pci_write_config_word(dev, pos + PCI_ACS_CTRL, caps.ctrl);
1108 }
1109
1110 /**
1111 * pcie_read_tlp_log - read TLP Header Log
1112 * @dev: PCIe device
1113 * @where: PCI Config offset of TLP Header Log
1114 * @tlp_log: TLP Log structure to fill
1115 *
1116 * Fill @tlp_log from TLP Header Log registers, e.g., AER or DPC.
1117 *
1118 * Return: 0 on success and filled TLP Log structure, <0 on error.
1119 */
pcie_read_tlp_log(struct pci_dev * dev,int where,struct pcie_tlp_log * tlp_log)1120 int pcie_read_tlp_log(struct pci_dev *dev, int where,
1121 struct pcie_tlp_log *tlp_log)
1122 {
1123 int i, ret;
1124
1125 memset(tlp_log, 0, sizeof(*tlp_log));
1126
1127 for (i = 0; i < 4; i++) {
1128 ret = pci_read_config_dword(dev, where + i * 4,
1129 &tlp_log->dw[i]);
1130 if (ret)
1131 return pcibios_err_to_errno(ret);
1132 }
1133
1134 return 0;
1135 }
1136 EXPORT_SYMBOL_GPL(pcie_read_tlp_log);
1137
1138 /**
1139 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
1140 * @dev: PCI device to have its BARs restored
1141 *
1142 * Restore the BAR values for a given device, so as to make it
1143 * accessible by its driver.
1144 */
pci_restore_bars(struct pci_dev * dev)1145 static void pci_restore_bars(struct pci_dev *dev)
1146 {
1147 int i;
1148
1149 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
1150 pci_update_resource(dev, i);
1151 }
1152
platform_pci_power_manageable(struct pci_dev * dev)1153 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
1154 {
1155 if (pci_use_mid_pm())
1156 return true;
1157
1158 return acpi_pci_power_manageable(dev);
1159 }
1160
platform_pci_set_power_state(struct pci_dev * dev,pci_power_t t)1161 static inline int platform_pci_set_power_state(struct pci_dev *dev,
1162 pci_power_t t)
1163 {
1164 if (pci_use_mid_pm())
1165 return mid_pci_set_power_state(dev, t);
1166
1167 return acpi_pci_set_power_state(dev, t);
1168 }
1169
platform_pci_get_power_state(struct pci_dev * dev)1170 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
1171 {
1172 if (pci_use_mid_pm())
1173 return mid_pci_get_power_state(dev);
1174
1175 return acpi_pci_get_power_state(dev);
1176 }
1177
platform_pci_refresh_power_state(struct pci_dev * dev)1178 static inline void platform_pci_refresh_power_state(struct pci_dev *dev)
1179 {
1180 if (!pci_use_mid_pm())
1181 acpi_pci_refresh_power_state(dev);
1182 }
1183
platform_pci_choose_state(struct pci_dev * dev)1184 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
1185 {
1186 if (pci_use_mid_pm())
1187 return PCI_POWER_ERROR;
1188
1189 return acpi_pci_choose_state(dev);
1190 }
1191
platform_pci_set_wakeup(struct pci_dev * dev,bool enable)1192 static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable)
1193 {
1194 if (pci_use_mid_pm())
1195 return PCI_POWER_ERROR;
1196
1197 return acpi_pci_wakeup(dev, enable);
1198 }
1199
platform_pci_need_resume(struct pci_dev * dev)1200 static inline bool platform_pci_need_resume(struct pci_dev *dev)
1201 {
1202 if (pci_use_mid_pm())
1203 return false;
1204
1205 return acpi_pci_need_resume(dev);
1206 }
1207
platform_pci_bridge_d3(struct pci_dev * dev)1208 static inline bool platform_pci_bridge_d3(struct pci_dev *dev)
1209 {
1210 if (pci_use_mid_pm())
1211 return false;
1212
1213 return acpi_pci_bridge_d3(dev);
1214 }
1215
1216 /**
1217 * pci_update_current_state - Read power state of given device and cache it
1218 * @dev: PCI device to handle.
1219 * @state: State to cache in case the device doesn't have the PM capability
1220 *
1221 * The power state is read from the PMCSR register, which however is
1222 * inaccessible in D3cold. The platform firmware is therefore queried first
1223 * to detect accessibility of the register. In case the platform firmware
1224 * reports an incorrect state or the device isn't power manageable by the
1225 * platform at all, we try to detect D3cold by testing accessibility of the
1226 * vendor ID in config space.
1227 */
pci_update_current_state(struct pci_dev * dev,pci_power_t state)1228 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
1229 {
1230 if (platform_pci_get_power_state(dev) == PCI_D3cold) {
1231 dev->current_state = PCI_D3cold;
1232 } else if (dev->pm_cap) {
1233 u16 pmcsr;
1234
1235 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1236 if (PCI_POSSIBLE_ERROR(pmcsr)) {
1237 dev->current_state = PCI_D3cold;
1238 return;
1239 }
1240 dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1241 } else {
1242 dev->current_state = state;
1243 }
1244 }
1245
1246 /**
1247 * pci_refresh_power_state - Refresh the given device's power state data
1248 * @dev: Target PCI device.
1249 *
1250 * Ask the platform to refresh the devices power state information and invoke
1251 * pci_update_current_state() to update its current PCI power state.
1252 */
pci_refresh_power_state(struct pci_dev * dev)1253 void pci_refresh_power_state(struct pci_dev *dev)
1254 {
1255 platform_pci_refresh_power_state(dev);
1256 pci_update_current_state(dev, dev->current_state);
1257 }
1258
1259 /**
1260 * pci_platform_power_transition - Use platform to change device power state
1261 * @dev: PCI device to handle.
1262 * @state: State to put the device into.
1263 */
pci_platform_power_transition(struct pci_dev * dev,pci_power_t state)1264 int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
1265 {
1266 int error;
1267
1268 error = platform_pci_set_power_state(dev, state);
1269 if (!error)
1270 pci_update_current_state(dev, state);
1271 else if (!dev->pm_cap) /* Fall back to PCI_D0 */
1272 dev->current_state = PCI_D0;
1273
1274 return error;
1275 }
1276 EXPORT_SYMBOL_GPL(pci_platform_power_transition);
1277
pci_resume_one(struct pci_dev * pci_dev,void * ign)1278 static int pci_resume_one(struct pci_dev *pci_dev, void *ign)
1279 {
1280 pm_request_resume(&pci_dev->dev);
1281 return 0;
1282 }
1283
1284 /**
1285 * pci_resume_bus - Walk given bus and runtime resume devices on it
1286 * @bus: Top bus of the subtree to walk.
1287 */
pci_resume_bus(struct pci_bus * bus)1288 void pci_resume_bus(struct pci_bus *bus)
1289 {
1290 if (bus)
1291 pci_walk_bus(bus, pci_resume_one, NULL);
1292 }
1293
pci_dev_wait(struct pci_dev * dev,char * reset_type,int timeout)1294 static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout)
1295 {
1296 int delay = 1;
1297 bool retrain = false;
1298 struct pci_dev *root, *bridge;
1299
1300 root = pcie_find_root_port(dev);
1301
1302 if (pci_is_pcie(dev)) {
1303 bridge = pci_upstream_bridge(dev);
1304 if (bridge)
1305 retrain = true;
1306 }
1307
1308 /*
1309 * The caller has already waited long enough after a reset that the
1310 * device should respond to config requests, but it may respond
1311 * with Request Retry Status (RRS) if it needs more time to
1312 * initialize.
1313 *
1314 * If the device is below a Root Port with Configuration RRS
1315 * Software Visibility enabled, reading the Vendor ID returns a
1316 * special data value if the device responded with RRS. Read the
1317 * Vendor ID until we get non-RRS status.
1318 *
1319 * If there's no Root Port or Configuration RRS Software Visibility
1320 * is not enabled, the device may still respond with RRS, but
1321 * hardware may retry the config request. If no retries receive
1322 * Successful Completion, hardware generally synthesizes ~0
1323 * (PCI_ERROR_RESPONSE) data to complete the read. Reading Vendor
1324 * ID for VFs and non-existent devices also returns ~0, so read the
1325 * Command register until it returns something other than ~0.
1326 */
1327 for (;;) {
1328 u32 id;
1329
1330 if (pci_dev_is_disconnected(dev)) {
1331 pci_dbg(dev, "disconnected; not waiting\n");
1332 return -ENOTTY;
1333 }
1334
1335 if (root && root->config_rrs_sv) {
1336 pci_read_config_dword(dev, PCI_VENDOR_ID, &id);
1337 if (!pci_bus_rrs_vendor_id(id))
1338 break;
1339 } else {
1340 pci_read_config_dword(dev, PCI_COMMAND, &id);
1341 if (!PCI_POSSIBLE_ERROR(id))
1342 break;
1343 }
1344
1345 if (delay > timeout) {
1346 pci_warn(dev, "not ready %dms after %s; giving up\n",
1347 delay - 1, reset_type);
1348 return -ENOTTY;
1349 }
1350
1351 if (delay > PCI_RESET_WAIT) {
1352 if (retrain) {
1353 retrain = false;
1354 if (pcie_failed_link_retrain(bridge) == 0) {
1355 delay = 1;
1356 continue;
1357 }
1358 }
1359 pci_info(dev, "not ready %dms after %s; waiting\n",
1360 delay - 1, reset_type);
1361 }
1362
1363 msleep(delay);
1364 delay *= 2;
1365 }
1366
1367 if (delay > PCI_RESET_WAIT)
1368 pci_info(dev, "ready %dms after %s\n", delay - 1,
1369 reset_type);
1370 else
1371 pci_dbg(dev, "ready %dms after %s\n", delay - 1,
1372 reset_type);
1373
1374 return 0;
1375 }
1376
1377 /**
1378 * pci_power_up - Put the given device into D0
1379 * @dev: PCI device to power up
1380 *
1381 * On success, return 0 or 1, depending on whether or not it is necessary to
1382 * restore the device's BARs subsequently (1 is returned in that case).
1383 *
1384 * On failure, return a negative error code. Always return failure if @dev
1385 * lacks a Power Management Capability, even if the platform was able to
1386 * put the device in D0 via non-PCI means.
1387 */
pci_power_up(struct pci_dev * dev)1388 int pci_power_up(struct pci_dev *dev)
1389 {
1390 bool need_restore;
1391 pci_power_t state;
1392 u16 pmcsr;
1393
1394 platform_pci_set_power_state(dev, PCI_D0);
1395
1396 if (!dev->pm_cap) {
1397 state = platform_pci_get_power_state(dev);
1398 if (state == PCI_UNKNOWN)
1399 dev->current_state = PCI_D0;
1400 else
1401 dev->current_state = state;
1402
1403 return -EIO;
1404 }
1405
1406 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1407 if (PCI_POSSIBLE_ERROR(pmcsr)) {
1408 pci_err(dev, "Unable to change power state from %s to D0, device inaccessible\n",
1409 pci_power_name(dev->current_state));
1410 dev->current_state = PCI_D3cold;
1411 return -EIO;
1412 }
1413
1414 state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1415
1416 need_restore = (state == PCI_D3hot || dev->current_state >= PCI_D3hot) &&
1417 !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET);
1418
1419 if (state == PCI_D0)
1420 goto end;
1421
1422 /*
1423 * Force the entire word to 0. This doesn't affect PME_Status, disables
1424 * PME_En, and sets PowerState to 0.
1425 */
1426 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, 0);
1427
1428 /* Mandatory transition delays; see PCI PM 1.2. */
1429 if (state == PCI_D3hot)
1430 pci_dev_d3_sleep(dev);
1431 else if (state == PCI_D2)
1432 udelay(PCI_PM_D2_DELAY);
1433
1434 end:
1435 dev->current_state = PCI_D0;
1436 if (need_restore)
1437 return 1;
1438
1439 return 0;
1440 }
1441
1442 /**
1443 * pci_set_full_power_state - Put a PCI device into D0 and update its state
1444 * @dev: PCI device to power up
1445 * @locked: whether pci_bus_sem is held
1446 *
1447 * Call pci_power_up() to put @dev into D0, read from its PCI_PM_CTRL register
1448 * to confirm the state change, restore its BARs if they might be lost and
1449 * reconfigure ASPM in accordance with the new power state.
1450 *
1451 * If pci_restore_state() is going to be called right after a power state change
1452 * to D0, it is more efficient to use pci_power_up() directly instead of this
1453 * function.
1454 */
pci_set_full_power_state(struct pci_dev * dev,bool locked)1455 static int pci_set_full_power_state(struct pci_dev *dev, bool locked)
1456 {
1457 u16 pmcsr;
1458 int ret;
1459
1460 ret = pci_power_up(dev);
1461 if (ret < 0) {
1462 if (dev->current_state == PCI_D0)
1463 return 0;
1464
1465 return ret;
1466 }
1467
1468 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1469 dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1470 if (dev->current_state != PCI_D0) {
1471 pci_info_ratelimited(dev, "Refused to change power state from %s to D0\n",
1472 pci_power_name(dev->current_state));
1473 } else if (ret > 0) {
1474 /*
1475 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
1476 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
1477 * from D3hot to D0 _may_ perform an internal reset, thereby
1478 * going to "D0 Uninitialized" rather than "D0 Initialized".
1479 * For example, at least some versions of the 3c905B and the
1480 * 3c556B exhibit this behaviour.
1481 *
1482 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
1483 * devices in a D3hot state at boot. Consequently, we need to
1484 * restore at least the BARs so that the device will be
1485 * accessible to its driver.
1486 */
1487 pci_restore_bars(dev);
1488 }
1489
1490 if (dev->bus->self)
1491 pcie_aspm_pm_state_change(dev->bus->self, locked);
1492
1493 return 0;
1494 }
1495
1496 /**
1497 * __pci_dev_set_current_state - Set current state of a PCI device
1498 * @dev: Device to handle
1499 * @data: pointer to state to be set
1500 */
__pci_dev_set_current_state(struct pci_dev * dev,void * data)1501 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
1502 {
1503 pci_power_t state = *(pci_power_t *)data;
1504
1505 dev->current_state = state;
1506 return 0;
1507 }
1508
1509 /**
1510 * pci_bus_set_current_state - Walk given bus and set current state of devices
1511 * @bus: Top bus of the subtree to walk.
1512 * @state: state to be set
1513 */
pci_bus_set_current_state(struct pci_bus * bus,pci_power_t state)1514 void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
1515 {
1516 if (bus)
1517 pci_walk_bus(bus, __pci_dev_set_current_state, &state);
1518 }
1519
__pci_bus_set_current_state(struct pci_bus * bus,pci_power_t state,bool locked)1520 static void __pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state, bool locked)
1521 {
1522 if (!bus)
1523 return;
1524
1525 if (locked)
1526 pci_walk_bus_locked(bus, __pci_dev_set_current_state, &state);
1527 else
1528 pci_walk_bus(bus, __pci_dev_set_current_state, &state);
1529 }
1530
1531 /**
1532 * pci_set_low_power_state - Put a PCI device into a low-power state.
1533 * @dev: PCI device to handle.
1534 * @state: PCI power state (D1, D2, D3hot) to put the device into.
1535 * @locked: whether pci_bus_sem is held
1536 *
1537 * Use the device's PCI_PM_CTRL register to put it into a low-power state.
1538 *
1539 * RETURN VALUE:
1540 * -EINVAL if the requested state is invalid.
1541 * -EIO if device does not support PCI PM or its PM capabilities register has a
1542 * wrong version, or device doesn't support the requested state.
1543 * 0 if device already is in the requested state.
1544 * 0 if device's power state has been successfully changed.
1545 */
pci_set_low_power_state(struct pci_dev * dev,pci_power_t state,bool locked)1546 static int pci_set_low_power_state(struct pci_dev *dev, pci_power_t state, bool locked)
1547 {
1548 u16 pmcsr;
1549
1550 if (!dev->pm_cap)
1551 return -EIO;
1552
1553 /*
1554 * Validate transition: We can enter D0 from any state, but if
1555 * we're already in a low-power state, we can only go deeper. E.g.,
1556 * we can go from D1 to D3, but we can't go directly from D3 to D1;
1557 * we'd have to go from D3 to D0, then to D1.
1558 */
1559 if (dev->current_state <= PCI_D3cold && dev->current_state > state) {
1560 pci_dbg(dev, "Invalid power transition (from %s to %s)\n",
1561 pci_power_name(dev->current_state),
1562 pci_power_name(state));
1563 return -EINVAL;
1564 }
1565
1566 /* Check if this device supports the desired state */
1567 if ((state == PCI_D1 && !dev->d1_support)
1568 || (state == PCI_D2 && !dev->d2_support))
1569 return -EIO;
1570
1571 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1572 if (PCI_POSSIBLE_ERROR(pmcsr)) {
1573 pci_err(dev, "Unable to change power state from %s to %s, device inaccessible\n",
1574 pci_power_name(dev->current_state),
1575 pci_power_name(state));
1576 dev->current_state = PCI_D3cold;
1577 return -EIO;
1578 }
1579
1580 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
1581 pmcsr |= state;
1582
1583 /* Enter specified state */
1584 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1585
1586 /* Mandatory power management transition delays; see PCI PM 1.2. */
1587 if (state == PCI_D3hot)
1588 pci_dev_d3_sleep(dev);
1589 else if (state == PCI_D2)
1590 udelay(PCI_PM_D2_DELAY);
1591
1592 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1593 dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1594 if (dev->current_state != state)
1595 pci_info_ratelimited(dev, "Refused to change power state from %s to %s\n",
1596 pci_power_name(dev->current_state),
1597 pci_power_name(state));
1598
1599 if (dev->bus->self)
1600 pcie_aspm_pm_state_change(dev->bus->self, locked);
1601
1602 return 0;
1603 }
1604
__pci_set_power_state(struct pci_dev * dev,pci_power_t state,bool locked)1605 static int __pci_set_power_state(struct pci_dev *dev, pci_power_t state, bool locked)
1606 {
1607 int error;
1608
1609 /* Bound the state we're entering */
1610 if (state > PCI_D3cold)
1611 state = PCI_D3cold;
1612 else if (state < PCI_D0)
1613 state = PCI_D0;
1614 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
1615
1616 /*
1617 * If the device or the parent bridge do not support PCI
1618 * PM, ignore the request if we're doing anything other
1619 * than putting it into D0 (which would only happen on
1620 * boot).
1621 */
1622 return 0;
1623
1624 /* Check if we're already there */
1625 if (dev->current_state == state)
1626 return 0;
1627
1628 if (state == PCI_D0)
1629 return pci_set_full_power_state(dev, locked);
1630
1631 /*
1632 * This device is quirked not to be put into D3, so don't put it in
1633 * D3
1634 */
1635 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
1636 return 0;
1637
1638 if (state == PCI_D3cold) {
1639 /*
1640 * To put the device in D3cold, put it into D3hot in the native
1641 * way, then put it into D3cold using platform ops.
1642 */
1643 error = pci_set_low_power_state(dev, PCI_D3hot, locked);
1644
1645 if (pci_platform_power_transition(dev, PCI_D3cold))
1646 return error;
1647
1648 /* Powering off a bridge may power off the whole hierarchy */
1649 if (dev->current_state == PCI_D3cold)
1650 __pci_bus_set_current_state(dev->subordinate, PCI_D3cold, locked);
1651 } else {
1652 error = pci_set_low_power_state(dev, state, locked);
1653
1654 if (pci_platform_power_transition(dev, state))
1655 return error;
1656 }
1657
1658 return 0;
1659 }
1660
1661 /**
1662 * pci_set_power_state - Set the power state of a PCI device
1663 * @dev: PCI device to handle.
1664 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1665 *
1666 * Transition a device to a new power state, using the platform firmware and/or
1667 * the device's PCI PM registers.
1668 *
1669 * RETURN VALUE:
1670 * -EINVAL if the requested state is invalid.
1671 * -EIO if device does not support PCI PM or its PM capabilities register has a
1672 * wrong version, or device doesn't support the requested state.
1673 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
1674 * 0 if device already is in the requested state.
1675 * 0 if the transition is to D3 but D3 is not supported.
1676 * 0 if device's power state has been successfully changed.
1677 */
pci_set_power_state(struct pci_dev * dev,pci_power_t state)1678 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
1679 {
1680 return __pci_set_power_state(dev, state, false);
1681 }
1682 EXPORT_SYMBOL(pci_set_power_state);
1683
pci_set_power_state_locked(struct pci_dev * dev,pci_power_t state)1684 int pci_set_power_state_locked(struct pci_dev *dev, pci_power_t state)
1685 {
1686 lockdep_assert_held(&pci_bus_sem);
1687
1688 return __pci_set_power_state(dev, state, true);
1689 }
1690 EXPORT_SYMBOL(pci_set_power_state_locked);
1691
1692 #define PCI_EXP_SAVE_REGS 7
1693
_pci_find_saved_cap(struct pci_dev * pci_dev,u16 cap,bool extended)1694 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
1695 u16 cap, bool extended)
1696 {
1697 struct pci_cap_saved_state *tmp;
1698
1699 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
1700 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
1701 return tmp;
1702 }
1703 return NULL;
1704 }
1705
pci_find_saved_cap(struct pci_dev * dev,char cap)1706 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
1707 {
1708 return _pci_find_saved_cap(dev, cap, false);
1709 }
1710
pci_find_saved_ext_cap(struct pci_dev * dev,u16 cap)1711 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1712 {
1713 return _pci_find_saved_cap(dev, cap, true);
1714 }
1715
pci_save_pcie_state(struct pci_dev * dev)1716 static int pci_save_pcie_state(struct pci_dev *dev)
1717 {
1718 int i = 0;
1719 struct pci_cap_saved_state *save_state;
1720 u16 *cap;
1721
1722 if (!pci_is_pcie(dev))
1723 return 0;
1724
1725 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1726 if (!save_state) {
1727 pci_err(dev, "buffer not found in %s\n", __func__);
1728 return -ENOMEM;
1729 }
1730
1731 cap = (u16 *)&save_state->cap.data[0];
1732 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1733 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1734 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1735 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]);
1736 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1737 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1738 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1739
1740 pci_save_aspm_l1ss_state(dev);
1741 pci_save_ltr_state(dev);
1742
1743 return 0;
1744 }
1745
pci_restore_pcie_state(struct pci_dev * dev)1746 static void pci_restore_pcie_state(struct pci_dev *dev)
1747 {
1748 int i = 0;
1749 struct pci_cap_saved_state *save_state;
1750 u16 *cap;
1751
1752 /*
1753 * Restore max latencies (in the LTR capability) before enabling
1754 * LTR itself in PCI_EXP_DEVCTL2.
1755 */
1756 pci_restore_ltr_state(dev);
1757 pci_restore_aspm_l1ss_state(dev);
1758
1759 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1760 if (!save_state)
1761 return;
1762
1763 /*
1764 * Downstream ports reset the LTR enable bit when link goes down.
1765 * Check and re-configure the bit here before restoring device.
1766 * PCIe r5.0, sec 7.5.3.16.
1767 */
1768 pci_bridge_reconfigure_ltr(dev);
1769
1770 cap = (u16 *)&save_state->cap.data[0];
1771 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1772 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1773 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1774 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1775 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1776 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1777 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1778 }
1779
pci_save_pcix_state(struct pci_dev * dev)1780 static int pci_save_pcix_state(struct pci_dev *dev)
1781 {
1782 int pos;
1783 struct pci_cap_saved_state *save_state;
1784
1785 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1786 if (!pos)
1787 return 0;
1788
1789 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1790 if (!save_state) {
1791 pci_err(dev, "buffer not found in %s\n", __func__);
1792 return -ENOMEM;
1793 }
1794
1795 pci_read_config_word(dev, pos + PCI_X_CMD,
1796 (u16 *)save_state->cap.data);
1797
1798 return 0;
1799 }
1800
pci_restore_pcix_state(struct pci_dev * dev)1801 static void pci_restore_pcix_state(struct pci_dev *dev)
1802 {
1803 int i = 0, pos;
1804 struct pci_cap_saved_state *save_state;
1805 u16 *cap;
1806
1807 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1808 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1809 if (!save_state || !pos)
1810 return;
1811 cap = (u16 *)&save_state->cap.data[0];
1812
1813 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1814 }
1815
1816 /**
1817 * pci_save_state - save the PCI configuration space of a device before
1818 * suspending
1819 * @dev: PCI device that we're dealing with
1820 */
pci_save_state(struct pci_dev * dev)1821 int pci_save_state(struct pci_dev *dev)
1822 {
1823 int i;
1824 /* XXX: 100% dword access ok here? */
1825 for (i = 0; i < 16; i++) {
1826 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1827 pci_dbg(dev, "save config %#04x: %#010x\n",
1828 i * 4, dev->saved_config_space[i]);
1829 }
1830 dev->state_saved = true;
1831
1832 i = pci_save_pcie_state(dev);
1833 if (i != 0)
1834 return i;
1835
1836 i = pci_save_pcix_state(dev);
1837 if (i != 0)
1838 return i;
1839
1840 pci_save_dpc_state(dev);
1841 pci_save_aer_state(dev);
1842 pci_save_ptm_state(dev);
1843 return pci_save_vc_state(dev);
1844 }
1845 EXPORT_SYMBOL(pci_save_state);
1846
pci_restore_config_dword(struct pci_dev * pdev,int offset,u32 saved_val,int retry,bool force)1847 static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1848 u32 saved_val, int retry, bool force)
1849 {
1850 u32 val;
1851
1852 pci_read_config_dword(pdev, offset, &val);
1853 if (!force && val == saved_val)
1854 return;
1855
1856 for (;;) {
1857 pci_dbg(pdev, "restore config %#04x: %#010x -> %#010x\n",
1858 offset, val, saved_val);
1859 pci_write_config_dword(pdev, offset, saved_val);
1860 if (retry-- <= 0)
1861 return;
1862
1863 pci_read_config_dword(pdev, offset, &val);
1864 if (val == saved_val)
1865 return;
1866
1867 mdelay(1);
1868 }
1869 }
1870
pci_restore_config_space_range(struct pci_dev * pdev,int start,int end,int retry,bool force)1871 static void pci_restore_config_space_range(struct pci_dev *pdev,
1872 int start, int end, int retry,
1873 bool force)
1874 {
1875 int index;
1876
1877 for (index = end; index >= start; index--)
1878 pci_restore_config_dword(pdev, 4 * index,
1879 pdev->saved_config_space[index],
1880 retry, force);
1881 }
1882
pci_restore_config_space(struct pci_dev * pdev)1883 static void pci_restore_config_space(struct pci_dev *pdev)
1884 {
1885 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1886 pci_restore_config_space_range(pdev, 10, 15, 0, false);
1887 /* Restore BARs before the command register. */
1888 pci_restore_config_space_range(pdev, 4, 9, 10, false);
1889 pci_restore_config_space_range(pdev, 0, 3, 0, false);
1890 } else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1891 pci_restore_config_space_range(pdev, 12, 15, 0, false);
1892
1893 /*
1894 * Force rewriting of prefetch registers to avoid S3 resume
1895 * issues on Intel PCI bridges that occur when these
1896 * registers are not explicitly written.
1897 */
1898 pci_restore_config_space_range(pdev, 9, 11, 0, true);
1899 pci_restore_config_space_range(pdev, 0, 8, 0, false);
1900 } else {
1901 pci_restore_config_space_range(pdev, 0, 15, 0, false);
1902 }
1903 }
1904
pci_restore_rebar_state(struct pci_dev * pdev)1905 static void pci_restore_rebar_state(struct pci_dev *pdev)
1906 {
1907 unsigned int pos, nbars, i;
1908 u32 ctrl;
1909
1910 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
1911 if (!pos)
1912 return;
1913
1914 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1915 nbars = FIELD_GET(PCI_REBAR_CTRL_NBAR_MASK, ctrl);
1916
1917 for (i = 0; i < nbars; i++, pos += 8) {
1918 struct resource *res;
1919 int bar_idx, size;
1920
1921 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1922 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
1923 res = pdev->resource + bar_idx;
1924 size = pci_rebar_bytes_to_size(resource_size(res));
1925 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
1926 ctrl |= FIELD_PREP(PCI_REBAR_CTRL_BAR_SIZE, size);
1927 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
1928 }
1929 }
1930
1931 /**
1932 * pci_restore_state - Restore the saved state of a PCI device
1933 * @dev: PCI device that we're dealing with
1934 */
pci_restore_state(struct pci_dev * dev)1935 void pci_restore_state(struct pci_dev *dev)
1936 {
1937 if (!dev->state_saved)
1938 return;
1939
1940 pci_restore_pcie_state(dev);
1941 pci_restore_pasid_state(dev);
1942 pci_restore_pri_state(dev);
1943 pci_restore_ats_state(dev);
1944 pci_restore_vc_state(dev);
1945 pci_restore_rebar_state(dev);
1946 pci_restore_dpc_state(dev);
1947 pci_restore_ptm_state(dev);
1948
1949 pci_aer_clear_status(dev);
1950 pci_restore_aer_state(dev);
1951
1952 pci_restore_config_space(dev);
1953
1954 pci_restore_pcix_state(dev);
1955 pci_restore_msi_state(dev);
1956
1957 /* Restore ACS and IOV configuration state */
1958 pci_enable_acs(dev);
1959 pci_restore_iov_state(dev);
1960
1961 dev->state_saved = false;
1962 }
1963 EXPORT_SYMBOL(pci_restore_state);
1964
1965 struct pci_saved_state {
1966 u32 config_space[16];
1967 struct pci_cap_saved_data cap[];
1968 };
1969
1970 /**
1971 * pci_store_saved_state - Allocate and return an opaque struct containing
1972 * the device saved state.
1973 * @dev: PCI device that we're dealing with
1974 *
1975 * Return NULL if no state or error.
1976 */
pci_store_saved_state(struct pci_dev * dev)1977 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1978 {
1979 struct pci_saved_state *state;
1980 struct pci_cap_saved_state *tmp;
1981 struct pci_cap_saved_data *cap;
1982 size_t size;
1983
1984 if (!dev->state_saved)
1985 return NULL;
1986
1987 size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1988
1989 hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1990 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1991
1992 state = kzalloc(size, GFP_KERNEL);
1993 if (!state)
1994 return NULL;
1995
1996 memcpy(state->config_space, dev->saved_config_space,
1997 sizeof(state->config_space));
1998
1999 cap = state->cap;
2000 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
2001 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
2002 memcpy(cap, &tmp->cap, len);
2003 cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
2004 }
2005 /* Empty cap_save terminates list */
2006
2007 return state;
2008 }
2009 EXPORT_SYMBOL_GPL(pci_store_saved_state);
2010
2011 /**
2012 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
2013 * @dev: PCI device that we're dealing with
2014 * @state: Saved state returned from pci_store_saved_state()
2015 */
pci_load_saved_state(struct pci_dev * dev,struct pci_saved_state * state)2016 int pci_load_saved_state(struct pci_dev *dev,
2017 struct pci_saved_state *state)
2018 {
2019 struct pci_cap_saved_data *cap;
2020
2021 dev->state_saved = false;
2022
2023 if (!state)
2024 return 0;
2025
2026 memcpy(dev->saved_config_space, state->config_space,
2027 sizeof(state->config_space));
2028
2029 cap = state->cap;
2030 while (cap->size) {
2031 struct pci_cap_saved_state *tmp;
2032
2033 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
2034 if (!tmp || tmp->cap.size != cap->size)
2035 return -EINVAL;
2036
2037 memcpy(tmp->cap.data, cap->data, tmp->cap.size);
2038 cap = (struct pci_cap_saved_data *)((u8 *)cap +
2039 sizeof(struct pci_cap_saved_data) + cap->size);
2040 }
2041
2042 dev->state_saved = true;
2043 return 0;
2044 }
2045 EXPORT_SYMBOL_GPL(pci_load_saved_state);
2046
2047 /**
2048 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
2049 * and free the memory allocated for it.
2050 * @dev: PCI device that we're dealing with
2051 * @state: Pointer to saved state returned from pci_store_saved_state()
2052 */
pci_load_and_free_saved_state(struct pci_dev * dev,struct pci_saved_state ** state)2053 int pci_load_and_free_saved_state(struct pci_dev *dev,
2054 struct pci_saved_state **state)
2055 {
2056 int ret = pci_load_saved_state(dev, *state);
2057 kfree(*state);
2058 *state = NULL;
2059 return ret;
2060 }
2061 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
2062
pcibios_enable_device(struct pci_dev * dev,int bars)2063 int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
2064 {
2065 return pci_enable_resources(dev, bars);
2066 }
2067
do_pci_enable_device(struct pci_dev * dev,int bars)2068 static int do_pci_enable_device(struct pci_dev *dev, int bars)
2069 {
2070 int err;
2071 struct pci_dev *bridge;
2072 u16 cmd;
2073 u8 pin;
2074
2075 err = pci_set_power_state(dev, PCI_D0);
2076 if (err < 0 && err != -EIO)
2077 return err;
2078
2079 bridge = pci_upstream_bridge(dev);
2080 if (bridge)
2081 pcie_aspm_powersave_config_link(bridge);
2082
2083 err = pcibios_enable_device(dev, bars);
2084 if (err < 0)
2085 return err;
2086 pci_fixup_device(pci_fixup_enable, dev);
2087
2088 if (dev->msi_enabled || dev->msix_enabled)
2089 return 0;
2090
2091 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
2092 if (pin) {
2093 pci_read_config_word(dev, PCI_COMMAND, &cmd);
2094 if (cmd & PCI_COMMAND_INTX_DISABLE)
2095 pci_write_config_word(dev, PCI_COMMAND,
2096 cmd & ~PCI_COMMAND_INTX_DISABLE);
2097 }
2098
2099 return 0;
2100 }
2101
2102 /**
2103 * pci_reenable_device - Resume abandoned device
2104 * @dev: PCI device to be resumed
2105 *
2106 * NOTE: This function is a backend of pci_default_resume() and is not supposed
2107 * to be called by normal code, write proper resume handler and use it instead.
2108 */
pci_reenable_device(struct pci_dev * dev)2109 int pci_reenable_device(struct pci_dev *dev)
2110 {
2111 if (pci_is_enabled(dev))
2112 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
2113 return 0;
2114 }
2115 EXPORT_SYMBOL(pci_reenable_device);
2116
pci_enable_bridge(struct pci_dev * dev)2117 static void pci_enable_bridge(struct pci_dev *dev)
2118 {
2119 struct pci_dev *bridge;
2120 int retval;
2121
2122 bridge = pci_upstream_bridge(dev);
2123 if (bridge)
2124 pci_enable_bridge(bridge);
2125
2126 if (pci_is_enabled(dev)) {
2127 if (!dev->is_busmaster)
2128 pci_set_master(dev);
2129 return;
2130 }
2131
2132 retval = pci_enable_device(dev);
2133 if (retval)
2134 pci_err(dev, "Error enabling bridge (%d), continuing\n",
2135 retval);
2136 pci_set_master(dev);
2137 }
2138
pci_enable_device_flags(struct pci_dev * dev,unsigned long flags)2139 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
2140 {
2141 struct pci_dev *bridge;
2142 int err;
2143 int i, bars = 0;
2144
2145 /*
2146 * Power state could be unknown at this point, either due to a fresh
2147 * boot or a device removal call. So get the current power state
2148 * so that things like MSI message writing will behave as expected
2149 * (e.g. if the device really is in D0 at enable time).
2150 */
2151 pci_update_current_state(dev, dev->current_state);
2152
2153 if (atomic_inc_return(&dev->enable_cnt) > 1)
2154 return 0; /* already enabled */
2155
2156 bridge = pci_upstream_bridge(dev);
2157 if (bridge)
2158 pci_enable_bridge(bridge);
2159
2160 /* only skip sriov related */
2161 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
2162 if (dev->resource[i].flags & flags)
2163 bars |= (1 << i);
2164 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
2165 if (dev->resource[i].flags & flags)
2166 bars |= (1 << i);
2167
2168 err = do_pci_enable_device(dev, bars);
2169 if (err < 0)
2170 atomic_dec(&dev->enable_cnt);
2171 return err;
2172 }
2173
2174 /**
2175 * pci_enable_device_mem - Initialize a device for use with Memory space
2176 * @dev: PCI device to be initialized
2177 *
2178 * Initialize device before it's used by a driver. Ask low-level code
2179 * to enable Memory resources. Wake up the device if it was suspended.
2180 * Beware, this function can fail.
2181 */
pci_enable_device_mem(struct pci_dev * dev)2182 int pci_enable_device_mem(struct pci_dev *dev)
2183 {
2184 return pci_enable_device_flags(dev, IORESOURCE_MEM);
2185 }
2186 EXPORT_SYMBOL(pci_enable_device_mem);
2187
2188 /**
2189 * pci_enable_device - Initialize device before it's used by a driver.
2190 * @dev: PCI device to be initialized
2191 *
2192 * Initialize device before it's used by a driver. Ask low-level code
2193 * to enable I/O and memory. Wake up the device if it was suspended.
2194 * Beware, this function can fail.
2195 *
2196 * Note we don't actually enable the device many times if we call
2197 * this function repeatedly (we just increment the count).
2198 */
pci_enable_device(struct pci_dev * dev)2199 int pci_enable_device(struct pci_dev *dev)
2200 {
2201 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
2202 }
2203 EXPORT_SYMBOL(pci_enable_device);
2204
2205 /*
2206 * pcibios_device_add - provide arch specific hooks when adding device dev
2207 * @dev: the PCI device being added
2208 *
2209 * Permits the platform to provide architecture specific functionality when
2210 * devices are added. This is the default implementation. Architecture
2211 * implementations can override this.
2212 */
pcibios_device_add(struct pci_dev * dev)2213 int __weak pcibios_device_add(struct pci_dev *dev)
2214 {
2215 return 0;
2216 }
2217
2218 /**
2219 * pcibios_release_device - provide arch specific hooks when releasing
2220 * device dev
2221 * @dev: the PCI device being released
2222 *
2223 * Permits the platform to provide architecture specific functionality when
2224 * devices are released. This is the default implementation. Architecture
2225 * implementations can override this.
2226 */
pcibios_release_device(struct pci_dev * dev)2227 void __weak pcibios_release_device(struct pci_dev *dev) {}
2228
2229 /**
2230 * pcibios_disable_device - disable arch specific PCI resources for device dev
2231 * @dev: the PCI device to disable
2232 *
2233 * Disables architecture specific PCI resources for the device. This
2234 * is the default implementation. Architecture implementations can
2235 * override this.
2236 */
pcibios_disable_device(struct pci_dev * dev)2237 void __weak pcibios_disable_device(struct pci_dev *dev) {}
2238
do_pci_disable_device(struct pci_dev * dev)2239 static void do_pci_disable_device(struct pci_dev *dev)
2240 {
2241 u16 pci_command;
2242
2243 pci_read_config_word(dev, PCI_COMMAND, &pci_command);
2244 if (pci_command & PCI_COMMAND_MASTER) {
2245 pci_command &= ~PCI_COMMAND_MASTER;
2246 pci_write_config_word(dev, PCI_COMMAND, pci_command);
2247 }
2248
2249 pcibios_disable_device(dev);
2250 }
2251
2252 /**
2253 * pci_disable_enabled_device - Disable device without updating enable_cnt
2254 * @dev: PCI device to disable
2255 *
2256 * NOTE: This function is a backend of PCI power management routines and is
2257 * not supposed to be called drivers.
2258 */
pci_disable_enabled_device(struct pci_dev * dev)2259 void pci_disable_enabled_device(struct pci_dev *dev)
2260 {
2261 if (pci_is_enabled(dev))
2262 do_pci_disable_device(dev);
2263 }
2264
2265 /**
2266 * pci_disable_device - Disable PCI device after use
2267 * @dev: PCI device to be disabled
2268 *
2269 * Signal to the system that the PCI device is not in use by the system
2270 * anymore. This only involves disabling PCI bus-mastering, if active.
2271 *
2272 * Note we don't actually disable the device until all callers of
2273 * pci_enable_device() have called pci_disable_device().
2274 */
pci_disable_device(struct pci_dev * dev)2275 void pci_disable_device(struct pci_dev *dev)
2276 {
2277 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
2278 "disabling already-disabled device");
2279
2280 if (atomic_dec_return(&dev->enable_cnt) != 0)
2281 return;
2282
2283 do_pci_disable_device(dev);
2284
2285 dev->is_busmaster = 0;
2286 }
2287 EXPORT_SYMBOL(pci_disable_device);
2288
2289 /**
2290 * pcibios_set_pcie_reset_state - set reset state for device dev
2291 * @dev: the PCIe device reset
2292 * @state: Reset state to enter into
2293 *
2294 * Set the PCIe reset state for the device. This is the default
2295 * implementation. Architecture implementations can override this.
2296 */
pcibios_set_pcie_reset_state(struct pci_dev * dev,enum pcie_reset_state state)2297 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
2298 enum pcie_reset_state state)
2299 {
2300 return -EINVAL;
2301 }
2302
2303 /**
2304 * pci_set_pcie_reset_state - set reset state for device dev
2305 * @dev: the PCIe device reset
2306 * @state: Reset state to enter into
2307 *
2308 * Sets the PCI reset state for the device.
2309 */
pci_set_pcie_reset_state(struct pci_dev * dev,enum pcie_reset_state state)2310 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
2311 {
2312 return pcibios_set_pcie_reset_state(dev, state);
2313 }
2314 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
2315
2316 #ifdef CONFIG_PCIEAER
pcie_clear_device_status(struct pci_dev * dev)2317 void pcie_clear_device_status(struct pci_dev *dev)
2318 {
2319 u16 sta;
2320
2321 pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &sta);
2322 pcie_capability_write_word(dev, PCI_EXP_DEVSTA, sta);
2323 }
2324 #endif
2325
2326 /**
2327 * pcie_clear_root_pme_status - Clear root port PME interrupt status.
2328 * @dev: PCIe root port or event collector.
2329 */
pcie_clear_root_pme_status(struct pci_dev * dev)2330 void pcie_clear_root_pme_status(struct pci_dev *dev)
2331 {
2332 pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME);
2333 }
2334
2335 /**
2336 * pci_check_pme_status - Check if given device has generated PME.
2337 * @dev: Device to check.
2338 *
2339 * Check the PME status of the device and if set, clear it and clear PME enable
2340 * (if set). Return 'true' if PME status and PME enable were both set or
2341 * 'false' otherwise.
2342 */
pci_check_pme_status(struct pci_dev * dev)2343 bool pci_check_pme_status(struct pci_dev *dev)
2344 {
2345 int pmcsr_pos;
2346 u16 pmcsr;
2347 bool ret = false;
2348
2349 if (!dev->pm_cap)
2350 return false;
2351
2352 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
2353 pci_read_config_word(dev, pmcsr_pos, &pmcsr);
2354 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
2355 return false;
2356
2357 /* Clear PME status. */
2358 pmcsr |= PCI_PM_CTRL_PME_STATUS;
2359 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
2360 /* Disable PME to avoid interrupt flood. */
2361 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2362 ret = true;
2363 }
2364
2365 pci_write_config_word(dev, pmcsr_pos, pmcsr);
2366
2367 return ret;
2368 }
2369
2370 /**
2371 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
2372 * @dev: Device to handle.
2373 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
2374 *
2375 * Check if @dev has generated PME and queue a resume request for it in that
2376 * case.
2377 */
pci_pme_wakeup(struct pci_dev * dev,void * pme_poll_reset)2378 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
2379 {
2380 if (pme_poll_reset && dev->pme_poll)
2381 dev->pme_poll = false;
2382
2383 if (pci_check_pme_status(dev)) {
2384 pci_wakeup_event(dev);
2385 pm_request_resume(&dev->dev);
2386 }
2387 return 0;
2388 }
2389
2390 /**
2391 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
2392 * @bus: Top bus of the subtree to walk.
2393 */
pci_pme_wakeup_bus(struct pci_bus * bus)2394 void pci_pme_wakeup_bus(struct pci_bus *bus)
2395 {
2396 if (bus)
2397 pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
2398 }
2399
2400
2401 /**
2402 * pci_pme_capable - check the capability of PCI device to generate PME#
2403 * @dev: PCI device to handle.
2404 * @state: PCI state from which device will issue PME#.
2405 */
pci_pme_capable(struct pci_dev * dev,pci_power_t state)2406 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
2407 {
2408 if (!dev->pm_cap)
2409 return false;
2410
2411 return !!(dev->pme_support & (1 << state));
2412 }
2413 EXPORT_SYMBOL(pci_pme_capable);
2414
pci_pme_list_scan(struct work_struct * work)2415 static void pci_pme_list_scan(struct work_struct *work)
2416 {
2417 struct pci_pme_device *pme_dev, *n;
2418
2419 mutex_lock(&pci_pme_list_mutex);
2420 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
2421 struct pci_dev *pdev = pme_dev->dev;
2422
2423 if (pdev->pme_poll) {
2424 struct pci_dev *bridge = pdev->bus->self;
2425 struct device *dev = &pdev->dev;
2426 struct device *bdev = bridge ? &bridge->dev : NULL;
2427 int bref = 0;
2428
2429 /*
2430 * If we have a bridge, it should be in an active/D0
2431 * state or the configuration space of subordinate
2432 * devices may not be accessible or stable over the
2433 * course of the call.
2434 */
2435 if (bdev) {
2436 bref = pm_runtime_get_if_active(bdev);
2437 if (!bref)
2438 continue;
2439
2440 if (bridge->current_state != PCI_D0)
2441 goto put_bridge;
2442 }
2443
2444 /*
2445 * The device itself should be suspended but config
2446 * space must be accessible, therefore it cannot be in
2447 * D3cold.
2448 */
2449 if (pm_runtime_suspended(dev) &&
2450 pdev->current_state != PCI_D3cold)
2451 pci_pme_wakeup(pdev, NULL);
2452
2453 put_bridge:
2454 if (bref > 0)
2455 pm_runtime_put(bdev);
2456 } else {
2457 list_del(&pme_dev->list);
2458 kfree(pme_dev);
2459 }
2460 }
2461 if (!list_empty(&pci_pme_list))
2462 queue_delayed_work(system_freezable_wq, &pci_pme_work,
2463 msecs_to_jiffies(PME_TIMEOUT));
2464 mutex_unlock(&pci_pme_list_mutex);
2465 }
2466
__pci_pme_active(struct pci_dev * dev,bool enable)2467 static void __pci_pme_active(struct pci_dev *dev, bool enable)
2468 {
2469 u16 pmcsr;
2470
2471 if (!dev->pme_support)
2472 return;
2473
2474 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2475 /* Clear PME_Status by writing 1 to it and enable PME# */
2476 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
2477 if (!enable)
2478 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2479
2480 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2481 }
2482
2483 /**
2484 * pci_pme_restore - Restore PME configuration after config space restore.
2485 * @dev: PCI device to update.
2486 */
pci_pme_restore(struct pci_dev * dev)2487 void pci_pme_restore(struct pci_dev *dev)
2488 {
2489 u16 pmcsr;
2490
2491 if (!dev->pme_support)
2492 return;
2493
2494 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2495 if (dev->wakeup_prepared) {
2496 pmcsr |= PCI_PM_CTRL_PME_ENABLE;
2497 pmcsr &= ~PCI_PM_CTRL_PME_STATUS;
2498 } else {
2499 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2500 pmcsr |= PCI_PM_CTRL_PME_STATUS;
2501 }
2502 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2503 }
2504
2505 /**
2506 * pci_pme_active - enable or disable PCI device's PME# function
2507 * @dev: PCI device to handle.
2508 * @enable: 'true' to enable PME# generation; 'false' to disable it.
2509 *
2510 * The caller must verify that the device is capable of generating PME# before
2511 * calling this function with @enable equal to 'true'.
2512 */
pci_pme_active(struct pci_dev * dev,bool enable)2513 void pci_pme_active(struct pci_dev *dev, bool enable)
2514 {
2515 __pci_pme_active(dev, enable);
2516
2517 /*
2518 * PCI (as opposed to PCIe) PME requires that the device have
2519 * its PME# line hooked up correctly. Not all hardware vendors
2520 * do this, so the PME never gets delivered and the device
2521 * remains asleep. The easiest way around this is to
2522 * periodically walk the list of suspended devices and check
2523 * whether any have their PME flag set. The assumption is that
2524 * we'll wake up often enough anyway that this won't be a huge
2525 * hit, and the power savings from the devices will still be a
2526 * win.
2527 *
2528 * Although PCIe uses in-band PME message instead of PME# line
2529 * to report PME, PME does not work for some PCIe devices in
2530 * reality. For example, there are devices that set their PME
2531 * status bits, but don't really bother to send a PME message;
2532 * there are PCI Express Root Ports that don't bother to
2533 * trigger interrupts when they receive PME messages from the
2534 * devices below. So PME poll is used for PCIe devices too.
2535 */
2536
2537 if (dev->pme_poll) {
2538 struct pci_pme_device *pme_dev;
2539 if (enable) {
2540 pme_dev = kmalloc(sizeof(struct pci_pme_device),
2541 GFP_KERNEL);
2542 if (!pme_dev) {
2543 pci_warn(dev, "can't enable PME#\n");
2544 return;
2545 }
2546 pme_dev->dev = dev;
2547 mutex_lock(&pci_pme_list_mutex);
2548 list_add(&pme_dev->list, &pci_pme_list);
2549 if (list_is_singular(&pci_pme_list))
2550 queue_delayed_work(system_freezable_wq,
2551 &pci_pme_work,
2552 msecs_to_jiffies(PME_TIMEOUT));
2553 mutex_unlock(&pci_pme_list_mutex);
2554 } else {
2555 mutex_lock(&pci_pme_list_mutex);
2556 list_for_each_entry(pme_dev, &pci_pme_list, list) {
2557 if (pme_dev->dev == dev) {
2558 list_del(&pme_dev->list);
2559 kfree(pme_dev);
2560 break;
2561 }
2562 }
2563 mutex_unlock(&pci_pme_list_mutex);
2564 }
2565 }
2566
2567 pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled");
2568 }
2569 EXPORT_SYMBOL(pci_pme_active);
2570
2571 /**
2572 * __pci_enable_wake - enable PCI device as wakeup event source
2573 * @dev: PCI device affected
2574 * @state: PCI state from which device will issue wakeup events
2575 * @enable: True to enable event generation; false to disable
2576 *
2577 * This enables the device as a wakeup event source, or disables it.
2578 * When such events involves platform-specific hooks, those hooks are
2579 * called automatically by this routine.
2580 *
2581 * Devices with legacy power management (no standard PCI PM capabilities)
2582 * always require such platform hooks.
2583 *
2584 * RETURN VALUE:
2585 * 0 is returned on success
2586 * -EINVAL is returned if device is not supposed to wake up the system
2587 * Error code depending on the platform is returned if both the platform and
2588 * the native mechanism fail to enable the generation of wake-up events
2589 */
__pci_enable_wake(struct pci_dev * dev,pci_power_t state,bool enable)2590 static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
2591 {
2592 int ret = 0;
2593
2594 /*
2595 * Bridges that are not power-manageable directly only signal
2596 * wakeup on behalf of subordinate devices which is set up
2597 * elsewhere, so skip them. However, bridges that are
2598 * power-manageable may signal wakeup for themselves (for example,
2599 * on a hotplug event) and they need to be covered here.
2600 */
2601 if (!pci_power_manageable(dev))
2602 return 0;
2603
2604 /* Don't do the same thing twice in a row for one device. */
2605 if (!!enable == !!dev->wakeup_prepared)
2606 return 0;
2607
2608 /*
2609 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
2610 * Anderson we should be doing PME# wake enable followed by ACPI wake
2611 * enable. To disable wake-up we call the platform first, for symmetry.
2612 */
2613
2614 if (enable) {
2615 int error;
2616
2617 /*
2618 * Enable PME signaling if the device can signal PME from
2619 * D3cold regardless of whether or not it can signal PME from
2620 * the current target state, because that will allow it to
2621 * signal PME when the hierarchy above it goes into D3cold and
2622 * the device itself ends up in D3cold as a result of that.
2623 */
2624 if (pci_pme_capable(dev, state) || pci_pme_capable(dev, PCI_D3cold))
2625 pci_pme_active(dev, true);
2626 else
2627 ret = 1;
2628 error = platform_pci_set_wakeup(dev, true);
2629 if (ret)
2630 ret = error;
2631 if (!ret)
2632 dev->wakeup_prepared = true;
2633 } else {
2634 platform_pci_set_wakeup(dev, false);
2635 pci_pme_active(dev, false);
2636 dev->wakeup_prepared = false;
2637 }
2638
2639 return ret;
2640 }
2641
2642 /**
2643 * pci_enable_wake - change wakeup settings for a PCI device
2644 * @pci_dev: Target device
2645 * @state: PCI state from which device will issue wakeup events
2646 * @enable: Whether or not to enable event generation
2647 *
2648 * If @enable is set, check device_may_wakeup() for the device before calling
2649 * __pci_enable_wake() for it.
2650 */
pci_enable_wake(struct pci_dev * pci_dev,pci_power_t state,bool enable)2651 int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable)
2652 {
2653 if (enable && !device_may_wakeup(&pci_dev->dev))
2654 return -EINVAL;
2655
2656 return __pci_enable_wake(pci_dev, state, enable);
2657 }
2658 EXPORT_SYMBOL(pci_enable_wake);
2659
2660 /**
2661 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
2662 * @dev: PCI device to prepare
2663 * @enable: True to enable wake-up event generation; false to disable
2664 *
2665 * Many drivers want the device to wake up the system from D3_hot or D3_cold
2666 * and this function allows them to set that up cleanly - pci_enable_wake()
2667 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
2668 * ordering constraints.
2669 *
2670 * This function only returns error code if the device is not allowed to wake
2671 * up the system from sleep or it is not capable of generating PME# from both
2672 * D3_hot and D3_cold and the platform is unable to enable wake-up power for it.
2673 */
pci_wake_from_d3(struct pci_dev * dev,bool enable)2674 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
2675 {
2676 return pci_pme_capable(dev, PCI_D3cold) ?
2677 pci_enable_wake(dev, PCI_D3cold, enable) :
2678 pci_enable_wake(dev, PCI_D3hot, enable);
2679 }
2680 EXPORT_SYMBOL(pci_wake_from_d3);
2681
2682 /**
2683 * pci_target_state - find an appropriate low power state for a given PCI dev
2684 * @dev: PCI device
2685 * @wakeup: Whether or not wakeup functionality will be enabled for the device.
2686 *
2687 * Use underlying platform code to find a supported low power state for @dev.
2688 * If the platform can't manage @dev, return the deepest state from which it
2689 * can generate wake events, based on any available PME info.
2690 */
pci_target_state(struct pci_dev * dev,bool wakeup)2691 static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup)
2692 {
2693 if (platform_pci_power_manageable(dev)) {
2694 /*
2695 * Call the platform to find the target state for the device.
2696 */
2697 pci_power_t state = platform_pci_choose_state(dev);
2698
2699 switch (state) {
2700 case PCI_POWER_ERROR:
2701 case PCI_UNKNOWN:
2702 return PCI_D3hot;
2703
2704 case PCI_D1:
2705 case PCI_D2:
2706 if (pci_no_d1d2(dev))
2707 return PCI_D3hot;
2708 }
2709
2710 return state;
2711 }
2712
2713 /*
2714 * If the device is in D3cold even though it's not power-manageable by
2715 * the platform, it may have been powered down by non-standard means.
2716 * Best to let it slumber.
2717 */
2718 if (dev->current_state == PCI_D3cold)
2719 return PCI_D3cold;
2720 else if (!dev->pm_cap)
2721 return PCI_D0;
2722
2723 if (wakeup && dev->pme_support) {
2724 pci_power_t state = PCI_D3hot;
2725
2726 /*
2727 * Find the deepest state from which the device can generate
2728 * PME#.
2729 */
2730 while (state && !(dev->pme_support & (1 << state)))
2731 state--;
2732
2733 if (state)
2734 return state;
2735 else if (dev->pme_support & 1)
2736 return PCI_D0;
2737 }
2738
2739 return PCI_D3hot;
2740 }
2741
2742 /**
2743 * pci_prepare_to_sleep - prepare PCI device for system-wide transition
2744 * into a sleep state
2745 * @dev: Device to handle.
2746 *
2747 * Choose the power state appropriate for the device depending on whether
2748 * it can wake up the system and/or is power manageable by the platform
2749 * (PCI_D3hot is the default) and put the device into that state.
2750 */
pci_prepare_to_sleep(struct pci_dev * dev)2751 int pci_prepare_to_sleep(struct pci_dev *dev)
2752 {
2753 bool wakeup = device_may_wakeup(&dev->dev);
2754 pci_power_t target_state = pci_target_state(dev, wakeup);
2755 int error;
2756
2757 if (target_state == PCI_POWER_ERROR)
2758 return -EIO;
2759
2760 pci_enable_wake(dev, target_state, wakeup);
2761
2762 error = pci_set_power_state(dev, target_state);
2763
2764 if (error)
2765 pci_enable_wake(dev, target_state, false);
2766
2767 return error;
2768 }
2769 EXPORT_SYMBOL(pci_prepare_to_sleep);
2770
2771 /**
2772 * pci_back_from_sleep - turn PCI device on during system-wide transition
2773 * into working state
2774 * @dev: Device to handle.
2775 *
2776 * Disable device's system wake-up capability and put it into D0.
2777 */
pci_back_from_sleep(struct pci_dev * dev)2778 int pci_back_from_sleep(struct pci_dev *dev)
2779 {
2780 int ret = pci_set_power_state(dev, PCI_D0);
2781
2782 if (ret)
2783 return ret;
2784
2785 pci_enable_wake(dev, PCI_D0, false);
2786 return 0;
2787 }
2788 EXPORT_SYMBOL(pci_back_from_sleep);
2789
2790 /**
2791 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2792 * @dev: PCI device being suspended.
2793 *
2794 * Prepare @dev to generate wake-up events at run time and put it into a low
2795 * power state.
2796 */
pci_finish_runtime_suspend(struct pci_dev * dev)2797 int pci_finish_runtime_suspend(struct pci_dev *dev)
2798 {
2799 pci_power_t target_state;
2800 int error;
2801
2802 target_state = pci_target_state(dev, device_can_wakeup(&dev->dev));
2803 if (target_state == PCI_POWER_ERROR)
2804 return -EIO;
2805
2806 __pci_enable_wake(dev, target_state, pci_dev_run_wake(dev));
2807
2808 error = pci_set_power_state(dev, target_state);
2809
2810 if (error)
2811 pci_enable_wake(dev, target_state, false);
2812
2813 return error;
2814 }
2815
2816 /**
2817 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2818 * @dev: Device to check.
2819 *
2820 * Return true if the device itself is capable of generating wake-up events
2821 * (through the platform or using the native PCIe PME) or if the device supports
2822 * PME and one of its upstream bridges can generate wake-up events.
2823 */
pci_dev_run_wake(struct pci_dev * dev)2824 bool pci_dev_run_wake(struct pci_dev *dev)
2825 {
2826 struct pci_bus *bus = dev->bus;
2827
2828 if (!dev->pme_support)
2829 return false;
2830
2831 /* PME-capable in principle, but not from the target power state */
2832 if (!pci_pme_capable(dev, pci_target_state(dev, true)))
2833 return false;
2834
2835 if (device_can_wakeup(&dev->dev))
2836 return true;
2837
2838 while (bus->parent) {
2839 struct pci_dev *bridge = bus->self;
2840
2841 if (device_can_wakeup(&bridge->dev))
2842 return true;
2843
2844 bus = bus->parent;
2845 }
2846
2847 /* We have reached the root bus. */
2848 if (bus->bridge)
2849 return device_can_wakeup(bus->bridge);
2850
2851 return false;
2852 }
2853 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2854
2855 /**
2856 * pci_dev_need_resume - Check if it is necessary to resume the device.
2857 * @pci_dev: Device to check.
2858 *
2859 * Return 'true' if the device is not runtime-suspended or it has to be
2860 * reconfigured due to wakeup settings difference between system and runtime
2861 * suspend, or the current power state of it is not suitable for the upcoming
2862 * (system-wide) transition.
2863 */
pci_dev_need_resume(struct pci_dev * pci_dev)2864 bool pci_dev_need_resume(struct pci_dev *pci_dev)
2865 {
2866 struct device *dev = &pci_dev->dev;
2867 pci_power_t target_state;
2868
2869 if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev))
2870 return true;
2871
2872 target_state = pci_target_state(pci_dev, device_may_wakeup(dev));
2873
2874 /*
2875 * If the earlier platform check has not triggered, D3cold is just power
2876 * removal on top of D3hot, so no need to resume the device in that
2877 * case.
2878 */
2879 return target_state != pci_dev->current_state &&
2880 target_state != PCI_D3cold &&
2881 pci_dev->current_state != PCI_D3hot;
2882 }
2883
2884 /**
2885 * pci_dev_adjust_pme - Adjust PME setting for a suspended device.
2886 * @pci_dev: Device to check.
2887 *
2888 * If the device is suspended and it is not configured for system wakeup,
2889 * disable PME for it to prevent it from waking up the system unnecessarily.
2890 *
2891 * Note that if the device's power state is D3cold and the platform check in
2892 * pci_dev_need_resume() has not triggered, the device's configuration need not
2893 * be changed.
2894 */
pci_dev_adjust_pme(struct pci_dev * pci_dev)2895 void pci_dev_adjust_pme(struct pci_dev *pci_dev)
2896 {
2897 struct device *dev = &pci_dev->dev;
2898
2899 spin_lock_irq(&dev->power.lock);
2900
2901 if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) &&
2902 pci_dev->current_state < PCI_D3cold)
2903 __pci_pme_active(pci_dev, false);
2904
2905 spin_unlock_irq(&dev->power.lock);
2906 }
2907
2908 /**
2909 * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2910 * @pci_dev: Device to handle.
2911 *
2912 * If the device is runtime suspended and wakeup-capable, enable PME for it as
2913 * it might have been disabled during the prepare phase of system suspend if
2914 * the device was not configured for system wakeup.
2915 */
pci_dev_complete_resume(struct pci_dev * pci_dev)2916 void pci_dev_complete_resume(struct pci_dev *pci_dev)
2917 {
2918 struct device *dev = &pci_dev->dev;
2919
2920 if (!pci_dev_run_wake(pci_dev))
2921 return;
2922
2923 spin_lock_irq(&dev->power.lock);
2924
2925 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2926 __pci_pme_active(pci_dev, true);
2927
2928 spin_unlock_irq(&dev->power.lock);
2929 }
2930
2931 /**
2932 * pci_choose_state - Choose the power state of a PCI device.
2933 * @dev: Target PCI device.
2934 * @state: Target state for the whole system.
2935 *
2936 * Returns PCI power state suitable for @dev and @state.
2937 */
pci_choose_state(struct pci_dev * dev,pm_message_t state)2938 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
2939 {
2940 if (state.event == PM_EVENT_ON)
2941 return PCI_D0;
2942
2943 return pci_target_state(dev, false);
2944 }
2945 EXPORT_SYMBOL(pci_choose_state);
2946
pci_config_pm_runtime_get(struct pci_dev * pdev)2947 void pci_config_pm_runtime_get(struct pci_dev *pdev)
2948 {
2949 struct device *dev = &pdev->dev;
2950 struct device *parent = dev->parent;
2951
2952 if (parent)
2953 pm_runtime_get_sync(parent);
2954 pm_runtime_get_noresume(dev);
2955 /*
2956 * pdev->current_state is set to PCI_D3cold during suspending,
2957 * so wait until suspending completes
2958 */
2959 pm_runtime_barrier(dev);
2960 /*
2961 * Only need to resume devices in D3cold, because config
2962 * registers are still accessible for devices suspended but
2963 * not in D3cold.
2964 */
2965 if (pdev->current_state == PCI_D3cold)
2966 pm_runtime_resume(dev);
2967 }
2968
pci_config_pm_runtime_put(struct pci_dev * pdev)2969 void pci_config_pm_runtime_put(struct pci_dev *pdev)
2970 {
2971 struct device *dev = &pdev->dev;
2972 struct device *parent = dev->parent;
2973
2974 pm_runtime_put(dev);
2975 if (parent)
2976 pm_runtime_put_sync(parent);
2977 }
2978
2979 static const struct dmi_system_id bridge_d3_blacklist[] = {
2980 #ifdef CONFIG_X86
2981 {
2982 /*
2983 * Gigabyte X299 root port is not marked as hotplug capable
2984 * which allows Linux to power manage it. However, this
2985 * confuses the BIOS SMI handler so don't power manage root
2986 * ports on that system.
2987 */
2988 .ident = "X299 DESIGNARE EX-CF",
2989 .matches = {
2990 DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."),
2991 DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"),
2992 },
2993 },
2994 {
2995 /*
2996 * Downstream device is not accessible after putting a root port
2997 * into D3cold and back into D0 on Elo Continental Z2 board
2998 */
2999 .ident = "Elo Continental Z2",
3000 .matches = {
3001 DMI_MATCH(DMI_BOARD_VENDOR, "Elo Touch Solutions"),
3002 DMI_MATCH(DMI_BOARD_NAME, "Geminilake"),
3003 DMI_MATCH(DMI_BOARD_VERSION, "Continental Z2"),
3004 },
3005 },
3006 {
3007 /*
3008 * Changing power state of root port dGPU is connected fails
3009 * https://gitlab.freedesktop.org/drm/amd/-/issues/3229
3010 */
3011 .ident = "Hewlett-Packard HP Pavilion 17 Notebook PC/1972",
3012 .matches = {
3013 DMI_MATCH(DMI_BOARD_VENDOR, "Hewlett-Packard"),
3014 DMI_MATCH(DMI_BOARD_NAME, "1972"),
3015 DMI_MATCH(DMI_BOARD_VERSION, "95.33"),
3016 },
3017 },
3018 #endif
3019 { }
3020 };
3021
3022 /**
3023 * pci_bridge_d3_possible - Is it possible to put the bridge into D3
3024 * @bridge: Bridge to check
3025 *
3026 * This function checks if it is possible to move the bridge to D3.
3027 * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt.
3028 */
pci_bridge_d3_possible(struct pci_dev * bridge)3029 bool pci_bridge_d3_possible(struct pci_dev *bridge)
3030 {
3031 if (!pci_is_pcie(bridge))
3032 return false;
3033
3034 switch (pci_pcie_type(bridge)) {
3035 case PCI_EXP_TYPE_ROOT_PORT:
3036 case PCI_EXP_TYPE_UPSTREAM:
3037 case PCI_EXP_TYPE_DOWNSTREAM:
3038 if (pci_bridge_d3_disable)
3039 return false;
3040
3041 /*
3042 * Hotplug ports handled by firmware in System Management Mode
3043 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
3044 */
3045 if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge))
3046 return false;
3047
3048 if (pci_bridge_d3_force)
3049 return true;
3050
3051 /* Even the oldest 2010 Thunderbolt controller supports D3. */
3052 if (bridge->is_thunderbolt)
3053 return true;
3054
3055 /* Platform might know better if the bridge supports D3 */
3056 if (platform_pci_bridge_d3(bridge))
3057 return true;
3058
3059 /*
3060 * Hotplug ports handled natively by the OS were not validated
3061 * by vendors for runtime D3 at least until 2018 because there
3062 * was no OS support.
3063 */
3064 if (bridge->is_hotplug_bridge)
3065 return false;
3066
3067 if (dmi_check_system(bridge_d3_blacklist))
3068 return false;
3069
3070 /*
3071 * It should be safe to put PCIe ports from 2015 or newer
3072 * to D3.
3073 */
3074 if (dmi_get_bios_year() >= 2015)
3075 return true;
3076 break;
3077 }
3078
3079 return false;
3080 }
3081
pci_dev_check_d3cold(struct pci_dev * dev,void * data)3082 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
3083 {
3084 bool *d3cold_ok = data;
3085
3086 if (/* The device needs to be allowed to go D3cold ... */
3087 dev->no_d3cold || !dev->d3cold_allowed ||
3088
3089 /* ... and if it is wakeup capable to do so from D3cold. */
3090 (device_may_wakeup(&dev->dev) &&
3091 !pci_pme_capable(dev, PCI_D3cold)) ||
3092
3093 /* If it is a bridge it must be allowed to go to D3. */
3094 !pci_power_manageable(dev))
3095
3096 *d3cold_ok = false;
3097
3098 return !*d3cold_ok;
3099 }
3100
3101 /*
3102 * pci_bridge_d3_update - Update bridge D3 capabilities
3103 * @dev: PCI device which is changed
3104 *
3105 * Update upstream bridge PM capabilities accordingly depending on if the
3106 * device PM configuration was changed or the device is being removed. The
3107 * change is also propagated upstream.
3108 */
pci_bridge_d3_update(struct pci_dev * dev)3109 void pci_bridge_d3_update(struct pci_dev *dev)
3110 {
3111 bool remove = !device_is_registered(&dev->dev);
3112 struct pci_dev *bridge;
3113 bool d3cold_ok = true;
3114
3115 bridge = pci_upstream_bridge(dev);
3116 if (!bridge || !pci_bridge_d3_possible(bridge))
3117 return;
3118
3119 /*
3120 * If D3 is currently allowed for the bridge, removing one of its
3121 * children won't change that.
3122 */
3123 if (remove && bridge->bridge_d3)
3124 return;
3125
3126 /*
3127 * If D3 is currently allowed for the bridge and a child is added or
3128 * changed, disallowance of D3 can only be caused by that child, so
3129 * we only need to check that single device, not any of its siblings.
3130 *
3131 * If D3 is currently not allowed for the bridge, checking the device
3132 * first may allow us to skip checking its siblings.
3133 */
3134 if (!remove)
3135 pci_dev_check_d3cold(dev, &d3cold_ok);
3136
3137 /*
3138 * If D3 is currently not allowed for the bridge, this may be caused
3139 * either by the device being changed/removed or any of its siblings,
3140 * so we need to go through all children to find out if one of them
3141 * continues to block D3.
3142 */
3143 if (d3cold_ok && !bridge->bridge_d3)
3144 pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
3145 &d3cold_ok);
3146
3147 if (bridge->bridge_d3 != d3cold_ok) {
3148 bridge->bridge_d3 = d3cold_ok;
3149 /* Propagate change to upstream bridges */
3150 pci_bridge_d3_update(bridge);
3151 }
3152 }
3153
3154 /**
3155 * pci_d3cold_enable - Enable D3cold for device
3156 * @dev: PCI device to handle
3157 *
3158 * This function can be used in drivers to enable D3cold from the device
3159 * they handle. It also updates upstream PCI bridge PM capabilities
3160 * accordingly.
3161 */
pci_d3cold_enable(struct pci_dev * dev)3162 void pci_d3cold_enable(struct pci_dev *dev)
3163 {
3164 if (dev->no_d3cold) {
3165 dev->no_d3cold = false;
3166 pci_bridge_d3_update(dev);
3167 }
3168 }
3169 EXPORT_SYMBOL_GPL(pci_d3cold_enable);
3170
3171 /**
3172 * pci_d3cold_disable - Disable D3cold for device
3173 * @dev: PCI device to handle
3174 *
3175 * This function can be used in drivers to disable D3cold from the device
3176 * they handle. It also updates upstream PCI bridge PM capabilities
3177 * accordingly.
3178 */
pci_d3cold_disable(struct pci_dev * dev)3179 void pci_d3cold_disable(struct pci_dev *dev)
3180 {
3181 if (!dev->no_d3cold) {
3182 dev->no_d3cold = true;
3183 pci_bridge_d3_update(dev);
3184 }
3185 }
3186 EXPORT_SYMBOL_GPL(pci_d3cold_disable);
3187
3188 /**
3189 * pci_pm_init - Initialize PM functions of given PCI device
3190 * @dev: PCI device to handle.
3191 */
pci_pm_init(struct pci_dev * dev)3192 void pci_pm_init(struct pci_dev *dev)
3193 {
3194 int pm;
3195 u16 status;
3196 u16 pmc;
3197
3198 pm_runtime_forbid(&dev->dev);
3199 pm_runtime_set_active(&dev->dev);
3200 pm_runtime_enable(&dev->dev);
3201 device_enable_async_suspend(&dev->dev);
3202 dev->wakeup_prepared = false;
3203
3204 dev->pm_cap = 0;
3205 dev->pme_support = 0;
3206
3207 /* find PCI PM capability in list */
3208 pm = pci_find_capability(dev, PCI_CAP_ID_PM);
3209 if (!pm)
3210 return;
3211 /* Check device's ability to generate PME# */
3212 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
3213
3214 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
3215 pci_err(dev, "unsupported PM cap regs version (%u)\n",
3216 pmc & PCI_PM_CAP_VER_MASK);
3217 return;
3218 }
3219
3220 dev->pm_cap = pm;
3221 dev->d3hot_delay = PCI_PM_D3HOT_WAIT;
3222 dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
3223 dev->bridge_d3 = pci_bridge_d3_possible(dev);
3224 dev->d3cold_allowed = true;
3225
3226 dev->d1_support = false;
3227 dev->d2_support = false;
3228 if (!pci_no_d1d2(dev)) {
3229 if (pmc & PCI_PM_CAP_D1)
3230 dev->d1_support = true;
3231 if (pmc & PCI_PM_CAP_D2)
3232 dev->d2_support = true;
3233
3234 if (dev->d1_support || dev->d2_support)
3235 pci_info(dev, "supports%s%s\n",
3236 dev->d1_support ? " D1" : "",
3237 dev->d2_support ? " D2" : "");
3238 }
3239
3240 pmc &= PCI_PM_CAP_PME_MASK;
3241 if (pmc) {
3242 pci_info(dev, "PME# supported from%s%s%s%s%s\n",
3243 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
3244 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
3245 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
3246 (pmc & PCI_PM_CAP_PME_D3hot) ? " D3hot" : "",
3247 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
3248 dev->pme_support = FIELD_GET(PCI_PM_CAP_PME_MASK, pmc);
3249 dev->pme_poll = true;
3250 /*
3251 * Make device's PM flags reflect the wake-up capability, but
3252 * let the user space enable it to wake up the system as needed.
3253 */
3254 device_set_wakeup_capable(&dev->dev, true);
3255 /* Disable the PME# generation functionality */
3256 pci_pme_active(dev, false);
3257 }
3258
3259 pci_read_config_word(dev, PCI_STATUS, &status);
3260 if (status & PCI_STATUS_IMM_READY)
3261 dev->imm_ready = 1;
3262 }
3263
pci_ea_flags(struct pci_dev * dev,u8 prop)3264 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
3265 {
3266 unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
3267
3268 switch (prop) {
3269 case PCI_EA_P_MEM:
3270 case PCI_EA_P_VF_MEM:
3271 flags |= IORESOURCE_MEM;
3272 break;
3273 case PCI_EA_P_MEM_PREFETCH:
3274 case PCI_EA_P_VF_MEM_PREFETCH:
3275 flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
3276 break;
3277 case PCI_EA_P_IO:
3278 flags |= IORESOURCE_IO;
3279 break;
3280 default:
3281 return 0;
3282 }
3283
3284 return flags;
3285 }
3286
pci_ea_get_resource(struct pci_dev * dev,u8 bei,u8 prop)3287 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
3288 u8 prop)
3289 {
3290 if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
3291 return &dev->resource[bei];
3292 #ifdef CONFIG_PCI_IOV
3293 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
3294 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
3295 return &dev->resource[PCI_IOV_RESOURCES +
3296 bei - PCI_EA_BEI_VF_BAR0];
3297 #endif
3298 else if (bei == PCI_EA_BEI_ROM)
3299 return &dev->resource[PCI_ROM_RESOURCE];
3300 else
3301 return NULL;
3302 }
3303
3304 /* Read an Enhanced Allocation (EA) entry */
pci_ea_read(struct pci_dev * dev,int offset)3305 static int pci_ea_read(struct pci_dev *dev, int offset)
3306 {
3307 struct resource *res;
3308 const char *res_name;
3309 int ent_size, ent_offset = offset;
3310 resource_size_t start, end;
3311 unsigned long flags;
3312 u32 dw0, bei, base, max_offset;
3313 u8 prop;
3314 bool support_64 = (sizeof(resource_size_t) >= 8);
3315
3316 pci_read_config_dword(dev, ent_offset, &dw0);
3317 ent_offset += 4;
3318
3319 /* Entry size field indicates DWORDs after 1st */
3320 ent_size = (FIELD_GET(PCI_EA_ES, dw0) + 1) << 2;
3321
3322 if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
3323 goto out;
3324
3325 bei = FIELD_GET(PCI_EA_BEI, dw0);
3326 prop = FIELD_GET(PCI_EA_PP, dw0);
3327
3328 /*
3329 * If the Property is in the reserved range, try the Secondary
3330 * Property instead.
3331 */
3332 if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
3333 prop = FIELD_GET(PCI_EA_SP, dw0);
3334 if (prop > PCI_EA_P_BRIDGE_IO)
3335 goto out;
3336
3337 res = pci_ea_get_resource(dev, bei, prop);
3338 res_name = pci_resource_name(dev, bei);
3339 if (!res) {
3340 pci_err(dev, "Unsupported EA entry BEI: %u\n", bei);
3341 goto out;
3342 }
3343
3344 flags = pci_ea_flags(dev, prop);
3345 if (!flags) {
3346 pci_err(dev, "Unsupported EA properties: %#x\n", prop);
3347 goto out;
3348 }
3349
3350 /* Read Base */
3351 pci_read_config_dword(dev, ent_offset, &base);
3352 start = (base & PCI_EA_FIELD_MASK);
3353 ent_offset += 4;
3354
3355 /* Read MaxOffset */
3356 pci_read_config_dword(dev, ent_offset, &max_offset);
3357 ent_offset += 4;
3358
3359 /* Read Base MSBs (if 64-bit entry) */
3360 if (base & PCI_EA_IS_64) {
3361 u32 base_upper;
3362
3363 pci_read_config_dword(dev, ent_offset, &base_upper);
3364 ent_offset += 4;
3365
3366 flags |= IORESOURCE_MEM_64;
3367
3368 /* entry starts above 32-bit boundary, can't use */
3369 if (!support_64 && base_upper)
3370 goto out;
3371
3372 if (support_64)
3373 start |= ((u64)base_upper << 32);
3374 }
3375
3376 end = start + (max_offset | 0x03);
3377
3378 /* Read MaxOffset MSBs (if 64-bit entry) */
3379 if (max_offset & PCI_EA_IS_64) {
3380 u32 max_offset_upper;
3381
3382 pci_read_config_dword(dev, ent_offset, &max_offset_upper);
3383 ent_offset += 4;
3384
3385 flags |= IORESOURCE_MEM_64;
3386
3387 /* entry too big, can't use */
3388 if (!support_64 && max_offset_upper)
3389 goto out;
3390
3391 if (support_64)
3392 end += ((u64)max_offset_upper << 32);
3393 }
3394
3395 if (end < start) {
3396 pci_err(dev, "EA Entry crosses address boundary\n");
3397 goto out;
3398 }
3399
3400 if (ent_size != ent_offset - offset) {
3401 pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n",
3402 ent_size, ent_offset - offset);
3403 goto out;
3404 }
3405
3406 res->name = pci_name(dev);
3407 res->start = start;
3408 res->end = end;
3409 res->flags = flags;
3410
3411 if (bei <= PCI_EA_BEI_BAR5)
3412 pci_info(dev, "%s %pR: from Enhanced Allocation, properties %#02x\n",
3413 res_name, res, prop);
3414 else if (bei == PCI_EA_BEI_ROM)
3415 pci_info(dev, "%s %pR: from Enhanced Allocation, properties %#02x\n",
3416 res_name, res, prop);
3417 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
3418 pci_info(dev, "%s %pR: from Enhanced Allocation, properties %#02x\n",
3419 res_name, res, prop);
3420 else
3421 pci_info(dev, "BEI %d %pR: from Enhanced Allocation, properties %#02x\n",
3422 bei, res, prop);
3423
3424 out:
3425 return offset + ent_size;
3426 }
3427
3428 /* Enhanced Allocation Initialization */
pci_ea_init(struct pci_dev * dev)3429 void pci_ea_init(struct pci_dev *dev)
3430 {
3431 int ea;
3432 u8 num_ent;
3433 int offset;
3434 int i;
3435
3436 /* find PCI EA capability in list */
3437 ea = pci_find_capability(dev, PCI_CAP_ID_EA);
3438 if (!ea)
3439 return;
3440
3441 /* determine the number of entries */
3442 pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
3443 &num_ent);
3444 num_ent &= PCI_EA_NUM_ENT_MASK;
3445
3446 offset = ea + PCI_EA_FIRST_ENT;
3447
3448 /* Skip DWORD 2 for type 1 functions */
3449 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
3450 offset += 4;
3451
3452 /* parse each EA entry */
3453 for (i = 0; i < num_ent; ++i)
3454 offset = pci_ea_read(dev, offset);
3455 }
3456
pci_add_saved_cap(struct pci_dev * pci_dev,struct pci_cap_saved_state * new_cap)3457 static void pci_add_saved_cap(struct pci_dev *pci_dev,
3458 struct pci_cap_saved_state *new_cap)
3459 {
3460 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
3461 }
3462
3463 /**
3464 * _pci_add_cap_save_buffer - allocate buffer for saving given
3465 * capability registers
3466 * @dev: the PCI device
3467 * @cap: the capability to allocate the buffer for
3468 * @extended: Standard or Extended capability ID
3469 * @size: requested size of the buffer
3470 */
_pci_add_cap_save_buffer(struct pci_dev * dev,u16 cap,bool extended,unsigned int size)3471 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
3472 bool extended, unsigned int size)
3473 {
3474 int pos;
3475 struct pci_cap_saved_state *save_state;
3476
3477 if (extended)
3478 pos = pci_find_ext_capability(dev, cap);
3479 else
3480 pos = pci_find_capability(dev, cap);
3481
3482 if (!pos)
3483 return 0;
3484
3485 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
3486 if (!save_state)
3487 return -ENOMEM;
3488
3489 save_state->cap.cap_nr = cap;
3490 save_state->cap.cap_extended = extended;
3491 save_state->cap.size = size;
3492 pci_add_saved_cap(dev, save_state);
3493
3494 return 0;
3495 }
3496
pci_add_cap_save_buffer(struct pci_dev * dev,char cap,unsigned int size)3497 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
3498 {
3499 return _pci_add_cap_save_buffer(dev, cap, false, size);
3500 }
3501
pci_add_ext_cap_save_buffer(struct pci_dev * dev,u16 cap,unsigned int size)3502 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
3503 {
3504 return _pci_add_cap_save_buffer(dev, cap, true, size);
3505 }
3506
3507 /**
3508 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
3509 * @dev: the PCI device
3510 */
pci_allocate_cap_save_buffers(struct pci_dev * dev)3511 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
3512 {
3513 int error;
3514
3515 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
3516 PCI_EXP_SAVE_REGS * sizeof(u16));
3517 if (error)
3518 pci_err(dev, "unable to preallocate PCI Express save buffer\n");
3519
3520 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
3521 if (error)
3522 pci_err(dev, "unable to preallocate PCI-X save buffer\n");
3523
3524 error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR,
3525 2 * sizeof(u16));
3526 if (error)
3527 pci_err(dev, "unable to allocate suspend buffer for LTR\n");
3528
3529 pci_allocate_vc_save_buffers(dev);
3530 }
3531
pci_free_cap_save_buffers(struct pci_dev * dev)3532 void pci_free_cap_save_buffers(struct pci_dev *dev)
3533 {
3534 struct pci_cap_saved_state *tmp;
3535 struct hlist_node *n;
3536
3537 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
3538 kfree(tmp);
3539 }
3540
3541 /**
3542 * pci_configure_ari - enable or disable ARI forwarding
3543 * @dev: the PCI device
3544 *
3545 * If @dev and its upstream bridge both support ARI, enable ARI in the
3546 * bridge. Otherwise, disable ARI in the bridge.
3547 */
pci_configure_ari(struct pci_dev * dev)3548 void pci_configure_ari(struct pci_dev *dev)
3549 {
3550 u32 cap;
3551 struct pci_dev *bridge;
3552
3553 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
3554 return;
3555
3556 bridge = dev->bus->self;
3557 if (!bridge)
3558 return;
3559
3560 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3561 if (!(cap & PCI_EXP_DEVCAP2_ARI))
3562 return;
3563
3564 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
3565 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
3566 PCI_EXP_DEVCTL2_ARI);
3567 bridge->ari_enabled = 1;
3568 } else {
3569 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
3570 PCI_EXP_DEVCTL2_ARI);
3571 bridge->ari_enabled = 0;
3572 }
3573 }
3574
pci_acs_flags_enabled(struct pci_dev * pdev,u16 acs_flags)3575 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
3576 {
3577 int pos;
3578 u16 cap, ctrl;
3579
3580 pos = pdev->acs_cap;
3581 if (!pos)
3582 return false;
3583
3584 /*
3585 * Except for egress control, capabilities are either required
3586 * or only required if controllable. Features missing from the
3587 * capability field can therefore be assumed as hard-wired enabled.
3588 */
3589 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
3590 acs_flags &= (cap | PCI_ACS_EC);
3591
3592 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
3593 return (ctrl & acs_flags) == acs_flags;
3594 }
3595
3596 /**
3597 * pci_acs_enabled - test ACS against required flags for a given device
3598 * @pdev: device to test
3599 * @acs_flags: required PCI ACS flags
3600 *
3601 * Return true if the device supports the provided flags. Automatically
3602 * filters out flags that are not implemented on multifunction devices.
3603 *
3604 * Note that this interface checks the effective ACS capabilities of the
3605 * device rather than the actual capabilities. For instance, most single
3606 * function endpoints are not required to support ACS because they have no
3607 * opportunity for peer-to-peer access. We therefore return 'true'
3608 * regardless of whether the device exposes an ACS capability. This makes
3609 * it much easier for callers of this function to ignore the actual type
3610 * or topology of the device when testing ACS support.
3611 */
pci_acs_enabled(struct pci_dev * pdev,u16 acs_flags)3612 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
3613 {
3614 int ret;
3615
3616 ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
3617 if (ret >= 0)
3618 return ret > 0;
3619
3620 /*
3621 * Conventional PCI and PCI-X devices never support ACS, either
3622 * effectively or actually. The shared bus topology implies that
3623 * any device on the bus can receive or snoop DMA.
3624 */
3625 if (!pci_is_pcie(pdev))
3626 return false;
3627
3628 switch (pci_pcie_type(pdev)) {
3629 /*
3630 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
3631 * but since their primary interface is PCI/X, we conservatively
3632 * handle them as we would a non-PCIe device.
3633 */
3634 case PCI_EXP_TYPE_PCIE_BRIDGE:
3635 /*
3636 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never
3637 * applicable... must never implement an ACS Extended Capability...".
3638 * This seems arbitrary, but we take a conservative interpretation
3639 * of this statement.
3640 */
3641 case PCI_EXP_TYPE_PCI_BRIDGE:
3642 case PCI_EXP_TYPE_RC_EC:
3643 return false;
3644 /*
3645 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
3646 * implement ACS in order to indicate their peer-to-peer capabilities,
3647 * regardless of whether they are single- or multi-function devices.
3648 */
3649 case PCI_EXP_TYPE_DOWNSTREAM:
3650 case PCI_EXP_TYPE_ROOT_PORT:
3651 return pci_acs_flags_enabled(pdev, acs_flags);
3652 /*
3653 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
3654 * implemented by the remaining PCIe types to indicate peer-to-peer
3655 * capabilities, but only when they are part of a multifunction
3656 * device. The footnote for section 6.12 indicates the specific
3657 * PCIe types included here.
3658 */
3659 case PCI_EXP_TYPE_ENDPOINT:
3660 case PCI_EXP_TYPE_UPSTREAM:
3661 case PCI_EXP_TYPE_LEG_END:
3662 case PCI_EXP_TYPE_RC_END:
3663 if (!pdev->multifunction)
3664 break;
3665
3666 return pci_acs_flags_enabled(pdev, acs_flags);
3667 }
3668
3669 /*
3670 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
3671 * to single function devices with the exception of downstream ports.
3672 */
3673 return true;
3674 }
3675
3676 /**
3677 * pci_acs_path_enabled - test ACS flags from start to end in a hierarchy
3678 * @start: starting downstream device
3679 * @end: ending upstream device or NULL to search to the root bus
3680 * @acs_flags: required flags
3681 *
3682 * Walk up a device tree from start to end testing PCI ACS support. If
3683 * any step along the way does not support the required flags, return false.
3684 */
pci_acs_path_enabled(struct pci_dev * start,struct pci_dev * end,u16 acs_flags)3685 bool pci_acs_path_enabled(struct pci_dev *start,
3686 struct pci_dev *end, u16 acs_flags)
3687 {
3688 struct pci_dev *pdev, *parent = start;
3689
3690 do {
3691 pdev = parent;
3692
3693 if (!pci_acs_enabled(pdev, acs_flags))
3694 return false;
3695
3696 if (pci_is_root_bus(pdev->bus))
3697 return (end == NULL);
3698
3699 parent = pdev->bus->self;
3700 } while (pdev != end);
3701
3702 return true;
3703 }
3704
3705 /**
3706 * pci_acs_init - Initialize ACS if hardware supports it
3707 * @dev: the PCI device
3708 */
pci_acs_init(struct pci_dev * dev)3709 void pci_acs_init(struct pci_dev *dev)
3710 {
3711 dev->acs_cap = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3712
3713 /*
3714 * Attempt to enable ACS regardless of capability because some Root
3715 * Ports (e.g. those quirked with *_intel_pch_acs_*) do not have
3716 * the standard ACS capability but still support ACS via those
3717 * quirks.
3718 */
3719 pci_enable_acs(dev);
3720 }
3721
3722 /**
3723 * pci_rebar_find_pos - find position of resize ctrl reg for BAR
3724 * @pdev: PCI device
3725 * @bar: BAR to find
3726 *
3727 * Helper to find the position of the ctrl register for a BAR.
3728 * Returns -ENOTSUPP if resizable BARs are not supported at all.
3729 * Returns -ENOENT if no ctrl register for the BAR could be found.
3730 */
pci_rebar_find_pos(struct pci_dev * pdev,int bar)3731 static int pci_rebar_find_pos(struct pci_dev *pdev, int bar)
3732 {
3733 unsigned int pos, nbars, i;
3734 u32 ctrl;
3735
3736 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
3737 if (!pos)
3738 return -ENOTSUPP;
3739
3740 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3741 nbars = FIELD_GET(PCI_REBAR_CTRL_NBAR_MASK, ctrl);
3742
3743 for (i = 0; i < nbars; i++, pos += 8) {
3744 int bar_idx;
3745
3746 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3747 bar_idx = FIELD_GET(PCI_REBAR_CTRL_BAR_IDX, ctrl);
3748 if (bar_idx == bar)
3749 return pos;
3750 }
3751
3752 return -ENOENT;
3753 }
3754
3755 /**
3756 * pci_rebar_get_possible_sizes - get possible sizes for BAR
3757 * @pdev: PCI device
3758 * @bar: BAR to query
3759 *
3760 * Get the possible sizes of a resizable BAR as bitmask defined in the spec
3761 * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable.
3762 */
pci_rebar_get_possible_sizes(struct pci_dev * pdev,int bar)3763 u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar)
3764 {
3765 int pos;
3766 u32 cap;
3767
3768 pos = pci_rebar_find_pos(pdev, bar);
3769 if (pos < 0)
3770 return 0;
3771
3772 pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap);
3773 cap = FIELD_GET(PCI_REBAR_CAP_SIZES, cap);
3774
3775 /* Sapphire RX 5600 XT Pulse has an invalid cap dword for BAR 0 */
3776 if (pdev->vendor == PCI_VENDOR_ID_ATI && pdev->device == 0x731f &&
3777 bar == 0 && cap == 0x700)
3778 return 0x3f00;
3779
3780 return cap;
3781 }
3782 EXPORT_SYMBOL(pci_rebar_get_possible_sizes);
3783
3784 /**
3785 * pci_rebar_get_current_size - get the current size of a BAR
3786 * @pdev: PCI device
3787 * @bar: BAR to set size to
3788 *
3789 * Read the size of a BAR from the resizable BAR config.
3790 * Returns size if found or negative error code.
3791 */
pci_rebar_get_current_size(struct pci_dev * pdev,int bar)3792 int pci_rebar_get_current_size(struct pci_dev *pdev, int bar)
3793 {
3794 int pos;
3795 u32 ctrl;
3796
3797 pos = pci_rebar_find_pos(pdev, bar);
3798 if (pos < 0)
3799 return pos;
3800
3801 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3802 return FIELD_GET(PCI_REBAR_CTRL_BAR_SIZE, ctrl);
3803 }
3804
3805 /**
3806 * pci_rebar_set_size - set a new size for a BAR
3807 * @pdev: PCI device
3808 * @bar: BAR to set size to
3809 * @size: new size as defined in the spec (0=1MB, 19=512GB)
3810 *
3811 * Set the new size of a BAR as defined in the spec.
3812 * Returns zero if resizing was successful, error code otherwise.
3813 */
pci_rebar_set_size(struct pci_dev * pdev,int bar,int size)3814 int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size)
3815 {
3816 int pos;
3817 u32 ctrl;
3818
3819 pos = pci_rebar_find_pos(pdev, bar);
3820 if (pos < 0)
3821 return pos;
3822
3823 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3824 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
3825 ctrl |= FIELD_PREP(PCI_REBAR_CTRL_BAR_SIZE, size);
3826 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
3827 return 0;
3828 }
3829
3830 /**
3831 * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port
3832 * @dev: the PCI device
3833 * @cap_mask: mask of desired AtomicOp sizes, including one or more of:
3834 * PCI_EXP_DEVCAP2_ATOMIC_COMP32
3835 * PCI_EXP_DEVCAP2_ATOMIC_COMP64
3836 * PCI_EXP_DEVCAP2_ATOMIC_COMP128
3837 *
3838 * Return 0 if all upstream bridges support AtomicOp routing, egress
3839 * blocking is disabled on all upstream ports, and the root port supports
3840 * the requested completion capabilities (32-bit, 64-bit and/or 128-bit
3841 * AtomicOp completion), or negative otherwise.
3842 */
pci_enable_atomic_ops_to_root(struct pci_dev * dev,u32 cap_mask)3843 int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask)
3844 {
3845 struct pci_bus *bus = dev->bus;
3846 struct pci_dev *bridge;
3847 u32 cap, ctl2;
3848
3849 /*
3850 * Per PCIe r5.0, sec 9.3.5.10, the AtomicOp Requester Enable bit
3851 * in Device Control 2 is reserved in VFs and the PF value applies
3852 * to all associated VFs.
3853 */
3854 if (dev->is_virtfn)
3855 return -EINVAL;
3856
3857 if (!pci_is_pcie(dev))
3858 return -EINVAL;
3859
3860 /*
3861 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be
3862 * AtomicOp requesters. For now, we only support endpoints as
3863 * requesters and root ports as completers. No endpoints as
3864 * completers, and no peer-to-peer.
3865 */
3866
3867 switch (pci_pcie_type(dev)) {
3868 case PCI_EXP_TYPE_ENDPOINT:
3869 case PCI_EXP_TYPE_LEG_END:
3870 case PCI_EXP_TYPE_RC_END:
3871 break;
3872 default:
3873 return -EINVAL;
3874 }
3875
3876 while (bus->parent) {
3877 bridge = bus->self;
3878
3879 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3880
3881 switch (pci_pcie_type(bridge)) {
3882 /* Ensure switch ports support AtomicOp routing */
3883 case PCI_EXP_TYPE_UPSTREAM:
3884 case PCI_EXP_TYPE_DOWNSTREAM:
3885 if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE))
3886 return -EINVAL;
3887 break;
3888
3889 /* Ensure root port supports all the sizes we care about */
3890 case PCI_EXP_TYPE_ROOT_PORT:
3891 if ((cap & cap_mask) != cap_mask)
3892 return -EINVAL;
3893 break;
3894 }
3895
3896 /* Ensure upstream ports don't block AtomicOps on egress */
3897 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) {
3898 pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2,
3899 &ctl2);
3900 if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK)
3901 return -EINVAL;
3902 }
3903
3904 bus = bus->parent;
3905 }
3906
3907 pcie_capability_set_word(dev, PCI_EXP_DEVCTL2,
3908 PCI_EXP_DEVCTL2_ATOMIC_REQ);
3909 return 0;
3910 }
3911 EXPORT_SYMBOL(pci_enable_atomic_ops_to_root);
3912
3913 /**
3914 * pci_release_region - Release a PCI bar
3915 * @pdev: PCI device whose resources were previously reserved by
3916 * pci_request_region()
3917 * @bar: BAR to release
3918 *
3919 * Releases the PCI I/O and memory resources previously reserved by a
3920 * successful call to pci_request_region(). Call this function only
3921 * after all use of the PCI regions has ceased.
3922 */
pci_release_region(struct pci_dev * pdev,int bar)3923 void pci_release_region(struct pci_dev *pdev, int bar)
3924 {
3925 if (!pci_bar_index_is_valid(bar))
3926 return;
3927
3928 /*
3929 * This is done for backwards compatibility, because the old PCI devres
3930 * API had a mode in which the function became managed if it had been
3931 * enabled with pcim_enable_device() instead of pci_enable_device().
3932 */
3933 if (pci_is_managed(pdev)) {
3934 pcim_release_region(pdev, bar);
3935 return;
3936 }
3937
3938 if (pci_resource_len(pdev, bar) == 0)
3939 return;
3940 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3941 release_region(pci_resource_start(pdev, bar),
3942 pci_resource_len(pdev, bar));
3943 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3944 release_mem_region(pci_resource_start(pdev, bar),
3945 pci_resource_len(pdev, bar));
3946 }
3947 EXPORT_SYMBOL(pci_release_region);
3948
3949 /**
3950 * __pci_request_region - Reserved PCI I/O and memory resource
3951 * @pdev: PCI device whose resources are to be reserved
3952 * @bar: BAR to be reserved
3953 * @res_name: Name to be associated with resource.
3954 * @exclusive: whether the region access is exclusive or not
3955 *
3956 * Returns: 0 on success, negative error code on failure.
3957 *
3958 * Mark the PCI region associated with PCI device @pdev BAR @bar as
3959 * being reserved by owner @res_name. Do not access any
3960 * address inside the PCI regions unless this call returns
3961 * successfully.
3962 *
3963 * If @exclusive is set, then the region is marked so that userspace
3964 * is explicitly not allowed to map the resource via /dev/mem or
3965 * sysfs MMIO access.
3966 *
3967 * Returns 0 on success, or %EBUSY on error. A warning
3968 * message is also printed on failure.
3969 */
__pci_request_region(struct pci_dev * pdev,int bar,const char * res_name,int exclusive)3970 static int __pci_request_region(struct pci_dev *pdev, int bar,
3971 const char *res_name, int exclusive)
3972 {
3973 if (!pci_bar_index_is_valid(bar))
3974 return -EINVAL;
3975
3976 if (pci_is_managed(pdev)) {
3977 if (exclusive == IORESOURCE_EXCLUSIVE)
3978 return pcim_request_region_exclusive(pdev, bar, res_name);
3979
3980 return pcim_request_region(pdev, bar, res_name);
3981 }
3982
3983 if (pci_resource_len(pdev, bar) == 0)
3984 return 0;
3985
3986 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
3987 if (!request_region(pci_resource_start(pdev, bar),
3988 pci_resource_len(pdev, bar), res_name))
3989 goto err_out;
3990 } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
3991 if (!__request_mem_region(pci_resource_start(pdev, bar),
3992 pci_resource_len(pdev, bar), res_name,
3993 exclusive))
3994 goto err_out;
3995 }
3996
3997 return 0;
3998
3999 err_out:
4000 pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar,
4001 &pdev->resource[bar]);
4002 return -EBUSY;
4003 }
4004
4005 /**
4006 * pci_request_region - Reserve PCI I/O and memory resource
4007 * @pdev: PCI device whose resources are to be reserved
4008 * @bar: BAR to be reserved
4009 * @res_name: Name to be associated with resource
4010 *
4011 * Returns: 0 on success, negative error code on failure.
4012 *
4013 * Mark the PCI region associated with PCI device @pdev BAR @bar as
4014 * being reserved by owner @res_name. Do not access any
4015 * address inside the PCI regions unless this call returns
4016 * successfully.
4017 *
4018 * Returns 0 on success, or %EBUSY on error. A warning
4019 * message is also printed on failure.
4020 *
4021 * NOTE:
4022 * This is a "hybrid" function: It's normally unmanaged, but becomes managed
4023 * when pcim_enable_device() has been called in advance. This hybrid feature is
4024 * DEPRECATED! If you want managed cleanup, use the pcim_* functions instead.
4025 */
pci_request_region(struct pci_dev * pdev,int bar,const char * res_name)4026 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
4027 {
4028 return __pci_request_region(pdev, bar, res_name, 0);
4029 }
4030 EXPORT_SYMBOL(pci_request_region);
4031
4032 /**
4033 * pci_release_selected_regions - Release selected PCI I/O and memory resources
4034 * @pdev: PCI device whose resources were previously reserved
4035 * @bars: Bitmask of BARs to be released
4036 *
4037 * Release selected PCI I/O and memory resources previously reserved.
4038 * Call this function only after all use of the PCI regions has ceased.
4039 */
pci_release_selected_regions(struct pci_dev * pdev,int bars)4040 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
4041 {
4042 int i;
4043
4044 for (i = 0; i < PCI_STD_NUM_BARS; i++)
4045 if (bars & (1 << i))
4046 pci_release_region(pdev, i);
4047 }
4048 EXPORT_SYMBOL(pci_release_selected_regions);
4049
__pci_request_selected_regions(struct pci_dev * pdev,int bars,const char * res_name,int excl)4050 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
4051 const char *res_name, int excl)
4052 {
4053 int i;
4054
4055 for (i = 0; i < PCI_STD_NUM_BARS; i++)
4056 if (bars & (1 << i))
4057 if (__pci_request_region(pdev, i, res_name, excl))
4058 goto err_out;
4059 return 0;
4060
4061 err_out:
4062 while (--i >= 0)
4063 if (bars & (1 << i))
4064 pci_release_region(pdev, i);
4065
4066 return -EBUSY;
4067 }
4068
4069
4070 /**
4071 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
4072 * @pdev: PCI device whose resources are to be reserved
4073 * @bars: Bitmask of BARs to be requested
4074 * @res_name: Name to be associated with resource
4075 *
4076 * Returns: 0 on success, negative error code on failure.
4077 *
4078 * NOTE:
4079 * This is a "hybrid" function: It's normally unmanaged, but becomes managed
4080 * when pcim_enable_device() has been called in advance. This hybrid feature is
4081 * DEPRECATED! If you want managed cleanup, use the pcim_* functions instead.
4082 */
pci_request_selected_regions(struct pci_dev * pdev,int bars,const char * res_name)4083 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
4084 const char *res_name)
4085 {
4086 return __pci_request_selected_regions(pdev, bars, res_name, 0);
4087 }
4088 EXPORT_SYMBOL(pci_request_selected_regions);
4089
4090 /**
4091 * pci_request_selected_regions_exclusive - Request regions exclusively
4092 * @pdev: PCI device to request regions from
4093 * @bars: bit mask of BARs to request
4094 * @res_name: name to be associated with the requests
4095 *
4096 * Returns: 0 on success, negative error code on failure.
4097 *
4098 * NOTE:
4099 * This is a "hybrid" function: It's normally unmanaged, but becomes managed
4100 * when pcim_enable_device() has been called in advance. This hybrid feature is
4101 * DEPRECATED! If you want managed cleanup, use the pcim_* functions instead.
4102 */
pci_request_selected_regions_exclusive(struct pci_dev * pdev,int bars,const char * res_name)4103 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
4104 const char *res_name)
4105 {
4106 return __pci_request_selected_regions(pdev, bars, res_name,
4107 IORESOURCE_EXCLUSIVE);
4108 }
4109 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
4110
4111 /**
4112 * pci_release_regions - Release reserved PCI I/O and memory resources
4113 * @pdev: PCI device whose resources were previously reserved by
4114 * pci_request_regions()
4115 *
4116 * Releases all PCI I/O and memory resources previously reserved by a
4117 * successful call to pci_request_regions(). Call this function only
4118 * after all use of the PCI regions has ceased.
4119 */
pci_release_regions(struct pci_dev * pdev)4120 void pci_release_regions(struct pci_dev *pdev)
4121 {
4122 pci_release_selected_regions(pdev, (1 << PCI_STD_NUM_BARS) - 1);
4123 }
4124 EXPORT_SYMBOL(pci_release_regions);
4125
4126 /**
4127 * pci_request_regions - Reserve PCI I/O and memory resources
4128 * @pdev: PCI device whose resources are to be reserved
4129 * @res_name: Name to be associated with resource.
4130 *
4131 * Mark all PCI regions associated with PCI device @pdev as
4132 * being reserved by owner @res_name. Do not access any
4133 * address inside the PCI regions unless this call returns
4134 * successfully.
4135 *
4136 * Returns 0 on success, or %EBUSY on error. A warning
4137 * message is also printed on failure.
4138 *
4139 * NOTE:
4140 * This is a "hybrid" function: It's normally unmanaged, but becomes managed
4141 * when pcim_enable_device() has been called in advance. This hybrid feature is
4142 * DEPRECATED! If you want managed cleanup, use the pcim_* functions instead.
4143 */
pci_request_regions(struct pci_dev * pdev,const char * res_name)4144 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
4145 {
4146 return pci_request_selected_regions(pdev,
4147 ((1 << PCI_STD_NUM_BARS) - 1), res_name);
4148 }
4149 EXPORT_SYMBOL(pci_request_regions);
4150
4151 /**
4152 * pci_request_regions_exclusive - Reserve PCI I/O and memory resources
4153 * @pdev: PCI device whose resources are to be reserved
4154 * @res_name: Name to be associated with resource.
4155 *
4156 * Returns: 0 on success, negative error code on failure.
4157 *
4158 * Mark all PCI regions associated with PCI device @pdev as being reserved
4159 * by owner @res_name. Do not access any address inside the PCI regions
4160 * unless this call returns successfully.
4161 *
4162 * pci_request_regions_exclusive() will mark the region so that /dev/mem
4163 * and the sysfs MMIO access will not be allowed.
4164 *
4165 * Returns 0 on success, or %EBUSY on error. A warning message is also
4166 * printed on failure.
4167 *
4168 * NOTE:
4169 * This is a "hybrid" function: It's normally unmanaged, but becomes managed
4170 * when pcim_enable_device() has been called in advance. This hybrid feature is
4171 * DEPRECATED! If you want managed cleanup, use the pcim_* functions instead.
4172 */
pci_request_regions_exclusive(struct pci_dev * pdev,const char * res_name)4173 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
4174 {
4175 return pci_request_selected_regions_exclusive(pdev,
4176 ((1 << PCI_STD_NUM_BARS) - 1), res_name);
4177 }
4178 EXPORT_SYMBOL(pci_request_regions_exclusive);
4179
4180 /*
4181 * Record the PCI IO range (expressed as CPU physical address + size).
4182 * Return a negative value if an error has occurred, zero otherwise
4183 */
pci_register_io_range(struct fwnode_handle * fwnode,phys_addr_t addr,resource_size_t size)4184 int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr,
4185 resource_size_t size)
4186 {
4187 int ret = 0;
4188 #ifdef PCI_IOBASE
4189 struct logic_pio_hwaddr *range;
4190
4191 if (!size || addr + size < addr)
4192 return -EINVAL;
4193
4194 range = kzalloc(sizeof(*range), GFP_ATOMIC);
4195 if (!range)
4196 return -ENOMEM;
4197
4198 range->fwnode = fwnode;
4199 range->size = size;
4200 range->hw_start = addr;
4201 range->flags = LOGIC_PIO_CPU_MMIO;
4202
4203 ret = logic_pio_register_range(range);
4204 if (ret)
4205 kfree(range);
4206
4207 /* Ignore duplicates due to deferred probing */
4208 if (ret == -EEXIST)
4209 ret = 0;
4210 #endif
4211
4212 return ret;
4213 }
4214
pci_pio_to_address(unsigned long pio)4215 phys_addr_t pci_pio_to_address(unsigned long pio)
4216 {
4217 #ifdef PCI_IOBASE
4218 if (pio < MMIO_UPPER_LIMIT)
4219 return logic_pio_to_hwaddr(pio);
4220 #endif
4221
4222 return (phys_addr_t) OF_BAD_ADDR;
4223 }
4224 EXPORT_SYMBOL_GPL(pci_pio_to_address);
4225
pci_address_to_pio(phys_addr_t address)4226 unsigned long __weak pci_address_to_pio(phys_addr_t address)
4227 {
4228 #ifdef PCI_IOBASE
4229 return logic_pio_trans_cpuaddr(address);
4230 #else
4231 if (address > IO_SPACE_LIMIT)
4232 return (unsigned long)-1;
4233
4234 return (unsigned long) address;
4235 #endif
4236 }
4237
4238 /**
4239 * pci_remap_iospace - Remap the memory mapped I/O space
4240 * @res: Resource describing the I/O space
4241 * @phys_addr: physical address of range to be mapped
4242 *
4243 * Remap the memory mapped I/O space described by the @res and the CPU
4244 * physical address @phys_addr into virtual address space. Only
4245 * architectures that have memory mapped IO functions defined (and the
4246 * PCI_IOBASE value defined) should call this function.
4247 */
4248 #ifndef pci_remap_iospace
pci_remap_iospace(const struct resource * res,phys_addr_t phys_addr)4249 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
4250 {
4251 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4252 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4253
4254 if (!(res->flags & IORESOURCE_IO))
4255 return -EINVAL;
4256
4257 if (res->end > IO_SPACE_LIMIT)
4258 return -EINVAL;
4259
4260 return vmap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
4261 pgprot_device(PAGE_KERNEL));
4262 #else
4263 /*
4264 * This architecture does not have memory mapped I/O space,
4265 * so this function should never be called
4266 */
4267 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
4268 return -ENODEV;
4269 #endif
4270 }
4271 EXPORT_SYMBOL(pci_remap_iospace);
4272 #endif
4273
4274 /**
4275 * pci_unmap_iospace - Unmap the memory mapped I/O space
4276 * @res: resource to be unmapped
4277 *
4278 * Unmap the CPU virtual address @res from virtual address space. Only
4279 * architectures that have memory mapped IO functions defined (and the
4280 * PCI_IOBASE value defined) should call this function.
4281 */
pci_unmap_iospace(struct resource * res)4282 void pci_unmap_iospace(struct resource *res)
4283 {
4284 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4285 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4286
4287 vunmap_range(vaddr, vaddr + resource_size(res));
4288 #endif
4289 }
4290 EXPORT_SYMBOL(pci_unmap_iospace);
4291
__pci_set_master(struct pci_dev * dev,bool enable)4292 static void __pci_set_master(struct pci_dev *dev, bool enable)
4293 {
4294 u16 old_cmd, cmd;
4295
4296 pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
4297 if (enable)
4298 cmd = old_cmd | PCI_COMMAND_MASTER;
4299 else
4300 cmd = old_cmd & ~PCI_COMMAND_MASTER;
4301 if (cmd != old_cmd) {
4302 pci_dbg(dev, "%s bus mastering\n",
4303 enable ? "enabling" : "disabling");
4304 pci_write_config_word(dev, PCI_COMMAND, cmd);
4305 }
4306 dev->is_busmaster = enable;
4307 }
4308
4309 /**
4310 * pcibios_setup - process "pci=" kernel boot arguments
4311 * @str: string used to pass in "pci=" kernel boot arguments
4312 *
4313 * Process kernel boot arguments. This is the default implementation.
4314 * Architecture specific implementations can override this as necessary.
4315 */
pcibios_setup(char * str)4316 char * __weak __init pcibios_setup(char *str)
4317 {
4318 return str;
4319 }
4320
4321 /**
4322 * pcibios_set_master - enable PCI bus-mastering for device dev
4323 * @dev: the PCI device to enable
4324 *
4325 * Enables PCI bus-mastering for the device. This is the default
4326 * implementation. Architecture specific implementations can override
4327 * this if necessary.
4328 */
pcibios_set_master(struct pci_dev * dev)4329 void __weak pcibios_set_master(struct pci_dev *dev)
4330 {
4331 u8 lat;
4332
4333 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
4334 if (pci_is_pcie(dev))
4335 return;
4336
4337 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
4338 if (lat < 16)
4339 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
4340 else if (lat > pcibios_max_latency)
4341 lat = pcibios_max_latency;
4342 else
4343 return;
4344
4345 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
4346 }
4347
4348 /**
4349 * pci_set_master - enables bus-mastering for device dev
4350 * @dev: the PCI device to enable
4351 *
4352 * Enables bus-mastering on the device and calls pcibios_set_master()
4353 * to do the needed arch specific settings.
4354 */
pci_set_master(struct pci_dev * dev)4355 void pci_set_master(struct pci_dev *dev)
4356 {
4357 __pci_set_master(dev, true);
4358 pcibios_set_master(dev);
4359 }
4360 EXPORT_SYMBOL(pci_set_master);
4361
4362 /**
4363 * pci_clear_master - disables bus-mastering for device dev
4364 * @dev: the PCI device to disable
4365 */
pci_clear_master(struct pci_dev * dev)4366 void pci_clear_master(struct pci_dev *dev)
4367 {
4368 __pci_set_master(dev, false);
4369 }
4370 EXPORT_SYMBOL(pci_clear_master);
4371
4372 /**
4373 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
4374 * @dev: the PCI device for which MWI is to be enabled
4375 *
4376 * Helper function for pci_set_mwi.
4377 * Originally copied from drivers/net/acenic.c.
4378 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
4379 *
4380 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4381 */
pci_set_cacheline_size(struct pci_dev * dev)4382 int pci_set_cacheline_size(struct pci_dev *dev)
4383 {
4384 u8 cacheline_size;
4385
4386 if (!pci_cache_line_size)
4387 return -EINVAL;
4388
4389 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
4390 equal to or multiple of the right value. */
4391 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4392 if (cacheline_size >= pci_cache_line_size &&
4393 (cacheline_size % pci_cache_line_size) == 0)
4394 return 0;
4395
4396 /* Write the correct value. */
4397 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
4398 /* Read it back. */
4399 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4400 if (cacheline_size == pci_cache_line_size)
4401 return 0;
4402
4403 pci_dbg(dev, "cache line size of %d is not supported\n",
4404 pci_cache_line_size << 2);
4405
4406 return -EINVAL;
4407 }
4408 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
4409
4410 /**
4411 * pci_set_mwi - enables memory-write-invalidate PCI transaction
4412 * @dev: the PCI device for which MWI is enabled
4413 *
4414 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4415 *
4416 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4417 */
pci_set_mwi(struct pci_dev * dev)4418 int pci_set_mwi(struct pci_dev *dev)
4419 {
4420 #ifdef PCI_DISABLE_MWI
4421 return 0;
4422 #else
4423 int rc;
4424 u16 cmd;
4425
4426 rc = pci_set_cacheline_size(dev);
4427 if (rc)
4428 return rc;
4429
4430 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4431 if (!(cmd & PCI_COMMAND_INVALIDATE)) {
4432 pci_dbg(dev, "enabling Mem-Wr-Inval\n");
4433 cmd |= PCI_COMMAND_INVALIDATE;
4434 pci_write_config_word(dev, PCI_COMMAND, cmd);
4435 }
4436 return 0;
4437 #endif
4438 }
4439 EXPORT_SYMBOL(pci_set_mwi);
4440
4441 /**
4442 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
4443 * @dev: the PCI device for which MWI is enabled
4444 *
4445 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4446 * Callers are not required to check the return value.
4447 *
4448 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4449 */
pci_try_set_mwi(struct pci_dev * dev)4450 int pci_try_set_mwi(struct pci_dev *dev)
4451 {
4452 #ifdef PCI_DISABLE_MWI
4453 return 0;
4454 #else
4455 return pci_set_mwi(dev);
4456 #endif
4457 }
4458 EXPORT_SYMBOL(pci_try_set_mwi);
4459
4460 /**
4461 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
4462 * @dev: the PCI device to disable
4463 *
4464 * Disables PCI Memory-Write-Invalidate transaction on the device
4465 */
pci_clear_mwi(struct pci_dev * dev)4466 void pci_clear_mwi(struct pci_dev *dev)
4467 {
4468 #ifndef PCI_DISABLE_MWI
4469 u16 cmd;
4470
4471 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4472 if (cmd & PCI_COMMAND_INVALIDATE) {
4473 cmd &= ~PCI_COMMAND_INVALIDATE;
4474 pci_write_config_word(dev, PCI_COMMAND, cmd);
4475 }
4476 #endif
4477 }
4478 EXPORT_SYMBOL(pci_clear_mwi);
4479
4480 /**
4481 * pci_disable_parity - disable parity checking for device
4482 * @dev: the PCI device to operate on
4483 *
4484 * Disable parity checking for device @dev
4485 */
pci_disable_parity(struct pci_dev * dev)4486 void pci_disable_parity(struct pci_dev *dev)
4487 {
4488 u16 cmd;
4489
4490 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4491 if (cmd & PCI_COMMAND_PARITY) {
4492 cmd &= ~PCI_COMMAND_PARITY;
4493 pci_write_config_word(dev, PCI_COMMAND, cmd);
4494 }
4495 }
4496
4497 /**
4498 * pci_intx - enables/disables PCI INTx for device dev
4499 * @pdev: the PCI device to operate on
4500 * @enable: boolean: whether to enable or disable PCI INTx
4501 *
4502 * Enables/disables PCI INTx for device @pdev
4503 */
pci_intx(struct pci_dev * pdev,int enable)4504 void pci_intx(struct pci_dev *pdev, int enable)
4505 {
4506 u16 pci_command, new;
4507
4508 pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
4509
4510 if (enable)
4511 new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
4512 else
4513 new = pci_command | PCI_COMMAND_INTX_DISABLE;
4514
4515 if (new == pci_command)
4516 return;
4517
4518 pci_write_config_word(pdev, PCI_COMMAND, new);
4519 }
4520 EXPORT_SYMBOL_GPL(pci_intx);
4521
4522 /**
4523 * pci_wait_for_pending_transaction - wait for pending transaction
4524 * @dev: the PCI device to operate on
4525 *
4526 * Return 0 if transaction is pending 1 otherwise.
4527 */
pci_wait_for_pending_transaction(struct pci_dev * dev)4528 int pci_wait_for_pending_transaction(struct pci_dev *dev)
4529 {
4530 if (!pci_is_pcie(dev))
4531 return 1;
4532
4533 return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
4534 PCI_EXP_DEVSTA_TRPND);
4535 }
4536 EXPORT_SYMBOL(pci_wait_for_pending_transaction);
4537
4538 /**
4539 * pcie_flr - initiate a PCIe function level reset
4540 * @dev: device to reset
4541 *
4542 * Initiate a function level reset unconditionally on @dev without
4543 * checking any flags and DEVCAP
4544 */
pcie_flr(struct pci_dev * dev)4545 int pcie_flr(struct pci_dev *dev)
4546 {
4547 if (!pci_wait_for_pending_transaction(dev))
4548 pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
4549
4550 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
4551
4552 if (dev->imm_ready)
4553 return 0;
4554
4555 /*
4556 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within
4557 * 100ms, but may silently discard requests while the FLR is in
4558 * progress. Wait 100ms before trying to access the device.
4559 */
4560 msleep(100);
4561
4562 return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS);
4563 }
4564 EXPORT_SYMBOL_GPL(pcie_flr);
4565
4566 /**
4567 * pcie_reset_flr - initiate a PCIe function level reset
4568 * @dev: device to reset
4569 * @probe: if true, return 0 if device can be reset this way
4570 *
4571 * Initiate a function level reset on @dev.
4572 */
pcie_reset_flr(struct pci_dev * dev,bool probe)4573 int pcie_reset_flr(struct pci_dev *dev, bool probe)
4574 {
4575 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4576 return -ENOTTY;
4577
4578 if (!(dev->devcap & PCI_EXP_DEVCAP_FLR))
4579 return -ENOTTY;
4580
4581 if (probe)
4582 return 0;
4583
4584 return pcie_flr(dev);
4585 }
4586 EXPORT_SYMBOL_GPL(pcie_reset_flr);
4587
pci_af_flr(struct pci_dev * dev,bool probe)4588 static int pci_af_flr(struct pci_dev *dev, bool probe)
4589 {
4590 int pos;
4591 u8 cap;
4592
4593 pos = pci_find_capability(dev, PCI_CAP_ID_AF);
4594 if (!pos)
4595 return -ENOTTY;
4596
4597 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4598 return -ENOTTY;
4599
4600 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
4601 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
4602 return -ENOTTY;
4603
4604 if (probe)
4605 return 0;
4606
4607 /*
4608 * Wait for Transaction Pending bit to clear. A word-aligned test
4609 * is used, so we use the control offset rather than status and shift
4610 * the test bit to match.
4611 */
4612 if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
4613 PCI_AF_STATUS_TP << 8))
4614 pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
4615
4616 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
4617
4618 if (dev->imm_ready)
4619 return 0;
4620
4621 /*
4622 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006,
4623 * updated 27 July 2006; a device must complete an FLR within
4624 * 100ms, but may silently discard requests while the FLR is in
4625 * progress. Wait 100ms before trying to access the device.
4626 */
4627 msleep(100);
4628
4629 return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS);
4630 }
4631
4632 /**
4633 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
4634 * @dev: Device to reset.
4635 * @probe: if true, return 0 if the device can be reset this way.
4636 *
4637 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
4638 * unset, it will be reinitialized internally when going from PCI_D3hot to
4639 * PCI_D0. If that's the case and the device is not in a low-power state
4640 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
4641 *
4642 * NOTE: This causes the caller to sleep for twice the device power transition
4643 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
4644 * by default (i.e. unless the @dev's d3hot_delay field has a different value).
4645 * Moreover, only devices in D0 can be reset by this function.
4646 */
pci_pm_reset(struct pci_dev * dev,bool probe)4647 static int pci_pm_reset(struct pci_dev *dev, bool probe)
4648 {
4649 u16 csr;
4650
4651 if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
4652 return -ENOTTY;
4653
4654 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
4655 if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
4656 return -ENOTTY;
4657
4658 if (probe)
4659 return 0;
4660
4661 if (dev->current_state != PCI_D0)
4662 return -EINVAL;
4663
4664 csr &= ~PCI_PM_CTRL_STATE_MASK;
4665 csr |= PCI_D3hot;
4666 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4667 pci_dev_d3_sleep(dev);
4668
4669 csr &= ~PCI_PM_CTRL_STATE_MASK;
4670 csr |= PCI_D0;
4671 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4672 pci_dev_d3_sleep(dev);
4673
4674 return pci_dev_wait(dev, "PM D3hot->D0", PCIE_RESET_READY_POLL_MS);
4675 }
4676
4677 /**
4678 * pcie_wait_for_link_status - Wait for link status change
4679 * @pdev: Device whose link to wait for.
4680 * @use_lt: Use the LT bit if TRUE, or the DLLLA bit if FALSE.
4681 * @active: Waiting for active or inactive?
4682 *
4683 * Return 0 if successful, or -ETIMEDOUT if status has not changed within
4684 * PCIE_LINK_RETRAIN_TIMEOUT_MS milliseconds.
4685 */
pcie_wait_for_link_status(struct pci_dev * pdev,bool use_lt,bool active)4686 static int pcie_wait_for_link_status(struct pci_dev *pdev,
4687 bool use_lt, bool active)
4688 {
4689 u16 lnksta_mask, lnksta_match;
4690 unsigned long end_jiffies;
4691 u16 lnksta;
4692
4693 lnksta_mask = use_lt ? PCI_EXP_LNKSTA_LT : PCI_EXP_LNKSTA_DLLLA;
4694 lnksta_match = active ? lnksta_mask : 0;
4695
4696 end_jiffies = jiffies + msecs_to_jiffies(PCIE_LINK_RETRAIN_TIMEOUT_MS);
4697 do {
4698 pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnksta);
4699 if ((lnksta & lnksta_mask) == lnksta_match)
4700 return 0;
4701 msleep(1);
4702 } while (time_before(jiffies, end_jiffies));
4703
4704 return -ETIMEDOUT;
4705 }
4706
4707 /**
4708 * pcie_retrain_link - Request a link retrain and wait for it to complete
4709 * @pdev: Device whose link to retrain.
4710 * @use_lt: Use the LT bit if TRUE, or the DLLLA bit if FALSE, for status.
4711 *
4712 * Retrain completion status is retrieved from the Link Status Register
4713 * according to @use_lt. It is not verified whether the use of the DLLLA
4714 * bit is valid.
4715 *
4716 * Return 0 if successful, or -ETIMEDOUT if training has not completed
4717 * within PCIE_LINK_RETRAIN_TIMEOUT_MS milliseconds.
4718 */
pcie_retrain_link(struct pci_dev * pdev,bool use_lt)4719 int pcie_retrain_link(struct pci_dev *pdev, bool use_lt)
4720 {
4721 int rc;
4722
4723 /*
4724 * Ensure the updated LNKCTL parameters are used during link
4725 * training by checking that there is no ongoing link training that
4726 * may have started before link parameters were changed, so as to
4727 * avoid LTSSM race as recommended in Implementation Note at the end
4728 * of PCIe r6.1 sec 7.5.3.7.
4729 */
4730 rc = pcie_wait_for_link_status(pdev, true, false);
4731 if (rc)
4732 return rc;
4733
4734 pcie_capability_set_word(pdev, PCI_EXP_LNKCTL, PCI_EXP_LNKCTL_RL);
4735 if (pdev->clear_retrain_link) {
4736 /*
4737 * Due to an erratum in some devices the Retrain Link bit
4738 * needs to be cleared again manually to allow the link
4739 * training to succeed.
4740 */
4741 pcie_capability_clear_word(pdev, PCI_EXP_LNKCTL, PCI_EXP_LNKCTL_RL);
4742 }
4743
4744 rc = pcie_wait_for_link_status(pdev, use_lt, !use_lt);
4745
4746 /*
4747 * Clear LBMS after a manual retrain so that the bit can be used
4748 * to track link speed or width changes made by hardware itself
4749 * in attempt to correct unreliable link operation.
4750 */
4751 pcie_capability_write_word(pdev, PCI_EXP_LNKSTA, PCI_EXP_LNKSTA_LBMS);
4752 return rc;
4753 }
4754
4755 /**
4756 * pcie_wait_for_link_delay - Wait until link is active or inactive
4757 * @pdev: Bridge device
4758 * @active: waiting for active or inactive?
4759 * @delay: Delay to wait after link has become active (in ms)
4760 *
4761 * Use this to wait till link becomes active or inactive.
4762 */
pcie_wait_for_link_delay(struct pci_dev * pdev,bool active,int delay)4763 static bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active,
4764 int delay)
4765 {
4766 int rc;
4767
4768 /*
4769 * Some controllers might not implement link active reporting. In this
4770 * case, we wait for 1000 ms + any delay requested by the caller.
4771 */
4772 if (!pdev->link_active_reporting) {
4773 msleep(PCIE_LINK_RETRAIN_TIMEOUT_MS + delay);
4774 return true;
4775 }
4776
4777 /*
4778 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms,
4779 * after which we should expect the link to be active if the reset was
4780 * successful. If so, software must wait a minimum 100ms before sending
4781 * configuration requests to devices downstream this port.
4782 *
4783 * If the link fails to activate, either the device was physically
4784 * removed or the link is permanently failed.
4785 */
4786 if (active)
4787 msleep(20);
4788 rc = pcie_wait_for_link_status(pdev, false, active);
4789 if (active) {
4790 if (rc)
4791 rc = pcie_failed_link_retrain(pdev);
4792 if (rc)
4793 return false;
4794
4795 msleep(delay);
4796 return true;
4797 }
4798
4799 if (rc)
4800 return false;
4801
4802 return true;
4803 }
4804
4805 /**
4806 * pcie_wait_for_link - Wait until link is active or inactive
4807 * @pdev: Bridge device
4808 * @active: waiting for active or inactive?
4809 *
4810 * Use this to wait till link becomes active or inactive.
4811 */
pcie_wait_for_link(struct pci_dev * pdev,bool active)4812 bool pcie_wait_for_link(struct pci_dev *pdev, bool active)
4813 {
4814 return pcie_wait_for_link_delay(pdev, active, 100);
4815 }
4816
4817 /*
4818 * Find maximum D3cold delay required by all the devices on the bus. The
4819 * spec says 100 ms, but firmware can lower it and we allow drivers to
4820 * increase it as well.
4821 *
4822 * Called with @pci_bus_sem locked for reading.
4823 */
pci_bus_max_d3cold_delay(const struct pci_bus * bus)4824 static int pci_bus_max_d3cold_delay(const struct pci_bus *bus)
4825 {
4826 const struct pci_dev *pdev;
4827 int min_delay = 100;
4828 int max_delay = 0;
4829
4830 list_for_each_entry(pdev, &bus->devices, bus_list) {
4831 if (pdev->d3cold_delay < min_delay)
4832 min_delay = pdev->d3cold_delay;
4833 if (pdev->d3cold_delay > max_delay)
4834 max_delay = pdev->d3cold_delay;
4835 }
4836
4837 return max(min_delay, max_delay);
4838 }
4839
4840 /**
4841 * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible
4842 * @dev: PCI bridge
4843 * @reset_type: reset type in human-readable form
4844 *
4845 * Handle necessary delays before access to the devices on the secondary
4846 * side of the bridge are permitted after D3cold to D0 transition
4847 * or Conventional Reset.
4848 *
4849 * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For
4850 * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section
4851 * 4.3.2.
4852 *
4853 * Return 0 on success or -ENOTTY if the first device on the secondary bus
4854 * failed to become accessible.
4855 */
pci_bridge_wait_for_secondary_bus(struct pci_dev * dev,char * reset_type)4856 int pci_bridge_wait_for_secondary_bus(struct pci_dev *dev, char *reset_type)
4857 {
4858 struct pci_dev *child __free(pci_dev_put) = NULL;
4859 int delay;
4860
4861 if (pci_dev_is_disconnected(dev))
4862 return 0;
4863
4864 if (!pci_is_bridge(dev))
4865 return 0;
4866
4867 down_read(&pci_bus_sem);
4868
4869 /*
4870 * We only deal with devices that are present currently on the bus.
4871 * For any hot-added devices the access delay is handled in pciehp
4872 * board_added(). In case of ACPI hotplug the firmware is expected
4873 * to configure the devices before OS is notified.
4874 */
4875 if (!dev->subordinate || list_empty(&dev->subordinate->devices)) {
4876 up_read(&pci_bus_sem);
4877 return 0;
4878 }
4879
4880 /* Take d3cold_delay requirements into account */
4881 delay = pci_bus_max_d3cold_delay(dev->subordinate);
4882 if (!delay) {
4883 up_read(&pci_bus_sem);
4884 return 0;
4885 }
4886
4887 child = pci_dev_get(list_first_entry(&dev->subordinate->devices,
4888 struct pci_dev, bus_list));
4889 up_read(&pci_bus_sem);
4890
4891 /*
4892 * Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before
4893 * accessing the device after reset (that is 1000 ms + 100 ms).
4894 */
4895 if (!pci_is_pcie(dev)) {
4896 pci_dbg(dev, "waiting %d ms for secondary bus\n", 1000 + delay);
4897 msleep(1000 + delay);
4898 return 0;
4899 }
4900
4901 /*
4902 * For PCIe downstream and root ports that do not support speeds
4903 * greater than 5 GT/s need to wait minimum 100 ms. For higher
4904 * speeds (gen3) we need to wait first for the data link layer to
4905 * become active.
4906 *
4907 * However, 100 ms is the minimum and the PCIe spec says the
4908 * software must allow at least 1s before it can determine that the
4909 * device that did not respond is a broken device. Also device can
4910 * take longer than that to respond if it indicates so through Request
4911 * Retry Status completions.
4912 *
4913 * Therefore we wait for 100 ms and check for the device presence
4914 * until the timeout expires.
4915 */
4916 if (!pcie_downstream_port(dev))
4917 return 0;
4918
4919 if (pcie_get_speed_cap(dev) <= PCIE_SPEED_5_0GT) {
4920 u16 status;
4921
4922 pci_dbg(dev, "waiting %d ms for downstream link\n", delay);
4923 msleep(delay);
4924
4925 if (!pci_dev_wait(child, reset_type, PCI_RESET_WAIT - delay))
4926 return 0;
4927
4928 /*
4929 * If the port supports active link reporting we now check
4930 * whether the link is active and if not bail out early with
4931 * the assumption that the device is not present anymore.
4932 */
4933 if (!dev->link_active_reporting)
4934 return -ENOTTY;
4935
4936 pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &status);
4937 if (!(status & PCI_EXP_LNKSTA_DLLLA))
4938 return -ENOTTY;
4939
4940 return pci_dev_wait(child, reset_type,
4941 PCIE_RESET_READY_POLL_MS - PCI_RESET_WAIT);
4942 }
4943
4944 pci_dbg(dev, "waiting %d ms for downstream link, after activation\n",
4945 delay);
4946 if (!pcie_wait_for_link_delay(dev, true, delay)) {
4947 /* Did not train, no need to wait any further */
4948 pci_info(dev, "Data Link Layer Link Active not set in %d msec\n", delay);
4949 return -ENOTTY;
4950 }
4951
4952 return pci_dev_wait(child, reset_type,
4953 PCIE_RESET_READY_POLL_MS - delay);
4954 }
4955
pci_reset_secondary_bus(struct pci_dev * dev)4956 void pci_reset_secondary_bus(struct pci_dev *dev)
4957 {
4958 u16 ctrl;
4959
4960 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
4961 ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
4962 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4963
4964 /*
4965 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double
4966 * this to 2ms to ensure that we meet the minimum requirement.
4967 */
4968 msleep(2);
4969
4970 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
4971 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4972 }
4973
pcibios_reset_secondary_bus(struct pci_dev * dev)4974 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
4975 {
4976 pci_reset_secondary_bus(dev);
4977 }
4978
4979 /**
4980 * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge.
4981 * @dev: Bridge device
4982 *
4983 * Use the bridge control register to assert reset on the secondary bus.
4984 * Devices on the secondary bus are left in power-on state.
4985 */
pci_bridge_secondary_bus_reset(struct pci_dev * dev)4986 int pci_bridge_secondary_bus_reset(struct pci_dev *dev)
4987 {
4988 if (!dev->block_cfg_access)
4989 pci_warn_once(dev, "unlocked secondary bus reset via: %pS\n",
4990 __builtin_return_address(0));
4991 pcibios_reset_secondary_bus(dev);
4992
4993 return pci_bridge_wait_for_secondary_bus(dev, "bus reset");
4994 }
4995 EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset);
4996
pci_parent_bus_reset(struct pci_dev * dev,bool probe)4997 static int pci_parent_bus_reset(struct pci_dev *dev, bool probe)
4998 {
4999 struct pci_dev *pdev;
5000
5001 if (pci_is_root_bus(dev->bus) || dev->subordinate ||
5002 !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
5003 return -ENOTTY;
5004
5005 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
5006 if (pdev != dev)
5007 return -ENOTTY;
5008
5009 if (probe)
5010 return 0;
5011
5012 return pci_bridge_secondary_bus_reset(dev->bus->self);
5013 }
5014
pci_reset_hotplug_slot(struct hotplug_slot * hotplug,bool probe)5015 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, bool probe)
5016 {
5017 int rc = -ENOTTY;
5018
5019 if (!hotplug || !try_module_get(hotplug->owner))
5020 return rc;
5021
5022 if (hotplug->ops->reset_slot)
5023 rc = hotplug->ops->reset_slot(hotplug, probe);
5024
5025 module_put(hotplug->owner);
5026
5027 return rc;
5028 }
5029
pci_dev_reset_slot_function(struct pci_dev * dev,bool probe)5030 static int pci_dev_reset_slot_function(struct pci_dev *dev, bool probe)
5031 {
5032 if (dev->multifunction || dev->subordinate || !dev->slot ||
5033 dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
5034 return -ENOTTY;
5035
5036 return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
5037 }
5038
cxl_port_dvsec(struct pci_dev * dev)5039 static u16 cxl_port_dvsec(struct pci_dev *dev)
5040 {
5041 return pci_find_dvsec_capability(dev, PCI_VENDOR_ID_CXL,
5042 PCI_DVSEC_CXL_PORT);
5043 }
5044
cxl_sbr_masked(struct pci_dev * dev)5045 static bool cxl_sbr_masked(struct pci_dev *dev)
5046 {
5047 u16 dvsec, reg;
5048 int rc;
5049
5050 dvsec = cxl_port_dvsec(dev);
5051 if (!dvsec)
5052 return false;
5053
5054 rc = pci_read_config_word(dev, dvsec + PCI_DVSEC_CXL_PORT_CTL, ®);
5055 if (rc || PCI_POSSIBLE_ERROR(reg))
5056 return false;
5057
5058 /*
5059 * Per CXL spec r3.1, sec 8.1.5.2, when "Unmask SBR" is 0, the SBR
5060 * bit in Bridge Control has no effect. When 1, the Port generates
5061 * hot reset when the SBR bit is set to 1.
5062 */
5063 if (reg & PCI_DVSEC_CXL_PORT_CTL_UNMASK_SBR)
5064 return false;
5065
5066 return true;
5067 }
5068
pci_reset_bus_function(struct pci_dev * dev,bool probe)5069 static int pci_reset_bus_function(struct pci_dev *dev, bool probe)
5070 {
5071 struct pci_dev *bridge = pci_upstream_bridge(dev);
5072 int rc;
5073
5074 /*
5075 * If "dev" is below a CXL port that has SBR control masked, SBR
5076 * won't do anything, so return error.
5077 */
5078 if (bridge && cxl_sbr_masked(bridge)) {
5079 if (probe)
5080 return 0;
5081
5082 return -ENOTTY;
5083 }
5084
5085 rc = pci_dev_reset_slot_function(dev, probe);
5086 if (rc != -ENOTTY)
5087 return rc;
5088 return pci_parent_bus_reset(dev, probe);
5089 }
5090
cxl_reset_bus_function(struct pci_dev * dev,bool probe)5091 static int cxl_reset_bus_function(struct pci_dev *dev, bool probe)
5092 {
5093 struct pci_dev *bridge;
5094 u16 dvsec, reg, val;
5095 int rc;
5096
5097 bridge = pci_upstream_bridge(dev);
5098 if (!bridge)
5099 return -ENOTTY;
5100
5101 dvsec = cxl_port_dvsec(bridge);
5102 if (!dvsec)
5103 return -ENOTTY;
5104
5105 if (probe)
5106 return 0;
5107
5108 rc = pci_read_config_word(bridge, dvsec + PCI_DVSEC_CXL_PORT_CTL, ®);
5109 if (rc)
5110 return -ENOTTY;
5111
5112 if (reg & PCI_DVSEC_CXL_PORT_CTL_UNMASK_SBR) {
5113 val = reg;
5114 } else {
5115 val = reg | PCI_DVSEC_CXL_PORT_CTL_UNMASK_SBR;
5116 pci_write_config_word(bridge, dvsec + PCI_DVSEC_CXL_PORT_CTL,
5117 val);
5118 }
5119
5120 rc = pci_reset_bus_function(dev, probe);
5121
5122 if (reg != val)
5123 pci_write_config_word(bridge, dvsec + PCI_DVSEC_CXL_PORT_CTL,
5124 reg);
5125
5126 return rc;
5127 }
5128
pci_dev_lock(struct pci_dev * dev)5129 void pci_dev_lock(struct pci_dev *dev)
5130 {
5131 /* block PM suspend, driver probe, etc. */
5132 device_lock(&dev->dev);
5133 pci_cfg_access_lock(dev);
5134 }
5135 EXPORT_SYMBOL_GPL(pci_dev_lock);
5136
5137 /* Return 1 on successful lock, 0 on contention */
pci_dev_trylock(struct pci_dev * dev)5138 int pci_dev_trylock(struct pci_dev *dev)
5139 {
5140 if (device_trylock(&dev->dev)) {
5141 if (pci_cfg_access_trylock(dev))
5142 return 1;
5143 device_unlock(&dev->dev);
5144 }
5145
5146 return 0;
5147 }
5148 EXPORT_SYMBOL_GPL(pci_dev_trylock);
5149
pci_dev_unlock(struct pci_dev * dev)5150 void pci_dev_unlock(struct pci_dev *dev)
5151 {
5152 pci_cfg_access_unlock(dev);
5153 device_unlock(&dev->dev);
5154 }
5155 EXPORT_SYMBOL_GPL(pci_dev_unlock);
5156
pci_dev_save_and_disable(struct pci_dev * dev)5157 static void pci_dev_save_and_disable(struct pci_dev *dev)
5158 {
5159 const struct pci_error_handlers *err_handler =
5160 dev->driver ? dev->driver->err_handler : NULL;
5161
5162 /*
5163 * dev->driver->err_handler->reset_prepare() is protected against
5164 * races with ->remove() by the device lock, which must be held by
5165 * the caller.
5166 */
5167 if (err_handler && err_handler->reset_prepare)
5168 err_handler->reset_prepare(dev);
5169
5170 /*
5171 * Wake-up device prior to save. PM registers default to D0 after
5172 * reset and a simple register restore doesn't reliably return
5173 * to a non-D0 state anyway.
5174 */
5175 pci_set_power_state(dev, PCI_D0);
5176
5177 pci_save_state(dev);
5178 /*
5179 * Disable the device by clearing the Command register, except for
5180 * INTx-disable which is set. This not only disables MMIO and I/O port
5181 * BARs, but also prevents the device from being Bus Master, preventing
5182 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3
5183 * compliant devices, INTx-disable prevents legacy interrupts.
5184 */
5185 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
5186 }
5187
pci_dev_restore(struct pci_dev * dev)5188 static void pci_dev_restore(struct pci_dev *dev)
5189 {
5190 const struct pci_error_handlers *err_handler =
5191 dev->driver ? dev->driver->err_handler : NULL;
5192
5193 pci_restore_state(dev);
5194
5195 /*
5196 * dev->driver->err_handler->reset_done() is protected against
5197 * races with ->remove() by the device lock, which must be held by
5198 * the caller.
5199 */
5200 if (err_handler && err_handler->reset_done)
5201 err_handler->reset_done(dev);
5202 }
5203
5204 /* dev->reset_methods[] is a 0-terminated list of indices into this array */
5205 static const struct pci_reset_fn_method pci_reset_fn_methods[] = {
5206 { },
5207 { pci_dev_specific_reset, .name = "device_specific" },
5208 { pci_dev_acpi_reset, .name = "acpi" },
5209 { pcie_reset_flr, .name = "flr" },
5210 { pci_af_flr, .name = "af_flr" },
5211 { pci_pm_reset, .name = "pm" },
5212 { pci_reset_bus_function, .name = "bus" },
5213 { cxl_reset_bus_function, .name = "cxl_bus" },
5214 };
5215
reset_method_show(struct device * dev,struct device_attribute * attr,char * buf)5216 static ssize_t reset_method_show(struct device *dev,
5217 struct device_attribute *attr, char *buf)
5218 {
5219 struct pci_dev *pdev = to_pci_dev(dev);
5220 ssize_t len = 0;
5221 int i, m;
5222
5223 for (i = 0; i < PCI_NUM_RESET_METHODS; i++) {
5224 m = pdev->reset_methods[i];
5225 if (!m)
5226 break;
5227
5228 len += sysfs_emit_at(buf, len, "%s%s", len ? " " : "",
5229 pci_reset_fn_methods[m].name);
5230 }
5231
5232 if (len)
5233 len += sysfs_emit_at(buf, len, "\n");
5234
5235 return len;
5236 }
5237
reset_method_lookup(const char * name)5238 static int reset_method_lookup(const char *name)
5239 {
5240 int m;
5241
5242 for (m = 1; m < PCI_NUM_RESET_METHODS; m++) {
5243 if (sysfs_streq(name, pci_reset_fn_methods[m].name))
5244 return m;
5245 }
5246
5247 return 0; /* not found */
5248 }
5249
reset_method_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)5250 static ssize_t reset_method_store(struct device *dev,
5251 struct device_attribute *attr,
5252 const char *buf, size_t count)
5253 {
5254 struct pci_dev *pdev = to_pci_dev(dev);
5255 char *options, *tmp_options, *name;
5256 int m, n;
5257 u8 reset_methods[PCI_NUM_RESET_METHODS] = { 0 };
5258
5259 if (sysfs_streq(buf, "")) {
5260 pdev->reset_methods[0] = 0;
5261 pci_warn(pdev, "All device reset methods disabled by user");
5262 return count;
5263 }
5264
5265 if (sysfs_streq(buf, "default")) {
5266 pci_init_reset_methods(pdev);
5267 return count;
5268 }
5269
5270 options = kstrndup(buf, count, GFP_KERNEL);
5271 if (!options)
5272 return -ENOMEM;
5273
5274 n = 0;
5275 tmp_options = options;
5276 while ((name = strsep(&tmp_options, " ")) != NULL) {
5277 if (sysfs_streq(name, ""))
5278 continue;
5279
5280 name = strim(name);
5281
5282 m = reset_method_lookup(name);
5283 if (!m) {
5284 pci_err(pdev, "Invalid reset method '%s'", name);
5285 goto error;
5286 }
5287
5288 if (pci_reset_fn_methods[m].reset_fn(pdev, PCI_RESET_PROBE)) {
5289 pci_err(pdev, "Unsupported reset method '%s'", name);
5290 goto error;
5291 }
5292
5293 if (n == PCI_NUM_RESET_METHODS - 1) {
5294 pci_err(pdev, "Too many reset methods\n");
5295 goto error;
5296 }
5297
5298 reset_methods[n++] = m;
5299 }
5300
5301 reset_methods[n] = 0;
5302
5303 /* Warn if dev-specific supported but not highest priority */
5304 if (pci_reset_fn_methods[1].reset_fn(pdev, PCI_RESET_PROBE) == 0 &&
5305 reset_methods[0] != 1)
5306 pci_warn(pdev, "Device-specific reset disabled/de-prioritized by user");
5307 memcpy(pdev->reset_methods, reset_methods, sizeof(pdev->reset_methods));
5308 kfree(options);
5309 return count;
5310
5311 error:
5312 /* Leave previous methods unchanged */
5313 kfree(options);
5314 return -EINVAL;
5315 }
5316 static DEVICE_ATTR_RW(reset_method);
5317
5318 static struct attribute *pci_dev_reset_method_attrs[] = {
5319 &dev_attr_reset_method.attr,
5320 NULL,
5321 };
5322
pci_dev_reset_method_attr_is_visible(struct kobject * kobj,struct attribute * a,int n)5323 static umode_t pci_dev_reset_method_attr_is_visible(struct kobject *kobj,
5324 struct attribute *a, int n)
5325 {
5326 struct pci_dev *pdev = to_pci_dev(kobj_to_dev(kobj));
5327
5328 if (!pci_reset_supported(pdev))
5329 return 0;
5330
5331 return a->mode;
5332 }
5333
5334 const struct attribute_group pci_dev_reset_method_attr_group = {
5335 .attrs = pci_dev_reset_method_attrs,
5336 .is_visible = pci_dev_reset_method_attr_is_visible,
5337 };
5338
5339 /**
5340 * __pci_reset_function_locked - reset a PCI device function while holding
5341 * the @dev mutex lock.
5342 * @dev: PCI device to reset
5343 *
5344 * Some devices allow an individual function to be reset without affecting
5345 * other functions in the same device. The PCI device must be responsive
5346 * to PCI config space in order to use this function.
5347 *
5348 * The device function is presumed to be unused and the caller is holding
5349 * the device mutex lock when this function is called.
5350 *
5351 * Resetting the device will make the contents of PCI configuration space
5352 * random, so any caller of this must be prepared to reinitialise the
5353 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
5354 * etc.
5355 *
5356 * Returns 0 if the device function was successfully reset or negative if the
5357 * device doesn't support resetting a single function.
5358 */
__pci_reset_function_locked(struct pci_dev * dev)5359 int __pci_reset_function_locked(struct pci_dev *dev)
5360 {
5361 int i, m, rc;
5362
5363 might_sleep();
5364
5365 /*
5366 * A reset method returns -ENOTTY if it doesn't support this device and
5367 * we should try the next method.
5368 *
5369 * If it returns 0 (success), we're finished. If it returns any other
5370 * error, we're also finished: this indicates that further reset
5371 * mechanisms might be broken on the device.
5372 */
5373 for (i = 0; i < PCI_NUM_RESET_METHODS; i++) {
5374 m = dev->reset_methods[i];
5375 if (!m)
5376 return -ENOTTY;
5377
5378 rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_DO_RESET);
5379 if (!rc)
5380 return 0;
5381 if (rc != -ENOTTY)
5382 return rc;
5383 }
5384
5385 return -ENOTTY;
5386 }
5387 EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
5388
5389 /**
5390 * pci_init_reset_methods - check whether device can be safely reset
5391 * and store supported reset mechanisms.
5392 * @dev: PCI device to check for reset mechanisms
5393 *
5394 * Some devices allow an individual function to be reset without affecting
5395 * other functions in the same device. The PCI device must be in D0-D3hot
5396 * state.
5397 *
5398 * Stores reset mechanisms supported by device in reset_methods byte array
5399 * which is a member of struct pci_dev.
5400 */
pci_init_reset_methods(struct pci_dev * dev)5401 void pci_init_reset_methods(struct pci_dev *dev)
5402 {
5403 int m, i, rc;
5404
5405 BUILD_BUG_ON(ARRAY_SIZE(pci_reset_fn_methods) != PCI_NUM_RESET_METHODS);
5406
5407 might_sleep();
5408
5409 i = 0;
5410 for (m = 1; m < PCI_NUM_RESET_METHODS; m++) {
5411 rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_PROBE);
5412 if (!rc)
5413 dev->reset_methods[i++] = m;
5414 else if (rc != -ENOTTY)
5415 break;
5416 }
5417
5418 dev->reset_methods[i] = 0;
5419 }
5420
5421 /**
5422 * pci_reset_function - quiesce and reset a PCI device function
5423 * @dev: PCI device to reset
5424 *
5425 * Some devices allow an individual function to be reset without affecting
5426 * other functions in the same device. The PCI device must be responsive
5427 * to PCI config space in order to use this function.
5428 *
5429 * This function does not just reset the PCI portion of a device, but
5430 * clears all the state associated with the device. This function differs
5431 * from __pci_reset_function_locked() in that it saves and restores device state
5432 * over the reset and takes the PCI device lock.
5433 *
5434 * Returns 0 if the device function was successfully reset or negative if the
5435 * device doesn't support resetting a single function.
5436 */
pci_reset_function(struct pci_dev * dev)5437 int pci_reset_function(struct pci_dev *dev)
5438 {
5439 struct pci_dev *bridge;
5440 int rc;
5441
5442 if (!pci_reset_supported(dev))
5443 return -ENOTTY;
5444
5445 /*
5446 * If there's no upstream bridge, no locking is needed since there is
5447 * no upstream bridge configuration to hold consistent.
5448 */
5449 bridge = pci_upstream_bridge(dev);
5450 if (bridge)
5451 pci_dev_lock(bridge);
5452
5453 pci_dev_lock(dev);
5454 pci_dev_save_and_disable(dev);
5455
5456 rc = __pci_reset_function_locked(dev);
5457
5458 pci_dev_restore(dev);
5459 pci_dev_unlock(dev);
5460
5461 if (bridge)
5462 pci_dev_unlock(bridge);
5463
5464 return rc;
5465 }
5466 EXPORT_SYMBOL_GPL(pci_reset_function);
5467
5468 /**
5469 * pci_reset_function_locked - quiesce and reset a PCI device function
5470 * @dev: PCI device to reset
5471 *
5472 * Some devices allow an individual function to be reset without affecting
5473 * other functions in the same device. The PCI device must be responsive
5474 * to PCI config space in order to use this function.
5475 *
5476 * This function does not just reset the PCI portion of a device, but
5477 * clears all the state associated with the device. This function differs
5478 * from __pci_reset_function_locked() in that it saves and restores device state
5479 * over the reset. It also differs from pci_reset_function() in that it
5480 * requires the PCI device lock to be held.
5481 *
5482 * Returns 0 if the device function was successfully reset or negative if the
5483 * device doesn't support resetting a single function.
5484 */
pci_reset_function_locked(struct pci_dev * dev)5485 int pci_reset_function_locked(struct pci_dev *dev)
5486 {
5487 int rc;
5488
5489 if (!pci_reset_supported(dev))
5490 return -ENOTTY;
5491
5492 pci_dev_save_and_disable(dev);
5493
5494 rc = __pci_reset_function_locked(dev);
5495
5496 pci_dev_restore(dev);
5497
5498 return rc;
5499 }
5500 EXPORT_SYMBOL_GPL(pci_reset_function_locked);
5501
5502 /**
5503 * pci_try_reset_function - quiesce and reset a PCI device function
5504 * @dev: PCI device to reset
5505 *
5506 * Same as above, except return -EAGAIN if unable to lock device.
5507 */
pci_try_reset_function(struct pci_dev * dev)5508 int pci_try_reset_function(struct pci_dev *dev)
5509 {
5510 int rc;
5511
5512 if (!pci_reset_supported(dev))
5513 return -ENOTTY;
5514
5515 if (!pci_dev_trylock(dev))
5516 return -EAGAIN;
5517
5518 pci_dev_save_and_disable(dev);
5519 rc = __pci_reset_function_locked(dev);
5520 pci_dev_restore(dev);
5521 pci_dev_unlock(dev);
5522
5523 return rc;
5524 }
5525 EXPORT_SYMBOL_GPL(pci_try_reset_function);
5526
5527 /* Do any devices on or below this bus prevent a bus reset? */
pci_bus_resettable(struct pci_bus * bus)5528 static bool pci_bus_resettable(struct pci_bus *bus)
5529 {
5530 struct pci_dev *dev;
5531
5532
5533 if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5534 return false;
5535
5536 list_for_each_entry(dev, &bus->devices, bus_list) {
5537 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5538 (dev->subordinate && !pci_bus_resettable(dev->subordinate)))
5539 return false;
5540 }
5541
5542 return true;
5543 }
5544
5545 /* Lock devices from the top of the tree down */
pci_bus_lock(struct pci_bus * bus)5546 static void pci_bus_lock(struct pci_bus *bus)
5547 {
5548 struct pci_dev *dev;
5549
5550 pci_dev_lock(bus->self);
5551 list_for_each_entry(dev, &bus->devices, bus_list) {
5552 if (dev->subordinate)
5553 pci_bus_lock(dev->subordinate);
5554 else
5555 pci_dev_lock(dev);
5556 }
5557 }
5558
5559 /* Unlock devices from the bottom of the tree up */
pci_bus_unlock(struct pci_bus * bus)5560 static void pci_bus_unlock(struct pci_bus *bus)
5561 {
5562 struct pci_dev *dev;
5563
5564 list_for_each_entry(dev, &bus->devices, bus_list) {
5565 if (dev->subordinate)
5566 pci_bus_unlock(dev->subordinate);
5567 else
5568 pci_dev_unlock(dev);
5569 }
5570 pci_dev_unlock(bus->self);
5571 }
5572
5573 /* Return 1 on successful lock, 0 on contention */
pci_bus_trylock(struct pci_bus * bus)5574 static int pci_bus_trylock(struct pci_bus *bus)
5575 {
5576 struct pci_dev *dev;
5577
5578 if (!pci_dev_trylock(bus->self))
5579 return 0;
5580
5581 list_for_each_entry(dev, &bus->devices, bus_list) {
5582 if (dev->subordinate) {
5583 if (!pci_bus_trylock(dev->subordinate))
5584 goto unlock;
5585 } else if (!pci_dev_trylock(dev))
5586 goto unlock;
5587 }
5588 return 1;
5589
5590 unlock:
5591 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
5592 if (dev->subordinate)
5593 pci_bus_unlock(dev->subordinate);
5594 else
5595 pci_dev_unlock(dev);
5596 }
5597 pci_dev_unlock(bus->self);
5598 return 0;
5599 }
5600
5601 /* Do any devices on or below this slot prevent a bus reset? */
pci_slot_resettable(struct pci_slot * slot)5602 static bool pci_slot_resettable(struct pci_slot *slot)
5603 {
5604 struct pci_dev *dev;
5605
5606 if (slot->bus->self &&
5607 (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5608 return false;
5609
5610 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5611 if (!dev->slot || dev->slot != slot)
5612 continue;
5613 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5614 (dev->subordinate && !pci_bus_resettable(dev->subordinate)))
5615 return false;
5616 }
5617
5618 return true;
5619 }
5620
5621 /* Lock devices from the top of the tree down */
pci_slot_lock(struct pci_slot * slot)5622 static void pci_slot_lock(struct pci_slot *slot)
5623 {
5624 struct pci_dev *dev;
5625
5626 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5627 if (!dev->slot || dev->slot != slot)
5628 continue;
5629 if (dev->subordinate)
5630 pci_bus_lock(dev->subordinate);
5631 else
5632 pci_dev_lock(dev);
5633 }
5634 }
5635
5636 /* Unlock devices from the bottom of the tree up */
pci_slot_unlock(struct pci_slot * slot)5637 static void pci_slot_unlock(struct pci_slot *slot)
5638 {
5639 struct pci_dev *dev;
5640
5641 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5642 if (!dev->slot || dev->slot != slot)
5643 continue;
5644 if (dev->subordinate)
5645 pci_bus_unlock(dev->subordinate);
5646 else
5647 pci_dev_unlock(dev);
5648 }
5649 }
5650
5651 /* Return 1 on successful lock, 0 on contention */
pci_slot_trylock(struct pci_slot * slot)5652 static int pci_slot_trylock(struct pci_slot *slot)
5653 {
5654 struct pci_dev *dev;
5655
5656 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5657 if (!dev->slot || dev->slot != slot)
5658 continue;
5659 if (dev->subordinate) {
5660 if (!pci_bus_trylock(dev->subordinate)) {
5661 pci_dev_unlock(dev);
5662 goto unlock;
5663 }
5664 } else if (!pci_dev_trylock(dev))
5665 goto unlock;
5666 }
5667 return 1;
5668
5669 unlock:
5670 list_for_each_entry_continue_reverse(dev,
5671 &slot->bus->devices, bus_list) {
5672 if (!dev->slot || dev->slot != slot)
5673 continue;
5674 if (dev->subordinate)
5675 pci_bus_unlock(dev->subordinate);
5676 else
5677 pci_dev_unlock(dev);
5678 }
5679 return 0;
5680 }
5681
5682 /*
5683 * Save and disable devices from the top of the tree down while holding
5684 * the @dev mutex lock for the entire tree.
5685 */
pci_bus_save_and_disable_locked(struct pci_bus * bus)5686 static void pci_bus_save_and_disable_locked(struct pci_bus *bus)
5687 {
5688 struct pci_dev *dev;
5689
5690 list_for_each_entry(dev, &bus->devices, bus_list) {
5691 pci_dev_save_and_disable(dev);
5692 if (dev->subordinate)
5693 pci_bus_save_and_disable_locked(dev->subordinate);
5694 }
5695 }
5696
5697 /*
5698 * Restore devices from top of the tree down while holding @dev mutex lock
5699 * for the entire tree. Parent bridges need to be restored before we can
5700 * get to subordinate devices.
5701 */
pci_bus_restore_locked(struct pci_bus * bus)5702 static void pci_bus_restore_locked(struct pci_bus *bus)
5703 {
5704 struct pci_dev *dev;
5705
5706 list_for_each_entry(dev, &bus->devices, bus_list) {
5707 pci_dev_restore(dev);
5708 if (dev->subordinate) {
5709 pci_bridge_wait_for_secondary_bus(dev, "bus reset");
5710 pci_bus_restore_locked(dev->subordinate);
5711 }
5712 }
5713 }
5714
5715 /*
5716 * Save and disable devices from the top of the tree down while holding
5717 * the @dev mutex lock for the entire tree.
5718 */
pci_slot_save_and_disable_locked(struct pci_slot * slot)5719 static void pci_slot_save_and_disable_locked(struct pci_slot *slot)
5720 {
5721 struct pci_dev *dev;
5722
5723 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5724 if (!dev->slot || dev->slot != slot)
5725 continue;
5726 pci_dev_save_and_disable(dev);
5727 if (dev->subordinate)
5728 pci_bus_save_and_disable_locked(dev->subordinate);
5729 }
5730 }
5731
5732 /*
5733 * Restore devices from top of the tree down while holding @dev mutex lock
5734 * for the entire tree. Parent bridges need to be restored before we can
5735 * get to subordinate devices.
5736 */
pci_slot_restore_locked(struct pci_slot * slot)5737 static void pci_slot_restore_locked(struct pci_slot *slot)
5738 {
5739 struct pci_dev *dev;
5740
5741 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5742 if (!dev->slot || dev->slot != slot)
5743 continue;
5744 pci_dev_restore(dev);
5745 if (dev->subordinate) {
5746 pci_bridge_wait_for_secondary_bus(dev, "slot reset");
5747 pci_bus_restore_locked(dev->subordinate);
5748 }
5749 }
5750 }
5751
pci_slot_reset(struct pci_slot * slot,bool probe)5752 static int pci_slot_reset(struct pci_slot *slot, bool probe)
5753 {
5754 int rc;
5755
5756 if (!slot || !pci_slot_resettable(slot))
5757 return -ENOTTY;
5758
5759 if (!probe)
5760 pci_slot_lock(slot);
5761
5762 might_sleep();
5763
5764 rc = pci_reset_hotplug_slot(slot->hotplug, probe);
5765
5766 if (!probe)
5767 pci_slot_unlock(slot);
5768
5769 return rc;
5770 }
5771
5772 /**
5773 * pci_probe_reset_slot - probe whether a PCI slot can be reset
5774 * @slot: PCI slot to probe
5775 *
5776 * Return 0 if slot can be reset, negative if a slot reset is not supported.
5777 */
pci_probe_reset_slot(struct pci_slot * slot)5778 int pci_probe_reset_slot(struct pci_slot *slot)
5779 {
5780 return pci_slot_reset(slot, PCI_RESET_PROBE);
5781 }
5782 EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
5783
5784 /**
5785 * __pci_reset_slot - Try to reset a PCI slot
5786 * @slot: PCI slot to reset
5787 *
5788 * A PCI bus may host multiple slots, each slot may support a reset mechanism
5789 * independent of other slots. For instance, some slots may support slot power
5790 * control. In the case of a 1:1 bus to slot architecture, this function may
5791 * wrap the bus reset to avoid spurious slot related events such as hotplug.
5792 * Generally a slot reset should be attempted before a bus reset. All of the
5793 * function of the slot and any subordinate buses behind the slot are reset
5794 * through this function. PCI config space of all devices in the slot and
5795 * behind the slot is saved before and restored after reset.
5796 *
5797 * Same as above except return -EAGAIN if the slot cannot be locked
5798 */
__pci_reset_slot(struct pci_slot * slot)5799 static int __pci_reset_slot(struct pci_slot *slot)
5800 {
5801 int rc;
5802
5803 rc = pci_slot_reset(slot, PCI_RESET_PROBE);
5804 if (rc)
5805 return rc;
5806
5807 if (pci_slot_trylock(slot)) {
5808 pci_slot_save_and_disable_locked(slot);
5809 might_sleep();
5810 rc = pci_reset_hotplug_slot(slot->hotplug, PCI_RESET_DO_RESET);
5811 pci_slot_restore_locked(slot);
5812 pci_slot_unlock(slot);
5813 } else
5814 rc = -EAGAIN;
5815
5816 return rc;
5817 }
5818
pci_bus_reset(struct pci_bus * bus,bool probe)5819 static int pci_bus_reset(struct pci_bus *bus, bool probe)
5820 {
5821 int ret;
5822
5823 if (!bus->self || !pci_bus_resettable(bus))
5824 return -ENOTTY;
5825
5826 if (probe)
5827 return 0;
5828
5829 pci_bus_lock(bus);
5830
5831 might_sleep();
5832
5833 ret = pci_bridge_secondary_bus_reset(bus->self);
5834
5835 pci_bus_unlock(bus);
5836
5837 return ret;
5838 }
5839
5840 /**
5841 * pci_bus_error_reset - reset the bridge's subordinate bus
5842 * @bridge: The parent device that connects to the bus to reset
5843 *
5844 * This function will first try to reset the slots on this bus if the method is
5845 * available. If slot reset fails or is not available, this will fall back to a
5846 * secondary bus reset.
5847 */
pci_bus_error_reset(struct pci_dev * bridge)5848 int pci_bus_error_reset(struct pci_dev *bridge)
5849 {
5850 struct pci_bus *bus = bridge->subordinate;
5851 struct pci_slot *slot;
5852
5853 if (!bus)
5854 return -ENOTTY;
5855
5856 mutex_lock(&pci_slot_mutex);
5857 if (list_empty(&bus->slots))
5858 goto bus_reset;
5859
5860 list_for_each_entry(slot, &bus->slots, list)
5861 if (pci_probe_reset_slot(slot))
5862 goto bus_reset;
5863
5864 list_for_each_entry(slot, &bus->slots, list)
5865 if (pci_slot_reset(slot, PCI_RESET_DO_RESET))
5866 goto bus_reset;
5867
5868 mutex_unlock(&pci_slot_mutex);
5869 return 0;
5870 bus_reset:
5871 mutex_unlock(&pci_slot_mutex);
5872 return pci_bus_reset(bridge->subordinate, PCI_RESET_DO_RESET);
5873 }
5874
5875 /**
5876 * pci_probe_reset_bus - probe whether a PCI bus can be reset
5877 * @bus: PCI bus to probe
5878 *
5879 * Return 0 if bus can be reset, negative if a bus reset is not supported.
5880 */
pci_probe_reset_bus(struct pci_bus * bus)5881 int pci_probe_reset_bus(struct pci_bus *bus)
5882 {
5883 return pci_bus_reset(bus, PCI_RESET_PROBE);
5884 }
5885 EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
5886
5887 /**
5888 * __pci_reset_bus - Try to reset a PCI bus
5889 * @bus: top level PCI bus to reset
5890 *
5891 * Same as above except return -EAGAIN if the bus cannot be locked
5892 */
__pci_reset_bus(struct pci_bus * bus)5893 int __pci_reset_bus(struct pci_bus *bus)
5894 {
5895 int rc;
5896
5897 rc = pci_bus_reset(bus, PCI_RESET_PROBE);
5898 if (rc)
5899 return rc;
5900
5901 if (pci_bus_trylock(bus)) {
5902 pci_bus_save_and_disable_locked(bus);
5903 might_sleep();
5904 rc = pci_bridge_secondary_bus_reset(bus->self);
5905 pci_bus_restore_locked(bus);
5906 pci_bus_unlock(bus);
5907 } else
5908 rc = -EAGAIN;
5909
5910 return rc;
5911 }
5912
5913 /**
5914 * pci_reset_bus - Try to reset a PCI bus
5915 * @pdev: top level PCI device to reset via slot/bus
5916 *
5917 * Same as above except return -EAGAIN if the bus cannot be locked
5918 */
pci_reset_bus(struct pci_dev * pdev)5919 int pci_reset_bus(struct pci_dev *pdev)
5920 {
5921 return (!pci_probe_reset_slot(pdev->slot)) ?
5922 __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus);
5923 }
5924 EXPORT_SYMBOL_GPL(pci_reset_bus);
5925
5926 /**
5927 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
5928 * @dev: PCI device to query
5929 *
5930 * Returns mmrbc: maximum designed memory read count in bytes or
5931 * appropriate error value.
5932 */
pcix_get_max_mmrbc(struct pci_dev * dev)5933 int pcix_get_max_mmrbc(struct pci_dev *dev)
5934 {
5935 int cap;
5936 u32 stat;
5937
5938 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5939 if (!cap)
5940 return -EINVAL;
5941
5942 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5943 return -EINVAL;
5944
5945 return 512 << FIELD_GET(PCI_X_STATUS_MAX_READ, stat);
5946 }
5947 EXPORT_SYMBOL(pcix_get_max_mmrbc);
5948
5949 /**
5950 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
5951 * @dev: PCI device to query
5952 *
5953 * Returns mmrbc: maximum memory read count in bytes or appropriate error
5954 * value.
5955 */
pcix_get_mmrbc(struct pci_dev * dev)5956 int pcix_get_mmrbc(struct pci_dev *dev)
5957 {
5958 int cap;
5959 u16 cmd;
5960
5961 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5962 if (!cap)
5963 return -EINVAL;
5964
5965 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5966 return -EINVAL;
5967
5968 return 512 << FIELD_GET(PCI_X_CMD_MAX_READ, cmd);
5969 }
5970 EXPORT_SYMBOL(pcix_get_mmrbc);
5971
5972 /**
5973 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
5974 * @dev: PCI device to query
5975 * @mmrbc: maximum memory read count in bytes
5976 * valid values are 512, 1024, 2048, 4096
5977 *
5978 * If possible sets maximum memory read byte count, some bridges have errata
5979 * that prevent this.
5980 */
pcix_set_mmrbc(struct pci_dev * dev,int mmrbc)5981 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
5982 {
5983 int cap;
5984 u32 stat, v, o;
5985 u16 cmd;
5986
5987 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
5988 return -EINVAL;
5989
5990 v = ffs(mmrbc) - 10;
5991
5992 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5993 if (!cap)
5994 return -EINVAL;
5995
5996 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5997 return -EINVAL;
5998
5999 if (v > FIELD_GET(PCI_X_STATUS_MAX_READ, stat))
6000 return -E2BIG;
6001
6002 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
6003 return -EINVAL;
6004
6005 o = FIELD_GET(PCI_X_CMD_MAX_READ, cmd);
6006 if (o != v) {
6007 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
6008 return -EIO;
6009
6010 cmd &= ~PCI_X_CMD_MAX_READ;
6011 cmd |= FIELD_PREP(PCI_X_CMD_MAX_READ, v);
6012 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
6013 return -EIO;
6014 }
6015 return 0;
6016 }
6017 EXPORT_SYMBOL(pcix_set_mmrbc);
6018
6019 /**
6020 * pcie_get_readrq - get PCI Express read request size
6021 * @dev: PCI device to query
6022 *
6023 * Returns maximum memory read request in bytes or appropriate error value.
6024 */
pcie_get_readrq(struct pci_dev * dev)6025 int pcie_get_readrq(struct pci_dev *dev)
6026 {
6027 u16 ctl;
6028
6029 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
6030
6031 return 128 << FIELD_GET(PCI_EXP_DEVCTL_READRQ, ctl);
6032 }
6033 EXPORT_SYMBOL(pcie_get_readrq);
6034
6035 /**
6036 * pcie_set_readrq - set PCI Express maximum memory read request
6037 * @dev: PCI device to query
6038 * @rq: maximum memory read count in bytes
6039 * valid values are 128, 256, 512, 1024, 2048, 4096
6040 *
6041 * If possible sets maximum memory read request in bytes
6042 */
pcie_set_readrq(struct pci_dev * dev,int rq)6043 int pcie_set_readrq(struct pci_dev *dev, int rq)
6044 {
6045 u16 v;
6046 int ret;
6047 struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus);
6048
6049 if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
6050 return -EINVAL;
6051
6052 /*
6053 * If using the "performance" PCIe config, we clamp the read rq
6054 * size to the max packet size to keep the host bridge from
6055 * generating requests larger than we can cope with.
6056 */
6057 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
6058 int mps = pcie_get_mps(dev);
6059
6060 if (mps < rq)
6061 rq = mps;
6062 }
6063
6064 v = FIELD_PREP(PCI_EXP_DEVCTL_READRQ, ffs(rq) - 8);
6065
6066 if (bridge->no_inc_mrrs) {
6067 int max_mrrs = pcie_get_readrq(dev);
6068
6069 if (rq > max_mrrs) {
6070 pci_info(dev, "can't set Max_Read_Request_Size to %d; max is %d\n", rq, max_mrrs);
6071 return -EINVAL;
6072 }
6073 }
6074
6075 ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
6076 PCI_EXP_DEVCTL_READRQ, v);
6077
6078 return pcibios_err_to_errno(ret);
6079 }
6080 EXPORT_SYMBOL(pcie_set_readrq);
6081
6082 /**
6083 * pcie_get_mps - get PCI Express maximum payload size
6084 * @dev: PCI device to query
6085 *
6086 * Returns maximum payload size in bytes
6087 */
pcie_get_mps(struct pci_dev * dev)6088 int pcie_get_mps(struct pci_dev *dev)
6089 {
6090 u16 ctl;
6091
6092 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
6093
6094 return 128 << FIELD_GET(PCI_EXP_DEVCTL_PAYLOAD, ctl);
6095 }
6096 EXPORT_SYMBOL(pcie_get_mps);
6097
6098 /**
6099 * pcie_set_mps - set PCI Express maximum payload size
6100 * @dev: PCI device to query
6101 * @mps: maximum payload size in bytes
6102 * valid values are 128, 256, 512, 1024, 2048, 4096
6103 *
6104 * If possible sets maximum payload size
6105 */
pcie_set_mps(struct pci_dev * dev,int mps)6106 int pcie_set_mps(struct pci_dev *dev, int mps)
6107 {
6108 u16 v;
6109 int ret;
6110
6111 if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
6112 return -EINVAL;
6113
6114 v = ffs(mps) - 8;
6115 if (v > dev->pcie_mpss)
6116 return -EINVAL;
6117 v = FIELD_PREP(PCI_EXP_DEVCTL_PAYLOAD, v);
6118
6119 ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
6120 PCI_EXP_DEVCTL_PAYLOAD, v);
6121
6122 return pcibios_err_to_errno(ret);
6123 }
6124 EXPORT_SYMBOL(pcie_set_mps);
6125
to_pcie_link_speed(u16 lnksta)6126 static enum pci_bus_speed to_pcie_link_speed(u16 lnksta)
6127 {
6128 return pcie_link_speed[FIELD_GET(PCI_EXP_LNKSTA_CLS, lnksta)];
6129 }
6130
pcie_link_speed_mbps(struct pci_dev * pdev)6131 int pcie_link_speed_mbps(struct pci_dev *pdev)
6132 {
6133 u16 lnksta;
6134 int err;
6135
6136 err = pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnksta);
6137 if (err)
6138 return err;
6139
6140 return pcie_dev_speed_mbps(to_pcie_link_speed(lnksta));
6141 }
6142 EXPORT_SYMBOL(pcie_link_speed_mbps);
6143
6144 /**
6145 * pcie_bandwidth_available - determine minimum link settings of a PCIe
6146 * device and its bandwidth limitation
6147 * @dev: PCI device to query
6148 * @limiting_dev: storage for device causing the bandwidth limitation
6149 * @speed: storage for speed of limiting device
6150 * @width: storage for width of limiting device
6151 *
6152 * Walk up the PCI device chain and find the point where the minimum
6153 * bandwidth is available. Return the bandwidth available there and (if
6154 * limiting_dev, speed, and width pointers are supplied) information about
6155 * that point. The bandwidth returned is in Mb/s, i.e., megabits/second of
6156 * raw bandwidth.
6157 */
pcie_bandwidth_available(struct pci_dev * dev,struct pci_dev ** limiting_dev,enum pci_bus_speed * speed,enum pcie_link_width * width)6158 u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev,
6159 enum pci_bus_speed *speed,
6160 enum pcie_link_width *width)
6161 {
6162 u16 lnksta;
6163 enum pci_bus_speed next_speed;
6164 enum pcie_link_width next_width;
6165 u32 bw, next_bw;
6166
6167 if (speed)
6168 *speed = PCI_SPEED_UNKNOWN;
6169 if (width)
6170 *width = PCIE_LNK_WIDTH_UNKNOWN;
6171
6172 bw = 0;
6173
6174 while (dev) {
6175 pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
6176
6177 next_speed = to_pcie_link_speed(lnksta);
6178 next_width = FIELD_GET(PCI_EXP_LNKSTA_NLW, lnksta);
6179
6180 next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed);
6181
6182 /* Check if current device limits the total bandwidth */
6183 if (!bw || next_bw <= bw) {
6184 bw = next_bw;
6185
6186 if (limiting_dev)
6187 *limiting_dev = dev;
6188 if (speed)
6189 *speed = next_speed;
6190 if (width)
6191 *width = next_width;
6192 }
6193
6194 dev = pci_upstream_bridge(dev);
6195 }
6196
6197 return bw;
6198 }
6199 EXPORT_SYMBOL(pcie_bandwidth_available);
6200
6201 /**
6202 * pcie_get_speed_cap - query for the PCI device's link speed capability
6203 * @dev: PCI device to query
6204 *
6205 * Query the PCI device speed capability. Return the maximum link speed
6206 * supported by the device.
6207 */
pcie_get_speed_cap(struct pci_dev * dev)6208 enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev)
6209 {
6210 u32 lnkcap2, lnkcap;
6211
6212 /*
6213 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18. The
6214 * implementation note there recommends using the Supported Link
6215 * Speeds Vector in Link Capabilities 2 when supported.
6216 *
6217 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software
6218 * should use the Supported Link Speeds field in Link Capabilities,
6219 * where only 2.5 GT/s and 5.0 GT/s speeds were defined.
6220 */
6221 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2);
6222
6223 /* PCIe r3.0-compliant */
6224 if (lnkcap2)
6225 return PCIE_LNKCAP2_SLS2SPEED(lnkcap2);
6226
6227 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
6228 if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB)
6229 return PCIE_SPEED_5_0GT;
6230 else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB)
6231 return PCIE_SPEED_2_5GT;
6232
6233 return PCI_SPEED_UNKNOWN;
6234 }
6235 EXPORT_SYMBOL(pcie_get_speed_cap);
6236
6237 /**
6238 * pcie_get_width_cap - query for the PCI device's link width capability
6239 * @dev: PCI device to query
6240 *
6241 * Query the PCI device width capability. Return the maximum link width
6242 * supported by the device.
6243 */
pcie_get_width_cap(struct pci_dev * dev)6244 enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev)
6245 {
6246 u32 lnkcap;
6247
6248 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
6249 if (lnkcap)
6250 return FIELD_GET(PCI_EXP_LNKCAP_MLW, lnkcap);
6251
6252 return PCIE_LNK_WIDTH_UNKNOWN;
6253 }
6254 EXPORT_SYMBOL(pcie_get_width_cap);
6255
6256 /**
6257 * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability
6258 * @dev: PCI device
6259 * @speed: storage for link speed
6260 * @width: storage for link width
6261 *
6262 * Calculate a PCI device's link bandwidth by querying for its link speed
6263 * and width, multiplying them, and applying encoding overhead. The result
6264 * is in Mb/s, i.e., megabits/second of raw bandwidth.
6265 */
pcie_bandwidth_capable(struct pci_dev * dev,enum pci_bus_speed * speed,enum pcie_link_width * width)6266 static u32 pcie_bandwidth_capable(struct pci_dev *dev,
6267 enum pci_bus_speed *speed,
6268 enum pcie_link_width *width)
6269 {
6270 *speed = pcie_get_speed_cap(dev);
6271 *width = pcie_get_width_cap(dev);
6272
6273 if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
6274 return 0;
6275
6276 return *width * PCIE_SPEED2MBS_ENC(*speed);
6277 }
6278
6279 /**
6280 * __pcie_print_link_status - Report the PCI device's link speed and width
6281 * @dev: PCI device to query
6282 * @verbose: Print info even when enough bandwidth is available
6283 *
6284 * If the available bandwidth at the device is less than the device is
6285 * capable of, report the device's maximum possible bandwidth and the
6286 * upstream link that limits its performance. If @verbose, always print
6287 * the available bandwidth, even if the device isn't constrained.
6288 */
__pcie_print_link_status(struct pci_dev * dev,bool verbose)6289 void __pcie_print_link_status(struct pci_dev *dev, bool verbose)
6290 {
6291 enum pcie_link_width width, width_cap;
6292 enum pci_bus_speed speed, speed_cap;
6293 struct pci_dev *limiting_dev = NULL;
6294 u32 bw_avail, bw_cap;
6295
6296 bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap);
6297 bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width);
6298
6299 if (bw_avail >= bw_cap && verbose)
6300 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n",
6301 bw_cap / 1000, bw_cap % 1000,
6302 pci_speed_string(speed_cap), width_cap);
6303 else if (bw_avail < bw_cap)
6304 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n",
6305 bw_avail / 1000, bw_avail % 1000,
6306 pci_speed_string(speed), width,
6307 limiting_dev ? pci_name(limiting_dev) : "<unknown>",
6308 bw_cap / 1000, bw_cap % 1000,
6309 pci_speed_string(speed_cap), width_cap);
6310 }
6311
6312 /**
6313 * pcie_print_link_status - Report the PCI device's link speed and width
6314 * @dev: PCI device to query
6315 *
6316 * Report the available bandwidth at the device.
6317 */
pcie_print_link_status(struct pci_dev * dev)6318 void pcie_print_link_status(struct pci_dev *dev)
6319 {
6320 __pcie_print_link_status(dev, true);
6321 }
6322 EXPORT_SYMBOL(pcie_print_link_status);
6323
6324 /**
6325 * pci_select_bars - Make BAR mask from the type of resource
6326 * @dev: the PCI device for which BAR mask is made
6327 * @flags: resource type mask to be selected
6328 *
6329 * This helper routine makes bar mask from the type of resource.
6330 */
pci_select_bars(struct pci_dev * dev,unsigned long flags)6331 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
6332 {
6333 int i, bars = 0;
6334 for (i = 0; i < PCI_NUM_RESOURCES; i++)
6335 if (pci_resource_flags(dev, i) & flags)
6336 bars |= (1 << i);
6337 return bars;
6338 }
6339 EXPORT_SYMBOL(pci_select_bars);
6340
6341 /* Some architectures require additional programming to enable VGA */
6342 static arch_set_vga_state_t arch_set_vga_state;
6343
pci_register_set_vga_state(arch_set_vga_state_t func)6344 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
6345 {
6346 arch_set_vga_state = func; /* NULL disables */
6347 }
6348
pci_set_vga_state_arch(struct pci_dev * dev,bool decode,unsigned int command_bits,u32 flags)6349 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
6350 unsigned int command_bits, u32 flags)
6351 {
6352 if (arch_set_vga_state)
6353 return arch_set_vga_state(dev, decode, command_bits,
6354 flags);
6355 return 0;
6356 }
6357
6358 /**
6359 * pci_set_vga_state - set VGA decode state on device and parents if requested
6360 * @dev: the PCI device
6361 * @decode: true = enable decoding, false = disable decoding
6362 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
6363 * @flags: traverse ancestors and change bridges
6364 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
6365 */
pci_set_vga_state(struct pci_dev * dev,bool decode,unsigned int command_bits,u32 flags)6366 int pci_set_vga_state(struct pci_dev *dev, bool decode,
6367 unsigned int command_bits, u32 flags)
6368 {
6369 struct pci_bus *bus;
6370 struct pci_dev *bridge;
6371 u16 cmd;
6372 int rc;
6373
6374 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
6375
6376 /* ARCH specific VGA enables */
6377 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
6378 if (rc)
6379 return rc;
6380
6381 if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
6382 pci_read_config_word(dev, PCI_COMMAND, &cmd);
6383 if (decode)
6384 cmd |= command_bits;
6385 else
6386 cmd &= ~command_bits;
6387 pci_write_config_word(dev, PCI_COMMAND, cmd);
6388 }
6389
6390 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
6391 return 0;
6392
6393 bus = dev->bus;
6394 while (bus) {
6395 bridge = bus->self;
6396 if (bridge) {
6397 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
6398 &cmd);
6399 if (decode)
6400 cmd |= PCI_BRIDGE_CTL_VGA;
6401 else
6402 cmd &= ~PCI_BRIDGE_CTL_VGA;
6403 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
6404 cmd);
6405 }
6406 bus = bus->parent;
6407 }
6408 return 0;
6409 }
6410
6411 #ifdef CONFIG_ACPI
pci_pr3_present(struct pci_dev * pdev)6412 bool pci_pr3_present(struct pci_dev *pdev)
6413 {
6414 struct acpi_device *adev;
6415
6416 if (acpi_disabled)
6417 return false;
6418
6419 adev = ACPI_COMPANION(&pdev->dev);
6420 if (!adev)
6421 return false;
6422
6423 return adev->power.flags.power_resources &&
6424 acpi_has_method(adev->handle, "_PR3");
6425 }
6426 EXPORT_SYMBOL_GPL(pci_pr3_present);
6427 #endif
6428
6429 /**
6430 * pci_add_dma_alias - Add a DMA devfn alias for a device
6431 * @dev: the PCI device for which alias is added
6432 * @devfn_from: alias slot and function
6433 * @nr_devfns: number of subsequent devfns to alias
6434 *
6435 * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask
6436 * which is used to program permissible bus-devfn source addresses for DMA
6437 * requests in an IOMMU. These aliases factor into IOMMU group creation
6438 * and are useful for devices generating DMA requests beyond or different
6439 * from their logical bus-devfn. Examples include device quirks where the
6440 * device simply uses the wrong devfn, as well as non-transparent bridges
6441 * where the alias may be a proxy for devices in another domain.
6442 *
6443 * IOMMU group creation is performed during device discovery or addition,
6444 * prior to any potential DMA mapping and therefore prior to driver probing
6445 * (especially for userspace assigned devices where IOMMU group definition
6446 * cannot be left as a userspace activity). DMA aliases should therefore
6447 * be configured via quirks, such as the PCI fixup header quirk.
6448 */
pci_add_dma_alias(struct pci_dev * dev,u8 devfn_from,unsigned int nr_devfns)6449 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn_from,
6450 unsigned int nr_devfns)
6451 {
6452 int devfn_to;
6453
6454 nr_devfns = min(nr_devfns, (unsigned int)MAX_NR_DEVFNS - devfn_from);
6455 devfn_to = devfn_from + nr_devfns - 1;
6456
6457 if (!dev->dma_alias_mask)
6458 dev->dma_alias_mask = bitmap_zalloc(MAX_NR_DEVFNS, GFP_KERNEL);
6459 if (!dev->dma_alias_mask) {
6460 pci_warn(dev, "Unable to allocate DMA alias mask\n");
6461 return;
6462 }
6463
6464 bitmap_set(dev->dma_alias_mask, devfn_from, nr_devfns);
6465
6466 if (nr_devfns == 1)
6467 pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n",
6468 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from));
6469 else if (nr_devfns > 1)
6470 pci_info(dev, "Enabling fixed DMA alias for devfn range from %02x.%d to %02x.%d\n",
6471 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from),
6472 PCI_SLOT(devfn_to), PCI_FUNC(devfn_to));
6473 }
6474
pci_devs_are_dma_aliases(struct pci_dev * dev1,struct pci_dev * dev2)6475 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
6476 {
6477 return (dev1->dma_alias_mask &&
6478 test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
6479 (dev2->dma_alias_mask &&
6480 test_bit(dev1->devfn, dev2->dma_alias_mask)) ||
6481 pci_real_dma_dev(dev1) == dev2 ||
6482 pci_real_dma_dev(dev2) == dev1;
6483 }
6484
pci_device_is_present(struct pci_dev * pdev)6485 bool pci_device_is_present(struct pci_dev *pdev)
6486 {
6487 u32 v;
6488
6489 /* Check PF if pdev is a VF, since VF Vendor/Device IDs are 0xffff */
6490 pdev = pci_physfn(pdev);
6491 if (pci_dev_is_disconnected(pdev))
6492 return false;
6493 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
6494 }
6495 EXPORT_SYMBOL_GPL(pci_device_is_present);
6496
pci_ignore_hotplug(struct pci_dev * dev)6497 void pci_ignore_hotplug(struct pci_dev *dev)
6498 {
6499 struct pci_dev *bridge = dev->bus->self;
6500
6501 dev->ignore_hotplug = 1;
6502 /* Propagate the "ignore hotplug" setting to the parent bridge. */
6503 if (bridge)
6504 bridge->ignore_hotplug = 1;
6505 }
6506 EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
6507
6508 /**
6509 * pci_real_dma_dev - Get PCI DMA device for PCI device
6510 * @dev: the PCI device that may have a PCI DMA alias
6511 *
6512 * Permits the platform to provide architecture-specific functionality to
6513 * devices needing to alias DMA to another PCI device on another PCI bus. If
6514 * the PCI device is on the same bus, it is recommended to use
6515 * pci_add_dma_alias(). This is the default implementation. Architecture
6516 * implementations can override this.
6517 */
pci_real_dma_dev(struct pci_dev * dev)6518 struct pci_dev __weak *pci_real_dma_dev(struct pci_dev *dev)
6519 {
6520 return dev;
6521 }
6522
pcibios_default_alignment(void)6523 resource_size_t __weak pcibios_default_alignment(void)
6524 {
6525 return 0;
6526 }
6527
6528 /*
6529 * Arches that don't want to expose struct resource to userland as-is in
6530 * sysfs and /proc can implement their own pci_resource_to_user().
6531 */
pci_resource_to_user(const struct pci_dev * dev,int bar,const struct resource * rsrc,resource_size_t * start,resource_size_t * end)6532 void __weak pci_resource_to_user(const struct pci_dev *dev, int bar,
6533 const struct resource *rsrc,
6534 resource_size_t *start, resource_size_t *end)
6535 {
6536 *start = rsrc->start;
6537 *end = rsrc->end;
6538 }
6539
6540 static char *resource_alignment_param;
6541 static DEFINE_SPINLOCK(resource_alignment_lock);
6542
6543 /**
6544 * pci_specified_resource_alignment - get resource alignment specified by user.
6545 * @dev: the PCI device to get
6546 * @resize: whether or not to change resources' size when reassigning alignment
6547 *
6548 * RETURNS: Resource alignment if it is specified.
6549 * Zero if it is not specified.
6550 */
pci_specified_resource_alignment(struct pci_dev * dev,bool * resize)6551 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
6552 bool *resize)
6553 {
6554 int align_order, count;
6555 resource_size_t align = pcibios_default_alignment();
6556 const char *p;
6557 int ret;
6558
6559 spin_lock(&resource_alignment_lock);
6560 p = resource_alignment_param;
6561 if (!p || !*p)
6562 goto out;
6563 if (pci_has_flag(PCI_PROBE_ONLY)) {
6564 align = 0;
6565 pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
6566 goto out;
6567 }
6568
6569 while (*p) {
6570 count = 0;
6571 if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
6572 p[count] == '@') {
6573 p += count + 1;
6574 if (align_order > 63) {
6575 pr_err("PCI: Invalid requested alignment (order %d)\n",
6576 align_order);
6577 align_order = PAGE_SHIFT;
6578 }
6579 } else {
6580 align_order = PAGE_SHIFT;
6581 }
6582
6583 ret = pci_dev_str_match(dev, p, &p);
6584 if (ret == 1) {
6585 *resize = true;
6586 align = 1ULL << align_order;
6587 break;
6588 } else if (ret < 0) {
6589 pr_err("PCI: Can't parse resource_alignment parameter: %s\n",
6590 p);
6591 break;
6592 }
6593
6594 if (*p != ';' && *p != ',') {
6595 /* End of param or invalid format */
6596 break;
6597 }
6598 p++;
6599 }
6600 out:
6601 spin_unlock(&resource_alignment_lock);
6602 return align;
6603 }
6604
pci_request_resource_alignment(struct pci_dev * dev,int bar,resource_size_t align,bool resize)6605 static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
6606 resource_size_t align, bool resize)
6607 {
6608 struct resource *r = &dev->resource[bar];
6609 const char *r_name = pci_resource_name(dev, bar);
6610 resource_size_t size;
6611
6612 if (!(r->flags & IORESOURCE_MEM))
6613 return;
6614
6615 if (r->flags & IORESOURCE_PCI_FIXED) {
6616 pci_info(dev, "%s %pR: ignoring requested alignment %#llx\n",
6617 r_name, r, (unsigned long long)align);
6618 return;
6619 }
6620
6621 size = resource_size(r);
6622 if (size >= align)
6623 return;
6624
6625 /*
6626 * Increase the alignment of the resource. There are two ways we
6627 * can do this:
6628 *
6629 * 1) Increase the size of the resource. BARs are aligned on their
6630 * size, so when we reallocate space for this resource, we'll
6631 * allocate it with the larger alignment. This also prevents
6632 * assignment of any other BARs inside the alignment region, so
6633 * if we're requesting page alignment, this means no other BARs
6634 * will share the page.
6635 *
6636 * The disadvantage is that this makes the resource larger than
6637 * the hardware BAR, which may break drivers that compute things
6638 * based on the resource size, e.g., to find registers at a
6639 * fixed offset before the end of the BAR.
6640 *
6641 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
6642 * set r->start to the desired alignment. By itself this
6643 * doesn't prevent other BARs being put inside the alignment
6644 * region, but if we realign *every* resource of every device in
6645 * the system, none of them will share an alignment region.
6646 *
6647 * When the user has requested alignment for only some devices via
6648 * the "pci=resource_alignment" argument, "resize" is true and we
6649 * use the first method. Otherwise we assume we're aligning all
6650 * devices and we use the second.
6651 */
6652
6653 pci_info(dev, "%s %pR: requesting alignment to %#llx\n",
6654 r_name, r, (unsigned long long)align);
6655
6656 if (resize) {
6657 r->start = 0;
6658 r->end = align - 1;
6659 } else {
6660 r->flags &= ~IORESOURCE_SIZEALIGN;
6661 r->flags |= IORESOURCE_STARTALIGN;
6662 r->start = align;
6663 r->end = r->start + size - 1;
6664 }
6665 r->flags |= IORESOURCE_UNSET;
6666 }
6667
6668 /*
6669 * This function disables memory decoding and releases memory resources
6670 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
6671 * It also rounds up size to specified alignment.
6672 * Later on, the kernel will assign page-aligned memory resource back
6673 * to the device.
6674 */
pci_reassigndev_resource_alignment(struct pci_dev * dev)6675 void pci_reassigndev_resource_alignment(struct pci_dev *dev)
6676 {
6677 int i;
6678 struct resource *r;
6679 resource_size_t align;
6680 u16 command;
6681 bool resize = false;
6682
6683 /*
6684 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
6685 * 3.4.1.11. Their resources are allocated from the space
6686 * described by the VF BARx register in the PF's SR-IOV capability.
6687 * We can't influence their alignment here.
6688 */
6689 if (dev->is_virtfn)
6690 return;
6691
6692 /* check if specified PCI is target device to reassign */
6693 align = pci_specified_resource_alignment(dev, &resize);
6694 if (!align)
6695 return;
6696
6697 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
6698 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
6699 pci_warn(dev, "Can't reassign resources to host bridge\n");
6700 return;
6701 }
6702
6703 pci_read_config_word(dev, PCI_COMMAND, &command);
6704 command &= ~PCI_COMMAND_MEMORY;
6705 pci_write_config_word(dev, PCI_COMMAND, command);
6706
6707 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
6708 pci_request_resource_alignment(dev, i, align, resize);
6709
6710 /*
6711 * Need to disable bridge's resource window,
6712 * to enable the kernel to reassign new resource
6713 * window later on.
6714 */
6715 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
6716 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
6717 r = &dev->resource[i];
6718 if (!(r->flags & IORESOURCE_MEM))
6719 continue;
6720 r->flags |= IORESOURCE_UNSET;
6721 r->end = resource_size(r) - 1;
6722 r->start = 0;
6723 }
6724 pci_disable_bridge_window(dev);
6725 }
6726 }
6727
resource_alignment_show(const struct bus_type * bus,char * buf)6728 static ssize_t resource_alignment_show(const struct bus_type *bus, char *buf)
6729 {
6730 size_t count = 0;
6731
6732 spin_lock(&resource_alignment_lock);
6733 if (resource_alignment_param)
6734 count = sysfs_emit(buf, "%s\n", resource_alignment_param);
6735 spin_unlock(&resource_alignment_lock);
6736
6737 return count;
6738 }
6739
resource_alignment_store(const struct bus_type * bus,const char * buf,size_t count)6740 static ssize_t resource_alignment_store(const struct bus_type *bus,
6741 const char *buf, size_t count)
6742 {
6743 char *param, *old, *end;
6744
6745 if (count >= (PAGE_SIZE - 1))
6746 return -EINVAL;
6747
6748 param = kstrndup(buf, count, GFP_KERNEL);
6749 if (!param)
6750 return -ENOMEM;
6751
6752 end = strchr(param, '\n');
6753 if (end)
6754 *end = '\0';
6755
6756 spin_lock(&resource_alignment_lock);
6757 old = resource_alignment_param;
6758 if (strlen(param)) {
6759 resource_alignment_param = param;
6760 } else {
6761 kfree(param);
6762 resource_alignment_param = NULL;
6763 }
6764 spin_unlock(&resource_alignment_lock);
6765
6766 kfree(old);
6767
6768 return count;
6769 }
6770
6771 static BUS_ATTR_RW(resource_alignment);
6772
pci_resource_alignment_sysfs_init(void)6773 static int __init pci_resource_alignment_sysfs_init(void)
6774 {
6775 return bus_create_file(&pci_bus_type,
6776 &bus_attr_resource_alignment);
6777 }
6778 late_initcall(pci_resource_alignment_sysfs_init);
6779
pci_no_domains(void)6780 static void pci_no_domains(void)
6781 {
6782 #ifdef CONFIG_PCI_DOMAINS
6783 pci_domains_supported = 0;
6784 #endif
6785 }
6786
6787 #ifdef CONFIG_PCI_DOMAINS_GENERIC
6788 static DEFINE_IDA(pci_domain_nr_static_ida);
6789 static DEFINE_IDA(pci_domain_nr_dynamic_ida);
6790
of_pci_reserve_static_domain_nr(void)6791 static void of_pci_reserve_static_domain_nr(void)
6792 {
6793 struct device_node *np;
6794 int domain_nr;
6795
6796 for_each_node_by_type(np, "pci") {
6797 domain_nr = of_get_pci_domain_nr(np);
6798 if (domain_nr < 0)
6799 continue;
6800 /*
6801 * Permanently allocate domain_nr in dynamic_ida
6802 * to prevent it from dynamic allocation.
6803 */
6804 ida_alloc_range(&pci_domain_nr_dynamic_ida,
6805 domain_nr, domain_nr, GFP_KERNEL);
6806 }
6807 }
6808
of_pci_bus_find_domain_nr(struct device * parent)6809 static int of_pci_bus_find_domain_nr(struct device *parent)
6810 {
6811 static bool static_domains_reserved = false;
6812 int domain_nr;
6813
6814 /* On the first call scan device tree for static allocations. */
6815 if (!static_domains_reserved) {
6816 of_pci_reserve_static_domain_nr();
6817 static_domains_reserved = true;
6818 }
6819
6820 if (parent) {
6821 /*
6822 * If domain is in DT, allocate it in static IDA. This
6823 * prevents duplicate static allocations in case of errors
6824 * in DT.
6825 */
6826 domain_nr = of_get_pci_domain_nr(parent->of_node);
6827 if (domain_nr >= 0)
6828 return ida_alloc_range(&pci_domain_nr_static_ida,
6829 domain_nr, domain_nr,
6830 GFP_KERNEL);
6831 }
6832
6833 /*
6834 * If domain was not specified in DT, choose a free ID from dynamic
6835 * allocations. All domain numbers from DT are permanently in
6836 * dynamic allocations to prevent assigning them to other DT nodes
6837 * without static domain.
6838 */
6839 return ida_alloc(&pci_domain_nr_dynamic_ida, GFP_KERNEL);
6840 }
6841
of_pci_bus_release_domain_nr(struct device * parent,int domain_nr)6842 static void of_pci_bus_release_domain_nr(struct device *parent, int domain_nr)
6843 {
6844 if (domain_nr < 0)
6845 return;
6846
6847 /* Release domain from IDA where it was allocated. */
6848 if (of_get_pci_domain_nr(parent->of_node) == domain_nr)
6849 ida_free(&pci_domain_nr_static_ida, domain_nr);
6850 else
6851 ida_free(&pci_domain_nr_dynamic_ida, domain_nr);
6852 }
6853
pci_bus_find_domain_nr(struct pci_bus * bus,struct device * parent)6854 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
6855 {
6856 return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
6857 acpi_pci_bus_find_domain_nr(bus);
6858 }
6859
pci_bus_release_domain_nr(struct device * parent,int domain_nr)6860 void pci_bus_release_domain_nr(struct device *parent, int domain_nr)
6861 {
6862 if (!acpi_disabled)
6863 return;
6864 of_pci_bus_release_domain_nr(parent, domain_nr);
6865 }
6866 #endif
6867
6868 /**
6869 * pci_ext_cfg_avail - can we access extended PCI config space?
6870 *
6871 * Returns 1 if we can access PCI extended config space (offsets
6872 * greater than 0xff). This is the default implementation. Architecture
6873 * implementations can override this.
6874 */
pci_ext_cfg_avail(void)6875 int __weak pci_ext_cfg_avail(void)
6876 {
6877 return 1;
6878 }
6879
pci_fixup_cardbus(struct pci_bus * bus)6880 void __weak pci_fixup_cardbus(struct pci_bus *bus)
6881 {
6882 }
6883 EXPORT_SYMBOL(pci_fixup_cardbus);
6884
pci_setup(char * str)6885 static int __init pci_setup(char *str)
6886 {
6887 while (str) {
6888 char *k = strchr(str, ',');
6889 if (k)
6890 *k++ = 0;
6891 if (*str && (str = pcibios_setup(str)) && *str) {
6892 if (!strcmp(str, "nomsi")) {
6893 pci_no_msi();
6894 } else if (!strncmp(str, "noats", 5)) {
6895 pr_info("PCIe: ATS is disabled\n");
6896 pcie_ats_disabled = true;
6897 } else if (!strcmp(str, "noaer")) {
6898 pci_no_aer();
6899 } else if (!strcmp(str, "earlydump")) {
6900 pci_early_dump = true;
6901 } else if (!strncmp(str, "realloc=", 8)) {
6902 pci_realloc_get_opt(str + 8);
6903 } else if (!strncmp(str, "realloc", 7)) {
6904 pci_realloc_get_opt("on");
6905 } else if (!strcmp(str, "nodomains")) {
6906 pci_no_domains();
6907 } else if (!strncmp(str, "noari", 5)) {
6908 pcie_ari_disabled = true;
6909 } else if (!strncmp(str, "cbiosize=", 9)) {
6910 pci_cardbus_io_size = memparse(str + 9, &str);
6911 } else if (!strncmp(str, "cbmemsize=", 10)) {
6912 pci_cardbus_mem_size = memparse(str + 10, &str);
6913 } else if (!strncmp(str, "resource_alignment=", 19)) {
6914 resource_alignment_param = str + 19;
6915 } else if (!strncmp(str, "ecrc=", 5)) {
6916 pcie_ecrc_get_policy(str + 5);
6917 } else if (!strncmp(str, "hpiosize=", 9)) {
6918 pci_hotplug_io_size = memparse(str + 9, &str);
6919 } else if (!strncmp(str, "hpmmiosize=", 11)) {
6920 pci_hotplug_mmio_size = memparse(str + 11, &str);
6921 } else if (!strncmp(str, "hpmmioprefsize=", 15)) {
6922 pci_hotplug_mmio_pref_size = memparse(str + 15, &str);
6923 } else if (!strncmp(str, "hpmemsize=", 10)) {
6924 pci_hotplug_mmio_size = memparse(str + 10, &str);
6925 pci_hotplug_mmio_pref_size = pci_hotplug_mmio_size;
6926 } else if (!strncmp(str, "hpbussize=", 10)) {
6927 pci_hotplug_bus_size =
6928 simple_strtoul(str + 10, &str, 0);
6929 if (pci_hotplug_bus_size > 0xff)
6930 pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
6931 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
6932 pcie_bus_config = PCIE_BUS_TUNE_OFF;
6933 } else if (!strncmp(str, "pcie_bus_safe", 13)) {
6934 pcie_bus_config = PCIE_BUS_SAFE;
6935 } else if (!strncmp(str, "pcie_bus_perf", 13)) {
6936 pcie_bus_config = PCIE_BUS_PERFORMANCE;
6937 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
6938 pcie_bus_config = PCIE_BUS_PEER2PEER;
6939 } else if (!strncmp(str, "pcie_scan_all", 13)) {
6940 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
6941 } else if (!strncmp(str, "disable_acs_redir=", 18)) {
6942 disable_acs_redir_param = str + 18;
6943 } else if (!strncmp(str, "config_acs=", 11)) {
6944 config_acs_param = str + 11;
6945 } else {
6946 pr_err("PCI: Unknown option `%s'\n", str);
6947 }
6948 }
6949 str = k;
6950 }
6951 return 0;
6952 }
6953 early_param("pci", pci_setup);
6954
6955 /*
6956 * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized
6957 * in pci_setup(), above, to point to data in the __initdata section which
6958 * will be freed after the init sequence is complete. We can't allocate memory
6959 * in pci_setup() because some architectures do not have any memory allocation
6960 * service available during an early_param() call. So we allocate memory and
6961 * copy the variable here before the init section is freed.
6962 *
6963 */
pci_realloc_setup_params(void)6964 static int __init pci_realloc_setup_params(void)
6965 {
6966 resource_alignment_param = kstrdup(resource_alignment_param,
6967 GFP_KERNEL);
6968 disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL);
6969 config_acs_param = kstrdup(config_acs_param, GFP_KERNEL);
6970
6971 return 0;
6972 }
6973 pure_initcall(pci_realloc_setup_params);
6974