• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Performance events core code:
4  *
5  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
8  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9  */
10 
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/cpu.h>
14 #include <linux/smp.h>
15 #include <linux/idr.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/tick.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/hugetlb.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/page_size_compat.h>
50 #include <linux/sched/clock.h>
51 #include <linux/sched/mm.h>
52 #include <linux/proc_ns.h>
53 #include <linux/mount.h>
54 #include <linux/min_heap.h>
55 #include <linux/highmem.h>
56 #include <linux/pgtable.h>
57 #include <linux/buildid.h>
58 #include <linux/task_work.h>
59 
60 #include "internal.h"
61 
62 #include <asm/irq_regs.h>
63 
64 typedef int (*remote_function_f)(void *);
65 
66 struct remote_function_call {
67 	struct task_struct	*p;
68 	remote_function_f	func;
69 	void			*info;
70 	int			ret;
71 };
72 
remote_function(void * data)73 static void remote_function(void *data)
74 {
75 	struct remote_function_call *tfc = data;
76 	struct task_struct *p = tfc->p;
77 
78 	if (p) {
79 		/* -EAGAIN */
80 		if (task_cpu(p) != smp_processor_id())
81 			return;
82 
83 		/*
84 		 * Now that we're on right CPU with IRQs disabled, we can test
85 		 * if we hit the right task without races.
86 		 */
87 
88 		tfc->ret = -ESRCH; /* No such (running) process */
89 		if (p != current)
90 			return;
91 	}
92 
93 	tfc->ret = tfc->func(tfc->info);
94 }
95 
96 /**
97  * task_function_call - call a function on the cpu on which a task runs
98  * @p:		the task to evaluate
99  * @func:	the function to be called
100  * @info:	the function call argument
101  *
102  * Calls the function @func when the task is currently running. This might
103  * be on the current CPU, which just calls the function directly.  This will
104  * retry due to any failures in smp_call_function_single(), such as if the
105  * task_cpu() goes offline concurrently.
106  *
107  * returns @func return value or -ESRCH or -ENXIO when the process isn't running
108  */
109 static int
task_function_call(struct task_struct * p,remote_function_f func,void * info)110 task_function_call(struct task_struct *p, remote_function_f func, void *info)
111 {
112 	struct remote_function_call data = {
113 		.p	= p,
114 		.func	= func,
115 		.info	= info,
116 		.ret	= -EAGAIN,
117 	};
118 	int ret;
119 
120 	for (;;) {
121 		ret = smp_call_function_single(task_cpu(p), remote_function,
122 					       &data, 1);
123 		if (!ret)
124 			ret = data.ret;
125 
126 		if (ret != -EAGAIN)
127 			break;
128 
129 		cond_resched();
130 	}
131 
132 	return ret;
133 }
134 
135 /**
136  * cpu_function_call - call a function on the cpu
137  * @cpu:	target cpu to queue this function
138  * @func:	the function to be called
139  * @info:	the function call argument
140  *
141  * Calls the function @func on the remote cpu.
142  *
143  * returns: @func return value or -ENXIO when the cpu is offline
144  */
cpu_function_call(int cpu,remote_function_f func,void * info)145 static int cpu_function_call(int cpu, remote_function_f func, void *info)
146 {
147 	struct remote_function_call data = {
148 		.p	= NULL,
149 		.func	= func,
150 		.info	= info,
151 		.ret	= -ENXIO, /* No such CPU */
152 	};
153 
154 	smp_call_function_single(cpu, remote_function, &data, 1);
155 
156 	return data.ret;
157 }
158 
159 enum event_type_t {
160 	EVENT_FLEXIBLE	= 0x01,
161 	EVENT_PINNED	= 0x02,
162 	EVENT_TIME	= 0x04,
163 	EVENT_FROZEN	= 0x08,
164 	/* see ctx_resched() for details */
165 	EVENT_CPU	= 0x10,
166 	EVENT_CGROUP	= 0x20,
167 
168 	/* compound helpers */
169 	EVENT_ALL         = EVENT_FLEXIBLE | EVENT_PINNED,
170 	EVENT_TIME_FROZEN = EVENT_TIME | EVENT_FROZEN,
171 };
172 
__perf_ctx_lock(struct perf_event_context * ctx)173 static inline void __perf_ctx_lock(struct perf_event_context *ctx)
174 {
175 	raw_spin_lock(&ctx->lock);
176 	WARN_ON_ONCE(ctx->is_active & EVENT_FROZEN);
177 }
178 
perf_ctx_lock(struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)179 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
180 			  struct perf_event_context *ctx)
181 {
182 	__perf_ctx_lock(&cpuctx->ctx);
183 	if (ctx)
184 		__perf_ctx_lock(ctx);
185 }
186 
__perf_ctx_unlock(struct perf_event_context * ctx)187 static inline void __perf_ctx_unlock(struct perf_event_context *ctx)
188 {
189 	/*
190 	 * If ctx_sched_in() didn't again set any ALL flags, clean up
191 	 * after ctx_sched_out() by clearing is_active.
192 	 */
193 	if (ctx->is_active & EVENT_FROZEN) {
194 		if (!(ctx->is_active & EVENT_ALL))
195 			ctx->is_active = 0;
196 		else
197 			ctx->is_active &= ~EVENT_FROZEN;
198 	}
199 	raw_spin_unlock(&ctx->lock);
200 }
201 
perf_ctx_unlock(struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)202 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
203 			    struct perf_event_context *ctx)
204 {
205 	if (ctx)
206 		__perf_ctx_unlock(ctx);
207 	__perf_ctx_unlock(&cpuctx->ctx);
208 }
209 
210 typedef struct {
211 	struct perf_cpu_context *cpuctx;
212 	struct perf_event_context *ctx;
213 } class_perf_ctx_lock_t;
214 
class_perf_ctx_lock_destructor(class_perf_ctx_lock_t * _T)215 static inline void class_perf_ctx_lock_destructor(class_perf_ctx_lock_t *_T)
216 { perf_ctx_unlock(_T->cpuctx, _T->ctx); }
217 
218 static inline class_perf_ctx_lock_t
class_perf_ctx_lock_constructor(struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)219 class_perf_ctx_lock_constructor(struct perf_cpu_context *cpuctx,
220 				struct perf_event_context *ctx)
221 { perf_ctx_lock(cpuctx, ctx); return (class_perf_ctx_lock_t){ cpuctx, ctx }; }
222 
223 #define TASK_TOMBSTONE ((void *)-1L)
224 
is_kernel_event(struct perf_event * event)225 static bool is_kernel_event(struct perf_event *event)
226 {
227 	return READ_ONCE(event->owner) == TASK_TOMBSTONE;
228 }
229 
230 static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
231 
perf_cpu_task_ctx(void)232 struct perf_event_context *perf_cpu_task_ctx(void)
233 {
234 	lockdep_assert_irqs_disabled();
235 	return this_cpu_ptr(&perf_cpu_context)->task_ctx;
236 }
237 
238 /*
239  * On task ctx scheduling...
240  *
241  * When !ctx->nr_events a task context will not be scheduled. This means
242  * we can disable the scheduler hooks (for performance) without leaving
243  * pending task ctx state.
244  *
245  * This however results in two special cases:
246  *
247  *  - removing the last event from a task ctx; this is relatively straight
248  *    forward and is done in __perf_remove_from_context.
249  *
250  *  - adding the first event to a task ctx; this is tricky because we cannot
251  *    rely on ctx->is_active and therefore cannot use event_function_call().
252  *    See perf_install_in_context().
253  *
254  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
255  */
256 
257 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
258 			struct perf_event_context *, void *);
259 
260 struct event_function_struct {
261 	struct perf_event *event;
262 	event_f func;
263 	void *data;
264 };
265 
event_function(void * info)266 static int event_function(void *info)
267 {
268 	struct event_function_struct *efs = info;
269 	struct perf_event *event = efs->event;
270 	struct perf_event_context *ctx = event->ctx;
271 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
272 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
273 	int ret = 0;
274 
275 	lockdep_assert_irqs_disabled();
276 
277 	perf_ctx_lock(cpuctx, task_ctx);
278 	/*
279 	 * Since we do the IPI call without holding ctx->lock things can have
280 	 * changed, double check we hit the task we set out to hit.
281 	 */
282 	if (ctx->task) {
283 		if (ctx->task != current) {
284 			ret = -ESRCH;
285 			goto unlock;
286 		}
287 
288 		/*
289 		 * We only use event_function_call() on established contexts,
290 		 * and event_function() is only ever called when active (or
291 		 * rather, we'll have bailed in task_function_call() or the
292 		 * above ctx->task != current test), therefore we must have
293 		 * ctx->is_active here.
294 		 */
295 		WARN_ON_ONCE(!ctx->is_active);
296 		/*
297 		 * And since we have ctx->is_active, cpuctx->task_ctx must
298 		 * match.
299 		 */
300 		WARN_ON_ONCE(task_ctx != ctx);
301 	} else {
302 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
303 	}
304 
305 	efs->func(event, cpuctx, ctx, efs->data);
306 unlock:
307 	perf_ctx_unlock(cpuctx, task_ctx);
308 
309 	return ret;
310 }
311 
event_function_call(struct perf_event * event,event_f func,void * data)312 static void event_function_call(struct perf_event *event, event_f func, void *data)
313 {
314 	struct perf_event_context *ctx = event->ctx;
315 	struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
316 	struct perf_cpu_context *cpuctx;
317 	struct event_function_struct efs = {
318 		.event = event,
319 		.func = func,
320 		.data = data,
321 	};
322 
323 	if (!event->parent) {
324 		/*
325 		 * If this is a !child event, we must hold ctx::mutex to
326 		 * stabilize the event->ctx relation. See
327 		 * perf_event_ctx_lock().
328 		 */
329 		lockdep_assert_held(&ctx->mutex);
330 	}
331 
332 	if (!task) {
333 		cpu_function_call(event->cpu, event_function, &efs);
334 		return;
335 	}
336 
337 	if (task == TASK_TOMBSTONE)
338 		return;
339 
340 again:
341 	if (!task_function_call(task, event_function, &efs))
342 		return;
343 
344 	local_irq_disable();
345 	cpuctx = this_cpu_ptr(&perf_cpu_context);
346 	perf_ctx_lock(cpuctx, ctx);
347 	/*
348 	 * Reload the task pointer, it might have been changed by
349 	 * a concurrent perf_event_context_sched_out().
350 	 */
351 	task = ctx->task;
352 	if (task == TASK_TOMBSTONE)
353 		goto unlock;
354 	if (ctx->is_active) {
355 		perf_ctx_unlock(cpuctx, ctx);
356 		local_irq_enable();
357 		goto again;
358 	}
359 	func(event, NULL, ctx, data);
360 unlock:
361 	perf_ctx_unlock(cpuctx, ctx);
362 	local_irq_enable();
363 }
364 
365 /*
366  * Similar to event_function_call() + event_function(), but hard assumes IRQs
367  * are already disabled and we're on the right CPU.
368  */
event_function_local(struct perf_event * event,event_f func,void * data)369 static void event_function_local(struct perf_event *event, event_f func, void *data)
370 {
371 	struct perf_event_context *ctx = event->ctx;
372 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
373 	struct task_struct *task = READ_ONCE(ctx->task);
374 	struct perf_event_context *task_ctx = NULL;
375 
376 	lockdep_assert_irqs_disabled();
377 
378 	if (task) {
379 		if (task == TASK_TOMBSTONE)
380 			return;
381 
382 		task_ctx = ctx;
383 	}
384 
385 	perf_ctx_lock(cpuctx, task_ctx);
386 
387 	task = ctx->task;
388 	if (task == TASK_TOMBSTONE)
389 		goto unlock;
390 
391 	if (task) {
392 		/*
393 		 * We must be either inactive or active and the right task,
394 		 * otherwise we're screwed, since we cannot IPI to somewhere
395 		 * else.
396 		 */
397 		if (ctx->is_active) {
398 			if (WARN_ON_ONCE(task != current))
399 				goto unlock;
400 
401 			if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
402 				goto unlock;
403 		}
404 	} else {
405 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
406 	}
407 
408 	func(event, cpuctx, ctx, data);
409 unlock:
410 	perf_ctx_unlock(cpuctx, task_ctx);
411 }
412 
413 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
414 		       PERF_FLAG_FD_OUTPUT  |\
415 		       PERF_FLAG_PID_CGROUP |\
416 		       PERF_FLAG_FD_CLOEXEC)
417 
418 /*
419  * branch priv levels that need permission checks
420  */
421 #define PERF_SAMPLE_BRANCH_PERM_PLM \
422 	(PERF_SAMPLE_BRANCH_KERNEL |\
423 	 PERF_SAMPLE_BRANCH_HV)
424 
425 /*
426  * perf_sched_events : >0 events exist
427  */
428 
429 static void perf_sched_delayed(struct work_struct *work);
430 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
431 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
432 static DEFINE_MUTEX(perf_sched_mutex);
433 static atomic_t perf_sched_count;
434 
435 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
436 
437 static atomic_t nr_mmap_events __read_mostly;
438 static atomic_t nr_comm_events __read_mostly;
439 static atomic_t nr_namespaces_events __read_mostly;
440 static atomic_t nr_task_events __read_mostly;
441 static atomic_t nr_freq_events __read_mostly;
442 static atomic_t nr_switch_events __read_mostly;
443 static atomic_t nr_ksymbol_events __read_mostly;
444 static atomic_t nr_bpf_events __read_mostly;
445 static atomic_t nr_cgroup_events __read_mostly;
446 static atomic_t nr_text_poke_events __read_mostly;
447 static atomic_t nr_build_id_events __read_mostly;
448 
449 static LIST_HEAD(pmus);
450 static DEFINE_MUTEX(pmus_lock);
451 static struct srcu_struct pmus_srcu;
452 static cpumask_var_t perf_online_mask;
453 static cpumask_var_t perf_online_core_mask;
454 static cpumask_var_t perf_online_die_mask;
455 static cpumask_var_t perf_online_cluster_mask;
456 static cpumask_var_t perf_online_pkg_mask;
457 static cpumask_var_t perf_online_sys_mask;
458 static struct kmem_cache *perf_event_cache;
459 
460 /*
461  * perf event paranoia level:
462  *  -1 - not paranoid at all
463  *   0 - disallow raw tracepoint access for unpriv
464  *   1 - disallow cpu events for unpriv
465  *   2 - disallow kernel profiling for unpriv
466  */
467 int sysctl_perf_event_paranoid __read_mostly = 2;
468 
469 /* Minimum for 512 kiB + 1 user control page */
470 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
471 
472 /*
473  * max perf event sample rate
474  */
475 #define DEFAULT_MAX_SAMPLE_RATE		100000
476 #define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
477 #define DEFAULT_CPU_TIME_MAX_PERCENT	25
478 
479 int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;
480 
481 static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
482 static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;
483 
484 static int perf_sample_allowed_ns __read_mostly =
485 	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
486 
update_perf_cpu_limits(void)487 static void update_perf_cpu_limits(void)
488 {
489 	u64 tmp = perf_sample_period_ns;
490 
491 	tmp *= sysctl_perf_cpu_time_max_percent;
492 	tmp = div_u64(tmp, 100);
493 	if (!tmp)
494 		tmp = 1;
495 
496 	WRITE_ONCE(perf_sample_allowed_ns, tmp);
497 }
498 
499 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc);
500 
perf_event_max_sample_rate_handler(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)501 int perf_event_max_sample_rate_handler(const struct ctl_table *table, int write,
502 				       void *buffer, size_t *lenp, loff_t *ppos)
503 {
504 	int ret;
505 	int perf_cpu = sysctl_perf_cpu_time_max_percent;
506 	/*
507 	 * If throttling is disabled don't allow the write:
508 	 */
509 	if (write && (perf_cpu == 100 || perf_cpu == 0))
510 		return -EINVAL;
511 
512 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
513 	if (ret || !write)
514 		return ret;
515 
516 	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
517 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
518 	update_perf_cpu_limits();
519 
520 	return 0;
521 }
522 
523 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
524 
perf_cpu_time_max_percent_handler(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)525 int perf_cpu_time_max_percent_handler(const struct ctl_table *table, int write,
526 		void *buffer, size_t *lenp, loff_t *ppos)
527 {
528 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
529 
530 	if (ret || !write)
531 		return ret;
532 
533 	if (sysctl_perf_cpu_time_max_percent == 100 ||
534 	    sysctl_perf_cpu_time_max_percent == 0) {
535 		printk(KERN_WARNING
536 		       "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
537 		WRITE_ONCE(perf_sample_allowed_ns, 0);
538 	} else {
539 		update_perf_cpu_limits();
540 	}
541 
542 	return 0;
543 }
544 
545 /*
546  * perf samples are done in some very critical code paths (NMIs).
547  * If they take too much CPU time, the system can lock up and not
548  * get any real work done.  This will drop the sample rate when
549  * we detect that events are taking too long.
550  */
551 #define NR_ACCUMULATED_SAMPLES 128
552 static DEFINE_PER_CPU(u64, running_sample_length);
553 
554 static u64 __report_avg;
555 static u64 __report_allowed;
556 
perf_duration_warn(struct irq_work * w)557 static void perf_duration_warn(struct irq_work *w)
558 {
559 	printk_ratelimited(KERN_INFO
560 		"perf: interrupt took too long (%lld > %lld), lowering "
561 		"kernel.perf_event_max_sample_rate to %d\n",
562 		__report_avg, __report_allowed,
563 		sysctl_perf_event_sample_rate);
564 }
565 
566 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
567 
perf_sample_event_took(u64 sample_len_ns)568 void perf_sample_event_took(u64 sample_len_ns)
569 {
570 	u64 max_len = READ_ONCE(perf_sample_allowed_ns);
571 	u64 running_len;
572 	u64 avg_len;
573 	u32 max;
574 
575 	if (max_len == 0)
576 		return;
577 
578 	/* Decay the counter by 1 average sample. */
579 	running_len = __this_cpu_read(running_sample_length);
580 	running_len -= running_len/NR_ACCUMULATED_SAMPLES;
581 	running_len += sample_len_ns;
582 	__this_cpu_write(running_sample_length, running_len);
583 
584 	/*
585 	 * Note: this will be biased artificially low until we have
586 	 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
587 	 * from having to maintain a count.
588 	 */
589 	avg_len = running_len/NR_ACCUMULATED_SAMPLES;
590 	if (avg_len <= max_len)
591 		return;
592 
593 	__report_avg = avg_len;
594 	__report_allowed = max_len;
595 
596 	/*
597 	 * Compute a throttle threshold 25% below the current duration.
598 	 */
599 	avg_len += avg_len / 4;
600 	max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
601 	if (avg_len < max)
602 		max /= (u32)avg_len;
603 	else
604 		max = 1;
605 
606 	WRITE_ONCE(perf_sample_allowed_ns, avg_len);
607 	WRITE_ONCE(max_samples_per_tick, max);
608 
609 	sysctl_perf_event_sample_rate = max * HZ;
610 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
611 
612 	if (!irq_work_queue(&perf_duration_work)) {
613 		early_printk("perf: interrupt took too long (%lld > %lld), lowering "
614 			     "kernel.perf_event_max_sample_rate to %d\n",
615 			     __report_avg, __report_allowed,
616 			     sysctl_perf_event_sample_rate);
617 	}
618 }
619 
620 static atomic64_t perf_event_id;
621 
622 static void update_context_time(struct perf_event_context *ctx);
623 static u64 perf_event_time(struct perf_event *event);
624 
perf_event_print_debug(void)625 void __weak perf_event_print_debug(void)	{ }
626 
perf_clock(void)627 static inline u64 perf_clock(void)
628 {
629 	return local_clock();
630 }
631 
perf_event_clock(struct perf_event * event)632 static inline u64 perf_event_clock(struct perf_event *event)
633 {
634 	return event->clock();
635 }
636 
637 /*
638  * State based event timekeeping...
639  *
640  * The basic idea is to use event->state to determine which (if any) time
641  * fields to increment with the current delta. This means we only need to
642  * update timestamps when we change state or when they are explicitly requested
643  * (read).
644  *
645  * Event groups make things a little more complicated, but not terribly so. The
646  * rules for a group are that if the group leader is OFF the entire group is
647  * OFF, irrespective of what the group member states are. This results in
648  * __perf_effective_state().
649  *
650  * A further ramification is that when a group leader flips between OFF and
651  * !OFF, we need to update all group member times.
652  *
653  *
654  * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
655  * need to make sure the relevant context time is updated before we try and
656  * update our timestamps.
657  */
658 
659 static __always_inline enum perf_event_state
__perf_effective_state(struct perf_event * event)660 __perf_effective_state(struct perf_event *event)
661 {
662 	struct perf_event *leader = event->group_leader;
663 
664 	if (leader->state <= PERF_EVENT_STATE_OFF)
665 		return leader->state;
666 
667 	return event->state;
668 }
669 
670 static __always_inline void
__perf_update_times(struct perf_event * event,u64 now,u64 * enabled,u64 * running)671 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
672 {
673 	enum perf_event_state state = __perf_effective_state(event);
674 	u64 delta = now - event->tstamp;
675 
676 	*enabled = event->total_time_enabled;
677 	if (state >= PERF_EVENT_STATE_INACTIVE)
678 		*enabled += delta;
679 
680 	*running = event->total_time_running;
681 	if (state >= PERF_EVENT_STATE_ACTIVE)
682 		*running += delta;
683 }
684 
perf_event_update_time(struct perf_event * event)685 static void perf_event_update_time(struct perf_event *event)
686 {
687 	u64 now = perf_event_time(event);
688 
689 	__perf_update_times(event, now, &event->total_time_enabled,
690 					&event->total_time_running);
691 	event->tstamp = now;
692 }
693 
perf_event_update_sibling_time(struct perf_event * leader)694 static void perf_event_update_sibling_time(struct perf_event *leader)
695 {
696 	struct perf_event *sibling;
697 
698 	for_each_sibling_event(sibling, leader)
699 		perf_event_update_time(sibling);
700 }
701 
702 static void
perf_event_set_state(struct perf_event * event,enum perf_event_state state)703 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
704 {
705 	if (event->state == state)
706 		return;
707 
708 	perf_event_update_time(event);
709 	/*
710 	 * If a group leader gets enabled/disabled all its siblings
711 	 * are affected too.
712 	 */
713 	if ((event->state < 0) ^ (state < 0))
714 		perf_event_update_sibling_time(event);
715 
716 	WRITE_ONCE(event->state, state);
717 }
718 
719 /*
720  * UP store-release, load-acquire
721  */
722 
723 #define __store_release(ptr, val)					\
724 do {									\
725 	barrier();							\
726 	WRITE_ONCE(*(ptr), (val));					\
727 } while (0)
728 
729 #define __load_acquire(ptr)						\
730 ({									\
731 	__unqual_scalar_typeof(*(ptr)) ___p = READ_ONCE(*(ptr));	\
732 	barrier();							\
733 	___p;								\
734 })
735 
736 #define for_each_epc(_epc, _ctx, _pmu, _cgroup)				\
737 	list_for_each_entry(_epc, &((_ctx)->pmu_ctx_list), pmu_ctx_entry) \
738 		if (_cgroup && !_epc->nr_cgroups)			\
739 			continue;					\
740 		else if (_pmu && _epc->pmu != _pmu)			\
741 			continue;					\
742 		else
743 
perf_ctx_disable(struct perf_event_context * ctx,bool cgroup)744 static void perf_ctx_disable(struct perf_event_context *ctx, bool cgroup)
745 {
746 	struct perf_event_pmu_context *pmu_ctx;
747 
748 	for_each_epc(pmu_ctx, ctx, NULL, cgroup)
749 		perf_pmu_disable(pmu_ctx->pmu);
750 }
751 
perf_ctx_enable(struct perf_event_context * ctx,bool cgroup)752 static void perf_ctx_enable(struct perf_event_context *ctx, bool cgroup)
753 {
754 	struct perf_event_pmu_context *pmu_ctx;
755 
756 	for_each_epc(pmu_ctx, ctx, NULL, cgroup)
757 		perf_pmu_enable(pmu_ctx->pmu);
758 }
759 
760 static void ctx_sched_out(struct perf_event_context *ctx, struct pmu *pmu, enum event_type_t event_type);
761 static void ctx_sched_in(struct perf_event_context *ctx, struct pmu *pmu, enum event_type_t event_type);
762 
763 #ifdef CONFIG_CGROUP_PERF
764 
765 static inline bool
perf_cgroup_match(struct perf_event * event)766 perf_cgroup_match(struct perf_event *event)
767 {
768 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
769 
770 	/* @event doesn't care about cgroup */
771 	if (!event->cgrp)
772 		return true;
773 
774 	/* wants specific cgroup scope but @cpuctx isn't associated with any */
775 	if (!cpuctx->cgrp)
776 		return false;
777 
778 	/*
779 	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
780 	 * also enabled for all its descendant cgroups.  If @cpuctx's
781 	 * cgroup is a descendant of @event's (the test covers identity
782 	 * case), it's a match.
783 	 */
784 	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
785 				    event->cgrp->css.cgroup);
786 }
787 
perf_detach_cgroup(struct perf_event * event)788 static inline void perf_detach_cgroup(struct perf_event *event)
789 {
790 	css_put(&event->cgrp->css);
791 	event->cgrp = NULL;
792 }
793 
is_cgroup_event(struct perf_event * event)794 static inline int is_cgroup_event(struct perf_event *event)
795 {
796 	return event->cgrp != NULL;
797 }
798 
perf_cgroup_event_time(struct perf_event * event)799 static inline u64 perf_cgroup_event_time(struct perf_event *event)
800 {
801 	struct perf_cgroup_info *t;
802 
803 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
804 	return t->time;
805 }
806 
perf_cgroup_event_time_now(struct perf_event * event,u64 now)807 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now)
808 {
809 	struct perf_cgroup_info *t;
810 
811 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
812 	if (!__load_acquire(&t->active))
813 		return t->time;
814 	now += READ_ONCE(t->timeoffset);
815 	return now;
816 }
817 
__update_cgrp_time(struct perf_cgroup_info * info,u64 now,bool adv)818 static inline void __update_cgrp_time(struct perf_cgroup_info *info, u64 now, bool adv)
819 {
820 	if (adv)
821 		info->time += now - info->timestamp;
822 	info->timestamp = now;
823 	/*
824 	 * see update_context_time()
825 	 */
826 	WRITE_ONCE(info->timeoffset, info->time - info->timestamp);
827 }
828 
update_cgrp_time_from_cpuctx(struct perf_cpu_context * cpuctx,bool final)829 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx, bool final)
830 {
831 	struct perf_cgroup *cgrp = cpuctx->cgrp;
832 	struct cgroup_subsys_state *css;
833 	struct perf_cgroup_info *info;
834 
835 	if (cgrp) {
836 		u64 now = perf_clock();
837 
838 		for (css = &cgrp->css; css; css = css->parent) {
839 			cgrp = container_of(css, struct perf_cgroup, css);
840 			info = this_cpu_ptr(cgrp->info);
841 
842 			__update_cgrp_time(info, now, true);
843 			if (final)
844 				__store_release(&info->active, 0);
845 		}
846 	}
847 }
848 
update_cgrp_time_from_event(struct perf_event * event)849 static inline void update_cgrp_time_from_event(struct perf_event *event)
850 {
851 	struct perf_cgroup_info *info;
852 
853 	/*
854 	 * ensure we access cgroup data only when needed and
855 	 * when we know the cgroup is pinned (css_get)
856 	 */
857 	if (!is_cgroup_event(event))
858 		return;
859 
860 	info = this_cpu_ptr(event->cgrp->info);
861 	/*
862 	 * Do not update time when cgroup is not active
863 	 */
864 	if (info->active)
865 		__update_cgrp_time(info, perf_clock(), true);
866 }
867 
868 static inline void
perf_cgroup_set_timestamp(struct perf_cpu_context * cpuctx)869 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx)
870 {
871 	struct perf_event_context *ctx = &cpuctx->ctx;
872 	struct perf_cgroup *cgrp = cpuctx->cgrp;
873 	struct perf_cgroup_info *info;
874 	struct cgroup_subsys_state *css;
875 
876 	/*
877 	 * ctx->lock held by caller
878 	 * ensure we do not access cgroup data
879 	 * unless we have the cgroup pinned (css_get)
880 	 */
881 	if (!cgrp)
882 		return;
883 
884 	WARN_ON_ONCE(!ctx->nr_cgroups);
885 
886 	for (css = &cgrp->css; css; css = css->parent) {
887 		cgrp = container_of(css, struct perf_cgroup, css);
888 		info = this_cpu_ptr(cgrp->info);
889 		__update_cgrp_time(info, ctx->timestamp, false);
890 		__store_release(&info->active, 1);
891 	}
892 }
893 
894 /*
895  * reschedule events based on the cgroup constraint of task.
896  */
perf_cgroup_switch(struct task_struct * task)897 static void perf_cgroup_switch(struct task_struct *task)
898 {
899 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
900 	struct perf_cgroup *cgrp;
901 
902 	/*
903 	 * cpuctx->cgrp is set when the first cgroup event enabled,
904 	 * and is cleared when the last cgroup event disabled.
905 	 */
906 	if (READ_ONCE(cpuctx->cgrp) == NULL)
907 		return;
908 
909 	cgrp = perf_cgroup_from_task(task, NULL);
910 	if (READ_ONCE(cpuctx->cgrp) == cgrp)
911 		return;
912 
913 	guard(perf_ctx_lock)(cpuctx, cpuctx->task_ctx);
914 	/*
915 	 * Re-check, could've raced vs perf_remove_from_context().
916 	 */
917 	if (READ_ONCE(cpuctx->cgrp) == NULL)
918 		return;
919 
920 	WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
921 
922 	perf_ctx_disable(&cpuctx->ctx, true);
923 
924 	ctx_sched_out(&cpuctx->ctx, NULL, EVENT_ALL|EVENT_CGROUP);
925 	/*
926 	 * must not be done before ctxswout due
927 	 * to update_cgrp_time_from_cpuctx() in
928 	 * ctx_sched_out()
929 	 */
930 	cpuctx->cgrp = cgrp;
931 	/*
932 	 * set cgrp before ctxsw in to allow
933 	 * perf_cgroup_set_timestamp() in ctx_sched_in()
934 	 * to not have to pass task around
935 	 */
936 	ctx_sched_in(&cpuctx->ctx, NULL, EVENT_ALL|EVENT_CGROUP);
937 
938 	perf_ctx_enable(&cpuctx->ctx, true);
939 }
940 
perf_cgroup_ensure_storage(struct perf_event * event,struct cgroup_subsys_state * css)941 static int perf_cgroup_ensure_storage(struct perf_event *event,
942 				struct cgroup_subsys_state *css)
943 {
944 	struct perf_cpu_context *cpuctx;
945 	struct perf_event **storage;
946 	int cpu, heap_size, ret = 0;
947 
948 	/*
949 	 * Allow storage to have sufficient space for an iterator for each
950 	 * possibly nested cgroup plus an iterator for events with no cgroup.
951 	 */
952 	for (heap_size = 1; css; css = css->parent)
953 		heap_size++;
954 
955 	for_each_possible_cpu(cpu) {
956 		cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
957 		if (heap_size <= cpuctx->heap_size)
958 			continue;
959 
960 		storage = kmalloc_node(heap_size * sizeof(struct perf_event *),
961 				       GFP_KERNEL, cpu_to_node(cpu));
962 		if (!storage) {
963 			ret = -ENOMEM;
964 			break;
965 		}
966 
967 		raw_spin_lock_irq(&cpuctx->ctx.lock);
968 		if (cpuctx->heap_size < heap_size) {
969 			swap(cpuctx->heap, storage);
970 			if (storage == cpuctx->heap_default)
971 				storage = NULL;
972 			cpuctx->heap_size = heap_size;
973 		}
974 		raw_spin_unlock_irq(&cpuctx->ctx.lock);
975 
976 		kfree(storage);
977 	}
978 
979 	return ret;
980 }
981 
perf_cgroup_connect(int fd,struct perf_event * event,struct perf_event_attr * attr,struct perf_event * group_leader)982 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
983 				      struct perf_event_attr *attr,
984 				      struct perf_event *group_leader)
985 {
986 	struct perf_cgroup *cgrp;
987 	struct cgroup_subsys_state *css;
988 	struct fd f = fdget(fd);
989 	int ret = 0;
990 
991 	if (!fd_file(f))
992 		return -EBADF;
993 
994 	css = css_tryget_online_from_dir(fd_file(f)->f_path.dentry,
995 					 &perf_event_cgrp_subsys);
996 	if (IS_ERR(css)) {
997 		ret = PTR_ERR(css);
998 		goto out;
999 	}
1000 
1001 	ret = perf_cgroup_ensure_storage(event, css);
1002 	if (ret)
1003 		goto out;
1004 
1005 	cgrp = container_of(css, struct perf_cgroup, css);
1006 	event->cgrp = cgrp;
1007 
1008 	/*
1009 	 * all events in a group must monitor
1010 	 * the same cgroup because a task belongs
1011 	 * to only one perf cgroup at a time
1012 	 */
1013 	if (group_leader && group_leader->cgrp != cgrp) {
1014 		perf_detach_cgroup(event);
1015 		ret = -EINVAL;
1016 	}
1017 out:
1018 	fdput(f);
1019 	return ret;
1020 }
1021 
1022 static inline void
perf_cgroup_event_enable(struct perf_event * event,struct perf_event_context * ctx)1023 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
1024 {
1025 	struct perf_cpu_context *cpuctx;
1026 
1027 	if (!is_cgroup_event(event))
1028 		return;
1029 
1030 	event->pmu_ctx->nr_cgroups++;
1031 
1032 	/*
1033 	 * Because cgroup events are always per-cpu events,
1034 	 * @ctx == &cpuctx->ctx.
1035 	 */
1036 	cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1037 
1038 	if (ctx->nr_cgroups++)
1039 		return;
1040 
1041 	cpuctx->cgrp = perf_cgroup_from_task(current, ctx);
1042 }
1043 
1044 static inline void
perf_cgroup_event_disable(struct perf_event * event,struct perf_event_context * ctx)1045 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1046 {
1047 	struct perf_cpu_context *cpuctx;
1048 
1049 	if (!is_cgroup_event(event))
1050 		return;
1051 
1052 	event->pmu_ctx->nr_cgroups--;
1053 
1054 	/*
1055 	 * Because cgroup events are always per-cpu events,
1056 	 * @ctx == &cpuctx->ctx.
1057 	 */
1058 	cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1059 
1060 	if (--ctx->nr_cgroups)
1061 		return;
1062 
1063 	cpuctx->cgrp = NULL;
1064 }
1065 
1066 #else /* !CONFIG_CGROUP_PERF */
1067 
1068 static inline bool
perf_cgroup_match(struct perf_event * event)1069 perf_cgroup_match(struct perf_event *event)
1070 {
1071 	return true;
1072 }
1073 
perf_detach_cgroup(struct perf_event * event)1074 static inline void perf_detach_cgroup(struct perf_event *event)
1075 {}
1076 
is_cgroup_event(struct perf_event * event)1077 static inline int is_cgroup_event(struct perf_event *event)
1078 {
1079 	return 0;
1080 }
1081 
update_cgrp_time_from_event(struct perf_event * event)1082 static inline void update_cgrp_time_from_event(struct perf_event *event)
1083 {
1084 }
1085 
update_cgrp_time_from_cpuctx(struct perf_cpu_context * cpuctx,bool final)1086 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx,
1087 						bool final)
1088 {
1089 }
1090 
perf_cgroup_connect(pid_t pid,struct perf_event * event,struct perf_event_attr * attr,struct perf_event * group_leader)1091 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1092 				      struct perf_event_attr *attr,
1093 				      struct perf_event *group_leader)
1094 {
1095 	return -EINVAL;
1096 }
1097 
1098 static inline void
perf_cgroup_set_timestamp(struct perf_cpu_context * cpuctx)1099 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx)
1100 {
1101 }
1102 
perf_cgroup_event_time(struct perf_event * event)1103 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1104 {
1105 	return 0;
1106 }
1107 
perf_cgroup_event_time_now(struct perf_event * event,u64 now)1108 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now)
1109 {
1110 	return 0;
1111 }
1112 
1113 static inline void
perf_cgroup_event_enable(struct perf_event * event,struct perf_event_context * ctx)1114 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
1115 {
1116 }
1117 
1118 static inline void
perf_cgroup_event_disable(struct perf_event * event,struct perf_event_context * ctx)1119 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1120 {
1121 }
1122 
perf_cgroup_switch(struct task_struct * task)1123 static void perf_cgroup_switch(struct task_struct *task)
1124 {
1125 }
1126 #endif
1127 
1128 /*
1129  * set default to be dependent on timer tick just
1130  * like original code
1131  */
1132 #define PERF_CPU_HRTIMER (1000 / HZ)
1133 /*
1134  * function must be called with interrupts disabled
1135  */
perf_mux_hrtimer_handler(struct hrtimer * hr)1136 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1137 {
1138 	struct perf_cpu_pmu_context *cpc;
1139 	bool rotations;
1140 
1141 	lockdep_assert_irqs_disabled();
1142 
1143 	cpc = container_of(hr, struct perf_cpu_pmu_context, hrtimer);
1144 	rotations = perf_rotate_context(cpc);
1145 
1146 	raw_spin_lock(&cpc->hrtimer_lock);
1147 	if (rotations)
1148 		hrtimer_forward_now(hr, cpc->hrtimer_interval);
1149 	else
1150 		cpc->hrtimer_active = 0;
1151 	raw_spin_unlock(&cpc->hrtimer_lock);
1152 
1153 	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1154 }
1155 
__perf_mux_hrtimer_init(struct perf_cpu_pmu_context * cpc,int cpu)1156 static void __perf_mux_hrtimer_init(struct perf_cpu_pmu_context *cpc, int cpu)
1157 {
1158 	struct hrtimer *timer = &cpc->hrtimer;
1159 	struct pmu *pmu = cpc->epc.pmu;
1160 	u64 interval;
1161 
1162 	/*
1163 	 * check default is sane, if not set then force to
1164 	 * default interval (1/tick)
1165 	 */
1166 	interval = pmu->hrtimer_interval_ms;
1167 	if (interval < 1)
1168 		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1169 
1170 	cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1171 
1172 	raw_spin_lock_init(&cpc->hrtimer_lock);
1173 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD);
1174 	timer->function = perf_mux_hrtimer_handler;
1175 }
1176 
perf_mux_hrtimer_restart(struct perf_cpu_pmu_context * cpc)1177 static int perf_mux_hrtimer_restart(struct perf_cpu_pmu_context *cpc)
1178 {
1179 	struct hrtimer *timer = &cpc->hrtimer;
1180 	unsigned long flags;
1181 
1182 	raw_spin_lock_irqsave(&cpc->hrtimer_lock, flags);
1183 	if (!cpc->hrtimer_active) {
1184 		cpc->hrtimer_active = 1;
1185 		hrtimer_forward_now(timer, cpc->hrtimer_interval);
1186 		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
1187 	}
1188 	raw_spin_unlock_irqrestore(&cpc->hrtimer_lock, flags);
1189 
1190 	return 0;
1191 }
1192 
perf_mux_hrtimer_restart_ipi(void * arg)1193 static int perf_mux_hrtimer_restart_ipi(void *arg)
1194 {
1195 	return perf_mux_hrtimer_restart(arg);
1196 }
1197 
perf_pmu_disable(struct pmu * pmu)1198 void perf_pmu_disable(struct pmu *pmu)
1199 {
1200 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1201 	if (!(*count)++)
1202 		pmu->pmu_disable(pmu);
1203 }
1204 
perf_pmu_enable(struct pmu * pmu)1205 void perf_pmu_enable(struct pmu *pmu)
1206 {
1207 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1208 	if (!--(*count))
1209 		pmu->pmu_enable(pmu);
1210 }
1211 
perf_assert_pmu_disabled(struct pmu * pmu)1212 static void perf_assert_pmu_disabled(struct pmu *pmu)
1213 {
1214 	WARN_ON_ONCE(*this_cpu_ptr(pmu->pmu_disable_count) == 0);
1215 }
1216 
get_ctx(struct perf_event_context * ctx)1217 static void get_ctx(struct perf_event_context *ctx)
1218 {
1219 	refcount_inc(&ctx->refcount);
1220 }
1221 
alloc_task_ctx_data(struct pmu * pmu)1222 static void *alloc_task_ctx_data(struct pmu *pmu)
1223 {
1224 	if (pmu->task_ctx_cache)
1225 		return kmem_cache_zalloc(pmu->task_ctx_cache, GFP_KERNEL);
1226 
1227 	return NULL;
1228 }
1229 
free_task_ctx_data(struct pmu * pmu,void * task_ctx_data)1230 static void free_task_ctx_data(struct pmu *pmu, void *task_ctx_data)
1231 {
1232 	if (pmu->task_ctx_cache && task_ctx_data)
1233 		kmem_cache_free(pmu->task_ctx_cache, task_ctx_data);
1234 }
1235 
free_ctx(struct rcu_head * head)1236 static void free_ctx(struct rcu_head *head)
1237 {
1238 	struct perf_event_context *ctx;
1239 
1240 	ctx = container_of(head, struct perf_event_context, rcu_head);
1241 	kfree(ctx);
1242 }
1243 
put_ctx(struct perf_event_context * ctx)1244 static void put_ctx(struct perf_event_context *ctx)
1245 {
1246 	if (refcount_dec_and_test(&ctx->refcount)) {
1247 		if (ctx->parent_ctx)
1248 			put_ctx(ctx->parent_ctx);
1249 		if (ctx->task && ctx->task != TASK_TOMBSTONE)
1250 			put_task_struct(ctx->task);
1251 		call_rcu(&ctx->rcu_head, free_ctx);
1252 	}
1253 }
1254 
1255 /*
1256  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1257  * perf_pmu_migrate_context() we need some magic.
1258  *
1259  * Those places that change perf_event::ctx will hold both
1260  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1261  *
1262  * Lock ordering is by mutex address. There are two other sites where
1263  * perf_event_context::mutex nests and those are:
1264  *
1265  *  - perf_event_exit_task_context()	[ child , 0 ]
1266  *      perf_event_exit_event()
1267  *        put_event()			[ parent, 1 ]
1268  *
1269  *  - perf_event_init_context()		[ parent, 0 ]
1270  *      inherit_task_group()
1271  *        inherit_group()
1272  *          inherit_event()
1273  *            perf_event_alloc()
1274  *              perf_init_event()
1275  *                perf_try_init_event()	[ child , 1 ]
1276  *
1277  * While it appears there is an obvious deadlock here -- the parent and child
1278  * nesting levels are inverted between the two. This is in fact safe because
1279  * life-time rules separate them. That is an exiting task cannot fork, and a
1280  * spawning task cannot (yet) exit.
1281  *
1282  * But remember that these are parent<->child context relations, and
1283  * migration does not affect children, therefore these two orderings should not
1284  * interact.
1285  *
1286  * The change in perf_event::ctx does not affect children (as claimed above)
1287  * because the sys_perf_event_open() case will install a new event and break
1288  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1289  * concerned with cpuctx and that doesn't have children.
1290  *
1291  * The places that change perf_event::ctx will issue:
1292  *
1293  *   perf_remove_from_context();
1294  *   synchronize_rcu();
1295  *   perf_install_in_context();
1296  *
1297  * to affect the change. The remove_from_context() + synchronize_rcu() should
1298  * quiesce the event, after which we can install it in the new location. This
1299  * means that only external vectors (perf_fops, prctl) can perturb the event
1300  * while in transit. Therefore all such accessors should also acquire
1301  * perf_event_context::mutex to serialize against this.
1302  *
1303  * However; because event->ctx can change while we're waiting to acquire
1304  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1305  * function.
1306  *
1307  * Lock order:
1308  *    exec_update_lock
1309  *	task_struct::perf_event_mutex
1310  *	  perf_event_context::mutex
1311  *	    perf_event::child_mutex;
1312  *	      perf_event_context::lock
1313  *	    mmap_lock
1314  *	      perf_event::mmap_mutex
1315  *	        perf_buffer::aux_mutex
1316  *	      perf_addr_filters_head::lock
1317  *
1318  *    cpu_hotplug_lock
1319  *      pmus_lock
1320  *	  cpuctx->mutex / perf_event_context::mutex
1321  */
1322 static struct perf_event_context *
perf_event_ctx_lock_nested(struct perf_event * event,int nesting)1323 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1324 {
1325 	struct perf_event_context *ctx;
1326 
1327 again:
1328 	rcu_read_lock();
1329 	ctx = READ_ONCE(event->ctx);
1330 	if (!refcount_inc_not_zero(&ctx->refcount)) {
1331 		rcu_read_unlock();
1332 		goto again;
1333 	}
1334 	rcu_read_unlock();
1335 
1336 	mutex_lock_nested(&ctx->mutex, nesting);
1337 	if (event->ctx != ctx) {
1338 		mutex_unlock(&ctx->mutex);
1339 		put_ctx(ctx);
1340 		goto again;
1341 	}
1342 
1343 	return ctx;
1344 }
1345 
1346 static inline struct perf_event_context *
perf_event_ctx_lock(struct perf_event * event)1347 perf_event_ctx_lock(struct perf_event *event)
1348 {
1349 	return perf_event_ctx_lock_nested(event, 0);
1350 }
1351 
perf_event_ctx_unlock(struct perf_event * event,struct perf_event_context * ctx)1352 static void perf_event_ctx_unlock(struct perf_event *event,
1353 				  struct perf_event_context *ctx)
1354 {
1355 	mutex_unlock(&ctx->mutex);
1356 	put_ctx(ctx);
1357 }
1358 
1359 /*
1360  * This must be done under the ctx->lock, such as to serialize against
1361  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1362  * calling scheduler related locks and ctx->lock nests inside those.
1363  */
1364 static __must_check struct perf_event_context *
unclone_ctx(struct perf_event_context * ctx)1365 unclone_ctx(struct perf_event_context *ctx)
1366 {
1367 	struct perf_event_context *parent_ctx = ctx->parent_ctx;
1368 
1369 	lockdep_assert_held(&ctx->lock);
1370 
1371 	if (parent_ctx)
1372 		ctx->parent_ctx = NULL;
1373 	ctx->generation++;
1374 
1375 	return parent_ctx;
1376 }
1377 
perf_event_pid_type(struct perf_event * event,struct task_struct * p,enum pid_type type)1378 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1379 				enum pid_type type)
1380 {
1381 	u32 nr;
1382 	/*
1383 	 * only top level events have the pid namespace they were created in
1384 	 */
1385 	if (event->parent)
1386 		event = event->parent;
1387 
1388 	nr = __task_pid_nr_ns(p, type, event->ns);
1389 	/* avoid -1 if it is idle thread or runs in another ns */
1390 	if (!nr && !pid_alive(p))
1391 		nr = -1;
1392 	return nr;
1393 }
1394 
perf_event_pid(struct perf_event * event,struct task_struct * p)1395 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1396 {
1397 	return perf_event_pid_type(event, p, PIDTYPE_TGID);
1398 }
1399 
perf_event_tid(struct perf_event * event,struct task_struct * p)1400 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1401 {
1402 	return perf_event_pid_type(event, p, PIDTYPE_PID);
1403 }
1404 
1405 /*
1406  * If we inherit events we want to return the parent event id
1407  * to userspace.
1408  */
primary_event_id(struct perf_event * event)1409 static u64 primary_event_id(struct perf_event *event)
1410 {
1411 	u64 id = event->id;
1412 
1413 	if (event->parent)
1414 		id = event->parent->id;
1415 
1416 	return id;
1417 }
1418 
1419 /*
1420  * Get the perf_event_context for a task and lock it.
1421  *
1422  * This has to cope with the fact that until it is locked,
1423  * the context could get moved to another task.
1424  */
1425 static struct perf_event_context *
perf_lock_task_context(struct task_struct * task,unsigned long * flags)1426 perf_lock_task_context(struct task_struct *task, unsigned long *flags)
1427 {
1428 	struct perf_event_context *ctx;
1429 
1430 retry:
1431 	/*
1432 	 * One of the few rules of preemptible RCU is that one cannot do
1433 	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1434 	 * part of the read side critical section was irqs-enabled -- see
1435 	 * rcu_read_unlock_special().
1436 	 *
1437 	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1438 	 * side critical section has interrupts disabled.
1439 	 */
1440 	local_irq_save(*flags);
1441 	rcu_read_lock();
1442 	ctx = rcu_dereference(task->perf_event_ctxp);
1443 	if (ctx) {
1444 		/*
1445 		 * If this context is a clone of another, it might
1446 		 * get swapped for another underneath us by
1447 		 * perf_event_task_sched_out, though the
1448 		 * rcu_read_lock() protects us from any context
1449 		 * getting freed.  Lock the context and check if it
1450 		 * got swapped before we could get the lock, and retry
1451 		 * if so.  If we locked the right context, then it
1452 		 * can't get swapped on us any more.
1453 		 */
1454 		raw_spin_lock(&ctx->lock);
1455 		if (ctx != rcu_dereference(task->perf_event_ctxp)) {
1456 			raw_spin_unlock(&ctx->lock);
1457 			rcu_read_unlock();
1458 			local_irq_restore(*flags);
1459 			goto retry;
1460 		}
1461 
1462 		if (ctx->task == TASK_TOMBSTONE ||
1463 		    !refcount_inc_not_zero(&ctx->refcount)) {
1464 			raw_spin_unlock(&ctx->lock);
1465 			ctx = NULL;
1466 		} else {
1467 			WARN_ON_ONCE(ctx->task != task);
1468 		}
1469 	}
1470 	rcu_read_unlock();
1471 	if (!ctx)
1472 		local_irq_restore(*flags);
1473 	return ctx;
1474 }
1475 
1476 /*
1477  * Get the context for a task and increment its pin_count so it
1478  * can't get swapped to another task.  This also increments its
1479  * reference count so that the context can't get freed.
1480  */
1481 static struct perf_event_context *
perf_pin_task_context(struct task_struct * task)1482 perf_pin_task_context(struct task_struct *task)
1483 {
1484 	struct perf_event_context *ctx;
1485 	unsigned long flags;
1486 
1487 	ctx = perf_lock_task_context(task, &flags);
1488 	if (ctx) {
1489 		++ctx->pin_count;
1490 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1491 	}
1492 	return ctx;
1493 }
1494 
perf_unpin_context(struct perf_event_context * ctx)1495 static void perf_unpin_context(struct perf_event_context *ctx)
1496 {
1497 	unsigned long flags;
1498 
1499 	raw_spin_lock_irqsave(&ctx->lock, flags);
1500 	--ctx->pin_count;
1501 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1502 }
1503 
1504 /*
1505  * Update the record of the current time in a context.
1506  */
__update_context_time(struct perf_event_context * ctx,bool adv)1507 static void __update_context_time(struct perf_event_context *ctx, bool adv)
1508 {
1509 	u64 now = perf_clock();
1510 
1511 	lockdep_assert_held(&ctx->lock);
1512 
1513 	if (adv)
1514 		ctx->time += now - ctx->timestamp;
1515 	ctx->timestamp = now;
1516 
1517 	/*
1518 	 * The above: time' = time + (now - timestamp), can be re-arranged
1519 	 * into: time` = now + (time - timestamp), which gives a single value
1520 	 * offset to compute future time without locks on.
1521 	 *
1522 	 * See perf_event_time_now(), which can be used from NMI context where
1523 	 * it's (obviously) not possible to acquire ctx->lock in order to read
1524 	 * both the above values in a consistent manner.
1525 	 */
1526 	WRITE_ONCE(ctx->timeoffset, ctx->time - ctx->timestamp);
1527 }
1528 
update_context_time(struct perf_event_context * ctx)1529 static void update_context_time(struct perf_event_context *ctx)
1530 {
1531 	__update_context_time(ctx, true);
1532 }
1533 
perf_event_time(struct perf_event * event)1534 static u64 perf_event_time(struct perf_event *event)
1535 {
1536 	struct perf_event_context *ctx = event->ctx;
1537 
1538 	if (unlikely(!ctx))
1539 		return 0;
1540 
1541 	if (is_cgroup_event(event))
1542 		return perf_cgroup_event_time(event);
1543 
1544 	return ctx->time;
1545 }
1546 
perf_event_time_now(struct perf_event * event,u64 now)1547 static u64 perf_event_time_now(struct perf_event *event, u64 now)
1548 {
1549 	struct perf_event_context *ctx = event->ctx;
1550 
1551 	if (unlikely(!ctx))
1552 		return 0;
1553 
1554 	if (is_cgroup_event(event))
1555 		return perf_cgroup_event_time_now(event, now);
1556 
1557 	if (!(__load_acquire(&ctx->is_active) & EVENT_TIME))
1558 		return ctx->time;
1559 
1560 	now += READ_ONCE(ctx->timeoffset);
1561 	return now;
1562 }
1563 
get_event_type(struct perf_event * event)1564 static enum event_type_t get_event_type(struct perf_event *event)
1565 {
1566 	struct perf_event_context *ctx = event->ctx;
1567 	enum event_type_t event_type;
1568 
1569 	lockdep_assert_held(&ctx->lock);
1570 
1571 	/*
1572 	 * It's 'group type', really, because if our group leader is
1573 	 * pinned, so are we.
1574 	 */
1575 	if (event->group_leader != event)
1576 		event = event->group_leader;
1577 
1578 	event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1579 	if (!ctx->task)
1580 		event_type |= EVENT_CPU;
1581 
1582 	return event_type;
1583 }
1584 
1585 /*
1586  * Helper function to initialize event group nodes.
1587  */
init_event_group(struct perf_event * event)1588 static void init_event_group(struct perf_event *event)
1589 {
1590 	RB_CLEAR_NODE(&event->group_node);
1591 	event->group_index = 0;
1592 }
1593 
1594 /*
1595  * Extract pinned or flexible groups from the context
1596  * based on event attrs bits.
1597  */
1598 static struct perf_event_groups *
get_event_groups(struct perf_event * event,struct perf_event_context * ctx)1599 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1600 {
1601 	if (event->attr.pinned)
1602 		return &ctx->pinned_groups;
1603 	else
1604 		return &ctx->flexible_groups;
1605 }
1606 
1607 /*
1608  * Helper function to initializes perf_event_group trees.
1609  */
perf_event_groups_init(struct perf_event_groups * groups)1610 static void perf_event_groups_init(struct perf_event_groups *groups)
1611 {
1612 	groups->tree = RB_ROOT;
1613 	groups->index = 0;
1614 }
1615 
event_cgroup(const struct perf_event * event)1616 static inline struct cgroup *event_cgroup(const struct perf_event *event)
1617 {
1618 	struct cgroup *cgroup = NULL;
1619 
1620 #ifdef CONFIG_CGROUP_PERF
1621 	if (event->cgrp)
1622 		cgroup = event->cgrp->css.cgroup;
1623 #endif
1624 
1625 	return cgroup;
1626 }
1627 
1628 /*
1629  * Compare function for event groups;
1630  *
1631  * Implements complex key that first sorts by CPU and then by virtual index
1632  * which provides ordering when rotating groups for the same CPU.
1633  */
1634 static __always_inline int
perf_event_groups_cmp(const int left_cpu,const struct pmu * left_pmu,const struct cgroup * left_cgroup,const u64 left_group_index,const struct perf_event * right)1635 perf_event_groups_cmp(const int left_cpu, const struct pmu *left_pmu,
1636 		      const struct cgroup *left_cgroup, const u64 left_group_index,
1637 		      const struct perf_event *right)
1638 {
1639 	if (left_cpu < right->cpu)
1640 		return -1;
1641 	if (left_cpu > right->cpu)
1642 		return 1;
1643 
1644 	if (left_pmu) {
1645 		if (left_pmu < right->pmu_ctx->pmu)
1646 			return -1;
1647 		if (left_pmu > right->pmu_ctx->pmu)
1648 			return 1;
1649 	}
1650 
1651 #ifdef CONFIG_CGROUP_PERF
1652 	{
1653 		const struct cgroup *right_cgroup = event_cgroup(right);
1654 
1655 		if (left_cgroup != right_cgroup) {
1656 			if (!left_cgroup) {
1657 				/*
1658 				 * Left has no cgroup but right does, no
1659 				 * cgroups come first.
1660 				 */
1661 				return -1;
1662 			}
1663 			if (!right_cgroup) {
1664 				/*
1665 				 * Right has no cgroup but left does, no
1666 				 * cgroups come first.
1667 				 */
1668 				return 1;
1669 			}
1670 			/* Two dissimilar cgroups, order by id. */
1671 			if (cgroup_id(left_cgroup) < cgroup_id(right_cgroup))
1672 				return -1;
1673 
1674 			return 1;
1675 		}
1676 	}
1677 #endif
1678 
1679 	if (left_group_index < right->group_index)
1680 		return -1;
1681 	if (left_group_index > right->group_index)
1682 		return 1;
1683 
1684 	return 0;
1685 }
1686 
1687 #define __node_2_pe(node) \
1688 	rb_entry((node), struct perf_event, group_node)
1689 
__group_less(struct rb_node * a,const struct rb_node * b)1690 static inline bool __group_less(struct rb_node *a, const struct rb_node *b)
1691 {
1692 	struct perf_event *e = __node_2_pe(a);
1693 	return perf_event_groups_cmp(e->cpu, e->pmu_ctx->pmu, event_cgroup(e),
1694 				     e->group_index, __node_2_pe(b)) < 0;
1695 }
1696 
1697 struct __group_key {
1698 	int cpu;
1699 	struct pmu *pmu;
1700 	struct cgroup *cgroup;
1701 };
1702 
__group_cmp(const void * key,const struct rb_node * node)1703 static inline int __group_cmp(const void *key, const struct rb_node *node)
1704 {
1705 	const struct __group_key *a = key;
1706 	const struct perf_event *b = __node_2_pe(node);
1707 
1708 	/* partial/subtree match: @cpu, @pmu, @cgroup; ignore: @group_index */
1709 	return perf_event_groups_cmp(a->cpu, a->pmu, a->cgroup, b->group_index, b);
1710 }
1711 
1712 static inline int
__group_cmp_ignore_cgroup(const void * key,const struct rb_node * node)1713 __group_cmp_ignore_cgroup(const void *key, const struct rb_node *node)
1714 {
1715 	const struct __group_key *a = key;
1716 	const struct perf_event *b = __node_2_pe(node);
1717 
1718 	/* partial/subtree match: @cpu, @pmu, ignore: @cgroup, @group_index */
1719 	return perf_event_groups_cmp(a->cpu, a->pmu, event_cgroup(b),
1720 				     b->group_index, b);
1721 }
1722 
1723 /*
1724  * Insert @event into @groups' tree; using
1725  *   {@event->cpu, @event->pmu_ctx->pmu, event_cgroup(@event), ++@groups->index}
1726  * as key. This places it last inside the {cpu,pmu,cgroup} subtree.
1727  */
1728 static void
perf_event_groups_insert(struct perf_event_groups * groups,struct perf_event * event)1729 perf_event_groups_insert(struct perf_event_groups *groups,
1730 			 struct perf_event *event)
1731 {
1732 	event->group_index = ++groups->index;
1733 
1734 	rb_add(&event->group_node, &groups->tree, __group_less);
1735 }
1736 
1737 /*
1738  * Helper function to insert event into the pinned or flexible groups.
1739  */
1740 static void
add_event_to_groups(struct perf_event * event,struct perf_event_context * ctx)1741 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1742 {
1743 	struct perf_event_groups *groups;
1744 
1745 	groups = get_event_groups(event, ctx);
1746 	perf_event_groups_insert(groups, event);
1747 }
1748 
1749 /*
1750  * Delete a group from a tree.
1751  */
1752 static void
perf_event_groups_delete(struct perf_event_groups * groups,struct perf_event * event)1753 perf_event_groups_delete(struct perf_event_groups *groups,
1754 			 struct perf_event *event)
1755 {
1756 	WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1757 		     RB_EMPTY_ROOT(&groups->tree));
1758 
1759 	rb_erase(&event->group_node, &groups->tree);
1760 	init_event_group(event);
1761 }
1762 
1763 /*
1764  * Helper function to delete event from its groups.
1765  */
1766 static void
del_event_from_groups(struct perf_event * event,struct perf_event_context * ctx)1767 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1768 {
1769 	struct perf_event_groups *groups;
1770 
1771 	groups = get_event_groups(event, ctx);
1772 	perf_event_groups_delete(groups, event);
1773 }
1774 
1775 /*
1776  * Get the leftmost event in the {cpu,pmu,cgroup} subtree.
1777  */
1778 static struct perf_event *
perf_event_groups_first(struct perf_event_groups * groups,int cpu,struct pmu * pmu,struct cgroup * cgrp)1779 perf_event_groups_first(struct perf_event_groups *groups, int cpu,
1780 			struct pmu *pmu, struct cgroup *cgrp)
1781 {
1782 	struct __group_key key = {
1783 		.cpu = cpu,
1784 		.pmu = pmu,
1785 		.cgroup = cgrp,
1786 	};
1787 	struct rb_node *node;
1788 
1789 	node = rb_find_first(&key, &groups->tree, __group_cmp);
1790 	if (node)
1791 		return __node_2_pe(node);
1792 
1793 	return NULL;
1794 }
1795 
1796 static struct perf_event *
perf_event_groups_next(struct perf_event * event,struct pmu * pmu)1797 perf_event_groups_next(struct perf_event *event, struct pmu *pmu)
1798 {
1799 	struct __group_key key = {
1800 		.cpu = event->cpu,
1801 		.pmu = pmu,
1802 		.cgroup = event_cgroup(event),
1803 	};
1804 	struct rb_node *next;
1805 
1806 	next = rb_next_match(&key, &event->group_node, __group_cmp);
1807 	if (next)
1808 		return __node_2_pe(next);
1809 
1810 	return NULL;
1811 }
1812 
1813 #define perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu)		\
1814 	for (event = perf_event_groups_first(groups, cpu, pmu, NULL);	\
1815 	     event; event = perf_event_groups_next(event, pmu))
1816 
1817 /*
1818  * Iterate through the whole groups tree.
1819  */
1820 #define perf_event_groups_for_each(event, groups)			\
1821 	for (event = rb_entry_safe(rb_first(&((groups)->tree)),		\
1822 				typeof(*event), group_node); event;	\
1823 		event = rb_entry_safe(rb_next(&event->group_node),	\
1824 				typeof(*event), group_node))
1825 
1826 /*
1827  * Does the event attribute request inherit with PERF_SAMPLE_READ
1828  */
has_inherit_and_sample_read(struct perf_event_attr * attr)1829 static inline bool has_inherit_and_sample_read(struct perf_event_attr *attr)
1830 {
1831 	return attr->inherit && (attr->sample_type & PERF_SAMPLE_READ);
1832 }
1833 
1834 /*
1835  * Add an event from the lists for its context.
1836  * Must be called with ctx->mutex and ctx->lock held.
1837  */
1838 static void
list_add_event(struct perf_event * event,struct perf_event_context * ctx)1839 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1840 {
1841 	lockdep_assert_held(&ctx->lock);
1842 
1843 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1844 	event->attach_state |= PERF_ATTACH_CONTEXT;
1845 
1846 	event->tstamp = perf_event_time(event);
1847 
1848 	/*
1849 	 * If we're a stand alone event or group leader, we go to the context
1850 	 * list, group events are kept attached to the group so that
1851 	 * perf_group_detach can, at all times, locate all siblings.
1852 	 */
1853 	if (event->group_leader == event) {
1854 		event->group_caps = event->event_caps;
1855 		add_event_to_groups(event, ctx);
1856 	}
1857 
1858 	list_add_rcu(&event->event_entry, &ctx->event_list);
1859 	ctx->nr_events++;
1860 	if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)
1861 		ctx->nr_user++;
1862 	if (event->attr.inherit_stat)
1863 		ctx->nr_stat++;
1864 	if (has_inherit_and_sample_read(&event->attr))
1865 		local_inc(&ctx->nr_no_switch_fast);
1866 
1867 	if (event->state > PERF_EVENT_STATE_OFF)
1868 		perf_cgroup_event_enable(event, ctx);
1869 
1870 	ctx->generation++;
1871 	event->pmu_ctx->nr_events++;
1872 }
1873 
1874 /*
1875  * Initialize event state based on the perf_event_attr::disabled.
1876  */
perf_event__state_init(struct perf_event * event)1877 static inline void perf_event__state_init(struct perf_event *event)
1878 {
1879 	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1880 					      PERF_EVENT_STATE_INACTIVE;
1881 }
1882 
__perf_event_read_size(u64 read_format,int nr_siblings)1883 static int __perf_event_read_size(u64 read_format, int nr_siblings)
1884 {
1885 	int entry = sizeof(u64); /* value */
1886 	int size = 0;
1887 	int nr = 1;
1888 
1889 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1890 		size += sizeof(u64);
1891 
1892 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1893 		size += sizeof(u64);
1894 
1895 	if (read_format & PERF_FORMAT_ID)
1896 		entry += sizeof(u64);
1897 
1898 	if (read_format & PERF_FORMAT_LOST)
1899 		entry += sizeof(u64);
1900 
1901 	if (read_format & PERF_FORMAT_GROUP) {
1902 		nr += nr_siblings;
1903 		size += sizeof(u64);
1904 	}
1905 
1906 	/*
1907 	 * Since perf_event_validate_size() limits this to 16k and inhibits
1908 	 * adding more siblings, this will never overflow.
1909 	 */
1910 	return size + nr * entry;
1911 }
1912 
__perf_event_header_size(struct perf_event * event,u64 sample_type)1913 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1914 {
1915 	struct perf_sample_data *data;
1916 	u16 size = 0;
1917 
1918 	if (sample_type & PERF_SAMPLE_IP)
1919 		size += sizeof(data->ip);
1920 
1921 	if (sample_type & PERF_SAMPLE_ADDR)
1922 		size += sizeof(data->addr);
1923 
1924 	if (sample_type & PERF_SAMPLE_PERIOD)
1925 		size += sizeof(data->period);
1926 
1927 	if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
1928 		size += sizeof(data->weight.full);
1929 
1930 	if (sample_type & PERF_SAMPLE_READ)
1931 		size += event->read_size;
1932 
1933 	if (sample_type & PERF_SAMPLE_DATA_SRC)
1934 		size += sizeof(data->data_src.val);
1935 
1936 	if (sample_type & PERF_SAMPLE_TRANSACTION)
1937 		size += sizeof(data->txn);
1938 
1939 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1940 		size += sizeof(data->phys_addr);
1941 
1942 	if (sample_type & PERF_SAMPLE_CGROUP)
1943 		size += sizeof(data->cgroup);
1944 
1945 	if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
1946 		size += sizeof(data->data_page_size);
1947 
1948 	if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
1949 		size += sizeof(data->code_page_size);
1950 
1951 	event->header_size = size;
1952 }
1953 
1954 /*
1955  * Called at perf_event creation and when events are attached/detached from a
1956  * group.
1957  */
perf_event__header_size(struct perf_event * event)1958 static void perf_event__header_size(struct perf_event *event)
1959 {
1960 	event->read_size =
1961 		__perf_event_read_size(event->attr.read_format,
1962 				       event->group_leader->nr_siblings);
1963 	__perf_event_header_size(event, event->attr.sample_type);
1964 }
1965 
perf_event__id_header_size(struct perf_event * event)1966 static void perf_event__id_header_size(struct perf_event *event)
1967 {
1968 	struct perf_sample_data *data;
1969 	u64 sample_type = event->attr.sample_type;
1970 	u16 size = 0;
1971 
1972 	if (sample_type & PERF_SAMPLE_TID)
1973 		size += sizeof(data->tid_entry);
1974 
1975 	if (sample_type & PERF_SAMPLE_TIME)
1976 		size += sizeof(data->time);
1977 
1978 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
1979 		size += sizeof(data->id);
1980 
1981 	if (sample_type & PERF_SAMPLE_ID)
1982 		size += sizeof(data->id);
1983 
1984 	if (sample_type & PERF_SAMPLE_STREAM_ID)
1985 		size += sizeof(data->stream_id);
1986 
1987 	if (sample_type & PERF_SAMPLE_CPU)
1988 		size += sizeof(data->cpu_entry);
1989 
1990 	event->id_header_size = size;
1991 }
1992 
1993 /*
1994  * Check that adding an event to the group does not result in anybody
1995  * overflowing the 64k event limit imposed by the output buffer.
1996  *
1997  * Specifically, check that the read_size for the event does not exceed 16k,
1998  * read_size being the one term that grows with groups size. Since read_size
1999  * depends on per-event read_format, also (re)check the existing events.
2000  *
2001  * This leaves 48k for the constant size fields and things like callchains,
2002  * branch stacks and register sets.
2003  */
perf_event_validate_size(struct perf_event * event)2004 static bool perf_event_validate_size(struct perf_event *event)
2005 {
2006 	struct perf_event *sibling, *group_leader = event->group_leader;
2007 
2008 	if (__perf_event_read_size(event->attr.read_format,
2009 				   group_leader->nr_siblings + 1) > 16*1024)
2010 		return false;
2011 
2012 	if (__perf_event_read_size(group_leader->attr.read_format,
2013 				   group_leader->nr_siblings + 1) > 16*1024)
2014 		return false;
2015 
2016 	/*
2017 	 * When creating a new group leader, group_leader->ctx is initialized
2018 	 * after the size has been validated, but we cannot safely use
2019 	 * for_each_sibling_event() until group_leader->ctx is set. A new group
2020 	 * leader cannot have any siblings yet, so we can safely skip checking
2021 	 * the non-existent siblings.
2022 	 */
2023 	if (event == group_leader)
2024 		return true;
2025 
2026 	for_each_sibling_event(sibling, group_leader) {
2027 		if (__perf_event_read_size(sibling->attr.read_format,
2028 					   group_leader->nr_siblings + 1) > 16*1024)
2029 			return false;
2030 	}
2031 
2032 	return true;
2033 }
2034 
perf_group_attach(struct perf_event * event)2035 static void perf_group_attach(struct perf_event *event)
2036 {
2037 	struct perf_event *group_leader = event->group_leader, *pos;
2038 
2039 	lockdep_assert_held(&event->ctx->lock);
2040 
2041 	/*
2042 	 * We can have double attach due to group movement (move_group) in
2043 	 * perf_event_open().
2044 	 */
2045 	if (event->attach_state & PERF_ATTACH_GROUP)
2046 		return;
2047 
2048 	event->attach_state |= PERF_ATTACH_GROUP;
2049 
2050 	if (group_leader == event)
2051 		return;
2052 
2053 	WARN_ON_ONCE(group_leader->ctx != event->ctx);
2054 
2055 	group_leader->group_caps &= event->event_caps;
2056 
2057 	list_add_tail(&event->sibling_list, &group_leader->sibling_list);
2058 	group_leader->nr_siblings++;
2059 	group_leader->group_generation++;
2060 
2061 	perf_event__header_size(group_leader);
2062 
2063 	for_each_sibling_event(pos, group_leader)
2064 		perf_event__header_size(pos);
2065 }
2066 
2067 /*
2068  * Remove an event from the lists for its context.
2069  * Must be called with ctx->mutex and ctx->lock held.
2070  */
2071 static void
list_del_event(struct perf_event * event,struct perf_event_context * ctx)2072 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
2073 {
2074 	WARN_ON_ONCE(event->ctx != ctx);
2075 	lockdep_assert_held(&ctx->lock);
2076 
2077 	/*
2078 	 * We can have double detach due to exit/hot-unplug + close.
2079 	 */
2080 	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
2081 		return;
2082 
2083 	event->attach_state &= ~PERF_ATTACH_CONTEXT;
2084 
2085 	ctx->nr_events--;
2086 	if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)
2087 		ctx->nr_user--;
2088 	if (event->attr.inherit_stat)
2089 		ctx->nr_stat--;
2090 	if (has_inherit_and_sample_read(&event->attr))
2091 		local_dec(&ctx->nr_no_switch_fast);
2092 
2093 	list_del_rcu(&event->event_entry);
2094 
2095 	if (event->group_leader == event)
2096 		del_event_from_groups(event, ctx);
2097 
2098 	/*
2099 	 * If event was in error state, then keep it
2100 	 * that way, otherwise bogus counts will be
2101 	 * returned on read(). The only way to get out
2102 	 * of error state is by explicit re-enabling
2103 	 * of the event
2104 	 */
2105 	if (event->state > PERF_EVENT_STATE_OFF) {
2106 		perf_cgroup_event_disable(event, ctx);
2107 		perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2108 	}
2109 
2110 	ctx->generation++;
2111 	event->pmu_ctx->nr_events--;
2112 }
2113 
2114 static int
perf_aux_output_match(struct perf_event * event,struct perf_event * aux_event)2115 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event)
2116 {
2117 	if (!has_aux(aux_event))
2118 		return 0;
2119 
2120 	if (!event->pmu->aux_output_match)
2121 		return 0;
2122 
2123 	return event->pmu->aux_output_match(aux_event);
2124 }
2125 
2126 static void put_event(struct perf_event *event);
2127 static void __event_disable(struct perf_event *event,
2128 			    struct perf_event_context *ctx,
2129 			    enum perf_event_state state);
2130 
perf_put_aux_event(struct perf_event * event)2131 static void perf_put_aux_event(struct perf_event *event)
2132 {
2133 	struct perf_event_context *ctx = event->ctx;
2134 	struct perf_event *iter;
2135 
2136 	/*
2137 	 * If event uses aux_event tear down the link
2138 	 */
2139 	if (event->aux_event) {
2140 		iter = event->aux_event;
2141 		event->aux_event = NULL;
2142 		put_event(iter);
2143 		return;
2144 	}
2145 
2146 	/*
2147 	 * If the event is an aux_event, tear down all links to
2148 	 * it from other events.
2149 	 */
2150 	for_each_sibling_event(iter, event->group_leader) {
2151 		if (iter->aux_event != event)
2152 			continue;
2153 
2154 		iter->aux_event = NULL;
2155 		put_event(event);
2156 
2157 		/*
2158 		 * If it's ACTIVE, schedule it out and put it into ERROR
2159 		 * state so that we don't try to schedule it again. Note
2160 		 * that perf_event_enable() will clear the ERROR status.
2161 		 */
2162 		__event_disable(iter, ctx, PERF_EVENT_STATE_ERROR);
2163 	}
2164 }
2165 
perf_need_aux_event(struct perf_event * event)2166 static bool perf_need_aux_event(struct perf_event *event)
2167 {
2168 	return event->attr.aux_output || has_aux_action(event);
2169 }
2170 
perf_get_aux_event(struct perf_event * event,struct perf_event * group_leader)2171 static int perf_get_aux_event(struct perf_event *event,
2172 			      struct perf_event *group_leader)
2173 {
2174 	/*
2175 	 * Our group leader must be an aux event if we want to be
2176 	 * an aux_output. This way, the aux event will precede its
2177 	 * aux_output events in the group, and therefore will always
2178 	 * schedule first.
2179 	 */
2180 	if (!group_leader)
2181 		return 0;
2182 
2183 	/*
2184 	 * aux_output and aux_sample_size are mutually exclusive.
2185 	 */
2186 	if (event->attr.aux_output && event->attr.aux_sample_size)
2187 		return 0;
2188 
2189 	if (event->attr.aux_output &&
2190 	    !perf_aux_output_match(event, group_leader))
2191 		return 0;
2192 
2193 	if ((event->attr.aux_pause || event->attr.aux_resume) &&
2194 	    !(group_leader->pmu->capabilities & PERF_PMU_CAP_AUX_PAUSE))
2195 		return 0;
2196 
2197 	if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux)
2198 		return 0;
2199 
2200 	if (!atomic_long_inc_not_zero(&group_leader->refcount))
2201 		return 0;
2202 
2203 	/*
2204 	 * Link aux_outputs to their aux event; this is undone in
2205 	 * perf_group_detach() by perf_put_aux_event(). When the
2206 	 * group in torn down, the aux_output events loose their
2207 	 * link to the aux_event and can't schedule any more.
2208 	 */
2209 	event->aux_event = group_leader;
2210 
2211 	return 1;
2212 }
2213 
get_event_list(struct perf_event * event)2214 static inline struct list_head *get_event_list(struct perf_event *event)
2215 {
2216 	return event->attr.pinned ? &event->pmu_ctx->pinned_active :
2217 				    &event->pmu_ctx->flexible_active;
2218 }
2219 
perf_group_detach(struct perf_event * event)2220 static void perf_group_detach(struct perf_event *event)
2221 {
2222 	struct perf_event *leader = event->group_leader;
2223 	struct perf_event *sibling, *tmp;
2224 	struct perf_event_context *ctx = event->ctx;
2225 
2226 	lockdep_assert_held(&ctx->lock);
2227 
2228 	/*
2229 	 * We can have double detach due to exit/hot-unplug + close.
2230 	 */
2231 	if (!(event->attach_state & PERF_ATTACH_GROUP))
2232 		return;
2233 
2234 	event->attach_state &= ~PERF_ATTACH_GROUP;
2235 
2236 	perf_put_aux_event(event);
2237 
2238 	/*
2239 	 * If this is a sibling, remove it from its group.
2240 	 */
2241 	if (leader != event) {
2242 		list_del_init(&event->sibling_list);
2243 		event->group_leader->nr_siblings--;
2244 		event->group_leader->group_generation++;
2245 		goto out;
2246 	}
2247 
2248 	/*
2249 	 * If this was a group event with sibling events then
2250 	 * upgrade the siblings to singleton events by adding them
2251 	 * to whatever list we are on.
2252 	 */
2253 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
2254 
2255 		/*
2256 		 * Events that have PERF_EV_CAP_SIBLING require being part of
2257 		 * a group and cannot exist on their own, schedule them out
2258 		 * and move them into the ERROR state. Also see
2259 		 * _perf_event_enable(), it will not be able to recover this
2260 		 * ERROR state.
2261 		 */
2262 		if (sibling->event_caps & PERF_EV_CAP_SIBLING)
2263 			__event_disable(sibling, ctx, PERF_EVENT_STATE_ERROR);
2264 
2265 		sibling->group_leader = sibling;
2266 		list_del_init(&sibling->sibling_list);
2267 
2268 		/* Inherit group flags from the previous leader */
2269 		sibling->group_caps = event->group_caps;
2270 
2271 		if (sibling->attach_state & PERF_ATTACH_CONTEXT) {
2272 			add_event_to_groups(sibling, event->ctx);
2273 
2274 			if (sibling->state == PERF_EVENT_STATE_ACTIVE)
2275 				list_add_tail(&sibling->active_list, get_event_list(sibling));
2276 		}
2277 
2278 		WARN_ON_ONCE(sibling->ctx != event->ctx);
2279 	}
2280 
2281 out:
2282 	for_each_sibling_event(tmp, leader)
2283 		perf_event__header_size(tmp);
2284 
2285 	perf_event__header_size(leader);
2286 }
2287 
2288 static void sync_child_event(struct perf_event *child_event);
2289 
perf_child_detach(struct perf_event * event)2290 static void perf_child_detach(struct perf_event *event)
2291 {
2292 	struct perf_event *parent_event = event->parent;
2293 
2294 	if (!(event->attach_state & PERF_ATTACH_CHILD))
2295 		return;
2296 
2297 	event->attach_state &= ~PERF_ATTACH_CHILD;
2298 
2299 	if (WARN_ON_ONCE(!parent_event))
2300 		return;
2301 
2302 	lockdep_assert_held(&parent_event->child_mutex);
2303 
2304 	sync_child_event(event);
2305 	list_del_init(&event->child_list);
2306 }
2307 
is_orphaned_event(struct perf_event * event)2308 static bool is_orphaned_event(struct perf_event *event)
2309 {
2310 	return event->state == PERF_EVENT_STATE_DEAD;
2311 }
2312 
2313 static inline int
event_filter_match(struct perf_event * event)2314 event_filter_match(struct perf_event *event)
2315 {
2316 	return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
2317 	       perf_cgroup_match(event);
2318 }
2319 
2320 static void
event_sched_out(struct perf_event * event,struct perf_event_context * ctx)2321 event_sched_out(struct perf_event *event, struct perf_event_context *ctx)
2322 {
2323 	struct perf_event_pmu_context *epc = event->pmu_ctx;
2324 	struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context);
2325 	enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
2326 
2327 	// XXX cpc serialization, probably per-cpu IRQ disabled
2328 
2329 	WARN_ON_ONCE(event->ctx != ctx);
2330 	lockdep_assert_held(&ctx->lock);
2331 
2332 	if (event->state != PERF_EVENT_STATE_ACTIVE)
2333 		return;
2334 
2335 	/*
2336 	 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2337 	 * we can schedule events _OUT_ individually through things like
2338 	 * __perf_remove_from_context().
2339 	 */
2340 	list_del_init(&event->active_list);
2341 
2342 	perf_pmu_disable(event->pmu);
2343 
2344 	event->pmu->del(event, 0);
2345 	event->oncpu = -1;
2346 
2347 	if (event->pending_disable) {
2348 		event->pending_disable = 0;
2349 		perf_cgroup_event_disable(event, ctx);
2350 		state = PERF_EVENT_STATE_OFF;
2351 	}
2352 
2353 	perf_event_set_state(event, state);
2354 
2355 	if (!is_software_event(event))
2356 		cpc->active_oncpu--;
2357 	if (event->attr.freq && event->attr.sample_freq) {
2358 		ctx->nr_freq--;
2359 		epc->nr_freq--;
2360 	}
2361 	if (event->attr.exclusive || !cpc->active_oncpu)
2362 		cpc->exclusive = 0;
2363 
2364 	perf_pmu_enable(event->pmu);
2365 }
2366 
2367 static void
group_sched_out(struct perf_event * group_event,struct perf_event_context * ctx)2368 group_sched_out(struct perf_event *group_event, struct perf_event_context *ctx)
2369 {
2370 	struct perf_event *event;
2371 
2372 	if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2373 		return;
2374 
2375 	perf_assert_pmu_disabled(group_event->pmu_ctx->pmu);
2376 
2377 	event_sched_out(group_event, ctx);
2378 
2379 	/*
2380 	 * Schedule out siblings (if any):
2381 	 */
2382 	for_each_sibling_event(event, group_event)
2383 		event_sched_out(event, ctx);
2384 }
2385 
2386 static inline void
__ctx_time_update(struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,bool final)2387 __ctx_time_update(struct perf_cpu_context *cpuctx, struct perf_event_context *ctx, bool final)
2388 {
2389 	if (ctx->is_active & EVENT_TIME) {
2390 		if (ctx->is_active & EVENT_FROZEN)
2391 			return;
2392 		update_context_time(ctx);
2393 		update_cgrp_time_from_cpuctx(cpuctx, final);
2394 	}
2395 }
2396 
2397 static inline void
ctx_time_update(struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)2398 ctx_time_update(struct perf_cpu_context *cpuctx, struct perf_event_context *ctx)
2399 {
2400 	__ctx_time_update(cpuctx, ctx, false);
2401 }
2402 
2403 /*
2404  * To be used inside perf_ctx_lock() / perf_ctx_unlock(). Lasts until perf_ctx_unlock().
2405  */
2406 static inline void
ctx_time_freeze(struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)2407 ctx_time_freeze(struct perf_cpu_context *cpuctx, struct perf_event_context *ctx)
2408 {
2409 	ctx_time_update(cpuctx, ctx);
2410 	if (ctx->is_active & EVENT_TIME)
2411 		ctx->is_active |= EVENT_FROZEN;
2412 }
2413 
2414 static inline void
ctx_time_update_event(struct perf_event_context * ctx,struct perf_event * event)2415 ctx_time_update_event(struct perf_event_context *ctx, struct perf_event *event)
2416 {
2417 	if (ctx->is_active & EVENT_TIME) {
2418 		if (ctx->is_active & EVENT_FROZEN)
2419 			return;
2420 		update_context_time(ctx);
2421 		update_cgrp_time_from_event(event);
2422 	}
2423 }
2424 
2425 #define DETACH_GROUP	0x01UL
2426 #define DETACH_CHILD	0x02UL
2427 #define DETACH_DEAD	0x04UL
2428 #define DETACH_EXIT	0x08UL
2429 
2430 /*
2431  * Cross CPU call to remove a performance event
2432  *
2433  * We disable the event on the hardware level first. After that we
2434  * remove it from the context list.
2435  */
2436 static void
__perf_remove_from_context(struct perf_event * event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,void * info)2437 __perf_remove_from_context(struct perf_event *event,
2438 			   struct perf_cpu_context *cpuctx,
2439 			   struct perf_event_context *ctx,
2440 			   void *info)
2441 {
2442 	struct perf_event_pmu_context *pmu_ctx = event->pmu_ctx;
2443 	enum perf_event_state state = PERF_EVENT_STATE_OFF;
2444 	unsigned long flags = (unsigned long)info;
2445 
2446 	ctx_time_update(cpuctx, ctx);
2447 
2448 	/*
2449 	 * Ensure event_sched_out() switches to OFF, at the very least
2450 	 * this avoids raising perf_pending_task() at this time.
2451 	 */
2452 	if (flags & DETACH_EXIT)
2453 		state = PERF_EVENT_STATE_EXIT;
2454 	if (flags & DETACH_DEAD) {
2455 		event->pending_disable = 1;
2456 		state = PERF_EVENT_STATE_DEAD;
2457 	}
2458 	event_sched_out(event, ctx);
2459 	perf_event_set_state(event, min(event->state, state));
2460 	if (flags & DETACH_GROUP)
2461 		perf_group_detach(event);
2462 	if (flags & DETACH_CHILD)
2463 		perf_child_detach(event);
2464 	list_del_event(event, ctx);
2465 
2466 	if (!pmu_ctx->nr_events) {
2467 		pmu_ctx->rotate_necessary = 0;
2468 
2469 		if (ctx->task && ctx->is_active) {
2470 			struct perf_cpu_pmu_context *cpc;
2471 
2472 			cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context);
2473 			WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
2474 			cpc->task_epc = NULL;
2475 		}
2476 	}
2477 
2478 	if (!ctx->nr_events && ctx->is_active) {
2479 		if (ctx == &cpuctx->ctx)
2480 			update_cgrp_time_from_cpuctx(cpuctx, true);
2481 
2482 		ctx->is_active = 0;
2483 		if (ctx->task) {
2484 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2485 			cpuctx->task_ctx = NULL;
2486 		}
2487 	}
2488 }
2489 
2490 /*
2491  * Remove the event from a task's (or a CPU's) list of events.
2492  *
2493  * If event->ctx is a cloned context, callers must make sure that
2494  * every task struct that event->ctx->task could possibly point to
2495  * remains valid.  This is OK when called from perf_release since
2496  * that only calls us on the top-level context, which can't be a clone.
2497  * When called from perf_event_exit_task, it's OK because the
2498  * context has been detached from its task.
2499  */
perf_remove_from_context(struct perf_event * event,unsigned long flags)2500 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2501 {
2502 	struct perf_event_context *ctx = event->ctx;
2503 
2504 	lockdep_assert_held(&ctx->mutex);
2505 
2506 	/*
2507 	 * Because of perf_event_exit_task(), perf_remove_from_context() ought
2508 	 * to work in the face of TASK_TOMBSTONE, unlike every other
2509 	 * event_function_call() user.
2510 	 */
2511 	raw_spin_lock_irq(&ctx->lock);
2512 	if (!ctx->is_active) {
2513 		__perf_remove_from_context(event, this_cpu_ptr(&perf_cpu_context),
2514 					   ctx, (void *)flags);
2515 		raw_spin_unlock_irq(&ctx->lock);
2516 		return;
2517 	}
2518 	raw_spin_unlock_irq(&ctx->lock);
2519 
2520 	event_function_call(event, __perf_remove_from_context, (void *)flags);
2521 }
2522 
__event_disable(struct perf_event * event,struct perf_event_context * ctx,enum perf_event_state state)2523 static void __event_disable(struct perf_event *event,
2524 			    struct perf_event_context *ctx,
2525 			    enum perf_event_state state)
2526 {
2527 	event_sched_out(event, ctx);
2528 	perf_cgroup_event_disable(event, ctx);
2529 	perf_event_set_state(event, state);
2530 }
2531 
2532 /*
2533  * Cross CPU call to disable a performance event
2534  */
__perf_event_disable(struct perf_event * event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,void * info)2535 static void __perf_event_disable(struct perf_event *event,
2536 				 struct perf_cpu_context *cpuctx,
2537 				 struct perf_event_context *ctx,
2538 				 void *info)
2539 {
2540 	if (event->state < PERF_EVENT_STATE_INACTIVE)
2541 		return;
2542 
2543 	perf_pmu_disable(event->pmu_ctx->pmu);
2544 	ctx_time_update_event(ctx, event);
2545 
2546 	/*
2547 	 * When disabling a group leader, the whole group becomes ineligible
2548 	 * to run, so schedule out the full group.
2549 	 */
2550 	if (event == event->group_leader)
2551 		group_sched_out(event, ctx);
2552 
2553 	/*
2554 	 * But only mark the leader OFF; the siblings will remain
2555 	 * INACTIVE.
2556 	 */
2557 	__event_disable(event, ctx, PERF_EVENT_STATE_OFF);
2558 
2559 	perf_pmu_enable(event->pmu_ctx->pmu);
2560 }
2561 
2562 /*
2563  * Disable an event.
2564  *
2565  * If event->ctx is a cloned context, callers must make sure that
2566  * every task struct that event->ctx->task could possibly point to
2567  * remains valid.  This condition is satisfied when called through
2568  * perf_event_for_each_child or perf_event_for_each because they
2569  * hold the top-level event's child_mutex, so any descendant that
2570  * goes to exit will block in perf_event_exit_event().
2571  *
2572  * When called from perf_pending_disable it's OK because event->ctx
2573  * is the current context on this CPU and preemption is disabled,
2574  * hence we can't get into perf_event_task_sched_out for this context.
2575  */
_perf_event_disable(struct perf_event * event)2576 static void _perf_event_disable(struct perf_event *event)
2577 {
2578 	struct perf_event_context *ctx = event->ctx;
2579 
2580 	raw_spin_lock_irq(&ctx->lock);
2581 	if (event->state <= PERF_EVENT_STATE_OFF) {
2582 		raw_spin_unlock_irq(&ctx->lock);
2583 		return;
2584 	}
2585 	raw_spin_unlock_irq(&ctx->lock);
2586 
2587 	event_function_call(event, __perf_event_disable, NULL);
2588 }
2589 
perf_event_disable_local(struct perf_event * event)2590 void perf_event_disable_local(struct perf_event *event)
2591 {
2592 	event_function_local(event, __perf_event_disable, NULL);
2593 }
2594 
2595 /*
2596  * Strictly speaking kernel users cannot create groups and therefore this
2597  * interface does not need the perf_event_ctx_lock() magic.
2598  */
perf_event_disable(struct perf_event * event)2599 void perf_event_disable(struct perf_event *event)
2600 {
2601 	struct perf_event_context *ctx;
2602 
2603 	ctx = perf_event_ctx_lock(event);
2604 	_perf_event_disable(event);
2605 	perf_event_ctx_unlock(event, ctx);
2606 }
2607 EXPORT_SYMBOL_GPL(perf_event_disable);
2608 
perf_event_disable_inatomic(struct perf_event * event)2609 void perf_event_disable_inatomic(struct perf_event *event)
2610 {
2611 	event->pending_disable = 1;
2612 	irq_work_queue(&event->pending_disable_irq);
2613 }
2614 
2615 #define MAX_INTERRUPTS (~0ULL)
2616 
2617 static void perf_log_throttle(struct perf_event *event, int enable);
2618 static void perf_log_itrace_start(struct perf_event *event);
2619 
2620 static int
event_sched_in(struct perf_event * event,struct perf_event_context * ctx)2621 event_sched_in(struct perf_event *event, struct perf_event_context *ctx)
2622 {
2623 	struct perf_event_pmu_context *epc = event->pmu_ctx;
2624 	struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context);
2625 	int ret = 0;
2626 
2627 	WARN_ON_ONCE(event->ctx != ctx);
2628 
2629 	lockdep_assert_held(&ctx->lock);
2630 
2631 	if (event->state <= PERF_EVENT_STATE_OFF)
2632 		return 0;
2633 
2634 	WRITE_ONCE(event->oncpu, smp_processor_id());
2635 	/*
2636 	 * Order event::oncpu write to happen before the ACTIVE state is
2637 	 * visible. This allows perf_event_{stop,read}() to observe the correct
2638 	 * ->oncpu if it sees ACTIVE.
2639 	 */
2640 	smp_wmb();
2641 	perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2642 
2643 	/*
2644 	 * Unthrottle events, since we scheduled we might have missed several
2645 	 * ticks already, also for a heavily scheduling task there is little
2646 	 * guarantee it'll get a tick in a timely manner.
2647 	 */
2648 	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2649 		perf_log_throttle(event, 1);
2650 		event->hw.interrupts = 0;
2651 	}
2652 
2653 	perf_pmu_disable(event->pmu);
2654 
2655 	perf_log_itrace_start(event);
2656 
2657 	if (event->pmu->add(event, PERF_EF_START)) {
2658 		perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2659 		event->oncpu = -1;
2660 		ret = -EAGAIN;
2661 		goto out;
2662 	}
2663 
2664 	if (!is_software_event(event))
2665 		cpc->active_oncpu++;
2666 	if (event->attr.freq && event->attr.sample_freq) {
2667 		ctx->nr_freq++;
2668 		epc->nr_freq++;
2669 	}
2670 	if (event->attr.exclusive)
2671 		cpc->exclusive = 1;
2672 
2673 out:
2674 	perf_pmu_enable(event->pmu);
2675 
2676 	return ret;
2677 }
2678 
2679 static int
group_sched_in(struct perf_event * group_event,struct perf_event_context * ctx)2680 group_sched_in(struct perf_event *group_event, struct perf_event_context *ctx)
2681 {
2682 	struct perf_event *event, *partial_group = NULL;
2683 	struct pmu *pmu = group_event->pmu_ctx->pmu;
2684 
2685 	if (group_event->state == PERF_EVENT_STATE_OFF)
2686 		return 0;
2687 
2688 	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2689 
2690 	if (event_sched_in(group_event, ctx))
2691 		goto error;
2692 
2693 	/*
2694 	 * Schedule in siblings as one group (if any):
2695 	 */
2696 	for_each_sibling_event(event, group_event) {
2697 		if (event_sched_in(event, ctx)) {
2698 			partial_group = event;
2699 			goto group_error;
2700 		}
2701 	}
2702 
2703 	if (!pmu->commit_txn(pmu))
2704 		return 0;
2705 
2706 group_error:
2707 	/*
2708 	 * Groups can be scheduled in as one unit only, so undo any
2709 	 * partial group before returning:
2710 	 * The events up to the failed event are scheduled out normally.
2711 	 */
2712 	for_each_sibling_event(event, group_event) {
2713 		if (event == partial_group)
2714 			break;
2715 
2716 		event_sched_out(event, ctx);
2717 	}
2718 	event_sched_out(group_event, ctx);
2719 
2720 error:
2721 	pmu->cancel_txn(pmu);
2722 	return -EAGAIN;
2723 }
2724 
2725 /*
2726  * Work out whether we can put this event group on the CPU now.
2727  */
group_can_go_on(struct perf_event * event,int can_add_hw)2728 static int group_can_go_on(struct perf_event *event, int can_add_hw)
2729 {
2730 	struct perf_event_pmu_context *epc = event->pmu_ctx;
2731 	struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context);
2732 
2733 	/*
2734 	 * Groups consisting entirely of software events can always go on.
2735 	 */
2736 	if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2737 		return 1;
2738 	/*
2739 	 * If an exclusive group is already on, no other hardware
2740 	 * events can go on.
2741 	 */
2742 	if (cpc->exclusive)
2743 		return 0;
2744 	/*
2745 	 * If this group is exclusive and there are already
2746 	 * events on the CPU, it can't go on.
2747 	 */
2748 	if (event->attr.exclusive && !list_empty(get_event_list(event)))
2749 		return 0;
2750 	/*
2751 	 * Otherwise, try to add it if all previous groups were able
2752 	 * to go on.
2753 	 */
2754 	return can_add_hw;
2755 }
2756 
add_event_to_ctx(struct perf_event * event,struct perf_event_context * ctx)2757 static void add_event_to_ctx(struct perf_event *event,
2758 			       struct perf_event_context *ctx)
2759 {
2760 	list_add_event(event, ctx);
2761 	perf_group_attach(event);
2762 }
2763 
task_ctx_sched_out(struct perf_event_context * ctx,struct pmu * pmu,enum event_type_t event_type)2764 static void task_ctx_sched_out(struct perf_event_context *ctx,
2765 			       struct pmu *pmu,
2766 			       enum event_type_t event_type)
2767 {
2768 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2769 
2770 	if (!cpuctx->task_ctx)
2771 		return;
2772 
2773 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2774 		return;
2775 
2776 	ctx_sched_out(ctx, pmu, event_type);
2777 }
2778 
perf_event_sched_in(struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,struct pmu * pmu)2779 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2780 				struct perf_event_context *ctx,
2781 				struct pmu *pmu)
2782 {
2783 	ctx_sched_in(&cpuctx->ctx, pmu, EVENT_PINNED);
2784 	if (ctx)
2785 		 ctx_sched_in(ctx, pmu, EVENT_PINNED);
2786 	ctx_sched_in(&cpuctx->ctx, pmu, EVENT_FLEXIBLE);
2787 	if (ctx)
2788 		 ctx_sched_in(ctx, pmu, EVENT_FLEXIBLE);
2789 }
2790 
2791 /*
2792  * We want to maintain the following priority of scheduling:
2793  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2794  *  - task pinned (EVENT_PINNED)
2795  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2796  *  - task flexible (EVENT_FLEXIBLE).
2797  *
2798  * In order to avoid unscheduling and scheduling back in everything every
2799  * time an event is added, only do it for the groups of equal priority and
2800  * below.
2801  *
2802  * This can be called after a batch operation on task events, in which case
2803  * event_type is a bit mask of the types of events involved. For CPU events,
2804  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2805  */
ctx_resched(struct perf_cpu_context * cpuctx,struct perf_event_context * task_ctx,struct pmu * pmu,enum event_type_t event_type)2806 static void ctx_resched(struct perf_cpu_context *cpuctx,
2807 			struct perf_event_context *task_ctx,
2808 			struct pmu *pmu, enum event_type_t event_type)
2809 {
2810 	bool cpu_event = !!(event_type & EVENT_CPU);
2811 	struct perf_event_pmu_context *epc;
2812 
2813 	/*
2814 	 * If pinned groups are involved, flexible groups also need to be
2815 	 * scheduled out.
2816 	 */
2817 	if (event_type & EVENT_PINNED)
2818 		event_type |= EVENT_FLEXIBLE;
2819 
2820 	event_type &= EVENT_ALL;
2821 
2822 	for_each_epc(epc, &cpuctx->ctx, pmu, false)
2823 		perf_pmu_disable(epc->pmu);
2824 
2825 	if (task_ctx) {
2826 		for_each_epc(epc, task_ctx, pmu, false)
2827 			perf_pmu_disable(epc->pmu);
2828 
2829 		task_ctx_sched_out(task_ctx, pmu, event_type);
2830 	}
2831 
2832 	/*
2833 	 * Decide which cpu ctx groups to schedule out based on the types
2834 	 * of events that caused rescheduling:
2835 	 *  - EVENT_CPU: schedule out corresponding groups;
2836 	 *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2837 	 *  - otherwise, do nothing more.
2838 	 */
2839 	if (cpu_event)
2840 		ctx_sched_out(&cpuctx->ctx, pmu, event_type);
2841 	else if (event_type & EVENT_PINNED)
2842 		ctx_sched_out(&cpuctx->ctx, pmu, EVENT_FLEXIBLE);
2843 
2844 	perf_event_sched_in(cpuctx, task_ctx, pmu);
2845 
2846 	for_each_epc(epc, &cpuctx->ctx, pmu, false)
2847 		perf_pmu_enable(epc->pmu);
2848 
2849 	if (task_ctx) {
2850 		for_each_epc(epc, task_ctx, pmu, false)
2851 			perf_pmu_enable(epc->pmu);
2852 	}
2853 }
2854 
perf_pmu_resched(struct pmu * pmu)2855 void perf_pmu_resched(struct pmu *pmu)
2856 {
2857 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2858 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2859 
2860 	perf_ctx_lock(cpuctx, task_ctx);
2861 	ctx_resched(cpuctx, task_ctx, pmu, EVENT_ALL|EVENT_CPU);
2862 	perf_ctx_unlock(cpuctx, task_ctx);
2863 }
2864 
2865 /*
2866  * Cross CPU call to install and enable a performance event
2867  *
2868  * Very similar to remote_function() + event_function() but cannot assume that
2869  * things like ctx->is_active and cpuctx->task_ctx are set.
2870  */
__perf_install_in_context(void * info)2871 static int  __perf_install_in_context(void *info)
2872 {
2873 	struct perf_event *event = info;
2874 	struct perf_event_context *ctx = event->ctx;
2875 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2876 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2877 	bool reprogram = true;
2878 	int ret = 0;
2879 
2880 	raw_spin_lock(&cpuctx->ctx.lock);
2881 	if (ctx->task) {
2882 		raw_spin_lock(&ctx->lock);
2883 		task_ctx = ctx;
2884 
2885 		reprogram = (ctx->task == current);
2886 
2887 		/*
2888 		 * If the task is running, it must be running on this CPU,
2889 		 * otherwise we cannot reprogram things.
2890 		 *
2891 		 * If its not running, we don't care, ctx->lock will
2892 		 * serialize against it becoming runnable.
2893 		 */
2894 		if (task_curr(ctx->task) && !reprogram) {
2895 			ret = -ESRCH;
2896 			goto unlock;
2897 		}
2898 
2899 		WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2900 	} else if (task_ctx) {
2901 		raw_spin_lock(&task_ctx->lock);
2902 	}
2903 
2904 #ifdef CONFIG_CGROUP_PERF
2905 	if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) {
2906 		/*
2907 		 * If the current cgroup doesn't match the event's
2908 		 * cgroup, we should not try to schedule it.
2909 		 */
2910 		struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2911 		reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2912 					event->cgrp->css.cgroup);
2913 	}
2914 #endif
2915 
2916 	if (reprogram) {
2917 		ctx_time_freeze(cpuctx, ctx);
2918 		add_event_to_ctx(event, ctx);
2919 		ctx_resched(cpuctx, task_ctx, event->pmu_ctx->pmu,
2920 			    get_event_type(event));
2921 	} else {
2922 		add_event_to_ctx(event, ctx);
2923 	}
2924 
2925 unlock:
2926 	perf_ctx_unlock(cpuctx, task_ctx);
2927 
2928 	return ret;
2929 }
2930 
2931 static bool exclusive_event_installable(struct perf_event *event,
2932 					struct perf_event_context *ctx);
2933 
2934 /*
2935  * Attach a performance event to a context.
2936  *
2937  * Very similar to event_function_call, see comment there.
2938  */
2939 static void
perf_install_in_context(struct perf_event_context * ctx,struct perf_event * event,int cpu)2940 perf_install_in_context(struct perf_event_context *ctx,
2941 			struct perf_event *event,
2942 			int cpu)
2943 {
2944 	struct task_struct *task = READ_ONCE(ctx->task);
2945 
2946 	lockdep_assert_held(&ctx->mutex);
2947 
2948 	WARN_ON_ONCE(!exclusive_event_installable(event, ctx));
2949 
2950 	if (event->cpu != -1)
2951 		WARN_ON_ONCE(event->cpu != cpu);
2952 
2953 	/*
2954 	 * Ensures that if we can observe event->ctx, both the event and ctx
2955 	 * will be 'complete'. See perf_iterate_sb_cpu().
2956 	 */
2957 	smp_store_release(&event->ctx, ctx);
2958 
2959 	/*
2960 	 * perf_event_attr::disabled events will not run and can be initialized
2961 	 * without IPI. Except when this is the first event for the context, in
2962 	 * that case we need the magic of the IPI to set ctx->is_active.
2963 	 *
2964 	 * The IOC_ENABLE that is sure to follow the creation of a disabled
2965 	 * event will issue the IPI and reprogram the hardware.
2966 	 */
2967 	if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF &&
2968 	    ctx->nr_events && !is_cgroup_event(event)) {
2969 		raw_spin_lock_irq(&ctx->lock);
2970 		if (ctx->task == TASK_TOMBSTONE) {
2971 			raw_spin_unlock_irq(&ctx->lock);
2972 			return;
2973 		}
2974 		add_event_to_ctx(event, ctx);
2975 		raw_spin_unlock_irq(&ctx->lock);
2976 		return;
2977 	}
2978 
2979 	if (!task) {
2980 		cpu_function_call(cpu, __perf_install_in_context, event);
2981 		return;
2982 	}
2983 
2984 	/*
2985 	 * Should not happen, we validate the ctx is still alive before calling.
2986 	 */
2987 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2988 		return;
2989 
2990 	/*
2991 	 * Installing events is tricky because we cannot rely on ctx->is_active
2992 	 * to be set in case this is the nr_events 0 -> 1 transition.
2993 	 *
2994 	 * Instead we use task_curr(), which tells us if the task is running.
2995 	 * However, since we use task_curr() outside of rq::lock, we can race
2996 	 * against the actual state. This means the result can be wrong.
2997 	 *
2998 	 * If we get a false positive, we retry, this is harmless.
2999 	 *
3000 	 * If we get a false negative, things are complicated. If we are after
3001 	 * perf_event_context_sched_in() ctx::lock will serialize us, and the
3002 	 * value must be correct. If we're before, it doesn't matter since
3003 	 * perf_event_context_sched_in() will program the counter.
3004 	 *
3005 	 * However, this hinges on the remote context switch having observed
3006 	 * our task->perf_event_ctxp[] store, such that it will in fact take
3007 	 * ctx::lock in perf_event_context_sched_in().
3008 	 *
3009 	 * We do this by task_function_call(), if the IPI fails to hit the task
3010 	 * we know any future context switch of task must see the
3011 	 * perf_event_ctpx[] store.
3012 	 */
3013 
3014 	/*
3015 	 * This smp_mb() orders the task->perf_event_ctxp[] store with the
3016 	 * task_cpu() load, such that if the IPI then does not find the task
3017 	 * running, a future context switch of that task must observe the
3018 	 * store.
3019 	 */
3020 	smp_mb();
3021 again:
3022 	if (!task_function_call(task, __perf_install_in_context, event))
3023 		return;
3024 
3025 	raw_spin_lock_irq(&ctx->lock);
3026 	task = ctx->task;
3027 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
3028 		/*
3029 		 * Cannot happen because we already checked above (which also
3030 		 * cannot happen), and we hold ctx->mutex, which serializes us
3031 		 * against perf_event_exit_task_context().
3032 		 */
3033 		raw_spin_unlock_irq(&ctx->lock);
3034 		return;
3035 	}
3036 	/*
3037 	 * If the task is not running, ctx->lock will avoid it becoming so,
3038 	 * thus we can safely install the event.
3039 	 */
3040 	if (task_curr(task)) {
3041 		raw_spin_unlock_irq(&ctx->lock);
3042 		goto again;
3043 	}
3044 	add_event_to_ctx(event, ctx);
3045 	raw_spin_unlock_irq(&ctx->lock);
3046 }
3047 
3048 /*
3049  * Cross CPU call to enable a performance event
3050  */
__perf_event_enable(struct perf_event * event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,void * info)3051 static void __perf_event_enable(struct perf_event *event,
3052 				struct perf_cpu_context *cpuctx,
3053 				struct perf_event_context *ctx,
3054 				void *info)
3055 {
3056 	struct perf_event *leader = event->group_leader;
3057 	struct perf_event_context *task_ctx;
3058 
3059 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
3060 	    event->state <= PERF_EVENT_STATE_ERROR)
3061 		return;
3062 
3063 	ctx_time_freeze(cpuctx, ctx);
3064 
3065 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
3066 	perf_cgroup_event_enable(event, ctx);
3067 
3068 	if (!ctx->is_active)
3069 		return;
3070 
3071 	if (!event_filter_match(event))
3072 		return;
3073 
3074 	/*
3075 	 * If the event is in a group and isn't the group leader,
3076 	 * then don't put it on unless the group is on.
3077 	 */
3078 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
3079 		return;
3080 
3081 	task_ctx = cpuctx->task_ctx;
3082 	if (ctx->task)
3083 		WARN_ON_ONCE(task_ctx != ctx);
3084 
3085 	ctx_resched(cpuctx, task_ctx, event->pmu_ctx->pmu, get_event_type(event));
3086 }
3087 
3088 /*
3089  * Enable an event.
3090  *
3091  * If event->ctx is a cloned context, callers must make sure that
3092  * every task struct that event->ctx->task could possibly point to
3093  * remains valid.  This condition is satisfied when called through
3094  * perf_event_for_each_child or perf_event_for_each as described
3095  * for perf_event_disable.
3096  */
_perf_event_enable(struct perf_event * event)3097 static void _perf_event_enable(struct perf_event *event)
3098 {
3099 	struct perf_event_context *ctx = event->ctx;
3100 
3101 	raw_spin_lock_irq(&ctx->lock);
3102 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
3103 	    event->state <  PERF_EVENT_STATE_ERROR) {
3104 out:
3105 		raw_spin_unlock_irq(&ctx->lock);
3106 		return;
3107 	}
3108 
3109 	/*
3110 	 * If the event is in error state, clear that first.
3111 	 *
3112 	 * That way, if we see the event in error state below, we know that it
3113 	 * has gone back into error state, as distinct from the task having
3114 	 * been scheduled away before the cross-call arrived.
3115 	 */
3116 	if (event->state == PERF_EVENT_STATE_ERROR) {
3117 		/*
3118 		 * Detached SIBLING events cannot leave ERROR state.
3119 		 */
3120 		if (event->event_caps & PERF_EV_CAP_SIBLING &&
3121 		    event->group_leader == event)
3122 			goto out;
3123 
3124 		event->state = PERF_EVENT_STATE_OFF;
3125 	}
3126 	raw_spin_unlock_irq(&ctx->lock);
3127 
3128 	event_function_call(event, __perf_event_enable, NULL);
3129 }
3130 
3131 /*
3132  * See perf_event_disable();
3133  */
perf_event_enable(struct perf_event * event)3134 void perf_event_enable(struct perf_event *event)
3135 {
3136 	struct perf_event_context *ctx;
3137 
3138 	ctx = perf_event_ctx_lock(event);
3139 	_perf_event_enable(event);
3140 	perf_event_ctx_unlock(event, ctx);
3141 }
3142 EXPORT_SYMBOL_GPL(perf_event_enable);
3143 
3144 struct stop_event_data {
3145 	struct perf_event	*event;
3146 	unsigned int		restart;
3147 };
3148 
__perf_event_stop(void * info)3149 static int __perf_event_stop(void *info)
3150 {
3151 	struct stop_event_data *sd = info;
3152 	struct perf_event *event = sd->event;
3153 
3154 	/* if it's already INACTIVE, do nothing */
3155 	if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3156 		return 0;
3157 
3158 	/* matches smp_wmb() in event_sched_in() */
3159 	smp_rmb();
3160 
3161 	/*
3162 	 * There is a window with interrupts enabled before we get here,
3163 	 * so we need to check again lest we try to stop another CPU's event.
3164 	 */
3165 	if (READ_ONCE(event->oncpu) != smp_processor_id())
3166 		return -EAGAIN;
3167 
3168 	event->pmu->stop(event, PERF_EF_UPDATE);
3169 
3170 	/*
3171 	 * May race with the actual stop (through perf_pmu_output_stop()),
3172 	 * but it is only used for events with AUX ring buffer, and such
3173 	 * events will refuse to restart because of rb::aux_mmap_count==0,
3174 	 * see comments in perf_aux_output_begin().
3175 	 *
3176 	 * Since this is happening on an event-local CPU, no trace is lost
3177 	 * while restarting.
3178 	 */
3179 	if (sd->restart)
3180 		event->pmu->start(event, 0);
3181 
3182 	return 0;
3183 }
3184 
perf_event_stop(struct perf_event * event,int restart)3185 static int perf_event_stop(struct perf_event *event, int restart)
3186 {
3187 	struct stop_event_data sd = {
3188 		.event		= event,
3189 		.restart	= restart,
3190 	};
3191 	int ret = 0;
3192 
3193 	do {
3194 		if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3195 			return 0;
3196 
3197 		/* matches smp_wmb() in event_sched_in() */
3198 		smp_rmb();
3199 
3200 		/*
3201 		 * We only want to restart ACTIVE events, so if the event goes
3202 		 * inactive here (event->oncpu==-1), there's nothing more to do;
3203 		 * fall through with ret==-ENXIO.
3204 		 */
3205 		ret = cpu_function_call(READ_ONCE(event->oncpu),
3206 					__perf_event_stop, &sd);
3207 	} while (ret == -EAGAIN);
3208 
3209 	return ret;
3210 }
3211 
3212 /*
3213  * In order to contain the amount of racy and tricky in the address filter
3214  * configuration management, it is a two part process:
3215  *
3216  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
3217  *      we update the addresses of corresponding vmas in
3218  *	event::addr_filter_ranges array and bump the event::addr_filters_gen;
3219  * (p2) when an event is scheduled in (pmu::add), it calls
3220  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
3221  *      if the generation has changed since the previous call.
3222  *
3223  * If (p1) happens while the event is active, we restart it to force (p2).
3224  *
3225  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
3226  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
3227  *     ioctl;
3228  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
3229  *     registered mapping, called for every new mmap(), with mm::mmap_lock down
3230  *     for reading;
3231  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
3232  *     of exec.
3233  */
perf_event_addr_filters_sync(struct perf_event * event)3234 void perf_event_addr_filters_sync(struct perf_event *event)
3235 {
3236 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
3237 
3238 	if (!has_addr_filter(event))
3239 		return;
3240 
3241 	raw_spin_lock(&ifh->lock);
3242 	if (event->addr_filters_gen != event->hw.addr_filters_gen) {
3243 		event->pmu->addr_filters_sync(event);
3244 		event->hw.addr_filters_gen = event->addr_filters_gen;
3245 	}
3246 	raw_spin_unlock(&ifh->lock);
3247 }
3248 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
3249 
_perf_event_refresh(struct perf_event * event,int refresh)3250 static int _perf_event_refresh(struct perf_event *event, int refresh)
3251 {
3252 	/*
3253 	 * not supported on inherited events
3254 	 */
3255 	if (event->attr.inherit || !is_sampling_event(event))
3256 		return -EINVAL;
3257 
3258 	atomic_add(refresh, &event->event_limit);
3259 	_perf_event_enable(event);
3260 
3261 	return 0;
3262 }
3263 
3264 /*
3265  * See perf_event_disable()
3266  */
perf_event_refresh(struct perf_event * event,int refresh)3267 int perf_event_refresh(struct perf_event *event, int refresh)
3268 {
3269 	struct perf_event_context *ctx;
3270 	int ret;
3271 
3272 	ctx = perf_event_ctx_lock(event);
3273 	ret = _perf_event_refresh(event, refresh);
3274 	perf_event_ctx_unlock(event, ctx);
3275 
3276 	return ret;
3277 }
3278 EXPORT_SYMBOL_GPL(perf_event_refresh);
3279 
perf_event_modify_breakpoint(struct perf_event * bp,struct perf_event_attr * attr)3280 static int perf_event_modify_breakpoint(struct perf_event *bp,
3281 					 struct perf_event_attr *attr)
3282 {
3283 	int err;
3284 
3285 	_perf_event_disable(bp);
3286 
3287 	err = modify_user_hw_breakpoint_check(bp, attr, true);
3288 
3289 	if (!bp->attr.disabled)
3290 		_perf_event_enable(bp);
3291 
3292 	return err;
3293 }
3294 
3295 /*
3296  * Copy event-type-independent attributes that may be modified.
3297  */
perf_event_modify_copy_attr(struct perf_event_attr * to,const struct perf_event_attr * from)3298 static void perf_event_modify_copy_attr(struct perf_event_attr *to,
3299 					const struct perf_event_attr *from)
3300 {
3301 	to->sig_data = from->sig_data;
3302 }
3303 
perf_event_modify_attr(struct perf_event * event,struct perf_event_attr * attr)3304 static int perf_event_modify_attr(struct perf_event *event,
3305 				  struct perf_event_attr *attr)
3306 {
3307 	int (*func)(struct perf_event *, struct perf_event_attr *);
3308 	struct perf_event *child;
3309 	int err;
3310 
3311 	if (event->attr.type != attr->type)
3312 		return -EINVAL;
3313 
3314 	switch (event->attr.type) {
3315 	case PERF_TYPE_BREAKPOINT:
3316 		func = perf_event_modify_breakpoint;
3317 		break;
3318 	default:
3319 		/* Place holder for future additions. */
3320 		return -EOPNOTSUPP;
3321 	}
3322 
3323 	WARN_ON_ONCE(event->ctx->parent_ctx);
3324 
3325 	mutex_lock(&event->child_mutex);
3326 	/*
3327 	 * Event-type-independent attributes must be copied before event-type
3328 	 * modification, which will validate that final attributes match the
3329 	 * source attributes after all relevant attributes have been copied.
3330 	 */
3331 	perf_event_modify_copy_attr(&event->attr, attr);
3332 	err = func(event, attr);
3333 	if (err)
3334 		goto out;
3335 	list_for_each_entry(child, &event->child_list, child_list) {
3336 		perf_event_modify_copy_attr(&child->attr, attr);
3337 		err = func(child, attr);
3338 		if (err)
3339 			goto out;
3340 	}
3341 out:
3342 	mutex_unlock(&event->child_mutex);
3343 	return err;
3344 }
3345 
__pmu_ctx_sched_out(struct perf_event_pmu_context * pmu_ctx,enum event_type_t event_type)3346 static void __pmu_ctx_sched_out(struct perf_event_pmu_context *pmu_ctx,
3347 				enum event_type_t event_type)
3348 {
3349 	struct perf_event_context *ctx = pmu_ctx->ctx;
3350 	struct perf_event *event, *tmp;
3351 	struct pmu *pmu = pmu_ctx->pmu;
3352 
3353 	if (ctx->task && !(ctx->is_active & EVENT_ALL)) {
3354 		struct perf_cpu_pmu_context *cpc;
3355 
3356 		cpc = this_cpu_ptr(pmu->cpu_pmu_context);
3357 		WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
3358 		cpc->task_epc = NULL;
3359 	}
3360 
3361 	if (!(event_type & EVENT_ALL))
3362 		return;
3363 
3364 	perf_pmu_disable(pmu);
3365 	if (event_type & EVENT_PINNED) {
3366 		list_for_each_entry_safe(event, tmp,
3367 					 &pmu_ctx->pinned_active,
3368 					 active_list)
3369 			group_sched_out(event, ctx);
3370 	}
3371 
3372 	if (event_type & EVENT_FLEXIBLE) {
3373 		list_for_each_entry_safe(event, tmp,
3374 					 &pmu_ctx->flexible_active,
3375 					 active_list)
3376 			group_sched_out(event, ctx);
3377 		/*
3378 		 * Since we cleared EVENT_FLEXIBLE, also clear
3379 		 * rotate_necessary, is will be reset by
3380 		 * ctx_flexible_sched_in() when needed.
3381 		 */
3382 		pmu_ctx->rotate_necessary = 0;
3383 	}
3384 	perf_pmu_enable(pmu);
3385 }
3386 
3387 /*
3388  * Be very careful with the @pmu argument since this will change ctx state.
3389  * The @pmu argument works for ctx_resched(), because that is symmetric in
3390  * ctx_sched_out() / ctx_sched_in() usage and the ctx state ends up invariant.
3391  *
3392  * However, if you were to be asymmetrical, you could end up with messed up
3393  * state, eg. ctx->is_active cleared even though most EPCs would still actually
3394  * be active.
3395  */
3396 static void
ctx_sched_out(struct perf_event_context * ctx,struct pmu * pmu,enum event_type_t event_type)3397 ctx_sched_out(struct perf_event_context *ctx, struct pmu *pmu, enum event_type_t event_type)
3398 {
3399 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3400 	struct perf_event_pmu_context *pmu_ctx;
3401 	int is_active = ctx->is_active;
3402 	bool cgroup = event_type & EVENT_CGROUP;
3403 
3404 	event_type &= ~EVENT_CGROUP;
3405 
3406 	lockdep_assert_held(&ctx->lock);
3407 
3408 	if (likely(!ctx->nr_events)) {
3409 		/*
3410 		 * See __perf_remove_from_context().
3411 		 */
3412 		WARN_ON_ONCE(ctx->is_active);
3413 		if (ctx->task)
3414 			WARN_ON_ONCE(cpuctx->task_ctx);
3415 		return;
3416 	}
3417 
3418 	/*
3419 	 * Always update time if it was set; not only when it changes.
3420 	 * Otherwise we can 'forget' to update time for any but the last
3421 	 * context we sched out. For example:
3422 	 *
3423 	 *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
3424 	 *   ctx_sched_out(.event_type = EVENT_PINNED)
3425 	 *
3426 	 * would only update time for the pinned events.
3427 	 */
3428 	__ctx_time_update(cpuctx, ctx, ctx == &cpuctx->ctx);
3429 
3430 	/*
3431 	 * CPU-release for the below ->is_active store,
3432 	 * see __load_acquire() in perf_event_time_now()
3433 	 */
3434 	barrier();
3435 	ctx->is_active &= ~event_type;
3436 
3437 	if (!(ctx->is_active & EVENT_ALL)) {
3438 		/*
3439 		 * For FROZEN, preserve TIME|FROZEN such that perf_event_time_now()
3440 		 * does not observe a hole. perf_ctx_unlock() will clean up.
3441 		 */
3442 		if (ctx->is_active & EVENT_FROZEN)
3443 			ctx->is_active &= EVENT_TIME_FROZEN;
3444 		else
3445 			ctx->is_active = 0;
3446 	}
3447 
3448 	if (ctx->task) {
3449 		WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3450 		if (!(ctx->is_active & EVENT_ALL))
3451 			cpuctx->task_ctx = NULL;
3452 	}
3453 
3454 	is_active ^= ctx->is_active; /* changed bits */
3455 
3456 	for_each_epc(pmu_ctx, ctx, pmu, cgroup)
3457 		__pmu_ctx_sched_out(pmu_ctx, is_active);
3458 }
3459 
3460 /*
3461  * Test whether two contexts are equivalent, i.e. whether they have both been
3462  * cloned from the same version of the same context.
3463  *
3464  * Equivalence is measured using a generation number in the context that is
3465  * incremented on each modification to it; see unclone_ctx(), list_add_event()
3466  * and list_del_event().
3467  */
context_equiv(struct perf_event_context * ctx1,struct perf_event_context * ctx2)3468 static int context_equiv(struct perf_event_context *ctx1,
3469 			 struct perf_event_context *ctx2)
3470 {
3471 	lockdep_assert_held(&ctx1->lock);
3472 	lockdep_assert_held(&ctx2->lock);
3473 
3474 	/* Pinning disables the swap optimization */
3475 	if (ctx1->pin_count || ctx2->pin_count)
3476 		return 0;
3477 
3478 	/* If ctx1 is the parent of ctx2 */
3479 	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
3480 		return 1;
3481 
3482 	/* If ctx2 is the parent of ctx1 */
3483 	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
3484 		return 1;
3485 
3486 	/*
3487 	 * If ctx1 and ctx2 have the same parent; we flatten the parent
3488 	 * hierarchy, see perf_event_init_context().
3489 	 */
3490 	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
3491 			ctx1->parent_gen == ctx2->parent_gen)
3492 		return 1;
3493 
3494 	/* Unmatched */
3495 	return 0;
3496 }
3497 
__perf_event_sync_stat(struct perf_event * event,struct perf_event * next_event)3498 static void __perf_event_sync_stat(struct perf_event *event,
3499 				     struct perf_event *next_event)
3500 {
3501 	u64 value;
3502 
3503 	if (!event->attr.inherit_stat)
3504 		return;
3505 
3506 	/*
3507 	 * Update the event value, we cannot use perf_event_read()
3508 	 * because we're in the middle of a context switch and have IRQs
3509 	 * disabled, which upsets smp_call_function_single(), however
3510 	 * we know the event must be on the current CPU, therefore we
3511 	 * don't need to use it.
3512 	 */
3513 	if (event->state == PERF_EVENT_STATE_ACTIVE)
3514 		event->pmu->read(event);
3515 
3516 	perf_event_update_time(event);
3517 
3518 	/*
3519 	 * In order to keep per-task stats reliable we need to flip the event
3520 	 * values when we flip the contexts.
3521 	 */
3522 	value = local64_read(&next_event->count);
3523 	value = local64_xchg(&event->count, value);
3524 	local64_set(&next_event->count, value);
3525 
3526 	swap(event->total_time_enabled, next_event->total_time_enabled);
3527 	swap(event->total_time_running, next_event->total_time_running);
3528 
3529 	/*
3530 	 * Since we swizzled the values, update the user visible data too.
3531 	 */
3532 	perf_event_update_userpage(event);
3533 	perf_event_update_userpage(next_event);
3534 }
3535 
perf_event_sync_stat(struct perf_event_context * ctx,struct perf_event_context * next_ctx)3536 static void perf_event_sync_stat(struct perf_event_context *ctx,
3537 				   struct perf_event_context *next_ctx)
3538 {
3539 	struct perf_event *event, *next_event;
3540 
3541 	if (!ctx->nr_stat)
3542 		return;
3543 
3544 	update_context_time(ctx);
3545 
3546 	event = list_first_entry(&ctx->event_list,
3547 				   struct perf_event, event_entry);
3548 
3549 	next_event = list_first_entry(&next_ctx->event_list,
3550 					struct perf_event, event_entry);
3551 
3552 	while (&event->event_entry != &ctx->event_list &&
3553 	       &next_event->event_entry != &next_ctx->event_list) {
3554 
3555 		__perf_event_sync_stat(event, next_event);
3556 
3557 		event = list_next_entry(event, event_entry);
3558 		next_event = list_next_entry(next_event, event_entry);
3559 	}
3560 }
3561 
3562 #define double_list_for_each_entry(pos1, pos2, head1, head2, member)	\
3563 	for (pos1 = list_first_entry(head1, typeof(*pos1), member),	\
3564 	     pos2 = list_first_entry(head2, typeof(*pos2), member);	\
3565 	     !list_entry_is_head(pos1, head1, member) &&		\
3566 	     !list_entry_is_head(pos2, head2, member);			\
3567 	     pos1 = list_next_entry(pos1, member),			\
3568 	     pos2 = list_next_entry(pos2, member))
3569 
perf_event_swap_task_ctx_data(struct perf_event_context * prev_ctx,struct perf_event_context * next_ctx)3570 static void perf_event_swap_task_ctx_data(struct perf_event_context *prev_ctx,
3571 					  struct perf_event_context *next_ctx)
3572 {
3573 	struct perf_event_pmu_context *prev_epc, *next_epc;
3574 
3575 	if (!prev_ctx->nr_task_data)
3576 		return;
3577 
3578 	double_list_for_each_entry(prev_epc, next_epc,
3579 				   &prev_ctx->pmu_ctx_list, &next_ctx->pmu_ctx_list,
3580 				   pmu_ctx_entry) {
3581 
3582 		if (WARN_ON_ONCE(prev_epc->pmu != next_epc->pmu))
3583 			continue;
3584 
3585 		/*
3586 		 * PMU specific parts of task perf context can require
3587 		 * additional synchronization. As an example of such
3588 		 * synchronization see implementation details of Intel
3589 		 * LBR call stack data profiling;
3590 		 */
3591 		if (prev_epc->pmu->swap_task_ctx)
3592 			prev_epc->pmu->swap_task_ctx(prev_epc, next_epc);
3593 		else
3594 			swap(prev_epc->task_ctx_data, next_epc->task_ctx_data);
3595 	}
3596 }
3597 
perf_ctx_sched_task_cb(struct perf_event_context * ctx,bool sched_in)3598 static void perf_ctx_sched_task_cb(struct perf_event_context *ctx, bool sched_in)
3599 {
3600 	struct perf_event_pmu_context *pmu_ctx;
3601 	struct perf_cpu_pmu_context *cpc;
3602 
3603 	list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
3604 		cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context);
3605 
3606 		if (cpc->sched_cb_usage && pmu_ctx->pmu->sched_task)
3607 			pmu_ctx->pmu->sched_task(pmu_ctx, sched_in);
3608 	}
3609 }
3610 
3611 static void
perf_event_context_sched_out(struct task_struct * task,struct task_struct * next)3612 perf_event_context_sched_out(struct task_struct *task, struct task_struct *next)
3613 {
3614 	struct perf_event_context *ctx = task->perf_event_ctxp;
3615 	struct perf_event_context *next_ctx;
3616 	struct perf_event_context *parent, *next_parent;
3617 	int do_switch = 1;
3618 
3619 	if (likely(!ctx))
3620 		return;
3621 
3622 	rcu_read_lock();
3623 	next_ctx = rcu_dereference(next->perf_event_ctxp);
3624 	if (!next_ctx)
3625 		goto unlock;
3626 
3627 	parent = rcu_dereference(ctx->parent_ctx);
3628 	next_parent = rcu_dereference(next_ctx->parent_ctx);
3629 
3630 	/* If neither context have a parent context; they cannot be clones. */
3631 	if (!parent && !next_parent)
3632 		goto unlock;
3633 
3634 	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3635 		/*
3636 		 * Looks like the two contexts are clones, so we might be
3637 		 * able to optimize the context switch.  We lock both
3638 		 * contexts and check that they are clones under the
3639 		 * lock (including re-checking that neither has been
3640 		 * uncloned in the meantime).  It doesn't matter which
3641 		 * order we take the locks because no other cpu could
3642 		 * be trying to lock both of these tasks.
3643 		 */
3644 		raw_spin_lock(&ctx->lock);
3645 		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3646 		if (context_equiv(ctx, next_ctx)) {
3647 
3648 			perf_ctx_disable(ctx, false);
3649 
3650 			/* PMIs are disabled; ctx->nr_no_switch_fast is stable. */
3651 			if (local_read(&ctx->nr_no_switch_fast) ||
3652 			    local_read(&next_ctx->nr_no_switch_fast)) {
3653 				/*
3654 				 * Must not swap out ctx when there's pending
3655 				 * events that rely on the ctx->task relation.
3656 				 *
3657 				 * Likewise, when a context contains inherit +
3658 				 * SAMPLE_READ events they should be switched
3659 				 * out using the slow path so that they are
3660 				 * treated as if they were distinct contexts.
3661 				 */
3662 				raw_spin_unlock(&next_ctx->lock);
3663 				rcu_read_unlock();
3664 				goto inside_switch;
3665 			}
3666 
3667 			WRITE_ONCE(ctx->task, next);
3668 			WRITE_ONCE(next_ctx->task, task);
3669 
3670 			perf_ctx_sched_task_cb(ctx, false);
3671 			perf_event_swap_task_ctx_data(ctx, next_ctx);
3672 
3673 			perf_ctx_enable(ctx, false);
3674 
3675 			/*
3676 			 * RCU_INIT_POINTER here is safe because we've not
3677 			 * modified the ctx and the above modification of
3678 			 * ctx->task and ctx->task_ctx_data are immaterial
3679 			 * since those values are always verified under
3680 			 * ctx->lock which we're now holding.
3681 			 */
3682 			RCU_INIT_POINTER(task->perf_event_ctxp, next_ctx);
3683 			RCU_INIT_POINTER(next->perf_event_ctxp, ctx);
3684 
3685 			do_switch = 0;
3686 
3687 			perf_event_sync_stat(ctx, next_ctx);
3688 		}
3689 		raw_spin_unlock(&next_ctx->lock);
3690 		raw_spin_unlock(&ctx->lock);
3691 	}
3692 unlock:
3693 	rcu_read_unlock();
3694 
3695 	if (do_switch) {
3696 		raw_spin_lock(&ctx->lock);
3697 		perf_ctx_disable(ctx, false);
3698 
3699 inside_switch:
3700 		perf_ctx_sched_task_cb(ctx, false);
3701 		task_ctx_sched_out(ctx, NULL, EVENT_ALL);
3702 
3703 		perf_ctx_enable(ctx, false);
3704 		raw_spin_unlock(&ctx->lock);
3705 	}
3706 }
3707 
3708 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3709 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
3710 
perf_sched_cb_dec(struct pmu * pmu)3711 void perf_sched_cb_dec(struct pmu *pmu)
3712 {
3713 	struct perf_cpu_pmu_context *cpc = this_cpu_ptr(pmu->cpu_pmu_context);
3714 
3715 	this_cpu_dec(perf_sched_cb_usages);
3716 	barrier();
3717 
3718 	if (!--cpc->sched_cb_usage)
3719 		list_del(&cpc->sched_cb_entry);
3720 }
3721 
3722 
perf_sched_cb_inc(struct pmu * pmu)3723 void perf_sched_cb_inc(struct pmu *pmu)
3724 {
3725 	struct perf_cpu_pmu_context *cpc = this_cpu_ptr(pmu->cpu_pmu_context);
3726 
3727 	if (!cpc->sched_cb_usage++)
3728 		list_add(&cpc->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3729 
3730 	barrier();
3731 	this_cpu_inc(perf_sched_cb_usages);
3732 }
3733 
3734 /*
3735  * This function provides the context switch callback to the lower code
3736  * layer. It is invoked ONLY when the context switch callback is enabled.
3737  *
3738  * This callback is relevant even to per-cpu events; for example multi event
3739  * PEBS requires this to provide PID/TID information. This requires we flush
3740  * all queued PEBS records before we context switch to a new task.
3741  */
__perf_pmu_sched_task(struct perf_cpu_pmu_context * cpc,bool sched_in)3742 static void __perf_pmu_sched_task(struct perf_cpu_pmu_context *cpc, bool sched_in)
3743 {
3744 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3745 	struct pmu *pmu;
3746 
3747 	pmu = cpc->epc.pmu;
3748 
3749 	/* software PMUs will not have sched_task */
3750 	if (WARN_ON_ONCE(!pmu->sched_task))
3751 		return;
3752 
3753 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3754 	perf_pmu_disable(pmu);
3755 
3756 	pmu->sched_task(cpc->task_epc, sched_in);
3757 
3758 	perf_pmu_enable(pmu);
3759 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3760 }
3761 
perf_pmu_sched_task(struct task_struct * prev,struct task_struct * next,bool sched_in)3762 static void perf_pmu_sched_task(struct task_struct *prev,
3763 				struct task_struct *next,
3764 				bool sched_in)
3765 {
3766 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3767 	struct perf_cpu_pmu_context *cpc;
3768 
3769 	/* cpuctx->task_ctx will be handled in perf_event_context_sched_in/out */
3770 	if (prev == next || cpuctx->task_ctx)
3771 		return;
3772 
3773 	list_for_each_entry(cpc, this_cpu_ptr(&sched_cb_list), sched_cb_entry)
3774 		__perf_pmu_sched_task(cpc, sched_in);
3775 }
3776 
3777 static void perf_event_switch(struct task_struct *task,
3778 			      struct task_struct *next_prev, bool sched_in);
3779 
3780 /*
3781  * Called from scheduler to remove the events of the current task,
3782  * with interrupts disabled.
3783  *
3784  * We stop each event and update the event value in event->count.
3785  *
3786  * This does not protect us against NMI, but disable()
3787  * sets the disabled bit in the control field of event _before_
3788  * accessing the event control register. If a NMI hits, then it will
3789  * not restart the event.
3790  */
__perf_event_task_sched_out(struct task_struct * task,struct task_struct * next)3791 void __perf_event_task_sched_out(struct task_struct *task,
3792 				 struct task_struct *next)
3793 {
3794 	if (__this_cpu_read(perf_sched_cb_usages))
3795 		perf_pmu_sched_task(task, next, false);
3796 
3797 	if (atomic_read(&nr_switch_events))
3798 		perf_event_switch(task, next, false);
3799 
3800 	perf_event_context_sched_out(task, next);
3801 
3802 	/*
3803 	 * if cgroup events exist on this CPU, then we need
3804 	 * to check if we have to switch out PMU state.
3805 	 * cgroup event are system-wide mode only
3806 	 */
3807 	perf_cgroup_switch(next);
3808 }
3809 
perf_less_group_idx(const void * l,const void * r,void __always_unused * args)3810 static bool perf_less_group_idx(const void *l, const void *r, void __always_unused *args)
3811 {
3812 	const struct perf_event *le = *(const struct perf_event **)l;
3813 	const struct perf_event *re = *(const struct perf_event **)r;
3814 
3815 	return le->group_index < re->group_index;
3816 }
3817 
swap_ptr(void * l,void * r,void __always_unused * args)3818 static void swap_ptr(void *l, void *r, void __always_unused *args)
3819 {
3820 	void **lp = l, **rp = r;
3821 
3822 	swap(*lp, *rp);
3823 }
3824 
3825 DEFINE_MIN_HEAP(struct perf_event *, perf_event_min_heap);
3826 
3827 static const struct min_heap_callbacks perf_min_heap = {
3828 	.less = perf_less_group_idx,
3829 	.swp = swap_ptr,
3830 };
3831 
__heap_add(struct perf_event_min_heap * heap,struct perf_event * event)3832 static void __heap_add(struct perf_event_min_heap *heap, struct perf_event *event)
3833 {
3834 	struct perf_event **itrs = heap->data;
3835 
3836 	if (event) {
3837 		itrs[heap->nr] = event;
3838 		heap->nr++;
3839 	}
3840 }
3841 
__link_epc(struct perf_event_pmu_context * pmu_ctx)3842 static void __link_epc(struct perf_event_pmu_context *pmu_ctx)
3843 {
3844 	struct perf_cpu_pmu_context *cpc;
3845 
3846 	if (!pmu_ctx->ctx->task)
3847 		return;
3848 
3849 	cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context);
3850 	WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
3851 	cpc->task_epc = pmu_ctx;
3852 }
3853 
visit_groups_merge(struct perf_event_context * ctx,struct perf_event_groups * groups,int cpu,struct pmu * pmu,int (* func)(struct perf_event *,void *),void * data)3854 static noinline int visit_groups_merge(struct perf_event_context *ctx,
3855 				struct perf_event_groups *groups, int cpu,
3856 				struct pmu *pmu,
3857 				int (*func)(struct perf_event *, void *),
3858 				void *data)
3859 {
3860 #ifdef CONFIG_CGROUP_PERF
3861 	struct cgroup_subsys_state *css = NULL;
3862 #endif
3863 	struct perf_cpu_context *cpuctx = NULL;
3864 	/* Space for per CPU and/or any CPU event iterators. */
3865 	struct perf_event *itrs[2];
3866 	struct perf_event_min_heap event_heap;
3867 	struct perf_event **evt;
3868 	int ret;
3869 
3870 	if (pmu->filter && pmu->filter(pmu, cpu))
3871 		return 0;
3872 
3873 	if (!ctx->task) {
3874 		cpuctx = this_cpu_ptr(&perf_cpu_context);
3875 		event_heap = (struct perf_event_min_heap){
3876 			.data = cpuctx->heap,
3877 			.nr = 0,
3878 			.size = cpuctx->heap_size,
3879 		};
3880 
3881 		lockdep_assert_held(&cpuctx->ctx.lock);
3882 
3883 #ifdef CONFIG_CGROUP_PERF
3884 		if (cpuctx->cgrp)
3885 			css = &cpuctx->cgrp->css;
3886 #endif
3887 	} else {
3888 		event_heap = (struct perf_event_min_heap){
3889 			.data = itrs,
3890 			.nr = 0,
3891 			.size = ARRAY_SIZE(itrs),
3892 		};
3893 		/* Events not within a CPU context may be on any CPU. */
3894 		__heap_add(&event_heap, perf_event_groups_first(groups, -1, pmu, NULL));
3895 	}
3896 	evt = event_heap.data;
3897 
3898 	__heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, NULL));
3899 
3900 #ifdef CONFIG_CGROUP_PERF
3901 	for (; css; css = css->parent)
3902 		__heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, css->cgroup));
3903 #endif
3904 
3905 	if (event_heap.nr) {
3906 		__link_epc((*evt)->pmu_ctx);
3907 		perf_assert_pmu_disabled((*evt)->pmu_ctx->pmu);
3908 	}
3909 
3910 	min_heapify_all(&event_heap, &perf_min_heap, NULL);
3911 
3912 	while (event_heap.nr) {
3913 		ret = func(*evt, data);
3914 		if (ret)
3915 			return ret;
3916 
3917 		*evt = perf_event_groups_next(*evt, pmu);
3918 		if (*evt)
3919 			min_heap_sift_down(&event_heap, 0, &perf_min_heap, NULL);
3920 		else
3921 			min_heap_pop(&event_heap, &perf_min_heap, NULL);
3922 	}
3923 
3924 	return 0;
3925 }
3926 
3927 /*
3928  * Because the userpage is strictly per-event (there is no concept of context,
3929  * so there cannot be a context indirection), every userpage must be updated
3930  * when context time starts :-(
3931  *
3932  * IOW, we must not miss EVENT_TIME edges.
3933  */
event_update_userpage(struct perf_event * event)3934 static inline bool event_update_userpage(struct perf_event *event)
3935 {
3936 	if (likely(!atomic_read(&event->mmap_count)))
3937 		return false;
3938 
3939 	perf_event_update_time(event);
3940 	perf_event_update_userpage(event);
3941 
3942 	return true;
3943 }
3944 
group_update_userpage(struct perf_event * group_event)3945 static inline void group_update_userpage(struct perf_event *group_event)
3946 {
3947 	struct perf_event *event;
3948 
3949 	if (!event_update_userpage(group_event))
3950 		return;
3951 
3952 	for_each_sibling_event(event, group_event)
3953 		event_update_userpage(event);
3954 }
3955 
merge_sched_in(struct perf_event * event,void * data)3956 static int merge_sched_in(struct perf_event *event, void *data)
3957 {
3958 	struct perf_event_context *ctx = event->ctx;
3959 	int *can_add_hw = data;
3960 
3961 	if (event->state <= PERF_EVENT_STATE_OFF)
3962 		return 0;
3963 
3964 	if (!event_filter_match(event))
3965 		return 0;
3966 
3967 	if (group_can_go_on(event, *can_add_hw)) {
3968 		if (!group_sched_in(event, ctx))
3969 			list_add_tail(&event->active_list, get_event_list(event));
3970 	}
3971 
3972 	if (event->state == PERF_EVENT_STATE_INACTIVE) {
3973 		*can_add_hw = 0;
3974 		if (event->attr.pinned) {
3975 			perf_cgroup_event_disable(event, ctx);
3976 			perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3977 		} else {
3978 			struct perf_cpu_pmu_context *cpc;
3979 
3980 			event->pmu_ctx->rotate_necessary = 1;
3981 			cpc = this_cpu_ptr(event->pmu_ctx->pmu->cpu_pmu_context);
3982 			perf_mux_hrtimer_restart(cpc);
3983 			group_update_userpage(event);
3984 		}
3985 	}
3986 
3987 	return 0;
3988 }
3989 
pmu_groups_sched_in(struct perf_event_context * ctx,struct perf_event_groups * groups,struct pmu * pmu)3990 static void pmu_groups_sched_in(struct perf_event_context *ctx,
3991 				struct perf_event_groups *groups,
3992 				struct pmu *pmu)
3993 {
3994 	int can_add_hw = 1;
3995 	visit_groups_merge(ctx, groups, smp_processor_id(), pmu,
3996 			   merge_sched_in, &can_add_hw);
3997 }
3998 
__pmu_ctx_sched_in(struct perf_event_pmu_context * pmu_ctx,enum event_type_t event_type)3999 static void __pmu_ctx_sched_in(struct perf_event_pmu_context *pmu_ctx,
4000 			       enum event_type_t event_type)
4001 {
4002 	struct perf_event_context *ctx = pmu_ctx->ctx;
4003 
4004 	if (event_type & EVENT_PINNED)
4005 		pmu_groups_sched_in(ctx, &ctx->pinned_groups, pmu_ctx->pmu);
4006 	if (event_type & EVENT_FLEXIBLE)
4007 		pmu_groups_sched_in(ctx, &ctx->flexible_groups, pmu_ctx->pmu);
4008 }
4009 
4010 static void
ctx_sched_in(struct perf_event_context * ctx,struct pmu * pmu,enum event_type_t event_type)4011 ctx_sched_in(struct perf_event_context *ctx, struct pmu *pmu, enum event_type_t event_type)
4012 {
4013 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4014 	struct perf_event_pmu_context *pmu_ctx;
4015 	int is_active = ctx->is_active;
4016 	bool cgroup = event_type & EVENT_CGROUP;
4017 
4018 	event_type &= ~EVENT_CGROUP;
4019 
4020 	lockdep_assert_held(&ctx->lock);
4021 
4022 	if (likely(!ctx->nr_events))
4023 		return;
4024 
4025 	if (!(is_active & EVENT_TIME)) {
4026 		/* start ctx time */
4027 		__update_context_time(ctx, false);
4028 		perf_cgroup_set_timestamp(cpuctx);
4029 		/*
4030 		 * CPU-release for the below ->is_active store,
4031 		 * see __load_acquire() in perf_event_time_now()
4032 		 */
4033 		barrier();
4034 	}
4035 
4036 	ctx->is_active |= (event_type | EVENT_TIME);
4037 	if (ctx->task) {
4038 		if (!(is_active & EVENT_ALL))
4039 			cpuctx->task_ctx = ctx;
4040 		else
4041 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
4042 	}
4043 
4044 	is_active ^= ctx->is_active; /* changed bits */
4045 
4046 	/*
4047 	 * First go through the list and put on any pinned groups
4048 	 * in order to give them the best chance of going on.
4049 	 */
4050 	if (is_active & EVENT_PINNED) {
4051 		for_each_epc(pmu_ctx, ctx, pmu, cgroup)
4052 			__pmu_ctx_sched_in(pmu_ctx, EVENT_PINNED);
4053 	}
4054 
4055 	/* Then walk through the lower prio flexible groups */
4056 	if (is_active & EVENT_FLEXIBLE) {
4057 		for_each_epc(pmu_ctx, ctx, pmu, cgroup)
4058 			__pmu_ctx_sched_in(pmu_ctx, EVENT_FLEXIBLE);
4059 	}
4060 }
4061 
perf_event_context_sched_in(struct task_struct * task)4062 static void perf_event_context_sched_in(struct task_struct *task)
4063 {
4064 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4065 	struct perf_event_context *ctx;
4066 
4067 	rcu_read_lock();
4068 	ctx = rcu_dereference(task->perf_event_ctxp);
4069 	if (!ctx)
4070 		goto rcu_unlock;
4071 
4072 	if (cpuctx->task_ctx == ctx) {
4073 		perf_ctx_lock(cpuctx, ctx);
4074 		perf_ctx_disable(ctx, false);
4075 
4076 		perf_ctx_sched_task_cb(ctx, true);
4077 
4078 		perf_ctx_enable(ctx, false);
4079 		perf_ctx_unlock(cpuctx, ctx);
4080 		goto rcu_unlock;
4081 	}
4082 
4083 	perf_ctx_lock(cpuctx, ctx);
4084 	/*
4085 	 * We must check ctx->nr_events while holding ctx->lock, such
4086 	 * that we serialize against perf_install_in_context().
4087 	 */
4088 	if (!ctx->nr_events)
4089 		goto unlock;
4090 
4091 	perf_ctx_disable(ctx, false);
4092 	/*
4093 	 * We want to keep the following priority order:
4094 	 * cpu pinned (that don't need to move), task pinned,
4095 	 * cpu flexible, task flexible.
4096 	 *
4097 	 * However, if task's ctx is not carrying any pinned
4098 	 * events, no need to flip the cpuctx's events around.
4099 	 */
4100 	if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) {
4101 		perf_ctx_disable(&cpuctx->ctx, false);
4102 		ctx_sched_out(&cpuctx->ctx, NULL, EVENT_FLEXIBLE);
4103 	}
4104 
4105 	perf_event_sched_in(cpuctx, ctx, NULL);
4106 
4107 	perf_ctx_sched_task_cb(cpuctx->task_ctx, true);
4108 
4109 	if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
4110 		perf_ctx_enable(&cpuctx->ctx, false);
4111 
4112 	perf_ctx_enable(ctx, false);
4113 
4114 unlock:
4115 	perf_ctx_unlock(cpuctx, ctx);
4116 rcu_unlock:
4117 	rcu_read_unlock();
4118 }
4119 
4120 /*
4121  * Called from scheduler to add the events of the current task
4122  * with interrupts disabled.
4123  *
4124  * We restore the event value and then enable it.
4125  *
4126  * This does not protect us against NMI, but enable()
4127  * sets the enabled bit in the control field of event _before_
4128  * accessing the event control register. If a NMI hits, then it will
4129  * keep the event running.
4130  */
__perf_event_task_sched_in(struct task_struct * prev,struct task_struct * task)4131 void __perf_event_task_sched_in(struct task_struct *prev,
4132 				struct task_struct *task)
4133 {
4134 	perf_event_context_sched_in(task);
4135 
4136 	if (atomic_read(&nr_switch_events))
4137 		perf_event_switch(task, prev, true);
4138 
4139 	if (__this_cpu_read(perf_sched_cb_usages))
4140 		perf_pmu_sched_task(prev, task, true);
4141 }
4142 
perf_calculate_period(struct perf_event * event,u64 nsec,u64 count)4143 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
4144 {
4145 	u64 frequency = event->attr.sample_freq;
4146 	u64 sec = NSEC_PER_SEC;
4147 	u64 divisor, dividend;
4148 
4149 	int count_fls, nsec_fls, frequency_fls, sec_fls;
4150 
4151 	count_fls = fls64(count);
4152 	nsec_fls = fls64(nsec);
4153 	frequency_fls = fls64(frequency);
4154 	sec_fls = 30;
4155 
4156 	/*
4157 	 * We got @count in @nsec, with a target of sample_freq HZ
4158 	 * the target period becomes:
4159 	 *
4160 	 *             @count * 10^9
4161 	 * period = -------------------
4162 	 *          @nsec * sample_freq
4163 	 *
4164 	 */
4165 
4166 	/*
4167 	 * Reduce accuracy by one bit such that @a and @b converge
4168 	 * to a similar magnitude.
4169 	 */
4170 #define REDUCE_FLS(a, b)		\
4171 do {					\
4172 	if (a##_fls > b##_fls) {	\
4173 		a >>= 1;		\
4174 		a##_fls--;		\
4175 	} else {			\
4176 		b >>= 1;		\
4177 		b##_fls--;		\
4178 	}				\
4179 } while (0)
4180 
4181 	/*
4182 	 * Reduce accuracy until either term fits in a u64, then proceed with
4183 	 * the other, so that finally we can do a u64/u64 division.
4184 	 */
4185 	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
4186 		REDUCE_FLS(nsec, frequency);
4187 		REDUCE_FLS(sec, count);
4188 	}
4189 
4190 	if (count_fls + sec_fls > 64) {
4191 		divisor = nsec * frequency;
4192 
4193 		while (count_fls + sec_fls > 64) {
4194 			REDUCE_FLS(count, sec);
4195 			divisor >>= 1;
4196 		}
4197 
4198 		dividend = count * sec;
4199 	} else {
4200 		dividend = count * sec;
4201 
4202 		while (nsec_fls + frequency_fls > 64) {
4203 			REDUCE_FLS(nsec, frequency);
4204 			dividend >>= 1;
4205 		}
4206 
4207 		divisor = nsec * frequency;
4208 	}
4209 
4210 	if (!divisor)
4211 		return dividend;
4212 
4213 	return div64_u64(dividend, divisor);
4214 }
4215 
4216 static DEFINE_PER_CPU(int, perf_throttled_count);
4217 static DEFINE_PER_CPU(u64, perf_throttled_seq);
4218 
perf_adjust_period(struct perf_event * event,u64 nsec,u64 count,bool disable)4219 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
4220 {
4221 	struct hw_perf_event *hwc = &event->hw;
4222 	s64 period, sample_period;
4223 	s64 delta;
4224 
4225 	period = perf_calculate_period(event, nsec, count);
4226 
4227 	delta = (s64)(period - hwc->sample_period);
4228 	if (delta >= 0)
4229 		delta += 7;
4230 	else
4231 		delta -= 7;
4232 	delta /= 8; /* low pass filter */
4233 
4234 	sample_period = hwc->sample_period + delta;
4235 
4236 	if (!sample_period)
4237 		sample_period = 1;
4238 
4239 	hwc->sample_period = sample_period;
4240 
4241 	if (local64_read(&hwc->period_left) > 8*sample_period) {
4242 		if (disable)
4243 			event->pmu->stop(event, PERF_EF_UPDATE);
4244 
4245 		local64_set(&hwc->period_left, 0);
4246 
4247 		if (disable)
4248 			event->pmu->start(event, PERF_EF_RELOAD);
4249 	}
4250 }
4251 
perf_adjust_freq_unthr_events(struct list_head * event_list)4252 static void perf_adjust_freq_unthr_events(struct list_head *event_list)
4253 {
4254 	struct perf_event *event;
4255 	struct hw_perf_event *hwc;
4256 	u64 now, period = TICK_NSEC;
4257 	s64 delta;
4258 
4259 	list_for_each_entry(event, event_list, active_list) {
4260 		if (event->state != PERF_EVENT_STATE_ACTIVE)
4261 			continue;
4262 
4263 		// XXX use visit thingy to avoid the -1,cpu match
4264 		if (!event_filter_match(event))
4265 			continue;
4266 
4267 		hwc = &event->hw;
4268 
4269 		if (hwc->interrupts == MAX_INTERRUPTS) {
4270 			hwc->interrupts = 0;
4271 			perf_log_throttle(event, 1);
4272 			if (!event->attr.freq || !event->attr.sample_freq)
4273 				event->pmu->start(event, 0);
4274 		}
4275 
4276 		if (!event->attr.freq || !event->attr.sample_freq)
4277 			continue;
4278 
4279 		/*
4280 		 * stop the event and update event->count
4281 		 */
4282 		event->pmu->stop(event, PERF_EF_UPDATE);
4283 
4284 		now = local64_read(&event->count);
4285 		delta = now - hwc->freq_count_stamp;
4286 		hwc->freq_count_stamp = now;
4287 
4288 		/*
4289 		 * restart the event
4290 		 * reload only if value has changed
4291 		 * we have stopped the event so tell that
4292 		 * to perf_adjust_period() to avoid stopping it
4293 		 * twice.
4294 		 */
4295 		if (delta > 0)
4296 			perf_adjust_period(event, period, delta, false);
4297 
4298 		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
4299 	}
4300 }
4301 
4302 /*
4303  * combine freq adjustment with unthrottling to avoid two passes over the
4304  * events. At the same time, make sure, having freq events does not change
4305  * the rate of unthrottling as that would introduce bias.
4306  */
4307 static void
perf_adjust_freq_unthr_context(struct perf_event_context * ctx,bool unthrottle)4308 perf_adjust_freq_unthr_context(struct perf_event_context *ctx, bool unthrottle)
4309 {
4310 	struct perf_event_pmu_context *pmu_ctx;
4311 
4312 	/*
4313 	 * only need to iterate over all events iff:
4314 	 * - context have events in frequency mode (needs freq adjust)
4315 	 * - there are events to unthrottle on this cpu
4316 	 */
4317 	if (!(ctx->nr_freq || unthrottle))
4318 		return;
4319 
4320 	raw_spin_lock(&ctx->lock);
4321 
4322 	list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
4323 		if (!(pmu_ctx->nr_freq || unthrottle))
4324 			continue;
4325 		if (!perf_pmu_ctx_is_active(pmu_ctx))
4326 			continue;
4327 		if (pmu_ctx->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT)
4328 			continue;
4329 
4330 		perf_pmu_disable(pmu_ctx->pmu);
4331 		perf_adjust_freq_unthr_events(&pmu_ctx->pinned_active);
4332 		perf_adjust_freq_unthr_events(&pmu_ctx->flexible_active);
4333 		perf_pmu_enable(pmu_ctx->pmu);
4334 	}
4335 
4336 	raw_spin_unlock(&ctx->lock);
4337 }
4338 
4339 /*
4340  * Move @event to the tail of the @ctx's elegible events.
4341  */
rotate_ctx(struct perf_event_context * ctx,struct perf_event * event)4342 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
4343 {
4344 	/*
4345 	 * Rotate the first entry last of non-pinned groups. Rotation might be
4346 	 * disabled by the inheritance code.
4347 	 */
4348 	if (ctx->rotate_disable)
4349 		return;
4350 
4351 	perf_event_groups_delete(&ctx->flexible_groups, event);
4352 	perf_event_groups_insert(&ctx->flexible_groups, event);
4353 }
4354 
4355 /* pick an event from the flexible_groups to rotate */
4356 static inline struct perf_event *
ctx_event_to_rotate(struct perf_event_pmu_context * pmu_ctx)4357 ctx_event_to_rotate(struct perf_event_pmu_context *pmu_ctx)
4358 {
4359 	struct perf_event *event;
4360 	struct rb_node *node;
4361 	struct rb_root *tree;
4362 	struct __group_key key = {
4363 		.pmu = pmu_ctx->pmu,
4364 	};
4365 
4366 	/* pick the first active flexible event */
4367 	event = list_first_entry_or_null(&pmu_ctx->flexible_active,
4368 					 struct perf_event, active_list);
4369 	if (event)
4370 		goto out;
4371 
4372 	/* if no active flexible event, pick the first event */
4373 	tree = &pmu_ctx->ctx->flexible_groups.tree;
4374 
4375 	if (!pmu_ctx->ctx->task) {
4376 		key.cpu = smp_processor_id();
4377 
4378 		node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4379 		if (node)
4380 			event = __node_2_pe(node);
4381 		goto out;
4382 	}
4383 
4384 	key.cpu = -1;
4385 	node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4386 	if (node) {
4387 		event = __node_2_pe(node);
4388 		goto out;
4389 	}
4390 
4391 	key.cpu = smp_processor_id();
4392 	node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4393 	if (node)
4394 		event = __node_2_pe(node);
4395 
4396 out:
4397 	/*
4398 	 * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in()
4399 	 * finds there are unschedulable events, it will set it again.
4400 	 */
4401 	pmu_ctx->rotate_necessary = 0;
4402 
4403 	return event;
4404 }
4405 
perf_rotate_context(struct perf_cpu_pmu_context * cpc)4406 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc)
4407 {
4408 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4409 	struct perf_event_pmu_context *cpu_epc, *task_epc = NULL;
4410 	struct perf_event *cpu_event = NULL, *task_event = NULL;
4411 	int cpu_rotate, task_rotate;
4412 	struct pmu *pmu;
4413 
4414 	/*
4415 	 * Since we run this from IRQ context, nobody can install new
4416 	 * events, thus the event count values are stable.
4417 	 */
4418 
4419 	cpu_epc = &cpc->epc;
4420 	pmu = cpu_epc->pmu;
4421 	task_epc = cpc->task_epc;
4422 
4423 	cpu_rotate = cpu_epc->rotate_necessary;
4424 	task_rotate = task_epc ? task_epc->rotate_necessary : 0;
4425 
4426 	if (!(cpu_rotate || task_rotate))
4427 		return false;
4428 
4429 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
4430 	perf_pmu_disable(pmu);
4431 
4432 	if (task_rotate)
4433 		task_event = ctx_event_to_rotate(task_epc);
4434 	if (cpu_rotate)
4435 		cpu_event = ctx_event_to_rotate(cpu_epc);
4436 
4437 	/*
4438 	 * As per the order given at ctx_resched() first 'pop' task flexible
4439 	 * and then, if needed CPU flexible.
4440 	 */
4441 	if (task_event || (task_epc && cpu_event)) {
4442 		update_context_time(task_epc->ctx);
4443 		__pmu_ctx_sched_out(task_epc, EVENT_FLEXIBLE);
4444 	}
4445 
4446 	if (cpu_event) {
4447 		update_context_time(&cpuctx->ctx);
4448 		__pmu_ctx_sched_out(cpu_epc, EVENT_FLEXIBLE);
4449 		rotate_ctx(&cpuctx->ctx, cpu_event);
4450 		__pmu_ctx_sched_in(cpu_epc, EVENT_FLEXIBLE);
4451 	}
4452 
4453 	if (task_event)
4454 		rotate_ctx(task_epc->ctx, task_event);
4455 
4456 	if (task_event || (task_epc && cpu_event))
4457 		__pmu_ctx_sched_in(task_epc, EVENT_FLEXIBLE);
4458 
4459 	perf_pmu_enable(pmu);
4460 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
4461 
4462 	return true;
4463 }
4464 
perf_event_task_tick(void)4465 void perf_event_task_tick(void)
4466 {
4467 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4468 	struct perf_event_context *ctx;
4469 	int throttled;
4470 
4471 	lockdep_assert_irqs_disabled();
4472 
4473 	__this_cpu_inc(perf_throttled_seq);
4474 	throttled = __this_cpu_xchg(perf_throttled_count, 0);
4475 	tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
4476 
4477 	perf_adjust_freq_unthr_context(&cpuctx->ctx, !!throttled);
4478 
4479 	rcu_read_lock();
4480 	ctx = rcu_dereference(current->perf_event_ctxp);
4481 	if (ctx)
4482 		perf_adjust_freq_unthr_context(ctx, !!throttled);
4483 	rcu_read_unlock();
4484 }
4485 
event_enable_on_exec(struct perf_event * event,struct perf_event_context * ctx)4486 static int event_enable_on_exec(struct perf_event *event,
4487 				struct perf_event_context *ctx)
4488 {
4489 	if (!event->attr.enable_on_exec)
4490 		return 0;
4491 
4492 	event->attr.enable_on_exec = 0;
4493 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
4494 		return 0;
4495 
4496 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
4497 
4498 	return 1;
4499 }
4500 
4501 /*
4502  * Enable all of a task's events that have been marked enable-on-exec.
4503  * This expects task == current.
4504  */
perf_event_enable_on_exec(struct perf_event_context * ctx)4505 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
4506 {
4507 	struct perf_event_context *clone_ctx = NULL;
4508 	enum event_type_t event_type = 0;
4509 	struct perf_cpu_context *cpuctx;
4510 	struct perf_event *event;
4511 	unsigned long flags;
4512 	int enabled = 0;
4513 
4514 	local_irq_save(flags);
4515 	if (WARN_ON_ONCE(current->perf_event_ctxp != ctx))
4516 		goto out;
4517 
4518 	if (!ctx->nr_events)
4519 		goto out;
4520 
4521 	cpuctx = this_cpu_ptr(&perf_cpu_context);
4522 	perf_ctx_lock(cpuctx, ctx);
4523 	ctx_time_freeze(cpuctx, ctx);
4524 
4525 	list_for_each_entry(event, &ctx->event_list, event_entry) {
4526 		enabled |= event_enable_on_exec(event, ctx);
4527 		event_type |= get_event_type(event);
4528 	}
4529 
4530 	/*
4531 	 * Unclone and reschedule this context if we enabled any event.
4532 	 */
4533 	if (enabled) {
4534 		clone_ctx = unclone_ctx(ctx);
4535 		ctx_resched(cpuctx, ctx, NULL, event_type);
4536 	}
4537 	perf_ctx_unlock(cpuctx, ctx);
4538 
4539 out:
4540 	local_irq_restore(flags);
4541 
4542 	if (clone_ctx)
4543 		put_ctx(clone_ctx);
4544 }
4545 
4546 static void perf_remove_from_owner(struct perf_event *event);
4547 static void perf_event_exit_event(struct perf_event *event,
4548 				  struct perf_event_context *ctx);
4549 
4550 /*
4551  * Removes all events from the current task that have been marked
4552  * remove-on-exec, and feeds their values back to parent events.
4553  */
perf_event_remove_on_exec(struct perf_event_context * ctx)4554 static void perf_event_remove_on_exec(struct perf_event_context *ctx)
4555 {
4556 	struct perf_event_context *clone_ctx = NULL;
4557 	struct perf_event *event, *next;
4558 	unsigned long flags;
4559 	bool modified = false;
4560 
4561 	mutex_lock(&ctx->mutex);
4562 
4563 	if (WARN_ON_ONCE(ctx->task != current))
4564 		goto unlock;
4565 
4566 	list_for_each_entry_safe(event, next, &ctx->event_list, event_entry) {
4567 		if (!event->attr.remove_on_exec)
4568 			continue;
4569 
4570 		if (!is_kernel_event(event))
4571 			perf_remove_from_owner(event);
4572 
4573 		modified = true;
4574 
4575 		perf_event_exit_event(event, ctx);
4576 	}
4577 
4578 	raw_spin_lock_irqsave(&ctx->lock, flags);
4579 	if (modified)
4580 		clone_ctx = unclone_ctx(ctx);
4581 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
4582 
4583 unlock:
4584 	mutex_unlock(&ctx->mutex);
4585 
4586 	if (clone_ctx)
4587 		put_ctx(clone_ctx);
4588 }
4589 
4590 struct perf_read_data {
4591 	struct perf_event *event;
4592 	bool group;
4593 	int ret;
4594 };
4595 
4596 static inline const struct cpumask *perf_scope_cpu_topology_cpumask(unsigned int scope, int cpu);
4597 
__perf_event_read_cpu(struct perf_event * event,int event_cpu)4598 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
4599 {
4600 	int local_cpu = smp_processor_id();
4601 	u16 local_pkg, event_pkg;
4602 
4603 	if ((unsigned)event_cpu >= nr_cpu_ids)
4604 		return event_cpu;
4605 
4606 	if (event->group_caps & PERF_EV_CAP_READ_SCOPE) {
4607 		const struct cpumask *cpumask = perf_scope_cpu_topology_cpumask(event->pmu->scope, event_cpu);
4608 
4609 		if (cpumask && cpumask_test_cpu(local_cpu, cpumask))
4610 			return local_cpu;
4611 	}
4612 
4613 	if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
4614 		event_pkg = topology_physical_package_id(event_cpu);
4615 		local_pkg = topology_physical_package_id(local_cpu);
4616 
4617 		if (event_pkg == local_pkg)
4618 			return local_cpu;
4619 	}
4620 
4621 	return event_cpu;
4622 }
4623 
4624 /*
4625  * Cross CPU call to read the hardware event
4626  */
__perf_event_read(void * info)4627 static void __perf_event_read(void *info)
4628 {
4629 	struct perf_read_data *data = info;
4630 	struct perf_event *sub, *event = data->event;
4631 	struct perf_event_context *ctx = event->ctx;
4632 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4633 	struct pmu *pmu = event->pmu;
4634 
4635 	/*
4636 	 * If this is a task context, we need to check whether it is
4637 	 * the current task context of this cpu.  If not it has been
4638 	 * scheduled out before the smp call arrived.  In that case
4639 	 * event->count would have been updated to a recent sample
4640 	 * when the event was scheduled out.
4641 	 */
4642 	if (ctx->task && cpuctx->task_ctx != ctx)
4643 		return;
4644 
4645 	raw_spin_lock(&ctx->lock);
4646 	ctx_time_update_event(ctx, event);
4647 
4648 	perf_event_update_time(event);
4649 	if (data->group)
4650 		perf_event_update_sibling_time(event);
4651 
4652 	if (event->state != PERF_EVENT_STATE_ACTIVE)
4653 		goto unlock;
4654 
4655 	if (!data->group) {
4656 		pmu->read(event);
4657 		data->ret = 0;
4658 		goto unlock;
4659 	}
4660 
4661 	pmu->start_txn(pmu, PERF_PMU_TXN_READ);
4662 
4663 	pmu->read(event);
4664 
4665 	for_each_sibling_event(sub, event) {
4666 		if (sub->state == PERF_EVENT_STATE_ACTIVE) {
4667 			/*
4668 			 * Use sibling's PMU rather than @event's since
4669 			 * sibling could be on different (eg: software) PMU.
4670 			 */
4671 			sub->pmu->read(sub);
4672 		}
4673 	}
4674 
4675 	data->ret = pmu->commit_txn(pmu);
4676 
4677 unlock:
4678 	raw_spin_unlock(&ctx->lock);
4679 }
4680 
perf_event_count(struct perf_event * event,bool self)4681 static inline u64 perf_event_count(struct perf_event *event, bool self)
4682 {
4683 	if (self)
4684 		return local64_read(&event->count);
4685 
4686 	return local64_read(&event->count) + atomic64_read(&event->child_count);
4687 }
4688 
calc_timer_values(struct perf_event * event,u64 * now,u64 * enabled,u64 * running)4689 static void calc_timer_values(struct perf_event *event,
4690 				u64 *now,
4691 				u64 *enabled,
4692 				u64 *running)
4693 {
4694 	u64 ctx_time;
4695 
4696 	*now = perf_clock();
4697 	ctx_time = perf_event_time_now(event, *now);
4698 	__perf_update_times(event, ctx_time, enabled, running);
4699 }
4700 
4701 /*
4702  * NMI-safe method to read a local event, that is an event that
4703  * is:
4704  *   - either for the current task, or for this CPU
4705  *   - does not have inherit set, for inherited task events
4706  *     will not be local and we cannot read them atomically
4707  *   - must not have a pmu::count method
4708  */
perf_event_read_local(struct perf_event * event,u64 * value,u64 * enabled,u64 * running)4709 int perf_event_read_local(struct perf_event *event, u64 *value,
4710 			  u64 *enabled, u64 *running)
4711 {
4712 	unsigned long flags;
4713 	int event_oncpu;
4714 	int event_cpu;
4715 	int ret = 0;
4716 
4717 	/*
4718 	 * Disabling interrupts avoids all counter scheduling (context
4719 	 * switches, timer based rotation and IPIs).
4720 	 */
4721 	local_irq_save(flags);
4722 
4723 	/*
4724 	 * It must not be an event with inherit set, we cannot read
4725 	 * all child counters from atomic context.
4726 	 */
4727 	if (event->attr.inherit) {
4728 		ret = -EOPNOTSUPP;
4729 		goto out;
4730 	}
4731 
4732 	/* If this is a per-task event, it must be for current */
4733 	if ((event->attach_state & PERF_ATTACH_TASK) &&
4734 	    event->hw.target != current) {
4735 		ret = -EINVAL;
4736 		goto out;
4737 	}
4738 
4739 	/*
4740 	 * Get the event CPU numbers, and adjust them to local if the event is
4741 	 * a per-package event that can be read locally
4742 	 */
4743 	event_oncpu = __perf_event_read_cpu(event, event->oncpu);
4744 	event_cpu = __perf_event_read_cpu(event, event->cpu);
4745 
4746 	/* If this is a per-CPU event, it must be for this CPU */
4747 	if (!(event->attach_state & PERF_ATTACH_TASK) &&
4748 	    event_cpu != smp_processor_id()) {
4749 		ret = -EINVAL;
4750 		goto out;
4751 	}
4752 
4753 	/* If this is a pinned event it must be running on this CPU */
4754 	if (event->attr.pinned && event_oncpu != smp_processor_id()) {
4755 		ret = -EBUSY;
4756 		goto out;
4757 	}
4758 
4759 	/*
4760 	 * If the event is currently on this CPU, its either a per-task event,
4761 	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
4762 	 * oncpu == -1).
4763 	 */
4764 	if (event_oncpu == smp_processor_id())
4765 		event->pmu->read(event);
4766 
4767 	*value = local64_read(&event->count);
4768 	if (enabled || running) {
4769 		u64 __enabled, __running, __now;
4770 
4771 		calc_timer_values(event, &__now, &__enabled, &__running);
4772 		if (enabled)
4773 			*enabled = __enabled;
4774 		if (running)
4775 			*running = __running;
4776 	}
4777 out:
4778 	local_irq_restore(flags);
4779 
4780 	return ret;
4781 }
4782 EXPORT_SYMBOL_GPL(perf_event_read_local);
4783 
perf_event_read(struct perf_event * event,bool group)4784 static int perf_event_read(struct perf_event *event, bool group)
4785 {
4786 	enum perf_event_state state = READ_ONCE(event->state);
4787 	int event_cpu, ret = 0;
4788 
4789 	/*
4790 	 * If event is enabled and currently active on a CPU, update the
4791 	 * value in the event structure:
4792 	 */
4793 again:
4794 	if (state == PERF_EVENT_STATE_ACTIVE) {
4795 		struct perf_read_data data;
4796 
4797 		/*
4798 		 * Orders the ->state and ->oncpu loads such that if we see
4799 		 * ACTIVE we must also see the right ->oncpu.
4800 		 *
4801 		 * Matches the smp_wmb() from event_sched_in().
4802 		 */
4803 		smp_rmb();
4804 
4805 		event_cpu = READ_ONCE(event->oncpu);
4806 		if ((unsigned)event_cpu >= nr_cpu_ids)
4807 			return 0;
4808 
4809 		data = (struct perf_read_data){
4810 			.event = event,
4811 			.group = group,
4812 			.ret = 0,
4813 		};
4814 
4815 		preempt_disable();
4816 		event_cpu = __perf_event_read_cpu(event, event_cpu);
4817 
4818 		/*
4819 		 * Purposely ignore the smp_call_function_single() return
4820 		 * value.
4821 		 *
4822 		 * If event_cpu isn't a valid CPU it means the event got
4823 		 * scheduled out and that will have updated the event count.
4824 		 *
4825 		 * Therefore, either way, we'll have an up-to-date event count
4826 		 * after this.
4827 		 */
4828 		(void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4829 		preempt_enable();
4830 		ret = data.ret;
4831 
4832 	} else if (state == PERF_EVENT_STATE_INACTIVE) {
4833 		struct perf_event_context *ctx = event->ctx;
4834 		unsigned long flags;
4835 
4836 		raw_spin_lock_irqsave(&ctx->lock, flags);
4837 		state = event->state;
4838 		if (state != PERF_EVENT_STATE_INACTIVE) {
4839 			raw_spin_unlock_irqrestore(&ctx->lock, flags);
4840 			goto again;
4841 		}
4842 
4843 		/*
4844 		 * May read while context is not active (e.g., thread is
4845 		 * blocked), in that case we cannot update context time
4846 		 */
4847 		ctx_time_update_event(ctx, event);
4848 
4849 		perf_event_update_time(event);
4850 		if (group)
4851 			perf_event_update_sibling_time(event);
4852 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4853 	}
4854 
4855 	return ret;
4856 }
4857 
4858 /*
4859  * Initialize the perf_event context in a task_struct:
4860  */
__perf_event_init_context(struct perf_event_context * ctx)4861 static void __perf_event_init_context(struct perf_event_context *ctx)
4862 {
4863 	raw_spin_lock_init(&ctx->lock);
4864 	mutex_init(&ctx->mutex);
4865 	INIT_LIST_HEAD(&ctx->pmu_ctx_list);
4866 	perf_event_groups_init(&ctx->pinned_groups);
4867 	perf_event_groups_init(&ctx->flexible_groups);
4868 	INIT_LIST_HEAD(&ctx->event_list);
4869 	refcount_set(&ctx->refcount, 1);
4870 }
4871 
4872 static void
__perf_init_event_pmu_context(struct perf_event_pmu_context * epc,struct pmu * pmu)4873 __perf_init_event_pmu_context(struct perf_event_pmu_context *epc, struct pmu *pmu)
4874 {
4875 	epc->pmu = pmu;
4876 	INIT_LIST_HEAD(&epc->pmu_ctx_entry);
4877 	INIT_LIST_HEAD(&epc->pinned_active);
4878 	INIT_LIST_HEAD(&epc->flexible_active);
4879 	atomic_set(&epc->refcount, 1);
4880 }
4881 
4882 static struct perf_event_context *
alloc_perf_context(struct task_struct * task)4883 alloc_perf_context(struct task_struct *task)
4884 {
4885 	struct perf_event_context *ctx;
4886 
4887 	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4888 	if (!ctx)
4889 		return NULL;
4890 
4891 	__perf_event_init_context(ctx);
4892 	if (task)
4893 		ctx->task = get_task_struct(task);
4894 
4895 	return ctx;
4896 }
4897 
4898 static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)4899 find_lively_task_by_vpid(pid_t vpid)
4900 {
4901 	struct task_struct *task;
4902 
4903 	rcu_read_lock();
4904 	if (!vpid)
4905 		task = current;
4906 	else
4907 		task = find_task_by_vpid(vpid);
4908 	if (task)
4909 		get_task_struct(task);
4910 	rcu_read_unlock();
4911 
4912 	if (!task)
4913 		return ERR_PTR(-ESRCH);
4914 
4915 	return task;
4916 }
4917 
4918 /*
4919  * Returns a matching context with refcount and pincount.
4920  */
4921 static struct perf_event_context *
find_get_context(struct task_struct * task,struct perf_event * event)4922 find_get_context(struct task_struct *task, struct perf_event *event)
4923 {
4924 	struct perf_event_context *ctx, *clone_ctx = NULL;
4925 	struct perf_cpu_context *cpuctx;
4926 	unsigned long flags;
4927 	int err;
4928 
4929 	if (!task) {
4930 		/* Must be root to operate on a CPU event: */
4931 		err = perf_allow_cpu(&event->attr);
4932 		if (err)
4933 			return ERR_PTR(err);
4934 
4935 		cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu);
4936 		ctx = &cpuctx->ctx;
4937 		get_ctx(ctx);
4938 		raw_spin_lock_irqsave(&ctx->lock, flags);
4939 		++ctx->pin_count;
4940 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4941 
4942 		return ctx;
4943 	}
4944 
4945 	err = -EINVAL;
4946 retry:
4947 	ctx = perf_lock_task_context(task, &flags);
4948 	if (ctx) {
4949 		clone_ctx = unclone_ctx(ctx);
4950 		++ctx->pin_count;
4951 
4952 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4953 
4954 		if (clone_ctx)
4955 			put_ctx(clone_ctx);
4956 	} else {
4957 		ctx = alloc_perf_context(task);
4958 		err = -ENOMEM;
4959 		if (!ctx)
4960 			goto errout;
4961 
4962 		err = 0;
4963 		mutex_lock(&task->perf_event_mutex);
4964 		/*
4965 		 * If it has already passed perf_event_exit_task().
4966 		 * we must see PF_EXITING, it takes this mutex too.
4967 		 */
4968 		if (task->flags & PF_EXITING)
4969 			err = -ESRCH;
4970 		else if (task->perf_event_ctxp)
4971 			err = -EAGAIN;
4972 		else {
4973 			get_ctx(ctx);
4974 			++ctx->pin_count;
4975 			rcu_assign_pointer(task->perf_event_ctxp, ctx);
4976 		}
4977 		mutex_unlock(&task->perf_event_mutex);
4978 
4979 		if (unlikely(err)) {
4980 			put_ctx(ctx);
4981 
4982 			if (err == -EAGAIN)
4983 				goto retry;
4984 			goto errout;
4985 		}
4986 	}
4987 
4988 	return ctx;
4989 
4990 errout:
4991 	return ERR_PTR(err);
4992 }
4993 
4994 static struct perf_event_pmu_context *
find_get_pmu_context(struct pmu * pmu,struct perf_event_context * ctx,struct perf_event * event)4995 find_get_pmu_context(struct pmu *pmu, struct perf_event_context *ctx,
4996 		     struct perf_event *event)
4997 {
4998 	struct perf_event_pmu_context *new = NULL, *pos = NULL, *epc;
4999 	void *task_ctx_data = NULL;
5000 
5001 	if (!ctx->task) {
5002 		/*
5003 		 * perf_pmu_migrate_context() / __perf_pmu_install_event()
5004 		 * relies on the fact that find_get_pmu_context() cannot fail
5005 		 * for CPU contexts.
5006 		 */
5007 		struct perf_cpu_pmu_context *cpc;
5008 
5009 		cpc = per_cpu_ptr(pmu->cpu_pmu_context, event->cpu);
5010 		epc = &cpc->epc;
5011 		raw_spin_lock_irq(&ctx->lock);
5012 		if (!epc->ctx) {
5013 			atomic_set(&epc->refcount, 1);
5014 			epc->embedded = 1;
5015 			list_add(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list);
5016 			epc->ctx = ctx;
5017 		} else {
5018 			WARN_ON_ONCE(epc->ctx != ctx);
5019 			atomic_inc(&epc->refcount);
5020 		}
5021 		raw_spin_unlock_irq(&ctx->lock);
5022 		return epc;
5023 	}
5024 
5025 	new = kzalloc(sizeof(*epc), GFP_KERNEL);
5026 	if (!new)
5027 		return ERR_PTR(-ENOMEM);
5028 
5029 	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
5030 		task_ctx_data = alloc_task_ctx_data(pmu);
5031 		if (!task_ctx_data) {
5032 			kfree(new);
5033 			return ERR_PTR(-ENOMEM);
5034 		}
5035 	}
5036 
5037 	__perf_init_event_pmu_context(new, pmu);
5038 
5039 	/*
5040 	 * XXX
5041 	 *
5042 	 * lockdep_assert_held(&ctx->mutex);
5043 	 *
5044 	 * can't because perf_event_init_task() doesn't actually hold the
5045 	 * child_ctx->mutex.
5046 	 */
5047 
5048 	raw_spin_lock_irq(&ctx->lock);
5049 	list_for_each_entry(epc, &ctx->pmu_ctx_list, pmu_ctx_entry) {
5050 		if (epc->pmu == pmu) {
5051 			WARN_ON_ONCE(epc->ctx != ctx);
5052 			atomic_inc(&epc->refcount);
5053 			goto found_epc;
5054 		}
5055 		/* Make sure the pmu_ctx_list is sorted by PMU type: */
5056 		if (!pos && epc->pmu->type > pmu->type)
5057 			pos = epc;
5058 	}
5059 
5060 	epc = new;
5061 	new = NULL;
5062 
5063 	if (!pos)
5064 		list_add_tail(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list);
5065 	else
5066 		list_add(&epc->pmu_ctx_entry, pos->pmu_ctx_entry.prev);
5067 
5068 	epc->ctx = ctx;
5069 
5070 found_epc:
5071 	if (task_ctx_data && !epc->task_ctx_data) {
5072 		epc->task_ctx_data = task_ctx_data;
5073 		task_ctx_data = NULL;
5074 		ctx->nr_task_data++;
5075 	}
5076 	raw_spin_unlock_irq(&ctx->lock);
5077 
5078 	free_task_ctx_data(pmu, task_ctx_data);
5079 	kfree(new);
5080 
5081 	return epc;
5082 }
5083 
get_pmu_ctx(struct perf_event_pmu_context * epc)5084 static void get_pmu_ctx(struct perf_event_pmu_context *epc)
5085 {
5086 	WARN_ON_ONCE(!atomic_inc_not_zero(&epc->refcount));
5087 }
5088 
free_epc_rcu(struct rcu_head * head)5089 static void free_epc_rcu(struct rcu_head *head)
5090 {
5091 	struct perf_event_pmu_context *epc = container_of(head, typeof(*epc), rcu_head);
5092 
5093 	kfree(epc->task_ctx_data);
5094 	kfree(epc);
5095 }
5096 
put_pmu_ctx(struct perf_event_pmu_context * epc)5097 static void put_pmu_ctx(struct perf_event_pmu_context *epc)
5098 {
5099 	struct perf_event_context *ctx = epc->ctx;
5100 	unsigned long flags;
5101 
5102 	/*
5103 	 * XXX
5104 	 *
5105 	 * lockdep_assert_held(&ctx->mutex);
5106 	 *
5107 	 * can't because of the call-site in _free_event()/put_event()
5108 	 * which isn't always called under ctx->mutex.
5109 	 */
5110 	if (!atomic_dec_and_raw_lock_irqsave(&epc->refcount, &ctx->lock, flags))
5111 		return;
5112 
5113 	WARN_ON_ONCE(list_empty(&epc->pmu_ctx_entry));
5114 
5115 	list_del_init(&epc->pmu_ctx_entry);
5116 	epc->ctx = NULL;
5117 
5118 	WARN_ON_ONCE(!list_empty(&epc->pinned_active));
5119 	WARN_ON_ONCE(!list_empty(&epc->flexible_active));
5120 
5121 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
5122 
5123 	if (epc->embedded)
5124 		return;
5125 
5126 	call_rcu(&epc->rcu_head, free_epc_rcu);
5127 }
5128 
5129 static void perf_event_free_filter(struct perf_event *event);
5130 
free_event_rcu(struct rcu_head * head)5131 static void free_event_rcu(struct rcu_head *head)
5132 {
5133 	struct perf_event *event = container_of(head, typeof(*event), rcu_head);
5134 
5135 	if (event->ns)
5136 		put_pid_ns(event->ns);
5137 	perf_event_free_filter(event);
5138 	kmem_cache_free(perf_event_cache, event);
5139 }
5140 
5141 static void ring_buffer_attach(struct perf_event *event,
5142 			       struct perf_buffer *rb);
5143 
detach_sb_event(struct perf_event * event)5144 static void detach_sb_event(struct perf_event *event)
5145 {
5146 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
5147 
5148 	raw_spin_lock(&pel->lock);
5149 	list_del_rcu(&event->sb_list);
5150 	raw_spin_unlock(&pel->lock);
5151 }
5152 
is_sb_event(struct perf_event * event)5153 static bool is_sb_event(struct perf_event *event)
5154 {
5155 	struct perf_event_attr *attr = &event->attr;
5156 
5157 	if (event->parent)
5158 		return false;
5159 
5160 	if (event->attach_state & PERF_ATTACH_TASK)
5161 		return false;
5162 
5163 	if (attr->mmap || attr->mmap_data || attr->mmap2 ||
5164 	    attr->comm || attr->comm_exec ||
5165 	    attr->task || attr->ksymbol ||
5166 	    attr->context_switch || attr->text_poke ||
5167 	    attr->bpf_event)
5168 		return true;
5169 	return false;
5170 }
5171 
unaccount_pmu_sb_event(struct perf_event * event)5172 static void unaccount_pmu_sb_event(struct perf_event *event)
5173 {
5174 	if (is_sb_event(event))
5175 		detach_sb_event(event);
5176 }
5177 
5178 #ifdef CONFIG_NO_HZ_FULL
5179 static DEFINE_SPINLOCK(nr_freq_lock);
5180 #endif
5181 
unaccount_freq_event_nohz(void)5182 static void unaccount_freq_event_nohz(void)
5183 {
5184 #ifdef CONFIG_NO_HZ_FULL
5185 	spin_lock(&nr_freq_lock);
5186 	if (atomic_dec_and_test(&nr_freq_events))
5187 		tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
5188 	spin_unlock(&nr_freq_lock);
5189 #endif
5190 }
5191 
unaccount_freq_event(void)5192 static void unaccount_freq_event(void)
5193 {
5194 	if (tick_nohz_full_enabled())
5195 		unaccount_freq_event_nohz();
5196 	else
5197 		atomic_dec(&nr_freq_events);
5198 }
5199 
unaccount_event(struct perf_event * event)5200 static void unaccount_event(struct perf_event *event)
5201 {
5202 	bool dec = false;
5203 
5204 	if (event->parent)
5205 		return;
5206 
5207 	if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
5208 		dec = true;
5209 	if (event->attr.mmap || event->attr.mmap_data)
5210 		atomic_dec(&nr_mmap_events);
5211 	if (event->attr.build_id)
5212 		atomic_dec(&nr_build_id_events);
5213 	if (event->attr.comm)
5214 		atomic_dec(&nr_comm_events);
5215 	if (event->attr.namespaces)
5216 		atomic_dec(&nr_namespaces_events);
5217 	if (event->attr.cgroup)
5218 		atomic_dec(&nr_cgroup_events);
5219 	if (event->attr.task)
5220 		atomic_dec(&nr_task_events);
5221 	if (event->attr.freq)
5222 		unaccount_freq_event();
5223 	if (event->attr.context_switch) {
5224 		dec = true;
5225 		atomic_dec(&nr_switch_events);
5226 	}
5227 	if (is_cgroup_event(event))
5228 		dec = true;
5229 	if (has_branch_stack(event))
5230 		dec = true;
5231 	if (event->attr.ksymbol)
5232 		atomic_dec(&nr_ksymbol_events);
5233 	if (event->attr.bpf_event)
5234 		atomic_dec(&nr_bpf_events);
5235 	if (event->attr.text_poke)
5236 		atomic_dec(&nr_text_poke_events);
5237 
5238 	if (dec) {
5239 		if (!atomic_add_unless(&perf_sched_count, -1, 1))
5240 			schedule_delayed_work(&perf_sched_work, HZ);
5241 	}
5242 
5243 	unaccount_pmu_sb_event(event);
5244 }
5245 
perf_sched_delayed(struct work_struct * work)5246 static void perf_sched_delayed(struct work_struct *work)
5247 {
5248 	mutex_lock(&perf_sched_mutex);
5249 	if (atomic_dec_and_test(&perf_sched_count))
5250 		static_branch_disable(&perf_sched_events);
5251 	mutex_unlock(&perf_sched_mutex);
5252 }
5253 
5254 /*
5255  * The following implement mutual exclusion of events on "exclusive" pmus
5256  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
5257  * at a time, so we disallow creating events that might conflict, namely:
5258  *
5259  *  1) cpu-wide events in the presence of per-task events,
5260  *  2) per-task events in the presence of cpu-wide events,
5261  *  3) two matching events on the same perf_event_context.
5262  *
5263  * The former two cases are handled in the allocation path (perf_event_alloc(),
5264  * _free_event()), the latter -- before the first perf_install_in_context().
5265  */
exclusive_event_init(struct perf_event * event)5266 static int exclusive_event_init(struct perf_event *event)
5267 {
5268 	struct pmu *pmu = event->pmu;
5269 
5270 	if (!is_exclusive_pmu(pmu))
5271 		return 0;
5272 
5273 	/*
5274 	 * Prevent co-existence of per-task and cpu-wide events on the
5275 	 * same exclusive pmu.
5276 	 *
5277 	 * Negative pmu::exclusive_cnt means there are cpu-wide
5278 	 * events on this "exclusive" pmu, positive means there are
5279 	 * per-task events.
5280 	 *
5281 	 * Since this is called in perf_event_alloc() path, event::ctx
5282 	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
5283 	 * to mean "per-task event", because unlike other attach states it
5284 	 * never gets cleared.
5285 	 */
5286 	if (event->attach_state & PERF_ATTACH_TASK) {
5287 		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
5288 			return -EBUSY;
5289 	} else {
5290 		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
5291 			return -EBUSY;
5292 	}
5293 
5294 	event->attach_state |= PERF_ATTACH_EXCLUSIVE;
5295 
5296 	return 0;
5297 }
5298 
exclusive_event_destroy(struct perf_event * event)5299 static void exclusive_event_destroy(struct perf_event *event)
5300 {
5301 	struct pmu *pmu = event->pmu;
5302 
5303 	/* see comment in exclusive_event_init() */
5304 	if (event->attach_state & PERF_ATTACH_TASK)
5305 		atomic_dec(&pmu->exclusive_cnt);
5306 	else
5307 		atomic_inc(&pmu->exclusive_cnt);
5308 
5309 	event->attach_state &= ~PERF_ATTACH_EXCLUSIVE;
5310 }
5311 
exclusive_event_match(struct perf_event * e1,struct perf_event * e2)5312 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
5313 {
5314 	if ((e1->pmu == e2->pmu) &&
5315 	    (e1->cpu == e2->cpu ||
5316 	     e1->cpu == -1 ||
5317 	     e2->cpu == -1))
5318 		return true;
5319 	return false;
5320 }
5321 
exclusive_event_installable(struct perf_event * event,struct perf_event_context * ctx)5322 static bool exclusive_event_installable(struct perf_event *event,
5323 					struct perf_event_context *ctx)
5324 {
5325 	struct perf_event *iter_event;
5326 	struct pmu *pmu = event->pmu;
5327 
5328 	lockdep_assert_held(&ctx->mutex);
5329 
5330 	if (!is_exclusive_pmu(pmu))
5331 		return true;
5332 
5333 	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
5334 		if (exclusive_event_match(iter_event, event))
5335 			return false;
5336 	}
5337 
5338 	return true;
5339 }
5340 
5341 static void perf_addr_filters_splice(struct perf_event *event,
5342 				       struct list_head *head);
5343 
5344 /* vs perf_event_alloc() error */
__free_event(struct perf_event * event)5345 static void __free_event(struct perf_event *event)
5346 {
5347 	if (event->attach_state & PERF_ATTACH_CALLCHAIN)
5348 		put_callchain_buffers();
5349 
5350 	kfree(event->addr_filter_ranges);
5351 
5352 	if (event->attach_state & PERF_ATTACH_EXCLUSIVE)
5353 		exclusive_event_destroy(event);
5354 
5355 	if (is_cgroup_event(event))
5356 		perf_detach_cgroup(event);
5357 
5358 	if (event->destroy)
5359 		event->destroy(event);
5360 
5361 	/*
5362 	 * Must be after ->destroy(), due to uprobe_perf_close() using
5363 	 * hw.target.
5364 	 */
5365 	if (event->hw.target)
5366 		put_task_struct(event->hw.target);
5367 
5368 	if (event->pmu_ctx) {
5369 		/*
5370 		 * put_pmu_ctx() needs an event->ctx reference, because of
5371 		 * epc->ctx.
5372 		 */
5373 		WARN_ON_ONCE(!event->ctx);
5374 		WARN_ON_ONCE(event->pmu_ctx->ctx != event->ctx);
5375 		put_pmu_ctx(event->pmu_ctx);
5376 	}
5377 
5378 	/*
5379 	 * perf_event_free_task() relies on put_ctx() being 'last', in
5380 	 * particular all task references must be cleaned up.
5381 	 */
5382 	if (event->ctx)
5383 		put_ctx(event->ctx);
5384 
5385 	if (event->pmu)
5386 		module_put(event->pmu->module);
5387 
5388 	call_rcu(&event->rcu_head, free_event_rcu);
5389 }
5390 
5391 /* vs perf_event_alloc() success */
_free_event(struct perf_event * event)5392 static void _free_event(struct perf_event *event)
5393 {
5394 	irq_work_sync(&event->pending_irq);
5395 	irq_work_sync(&event->pending_disable_irq);
5396 
5397 	unaccount_event(event);
5398 
5399 	security_perf_event_free(event);
5400 
5401 	if (event->rb) {
5402 		/*
5403 		 * Can happen when we close an event with re-directed output.
5404 		 *
5405 		 * Since we have a 0 refcount, perf_mmap_close() will skip
5406 		 * over us; possibly making our ring_buffer_put() the last.
5407 		 */
5408 		mutex_lock(&event->mmap_mutex);
5409 		ring_buffer_attach(event, NULL);
5410 		mutex_unlock(&event->mmap_mutex);
5411 	}
5412 
5413 	perf_event_free_bpf_prog(event);
5414 	perf_addr_filters_splice(event, NULL);
5415 
5416 	__free_event(event);
5417 }
5418 
5419 /*
5420  * Used to free events which have a known refcount of 1, such as in error paths
5421  * where the event isn't exposed yet and inherited events.
5422  */
free_event(struct perf_event * event)5423 static void free_event(struct perf_event *event)
5424 {
5425 	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
5426 				"unexpected event refcount: %ld; ptr=%p\n",
5427 				atomic_long_read(&event->refcount), event)) {
5428 		/* leak to avoid use-after-free */
5429 		return;
5430 	}
5431 
5432 	_free_event(event);
5433 }
5434 
5435 /*
5436  * Remove user event from the owner task.
5437  */
perf_remove_from_owner(struct perf_event * event)5438 static void perf_remove_from_owner(struct perf_event *event)
5439 {
5440 	struct task_struct *owner;
5441 
5442 	rcu_read_lock();
5443 	/*
5444 	 * Matches the smp_store_release() in perf_event_exit_task(). If we
5445 	 * observe !owner it means the list deletion is complete and we can
5446 	 * indeed free this event, otherwise we need to serialize on
5447 	 * owner->perf_event_mutex.
5448 	 */
5449 	owner = READ_ONCE(event->owner);
5450 	if (owner) {
5451 		/*
5452 		 * Since delayed_put_task_struct() also drops the last
5453 		 * task reference we can safely take a new reference
5454 		 * while holding the rcu_read_lock().
5455 		 */
5456 		get_task_struct(owner);
5457 	}
5458 	rcu_read_unlock();
5459 
5460 	if (owner) {
5461 		/*
5462 		 * If we're here through perf_event_exit_task() we're already
5463 		 * holding ctx->mutex which would be an inversion wrt. the
5464 		 * normal lock order.
5465 		 *
5466 		 * However we can safely take this lock because its the child
5467 		 * ctx->mutex.
5468 		 */
5469 		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
5470 
5471 		/*
5472 		 * We have to re-check the event->owner field, if it is cleared
5473 		 * we raced with perf_event_exit_task(), acquiring the mutex
5474 		 * ensured they're done, and we can proceed with freeing the
5475 		 * event.
5476 		 */
5477 		if (event->owner) {
5478 			list_del_init(&event->owner_entry);
5479 			smp_store_release(&event->owner, NULL);
5480 		}
5481 		mutex_unlock(&owner->perf_event_mutex);
5482 		put_task_struct(owner);
5483 	}
5484 }
5485 
put_event(struct perf_event * event)5486 static void put_event(struct perf_event *event)
5487 {
5488 	struct perf_event *parent;
5489 
5490 	if (!atomic_long_dec_and_test(&event->refcount))
5491 		return;
5492 
5493 	parent = event->parent;
5494 	_free_event(event);
5495 
5496 	/* Matches the refcount bump in inherit_event() */
5497 	if (parent)
5498 		put_event(parent);
5499 }
5500 
5501 /*
5502  * Kill an event dead; while event:refcount will preserve the event
5503  * object, it will not preserve its functionality. Once the last 'user'
5504  * gives up the object, we'll destroy the thing.
5505  */
perf_event_release_kernel(struct perf_event * event)5506 int perf_event_release_kernel(struct perf_event *event)
5507 {
5508 	struct perf_event_context *ctx = event->ctx;
5509 	struct perf_event *child, *tmp;
5510 	LIST_HEAD(free_list);
5511 
5512 	/*
5513 	 * If we got here through err_alloc: free_event(event); we will not
5514 	 * have attached to a context yet.
5515 	 */
5516 	if (!ctx) {
5517 		WARN_ON_ONCE(event->attach_state &
5518 				(PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
5519 		goto no_ctx;
5520 	}
5521 
5522 	if (!is_kernel_event(event))
5523 		perf_remove_from_owner(event);
5524 
5525 	ctx = perf_event_ctx_lock(event);
5526 	WARN_ON_ONCE(ctx->parent_ctx);
5527 
5528 	/*
5529 	 * Mark this event as STATE_DEAD, there is no external reference to it
5530 	 * anymore.
5531 	 *
5532 	 * Anybody acquiring event->child_mutex after the below loop _must_
5533 	 * also see this, most importantly inherit_event() which will avoid
5534 	 * placing more children on the list.
5535 	 *
5536 	 * Thus this guarantees that we will in fact observe and kill _ALL_
5537 	 * child events.
5538 	 */
5539 	perf_remove_from_context(event, DETACH_GROUP|DETACH_DEAD);
5540 
5541 	perf_event_ctx_unlock(event, ctx);
5542 
5543 again:
5544 	mutex_lock(&event->child_mutex);
5545 	list_for_each_entry(child, &event->child_list, child_list) {
5546 		void *var = NULL;
5547 
5548 		/*
5549 		 * Cannot change, child events are not migrated, see the
5550 		 * comment with perf_event_ctx_lock_nested().
5551 		 */
5552 		ctx = READ_ONCE(child->ctx);
5553 		/*
5554 		 * Since child_mutex nests inside ctx::mutex, we must jump
5555 		 * through hoops. We start by grabbing a reference on the ctx.
5556 		 *
5557 		 * Since the event cannot get freed while we hold the
5558 		 * child_mutex, the context must also exist and have a !0
5559 		 * reference count.
5560 		 */
5561 		get_ctx(ctx);
5562 
5563 		/*
5564 		 * Now that we have a ctx ref, we can drop child_mutex, and
5565 		 * acquire ctx::mutex without fear of it going away. Then we
5566 		 * can re-acquire child_mutex.
5567 		 */
5568 		mutex_unlock(&event->child_mutex);
5569 		mutex_lock(&ctx->mutex);
5570 		mutex_lock(&event->child_mutex);
5571 
5572 		/*
5573 		 * Now that we hold ctx::mutex and child_mutex, revalidate our
5574 		 * state, if child is still the first entry, it didn't get freed
5575 		 * and we can continue doing so.
5576 		 */
5577 		tmp = list_first_entry_or_null(&event->child_list,
5578 					       struct perf_event, child_list);
5579 		if (tmp == child) {
5580 			perf_remove_from_context(child, DETACH_GROUP);
5581 			list_move(&child->child_list, &free_list);
5582 		} else {
5583 			var = &ctx->refcount;
5584 		}
5585 
5586 		mutex_unlock(&event->child_mutex);
5587 		mutex_unlock(&ctx->mutex);
5588 		put_ctx(ctx);
5589 
5590 		if (var) {
5591 			/*
5592 			 * If perf_event_free_task() has deleted all events from the
5593 			 * ctx while the child_mutex got released above, make sure to
5594 			 * notify about the preceding put_ctx().
5595 			 */
5596 			smp_mb(); /* pairs with wait_var_event() */
5597 			wake_up_var(var);
5598 		}
5599 		goto again;
5600 	}
5601 	mutex_unlock(&event->child_mutex);
5602 
5603 	list_for_each_entry_safe(child, tmp, &free_list, child_list) {
5604 		void *var = &child->ctx->refcount;
5605 
5606 		list_del(&child->child_list);
5607 		/* Last reference unless ->pending_task work is pending */
5608 		put_event(child);
5609 
5610 		/*
5611 		 * Wake any perf_event_free_task() waiting for this event to be
5612 		 * freed.
5613 		 */
5614 		smp_mb(); /* pairs with wait_var_event() */
5615 		wake_up_var(var);
5616 	}
5617 
5618 no_ctx:
5619 	/*
5620 	 * Last reference unless ->pending_task work is pending on this event
5621 	 * or any of its children.
5622 	 */
5623 	put_event(event);
5624 	return 0;
5625 }
5626 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
5627 
5628 /*
5629  * Called when the last reference to the file is gone.
5630  */
perf_release(struct inode * inode,struct file * file)5631 static int perf_release(struct inode *inode, struct file *file)
5632 {
5633 	perf_event_release_kernel(file->private_data);
5634 	return 0;
5635 }
5636 
__perf_event_read_value(struct perf_event * event,u64 * enabled,u64 * running)5637 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5638 {
5639 	struct perf_event *child;
5640 	u64 total = 0;
5641 
5642 	*enabled = 0;
5643 	*running = 0;
5644 
5645 	mutex_lock(&event->child_mutex);
5646 
5647 	(void)perf_event_read(event, false);
5648 	total += perf_event_count(event, false);
5649 
5650 	*enabled += event->total_time_enabled +
5651 			atomic64_read(&event->child_total_time_enabled);
5652 	*running += event->total_time_running +
5653 			atomic64_read(&event->child_total_time_running);
5654 
5655 	list_for_each_entry(child, &event->child_list, child_list) {
5656 		(void)perf_event_read(child, false);
5657 		total += perf_event_count(child, false);
5658 		*enabled += child->total_time_enabled;
5659 		*running += child->total_time_running;
5660 	}
5661 	mutex_unlock(&event->child_mutex);
5662 
5663 	return total;
5664 }
5665 
perf_event_read_value(struct perf_event * event,u64 * enabled,u64 * running)5666 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5667 {
5668 	struct perf_event_context *ctx;
5669 	u64 count;
5670 
5671 	ctx = perf_event_ctx_lock(event);
5672 	count = __perf_event_read_value(event, enabled, running);
5673 	perf_event_ctx_unlock(event, ctx);
5674 
5675 	return count;
5676 }
5677 EXPORT_SYMBOL_GPL(perf_event_read_value);
5678 
__perf_read_group_add(struct perf_event * leader,u64 read_format,u64 * values)5679 static int __perf_read_group_add(struct perf_event *leader,
5680 					u64 read_format, u64 *values)
5681 {
5682 	struct perf_event_context *ctx = leader->ctx;
5683 	struct perf_event *sub, *parent;
5684 	unsigned long flags;
5685 	int n = 1; /* skip @nr */
5686 	int ret;
5687 
5688 	ret = perf_event_read(leader, true);
5689 	if (ret)
5690 		return ret;
5691 
5692 	raw_spin_lock_irqsave(&ctx->lock, flags);
5693 	/*
5694 	 * Verify the grouping between the parent and child (inherited)
5695 	 * events is still in tact.
5696 	 *
5697 	 * Specifically:
5698 	 *  - leader->ctx->lock pins leader->sibling_list
5699 	 *  - parent->child_mutex pins parent->child_list
5700 	 *  - parent->ctx->mutex pins parent->sibling_list
5701 	 *
5702 	 * Because parent->ctx != leader->ctx (and child_list nests inside
5703 	 * ctx->mutex), group destruction is not atomic between children, also
5704 	 * see perf_event_release_kernel(). Additionally, parent can grow the
5705 	 * group.
5706 	 *
5707 	 * Therefore it is possible to have parent and child groups in a
5708 	 * different configuration and summing over such a beast makes no sense
5709 	 * what so ever.
5710 	 *
5711 	 * Reject this.
5712 	 */
5713 	parent = leader->parent;
5714 	if (parent &&
5715 	    (parent->group_generation != leader->group_generation ||
5716 	     parent->nr_siblings != leader->nr_siblings)) {
5717 		ret = -ECHILD;
5718 		goto unlock;
5719 	}
5720 
5721 	/*
5722 	 * Since we co-schedule groups, {enabled,running} times of siblings
5723 	 * will be identical to those of the leader, so we only publish one
5724 	 * set.
5725 	 */
5726 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5727 		values[n++] += leader->total_time_enabled +
5728 			atomic64_read(&leader->child_total_time_enabled);
5729 	}
5730 
5731 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5732 		values[n++] += leader->total_time_running +
5733 			atomic64_read(&leader->child_total_time_running);
5734 	}
5735 
5736 	/*
5737 	 * Write {count,id} tuples for every sibling.
5738 	 */
5739 	values[n++] += perf_event_count(leader, false);
5740 	if (read_format & PERF_FORMAT_ID)
5741 		values[n++] = primary_event_id(leader);
5742 	if (read_format & PERF_FORMAT_LOST)
5743 		values[n++] = atomic64_read(&leader->lost_samples);
5744 
5745 	for_each_sibling_event(sub, leader) {
5746 		values[n++] += perf_event_count(sub, false);
5747 		if (read_format & PERF_FORMAT_ID)
5748 			values[n++] = primary_event_id(sub);
5749 		if (read_format & PERF_FORMAT_LOST)
5750 			values[n++] = atomic64_read(&sub->lost_samples);
5751 	}
5752 
5753 unlock:
5754 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
5755 	return ret;
5756 }
5757 
perf_read_group(struct perf_event * event,u64 read_format,char __user * buf)5758 static int perf_read_group(struct perf_event *event,
5759 				   u64 read_format, char __user *buf)
5760 {
5761 	struct perf_event *leader = event->group_leader, *child;
5762 	struct perf_event_context *ctx = leader->ctx;
5763 	int ret;
5764 	u64 *values;
5765 
5766 	lockdep_assert_held(&ctx->mutex);
5767 
5768 	values = kzalloc(event->read_size, GFP_KERNEL);
5769 	if (!values)
5770 		return -ENOMEM;
5771 
5772 	values[0] = 1 + leader->nr_siblings;
5773 
5774 	mutex_lock(&leader->child_mutex);
5775 
5776 	ret = __perf_read_group_add(leader, read_format, values);
5777 	if (ret)
5778 		goto unlock;
5779 
5780 	list_for_each_entry(child, &leader->child_list, child_list) {
5781 		ret = __perf_read_group_add(child, read_format, values);
5782 		if (ret)
5783 			goto unlock;
5784 	}
5785 
5786 	mutex_unlock(&leader->child_mutex);
5787 
5788 	ret = event->read_size;
5789 	if (copy_to_user(buf, values, event->read_size))
5790 		ret = -EFAULT;
5791 	goto out;
5792 
5793 unlock:
5794 	mutex_unlock(&leader->child_mutex);
5795 out:
5796 	kfree(values);
5797 	return ret;
5798 }
5799 
perf_read_one(struct perf_event * event,u64 read_format,char __user * buf)5800 static int perf_read_one(struct perf_event *event,
5801 				 u64 read_format, char __user *buf)
5802 {
5803 	u64 enabled, running;
5804 	u64 values[5];
5805 	int n = 0;
5806 
5807 	values[n++] = __perf_event_read_value(event, &enabled, &running);
5808 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5809 		values[n++] = enabled;
5810 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5811 		values[n++] = running;
5812 	if (read_format & PERF_FORMAT_ID)
5813 		values[n++] = primary_event_id(event);
5814 	if (read_format & PERF_FORMAT_LOST)
5815 		values[n++] = atomic64_read(&event->lost_samples);
5816 
5817 	if (copy_to_user(buf, values, n * sizeof(u64)))
5818 		return -EFAULT;
5819 
5820 	return n * sizeof(u64);
5821 }
5822 
is_event_hup(struct perf_event * event)5823 static bool is_event_hup(struct perf_event *event)
5824 {
5825 	bool no_children;
5826 
5827 	if (event->state > PERF_EVENT_STATE_EXIT)
5828 		return false;
5829 
5830 	mutex_lock(&event->child_mutex);
5831 	no_children = list_empty(&event->child_list);
5832 	mutex_unlock(&event->child_mutex);
5833 	return no_children;
5834 }
5835 
5836 /*
5837  * Read the performance event - simple non blocking version for now
5838  */
5839 static ssize_t
__perf_read(struct perf_event * event,char __user * buf,size_t count)5840 __perf_read(struct perf_event *event, char __user *buf, size_t count)
5841 {
5842 	u64 read_format = event->attr.read_format;
5843 	int ret;
5844 
5845 	/*
5846 	 * Return end-of-file for a read on an event that is in
5847 	 * error state (i.e. because it was pinned but it couldn't be
5848 	 * scheduled on to the CPU at some point).
5849 	 */
5850 	if (event->state == PERF_EVENT_STATE_ERROR)
5851 		return 0;
5852 
5853 	if (count < event->read_size)
5854 		return -ENOSPC;
5855 
5856 	WARN_ON_ONCE(event->ctx->parent_ctx);
5857 	if (read_format & PERF_FORMAT_GROUP)
5858 		ret = perf_read_group(event, read_format, buf);
5859 	else
5860 		ret = perf_read_one(event, read_format, buf);
5861 
5862 	return ret;
5863 }
5864 
5865 static ssize_t
perf_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)5866 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
5867 {
5868 	struct perf_event *event = file->private_data;
5869 	struct perf_event_context *ctx;
5870 	int ret;
5871 
5872 	ret = security_perf_event_read(event);
5873 	if (ret)
5874 		return ret;
5875 
5876 	ctx = perf_event_ctx_lock(event);
5877 	ret = __perf_read(event, buf, count);
5878 	perf_event_ctx_unlock(event, ctx);
5879 
5880 	return ret;
5881 }
5882 
perf_poll(struct file * file,poll_table * wait)5883 static __poll_t perf_poll(struct file *file, poll_table *wait)
5884 {
5885 	struct perf_event *event = file->private_data;
5886 	struct perf_buffer *rb;
5887 	__poll_t events = EPOLLHUP;
5888 
5889 	poll_wait(file, &event->waitq, wait);
5890 
5891 	if (is_event_hup(event))
5892 		return events;
5893 
5894 	/*
5895 	 * Pin the event->rb by taking event->mmap_mutex; otherwise
5896 	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
5897 	 */
5898 	mutex_lock(&event->mmap_mutex);
5899 	rb = event->rb;
5900 	if (rb)
5901 		events = atomic_xchg(&rb->poll, 0);
5902 	mutex_unlock(&event->mmap_mutex);
5903 	return events;
5904 }
5905 
_perf_event_reset(struct perf_event * event)5906 static void _perf_event_reset(struct perf_event *event)
5907 {
5908 	(void)perf_event_read(event, false);
5909 	local64_set(&event->count, 0);
5910 	perf_event_update_userpage(event);
5911 }
5912 
5913 /* Assume it's not an event with inherit set. */
perf_event_pause(struct perf_event * event,bool reset)5914 u64 perf_event_pause(struct perf_event *event, bool reset)
5915 {
5916 	struct perf_event_context *ctx;
5917 	u64 count;
5918 
5919 	ctx = perf_event_ctx_lock(event);
5920 	WARN_ON_ONCE(event->attr.inherit);
5921 	_perf_event_disable(event);
5922 	count = local64_read(&event->count);
5923 	if (reset)
5924 		local64_set(&event->count, 0);
5925 	perf_event_ctx_unlock(event, ctx);
5926 
5927 	return count;
5928 }
5929 EXPORT_SYMBOL_GPL(perf_event_pause);
5930 
5931 /*
5932  * Holding the top-level event's child_mutex means that any
5933  * descendant process that has inherited this event will block
5934  * in perf_event_exit_event() if it goes to exit, thus satisfying the
5935  * task existence requirements of perf_event_enable/disable.
5936  */
perf_event_for_each_child(struct perf_event * event,void (* func)(struct perf_event *))5937 static void perf_event_for_each_child(struct perf_event *event,
5938 					void (*func)(struct perf_event *))
5939 {
5940 	struct perf_event *child;
5941 
5942 	WARN_ON_ONCE(event->ctx->parent_ctx);
5943 
5944 	mutex_lock(&event->child_mutex);
5945 	func(event);
5946 	list_for_each_entry(child, &event->child_list, child_list)
5947 		func(child);
5948 	mutex_unlock(&event->child_mutex);
5949 }
5950 
perf_event_for_each(struct perf_event * event,void (* func)(struct perf_event *))5951 static void perf_event_for_each(struct perf_event *event,
5952 				  void (*func)(struct perf_event *))
5953 {
5954 	struct perf_event_context *ctx = event->ctx;
5955 	struct perf_event *sibling;
5956 
5957 	lockdep_assert_held(&ctx->mutex);
5958 
5959 	event = event->group_leader;
5960 
5961 	perf_event_for_each_child(event, func);
5962 	for_each_sibling_event(sibling, event)
5963 		perf_event_for_each_child(sibling, func);
5964 }
5965 
__perf_event_period(struct perf_event * event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,void * info)5966 static void __perf_event_period(struct perf_event *event,
5967 				struct perf_cpu_context *cpuctx,
5968 				struct perf_event_context *ctx,
5969 				void *info)
5970 {
5971 	u64 value = *((u64 *)info);
5972 	bool active;
5973 
5974 	if (event->attr.freq) {
5975 		event->attr.sample_freq = value;
5976 	} else {
5977 		event->attr.sample_period = value;
5978 		event->hw.sample_period = value;
5979 	}
5980 
5981 	active = (event->state == PERF_EVENT_STATE_ACTIVE);
5982 	if (active) {
5983 		perf_pmu_disable(event->pmu);
5984 		/*
5985 		 * We could be throttled; unthrottle now to avoid the tick
5986 		 * trying to unthrottle while we already re-started the event.
5987 		 */
5988 		if (event->hw.interrupts == MAX_INTERRUPTS) {
5989 			event->hw.interrupts = 0;
5990 			perf_log_throttle(event, 1);
5991 		}
5992 		event->pmu->stop(event, PERF_EF_UPDATE);
5993 	}
5994 
5995 	local64_set(&event->hw.period_left, 0);
5996 
5997 	if (active) {
5998 		event->pmu->start(event, PERF_EF_RELOAD);
5999 		perf_pmu_enable(event->pmu);
6000 	}
6001 }
6002 
perf_event_check_period(struct perf_event * event,u64 value)6003 static int perf_event_check_period(struct perf_event *event, u64 value)
6004 {
6005 	return event->pmu->check_period(event, value);
6006 }
6007 
_perf_event_period(struct perf_event * event,u64 value)6008 static int _perf_event_period(struct perf_event *event, u64 value)
6009 {
6010 	if (!is_sampling_event(event))
6011 		return -EINVAL;
6012 
6013 	if (!value)
6014 		return -EINVAL;
6015 
6016 	if (event->attr.freq) {
6017 		if (value > sysctl_perf_event_sample_rate)
6018 			return -EINVAL;
6019 	} else {
6020 		if (perf_event_check_period(event, value))
6021 			return -EINVAL;
6022 		if (value & (1ULL << 63))
6023 			return -EINVAL;
6024 	}
6025 
6026 	event_function_call(event, __perf_event_period, &value);
6027 
6028 	return 0;
6029 }
6030 
perf_event_period(struct perf_event * event,u64 value)6031 int perf_event_period(struct perf_event *event, u64 value)
6032 {
6033 	struct perf_event_context *ctx;
6034 	int ret;
6035 
6036 	ctx = perf_event_ctx_lock(event);
6037 	ret = _perf_event_period(event, value);
6038 	perf_event_ctx_unlock(event, ctx);
6039 
6040 	return ret;
6041 }
6042 EXPORT_SYMBOL_GPL(perf_event_period);
6043 
6044 static const struct file_operations perf_fops;
6045 
perf_fget_light(int fd,struct fd * p)6046 static inline int perf_fget_light(int fd, struct fd *p)
6047 {
6048 	struct fd f = fdget(fd);
6049 	if (!fd_file(f))
6050 		return -EBADF;
6051 
6052 	if (fd_file(f)->f_op != &perf_fops) {
6053 		fdput(f);
6054 		return -EBADF;
6055 	}
6056 	*p = f;
6057 	return 0;
6058 }
6059 
6060 static int perf_event_set_output(struct perf_event *event,
6061 				 struct perf_event *output_event);
6062 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
6063 static int perf_copy_attr(struct perf_event_attr __user *uattr,
6064 			  struct perf_event_attr *attr);
6065 static int __perf_event_set_bpf_prog(struct perf_event *event,
6066 				     struct bpf_prog *prog,
6067 				     u64 bpf_cookie);
6068 
_perf_ioctl(struct perf_event * event,unsigned int cmd,unsigned long arg)6069 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
6070 {
6071 	void (*func)(struct perf_event *);
6072 	u32 flags = arg;
6073 
6074 	switch (cmd) {
6075 	case PERF_EVENT_IOC_ENABLE:
6076 		func = _perf_event_enable;
6077 		break;
6078 	case PERF_EVENT_IOC_DISABLE:
6079 		func = _perf_event_disable;
6080 		break;
6081 	case PERF_EVENT_IOC_RESET:
6082 		func = _perf_event_reset;
6083 		break;
6084 
6085 	case PERF_EVENT_IOC_REFRESH:
6086 		return _perf_event_refresh(event, arg);
6087 
6088 	case PERF_EVENT_IOC_PERIOD:
6089 	{
6090 		u64 value;
6091 
6092 		if (copy_from_user(&value, (u64 __user *)arg, sizeof(value)))
6093 			return -EFAULT;
6094 
6095 		return _perf_event_period(event, value);
6096 	}
6097 	case PERF_EVENT_IOC_ID:
6098 	{
6099 		u64 id = primary_event_id(event);
6100 
6101 		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
6102 			return -EFAULT;
6103 		return 0;
6104 	}
6105 
6106 	case PERF_EVENT_IOC_SET_OUTPUT:
6107 	{
6108 		int ret;
6109 		if (arg != -1) {
6110 			struct perf_event *output_event;
6111 			struct fd output;
6112 			ret = perf_fget_light(arg, &output);
6113 			if (ret)
6114 				return ret;
6115 			output_event = fd_file(output)->private_data;
6116 			ret = perf_event_set_output(event, output_event);
6117 			fdput(output);
6118 		} else {
6119 			ret = perf_event_set_output(event, NULL);
6120 		}
6121 		return ret;
6122 	}
6123 
6124 	case PERF_EVENT_IOC_SET_FILTER:
6125 		return perf_event_set_filter(event, (void __user *)arg);
6126 
6127 	case PERF_EVENT_IOC_SET_BPF:
6128 	{
6129 		struct bpf_prog *prog;
6130 		int err;
6131 
6132 		prog = bpf_prog_get(arg);
6133 		if (IS_ERR(prog))
6134 			return PTR_ERR(prog);
6135 
6136 		err = __perf_event_set_bpf_prog(event, prog, 0);
6137 		if (err) {
6138 			bpf_prog_put(prog);
6139 			return err;
6140 		}
6141 
6142 		return 0;
6143 	}
6144 
6145 	case PERF_EVENT_IOC_PAUSE_OUTPUT: {
6146 		struct perf_buffer *rb;
6147 
6148 		rcu_read_lock();
6149 		rb = rcu_dereference(event->rb);
6150 		if (!rb || !rb->nr_pages) {
6151 			rcu_read_unlock();
6152 			return -EINVAL;
6153 		}
6154 		rb_toggle_paused(rb, !!arg);
6155 		rcu_read_unlock();
6156 		return 0;
6157 	}
6158 
6159 	case PERF_EVENT_IOC_QUERY_BPF:
6160 		return perf_event_query_prog_array(event, (void __user *)arg);
6161 
6162 	case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
6163 		struct perf_event_attr new_attr;
6164 		int err = perf_copy_attr((struct perf_event_attr __user *)arg,
6165 					 &new_attr);
6166 
6167 		if (err)
6168 			return err;
6169 
6170 		return perf_event_modify_attr(event,  &new_attr);
6171 	}
6172 	default:
6173 		return -ENOTTY;
6174 	}
6175 
6176 	if (flags & PERF_IOC_FLAG_GROUP)
6177 		perf_event_for_each(event, func);
6178 	else
6179 		perf_event_for_each_child(event, func);
6180 
6181 	return 0;
6182 }
6183 
perf_ioctl(struct file * file,unsigned int cmd,unsigned long arg)6184 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
6185 {
6186 	struct perf_event *event = file->private_data;
6187 	struct perf_event_context *ctx;
6188 	long ret;
6189 
6190 	/* Treat ioctl like writes as it is likely a mutating operation. */
6191 	ret = security_perf_event_write(event);
6192 	if (ret)
6193 		return ret;
6194 
6195 	ctx = perf_event_ctx_lock(event);
6196 	ret = _perf_ioctl(event, cmd, arg);
6197 	perf_event_ctx_unlock(event, ctx);
6198 
6199 	return ret;
6200 }
6201 
6202 #ifdef CONFIG_COMPAT
perf_compat_ioctl(struct file * file,unsigned int cmd,unsigned long arg)6203 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
6204 				unsigned long arg)
6205 {
6206 	switch (_IOC_NR(cmd)) {
6207 	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
6208 	case _IOC_NR(PERF_EVENT_IOC_ID):
6209 	case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
6210 	case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
6211 		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
6212 		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
6213 			cmd &= ~IOCSIZE_MASK;
6214 			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
6215 		}
6216 		break;
6217 	}
6218 	return perf_ioctl(file, cmd, arg);
6219 }
6220 #else
6221 # define perf_compat_ioctl NULL
6222 #endif
6223 
perf_event_task_enable(void)6224 int perf_event_task_enable(void)
6225 {
6226 	struct perf_event_context *ctx;
6227 	struct perf_event *event;
6228 
6229 	mutex_lock(&current->perf_event_mutex);
6230 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
6231 		ctx = perf_event_ctx_lock(event);
6232 		perf_event_for_each_child(event, _perf_event_enable);
6233 		perf_event_ctx_unlock(event, ctx);
6234 	}
6235 	mutex_unlock(&current->perf_event_mutex);
6236 
6237 	return 0;
6238 }
6239 
perf_event_task_disable(void)6240 int perf_event_task_disable(void)
6241 {
6242 	struct perf_event_context *ctx;
6243 	struct perf_event *event;
6244 
6245 	mutex_lock(&current->perf_event_mutex);
6246 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
6247 		ctx = perf_event_ctx_lock(event);
6248 		perf_event_for_each_child(event, _perf_event_disable);
6249 		perf_event_ctx_unlock(event, ctx);
6250 	}
6251 	mutex_unlock(&current->perf_event_mutex);
6252 
6253 	return 0;
6254 }
6255 
perf_event_index(struct perf_event * event)6256 static int perf_event_index(struct perf_event *event)
6257 {
6258 	if (event->hw.state & PERF_HES_STOPPED)
6259 		return 0;
6260 
6261 	if (event->state != PERF_EVENT_STATE_ACTIVE)
6262 		return 0;
6263 
6264 	return event->pmu->event_idx(event);
6265 }
6266 
perf_event_init_userpage(struct perf_event * event)6267 static void perf_event_init_userpage(struct perf_event *event)
6268 {
6269 	struct perf_event_mmap_page *userpg;
6270 	struct perf_buffer *rb;
6271 
6272 	rcu_read_lock();
6273 	rb = rcu_dereference(event->rb);
6274 	if (!rb)
6275 		goto unlock;
6276 
6277 	userpg = rb->user_page;
6278 
6279 	/* Allow new userspace to detect that bit 0 is deprecated */
6280 	userpg->cap_bit0_is_deprecated = 1;
6281 	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
6282 	userpg->data_offset = PAGE_SIZE;
6283 	userpg->data_size = perf_data_size(rb);
6284 
6285 unlock:
6286 	rcu_read_unlock();
6287 }
6288 
arch_perf_update_userpage(struct perf_event * event,struct perf_event_mmap_page * userpg,u64 now)6289 void __weak arch_perf_update_userpage(
6290 	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
6291 {
6292 }
6293 
6294 /*
6295  * Callers need to ensure there can be no nesting of this function, otherwise
6296  * the seqlock logic goes bad. We can not serialize this because the arch
6297  * code calls this from NMI context.
6298  */
perf_event_update_userpage(struct perf_event * event)6299 void perf_event_update_userpage(struct perf_event *event)
6300 {
6301 	struct perf_event_mmap_page *userpg;
6302 	struct perf_buffer *rb;
6303 	u64 enabled, running, now;
6304 
6305 	rcu_read_lock();
6306 	rb = rcu_dereference(event->rb);
6307 	if (!rb)
6308 		goto unlock;
6309 
6310 	/*
6311 	 * compute total_time_enabled, total_time_running
6312 	 * based on snapshot values taken when the event
6313 	 * was last scheduled in.
6314 	 *
6315 	 * we cannot simply called update_context_time()
6316 	 * because of locking issue as we can be called in
6317 	 * NMI context
6318 	 */
6319 	calc_timer_values(event, &now, &enabled, &running);
6320 
6321 	userpg = rb->user_page;
6322 	/*
6323 	 * Disable preemption to guarantee consistent time stamps are stored to
6324 	 * the user page.
6325 	 */
6326 	preempt_disable();
6327 	++userpg->lock;
6328 	barrier();
6329 	userpg->index = perf_event_index(event);
6330 	userpg->offset = perf_event_count(event, false);
6331 	if (userpg->index)
6332 		userpg->offset -= local64_read(&event->hw.prev_count);
6333 
6334 	userpg->time_enabled = enabled +
6335 			atomic64_read(&event->child_total_time_enabled);
6336 
6337 	userpg->time_running = running +
6338 			atomic64_read(&event->child_total_time_running);
6339 
6340 	arch_perf_update_userpage(event, userpg, now);
6341 
6342 	barrier();
6343 	++userpg->lock;
6344 	preempt_enable();
6345 unlock:
6346 	rcu_read_unlock();
6347 }
6348 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
6349 
perf_mmap_fault(struct vm_fault * vmf)6350 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
6351 {
6352 	struct perf_event *event = vmf->vma->vm_file->private_data;
6353 	struct perf_buffer *rb;
6354 	vm_fault_t ret = VM_FAULT_SIGBUS;
6355 
6356 	if (vmf->flags & FAULT_FLAG_MKWRITE) {
6357 		if (vmf->pgoff == 0)
6358 			ret = 0;
6359 		return ret;
6360 	}
6361 
6362 	rcu_read_lock();
6363 	rb = rcu_dereference(event->rb);
6364 	if (!rb)
6365 		goto unlock;
6366 
6367 	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
6368 		goto unlock;
6369 
6370 	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
6371 	if (!vmf->page)
6372 		goto unlock;
6373 
6374 	get_page(vmf->page);
6375 	vmf->page->mapping = vmf->vma->vm_file->f_mapping;
6376 	vmf->page->index   = vmf->pgoff;
6377 
6378 	ret = 0;
6379 unlock:
6380 	rcu_read_unlock();
6381 
6382 	return ret;
6383 }
6384 
ring_buffer_attach(struct perf_event * event,struct perf_buffer * rb)6385 static void ring_buffer_attach(struct perf_event *event,
6386 			       struct perf_buffer *rb)
6387 {
6388 	struct perf_buffer *old_rb = NULL;
6389 	unsigned long flags;
6390 
6391 	WARN_ON_ONCE(event->parent);
6392 
6393 	if (event->rb) {
6394 		/*
6395 		 * Should be impossible, we set this when removing
6396 		 * event->rb_entry and wait/clear when adding event->rb_entry.
6397 		 */
6398 		WARN_ON_ONCE(event->rcu_pending);
6399 
6400 		old_rb = event->rb;
6401 		spin_lock_irqsave(&old_rb->event_lock, flags);
6402 		list_del_rcu(&event->rb_entry);
6403 		spin_unlock_irqrestore(&old_rb->event_lock, flags);
6404 
6405 		event->rcu_batches = get_state_synchronize_rcu();
6406 		event->rcu_pending = 1;
6407 	}
6408 
6409 	if (rb) {
6410 		if (event->rcu_pending) {
6411 			cond_synchronize_rcu(event->rcu_batches);
6412 			event->rcu_pending = 0;
6413 		}
6414 
6415 		spin_lock_irqsave(&rb->event_lock, flags);
6416 		list_add_rcu(&event->rb_entry, &rb->event_list);
6417 		spin_unlock_irqrestore(&rb->event_lock, flags);
6418 	}
6419 
6420 	/*
6421 	 * Avoid racing with perf_mmap_close(AUX): stop the event
6422 	 * before swizzling the event::rb pointer; if it's getting
6423 	 * unmapped, its aux_mmap_count will be 0 and it won't
6424 	 * restart. See the comment in __perf_pmu_output_stop().
6425 	 *
6426 	 * Data will inevitably be lost when set_output is done in
6427 	 * mid-air, but then again, whoever does it like this is
6428 	 * not in for the data anyway.
6429 	 */
6430 	if (has_aux(event))
6431 		perf_event_stop(event, 0);
6432 
6433 	rcu_assign_pointer(event->rb, rb);
6434 
6435 	if (old_rb) {
6436 		ring_buffer_put(old_rb);
6437 		/*
6438 		 * Since we detached before setting the new rb, so that we
6439 		 * could attach the new rb, we could have missed a wakeup.
6440 		 * Provide it now.
6441 		 */
6442 		wake_up_all(&event->waitq);
6443 	}
6444 }
6445 
ring_buffer_wakeup(struct perf_event * event)6446 static void ring_buffer_wakeup(struct perf_event *event)
6447 {
6448 	struct perf_buffer *rb;
6449 
6450 	if (event->parent)
6451 		event = event->parent;
6452 
6453 	rcu_read_lock();
6454 	rb = rcu_dereference(event->rb);
6455 	if (rb) {
6456 		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
6457 			wake_up_all(&event->waitq);
6458 	}
6459 	rcu_read_unlock();
6460 }
6461 
ring_buffer_get(struct perf_event * event)6462 struct perf_buffer *ring_buffer_get(struct perf_event *event)
6463 {
6464 	struct perf_buffer *rb;
6465 
6466 	if (event->parent)
6467 		event = event->parent;
6468 
6469 	rcu_read_lock();
6470 	rb = rcu_dereference(event->rb);
6471 	if (rb) {
6472 		if (!refcount_inc_not_zero(&rb->refcount))
6473 			rb = NULL;
6474 	}
6475 	rcu_read_unlock();
6476 
6477 	return rb;
6478 }
6479 
ring_buffer_put(struct perf_buffer * rb)6480 void ring_buffer_put(struct perf_buffer *rb)
6481 {
6482 	if (!refcount_dec_and_test(&rb->refcount))
6483 		return;
6484 
6485 	WARN_ON_ONCE(!list_empty(&rb->event_list));
6486 
6487 	call_rcu(&rb->rcu_head, rb_free_rcu);
6488 }
6489 
perf_mmap_open(struct vm_area_struct * vma)6490 static void perf_mmap_open(struct vm_area_struct *vma)
6491 {
6492 	struct perf_event *event = vma->vm_file->private_data;
6493 
6494 	atomic_inc(&event->mmap_count);
6495 	atomic_inc(&event->rb->mmap_count);
6496 
6497 	if (vma->vm_pgoff)
6498 		atomic_inc(&event->rb->aux_mmap_count);
6499 
6500 	if (event->pmu->event_mapped)
6501 		event->pmu->event_mapped(event, vma->vm_mm);
6502 }
6503 
6504 static void perf_pmu_output_stop(struct perf_event *event);
6505 
6506 /*
6507  * A buffer can be mmap()ed multiple times; either directly through the same
6508  * event, or through other events by use of perf_event_set_output().
6509  *
6510  * In order to undo the VM accounting done by perf_mmap() we need to destroy
6511  * the buffer here, where we still have a VM context. This means we need
6512  * to detach all events redirecting to us.
6513  */
perf_mmap_close(struct vm_area_struct * vma)6514 static void perf_mmap_close(struct vm_area_struct *vma)
6515 {
6516 	struct perf_event *event = vma->vm_file->private_data;
6517 	struct perf_buffer *rb = ring_buffer_get(event);
6518 	struct user_struct *mmap_user = rb->mmap_user;
6519 	int mmap_locked = rb->mmap_locked;
6520 	unsigned long size = perf_data_size(rb);
6521 	bool detach_rest = false;
6522 
6523 	if (event->pmu->event_unmapped)
6524 		event->pmu->event_unmapped(event, vma->vm_mm);
6525 
6526 	/*
6527 	 * The AUX buffer is strictly a sub-buffer, serialize using aux_mutex
6528 	 * to avoid complications.
6529 	 */
6530 	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
6531 	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &rb->aux_mutex)) {
6532 		/*
6533 		 * Stop all AUX events that are writing to this buffer,
6534 		 * so that we can free its AUX pages and corresponding PMU
6535 		 * data. Note that after rb::aux_mmap_count dropped to zero,
6536 		 * they won't start any more (see perf_aux_output_begin()).
6537 		 */
6538 		perf_pmu_output_stop(event);
6539 
6540 		/* now it's safe to free the pages */
6541 		atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm);
6542 		atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm);
6543 
6544 		/* this has to be the last one */
6545 		rb_free_aux(rb);
6546 		WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
6547 
6548 		mutex_unlock(&rb->aux_mutex);
6549 	}
6550 
6551 	if (atomic_dec_and_test(&rb->mmap_count))
6552 		detach_rest = true;
6553 
6554 	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
6555 		goto out_put;
6556 
6557 	ring_buffer_attach(event, NULL);
6558 	mutex_unlock(&event->mmap_mutex);
6559 
6560 	/* If there's still other mmap()s of this buffer, we're done. */
6561 	if (!detach_rest)
6562 		goto out_put;
6563 
6564 	/*
6565 	 * No other mmap()s, detach from all other events that might redirect
6566 	 * into the now unreachable buffer. Somewhat complicated by the
6567 	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
6568 	 */
6569 again:
6570 	rcu_read_lock();
6571 	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
6572 		if (!atomic_long_inc_not_zero(&event->refcount)) {
6573 			/*
6574 			 * This event is en-route to free_event() which will
6575 			 * detach it and remove it from the list.
6576 			 */
6577 			continue;
6578 		}
6579 		rcu_read_unlock();
6580 
6581 		mutex_lock(&event->mmap_mutex);
6582 		/*
6583 		 * Check we didn't race with perf_event_set_output() which can
6584 		 * swizzle the rb from under us while we were waiting to
6585 		 * acquire mmap_mutex.
6586 		 *
6587 		 * If we find a different rb; ignore this event, a next
6588 		 * iteration will no longer find it on the list. We have to
6589 		 * still restart the iteration to make sure we're not now
6590 		 * iterating the wrong list.
6591 		 */
6592 		if (event->rb == rb)
6593 			ring_buffer_attach(event, NULL);
6594 
6595 		mutex_unlock(&event->mmap_mutex);
6596 		put_event(event);
6597 
6598 		/*
6599 		 * Restart the iteration; either we're on the wrong list or
6600 		 * destroyed its integrity by doing a deletion.
6601 		 */
6602 		goto again;
6603 	}
6604 	rcu_read_unlock();
6605 
6606 	/*
6607 	 * It could be there's still a few 0-ref events on the list; they'll
6608 	 * get cleaned up by free_event() -- they'll also still have their
6609 	 * ref on the rb and will free it whenever they are done with it.
6610 	 *
6611 	 * Aside from that, this buffer is 'fully' detached and unmapped,
6612 	 * undo the VM accounting.
6613 	 */
6614 
6615 	atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked,
6616 			&mmap_user->locked_vm);
6617 	atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm);
6618 	free_uid(mmap_user);
6619 
6620 out_put:
6621 	ring_buffer_put(rb); /* could be last */
6622 }
6623 
perf_mmap_may_split(struct vm_area_struct * vma,unsigned long addr)6624 static int perf_mmap_may_split(struct vm_area_struct *vma, unsigned long addr)
6625 {
6626 	/*
6627 	 * Forbid splitting perf mappings to prevent refcount leaks due to
6628 	 * the resulting non-matching offsets and sizes. See open()/close().
6629 	 */
6630 	return -EINVAL;
6631 }
6632 
6633 static const struct vm_operations_struct perf_mmap_vmops = {
6634 	.open		= perf_mmap_open,
6635 	.close		= perf_mmap_close, /* non mergeable */
6636 	.fault		= perf_mmap_fault,
6637 	.page_mkwrite	= perf_mmap_fault,
6638 	.may_split	= perf_mmap_may_split,
6639 };
6640 
perf_mmap(struct file * file,struct vm_area_struct * vma)6641 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
6642 {
6643 	struct perf_event *event = file->private_data;
6644 	unsigned long user_locked, user_lock_limit;
6645 	struct user_struct *user = current_user();
6646 	struct mutex *aux_mutex = NULL;
6647 	struct perf_buffer *rb = NULL;
6648 	unsigned long locked, lock_limit;
6649 	unsigned long vma_size;
6650 	unsigned long nr_pages;
6651 	long user_extra = 0, extra = 0;
6652 	int ret = 0, flags = 0;
6653 
6654 	/*
6655 	 * Don't allow mmap() of inherited per-task counters. This would
6656 	 * create a performance issue due to all children writing to the
6657 	 * same rb.
6658 	 */
6659 	if (event->cpu == -1 && event->attr.inherit)
6660 		return -EINVAL;
6661 
6662 	if (!(vma->vm_flags & VM_SHARED))
6663 		return -EINVAL;
6664 
6665 	ret = security_perf_event_read(event);
6666 	if (ret)
6667 		return ret;
6668 
6669 	vma_size = vma->vm_end - vma->vm_start;
6670 
6671 	if (vma->vm_pgoff == 0) {
6672 		nr_pages = (vma_size / PAGE_SIZE) - (__PAGE_SIZE / PAGE_SIZE);
6673 	} else {
6674 		/*
6675 		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
6676 		 * mapped, all subsequent mappings should have the same size
6677 		 * and offset. Must be above the normal perf buffer.
6678 		 */
6679 		u64 aux_offset, aux_size;
6680 
6681 		if (!event->rb)
6682 			return -EINVAL;
6683 
6684 		nr_pages = vma_size / PAGE_SIZE;
6685 		if (nr_pages > INT_MAX)
6686 			return -ENOMEM;
6687 
6688 		mutex_lock(&event->mmap_mutex);
6689 		ret = -EINVAL;
6690 
6691 		rb = event->rb;
6692 		if (!rb)
6693 			goto aux_unlock;
6694 
6695 		aux_mutex = &rb->aux_mutex;
6696 		mutex_lock(aux_mutex);
6697 
6698 		aux_offset = READ_ONCE(rb->user_page->aux_offset);
6699 		aux_size = READ_ONCE(rb->user_page->aux_size);
6700 
6701 		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
6702 			goto aux_unlock;
6703 
6704 		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
6705 			goto aux_unlock;
6706 
6707 		/* already mapped with a different offset */
6708 		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
6709 			goto aux_unlock;
6710 
6711 		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
6712 			goto aux_unlock;
6713 
6714 		/* already mapped with a different size */
6715 		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
6716 			goto aux_unlock;
6717 
6718 		if (!is_power_of_2(nr_pages))
6719 			goto aux_unlock;
6720 
6721 		if (!atomic_inc_not_zero(&rb->mmap_count))
6722 			goto aux_unlock;
6723 
6724 		if (rb_has_aux(rb)) {
6725 			atomic_inc(&rb->aux_mmap_count);
6726 			ret = 0;
6727 			goto unlock;
6728 		}
6729 
6730 		user_extra = nr_pages;
6731 		goto accounting;
6732 	}
6733 
6734 	/*
6735 	 * If we have rb pages ensure they're a power-of-two number, so we
6736 	 * can do bitmasks instead of modulo.
6737 	 */
6738 	if (nr_pages != 0 && !is_power_of_2(nr_pages))
6739 		return -EINVAL;
6740 
6741 	if (vma_size != PAGE_SIZE * ((__PAGE_SIZE / PAGE_SIZE) + nr_pages))
6742 		return -EINVAL;
6743 
6744 	WARN_ON_ONCE(event->ctx->parent_ctx);
6745 again:
6746 	mutex_lock(&event->mmap_mutex);
6747 	if (event->rb) {
6748 		if (data_page_nr(event->rb) != nr_pages) {
6749 			ret = -EINVAL;
6750 			goto unlock;
6751 		}
6752 
6753 		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
6754 			/*
6755 			 * Raced against perf_mmap_close(); remove the
6756 			 * event and try again.
6757 			 */
6758 			ring_buffer_attach(event, NULL);
6759 			mutex_unlock(&event->mmap_mutex);
6760 			goto again;
6761 		}
6762 
6763 		goto unlock;
6764 	}
6765 
6766 	user_extra = nr_pages + 1;
6767 
6768 accounting:
6769 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
6770 
6771 	/*
6772 	 * Increase the limit linearly with more CPUs:
6773 	 */
6774 	user_lock_limit *= num_online_cpus();
6775 
6776 	user_locked = atomic_long_read(&user->locked_vm);
6777 
6778 	/*
6779 	 * sysctl_perf_event_mlock may have changed, so that
6780 	 *     user->locked_vm > user_lock_limit
6781 	 */
6782 	if (user_locked > user_lock_limit)
6783 		user_locked = user_lock_limit;
6784 	user_locked += user_extra;
6785 
6786 	if (user_locked > user_lock_limit) {
6787 		/*
6788 		 * charge locked_vm until it hits user_lock_limit;
6789 		 * charge the rest from pinned_vm
6790 		 */
6791 		extra = user_locked - user_lock_limit;
6792 		user_extra -= extra;
6793 	}
6794 
6795 	lock_limit = rlimit(RLIMIT_MEMLOCK);
6796 	lock_limit >>= PAGE_SHIFT;
6797 	locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra;
6798 
6799 	if ((locked > lock_limit) && perf_is_paranoid() &&
6800 		!capable(CAP_IPC_LOCK)) {
6801 		ret = -EPERM;
6802 		goto unlock;
6803 	}
6804 
6805 	WARN_ON(!rb && event->rb);
6806 
6807 	if (vma->vm_flags & VM_WRITE)
6808 		flags |= RING_BUFFER_WRITABLE;
6809 
6810 	if (!rb) {
6811 		rb = rb_alloc(nr_pages,
6812 			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
6813 			      event->cpu, flags);
6814 
6815 		if (!rb) {
6816 			ret = -ENOMEM;
6817 			goto unlock;
6818 		}
6819 
6820 		atomic_set(&rb->mmap_count, 1);
6821 		rb->mmap_user = get_current_user();
6822 		rb->mmap_locked = extra;
6823 
6824 		ring_buffer_attach(event, rb);
6825 
6826 		perf_event_update_time(event);
6827 		perf_event_init_userpage(event);
6828 		perf_event_update_userpage(event);
6829 	} else {
6830 		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
6831 				   event->attr.aux_watermark, flags);
6832 		if (!ret) {
6833 			atomic_set(&rb->aux_mmap_count, 1);
6834 			rb->aux_mmap_locked = extra;
6835 		}
6836 	}
6837 
6838 unlock:
6839 	if (!ret) {
6840 		atomic_long_add(user_extra, &user->locked_vm);
6841 		atomic64_add(extra, &vma->vm_mm->pinned_vm);
6842 
6843 		atomic_inc(&event->mmap_count);
6844 	} else if (rb) {
6845 		/* AUX allocation failed */
6846 		atomic_dec(&rb->mmap_count);
6847 	}
6848 aux_unlock:
6849 	if (aux_mutex)
6850 		mutex_unlock(aux_mutex);
6851 	mutex_unlock(&event->mmap_mutex);
6852 
6853 	if (ret)
6854 		return ret;
6855 
6856 	/*
6857 	 * Since pinned accounting is per vm we cannot allow fork() to copy our
6858 	 * vma.
6859 	 */
6860 	vm_flags_set(vma, VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP);
6861 	vma->vm_ops = &perf_mmap_vmops;
6862 
6863 	if (event->pmu->event_mapped)
6864 		event->pmu->event_mapped(event, vma->vm_mm);
6865 
6866 	return ret;
6867 }
6868 
perf_fasync(int fd,struct file * filp,int on)6869 static int perf_fasync(int fd, struct file *filp, int on)
6870 {
6871 	struct inode *inode = file_inode(filp);
6872 	struct perf_event *event = filp->private_data;
6873 	int retval;
6874 
6875 	inode_lock(inode);
6876 	retval = fasync_helper(fd, filp, on, &event->fasync);
6877 	inode_unlock(inode);
6878 
6879 	if (retval < 0)
6880 		return retval;
6881 
6882 	return 0;
6883 }
6884 
6885 static const struct file_operations perf_fops = {
6886 	.release		= perf_release,
6887 	.read			= perf_read,
6888 	.poll			= perf_poll,
6889 	.unlocked_ioctl		= perf_ioctl,
6890 	.compat_ioctl		= perf_compat_ioctl,
6891 	.mmap			= perf_mmap,
6892 	.fasync			= perf_fasync,
6893 };
6894 
6895 /*
6896  * Perf event wakeup
6897  *
6898  * If there's data, ensure we set the poll() state and publish everything
6899  * to user-space before waking everybody up.
6900  */
6901 
perf_event_wakeup(struct perf_event * event)6902 void perf_event_wakeup(struct perf_event *event)
6903 {
6904 	ring_buffer_wakeup(event);
6905 
6906 	if (event->pending_kill) {
6907 		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
6908 		event->pending_kill = 0;
6909 	}
6910 }
6911 
perf_sigtrap(struct perf_event * event)6912 static void perf_sigtrap(struct perf_event *event)
6913 {
6914 	/*
6915 	 * We'd expect this to only occur if the irq_work is delayed and either
6916 	 * ctx->task or current has changed in the meantime. This can be the
6917 	 * case on architectures that do not implement arch_irq_work_raise().
6918 	 */
6919 	if (WARN_ON_ONCE(event->ctx->task != current))
6920 		return;
6921 
6922 	/*
6923 	 * Both perf_pending_task() and perf_pending_irq() can race with the
6924 	 * task exiting.
6925 	 */
6926 	if (current->flags & PF_EXITING)
6927 		return;
6928 
6929 	send_sig_perf((void __user *)event->pending_addr,
6930 		      event->orig_type, event->attr.sig_data);
6931 }
6932 
6933 /*
6934  * Deliver the pending work in-event-context or follow the context.
6935  */
__perf_pending_disable(struct perf_event * event)6936 static void __perf_pending_disable(struct perf_event *event)
6937 {
6938 	int cpu = READ_ONCE(event->oncpu);
6939 
6940 	/*
6941 	 * If the event isn't running; we done. event_sched_out() will have
6942 	 * taken care of things.
6943 	 */
6944 	if (cpu < 0)
6945 		return;
6946 
6947 	/*
6948 	 * Yay, we hit home and are in the context of the event.
6949 	 */
6950 	if (cpu == smp_processor_id()) {
6951 		if (event->pending_disable) {
6952 			event->pending_disable = 0;
6953 			perf_event_disable_local(event);
6954 		}
6955 		return;
6956 	}
6957 
6958 	/*
6959 	 *  CPU-A			CPU-B
6960 	 *
6961 	 *  perf_event_disable_inatomic()
6962 	 *    @pending_disable = CPU-A;
6963 	 *    irq_work_queue();
6964 	 *
6965 	 *  sched-out
6966 	 *    @pending_disable = -1;
6967 	 *
6968 	 *				sched-in
6969 	 *				perf_event_disable_inatomic()
6970 	 *				  @pending_disable = CPU-B;
6971 	 *				  irq_work_queue(); // FAILS
6972 	 *
6973 	 *  irq_work_run()
6974 	 *    perf_pending_disable()
6975 	 *
6976 	 * But the event runs on CPU-B and wants disabling there.
6977 	 */
6978 	irq_work_queue_on(&event->pending_disable_irq, cpu);
6979 }
6980 
perf_pending_disable(struct irq_work * entry)6981 static void perf_pending_disable(struct irq_work *entry)
6982 {
6983 	struct perf_event *event = container_of(entry, struct perf_event, pending_disable_irq);
6984 	int rctx;
6985 
6986 	/*
6987 	 * If we 'fail' here, that's OK, it means recursion is already disabled
6988 	 * and we won't recurse 'further'.
6989 	 */
6990 	rctx = perf_swevent_get_recursion_context();
6991 	__perf_pending_disable(event);
6992 	if (rctx >= 0)
6993 		perf_swevent_put_recursion_context(rctx);
6994 }
6995 
perf_pending_irq(struct irq_work * entry)6996 static void perf_pending_irq(struct irq_work *entry)
6997 {
6998 	struct perf_event *event = container_of(entry, struct perf_event, pending_irq);
6999 	int rctx;
7000 
7001 	/*
7002 	 * If we 'fail' here, that's OK, it means recursion is already disabled
7003 	 * and we won't recurse 'further'.
7004 	 */
7005 	rctx = perf_swevent_get_recursion_context();
7006 
7007 	/*
7008 	 * The wakeup isn't bound to the context of the event -- it can happen
7009 	 * irrespective of where the event is.
7010 	 */
7011 	if (event->pending_wakeup) {
7012 		event->pending_wakeup = 0;
7013 		perf_event_wakeup(event);
7014 	}
7015 
7016 	if (rctx >= 0)
7017 		perf_swevent_put_recursion_context(rctx);
7018 }
7019 
perf_pending_task(struct callback_head * head)7020 static void perf_pending_task(struct callback_head *head)
7021 {
7022 	struct perf_event *event = container_of(head, struct perf_event, pending_task);
7023 	int rctx;
7024 
7025 	/*
7026 	 * If we 'fail' here, that's OK, it means recursion is already disabled
7027 	 * and we won't recurse 'further'.
7028 	 */
7029 	rctx = perf_swevent_get_recursion_context();
7030 
7031 	if (event->pending_work) {
7032 		event->pending_work = 0;
7033 		perf_sigtrap(event);
7034 		local_dec(&event->ctx->nr_no_switch_fast);
7035 	}
7036 	put_event(event);
7037 
7038 	if (rctx >= 0)
7039 		perf_swevent_put_recursion_context(rctx);
7040 }
7041 
7042 #ifdef CONFIG_GUEST_PERF_EVENTS
7043 struct perf_guest_info_callbacks __rcu *perf_guest_cbs;
7044 
perf_register_guest_info_callbacks(struct perf_guest_info_callbacks * cbs)7045 void perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
7046 {
7047 	if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs)))
7048 		return;
7049 
7050 	rcu_assign_pointer(perf_guest_cbs, cbs);
7051 }
7052 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
7053 
perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks * cbs)7054 void perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
7055 {
7056 	if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs) != cbs))
7057 		return;
7058 
7059 	rcu_assign_pointer(perf_guest_cbs, NULL);
7060 	synchronize_rcu();
7061 }
7062 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
7063 #endif
7064 
7065 static void
perf_output_sample_regs(struct perf_output_handle * handle,struct pt_regs * regs,u64 mask)7066 perf_output_sample_regs(struct perf_output_handle *handle,
7067 			struct pt_regs *regs, u64 mask)
7068 {
7069 	int bit;
7070 	DECLARE_BITMAP(_mask, 64);
7071 
7072 	bitmap_from_u64(_mask, mask);
7073 	for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
7074 		u64 val;
7075 
7076 		val = perf_reg_value(regs, bit);
7077 		perf_output_put(handle, val);
7078 	}
7079 }
7080 
perf_sample_regs_user(struct perf_regs * regs_user,struct pt_regs * regs)7081 static void perf_sample_regs_user(struct perf_regs *regs_user,
7082 				  struct pt_regs *regs)
7083 {
7084 	if (user_mode(regs)) {
7085 		regs_user->abi = perf_reg_abi(current);
7086 		regs_user->regs = regs;
7087 	} else if (!(current->flags & PF_KTHREAD)) {
7088 		perf_get_regs_user(regs_user, regs);
7089 	} else {
7090 		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
7091 		regs_user->regs = NULL;
7092 	}
7093 }
7094 
perf_sample_regs_intr(struct perf_regs * regs_intr,struct pt_regs * regs)7095 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
7096 				  struct pt_regs *regs)
7097 {
7098 	regs_intr->regs = regs;
7099 	regs_intr->abi  = perf_reg_abi(current);
7100 }
7101 
7102 
7103 /*
7104  * Get remaining task size from user stack pointer.
7105  *
7106  * It'd be better to take stack vma map and limit this more
7107  * precisely, but there's no way to get it safely under interrupt,
7108  * so using TASK_SIZE as limit.
7109  */
perf_ustack_task_size(struct pt_regs * regs)7110 static u64 perf_ustack_task_size(struct pt_regs *regs)
7111 {
7112 	unsigned long addr = perf_user_stack_pointer(regs);
7113 
7114 	if (!addr || addr >= TASK_SIZE)
7115 		return 0;
7116 
7117 	return TASK_SIZE - addr;
7118 }
7119 
7120 static u16
perf_sample_ustack_size(u16 stack_size,u16 header_size,struct pt_regs * regs)7121 perf_sample_ustack_size(u16 stack_size, u16 header_size,
7122 			struct pt_regs *regs)
7123 {
7124 	u64 task_size;
7125 
7126 	/* No regs, no stack pointer, no dump. */
7127 	if (!regs)
7128 		return 0;
7129 
7130 	/* No mm, no stack, no dump. */
7131 	if (!current->mm)
7132 		return 0;
7133 
7134 	/*
7135 	 * Check if we fit in with the requested stack size into the:
7136 	 * - TASK_SIZE
7137 	 *   If we don't, we limit the size to the TASK_SIZE.
7138 	 *
7139 	 * - remaining sample size
7140 	 *   If we don't, we customize the stack size to
7141 	 *   fit in to the remaining sample size.
7142 	 */
7143 
7144 	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
7145 	stack_size = min(stack_size, (u16) task_size);
7146 
7147 	/* Current header size plus static size and dynamic size. */
7148 	header_size += 2 * sizeof(u64);
7149 
7150 	/* Do we fit in with the current stack dump size? */
7151 	if ((u16) (header_size + stack_size) < header_size) {
7152 		/*
7153 		 * If we overflow the maximum size for the sample,
7154 		 * we customize the stack dump size to fit in.
7155 		 */
7156 		stack_size = USHRT_MAX - header_size - sizeof(u64);
7157 		stack_size = round_up(stack_size, sizeof(u64));
7158 	}
7159 
7160 	return stack_size;
7161 }
7162 
7163 static void
perf_output_sample_ustack(struct perf_output_handle * handle,u64 dump_size,struct pt_regs * regs)7164 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
7165 			  struct pt_regs *regs)
7166 {
7167 	/* Case of a kernel thread, nothing to dump */
7168 	if (!regs) {
7169 		u64 size = 0;
7170 		perf_output_put(handle, size);
7171 	} else {
7172 		unsigned long sp;
7173 		unsigned int rem;
7174 		u64 dyn_size;
7175 
7176 		/*
7177 		 * We dump:
7178 		 * static size
7179 		 *   - the size requested by user or the best one we can fit
7180 		 *     in to the sample max size
7181 		 * data
7182 		 *   - user stack dump data
7183 		 * dynamic size
7184 		 *   - the actual dumped size
7185 		 */
7186 
7187 		/* Static size. */
7188 		perf_output_put(handle, dump_size);
7189 
7190 		/* Data. */
7191 		sp = perf_user_stack_pointer(regs);
7192 		rem = __output_copy_user(handle, (void *) sp, dump_size);
7193 		dyn_size = dump_size - rem;
7194 
7195 		perf_output_skip(handle, rem);
7196 
7197 		/* Dynamic size. */
7198 		perf_output_put(handle, dyn_size);
7199 	}
7200 }
7201 
perf_prepare_sample_aux(struct perf_event * event,struct perf_sample_data * data,size_t size)7202 static unsigned long perf_prepare_sample_aux(struct perf_event *event,
7203 					  struct perf_sample_data *data,
7204 					  size_t size)
7205 {
7206 	struct perf_event *sampler = event->aux_event;
7207 	struct perf_buffer *rb;
7208 
7209 	data->aux_size = 0;
7210 
7211 	if (!sampler)
7212 		goto out;
7213 
7214 	if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE))
7215 		goto out;
7216 
7217 	if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id()))
7218 		goto out;
7219 
7220 	rb = ring_buffer_get(sampler);
7221 	if (!rb)
7222 		goto out;
7223 
7224 	/*
7225 	 * If this is an NMI hit inside sampling code, don't take
7226 	 * the sample. See also perf_aux_sample_output().
7227 	 */
7228 	if (READ_ONCE(rb->aux_in_sampling)) {
7229 		data->aux_size = 0;
7230 	} else {
7231 		size = min_t(size_t, size, perf_aux_size(rb));
7232 		data->aux_size = ALIGN(size, sizeof(u64));
7233 	}
7234 	ring_buffer_put(rb);
7235 
7236 out:
7237 	return data->aux_size;
7238 }
7239 
perf_pmu_snapshot_aux(struct perf_buffer * rb,struct perf_event * event,struct perf_output_handle * handle,unsigned long size)7240 static long perf_pmu_snapshot_aux(struct perf_buffer *rb,
7241                                  struct perf_event *event,
7242                                  struct perf_output_handle *handle,
7243                                  unsigned long size)
7244 {
7245 	unsigned long flags;
7246 	long ret;
7247 
7248 	/*
7249 	 * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler
7250 	 * paths. If we start calling them in NMI context, they may race with
7251 	 * the IRQ ones, that is, for example, re-starting an event that's just
7252 	 * been stopped, which is why we're using a separate callback that
7253 	 * doesn't change the event state.
7254 	 *
7255 	 * IRQs need to be disabled to prevent IPIs from racing with us.
7256 	 */
7257 	local_irq_save(flags);
7258 	/*
7259 	 * Guard against NMI hits inside the critical section;
7260 	 * see also perf_prepare_sample_aux().
7261 	 */
7262 	WRITE_ONCE(rb->aux_in_sampling, 1);
7263 	barrier();
7264 
7265 	ret = event->pmu->snapshot_aux(event, handle, size);
7266 
7267 	barrier();
7268 	WRITE_ONCE(rb->aux_in_sampling, 0);
7269 	local_irq_restore(flags);
7270 
7271 	return ret;
7272 }
7273 
perf_aux_sample_output(struct perf_event * event,struct perf_output_handle * handle,struct perf_sample_data * data)7274 static void perf_aux_sample_output(struct perf_event *event,
7275 				   struct perf_output_handle *handle,
7276 				   struct perf_sample_data *data)
7277 {
7278 	struct perf_event *sampler = event->aux_event;
7279 	struct perf_buffer *rb;
7280 	unsigned long pad;
7281 	long size;
7282 
7283 	if (WARN_ON_ONCE(!sampler || !data->aux_size))
7284 		return;
7285 
7286 	rb = ring_buffer_get(sampler);
7287 	if (!rb)
7288 		return;
7289 
7290 	size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size);
7291 
7292 	/*
7293 	 * An error here means that perf_output_copy() failed (returned a
7294 	 * non-zero surplus that it didn't copy), which in its current
7295 	 * enlightened implementation is not possible. If that changes, we'd
7296 	 * like to know.
7297 	 */
7298 	if (WARN_ON_ONCE(size < 0))
7299 		goto out_put;
7300 
7301 	/*
7302 	 * The pad comes from ALIGN()ing data->aux_size up to u64 in
7303 	 * perf_prepare_sample_aux(), so should not be more than that.
7304 	 */
7305 	pad = data->aux_size - size;
7306 	if (WARN_ON_ONCE(pad >= sizeof(u64)))
7307 		pad = 8;
7308 
7309 	if (pad) {
7310 		u64 zero = 0;
7311 		perf_output_copy(handle, &zero, pad);
7312 	}
7313 
7314 out_put:
7315 	ring_buffer_put(rb);
7316 }
7317 
7318 /*
7319  * A set of common sample data types saved even for non-sample records
7320  * when event->attr.sample_id_all is set.
7321  */
7322 #define PERF_SAMPLE_ID_ALL  (PERF_SAMPLE_TID | PERF_SAMPLE_TIME |	\
7323 			     PERF_SAMPLE_ID | PERF_SAMPLE_STREAM_ID |	\
7324 			     PERF_SAMPLE_CPU | PERF_SAMPLE_IDENTIFIER)
7325 
__perf_event_header__init_id(struct perf_sample_data * data,struct perf_event * event,u64 sample_type)7326 static void __perf_event_header__init_id(struct perf_sample_data *data,
7327 					 struct perf_event *event,
7328 					 u64 sample_type)
7329 {
7330 	data->type = event->attr.sample_type;
7331 	data->sample_flags |= data->type & PERF_SAMPLE_ID_ALL;
7332 
7333 	if (sample_type & PERF_SAMPLE_TID) {
7334 		/* namespace issues */
7335 		data->tid_entry.pid = perf_event_pid(event, current);
7336 		data->tid_entry.tid = perf_event_tid(event, current);
7337 	}
7338 
7339 	if (sample_type & PERF_SAMPLE_TIME)
7340 		data->time = perf_event_clock(event);
7341 
7342 	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
7343 		data->id = primary_event_id(event);
7344 
7345 	if (sample_type & PERF_SAMPLE_STREAM_ID)
7346 		data->stream_id = event->id;
7347 
7348 	if (sample_type & PERF_SAMPLE_CPU) {
7349 		data->cpu_entry.cpu	 = raw_smp_processor_id();
7350 		data->cpu_entry.reserved = 0;
7351 	}
7352 }
7353 
perf_event_header__init_id(struct perf_event_header * header,struct perf_sample_data * data,struct perf_event * event)7354 void perf_event_header__init_id(struct perf_event_header *header,
7355 				struct perf_sample_data *data,
7356 				struct perf_event *event)
7357 {
7358 	if (event->attr.sample_id_all) {
7359 		header->size += event->id_header_size;
7360 		__perf_event_header__init_id(data, event, event->attr.sample_type);
7361 	}
7362 }
7363 
__perf_event__output_id_sample(struct perf_output_handle * handle,struct perf_sample_data * data)7364 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
7365 					   struct perf_sample_data *data)
7366 {
7367 	u64 sample_type = data->type;
7368 
7369 	if (sample_type & PERF_SAMPLE_TID)
7370 		perf_output_put(handle, data->tid_entry);
7371 
7372 	if (sample_type & PERF_SAMPLE_TIME)
7373 		perf_output_put(handle, data->time);
7374 
7375 	if (sample_type & PERF_SAMPLE_ID)
7376 		perf_output_put(handle, data->id);
7377 
7378 	if (sample_type & PERF_SAMPLE_STREAM_ID)
7379 		perf_output_put(handle, data->stream_id);
7380 
7381 	if (sample_type & PERF_SAMPLE_CPU)
7382 		perf_output_put(handle, data->cpu_entry);
7383 
7384 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
7385 		perf_output_put(handle, data->id);
7386 }
7387 
perf_event__output_id_sample(struct perf_event * event,struct perf_output_handle * handle,struct perf_sample_data * sample)7388 void perf_event__output_id_sample(struct perf_event *event,
7389 				  struct perf_output_handle *handle,
7390 				  struct perf_sample_data *sample)
7391 {
7392 	if (event->attr.sample_id_all)
7393 		__perf_event__output_id_sample(handle, sample);
7394 }
7395 
perf_output_read_one(struct perf_output_handle * handle,struct perf_event * event,u64 enabled,u64 running)7396 static void perf_output_read_one(struct perf_output_handle *handle,
7397 				 struct perf_event *event,
7398 				 u64 enabled, u64 running)
7399 {
7400 	u64 read_format = event->attr.read_format;
7401 	u64 values[5];
7402 	int n = 0;
7403 
7404 	values[n++] = perf_event_count(event, has_inherit_and_sample_read(&event->attr));
7405 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
7406 		values[n++] = enabled +
7407 			atomic64_read(&event->child_total_time_enabled);
7408 	}
7409 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
7410 		values[n++] = running +
7411 			atomic64_read(&event->child_total_time_running);
7412 	}
7413 	if (read_format & PERF_FORMAT_ID)
7414 		values[n++] = primary_event_id(event);
7415 	if (read_format & PERF_FORMAT_LOST)
7416 		values[n++] = atomic64_read(&event->lost_samples);
7417 
7418 	__output_copy(handle, values, n * sizeof(u64));
7419 }
7420 
perf_output_read_group(struct perf_output_handle * handle,struct perf_event * event,u64 enabled,u64 running)7421 static void perf_output_read_group(struct perf_output_handle *handle,
7422 				   struct perf_event *event,
7423 				   u64 enabled, u64 running)
7424 {
7425 	struct perf_event *leader = event->group_leader, *sub;
7426 	u64 read_format = event->attr.read_format;
7427 	unsigned long flags;
7428 	u64 values[6];
7429 	int n = 0;
7430 	bool self = has_inherit_and_sample_read(&event->attr);
7431 
7432 	/*
7433 	 * Disabling interrupts avoids all counter scheduling
7434 	 * (context switches, timer based rotation and IPIs).
7435 	 */
7436 	local_irq_save(flags);
7437 
7438 	values[n++] = 1 + leader->nr_siblings;
7439 
7440 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
7441 		values[n++] = enabled;
7442 
7443 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
7444 		values[n++] = running;
7445 
7446 	if ((leader != event) &&
7447 	    (leader->state == PERF_EVENT_STATE_ACTIVE))
7448 		leader->pmu->read(leader);
7449 
7450 	values[n++] = perf_event_count(leader, self);
7451 	if (read_format & PERF_FORMAT_ID)
7452 		values[n++] = primary_event_id(leader);
7453 	if (read_format & PERF_FORMAT_LOST)
7454 		values[n++] = atomic64_read(&leader->lost_samples);
7455 
7456 	__output_copy(handle, values, n * sizeof(u64));
7457 
7458 	for_each_sibling_event(sub, leader) {
7459 		n = 0;
7460 
7461 		if ((sub != event) &&
7462 		    (sub->state == PERF_EVENT_STATE_ACTIVE))
7463 			sub->pmu->read(sub);
7464 
7465 		values[n++] = perf_event_count(sub, self);
7466 		if (read_format & PERF_FORMAT_ID)
7467 			values[n++] = primary_event_id(sub);
7468 		if (read_format & PERF_FORMAT_LOST)
7469 			values[n++] = atomic64_read(&sub->lost_samples);
7470 
7471 		__output_copy(handle, values, n * sizeof(u64));
7472 	}
7473 
7474 	local_irq_restore(flags);
7475 }
7476 
7477 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
7478 				 PERF_FORMAT_TOTAL_TIME_RUNNING)
7479 
7480 /*
7481  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
7482  *
7483  * The problem is that its both hard and excessively expensive to iterate the
7484  * child list, not to mention that its impossible to IPI the children running
7485  * on another CPU, from interrupt/NMI context.
7486  *
7487  * Instead the combination of PERF_SAMPLE_READ and inherit will track per-thread
7488  * counts rather than attempting to accumulate some value across all children on
7489  * all cores.
7490  */
perf_output_read(struct perf_output_handle * handle,struct perf_event * event)7491 static void perf_output_read(struct perf_output_handle *handle,
7492 			     struct perf_event *event)
7493 {
7494 	u64 enabled = 0, running = 0, now;
7495 	u64 read_format = event->attr.read_format;
7496 
7497 	/*
7498 	 * compute total_time_enabled, total_time_running
7499 	 * based on snapshot values taken when the event
7500 	 * was last scheduled in.
7501 	 *
7502 	 * we cannot simply called update_context_time()
7503 	 * because of locking issue as we are called in
7504 	 * NMI context
7505 	 */
7506 	if (read_format & PERF_FORMAT_TOTAL_TIMES)
7507 		calc_timer_values(event, &now, &enabled, &running);
7508 
7509 	if (event->attr.read_format & PERF_FORMAT_GROUP)
7510 		perf_output_read_group(handle, event, enabled, running);
7511 	else
7512 		perf_output_read_one(handle, event, enabled, running);
7513 }
7514 
perf_output_sample(struct perf_output_handle * handle,struct perf_event_header * header,struct perf_sample_data * data,struct perf_event * event)7515 void perf_output_sample(struct perf_output_handle *handle,
7516 			struct perf_event_header *header,
7517 			struct perf_sample_data *data,
7518 			struct perf_event *event)
7519 {
7520 	u64 sample_type = data->type;
7521 
7522 	perf_output_put(handle, *header);
7523 
7524 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
7525 		perf_output_put(handle, data->id);
7526 
7527 	if (sample_type & PERF_SAMPLE_IP)
7528 		perf_output_put(handle, data->ip);
7529 
7530 	if (sample_type & PERF_SAMPLE_TID)
7531 		perf_output_put(handle, data->tid_entry);
7532 
7533 	if (sample_type & PERF_SAMPLE_TIME)
7534 		perf_output_put(handle, data->time);
7535 
7536 	if (sample_type & PERF_SAMPLE_ADDR)
7537 		perf_output_put(handle, data->addr);
7538 
7539 	if (sample_type & PERF_SAMPLE_ID)
7540 		perf_output_put(handle, data->id);
7541 
7542 	if (sample_type & PERF_SAMPLE_STREAM_ID)
7543 		perf_output_put(handle, data->stream_id);
7544 
7545 	if (sample_type & PERF_SAMPLE_CPU)
7546 		perf_output_put(handle, data->cpu_entry);
7547 
7548 	if (sample_type & PERF_SAMPLE_PERIOD)
7549 		perf_output_put(handle, data->period);
7550 
7551 	if (sample_type & PERF_SAMPLE_READ)
7552 		perf_output_read(handle, event);
7553 
7554 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
7555 		int size = 1;
7556 
7557 		size += data->callchain->nr;
7558 		size *= sizeof(u64);
7559 		__output_copy(handle, data->callchain, size);
7560 	}
7561 
7562 	if (sample_type & PERF_SAMPLE_RAW) {
7563 		struct perf_raw_record *raw = data->raw;
7564 
7565 		if (raw) {
7566 			struct perf_raw_frag *frag = &raw->frag;
7567 
7568 			perf_output_put(handle, raw->size);
7569 			do {
7570 				if (frag->copy) {
7571 					__output_custom(handle, frag->copy,
7572 							frag->data, frag->size);
7573 				} else {
7574 					__output_copy(handle, frag->data,
7575 						      frag->size);
7576 				}
7577 				if (perf_raw_frag_last(frag))
7578 					break;
7579 				frag = frag->next;
7580 			} while (1);
7581 			if (frag->pad)
7582 				__output_skip(handle, NULL, frag->pad);
7583 		} else {
7584 			struct {
7585 				u32	size;
7586 				u32	data;
7587 			} raw = {
7588 				.size = sizeof(u32),
7589 				.data = 0,
7590 			};
7591 			perf_output_put(handle, raw);
7592 		}
7593 	}
7594 
7595 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
7596 		if (data->br_stack) {
7597 			size_t size;
7598 
7599 			size = data->br_stack->nr
7600 			     * sizeof(struct perf_branch_entry);
7601 
7602 			perf_output_put(handle, data->br_stack->nr);
7603 			if (branch_sample_hw_index(event))
7604 				perf_output_put(handle, data->br_stack->hw_idx);
7605 			perf_output_copy(handle, data->br_stack->entries, size);
7606 			/*
7607 			 * Add the extension space which is appended
7608 			 * right after the struct perf_branch_stack.
7609 			 */
7610 			if (data->br_stack_cntr) {
7611 				size = data->br_stack->nr * sizeof(u64);
7612 				perf_output_copy(handle, data->br_stack_cntr, size);
7613 			}
7614 		} else {
7615 			/*
7616 			 * we always store at least the value of nr
7617 			 */
7618 			u64 nr = 0;
7619 			perf_output_put(handle, nr);
7620 		}
7621 	}
7622 
7623 	if (sample_type & PERF_SAMPLE_REGS_USER) {
7624 		u64 abi = data->regs_user.abi;
7625 
7626 		/*
7627 		 * If there are no regs to dump, notice it through
7628 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7629 		 */
7630 		perf_output_put(handle, abi);
7631 
7632 		if (abi) {
7633 			u64 mask = event->attr.sample_regs_user;
7634 			perf_output_sample_regs(handle,
7635 						data->regs_user.regs,
7636 						mask);
7637 		}
7638 	}
7639 
7640 	if (sample_type & PERF_SAMPLE_STACK_USER) {
7641 		perf_output_sample_ustack(handle,
7642 					  data->stack_user_size,
7643 					  data->regs_user.regs);
7644 	}
7645 
7646 	if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
7647 		perf_output_put(handle, data->weight.full);
7648 
7649 	if (sample_type & PERF_SAMPLE_DATA_SRC)
7650 		perf_output_put(handle, data->data_src.val);
7651 
7652 	if (sample_type & PERF_SAMPLE_TRANSACTION)
7653 		perf_output_put(handle, data->txn);
7654 
7655 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
7656 		u64 abi = data->regs_intr.abi;
7657 		/*
7658 		 * If there are no regs to dump, notice it through
7659 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7660 		 */
7661 		perf_output_put(handle, abi);
7662 
7663 		if (abi) {
7664 			u64 mask = event->attr.sample_regs_intr;
7665 
7666 			perf_output_sample_regs(handle,
7667 						data->regs_intr.regs,
7668 						mask);
7669 		}
7670 	}
7671 
7672 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
7673 		perf_output_put(handle, data->phys_addr);
7674 
7675 	if (sample_type & PERF_SAMPLE_CGROUP)
7676 		perf_output_put(handle, data->cgroup);
7677 
7678 	if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
7679 		perf_output_put(handle, data->data_page_size);
7680 
7681 	if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
7682 		perf_output_put(handle, data->code_page_size);
7683 
7684 	if (sample_type & PERF_SAMPLE_AUX) {
7685 		perf_output_put(handle, data->aux_size);
7686 
7687 		if (data->aux_size)
7688 			perf_aux_sample_output(event, handle, data);
7689 	}
7690 
7691 	if (!event->attr.watermark) {
7692 		int wakeup_events = event->attr.wakeup_events;
7693 
7694 		if (wakeup_events) {
7695 			struct perf_buffer *rb = handle->rb;
7696 			int events = local_inc_return(&rb->events);
7697 
7698 			if (events >= wakeup_events) {
7699 				local_sub(wakeup_events, &rb->events);
7700 				local_inc(&rb->wakeup);
7701 			}
7702 		}
7703 	}
7704 }
7705 
perf_virt_to_phys(u64 virt)7706 static u64 perf_virt_to_phys(u64 virt)
7707 {
7708 	u64 phys_addr = 0;
7709 
7710 	if (!virt)
7711 		return 0;
7712 
7713 	if (virt >= TASK_SIZE) {
7714 		/* If it's vmalloc()d memory, leave phys_addr as 0 */
7715 		if (virt_addr_valid((void *)(uintptr_t)virt) &&
7716 		    !(virt >= VMALLOC_START && virt < VMALLOC_END))
7717 			phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
7718 	} else {
7719 		/*
7720 		 * Walking the pages tables for user address.
7721 		 * Interrupts are disabled, so it prevents any tear down
7722 		 * of the page tables.
7723 		 * Try IRQ-safe get_user_page_fast_only first.
7724 		 * If failed, leave phys_addr as 0.
7725 		 */
7726 		if (current->mm != NULL) {
7727 			struct page *p;
7728 
7729 			pagefault_disable();
7730 			if (get_user_page_fast_only(virt, 0, &p)) {
7731 				phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
7732 				put_page(p);
7733 			}
7734 			pagefault_enable();
7735 		}
7736 	}
7737 
7738 	return phys_addr;
7739 }
7740 
7741 /*
7742  * Return the pagetable size of a given virtual address.
7743  */
perf_get_pgtable_size(struct mm_struct * mm,unsigned long addr)7744 static u64 perf_get_pgtable_size(struct mm_struct *mm, unsigned long addr)
7745 {
7746 	u64 size = 0;
7747 
7748 #ifdef CONFIG_HAVE_GUP_FAST
7749 	pgd_t *pgdp, pgd;
7750 	p4d_t *p4dp, p4d;
7751 	pud_t *pudp, pud;
7752 	pmd_t *pmdp, pmd;
7753 	pte_t *ptep, pte;
7754 
7755 	pgdp = pgd_offset(mm, addr);
7756 	pgd = READ_ONCE(*pgdp);
7757 	if (pgd_none(pgd))
7758 		return 0;
7759 
7760 	if (pgd_leaf(pgd))
7761 		return pgd_leaf_size(pgd);
7762 
7763 	p4dp = p4d_offset_lockless(pgdp, pgd, addr);
7764 	p4d = READ_ONCE(*p4dp);
7765 	if (!p4d_present(p4d))
7766 		return 0;
7767 
7768 	if (p4d_leaf(p4d))
7769 		return p4d_leaf_size(p4d);
7770 
7771 	pudp = pud_offset_lockless(p4dp, p4d, addr);
7772 	pud = READ_ONCE(*pudp);
7773 	if (!pud_present(pud))
7774 		return 0;
7775 
7776 	if (pud_leaf(pud))
7777 		return pud_leaf_size(pud);
7778 
7779 	pmdp = pmd_offset_lockless(pudp, pud, addr);
7780 again:
7781 	pmd = pmdp_get_lockless(pmdp);
7782 	if (!pmd_present(pmd))
7783 		return 0;
7784 
7785 	if (pmd_leaf(pmd))
7786 		return pmd_leaf_size(pmd);
7787 
7788 	ptep = pte_offset_map(&pmd, addr);
7789 	if (!ptep)
7790 		goto again;
7791 
7792 	pte = ptep_get_lockless(ptep);
7793 	if (pte_present(pte))
7794 		size = __pte_leaf_size(pmd, pte);
7795 	pte_unmap(ptep);
7796 #endif /* CONFIG_HAVE_GUP_FAST */
7797 
7798 	return size;
7799 }
7800 
perf_get_page_size(unsigned long addr)7801 static u64 perf_get_page_size(unsigned long addr)
7802 {
7803 	struct mm_struct *mm;
7804 	unsigned long flags;
7805 	u64 size;
7806 
7807 	if (!addr)
7808 		return 0;
7809 
7810 	/*
7811 	 * Software page-table walkers must disable IRQs,
7812 	 * which prevents any tear down of the page tables.
7813 	 */
7814 	local_irq_save(flags);
7815 
7816 	mm = current->mm;
7817 	if (!mm) {
7818 		/*
7819 		 * For kernel threads and the like, use init_mm so that
7820 		 * we can find kernel memory.
7821 		 */
7822 		mm = &init_mm;
7823 	}
7824 
7825 	size = perf_get_pgtable_size(mm, addr);
7826 
7827 	local_irq_restore(flags);
7828 
7829 	return size;
7830 }
7831 
7832 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
7833 
7834 struct perf_callchain_entry *
perf_callchain(struct perf_event * event,struct pt_regs * regs)7835 perf_callchain(struct perf_event *event, struct pt_regs *regs)
7836 {
7837 	bool kernel = !event->attr.exclude_callchain_kernel;
7838 	bool user   = !event->attr.exclude_callchain_user;
7839 	/* Disallow cross-task user callchains. */
7840 	bool crosstask = event->ctx->task && event->ctx->task != current;
7841 	const u32 max_stack = event->attr.sample_max_stack;
7842 	struct perf_callchain_entry *callchain;
7843 
7844 	if (!current->mm)
7845 		user = false;
7846 
7847 	if (!kernel && !user)
7848 		return &__empty_callchain;
7849 
7850 	callchain = get_perf_callchain(regs, 0, kernel, user,
7851 				       max_stack, crosstask, true);
7852 	return callchain ?: &__empty_callchain;
7853 }
7854 
__cond_set(u64 flags,u64 s,u64 d)7855 static __always_inline u64 __cond_set(u64 flags, u64 s, u64 d)
7856 {
7857 	return d * !!(flags & s);
7858 }
7859 
perf_prepare_sample(struct perf_sample_data * data,struct perf_event * event,struct pt_regs * regs)7860 void perf_prepare_sample(struct perf_sample_data *data,
7861 			 struct perf_event *event,
7862 			 struct pt_regs *regs)
7863 {
7864 	u64 sample_type = event->attr.sample_type;
7865 	u64 filtered_sample_type;
7866 
7867 	/*
7868 	 * Add the sample flags that are dependent to others.  And clear the
7869 	 * sample flags that have already been done by the PMU driver.
7870 	 */
7871 	filtered_sample_type = sample_type;
7872 	filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_CODE_PAGE_SIZE,
7873 					   PERF_SAMPLE_IP);
7874 	filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_DATA_PAGE_SIZE |
7875 					   PERF_SAMPLE_PHYS_ADDR, PERF_SAMPLE_ADDR);
7876 	filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_STACK_USER,
7877 					   PERF_SAMPLE_REGS_USER);
7878 	filtered_sample_type &= ~data->sample_flags;
7879 
7880 	if (filtered_sample_type == 0) {
7881 		/* Make sure it has the correct data->type for output */
7882 		data->type = event->attr.sample_type;
7883 		return;
7884 	}
7885 
7886 	__perf_event_header__init_id(data, event, filtered_sample_type);
7887 
7888 	if (filtered_sample_type & PERF_SAMPLE_IP) {
7889 		data->ip = perf_instruction_pointer(regs);
7890 		data->sample_flags |= PERF_SAMPLE_IP;
7891 	}
7892 
7893 	if (filtered_sample_type & PERF_SAMPLE_CALLCHAIN)
7894 		perf_sample_save_callchain(data, event, regs);
7895 
7896 	if (filtered_sample_type & PERF_SAMPLE_RAW) {
7897 		data->raw = NULL;
7898 		data->dyn_size += sizeof(u64);
7899 		data->sample_flags |= PERF_SAMPLE_RAW;
7900 	}
7901 
7902 	if (filtered_sample_type & PERF_SAMPLE_BRANCH_STACK) {
7903 		data->br_stack = NULL;
7904 		data->dyn_size += sizeof(u64);
7905 		data->sample_flags |= PERF_SAMPLE_BRANCH_STACK;
7906 	}
7907 
7908 	if (filtered_sample_type & PERF_SAMPLE_REGS_USER)
7909 		perf_sample_regs_user(&data->regs_user, regs);
7910 
7911 	/*
7912 	 * It cannot use the filtered_sample_type here as REGS_USER can be set
7913 	 * by STACK_USER (using __cond_set() above) and we don't want to update
7914 	 * the dyn_size if it's not requested by users.
7915 	 */
7916 	if ((sample_type & ~data->sample_flags) & PERF_SAMPLE_REGS_USER) {
7917 		/* regs dump ABI info */
7918 		int size = sizeof(u64);
7919 
7920 		if (data->regs_user.regs) {
7921 			u64 mask = event->attr.sample_regs_user;
7922 			size += hweight64(mask) * sizeof(u64);
7923 		}
7924 
7925 		data->dyn_size += size;
7926 		data->sample_flags |= PERF_SAMPLE_REGS_USER;
7927 	}
7928 
7929 	if (filtered_sample_type & PERF_SAMPLE_STACK_USER) {
7930 		/*
7931 		 * Either we need PERF_SAMPLE_STACK_USER bit to be always
7932 		 * processed as the last one or have additional check added
7933 		 * in case new sample type is added, because we could eat
7934 		 * up the rest of the sample size.
7935 		 */
7936 		u16 stack_size = event->attr.sample_stack_user;
7937 		u16 header_size = perf_sample_data_size(data, event);
7938 		u16 size = sizeof(u64);
7939 
7940 		stack_size = perf_sample_ustack_size(stack_size, header_size,
7941 						     data->regs_user.regs);
7942 
7943 		/*
7944 		 * If there is something to dump, add space for the dump
7945 		 * itself and for the field that tells the dynamic size,
7946 		 * which is how many have been actually dumped.
7947 		 */
7948 		if (stack_size)
7949 			size += sizeof(u64) + stack_size;
7950 
7951 		data->stack_user_size = stack_size;
7952 		data->dyn_size += size;
7953 		data->sample_flags |= PERF_SAMPLE_STACK_USER;
7954 	}
7955 
7956 	if (filtered_sample_type & PERF_SAMPLE_WEIGHT_TYPE) {
7957 		data->weight.full = 0;
7958 		data->sample_flags |= PERF_SAMPLE_WEIGHT_TYPE;
7959 	}
7960 
7961 	if (filtered_sample_type & PERF_SAMPLE_DATA_SRC) {
7962 		data->data_src.val = PERF_MEM_NA;
7963 		data->sample_flags |= PERF_SAMPLE_DATA_SRC;
7964 	}
7965 
7966 	if (filtered_sample_type & PERF_SAMPLE_TRANSACTION) {
7967 		data->txn = 0;
7968 		data->sample_flags |= PERF_SAMPLE_TRANSACTION;
7969 	}
7970 
7971 	if (filtered_sample_type & PERF_SAMPLE_ADDR) {
7972 		data->addr = 0;
7973 		data->sample_flags |= PERF_SAMPLE_ADDR;
7974 	}
7975 
7976 	if (filtered_sample_type & PERF_SAMPLE_REGS_INTR) {
7977 		/* regs dump ABI info */
7978 		int size = sizeof(u64);
7979 
7980 		perf_sample_regs_intr(&data->regs_intr, regs);
7981 
7982 		if (data->regs_intr.regs) {
7983 			u64 mask = event->attr.sample_regs_intr;
7984 
7985 			size += hweight64(mask) * sizeof(u64);
7986 		}
7987 
7988 		data->dyn_size += size;
7989 		data->sample_flags |= PERF_SAMPLE_REGS_INTR;
7990 	}
7991 
7992 	if (filtered_sample_type & PERF_SAMPLE_PHYS_ADDR) {
7993 		data->phys_addr = perf_virt_to_phys(data->addr);
7994 		data->sample_flags |= PERF_SAMPLE_PHYS_ADDR;
7995 	}
7996 
7997 #ifdef CONFIG_CGROUP_PERF
7998 	if (filtered_sample_type & PERF_SAMPLE_CGROUP) {
7999 		struct cgroup *cgrp;
8000 
8001 		/* protected by RCU */
8002 		cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup;
8003 		data->cgroup = cgroup_id(cgrp);
8004 		data->sample_flags |= PERF_SAMPLE_CGROUP;
8005 	}
8006 #endif
8007 
8008 	/*
8009 	 * PERF_DATA_PAGE_SIZE requires PERF_SAMPLE_ADDR. If the user doesn't
8010 	 * require PERF_SAMPLE_ADDR, kernel implicitly retrieve the data->addr,
8011 	 * but the value will not dump to the userspace.
8012 	 */
8013 	if (filtered_sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) {
8014 		data->data_page_size = perf_get_page_size(data->addr);
8015 		data->sample_flags |= PERF_SAMPLE_DATA_PAGE_SIZE;
8016 	}
8017 
8018 	if (filtered_sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) {
8019 		data->code_page_size = perf_get_page_size(data->ip);
8020 		data->sample_flags |= PERF_SAMPLE_CODE_PAGE_SIZE;
8021 	}
8022 
8023 	if (filtered_sample_type & PERF_SAMPLE_AUX) {
8024 		u64 size;
8025 		u16 header_size = perf_sample_data_size(data, event);
8026 
8027 		header_size += sizeof(u64); /* size */
8028 
8029 		/*
8030 		 * Given the 16bit nature of header::size, an AUX sample can
8031 		 * easily overflow it, what with all the preceding sample bits.
8032 		 * Make sure this doesn't happen by using up to U16_MAX bytes
8033 		 * per sample in total (rounded down to 8 byte boundary).
8034 		 */
8035 		size = min_t(size_t, U16_MAX - header_size,
8036 			     event->attr.aux_sample_size);
8037 		size = rounddown(size, 8);
8038 		size = perf_prepare_sample_aux(event, data, size);
8039 
8040 		WARN_ON_ONCE(size + header_size > U16_MAX);
8041 		data->dyn_size += size + sizeof(u64); /* size above */
8042 		data->sample_flags |= PERF_SAMPLE_AUX;
8043 	}
8044 }
8045 
perf_prepare_header(struct perf_event_header * header,struct perf_sample_data * data,struct perf_event * event,struct pt_regs * regs)8046 void perf_prepare_header(struct perf_event_header *header,
8047 			 struct perf_sample_data *data,
8048 			 struct perf_event *event,
8049 			 struct pt_regs *regs)
8050 {
8051 	header->type = PERF_RECORD_SAMPLE;
8052 	header->size = perf_sample_data_size(data, event);
8053 	header->misc = perf_misc_flags(regs);
8054 
8055 	/*
8056 	 * If you're adding more sample types here, you likely need to do
8057 	 * something about the overflowing header::size, like repurpose the
8058 	 * lowest 3 bits of size, which should be always zero at the moment.
8059 	 * This raises a more important question, do we really need 512k sized
8060 	 * samples and why, so good argumentation is in order for whatever you
8061 	 * do here next.
8062 	 */
8063 	WARN_ON_ONCE(header->size & 7);
8064 }
8065 
__perf_event_aux_pause(struct perf_event * event,bool pause)8066 static void __perf_event_aux_pause(struct perf_event *event, bool pause)
8067 {
8068 	if (pause) {
8069 		if (!event->hw.aux_paused) {
8070 			event->hw.aux_paused = 1;
8071 			event->pmu->stop(event, PERF_EF_PAUSE);
8072 		}
8073 	} else {
8074 		if (event->hw.aux_paused) {
8075 			event->hw.aux_paused = 0;
8076 			event->pmu->start(event, PERF_EF_RESUME);
8077 		}
8078 	}
8079 }
8080 
perf_event_aux_pause(struct perf_event * event,bool pause)8081 static void perf_event_aux_pause(struct perf_event *event, bool pause)
8082 {
8083 	struct perf_buffer *rb;
8084 
8085 	if (WARN_ON_ONCE(!event))
8086 		return;
8087 
8088 	rb = ring_buffer_get(event);
8089 	if (!rb)
8090 		return;
8091 
8092 	scoped_guard (irqsave) {
8093 		/*
8094 		 * Guard against self-recursion here. Another event could trip
8095 		 * this same from NMI context.
8096 		 */
8097 		if (READ_ONCE(rb->aux_in_pause_resume))
8098 			break;
8099 
8100 		WRITE_ONCE(rb->aux_in_pause_resume, 1);
8101 		barrier();
8102 		__perf_event_aux_pause(event, pause);
8103 		barrier();
8104 		WRITE_ONCE(rb->aux_in_pause_resume, 0);
8105 	}
8106 	ring_buffer_put(rb);
8107 }
8108 
8109 static __always_inline int
__perf_event_output(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs,int (* output_begin)(struct perf_output_handle *,struct perf_sample_data *,struct perf_event *,unsigned int))8110 __perf_event_output(struct perf_event *event,
8111 		    struct perf_sample_data *data,
8112 		    struct pt_regs *regs,
8113 		    int (*output_begin)(struct perf_output_handle *,
8114 					struct perf_sample_data *,
8115 					struct perf_event *,
8116 					unsigned int))
8117 {
8118 	struct perf_output_handle handle;
8119 	struct perf_event_header header;
8120 	int err;
8121 
8122 	/* protect the callchain buffers */
8123 	rcu_read_lock();
8124 
8125 	perf_prepare_sample(data, event, regs);
8126 	perf_prepare_header(&header, data, event, regs);
8127 
8128 	err = output_begin(&handle, data, event, header.size);
8129 	if (err)
8130 		goto exit;
8131 
8132 	perf_output_sample(&handle, &header, data, event);
8133 
8134 	perf_output_end(&handle);
8135 
8136 exit:
8137 	rcu_read_unlock();
8138 	return err;
8139 }
8140 
8141 void
perf_event_output_forward(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)8142 perf_event_output_forward(struct perf_event *event,
8143 			 struct perf_sample_data *data,
8144 			 struct pt_regs *regs)
8145 {
8146 	__perf_event_output(event, data, regs, perf_output_begin_forward);
8147 }
8148 
8149 void
perf_event_output_backward(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)8150 perf_event_output_backward(struct perf_event *event,
8151 			   struct perf_sample_data *data,
8152 			   struct pt_regs *regs)
8153 {
8154 	__perf_event_output(event, data, regs, perf_output_begin_backward);
8155 }
8156 
8157 int
perf_event_output(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)8158 perf_event_output(struct perf_event *event,
8159 		  struct perf_sample_data *data,
8160 		  struct pt_regs *regs)
8161 {
8162 	return __perf_event_output(event, data, regs, perf_output_begin);
8163 }
8164 
8165 /*
8166  * read event_id
8167  */
8168 
8169 struct perf_read_event {
8170 	struct perf_event_header	header;
8171 
8172 	u32				pid;
8173 	u32				tid;
8174 };
8175 
8176 static void
perf_event_read_event(struct perf_event * event,struct task_struct * task)8177 perf_event_read_event(struct perf_event *event,
8178 			struct task_struct *task)
8179 {
8180 	struct perf_output_handle handle;
8181 	struct perf_sample_data sample;
8182 	struct perf_read_event read_event = {
8183 		.header = {
8184 			.type = PERF_RECORD_READ,
8185 			.misc = 0,
8186 			.size = sizeof(read_event) + event->read_size,
8187 		},
8188 		.pid = perf_event_pid(event, task),
8189 		.tid = perf_event_tid(event, task),
8190 	};
8191 	int ret;
8192 
8193 	perf_event_header__init_id(&read_event.header, &sample, event);
8194 	ret = perf_output_begin(&handle, &sample, event, read_event.header.size);
8195 	if (ret)
8196 		return;
8197 
8198 	perf_output_put(&handle, read_event);
8199 	perf_output_read(&handle, event);
8200 	perf_event__output_id_sample(event, &handle, &sample);
8201 
8202 	perf_output_end(&handle);
8203 }
8204 
8205 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
8206 
8207 static void
perf_iterate_ctx(struct perf_event_context * ctx,perf_iterate_f output,void * data,bool all)8208 perf_iterate_ctx(struct perf_event_context *ctx,
8209 		   perf_iterate_f output,
8210 		   void *data, bool all)
8211 {
8212 	struct perf_event *event;
8213 
8214 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
8215 		if (!all) {
8216 			if (event->state < PERF_EVENT_STATE_INACTIVE)
8217 				continue;
8218 			if (!event_filter_match(event))
8219 				continue;
8220 		}
8221 
8222 		output(event, data);
8223 	}
8224 }
8225 
perf_iterate_sb_cpu(perf_iterate_f output,void * data)8226 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
8227 {
8228 	struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
8229 	struct perf_event *event;
8230 
8231 	list_for_each_entry_rcu(event, &pel->list, sb_list) {
8232 		/*
8233 		 * Skip events that are not fully formed yet; ensure that
8234 		 * if we observe event->ctx, both event and ctx will be
8235 		 * complete enough. See perf_install_in_context().
8236 		 */
8237 		if (!smp_load_acquire(&event->ctx))
8238 			continue;
8239 
8240 		if (event->state < PERF_EVENT_STATE_INACTIVE)
8241 			continue;
8242 		if (!event_filter_match(event))
8243 			continue;
8244 		output(event, data);
8245 	}
8246 }
8247 
8248 /*
8249  * Iterate all events that need to receive side-band events.
8250  *
8251  * For new callers; ensure that account_pmu_sb_event() includes
8252  * your event, otherwise it might not get delivered.
8253  */
8254 static void
perf_iterate_sb(perf_iterate_f output,void * data,struct perf_event_context * task_ctx)8255 perf_iterate_sb(perf_iterate_f output, void *data,
8256 	       struct perf_event_context *task_ctx)
8257 {
8258 	struct perf_event_context *ctx;
8259 
8260 	rcu_read_lock();
8261 	preempt_disable();
8262 
8263 	/*
8264 	 * If we have task_ctx != NULL we only notify the task context itself.
8265 	 * The task_ctx is set only for EXIT events before releasing task
8266 	 * context.
8267 	 */
8268 	if (task_ctx) {
8269 		perf_iterate_ctx(task_ctx, output, data, false);
8270 		goto done;
8271 	}
8272 
8273 	perf_iterate_sb_cpu(output, data);
8274 
8275 	ctx = rcu_dereference(current->perf_event_ctxp);
8276 	if (ctx)
8277 		perf_iterate_ctx(ctx, output, data, false);
8278 done:
8279 	preempt_enable();
8280 	rcu_read_unlock();
8281 }
8282 
8283 /*
8284  * Clear all file-based filters at exec, they'll have to be
8285  * re-instated when/if these objects are mmapped again.
8286  */
perf_event_addr_filters_exec(struct perf_event * event,void * data)8287 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
8288 {
8289 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8290 	struct perf_addr_filter *filter;
8291 	unsigned int restart = 0, count = 0;
8292 	unsigned long flags;
8293 
8294 	if (!has_addr_filter(event))
8295 		return;
8296 
8297 	raw_spin_lock_irqsave(&ifh->lock, flags);
8298 	list_for_each_entry(filter, &ifh->list, entry) {
8299 		if (filter->path.dentry) {
8300 			event->addr_filter_ranges[count].start = 0;
8301 			event->addr_filter_ranges[count].size = 0;
8302 			restart++;
8303 		}
8304 
8305 		count++;
8306 	}
8307 
8308 	if (restart)
8309 		event->addr_filters_gen++;
8310 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
8311 
8312 	if (restart)
8313 		perf_event_stop(event, 1);
8314 }
8315 
perf_event_exec(void)8316 void perf_event_exec(void)
8317 {
8318 	struct perf_event_context *ctx;
8319 
8320 	ctx = perf_pin_task_context(current);
8321 	if (!ctx)
8322 		return;
8323 
8324 	perf_event_enable_on_exec(ctx);
8325 	perf_event_remove_on_exec(ctx);
8326 	scoped_guard(rcu)
8327 		perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL, true);
8328 
8329 	perf_unpin_context(ctx);
8330 	put_ctx(ctx);
8331 }
8332 
8333 struct remote_output {
8334 	struct perf_buffer	*rb;
8335 	int			err;
8336 };
8337 
__perf_event_output_stop(struct perf_event * event,void * data)8338 static void __perf_event_output_stop(struct perf_event *event, void *data)
8339 {
8340 	struct perf_event *parent = event->parent;
8341 	struct remote_output *ro = data;
8342 	struct perf_buffer *rb = ro->rb;
8343 	struct stop_event_data sd = {
8344 		.event	= event,
8345 	};
8346 
8347 	if (!has_aux(event))
8348 		return;
8349 
8350 	if (!parent)
8351 		parent = event;
8352 
8353 	/*
8354 	 * In case of inheritance, it will be the parent that links to the
8355 	 * ring-buffer, but it will be the child that's actually using it.
8356 	 *
8357 	 * We are using event::rb to determine if the event should be stopped,
8358 	 * however this may race with ring_buffer_attach() (through set_output),
8359 	 * which will make us skip the event that actually needs to be stopped.
8360 	 * So ring_buffer_attach() has to stop an aux event before re-assigning
8361 	 * its rb pointer.
8362 	 */
8363 	if (rcu_dereference(parent->rb) == rb)
8364 		ro->err = __perf_event_stop(&sd);
8365 }
8366 
__perf_pmu_output_stop(void * info)8367 static int __perf_pmu_output_stop(void *info)
8368 {
8369 	struct perf_event *event = info;
8370 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
8371 	struct remote_output ro = {
8372 		.rb	= event->rb,
8373 	};
8374 
8375 	rcu_read_lock();
8376 	perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
8377 	if (cpuctx->task_ctx)
8378 		perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
8379 				   &ro, false);
8380 	rcu_read_unlock();
8381 
8382 	return ro.err;
8383 }
8384 
perf_pmu_output_stop(struct perf_event * event)8385 static void perf_pmu_output_stop(struct perf_event *event)
8386 {
8387 	struct perf_event *iter;
8388 	int err, cpu;
8389 
8390 restart:
8391 	rcu_read_lock();
8392 	list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
8393 		/*
8394 		 * For per-CPU events, we need to make sure that neither they
8395 		 * nor their children are running; for cpu==-1 events it's
8396 		 * sufficient to stop the event itself if it's active, since
8397 		 * it can't have children.
8398 		 */
8399 		cpu = iter->cpu;
8400 		if (cpu == -1)
8401 			cpu = READ_ONCE(iter->oncpu);
8402 
8403 		if (cpu == -1)
8404 			continue;
8405 
8406 		err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
8407 		if (err == -EAGAIN) {
8408 			rcu_read_unlock();
8409 			goto restart;
8410 		}
8411 	}
8412 	rcu_read_unlock();
8413 }
8414 
8415 /*
8416  * task tracking -- fork/exit
8417  *
8418  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
8419  */
8420 
8421 struct perf_task_event {
8422 	struct task_struct		*task;
8423 	struct perf_event_context	*task_ctx;
8424 
8425 	struct {
8426 		struct perf_event_header	header;
8427 
8428 		u32				pid;
8429 		u32				ppid;
8430 		u32				tid;
8431 		u32				ptid;
8432 		u64				time;
8433 	} event_id;
8434 };
8435 
perf_event_task_match(struct perf_event * event)8436 static int perf_event_task_match(struct perf_event *event)
8437 {
8438 	return event->attr.comm  || event->attr.mmap ||
8439 	       event->attr.mmap2 || event->attr.mmap_data ||
8440 	       event->attr.task;
8441 }
8442 
perf_event_task_output(struct perf_event * event,void * data)8443 static void perf_event_task_output(struct perf_event *event,
8444 				   void *data)
8445 {
8446 	struct perf_task_event *task_event = data;
8447 	struct perf_output_handle handle;
8448 	struct perf_sample_data	sample;
8449 	struct task_struct *task = task_event->task;
8450 	int ret, size = task_event->event_id.header.size;
8451 
8452 	if (!perf_event_task_match(event))
8453 		return;
8454 
8455 	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
8456 
8457 	ret = perf_output_begin(&handle, &sample, event,
8458 				task_event->event_id.header.size);
8459 	if (ret)
8460 		goto out;
8461 
8462 	task_event->event_id.pid = perf_event_pid(event, task);
8463 	task_event->event_id.tid = perf_event_tid(event, task);
8464 
8465 	if (task_event->event_id.header.type == PERF_RECORD_EXIT) {
8466 		task_event->event_id.ppid = perf_event_pid(event,
8467 							task->real_parent);
8468 		task_event->event_id.ptid = perf_event_pid(event,
8469 							task->real_parent);
8470 	} else {  /* PERF_RECORD_FORK */
8471 		task_event->event_id.ppid = perf_event_pid(event, current);
8472 		task_event->event_id.ptid = perf_event_tid(event, current);
8473 	}
8474 
8475 	task_event->event_id.time = perf_event_clock(event);
8476 
8477 	perf_output_put(&handle, task_event->event_id);
8478 
8479 	perf_event__output_id_sample(event, &handle, &sample);
8480 
8481 	perf_output_end(&handle);
8482 out:
8483 	task_event->event_id.header.size = size;
8484 }
8485 
perf_event_task(struct task_struct * task,struct perf_event_context * task_ctx,int new)8486 static void perf_event_task(struct task_struct *task,
8487 			      struct perf_event_context *task_ctx,
8488 			      int new)
8489 {
8490 	struct perf_task_event task_event;
8491 
8492 	if (!atomic_read(&nr_comm_events) &&
8493 	    !atomic_read(&nr_mmap_events) &&
8494 	    !atomic_read(&nr_task_events))
8495 		return;
8496 
8497 	task_event = (struct perf_task_event){
8498 		.task	  = task,
8499 		.task_ctx = task_ctx,
8500 		.event_id    = {
8501 			.header = {
8502 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
8503 				.misc = 0,
8504 				.size = sizeof(task_event.event_id),
8505 			},
8506 			/* .pid  */
8507 			/* .ppid */
8508 			/* .tid  */
8509 			/* .ptid */
8510 			/* .time */
8511 		},
8512 	};
8513 
8514 	perf_iterate_sb(perf_event_task_output,
8515 		       &task_event,
8516 		       task_ctx);
8517 }
8518 
perf_event_fork(struct task_struct * task)8519 void perf_event_fork(struct task_struct *task)
8520 {
8521 	perf_event_task(task, NULL, 1);
8522 	perf_event_namespaces(task);
8523 }
8524 
8525 /*
8526  * comm tracking
8527  */
8528 
8529 struct perf_comm_event {
8530 	struct task_struct	*task;
8531 	char			*comm;
8532 	int			comm_size;
8533 
8534 	struct {
8535 		struct perf_event_header	header;
8536 
8537 		u32				pid;
8538 		u32				tid;
8539 	} event_id;
8540 };
8541 
perf_event_comm_match(struct perf_event * event)8542 static int perf_event_comm_match(struct perf_event *event)
8543 {
8544 	return event->attr.comm;
8545 }
8546 
perf_event_comm_output(struct perf_event * event,void * data)8547 static void perf_event_comm_output(struct perf_event *event,
8548 				   void *data)
8549 {
8550 	struct perf_comm_event *comm_event = data;
8551 	struct perf_output_handle handle;
8552 	struct perf_sample_data sample;
8553 	int size = comm_event->event_id.header.size;
8554 	int ret;
8555 
8556 	if (!perf_event_comm_match(event))
8557 		return;
8558 
8559 	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
8560 	ret = perf_output_begin(&handle, &sample, event,
8561 				comm_event->event_id.header.size);
8562 
8563 	if (ret)
8564 		goto out;
8565 
8566 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
8567 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
8568 
8569 	perf_output_put(&handle, comm_event->event_id);
8570 	__output_copy(&handle, comm_event->comm,
8571 				   comm_event->comm_size);
8572 
8573 	perf_event__output_id_sample(event, &handle, &sample);
8574 
8575 	perf_output_end(&handle);
8576 out:
8577 	comm_event->event_id.header.size = size;
8578 }
8579 
perf_event_comm_event(struct perf_comm_event * comm_event)8580 static void perf_event_comm_event(struct perf_comm_event *comm_event)
8581 {
8582 	char comm[TASK_COMM_LEN];
8583 	unsigned int size;
8584 
8585 	memset(comm, 0, sizeof(comm));
8586 	strscpy(comm, comm_event->task->comm, sizeof(comm));
8587 	size = ALIGN(strlen(comm)+1, sizeof(u64));
8588 
8589 	comm_event->comm = comm;
8590 	comm_event->comm_size = size;
8591 
8592 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8593 
8594 	perf_iterate_sb(perf_event_comm_output,
8595 		       comm_event,
8596 		       NULL);
8597 }
8598 
perf_event_comm(struct task_struct * task,bool exec)8599 void perf_event_comm(struct task_struct *task, bool exec)
8600 {
8601 	struct perf_comm_event comm_event;
8602 
8603 	if (!atomic_read(&nr_comm_events))
8604 		return;
8605 
8606 	comm_event = (struct perf_comm_event){
8607 		.task	= task,
8608 		/* .comm      */
8609 		/* .comm_size */
8610 		.event_id  = {
8611 			.header = {
8612 				.type = PERF_RECORD_COMM,
8613 				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
8614 				/* .size */
8615 			},
8616 			/* .pid */
8617 			/* .tid */
8618 		},
8619 	};
8620 
8621 	perf_event_comm_event(&comm_event);
8622 }
8623 
8624 /*
8625  * namespaces tracking
8626  */
8627 
8628 struct perf_namespaces_event {
8629 	struct task_struct		*task;
8630 
8631 	struct {
8632 		struct perf_event_header	header;
8633 
8634 		u32				pid;
8635 		u32				tid;
8636 		u64				nr_namespaces;
8637 		struct perf_ns_link_info	link_info[NR_NAMESPACES];
8638 	} event_id;
8639 };
8640 
perf_event_namespaces_match(struct perf_event * event)8641 static int perf_event_namespaces_match(struct perf_event *event)
8642 {
8643 	return event->attr.namespaces;
8644 }
8645 
perf_event_namespaces_output(struct perf_event * event,void * data)8646 static void perf_event_namespaces_output(struct perf_event *event,
8647 					 void *data)
8648 {
8649 	struct perf_namespaces_event *namespaces_event = data;
8650 	struct perf_output_handle handle;
8651 	struct perf_sample_data sample;
8652 	u16 header_size = namespaces_event->event_id.header.size;
8653 	int ret;
8654 
8655 	if (!perf_event_namespaces_match(event))
8656 		return;
8657 
8658 	perf_event_header__init_id(&namespaces_event->event_id.header,
8659 				   &sample, event);
8660 	ret = perf_output_begin(&handle, &sample, event,
8661 				namespaces_event->event_id.header.size);
8662 	if (ret)
8663 		goto out;
8664 
8665 	namespaces_event->event_id.pid = perf_event_pid(event,
8666 							namespaces_event->task);
8667 	namespaces_event->event_id.tid = perf_event_tid(event,
8668 							namespaces_event->task);
8669 
8670 	perf_output_put(&handle, namespaces_event->event_id);
8671 
8672 	perf_event__output_id_sample(event, &handle, &sample);
8673 
8674 	perf_output_end(&handle);
8675 out:
8676 	namespaces_event->event_id.header.size = header_size;
8677 }
8678 
perf_fill_ns_link_info(struct perf_ns_link_info * ns_link_info,struct task_struct * task,const struct proc_ns_operations * ns_ops)8679 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
8680 				   struct task_struct *task,
8681 				   const struct proc_ns_operations *ns_ops)
8682 {
8683 	struct path ns_path;
8684 	struct inode *ns_inode;
8685 	int error;
8686 
8687 	error = ns_get_path(&ns_path, task, ns_ops);
8688 	if (!error) {
8689 		ns_inode = ns_path.dentry->d_inode;
8690 		ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
8691 		ns_link_info->ino = ns_inode->i_ino;
8692 		path_put(&ns_path);
8693 	}
8694 }
8695 
perf_event_namespaces(struct task_struct * task)8696 void perf_event_namespaces(struct task_struct *task)
8697 {
8698 	struct perf_namespaces_event namespaces_event;
8699 	struct perf_ns_link_info *ns_link_info;
8700 
8701 	if (!atomic_read(&nr_namespaces_events))
8702 		return;
8703 
8704 	namespaces_event = (struct perf_namespaces_event){
8705 		.task	= task,
8706 		.event_id  = {
8707 			.header = {
8708 				.type = PERF_RECORD_NAMESPACES,
8709 				.misc = 0,
8710 				.size = sizeof(namespaces_event.event_id),
8711 			},
8712 			/* .pid */
8713 			/* .tid */
8714 			.nr_namespaces = NR_NAMESPACES,
8715 			/* .link_info[NR_NAMESPACES] */
8716 		},
8717 	};
8718 
8719 	ns_link_info = namespaces_event.event_id.link_info;
8720 
8721 	perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
8722 			       task, &mntns_operations);
8723 
8724 #ifdef CONFIG_USER_NS
8725 	perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
8726 			       task, &userns_operations);
8727 #endif
8728 #ifdef CONFIG_NET_NS
8729 	perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
8730 			       task, &netns_operations);
8731 #endif
8732 #ifdef CONFIG_UTS_NS
8733 	perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
8734 			       task, &utsns_operations);
8735 #endif
8736 #ifdef CONFIG_IPC_NS
8737 	perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
8738 			       task, &ipcns_operations);
8739 #endif
8740 #ifdef CONFIG_PID_NS
8741 	perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
8742 			       task, &pidns_operations);
8743 #endif
8744 #ifdef CONFIG_CGROUPS
8745 	perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
8746 			       task, &cgroupns_operations);
8747 #endif
8748 
8749 	perf_iterate_sb(perf_event_namespaces_output,
8750 			&namespaces_event,
8751 			NULL);
8752 }
8753 
8754 /*
8755  * cgroup tracking
8756  */
8757 #ifdef CONFIG_CGROUP_PERF
8758 
8759 struct perf_cgroup_event {
8760 	char				*path;
8761 	int				path_size;
8762 	struct {
8763 		struct perf_event_header	header;
8764 		u64				id;
8765 		char				path[];
8766 	} event_id;
8767 };
8768 
perf_event_cgroup_match(struct perf_event * event)8769 static int perf_event_cgroup_match(struct perf_event *event)
8770 {
8771 	return event->attr.cgroup;
8772 }
8773 
perf_event_cgroup_output(struct perf_event * event,void * data)8774 static void perf_event_cgroup_output(struct perf_event *event, void *data)
8775 {
8776 	struct perf_cgroup_event *cgroup_event = data;
8777 	struct perf_output_handle handle;
8778 	struct perf_sample_data sample;
8779 	u16 header_size = cgroup_event->event_id.header.size;
8780 	int ret;
8781 
8782 	if (!perf_event_cgroup_match(event))
8783 		return;
8784 
8785 	perf_event_header__init_id(&cgroup_event->event_id.header,
8786 				   &sample, event);
8787 	ret = perf_output_begin(&handle, &sample, event,
8788 				cgroup_event->event_id.header.size);
8789 	if (ret)
8790 		goto out;
8791 
8792 	perf_output_put(&handle, cgroup_event->event_id);
8793 	__output_copy(&handle, cgroup_event->path, cgroup_event->path_size);
8794 
8795 	perf_event__output_id_sample(event, &handle, &sample);
8796 
8797 	perf_output_end(&handle);
8798 out:
8799 	cgroup_event->event_id.header.size = header_size;
8800 }
8801 
perf_event_cgroup(struct cgroup * cgrp)8802 static void perf_event_cgroup(struct cgroup *cgrp)
8803 {
8804 	struct perf_cgroup_event cgroup_event;
8805 	char path_enomem[16] = "//enomem";
8806 	char *pathname;
8807 	size_t size;
8808 
8809 	if (!atomic_read(&nr_cgroup_events))
8810 		return;
8811 
8812 	cgroup_event = (struct perf_cgroup_event){
8813 		.event_id  = {
8814 			.header = {
8815 				.type = PERF_RECORD_CGROUP,
8816 				.misc = 0,
8817 				.size = sizeof(cgroup_event.event_id),
8818 			},
8819 			.id = cgroup_id(cgrp),
8820 		},
8821 	};
8822 
8823 	pathname = kmalloc(PATH_MAX, GFP_KERNEL);
8824 	if (pathname == NULL) {
8825 		cgroup_event.path = path_enomem;
8826 	} else {
8827 		/* just to be sure to have enough space for alignment */
8828 		cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64));
8829 		cgroup_event.path = pathname;
8830 	}
8831 
8832 	/*
8833 	 * Since our buffer works in 8 byte units we need to align our string
8834 	 * size to a multiple of 8. However, we must guarantee the tail end is
8835 	 * zero'd out to avoid leaking random bits to userspace.
8836 	 */
8837 	size = strlen(cgroup_event.path) + 1;
8838 	while (!IS_ALIGNED(size, sizeof(u64)))
8839 		cgroup_event.path[size++] = '\0';
8840 
8841 	cgroup_event.event_id.header.size += size;
8842 	cgroup_event.path_size = size;
8843 
8844 	perf_iterate_sb(perf_event_cgroup_output,
8845 			&cgroup_event,
8846 			NULL);
8847 
8848 	kfree(pathname);
8849 }
8850 
8851 #endif
8852 
8853 /*
8854  * mmap tracking
8855  */
8856 
8857 struct perf_mmap_event {
8858 	struct vm_area_struct	*vma;
8859 
8860 	const char		*file_name;
8861 	int			file_size;
8862 	int			maj, min;
8863 	u64			ino;
8864 	u64			ino_generation;
8865 	u32			prot, flags;
8866 	u8			build_id[BUILD_ID_SIZE_MAX];
8867 	u32			build_id_size;
8868 
8869 	struct {
8870 		struct perf_event_header	header;
8871 
8872 		u32				pid;
8873 		u32				tid;
8874 		u64				start;
8875 		u64				len;
8876 		u64				pgoff;
8877 	} event_id;
8878 };
8879 
perf_event_mmap_match(struct perf_event * event,void * data)8880 static int perf_event_mmap_match(struct perf_event *event,
8881 				 void *data)
8882 {
8883 	struct perf_mmap_event *mmap_event = data;
8884 	struct vm_area_struct *vma = mmap_event->vma;
8885 	int executable = vma->vm_flags & VM_EXEC;
8886 
8887 	return (!executable && event->attr.mmap_data) ||
8888 	       (executable && (event->attr.mmap || event->attr.mmap2));
8889 }
8890 
perf_event_mmap_output(struct perf_event * event,void * data)8891 static void perf_event_mmap_output(struct perf_event *event,
8892 				   void *data)
8893 {
8894 	struct perf_mmap_event *mmap_event = data;
8895 	struct perf_output_handle handle;
8896 	struct perf_sample_data sample;
8897 	int size = mmap_event->event_id.header.size;
8898 	u32 type = mmap_event->event_id.header.type;
8899 	bool use_build_id;
8900 	int ret;
8901 
8902 	if (!perf_event_mmap_match(event, data))
8903 		return;
8904 
8905 	if (event->attr.mmap2) {
8906 		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
8907 		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
8908 		mmap_event->event_id.header.size += sizeof(mmap_event->min);
8909 		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
8910 		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
8911 		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
8912 		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
8913 	}
8914 
8915 	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
8916 	ret = perf_output_begin(&handle, &sample, event,
8917 				mmap_event->event_id.header.size);
8918 	if (ret)
8919 		goto out;
8920 
8921 	mmap_event->event_id.pid = perf_event_pid(event, current);
8922 	mmap_event->event_id.tid = perf_event_tid(event, current);
8923 
8924 	use_build_id = event->attr.build_id && mmap_event->build_id_size;
8925 
8926 	if (event->attr.mmap2 && use_build_id)
8927 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_BUILD_ID;
8928 
8929 	perf_output_put(&handle, mmap_event->event_id);
8930 
8931 	if (event->attr.mmap2) {
8932 		if (use_build_id) {
8933 			u8 size[4] = { (u8) mmap_event->build_id_size, 0, 0, 0 };
8934 
8935 			__output_copy(&handle, size, 4);
8936 			__output_copy(&handle, mmap_event->build_id, BUILD_ID_SIZE_MAX);
8937 		} else {
8938 			perf_output_put(&handle, mmap_event->maj);
8939 			perf_output_put(&handle, mmap_event->min);
8940 			perf_output_put(&handle, mmap_event->ino);
8941 			perf_output_put(&handle, mmap_event->ino_generation);
8942 		}
8943 		perf_output_put(&handle, mmap_event->prot);
8944 		perf_output_put(&handle, mmap_event->flags);
8945 	}
8946 
8947 	__output_copy(&handle, mmap_event->file_name,
8948 				   mmap_event->file_size);
8949 
8950 	perf_event__output_id_sample(event, &handle, &sample);
8951 
8952 	perf_output_end(&handle);
8953 out:
8954 	mmap_event->event_id.header.size = size;
8955 	mmap_event->event_id.header.type = type;
8956 }
8957 
perf_event_mmap_event(struct perf_mmap_event * mmap_event)8958 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
8959 {
8960 	struct vm_area_struct *vma = mmap_event->vma;
8961 	struct file *file = vma->vm_file;
8962 	int maj = 0, min = 0;
8963 	u64 ino = 0, gen = 0;
8964 	u32 prot = 0, flags = 0;
8965 	unsigned int size;
8966 	char tmp[16];
8967 	char *buf = NULL;
8968 	char *name = NULL;
8969 
8970 	if (vma->vm_flags & VM_READ)
8971 		prot |= PROT_READ;
8972 	if (vma->vm_flags & VM_WRITE)
8973 		prot |= PROT_WRITE;
8974 	if (vma->vm_flags & VM_EXEC)
8975 		prot |= PROT_EXEC;
8976 
8977 	if (vma->vm_flags & VM_MAYSHARE)
8978 		flags = MAP_SHARED;
8979 	else
8980 		flags = MAP_PRIVATE;
8981 
8982 	if (vma->vm_flags & VM_LOCKED)
8983 		flags |= MAP_LOCKED;
8984 	if (is_vm_hugetlb_page(vma))
8985 		flags |= MAP_HUGETLB;
8986 
8987 	if (file) {
8988 		struct inode *inode;
8989 		dev_t dev;
8990 
8991 		buf = kmalloc(PATH_MAX, GFP_KERNEL);
8992 		if (!buf) {
8993 			name = "//enomem";
8994 			goto cpy_name;
8995 		}
8996 		/*
8997 		 * d_path() works from the end of the rb backwards, so we
8998 		 * need to add enough zero bytes after the string to handle
8999 		 * the 64bit alignment we do later.
9000 		 */
9001 		name = file_path(file, buf, PATH_MAX - sizeof(u64));
9002 		if (IS_ERR(name)) {
9003 			name = "//toolong";
9004 			goto cpy_name;
9005 		}
9006 		inode = file_inode(vma->vm_file);
9007 		dev = inode->i_sb->s_dev;
9008 		ino = inode->i_ino;
9009 		gen = inode->i_generation;
9010 		maj = MAJOR(dev);
9011 		min = MINOR(dev);
9012 
9013 		goto got_name;
9014 	} else {
9015 		if (vma->vm_ops && vma->vm_ops->name)
9016 			name = (char *) vma->vm_ops->name(vma);
9017 		if (!name)
9018 			name = (char *)arch_vma_name(vma);
9019 		if (!name) {
9020 			if (vma_is_initial_heap(vma))
9021 				name = "[heap]";
9022 			else if (vma_is_initial_stack(vma))
9023 				name = "[stack]";
9024 			else
9025 				name = "//anon";
9026 		}
9027 	}
9028 
9029 cpy_name:
9030 	strscpy(tmp, name, sizeof(tmp));
9031 	name = tmp;
9032 got_name:
9033 	/*
9034 	 * Since our buffer works in 8 byte units we need to align our string
9035 	 * size to a multiple of 8. However, we must guarantee the tail end is
9036 	 * zero'd out to avoid leaking random bits to userspace.
9037 	 */
9038 	size = strlen(name)+1;
9039 	while (!IS_ALIGNED(size, sizeof(u64)))
9040 		name[size++] = '\0';
9041 
9042 	mmap_event->file_name = name;
9043 	mmap_event->file_size = size;
9044 	mmap_event->maj = maj;
9045 	mmap_event->min = min;
9046 	mmap_event->ino = ino;
9047 	mmap_event->ino_generation = gen;
9048 	mmap_event->prot = prot;
9049 	mmap_event->flags = flags;
9050 
9051 	if (!(vma->vm_flags & VM_EXEC))
9052 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
9053 
9054 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
9055 
9056 	if (atomic_read(&nr_build_id_events))
9057 		build_id_parse_nofault(vma, mmap_event->build_id, &mmap_event->build_id_size);
9058 
9059 	perf_iterate_sb(perf_event_mmap_output,
9060 		       mmap_event,
9061 		       NULL);
9062 
9063 	kfree(buf);
9064 }
9065 
9066 /*
9067  * Check whether inode and address range match filter criteria.
9068  */
perf_addr_filter_match(struct perf_addr_filter * filter,struct file * file,unsigned long offset,unsigned long size)9069 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
9070 				     struct file *file, unsigned long offset,
9071 				     unsigned long size)
9072 {
9073 	/* d_inode(NULL) won't be equal to any mapped user-space file */
9074 	if (!filter->path.dentry)
9075 		return false;
9076 
9077 	if (d_inode(filter->path.dentry) != file_inode(file))
9078 		return false;
9079 
9080 	if (filter->offset > offset + size)
9081 		return false;
9082 
9083 	if (filter->offset + filter->size < offset)
9084 		return false;
9085 
9086 	return true;
9087 }
9088 
perf_addr_filter_vma_adjust(struct perf_addr_filter * filter,struct vm_area_struct * vma,struct perf_addr_filter_range * fr)9089 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
9090 					struct vm_area_struct *vma,
9091 					struct perf_addr_filter_range *fr)
9092 {
9093 	unsigned long vma_size = vma->vm_end - vma->vm_start;
9094 	unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
9095 	struct file *file = vma->vm_file;
9096 
9097 	if (!perf_addr_filter_match(filter, file, off, vma_size))
9098 		return false;
9099 
9100 	if (filter->offset < off) {
9101 		fr->start = vma->vm_start;
9102 		fr->size = min(vma_size, filter->size - (off - filter->offset));
9103 	} else {
9104 		fr->start = vma->vm_start + filter->offset - off;
9105 		fr->size = min(vma->vm_end - fr->start, filter->size);
9106 	}
9107 
9108 	return true;
9109 }
9110 
__perf_addr_filters_adjust(struct perf_event * event,void * data)9111 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
9112 {
9113 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
9114 	struct vm_area_struct *vma = data;
9115 	struct perf_addr_filter *filter;
9116 	unsigned int restart = 0, count = 0;
9117 	unsigned long flags;
9118 
9119 	if (!has_addr_filter(event))
9120 		return;
9121 
9122 	if (!vma->vm_file)
9123 		return;
9124 
9125 	raw_spin_lock_irqsave(&ifh->lock, flags);
9126 	list_for_each_entry(filter, &ifh->list, entry) {
9127 		if (perf_addr_filter_vma_adjust(filter, vma,
9128 						&event->addr_filter_ranges[count]))
9129 			restart++;
9130 
9131 		count++;
9132 	}
9133 
9134 	if (restart)
9135 		event->addr_filters_gen++;
9136 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
9137 
9138 	if (restart)
9139 		perf_event_stop(event, 1);
9140 }
9141 
9142 /*
9143  * Adjust all task's events' filters to the new vma
9144  */
perf_addr_filters_adjust(struct vm_area_struct * vma)9145 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
9146 {
9147 	struct perf_event_context *ctx;
9148 
9149 	/*
9150 	 * Data tracing isn't supported yet and as such there is no need
9151 	 * to keep track of anything that isn't related to executable code:
9152 	 */
9153 	if (!(vma->vm_flags & VM_EXEC))
9154 		return;
9155 
9156 	rcu_read_lock();
9157 	ctx = rcu_dereference(current->perf_event_ctxp);
9158 	if (ctx)
9159 		perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
9160 	rcu_read_unlock();
9161 }
9162 
perf_event_mmap(struct vm_area_struct * vma)9163 void perf_event_mmap(struct vm_area_struct *vma)
9164 {
9165 	struct perf_mmap_event mmap_event;
9166 
9167 	if (!atomic_read(&nr_mmap_events))
9168 		return;
9169 
9170 	mmap_event = (struct perf_mmap_event){
9171 		.vma	= vma,
9172 		/* .file_name */
9173 		/* .file_size */
9174 		.event_id  = {
9175 			.header = {
9176 				.type = PERF_RECORD_MMAP,
9177 				.misc = PERF_RECORD_MISC_USER,
9178 				/* .size */
9179 			},
9180 			/* .pid */
9181 			/* .tid */
9182 			.start  = vma->vm_start,
9183 			.len    = vma->vm_end - vma->vm_start,
9184 			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
9185 		},
9186 		/* .maj (attr_mmap2 only) */
9187 		/* .min (attr_mmap2 only) */
9188 		/* .ino (attr_mmap2 only) */
9189 		/* .ino_generation (attr_mmap2 only) */
9190 		/* .prot (attr_mmap2 only) */
9191 		/* .flags (attr_mmap2 only) */
9192 	};
9193 
9194 	perf_addr_filters_adjust(vma);
9195 	perf_event_mmap_event(&mmap_event);
9196 }
9197 
perf_event_aux_event(struct perf_event * event,unsigned long head,unsigned long size,u64 flags)9198 void perf_event_aux_event(struct perf_event *event, unsigned long head,
9199 			  unsigned long size, u64 flags)
9200 {
9201 	struct perf_output_handle handle;
9202 	struct perf_sample_data sample;
9203 	struct perf_aux_event {
9204 		struct perf_event_header	header;
9205 		u64				offset;
9206 		u64				size;
9207 		u64				flags;
9208 	} rec = {
9209 		.header = {
9210 			.type = PERF_RECORD_AUX,
9211 			.misc = 0,
9212 			.size = sizeof(rec),
9213 		},
9214 		.offset		= head,
9215 		.size		= size,
9216 		.flags		= flags,
9217 	};
9218 	int ret;
9219 
9220 	perf_event_header__init_id(&rec.header, &sample, event);
9221 	ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9222 
9223 	if (ret)
9224 		return;
9225 
9226 	perf_output_put(&handle, rec);
9227 	perf_event__output_id_sample(event, &handle, &sample);
9228 
9229 	perf_output_end(&handle);
9230 }
9231 
9232 /*
9233  * Lost/dropped samples logging
9234  */
perf_log_lost_samples(struct perf_event * event,u64 lost)9235 void perf_log_lost_samples(struct perf_event *event, u64 lost)
9236 {
9237 	struct perf_output_handle handle;
9238 	struct perf_sample_data sample;
9239 	int ret;
9240 
9241 	struct {
9242 		struct perf_event_header	header;
9243 		u64				lost;
9244 	} lost_samples_event = {
9245 		.header = {
9246 			.type = PERF_RECORD_LOST_SAMPLES,
9247 			.misc = 0,
9248 			.size = sizeof(lost_samples_event),
9249 		},
9250 		.lost		= lost,
9251 	};
9252 
9253 	perf_event_header__init_id(&lost_samples_event.header, &sample, event);
9254 
9255 	ret = perf_output_begin(&handle, &sample, event,
9256 				lost_samples_event.header.size);
9257 	if (ret)
9258 		return;
9259 
9260 	perf_output_put(&handle, lost_samples_event);
9261 	perf_event__output_id_sample(event, &handle, &sample);
9262 	perf_output_end(&handle);
9263 }
9264 
9265 /*
9266  * context_switch tracking
9267  */
9268 
9269 struct perf_switch_event {
9270 	struct task_struct	*task;
9271 	struct task_struct	*next_prev;
9272 
9273 	struct {
9274 		struct perf_event_header	header;
9275 		u32				next_prev_pid;
9276 		u32				next_prev_tid;
9277 	} event_id;
9278 };
9279 
perf_event_switch_match(struct perf_event * event)9280 static int perf_event_switch_match(struct perf_event *event)
9281 {
9282 	return event->attr.context_switch;
9283 }
9284 
perf_event_switch_output(struct perf_event * event,void * data)9285 static void perf_event_switch_output(struct perf_event *event, void *data)
9286 {
9287 	struct perf_switch_event *se = data;
9288 	struct perf_output_handle handle;
9289 	struct perf_sample_data sample;
9290 	int ret;
9291 
9292 	if (!perf_event_switch_match(event))
9293 		return;
9294 
9295 	/* Only CPU-wide events are allowed to see next/prev pid/tid */
9296 	if (event->ctx->task) {
9297 		se->event_id.header.type = PERF_RECORD_SWITCH;
9298 		se->event_id.header.size = sizeof(se->event_id.header);
9299 	} else {
9300 		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
9301 		se->event_id.header.size = sizeof(se->event_id);
9302 		se->event_id.next_prev_pid =
9303 					perf_event_pid(event, se->next_prev);
9304 		se->event_id.next_prev_tid =
9305 					perf_event_tid(event, se->next_prev);
9306 	}
9307 
9308 	perf_event_header__init_id(&se->event_id.header, &sample, event);
9309 
9310 	ret = perf_output_begin(&handle, &sample, event, se->event_id.header.size);
9311 	if (ret)
9312 		return;
9313 
9314 	if (event->ctx->task)
9315 		perf_output_put(&handle, se->event_id.header);
9316 	else
9317 		perf_output_put(&handle, se->event_id);
9318 
9319 	perf_event__output_id_sample(event, &handle, &sample);
9320 
9321 	perf_output_end(&handle);
9322 }
9323 
perf_event_switch(struct task_struct * task,struct task_struct * next_prev,bool sched_in)9324 static void perf_event_switch(struct task_struct *task,
9325 			      struct task_struct *next_prev, bool sched_in)
9326 {
9327 	struct perf_switch_event switch_event;
9328 
9329 	/* N.B. caller checks nr_switch_events != 0 */
9330 
9331 	switch_event = (struct perf_switch_event){
9332 		.task		= task,
9333 		.next_prev	= next_prev,
9334 		.event_id	= {
9335 			.header = {
9336 				/* .type */
9337 				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
9338 				/* .size */
9339 			},
9340 			/* .next_prev_pid */
9341 			/* .next_prev_tid */
9342 		},
9343 	};
9344 
9345 	if (!sched_in && task_is_runnable(task)) {
9346 		switch_event.event_id.header.misc |=
9347 				PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
9348 	}
9349 
9350 	perf_iterate_sb(perf_event_switch_output, &switch_event, NULL);
9351 }
9352 
9353 /*
9354  * IRQ throttle logging
9355  */
9356 
perf_log_throttle(struct perf_event * event,int enable)9357 static void perf_log_throttle(struct perf_event *event, int enable)
9358 {
9359 	struct perf_output_handle handle;
9360 	struct perf_sample_data sample;
9361 	int ret;
9362 
9363 	struct {
9364 		struct perf_event_header	header;
9365 		u64				time;
9366 		u64				id;
9367 		u64				stream_id;
9368 	} throttle_event = {
9369 		.header = {
9370 			.type = PERF_RECORD_THROTTLE,
9371 			.misc = 0,
9372 			.size = sizeof(throttle_event),
9373 		},
9374 		.time		= perf_event_clock(event),
9375 		.id		= primary_event_id(event),
9376 		.stream_id	= event->id,
9377 	};
9378 
9379 	if (enable)
9380 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
9381 
9382 	perf_event_header__init_id(&throttle_event.header, &sample, event);
9383 
9384 	ret = perf_output_begin(&handle, &sample, event,
9385 				throttle_event.header.size);
9386 	if (ret)
9387 		return;
9388 
9389 	perf_output_put(&handle, throttle_event);
9390 	perf_event__output_id_sample(event, &handle, &sample);
9391 	perf_output_end(&handle);
9392 }
9393 
9394 /*
9395  * ksymbol register/unregister tracking
9396  */
9397 
9398 struct perf_ksymbol_event {
9399 	const char	*name;
9400 	int		name_len;
9401 	struct {
9402 		struct perf_event_header        header;
9403 		u64				addr;
9404 		u32				len;
9405 		u16				ksym_type;
9406 		u16				flags;
9407 	} event_id;
9408 };
9409 
perf_event_ksymbol_match(struct perf_event * event)9410 static int perf_event_ksymbol_match(struct perf_event *event)
9411 {
9412 	return event->attr.ksymbol;
9413 }
9414 
perf_event_ksymbol_output(struct perf_event * event,void * data)9415 static void perf_event_ksymbol_output(struct perf_event *event, void *data)
9416 {
9417 	struct perf_ksymbol_event *ksymbol_event = data;
9418 	struct perf_output_handle handle;
9419 	struct perf_sample_data sample;
9420 	int ret;
9421 
9422 	if (!perf_event_ksymbol_match(event))
9423 		return;
9424 
9425 	perf_event_header__init_id(&ksymbol_event->event_id.header,
9426 				   &sample, event);
9427 	ret = perf_output_begin(&handle, &sample, event,
9428 				ksymbol_event->event_id.header.size);
9429 	if (ret)
9430 		return;
9431 
9432 	perf_output_put(&handle, ksymbol_event->event_id);
9433 	__output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
9434 	perf_event__output_id_sample(event, &handle, &sample);
9435 
9436 	perf_output_end(&handle);
9437 }
9438 
perf_event_ksymbol(u16 ksym_type,u64 addr,u32 len,bool unregister,const char * sym)9439 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
9440 			const char *sym)
9441 {
9442 	struct perf_ksymbol_event ksymbol_event;
9443 	char name[KSYM_NAME_LEN];
9444 	u16 flags = 0;
9445 	int name_len;
9446 
9447 	if (!atomic_read(&nr_ksymbol_events))
9448 		return;
9449 
9450 	if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
9451 	    ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
9452 		goto err;
9453 
9454 	strscpy(name, sym, KSYM_NAME_LEN);
9455 	name_len = strlen(name) + 1;
9456 	while (!IS_ALIGNED(name_len, sizeof(u64)))
9457 		name[name_len++] = '\0';
9458 	BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
9459 
9460 	if (unregister)
9461 		flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
9462 
9463 	ksymbol_event = (struct perf_ksymbol_event){
9464 		.name = name,
9465 		.name_len = name_len,
9466 		.event_id = {
9467 			.header = {
9468 				.type = PERF_RECORD_KSYMBOL,
9469 				.size = sizeof(ksymbol_event.event_id) +
9470 					name_len,
9471 			},
9472 			.addr = addr,
9473 			.len = len,
9474 			.ksym_type = ksym_type,
9475 			.flags = flags,
9476 		},
9477 	};
9478 
9479 	perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
9480 	return;
9481 err:
9482 	WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
9483 }
9484 
9485 /*
9486  * bpf program load/unload tracking
9487  */
9488 
9489 struct perf_bpf_event {
9490 	struct bpf_prog	*prog;
9491 	struct {
9492 		struct perf_event_header        header;
9493 		u16				type;
9494 		u16				flags;
9495 		u32				id;
9496 		u8				tag[BPF_TAG_SIZE];
9497 	} event_id;
9498 };
9499 
perf_event_bpf_match(struct perf_event * event)9500 static int perf_event_bpf_match(struct perf_event *event)
9501 {
9502 	return event->attr.bpf_event;
9503 }
9504 
perf_event_bpf_output(struct perf_event * event,void * data)9505 static void perf_event_bpf_output(struct perf_event *event, void *data)
9506 {
9507 	struct perf_bpf_event *bpf_event = data;
9508 	struct perf_output_handle handle;
9509 	struct perf_sample_data sample;
9510 	int ret;
9511 
9512 	if (!perf_event_bpf_match(event))
9513 		return;
9514 
9515 	perf_event_header__init_id(&bpf_event->event_id.header,
9516 				   &sample, event);
9517 	ret = perf_output_begin(&handle, &sample, event,
9518 				bpf_event->event_id.header.size);
9519 	if (ret)
9520 		return;
9521 
9522 	perf_output_put(&handle, bpf_event->event_id);
9523 	perf_event__output_id_sample(event, &handle, &sample);
9524 
9525 	perf_output_end(&handle);
9526 }
9527 
perf_event_bpf_emit_ksymbols(struct bpf_prog * prog,enum perf_bpf_event_type type)9528 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
9529 					 enum perf_bpf_event_type type)
9530 {
9531 	bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
9532 	int i;
9533 
9534 	perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
9535 			   (u64)(unsigned long)prog->bpf_func,
9536 			   prog->jited_len, unregister,
9537 			   prog->aux->ksym.name);
9538 
9539 	for (i = 1; i < prog->aux->func_cnt; i++) {
9540 		struct bpf_prog *subprog = prog->aux->func[i];
9541 
9542 		perf_event_ksymbol(
9543 			PERF_RECORD_KSYMBOL_TYPE_BPF,
9544 			(u64)(unsigned long)subprog->bpf_func,
9545 			subprog->jited_len, unregister,
9546 			subprog->aux->ksym.name);
9547 	}
9548 }
9549 
perf_event_bpf_event(struct bpf_prog * prog,enum perf_bpf_event_type type,u16 flags)9550 void perf_event_bpf_event(struct bpf_prog *prog,
9551 			  enum perf_bpf_event_type type,
9552 			  u16 flags)
9553 {
9554 	struct perf_bpf_event bpf_event;
9555 
9556 	switch (type) {
9557 	case PERF_BPF_EVENT_PROG_LOAD:
9558 	case PERF_BPF_EVENT_PROG_UNLOAD:
9559 		if (atomic_read(&nr_ksymbol_events))
9560 			perf_event_bpf_emit_ksymbols(prog, type);
9561 		break;
9562 	default:
9563 		return;
9564 	}
9565 
9566 	if (!atomic_read(&nr_bpf_events))
9567 		return;
9568 
9569 	bpf_event = (struct perf_bpf_event){
9570 		.prog = prog,
9571 		.event_id = {
9572 			.header = {
9573 				.type = PERF_RECORD_BPF_EVENT,
9574 				.size = sizeof(bpf_event.event_id),
9575 			},
9576 			.type = type,
9577 			.flags = flags,
9578 			.id = prog->aux->id,
9579 		},
9580 	};
9581 
9582 	BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
9583 
9584 	memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
9585 	perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
9586 }
9587 
9588 struct perf_text_poke_event {
9589 	const void		*old_bytes;
9590 	const void		*new_bytes;
9591 	size_t			pad;
9592 	u16			old_len;
9593 	u16			new_len;
9594 
9595 	struct {
9596 		struct perf_event_header	header;
9597 
9598 		u64				addr;
9599 	} event_id;
9600 };
9601 
perf_event_text_poke_match(struct perf_event * event)9602 static int perf_event_text_poke_match(struct perf_event *event)
9603 {
9604 	return event->attr.text_poke;
9605 }
9606 
perf_event_text_poke_output(struct perf_event * event,void * data)9607 static void perf_event_text_poke_output(struct perf_event *event, void *data)
9608 {
9609 	struct perf_text_poke_event *text_poke_event = data;
9610 	struct perf_output_handle handle;
9611 	struct perf_sample_data sample;
9612 	u64 padding = 0;
9613 	int ret;
9614 
9615 	if (!perf_event_text_poke_match(event))
9616 		return;
9617 
9618 	perf_event_header__init_id(&text_poke_event->event_id.header, &sample, event);
9619 
9620 	ret = perf_output_begin(&handle, &sample, event,
9621 				text_poke_event->event_id.header.size);
9622 	if (ret)
9623 		return;
9624 
9625 	perf_output_put(&handle, text_poke_event->event_id);
9626 	perf_output_put(&handle, text_poke_event->old_len);
9627 	perf_output_put(&handle, text_poke_event->new_len);
9628 
9629 	__output_copy(&handle, text_poke_event->old_bytes, text_poke_event->old_len);
9630 	__output_copy(&handle, text_poke_event->new_bytes, text_poke_event->new_len);
9631 
9632 	if (text_poke_event->pad)
9633 		__output_copy(&handle, &padding, text_poke_event->pad);
9634 
9635 	perf_event__output_id_sample(event, &handle, &sample);
9636 
9637 	perf_output_end(&handle);
9638 }
9639 
perf_event_text_poke(const void * addr,const void * old_bytes,size_t old_len,const void * new_bytes,size_t new_len)9640 void perf_event_text_poke(const void *addr, const void *old_bytes,
9641 			  size_t old_len, const void *new_bytes, size_t new_len)
9642 {
9643 	struct perf_text_poke_event text_poke_event;
9644 	size_t tot, pad;
9645 
9646 	if (!atomic_read(&nr_text_poke_events))
9647 		return;
9648 
9649 	tot  = sizeof(text_poke_event.old_len) + old_len;
9650 	tot += sizeof(text_poke_event.new_len) + new_len;
9651 	pad  = ALIGN(tot, sizeof(u64)) - tot;
9652 
9653 	text_poke_event = (struct perf_text_poke_event){
9654 		.old_bytes    = old_bytes,
9655 		.new_bytes    = new_bytes,
9656 		.pad          = pad,
9657 		.old_len      = old_len,
9658 		.new_len      = new_len,
9659 		.event_id  = {
9660 			.header = {
9661 				.type = PERF_RECORD_TEXT_POKE,
9662 				.misc = PERF_RECORD_MISC_KERNEL,
9663 				.size = sizeof(text_poke_event.event_id) + tot + pad,
9664 			},
9665 			.addr = (unsigned long)addr,
9666 		},
9667 	};
9668 
9669 	perf_iterate_sb(perf_event_text_poke_output, &text_poke_event, NULL);
9670 }
9671 
perf_event_itrace_started(struct perf_event * event)9672 void perf_event_itrace_started(struct perf_event *event)
9673 {
9674 	event->attach_state |= PERF_ATTACH_ITRACE;
9675 }
9676 
perf_log_itrace_start(struct perf_event * event)9677 static void perf_log_itrace_start(struct perf_event *event)
9678 {
9679 	struct perf_output_handle handle;
9680 	struct perf_sample_data sample;
9681 	struct perf_aux_event {
9682 		struct perf_event_header        header;
9683 		u32				pid;
9684 		u32				tid;
9685 	} rec;
9686 	int ret;
9687 
9688 	if (event->parent)
9689 		event = event->parent;
9690 
9691 	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
9692 	    event->attach_state & PERF_ATTACH_ITRACE)
9693 		return;
9694 
9695 	rec.header.type	= PERF_RECORD_ITRACE_START;
9696 	rec.header.misc	= 0;
9697 	rec.header.size	= sizeof(rec);
9698 	rec.pid	= perf_event_pid(event, current);
9699 	rec.tid	= perf_event_tid(event, current);
9700 
9701 	perf_event_header__init_id(&rec.header, &sample, event);
9702 	ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9703 
9704 	if (ret)
9705 		return;
9706 
9707 	perf_output_put(&handle, rec);
9708 	perf_event__output_id_sample(event, &handle, &sample);
9709 
9710 	perf_output_end(&handle);
9711 }
9712 
perf_report_aux_output_id(struct perf_event * event,u64 hw_id)9713 void perf_report_aux_output_id(struct perf_event *event, u64 hw_id)
9714 {
9715 	struct perf_output_handle handle;
9716 	struct perf_sample_data sample;
9717 	struct perf_aux_event {
9718 		struct perf_event_header        header;
9719 		u64				hw_id;
9720 	} rec;
9721 	int ret;
9722 
9723 	if (event->parent)
9724 		event = event->parent;
9725 
9726 	rec.header.type	= PERF_RECORD_AUX_OUTPUT_HW_ID;
9727 	rec.header.misc	= 0;
9728 	rec.header.size	= sizeof(rec);
9729 	rec.hw_id	= hw_id;
9730 
9731 	perf_event_header__init_id(&rec.header, &sample, event);
9732 	ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9733 
9734 	if (ret)
9735 		return;
9736 
9737 	perf_output_put(&handle, rec);
9738 	perf_event__output_id_sample(event, &handle, &sample);
9739 
9740 	perf_output_end(&handle);
9741 }
9742 EXPORT_SYMBOL_GPL(perf_report_aux_output_id);
9743 
9744 static int
__perf_event_account_interrupt(struct perf_event * event,int throttle)9745 __perf_event_account_interrupt(struct perf_event *event, int throttle)
9746 {
9747 	struct hw_perf_event *hwc = &event->hw;
9748 	int ret = 0;
9749 	u64 seq;
9750 
9751 	seq = __this_cpu_read(perf_throttled_seq);
9752 	if (seq != hwc->interrupts_seq) {
9753 		hwc->interrupts_seq = seq;
9754 		hwc->interrupts = 1;
9755 	} else {
9756 		hwc->interrupts++;
9757 	}
9758 
9759 	if (unlikely(throttle && hwc->interrupts >= max_samples_per_tick)) {
9760 		__this_cpu_inc(perf_throttled_count);
9761 		tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
9762 		hwc->interrupts = MAX_INTERRUPTS;
9763 		perf_log_throttle(event, 0);
9764 		ret = 1;
9765 	}
9766 
9767 	if (event->attr.freq) {
9768 		u64 now = perf_clock();
9769 		s64 delta = now - hwc->freq_time_stamp;
9770 
9771 		hwc->freq_time_stamp = now;
9772 
9773 		if (delta > 0 && delta < 2*TICK_NSEC)
9774 			perf_adjust_period(event, delta, hwc->last_period, true);
9775 	}
9776 
9777 	return ret;
9778 }
9779 
perf_event_account_interrupt(struct perf_event * event)9780 int perf_event_account_interrupt(struct perf_event *event)
9781 {
9782 	return __perf_event_account_interrupt(event, 1);
9783 }
9784 
sample_is_allowed(struct perf_event * event,struct pt_regs * regs)9785 static inline bool sample_is_allowed(struct perf_event *event, struct pt_regs *regs)
9786 {
9787 	/*
9788 	 * Due to interrupt latency (AKA "skid"), we may enter the
9789 	 * kernel before taking an overflow, even if the PMU is only
9790 	 * counting user events.
9791 	 */
9792 	if (event->attr.exclude_kernel && !user_mode(regs))
9793 		return false;
9794 
9795 	return true;
9796 }
9797 
9798 #ifdef CONFIG_BPF_SYSCALL
bpf_overflow_handler(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)9799 static int bpf_overflow_handler(struct perf_event *event,
9800 				struct perf_sample_data *data,
9801 				struct pt_regs *regs)
9802 {
9803 	struct bpf_perf_event_data_kern ctx = {
9804 		.data = data,
9805 		.event = event,
9806 	};
9807 	struct bpf_prog *prog;
9808 	int ret = 0;
9809 
9810 	ctx.regs = perf_arch_bpf_user_pt_regs(regs);
9811 	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
9812 		goto out;
9813 	rcu_read_lock();
9814 	prog = READ_ONCE(event->prog);
9815 	if (prog) {
9816 		perf_prepare_sample(data, event, regs);
9817 		ret = bpf_prog_run(prog, &ctx);
9818 	}
9819 	rcu_read_unlock();
9820 out:
9821 	__this_cpu_dec(bpf_prog_active);
9822 
9823 	return ret;
9824 }
9825 
perf_event_set_bpf_handler(struct perf_event * event,struct bpf_prog * prog,u64 bpf_cookie)9826 static inline int perf_event_set_bpf_handler(struct perf_event *event,
9827 					     struct bpf_prog *prog,
9828 					     u64 bpf_cookie)
9829 {
9830 	if (event->overflow_handler_context)
9831 		/* hw breakpoint or kernel counter */
9832 		return -EINVAL;
9833 
9834 	if (event->prog)
9835 		return -EEXIST;
9836 
9837 	if (prog->type != BPF_PROG_TYPE_PERF_EVENT)
9838 		return -EINVAL;
9839 
9840 	if (event->attr.precise_ip &&
9841 	    prog->call_get_stack &&
9842 	    (!(event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) ||
9843 	     event->attr.exclude_callchain_kernel ||
9844 	     event->attr.exclude_callchain_user)) {
9845 		/*
9846 		 * On perf_event with precise_ip, calling bpf_get_stack()
9847 		 * may trigger unwinder warnings and occasional crashes.
9848 		 * bpf_get_[stack|stackid] works around this issue by using
9849 		 * callchain attached to perf_sample_data. If the
9850 		 * perf_event does not full (kernel and user) callchain
9851 		 * attached to perf_sample_data, do not allow attaching BPF
9852 		 * program that calls bpf_get_[stack|stackid].
9853 		 */
9854 		return -EPROTO;
9855 	}
9856 
9857 	event->prog = prog;
9858 	event->bpf_cookie = bpf_cookie;
9859 	return 0;
9860 }
9861 
perf_event_free_bpf_handler(struct perf_event * event)9862 static inline void perf_event_free_bpf_handler(struct perf_event *event)
9863 {
9864 	struct bpf_prog *prog = event->prog;
9865 
9866 	if (!prog)
9867 		return;
9868 
9869 	event->prog = NULL;
9870 	bpf_prog_put(prog);
9871 }
9872 #else
bpf_overflow_handler(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)9873 static inline int bpf_overflow_handler(struct perf_event *event,
9874 				       struct perf_sample_data *data,
9875 				       struct pt_regs *regs)
9876 {
9877 	return 1;
9878 }
9879 
perf_event_set_bpf_handler(struct perf_event * event,struct bpf_prog * prog,u64 bpf_cookie)9880 static inline int perf_event_set_bpf_handler(struct perf_event *event,
9881 					     struct bpf_prog *prog,
9882 					     u64 bpf_cookie)
9883 {
9884 	return -EOPNOTSUPP;
9885 }
9886 
perf_event_free_bpf_handler(struct perf_event * event)9887 static inline void perf_event_free_bpf_handler(struct perf_event *event)
9888 {
9889 }
9890 #endif
9891 
9892 /*
9893  * Generic event overflow handling, sampling.
9894  */
9895 
__perf_event_overflow(struct perf_event * event,int throttle,struct perf_sample_data * data,struct pt_regs * regs)9896 static int __perf_event_overflow(struct perf_event *event,
9897 				 int throttle, struct perf_sample_data *data,
9898 				 struct pt_regs *regs)
9899 {
9900 	int events = atomic_read(&event->event_limit);
9901 	int ret = 0;
9902 
9903 	/*
9904 	 * Non-sampling counters might still use the PMI to fold short
9905 	 * hardware counters, ignore those.
9906 	 */
9907 	if (unlikely(!is_sampling_event(event)))
9908 		return 0;
9909 
9910 	ret = __perf_event_account_interrupt(event, throttle);
9911 
9912 	if (event->attr.aux_pause)
9913 		perf_event_aux_pause(event->aux_event, true);
9914 
9915 	if (event->prog && event->prog->type == BPF_PROG_TYPE_PERF_EVENT &&
9916 	    !bpf_overflow_handler(event, data, regs))
9917 		goto out;
9918 
9919 	/*
9920 	 * XXX event_limit might not quite work as expected on inherited
9921 	 * events
9922 	 */
9923 
9924 	event->pending_kill = POLL_IN;
9925 	if (events && atomic_dec_and_test(&event->event_limit)) {
9926 		ret = 1;
9927 		event->pending_kill = POLL_HUP;
9928 		perf_event_disable_inatomic(event);
9929 	}
9930 
9931 	if (event->attr.sigtrap) {
9932 		/*
9933 		 * The desired behaviour of sigtrap vs invalid samples is a bit
9934 		 * tricky; on the one hand, one should not loose the SIGTRAP if
9935 		 * it is the first event, on the other hand, we should also not
9936 		 * trigger the WARN or override the data address.
9937 		 */
9938 		bool valid_sample = sample_is_allowed(event, regs);
9939 		unsigned int pending_id = 1;
9940 		enum task_work_notify_mode notify_mode;
9941 
9942 		if (regs)
9943 			pending_id = hash32_ptr((void *)instruction_pointer(regs)) ?: 1;
9944 
9945 		notify_mode = in_nmi() ? TWA_NMI_CURRENT : TWA_RESUME;
9946 
9947 		if (!event->pending_work &&
9948 		    !task_work_add(current, &event->pending_task, notify_mode)) {
9949 			event->pending_work = pending_id;
9950 			local_inc(&event->ctx->nr_no_switch_fast);
9951 			WARN_ON_ONCE(!atomic_long_inc_not_zero(&event->refcount));
9952 
9953 			event->pending_addr = 0;
9954 			if (valid_sample && (data->sample_flags & PERF_SAMPLE_ADDR))
9955 				event->pending_addr = data->addr;
9956 
9957 		} else if (event->attr.exclude_kernel && valid_sample) {
9958 			/*
9959 			 * Should not be able to return to user space without
9960 			 * consuming pending_work; with exceptions:
9961 			 *
9962 			 *  1. Where !exclude_kernel, events can overflow again
9963 			 *     in the kernel without returning to user space.
9964 			 *
9965 			 *  2. Events that can overflow again before the IRQ-
9966 			 *     work without user space progress (e.g. hrtimer).
9967 			 *     To approximate progress (with false negatives),
9968 			 *     check 32-bit hash of the current IP.
9969 			 */
9970 			WARN_ON_ONCE(event->pending_work != pending_id);
9971 		}
9972 	}
9973 
9974 	READ_ONCE(event->overflow_handler)(event, data, regs);
9975 
9976 	if (*perf_event_fasync(event) && event->pending_kill) {
9977 		event->pending_wakeup = 1;
9978 		irq_work_queue(&event->pending_irq);
9979 	}
9980 out:
9981 	if (event->attr.aux_resume)
9982 		perf_event_aux_pause(event->aux_event, false);
9983 
9984 	return ret;
9985 }
9986 
perf_event_overflow(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)9987 int perf_event_overflow(struct perf_event *event,
9988 			struct perf_sample_data *data,
9989 			struct pt_regs *regs)
9990 {
9991 	return __perf_event_overflow(event, 1, data, regs);
9992 }
9993 
9994 /*
9995  * Generic software event infrastructure
9996  */
9997 
9998 struct swevent_htable {
9999 	struct swevent_hlist		*swevent_hlist;
10000 	struct mutex			hlist_mutex;
10001 	int				hlist_refcount;
10002 };
10003 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
10004 
10005 /*
10006  * We directly increment event->count and keep a second value in
10007  * event->hw.period_left to count intervals. This period event
10008  * is kept in the range [-sample_period, 0] so that we can use the
10009  * sign as trigger.
10010  */
10011 
perf_swevent_set_period(struct perf_event * event)10012 u64 perf_swevent_set_period(struct perf_event *event)
10013 {
10014 	struct hw_perf_event *hwc = &event->hw;
10015 	u64 period = hwc->last_period;
10016 	u64 nr, offset;
10017 	s64 old, val;
10018 
10019 	hwc->last_period = hwc->sample_period;
10020 
10021 	old = local64_read(&hwc->period_left);
10022 	do {
10023 		val = old;
10024 		if (val < 0)
10025 			return 0;
10026 
10027 		nr = div64_u64(period + val, period);
10028 		offset = nr * period;
10029 		val -= offset;
10030 	} while (!local64_try_cmpxchg(&hwc->period_left, &old, val));
10031 
10032 	return nr;
10033 }
10034 
perf_swevent_overflow(struct perf_event * event,u64 overflow,struct perf_sample_data * data,struct pt_regs * regs)10035 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
10036 				    struct perf_sample_data *data,
10037 				    struct pt_regs *regs)
10038 {
10039 	struct hw_perf_event *hwc = &event->hw;
10040 	int throttle = 0;
10041 
10042 	if (!overflow)
10043 		overflow = perf_swevent_set_period(event);
10044 
10045 	if (hwc->interrupts == MAX_INTERRUPTS)
10046 		return;
10047 
10048 	for (; overflow; overflow--) {
10049 		if (__perf_event_overflow(event, throttle,
10050 					    data, regs)) {
10051 			/*
10052 			 * We inhibit the overflow from happening when
10053 			 * hwc->interrupts == MAX_INTERRUPTS.
10054 			 */
10055 			break;
10056 		}
10057 		throttle = 1;
10058 	}
10059 }
10060 
perf_swevent_event(struct perf_event * event,u64 nr,struct perf_sample_data * data,struct pt_regs * regs)10061 static void perf_swevent_event(struct perf_event *event, u64 nr,
10062 			       struct perf_sample_data *data,
10063 			       struct pt_regs *regs)
10064 {
10065 	struct hw_perf_event *hwc = &event->hw;
10066 
10067 	local64_add(nr, &event->count);
10068 
10069 	if (!regs)
10070 		return;
10071 
10072 	if (!is_sampling_event(event))
10073 		return;
10074 
10075 	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
10076 		data->period = nr;
10077 		return perf_swevent_overflow(event, 1, data, regs);
10078 	} else
10079 		data->period = event->hw.last_period;
10080 
10081 	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
10082 		return perf_swevent_overflow(event, 1, data, regs);
10083 
10084 	if (local64_add_negative(nr, &hwc->period_left))
10085 		return;
10086 
10087 	perf_swevent_overflow(event, 0, data, regs);
10088 }
10089 
perf_exclude_event(struct perf_event * event,struct pt_regs * regs)10090 static int perf_exclude_event(struct perf_event *event,
10091 			      struct pt_regs *regs)
10092 {
10093 	if (event->hw.state & PERF_HES_STOPPED)
10094 		return 1;
10095 
10096 	if (regs) {
10097 		if (event->attr.exclude_user && user_mode(regs))
10098 			return 1;
10099 
10100 		if (event->attr.exclude_kernel && !user_mode(regs))
10101 			return 1;
10102 	}
10103 
10104 	return 0;
10105 }
10106 
perf_swevent_match(struct perf_event * event,enum perf_type_id type,u32 event_id,struct perf_sample_data * data,struct pt_regs * regs)10107 static int perf_swevent_match(struct perf_event *event,
10108 				enum perf_type_id type,
10109 				u32 event_id,
10110 				struct perf_sample_data *data,
10111 				struct pt_regs *regs)
10112 {
10113 	if (event->attr.type != type)
10114 		return 0;
10115 
10116 	if (event->attr.config != event_id)
10117 		return 0;
10118 
10119 	if (perf_exclude_event(event, regs))
10120 		return 0;
10121 
10122 	return 1;
10123 }
10124 
swevent_hash(u64 type,u32 event_id)10125 static inline u64 swevent_hash(u64 type, u32 event_id)
10126 {
10127 	u64 val = event_id | (type << 32);
10128 
10129 	return hash_64(val, SWEVENT_HLIST_BITS);
10130 }
10131 
10132 static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist * hlist,u64 type,u32 event_id)10133 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
10134 {
10135 	u64 hash = swevent_hash(type, event_id);
10136 
10137 	return &hlist->heads[hash];
10138 }
10139 
10140 /* For the read side: events when they trigger */
10141 static inline struct hlist_head *
find_swevent_head_rcu(struct swevent_htable * swhash,u64 type,u32 event_id)10142 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
10143 {
10144 	struct swevent_hlist *hlist;
10145 
10146 	hlist = rcu_dereference(swhash->swevent_hlist);
10147 	if (!hlist)
10148 		return NULL;
10149 
10150 	return __find_swevent_head(hlist, type, event_id);
10151 }
10152 
10153 /* For the event head insertion and removal in the hlist */
10154 static inline struct hlist_head *
find_swevent_head(struct swevent_htable * swhash,struct perf_event * event)10155 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
10156 {
10157 	struct swevent_hlist *hlist;
10158 	u32 event_id = event->attr.config;
10159 	u64 type = event->attr.type;
10160 
10161 	/*
10162 	 * Event scheduling is always serialized against hlist allocation
10163 	 * and release. Which makes the protected version suitable here.
10164 	 * The context lock guarantees that.
10165 	 */
10166 	hlist = rcu_dereference_protected(swhash->swevent_hlist,
10167 					  lockdep_is_held(&event->ctx->lock));
10168 	if (!hlist)
10169 		return NULL;
10170 
10171 	return __find_swevent_head(hlist, type, event_id);
10172 }
10173 
do_perf_sw_event(enum perf_type_id type,u32 event_id,u64 nr,struct perf_sample_data * data,struct pt_regs * regs)10174 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
10175 				    u64 nr,
10176 				    struct perf_sample_data *data,
10177 				    struct pt_regs *regs)
10178 {
10179 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
10180 	struct perf_event *event;
10181 	struct hlist_head *head;
10182 
10183 	rcu_read_lock();
10184 	head = find_swevent_head_rcu(swhash, type, event_id);
10185 	if (!head)
10186 		goto end;
10187 
10188 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
10189 		if (perf_swevent_match(event, type, event_id, data, regs))
10190 			perf_swevent_event(event, nr, data, regs);
10191 	}
10192 end:
10193 	rcu_read_unlock();
10194 }
10195 
10196 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
10197 
perf_swevent_get_recursion_context(void)10198 int perf_swevent_get_recursion_context(void)
10199 {
10200 	return get_recursion_context(current->perf_recursion);
10201 }
10202 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
10203 
perf_swevent_put_recursion_context(int rctx)10204 void perf_swevent_put_recursion_context(int rctx)
10205 {
10206 	put_recursion_context(current->perf_recursion, rctx);
10207 }
10208 
___perf_sw_event(u32 event_id,u64 nr,struct pt_regs * regs,u64 addr)10209 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
10210 {
10211 	struct perf_sample_data data;
10212 
10213 	if (WARN_ON_ONCE(!regs))
10214 		return;
10215 
10216 	perf_sample_data_init(&data, addr, 0);
10217 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
10218 }
10219 
__perf_sw_event(u32 event_id,u64 nr,struct pt_regs * regs,u64 addr)10220 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
10221 {
10222 	int rctx;
10223 
10224 	preempt_disable_notrace();
10225 	rctx = perf_swevent_get_recursion_context();
10226 	if (unlikely(rctx < 0))
10227 		goto fail;
10228 
10229 	___perf_sw_event(event_id, nr, regs, addr);
10230 
10231 	perf_swevent_put_recursion_context(rctx);
10232 fail:
10233 	preempt_enable_notrace();
10234 }
10235 
perf_swevent_read(struct perf_event * event)10236 static void perf_swevent_read(struct perf_event *event)
10237 {
10238 }
10239 
perf_swevent_add(struct perf_event * event,int flags)10240 static int perf_swevent_add(struct perf_event *event, int flags)
10241 {
10242 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
10243 	struct hw_perf_event *hwc = &event->hw;
10244 	struct hlist_head *head;
10245 
10246 	if (is_sampling_event(event)) {
10247 		hwc->last_period = hwc->sample_period;
10248 		perf_swevent_set_period(event);
10249 	}
10250 
10251 	hwc->state = !(flags & PERF_EF_START);
10252 
10253 	head = find_swevent_head(swhash, event);
10254 	if (WARN_ON_ONCE(!head))
10255 		return -EINVAL;
10256 
10257 	hlist_add_head_rcu(&event->hlist_entry, head);
10258 	perf_event_update_userpage(event);
10259 
10260 	return 0;
10261 }
10262 
perf_swevent_del(struct perf_event * event,int flags)10263 static void perf_swevent_del(struct perf_event *event, int flags)
10264 {
10265 	hlist_del_rcu(&event->hlist_entry);
10266 }
10267 
perf_swevent_start(struct perf_event * event,int flags)10268 static void perf_swevent_start(struct perf_event *event, int flags)
10269 {
10270 	event->hw.state = 0;
10271 }
10272 
perf_swevent_stop(struct perf_event * event,int flags)10273 static void perf_swevent_stop(struct perf_event *event, int flags)
10274 {
10275 	event->hw.state = PERF_HES_STOPPED;
10276 }
10277 
10278 /* Deref the hlist from the update side */
10279 static inline struct swevent_hlist *
swevent_hlist_deref(struct swevent_htable * swhash)10280 swevent_hlist_deref(struct swevent_htable *swhash)
10281 {
10282 	return rcu_dereference_protected(swhash->swevent_hlist,
10283 					 lockdep_is_held(&swhash->hlist_mutex));
10284 }
10285 
swevent_hlist_release(struct swevent_htable * swhash)10286 static void swevent_hlist_release(struct swevent_htable *swhash)
10287 {
10288 	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
10289 
10290 	if (!hlist)
10291 		return;
10292 
10293 	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
10294 	kfree_rcu(hlist, rcu_head);
10295 }
10296 
swevent_hlist_put_cpu(int cpu)10297 static void swevent_hlist_put_cpu(int cpu)
10298 {
10299 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
10300 
10301 	mutex_lock(&swhash->hlist_mutex);
10302 
10303 	if (!--swhash->hlist_refcount)
10304 		swevent_hlist_release(swhash);
10305 
10306 	mutex_unlock(&swhash->hlist_mutex);
10307 }
10308 
swevent_hlist_put(void)10309 static void swevent_hlist_put(void)
10310 {
10311 	int cpu;
10312 
10313 	for_each_possible_cpu(cpu)
10314 		swevent_hlist_put_cpu(cpu);
10315 }
10316 
swevent_hlist_get_cpu(int cpu)10317 static int swevent_hlist_get_cpu(int cpu)
10318 {
10319 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
10320 	int err = 0;
10321 
10322 	mutex_lock(&swhash->hlist_mutex);
10323 	if (!swevent_hlist_deref(swhash) &&
10324 	    cpumask_test_cpu(cpu, perf_online_mask)) {
10325 		struct swevent_hlist *hlist;
10326 
10327 		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
10328 		if (!hlist) {
10329 			err = -ENOMEM;
10330 			goto exit;
10331 		}
10332 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
10333 	}
10334 	swhash->hlist_refcount++;
10335 exit:
10336 	mutex_unlock(&swhash->hlist_mutex);
10337 
10338 	return err;
10339 }
10340 
swevent_hlist_get(void)10341 static int swevent_hlist_get(void)
10342 {
10343 	int err, cpu, failed_cpu;
10344 
10345 	mutex_lock(&pmus_lock);
10346 	for_each_possible_cpu(cpu) {
10347 		err = swevent_hlist_get_cpu(cpu);
10348 		if (err) {
10349 			failed_cpu = cpu;
10350 			goto fail;
10351 		}
10352 	}
10353 	mutex_unlock(&pmus_lock);
10354 	return 0;
10355 fail:
10356 	for_each_possible_cpu(cpu) {
10357 		if (cpu == failed_cpu)
10358 			break;
10359 		swevent_hlist_put_cpu(cpu);
10360 	}
10361 	mutex_unlock(&pmus_lock);
10362 	return err;
10363 }
10364 
10365 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
10366 
sw_perf_event_destroy(struct perf_event * event)10367 static void sw_perf_event_destroy(struct perf_event *event)
10368 {
10369 	u64 event_id = event->attr.config;
10370 
10371 	WARN_ON(event->parent);
10372 
10373 	static_key_slow_dec(&perf_swevent_enabled[event_id]);
10374 	swevent_hlist_put();
10375 }
10376 
10377 static struct pmu perf_cpu_clock; /* fwd declaration */
10378 static struct pmu perf_task_clock;
10379 
perf_swevent_init(struct perf_event * event)10380 static int perf_swevent_init(struct perf_event *event)
10381 {
10382 	u64 event_id = event->attr.config;
10383 
10384 	if (event->attr.type != PERF_TYPE_SOFTWARE)
10385 		return -ENOENT;
10386 
10387 	/*
10388 	 * no branch sampling for software events
10389 	 */
10390 	if (has_branch_stack(event))
10391 		return -EOPNOTSUPP;
10392 
10393 	switch (event_id) {
10394 	case PERF_COUNT_SW_CPU_CLOCK:
10395 		event->attr.type = perf_cpu_clock.type;
10396 		return -ENOENT;
10397 	case PERF_COUNT_SW_TASK_CLOCK:
10398 		event->attr.type = perf_task_clock.type;
10399 		return -ENOENT;
10400 
10401 	default:
10402 		break;
10403 	}
10404 
10405 	if (event_id >= PERF_COUNT_SW_MAX)
10406 		return -ENOENT;
10407 
10408 	if (!event->parent) {
10409 		int err;
10410 
10411 		err = swevent_hlist_get();
10412 		if (err)
10413 			return err;
10414 
10415 		static_key_slow_inc(&perf_swevent_enabled[event_id]);
10416 		event->destroy = sw_perf_event_destroy;
10417 	}
10418 
10419 	return 0;
10420 }
10421 
10422 static struct pmu perf_swevent = {
10423 	.task_ctx_nr	= perf_sw_context,
10424 
10425 	.capabilities	= PERF_PMU_CAP_NO_NMI,
10426 
10427 	.event_init	= perf_swevent_init,
10428 	.add		= perf_swevent_add,
10429 	.del		= perf_swevent_del,
10430 	.start		= perf_swevent_start,
10431 	.stop		= perf_swevent_stop,
10432 	.read		= perf_swevent_read,
10433 };
10434 
10435 #ifdef CONFIG_EVENT_TRACING
10436 
tp_perf_event_destroy(struct perf_event * event)10437 static void tp_perf_event_destroy(struct perf_event *event)
10438 {
10439 	perf_trace_destroy(event);
10440 }
10441 
perf_tp_event_init(struct perf_event * event)10442 static int perf_tp_event_init(struct perf_event *event)
10443 {
10444 	int err;
10445 
10446 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
10447 		return -ENOENT;
10448 
10449 	/*
10450 	 * no branch sampling for tracepoint events
10451 	 */
10452 	if (has_branch_stack(event))
10453 		return -EOPNOTSUPP;
10454 
10455 	err = perf_trace_init(event);
10456 	if (err)
10457 		return err;
10458 
10459 	event->destroy = tp_perf_event_destroy;
10460 
10461 	return 0;
10462 }
10463 
10464 static struct pmu perf_tracepoint = {
10465 	.task_ctx_nr	= perf_sw_context,
10466 
10467 	.event_init	= perf_tp_event_init,
10468 	.add		= perf_trace_add,
10469 	.del		= perf_trace_del,
10470 	.start		= perf_swevent_start,
10471 	.stop		= perf_swevent_stop,
10472 	.read		= perf_swevent_read,
10473 };
10474 
perf_tp_filter_match(struct perf_event * event,struct perf_raw_record * raw)10475 static int perf_tp_filter_match(struct perf_event *event,
10476 				struct perf_raw_record *raw)
10477 {
10478 	void *record = raw->frag.data;
10479 
10480 	/* only top level events have filters set */
10481 	if (event->parent)
10482 		event = event->parent;
10483 
10484 	if (likely(!event->filter) || filter_match_preds(event->filter, record))
10485 		return 1;
10486 	return 0;
10487 }
10488 
perf_tp_event_match(struct perf_event * event,struct perf_raw_record * raw,struct pt_regs * regs)10489 static int perf_tp_event_match(struct perf_event *event,
10490 				struct perf_raw_record *raw,
10491 				struct pt_regs *regs)
10492 {
10493 	if (event->hw.state & PERF_HES_STOPPED)
10494 		return 0;
10495 	/*
10496 	 * If exclude_kernel, only trace user-space tracepoints (uprobes)
10497 	 */
10498 	if (event->attr.exclude_kernel && !user_mode(regs))
10499 		return 0;
10500 
10501 	if (!perf_tp_filter_match(event, raw))
10502 		return 0;
10503 
10504 	return 1;
10505 }
10506 
perf_trace_run_bpf_submit(void * raw_data,int size,int rctx,struct trace_event_call * call,u64 count,struct pt_regs * regs,struct hlist_head * head,struct task_struct * task)10507 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
10508 			       struct trace_event_call *call, u64 count,
10509 			       struct pt_regs *regs, struct hlist_head *head,
10510 			       struct task_struct *task)
10511 {
10512 	if (bpf_prog_array_valid(call)) {
10513 		*(struct pt_regs **)raw_data = regs;
10514 		if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
10515 			perf_swevent_put_recursion_context(rctx);
10516 			return;
10517 		}
10518 	}
10519 	perf_tp_event(call->event.type, count, raw_data, size, regs, head,
10520 		      rctx, task);
10521 }
10522 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
10523 
__perf_tp_event_target_task(u64 count,void * record,struct pt_regs * regs,struct perf_sample_data * data,struct perf_raw_record * raw,struct perf_event * event)10524 static void __perf_tp_event_target_task(u64 count, void *record,
10525 					struct pt_regs *regs,
10526 					struct perf_sample_data *data,
10527 					struct perf_raw_record *raw,
10528 					struct perf_event *event)
10529 {
10530 	struct trace_entry *entry = record;
10531 
10532 	if (event->attr.config != entry->type)
10533 		return;
10534 	/* Cannot deliver synchronous signal to other task. */
10535 	if (event->attr.sigtrap)
10536 		return;
10537 	if (perf_tp_event_match(event, raw, regs)) {
10538 		perf_sample_data_init(data, 0, 0);
10539 		perf_sample_save_raw_data(data, event, raw);
10540 		perf_swevent_event(event, count, data, regs);
10541 	}
10542 }
10543 
perf_tp_event_target_task(u64 count,void * record,struct pt_regs * regs,struct perf_sample_data * data,struct perf_raw_record * raw,struct perf_event_context * ctx)10544 static void perf_tp_event_target_task(u64 count, void *record,
10545 				      struct pt_regs *regs,
10546 				      struct perf_sample_data *data,
10547 				      struct perf_raw_record *raw,
10548 				      struct perf_event_context *ctx)
10549 {
10550 	unsigned int cpu = smp_processor_id();
10551 	struct pmu *pmu = &perf_tracepoint;
10552 	struct perf_event *event, *sibling;
10553 
10554 	perf_event_groups_for_cpu_pmu(event, &ctx->pinned_groups, cpu, pmu) {
10555 		__perf_tp_event_target_task(count, record, regs, data, raw, event);
10556 		for_each_sibling_event(sibling, event)
10557 			__perf_tp_event_target_task(count, record, regs, data, raw, sibling);
10558 	}
10559 
10560 	perf_event_groups_for_cpu_pmu(event, &ctx->flexible_groups, cpu, pmu) {
10561 		__perf_tp_event_target_task(count, record, regs, data, raw, event);
10562 		for_each_sibling_event(sibling, event)
10563 			__perf_tp_event_target_task(count, record, regs, data, raw, sibling);
10564 	}
10565 }
10566 
perf_tp_event(u16 event_type,u64 count,void * record,int entry_size,struct pt_regs * regs,struct hlist_head * head,int rctx,struct task_struct * task)10567 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
10568 		   struct pt_regs *regs, struct hlist_head *head, int rctx,
10569 		   struct task_struct *task)
10570 {
10571 	struct perf_sample_data data;
10572 	struct perf_event *event;
10573 
10574 	struct perf_raw_record raw = {
10575 		.frag = {
10576 			.size = entry_size,
10577 			.data = record,
10578 		},
10579 	};
10580 
10581 	perf_trace_buf_update(record, event_type);
10582 
10583 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
10584 		if (perf_tp_event_match(event, &raw, regs)) {
10585 			/*
10586 			 * Here use the same on-stack perf_sample_data,
10587 			 * some members in data are event-specific and
10588 			 * need to be re-computed for different sweveents.
10589 			 * Re-initialize data->sample_flags safely to avoid
10590 			 * the problem that next event skips preparing data
10591 			 * because data->sample_flags is set.
10592 			 */
10593 			perf_sample_data_init(&data, 0, 0);
10594 			perf_sample_save_raw_data(&data, event, &raw);
10595 			perf_swevent_event(event, count, &data, regs);
10596 		}
10597 	}
10598 
10599 	/*
10600 	 * If we got specified a target task, also iterate its context and
10601 	 * deliver this event there too.
10602 	 */
10603 	if (task && task != current) {
10604 		struct perf_event_context *ctx;
10605 
10606 		rcu_read_lock();
10607 		ctx = rcu_dereference(task->perf_event_ctxp);
10608 		if (!ctx)
10609 			goto unlock;
10610 
10611 		raw_spin_lock(&ctx->lock);
10612 		perf_tp_event_target_task(count, record, regs, &data, &raw, ctx);
10613 		raw_spin_unlock(&ctx->lock);
10614 unlock:
10615 		rcu_read_unlock();
10616 	}
10617 
10618 	perf_swevent_put_recursion_context(rctx);
10619 }
10620 EXPORT_SYMBOL_GPL(perf_tp_event);
10621 
10622 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
10623 /*
10624  * Flags in config, used by dynamic PMU kprobe and uprobe
10625  * The flags should match following PMU_FORMAT_ATTR().
10626  *
10627  * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
10628  *                               if not set, create kprobe/uprobe
10629  *
10630  * The following values specify a reference counter (or semaphore in the
10631  * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
10632  * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
10633  *
10634  * PERF_UPROBE_REF_CTR_OFFSET_BITS	# of bits in config as th offset
10635  * PERF_UPROBE_REF_CTR_OFFSET_SHIFT	# of bits to shift left
10636  */
10637 enum perf_probe_config {
10638 	PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0,  /* [k,u]retprobe */
10639 	PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
10640 	PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
10641 };
10642 
10643 PMU_FORMAT_ATTR(retprobe, "config:0");
10644 #endif
10645 
10646 #ifdef CONFIG_KPROBE_EVENTS
10647 static struct attribute *kprobe_attrs[] = {
10648 	&format_attr_retprobe.attr,
10649 	NULL,
10650 };
10651 
10652 static struct attribute_group kprobe_format_group = {
10653 	.name = "format",
10654 	.attrs = kprobe_attrs,
10655 };
10656 
10657 static const struct attribute_group *kprobe_attr_groups[] = {
10658 	&kprobe_format_group,
10659 	NULL,
10660 };
10661 
10662 static int perf_kprobe_event_init(struct perf_event *event);
10663 static struct pmu perf_kprobe = {
10664 	.task_ctx_nr	= perf_sw_context,
10665 	.event_init	= perf_kprobe_event_init,
10666 	.add		= perf_trace_add,
10667 	.del		= perf_trace_del,
10668 	.start		= perf_swevent_start,
10669 	.stop		= perf_swevent_stop,
10670 	.read		= perf_swevent_read,
10671 	.attr_groups	= kprobe_attr_groups,
10672 };
10673 
perf_kprobe_event_init(struct perf_event * event)10674 static int perf_kprobe_event_init(struct perf_event *event)
10675 {
10676 	int err;
10677 	bool is_retprobe;
10678 
10679 	if (event->attr.type != perf_kprobe.type)
10680 		return -ENOENT;
10681 
10682 	if (!perfmon_capable())
10683 		return -EACCES;
10684 
10685 	/*
10686 	 * no branch sampling for probe events
10687 	 */
10688 	if (has_branch_stack(event))
10689 		return -EOPNOTSUPP;
10690 
10691 	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
10692 	err = perf_kprobe_init(event, is_retprobe);
10693 	if (err)
10694 		return err;
10695 
10696 	event->destroy = perf_kprobe_destroy;
10697 
10698 	return 0;
10699 }
10700 #endif /* CONFIG_KPROBE_EVENTS */
10701 
10702 #ifdef CONFIG_UPROBE_EVENTS
10703 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
10704 
10705 static struct attribute *uprobe_attrs[] = {
10706 	&format_attr_retprobe.attr,
10707 	&format_attr_ref_ctr_offset.attr,
10708 	NULL,
10709 };
10710 
10711 static struct attribute_group uprobe_format_group = {
10712 	.name = "format",
10713 	.attrs = uprobe_attrs,
10714 };
10715 
10716 static const struct attribute_group *uprobe_attr_groups[] = {
10717 	&uprobe_format_group,
10718 	NULL,
10719 };
10720 
10721 static int perf_uprobe_event_init(struct perf_event *event);
10722 static struct pmu perf_uprobe = {
10723 	.task_ctx_nr	= perf_sw_context,
10724 	.event_init	= perf_uprobe_event_init,
10725 	.add		= perf_trace_add,
10726 	.del		= perf_trace_del,
10727 	.start		= perf_swevent_start,
10728 	.stop		= perf_swevent_stop,
10729 	.read		= perf_swevent_read,
10730 	.attr_groups	= uprobe_attr_groups,
10731 };
10732 
perf_uprobe_event_init(struct perf_event * event)10733 static int perf_uprobe_event_init(struct perf_event *event)
10734 {
10735 	int err;
10736 	unsigned long ref_ctr_offset;
10737 	bool is_retprobe;
10738 
10739 	if (event->attr.type != perf_uprobe.type)
10740 		return -ENOENT;
10741 
10742 	if (!capable(CAP_SYS_ADMIN))
10743 		return -EACCES;
10744 
10745 	/*
10746 	 * no branch sampling for probe events
10747 	 */
10748 	if (has_branch_stack(event))
10749 		return -EOPNOTSUPP;
10750 
10751 	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
10752 	ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
10753 	err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
10754 	if (err)
10755 		return err;
10756 
10757 	event->destroy = perf_uprobe_destroy;
10758 
10759 	return 0;
10760 }
10761 #endif /* CONFIG_UPROBE_EVENTS */
10762 
perf_tp_register(void)10763 static inline void perf_tp_register(void)
10764 {
10765 	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
10766 #ifdef CONFIG_KPROBE_EVENTS
10767 	perf_pmu_register(&perf_kprobe, "kprobe", -1);
10768 #endif
10769 #ifdef CONFIG_UPROBE_EVENTS
10770 	perf_pmu_register(&perf_uprobe, "uprobe", -1);
10771 #endif
10772 }
10773 
perf_event_free_filter(struct perf_event * event)10774 static void perf_event_free_filter(struct perf_event *event)
10775 {
10776 	ftrace_profile_free_filter(event);
10777 }
10778 
10779 /*
10780  * returns true if the event is a tracepoint, or a kprobe/upprobe created
10781  * with perf_event_open()
10782  */
perf_event_is_tracing(struct perf_event * event)10783 static inline bool perf_event_is_tracing(struct perf_event *event)
10784 {
10785 	if (event->pmu == &perf_tracepoint)
10786 		return true;
10787 #ifdef CONFIG_KPROBE_EVENTS
10788 	if (event->pmu == &perf_kprobe)
10789 		return true;
10790 #endif
10791 #ifdef CONFIG_UPROBE_EVENTS
10792 	if (event->pmu == &perf_uprobe)
10793 		return true;
10794 #endif
10795 	return false;
10796 }
10797 
__perf_event_set_bpf_prog(struct perf_event * event,struct bpf_prog * prog,u64 bpf_cookie)10798 static int __perf_event_set_bpf_prog(struct perf_event *event,
10799 				     struct bpf_prog *prog,
10800 				     u64 bpf_cookie)
10801 {
10802 	bool is_kprobe, is_uprobe, is_tracepoint, is_syscall_tp;
10803 
10804 	if (!perf_event_is_tracing(event))
10805 		return perf_event_set_bpf_handler(event, prog, bpf_cookie);
10806 
10807 	is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_KPROBE;
10808 	is_uprobe = event->tp_event->flags & TRACE_EVENT_FL_UPROBE;
10809 	is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
10810 	is_syscall_tp = is_syscall_trace_event(event->tp_event);
10811 	if (!is_kprobe && !is_uprobe && !is_tracepoint && !is_syscall_tp)
10812 		/* bpf programs can only be attached to u/kprobe or tracepoint */
10813 		return -EINVAL;
10814 
10815 	if (((is_kprobe || is_uprobe) && prog->type != BPF_PROG_TYPE_KPROBE) ||
10816 	    (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
10817 	    (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT))
10818 		return -EINVAL;
10819 
10820 	if (prog->type == BPF_PROG_TYPE_KPROBE && prog->sleepable && !is_uprobe)
10821 		/* only uprobe programs are allowed to be sleepable */
10822 		return -EINVAL;
10823 
10824 	/* Kprobe override only works for kprobes, not uprobes. */
10825 	if (prog->kprobe_override && !is_kprobe)
10826 		return -EINVAL;
10827 
10828 	if (is_tracepoint || is_syscall_tp) {
10829 		int off = trace_event_get_offsets(event->tp_event);
10830 
10831 		if (prog->aux->max_ctx_offset > off)
10832 			return -EACCES;
10833 	}
10834 
10835 	return perf_event_attach_bpf_prog(event, prog, bpf_cookie);
10836 }
10837 
perf_event_set_bpf_prog(struct perf_event * event,struct bpf_prog * prog,u64 bpf_cookie)10838 int perf_event_set_bpf_prog(struct perf_event *event,
10839 			    struct bpf_prog *prog,
10840 			    u64 bpf_cookie)
10841 {
10842 	struct perf_event_context *ctx;
10843 	int ret;
10844 
10845 	ctx = perf_event_ctx_lock(event);
10846 	ret = __perf_event_set_bpf_prog(event, prog, bpf_cookie);
10847 	perf_event_ctx_unlock(event, ctx);
10848 
10849 	return ret;
10850 }
10851 
perf_event_free_bpf_prog(struct perf_event * event)10852 void perf_event_free_bpf_prog(struct perf_event *event)
10853 {
10854 	if (!perf_event_is_tracing(event)) {
10855 		perf_event_free_bpf_handler(event);
10856 		return;
10857 	}
10858 	perf_event_detach_bpf_prog(event);
10859 }
10860 
10861 #else
10862 
perf_tp_register(void)10863 static inline void perf_tp_register(void)
10864 {
10865 }
10866 
perf_event_free_filter(struct perf_event * event)10867 static void perf_event_free_filter(struct perf_event *event)
10868 {
10869 }
10870 
__perf_event_set_bpf_prog(struct perf_event * event,struct bpf_prog * prog,u64 bpf_cookie)10871 static int __perf_event_set_bpf_prog(struct perf_event *event,
10872 				     struct bpf_prog *prog,
10873 				     u64 bpf_cookie)
10874 {
10875 	return -ENOENT;
10876 }
10877 
perf_event_set_bpf_prog(struct perf_event * event,struct bpf_prog * prog,u64 bpf_cookie)10878 int perf_event_set_bpf_prog(struct perf_event *event,
10879 			    struct bpf_prog *prog,
10880 			    u64 bpf_cookie)
10881 {
10882 	return -ENOENT;
10883 }
10884 
perf_event_free_bpf_prog(struct perf_event * event)10885 void perf_event_free_bpf_prog(struct perf_event *event)
10886 {
10887 }
10888 #endif /* CONFIG_EVENT_TRACING */
10889 
10890 #ifdef CONFIG_HAVE_HW_BREAKPOINT
perf_bp_event(struct perf_event * bp,void * data)10891 void perf_bp_event(struct perf_event *bp, void *data)
10892 {
10893 	struct perf_sample_data sample;
10894 	struct pt_regs *regs = data;
10895 
10896 	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
10897 
10898 	if (!bp->hw.state && !perf_exclude_event(bp, regs))
10899 		perf_swevent_event(bp, 1, &sample, regs);
10900 }
10901 #endif
10902 
10903 /*
10904  * Allocate a new address filter
10905  */
10906 static struct perf_addr_filter *
perf_addr_filter_new(struct perf_event * event,struct list_head * filters)10907 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
10908 {
10909 	int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
10910 	struct perf_addr_filter *filter;
10911 
10912 	filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
10913 	if (!filter)
10914 		return NULL;
10915 
10916 	INIT_LIST_HEAD(&filter->entry);
10917 	list_add_tail(&filter->entry, filters);
10918 
10919 	return filter;
10920 }
10921 
free_filters_list(struct list_head * filters)10922 static void free_filters_list(struct list_head *filters)
10923 {
10924 	struct perf_addr_filter *filter, *iter;
10925 
10926 	list_for_each_entry_safe(filter, iter, filters, entry) {
10927 		path_put(&filter->path);
10928 		list_del(&filter->entry);
10929 		kfree(filter);
10930 	}
10931 }
10932 
10933 /*
10934  * Free existing address filters and optionally install new ones
10935  */
perf_addr_filters_splice(struct perf_event * event,struct list_head * head)10936 static void perf_addr_filters_splice(struct perf_event *event,
10937 				     struct list_head *head)
10938 {
10939 	unsigned long flags;
10940 	LIST_HEAD(list);
10941 
10942 	if (!has_addr_filter(event))
10943 		return;
10944 
10945 	/* don't bother with children, they don't have their own filters */
10946 	if (event->parent)
10947 		return;
10948 
10949 	raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
10950 
10951 	list_splice_init(&event->addr_filters.list, &list);
10952 	if (head)
10953 		list_splice(head, &event->addr_filters.list);
10954 
10955 	raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
10956 
10957 	free_filters_list(&list);
10958 }
10959 
10960 /*
10961  * Scan through mm's vmas and see if one of them matches the
10962  * @filter; if so, adjust filter's address range.
10963  * Called with mm::mmap_lock down for reading.
10964  */
perf_addr_filter_apply(struct perf_addr_filter * filter,struct mm_struct * mm,struct perf_addr_filter_range * fr)10965 static void perf_addr_filter_apply(struct perf_addr_filter *filter,
10966 				   struct mm_struct *mm,
10967 				   struct perf_addr_filter_range *fr)
10968 {
10969 	struct vm_area_struct *vma;
10970 	VMA_ITERATOR(vmi, mm, 0);
10971 
10972 	for_each_vma(vmi, vma) {
10973 		if (!vma->vm_file)
10974 			continue;
10975 
10976 		if (perf_addr_filter_vma_adjust(filter, vma, fr))
10977 			return;
10978 	}
10979 }
10980 
10981 /*
10982  * Update event's address range filters based on the
10983  * task's existing mappings, if any.
10984  */
perf_event_addr_filters_apply(struct perf_event * event)10985 static void perf_event_addr_filters_apply(struct perf_event *event)
10986 {
10987 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
10988 	struct task_struct *task = READ_ONCE(event->ctx->task);
10989 	struct perf_addr_filter *filter;
10990 	struct mm_struct *mm = NULL;
10991 	unsigned int count = 0;
10992 	unsigned long flags;
10993 
10994 	/*
10995 	 * We may observe TASK_TOMBSTONE, which means that the event tear-down
10996 	 * will stop on the parent's child_mutex that our caller is also holding
10997 	 */
10998 	if (task == TASK_TOMBSTONE)
10999 		return;
11000 
11001 	if (ifh->nr_file_filters) {
11002 		mm = get_task_mm(task);
11003 		if (!mm)
11004 			goto restart;
11005 
11006 		mmap_read_lock(mm);
11007 	}
11008 
11009 	raw_spin_lock_irqsave(&ifh->lock, flags);
11010 	list_for_each_entry(filter, &ifh->list, entry) {
11011 		if (filter->path.dentry) {
11012 			/*
11013 			 * Adjust base offset if the filter is associated to a
11014 			 * binary that needs to be mapped:
11015 			 */
11016 			event->addr_filter_ranges[count].start = 0;
11017 			event->addr_filter_ranges[count].size = 0;
11018 
11019 			perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
11020 		} else {
11021 			event->addr_filter_ranges[count].start = filter->offset;
11022 			event->addr_filter_ranges[count].size  = filter->size;
11023 		}
11024 
11025 		count++;
11026 	}
11027 
11028 	event->addr_filters_gen++;
11029 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
11030 
11031 	if (ifh->nr_file_filters) {
11032 		mmap_read_unlock(mm);
11033 
11034 		mmput(mm);
11035 	}
11036 
11037 restart:
11038 	perf_event_stop(event, 1);
11039 }
11040 
11041 /*
11042  * Address range filtering: limiting the data to certain
11043  * instruction address ranges. Filters are ioctl()ed to us from
11044  * userspace as ascii strings.
11045  *
11046  * Filter string format:
11047  *
11048  * ACTION RANGE_SPEC
11049  * where ACTION is one of the
11050  *  * "filter": limit the trace to this region
11051  *  * "start": start tracing from this address
11052  *  * "stop": stop tracing at this address/region;
11053  * RANGE_SPEC is
11054  *  * for kernel addresses: <start address>[/<size>]
11055  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
11056  *
11057  * if <size> is not specified or is zero, the range is treated as a single
11058  * address; not valid for ACTION=="filter".
11059  */
11060 enum {
11061 	IF_ACT_NONE = -1,
11062 	IF_ACT_FILTER,
11063 	IF_ACT_START,
11064 	IF_ACT_STOP,
11065 	IF_SRC_FILE,
11066 	IF_SRC_KERNEL,
11067 	IF_SRC_FILEADDR,
11068 	IF_SRC_KERNELADDR,
11069 };
11070 
11071 enum {
11072 	IF_STATE_ACTION = 0,
11073 	IF_STATE_SOURCE,
11074 	IF_STATE_END,
11075 };
11076 
11077 static const match_table_t if_tokens = {
11078 	{ IF_ACT_FILTER,	"filter" },
11079 	{ IF_ACT_START,		"start" },
11080 	{ IF_ACT_STOP,		"stop" },
11081 	{ IF_SRC_FILE,		"%u/%u@%s" },
11082 	{ IF_SRC_KERNEL,	"%u/%u" },
11083 	{ IF_SRC_FILEADDR,	"%u@%s" },
11084 	{ IF_SRC_KERNELADDR,	"%u" },
11085 	{ IF_ACT_NONE,		NULL },
11086 };
11087 
11088 /*
11089  * Address filter string parser
11090  */
11091 static int
perf_event_parse_addr_filter(struct perf_event * event,char * fstr,struct list_head * filters)11092 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
11093 			     struct list_head *filters)
11094 {
11095 	struct perf_addr_filter *filter = NULL;
11096 	char *start, *orig, *filename = NULL;
11097 	substring_t args[MAX_OPT_ARGS];
11098 	int state = IF_STATE_ACTION, token;
11099 	unsigned int kernel = 0;
11100 	int ret = -EINVAL;
11101 
11102 	orig = fstr = kstrdup(fstr, GFP_KERNEL);
11103 	if (!fstr)
11104 		return -ENOMEM;
11105 
11106 	while ((start = strsep(&fstr, " ,\n")) != NULL) {
11107 		static const enum perf_addr_filter_action_t actions[] = {
11108 			[IF_ACT_FILTER]	= PERF_ADDR_FILTER_ACTION_FILTER,
11109 			[IF_ACT_START]	= PERF_ADDR_FILTER_ACTION_START,
11110 			[IF_ACT_STOP]	= PERF_ADDR_FILTER_ACTION_STOP,
11111 		};
11112 		ret = -EINVAL;
11113 
11114 		if (!*start)
11115 			continue;
11116 
11117 		/* filter definition begins */
11118 		if (state == IF_STATE_ACTION) {
11119 			filter = perf_addr_filter_new(event, filters);
11120 			if (!filter)
11121 				goto fail;
11122 		}
11123 
11124 		token = match_token(start, if_tokens, args);
11125 		switch (token) {
11126 		case IF_ACT_FILTER:
11127 		case IF_ACT_START:
11128 		case IF_ACT_STOP:
11129 			if (state != IF_STATE_ACTION)
11130 				goto fail;
11131 
11132 			filter->action = actions[token];
11133 			state = IF_STATE_SOURCE;
11134 			break;
11135 
11136 		case IF_SRC_KERNELADDR:
11137 		case IF_SRC_KERNEL:
11138 			kernel = 1;
11139 			fallthrough;
11140 
11141 		case IF_SRC_FILEADDR:
11142 		case IF_SRC_FILE:
11143 			if (state != IF_STATE_SOURCE)
11144 				goto fail;
11145 
11146 			*args[0].to = 0;
11147 			ret = kstrtoul(args[0].from, 0, &filter->offset);
11148 			if (ret)
11149 				goto fail;
11150 
11151 			if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
11152 				*args[1].to = 0;
11153 				ret = kstrtoul(args[1].from, 0, &filter->size);
11154 				if (ret)
11155 					goto fail;
11156 			}
11157 
11158 			if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
11159 				int fpos = token == IF_SRC_FILE ? 2 : 1;
11160 
11161 				kfree(filename);
11162 				filename = match_strdup(&args[fpos]);
11163 				if (!filename) {
11164 					ret = -ENOMEM;
11165 					goto fail;
11166 				}
11167 			}
11168 
11169 			state = IF_STATE_END;
11170 			break;
11171 
11172 		default:
11173 			goto fail;
11174 		}
11175 
11176 		/*
11177 		 * Filter definition is fully parsed, validate and install it.
11178 		 * Make sure that it doesn't contradict itself or the event's
11179 		 * attribute.
11180 		 */
11181 		if (state == IF_STATE_END) {
11182 			ret = -EINVAL;
11183 
11184 			/*
11185 			 * ACTION "filter" must have a non-zero length region
11186 			 * specified.
11187 			 */
11188 			if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
11189 			    !filter->size)
11190 				goto fail;
11191 
11192 			if (!kernel) {
11193 				if (!filename)
11194 					goto fail;
11195 
11196 				/*
11197 				 * For now, we only support file-based filters
11198 				 * in per-task events; doing so for CPU-wide
11199 				 * events requires additional context switching
11200 				 * trickery, since same object code will be
11201 				 * mapped at different virtual addresses in
11202 				 * different processes.
11203 				 */
11204 				ret = -EOPNOTSUPP;
11205 				if (!event->ctx->task)
11206 					goto fail;
11207 
11208 				/* look up the path and grab its inode */
11209 				ret = kern_path(filename, LOOKUP_FOLLOW,
11210 						&filter->path);
11211 				if (ret)
11212 					goto fail;
11213 
11214 				ret = -EINVAL;
11215 				if (!filter->path.dentry ||
11216 				    !S_ISREG(d_inode(filter->path.dentry)
11217 					     ->i_mode))
11218 					goto fail;
11219 
11220 				event->addr_filters.nr_file_filters++;
11221 			}
11222 
11223 			/* ready to consume more filters */
11224 			kfree(filename);
11225 			filename = NULL;
11226 			state = IF_STATE_ACTION;
11227 			filter = NULL;
11228 			kernel = 0;
11229 		}
11230 	}
11231 
11232 	if (state != IF_STATE_ACTION)
11233 		goto fail;
11234 
11235 	kfree(filename);
11236 	kfree(orig);
11237 
11238 	return 0;
11239 
11240 fail:
11241 	kfree(filename);
11242 	free_filters_list(filters);
11243 	kfree(orig);
11244 
11245 	return ret;
11246 }
11247 
11248 static int
perf_event_set_addr_filter(struct perf_event * event,char * filter_str)11249 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
11250 {
11251 	LIST_HEAD(filters);
11252 	int ret;
11253 
11254 	/*
11255 	 * Since this is called in perf_ioctl() path, we're already holding
11256 	 * ctx::mutex.
11257 	 */
11258 	lockdep_assert_held(&event->ctx->mutex);
11259 
11260 	if (WARN_ON_ONCE(event->parent))
11261 		return -EINVAL;
11262 
11263 	ret = perf_event_parse_addr_filter(event, filter_str, &filters);
11264 	if (ret)
11265 		goto fail_clear_files;
11266 
11267 	ret = event->pmu->addr_filters_validate(&filters);
11268 	if (ret)
11269 		goto fail_free_filters;
11270 
11271 	/* remove existing filters, if any */
11272 	perf_addr_filters_splice(event, &filters);
11273 
11274 	/* install new filters */
11275 	perf_event_for_each_child(event, perf_event_addr_filters_apply);
11276 
11277 	return ret;
11278 
11279 fail_free_filters:
11280 	free_filters_list(&filters);
11281 
11282 fail_clear_files:
11283 	event->addr_filters.nr_file_filters = 0;
11284 
11285 	return ret;
11286 }
11287 
perf_event_set_filter(struct perf_event * event,void __user * arg)11288 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
11289 {
11290 	int ret = -EINVAL;
11291 	char *filter_str;
11292 
11293 	filter_str = strndup_user(arg, PAGE_SIZE);
11294 	if (IS_ERR(filter_str))
11295 		return PTR_ERR(filter_str);
11296 
11297 #ifdef CONFIG_EVENT_TRACING
11298 	if (perf_event_is_tracing(event)) {
11299 		struct perf_event_context *ctx = event->ctx;
11300 
11301 		/*
11302 		 * Beware, here be dragons!!
11303 		 *
11304 		 * the tracepoint muck will deadlock against ctx->mutex, but
11305 		 * the tracepoint stuff does not actually need it. So
11306 		 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
11307 		 * already have a reference on ctx.
11308 		 *
11309 		 * This can result in event getting moved to a different ctx,
11310 		 * but that does not affect the tracepoint state.
11311 		 */
11312 		mutex_unlock(&ctx->mutex);
11313 		ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
11314 		mutex_lock(&ctx->mutex);
11315 	} else
11316 #endif
11317 	if (has_addr_filter(event))
11318 		ret = perf_event_set_addr_filter(event, filter_str);
11319 
11320 	kfree(filter_str);
11321 	return ret;
11322 }
11323 
11324 /*
11325  * hrtimer based swevent callback
11326  */
11327 
perf_swevent_hrtimer(struct hrtimer * hrtimer)11328 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
11329 {
11330 	enum hrtimer_restart ret = HRTIMER_RESTART;
11331 	struct perf_sample_data data;
11332 	struct pt_regs *regs;
11333 	struct perf_event *event;
11334 	u64 period;
11335 
11336 	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
11337 
11338 	if (event->state != PERF_EVENT_STATE_ACTIVE)
11339 		return HRTIMER_NORESTART;
11340 
11341 	event->pmu->read(event);
11342 
11343 	perf_sample_data_init(&data, 0, event->hw.last_period);
11344 	regs = get_irq_regs();
11345 
11346 	if (regs && !perf_exclude_event(event, regs)) {
11347 		if (!(event->attr.exclude_idle && is_idle_task(current)))
11348 			if (__perf_event_overflow(event, 1, &data, regs))
11349 				ret = HRTIMER_NORESTART;
11350 	}
11351 
11352 	period = max_t(u64, 10000, event->hw.sample_period);
11353 	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
11354 
11355 	return ret;
11356 }
11357 
perf_swevent_start_hrtimer(struct perf_event * event)11358 static void perf_swevent_start_hrtimer(struct perf_event *event)
11359 {
11360 	struct hw_perf_event *hwc = &event->hw;
11361 	s64 period;
11362 
11363 	if (!is_sampling_event(event))
11364 		return;
11365 
11366 	period = local64_read(&hwc->period_left);
11367 	if (period) {
11368 		if (period < 0)
11369 			period = 10000;
11370 
11371 		local64_set(&hwc->period_left, 0);
11372 	} else {
11373 		period = max_t(u64, 10000, hwc->sample_period);
11374 	}
11375 	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
11376 		      HRTIMER_MODE_REL_PINNED_HARD);
11377 }
11378 
perf_swevent_cancel_hrtimer(struct perf_event * event)11379 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
11380 {
11381 	struct hw_perf_event *hwc = &event->hw;
11382 
11383 	if (is_sampling_event(event)) {
11384 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
11385 		local64_set(&hwc->period_left, ktime_to_ns(remaining));
11386 
11387 		hrtimer_cancel(&hwc->hrtimer);
11388 	}
11389 }
11390 
perf_swevent_init_hrtimer(struct perf_event * event)11391 static void perf_swevent_init_hrtimer(struct perf_event *event)
11392 {
11393 	struct hw_perf_event *hwc = &event->hw;
11394 
11395 	if (!is_sampling_event(event))
11396 		return;
11397 
11398 	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
11399 	hwc->hrtimer.function = perf_swevent_hrtimer;
11400 
11401 	/*
11402 	 * Since hrtimers have a fixed rate, we can do a static freq->period
11403 	 * mapping and avoid the whole period adjust feedback stuff.
11404 	 */
11405 	if (event->attr.freq) {
11406 		long freq = event->attr.sample_freq;
11407 
11408 		event->attr.sample_period = NSEC_PER_SEC / freq;
11409 		hwc->sample_period = event->attr.sample_period;
11410 		local64_set(&hwc->period_left, hwc->sample_period);
11411 		hwc->last_period = hwc->sample_period;
11412 		event->attr.freq = 0;
11413 	}
11414 }
11415 
11416 /*
11417  * Software event: cpu wall time clock
11418  */
11419 
cpu_clock_event_update(struct perf_event * event)11420 static void cpu_clock_event_update(struct perf_event *event)
11421 {
11422 	s64 prev;
11423 	u64 now;
11424 
11425 	now = local_clock();
11426 	prev = local64_xchg(&event->hw.prev_count, now);
11427 	local64_add(now - prev, &event->count);
11428 }
11429 
cpu_clock_event_start(struct perf_event * event,int flags)11430 static void cpu_clock_event_start(struct perf_event *event, int flags)
11431 {
11432 	local64_set(&event->hw.prev_count, local_clock());
11433 	perf_swevent_start_hrtimer(event);
11434 }
11435 
cpu_clock_event_stop(struct perf_event * event,int flags)11436 static void cpu_clock_event_stop(struct perf_event *event, int flags)
11437 {
11438 	perf_swevent_cancel_hrtimer(event);
11439 	cpu_clock_event_update(event);
11440 }
11441 
cpu_clock_event_add(struct perf_event * event,int flags)11442 static int cpu_clock_event_add(struct perf_event *event, int flags)
11443 {
11444 	if (flags & PERF_EF_START)
11445 		cpu_clock_event_start(event, flags);
11446 	perf_event_update_userpage(event);
11447 
11448 	return 0;
11449 }
11450 
cpu_clock_event_del(struct perf_event * event,int flags)11451 static void cpu_clock_event_del(struct perf_event *event, int flags)
11452 {
11453 	cpu_clock_event_stop(event, flags);
11454 }
11455 
cpu_clock_event_read(struct perf_event * event)11456 static void cpu_clock_event_read(struct perf_event *event)
11457 {
11458 	cpu_clock_event_update(event);
11459 }
11460 
cpu_clock_event_init(struct perf_event * event)11461 static int cpu_clock_event_init(struct perf_event *event)
11462 {
11463 	if (event->attr.type != perf_cpu_clock.type)
11464 		return -ENOENT;
11465 
11466 	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
11467 		return -ENOENT;
11468 
11469 	/*
11470 	 * no branch sampling for software events
11471 	 */
11472 	if (has_branch_stack(event))
11473 		return -EOPNOTSUPP;
11474 
11475 	perf_swevent_init_hrtimer(event);
11476 
11477 	return 0;
11478 }
11479 
11480 static struct pmu perf_cpu_clock = {
11481 	.task_ctx_nr	= perf_sw_context,
11482 
11483 	.capabilities	= PERF_PMU_CAP_NO_NMI,
11484 	.dev		= PMU_NULL_DEV,
11485 
11486 	.event_init	= cpu_clock_event_init,
11487 	.add		= cpu_clock_event_add,
11488 	.del		= cpu_clock_event_del,
11489 	.start		= cpu_clock_event_start,
11490 	.stop		= cpu_clock_event_stop,
11491 	.read		= cpu_clock_event_read,
11492 };
11493 
11494 /*
11495  * Software event: task time clock
11496  */
11497 
task_clock_event_update(struct perf_event * event,u64 now)11498 static void task_clock_event_update(struct perf_event *event, u64 now)
11499 {
11500 	u64 prev;
11501 	s64 delta;
11502 
11503 	prev = local64_xchg(&event->hw.prev_count, now);
11504 	delta = now - prev;
11505 	local64_add(delta, &event->count);
11506 }
11507 
task_clock_event_start(struct perf_event * event,int flags)11508 static void task_clock_event_start(struct perf_event *event, int flags)
11509 {
11510 	local64_set(&event->hw.prev_count, event->ctx->time);
11511 	perf_swevent_start_hrtimer(event);
11512 }
11513 
task_clock_event_stop(struct perf_event * event,int flags)11514 static void task_clock_event_stop(struct perf_event *event, int flags)
11515 {
11516 	perf_swevent_cancel_hrtimer(event);
11517 	task_clock_event_update(event, event->ctx->time);
11518 }
11519 
task_clock_event_add(struct perf_event * event,int flags)11520 static int task_clock_event_add(struct perf_event *event, int flags)
11521 {
11522 	if (flags & PERF_EF_START)
11523 		task_clock_event_start(event, flags);
11524 	perf_event_update_userpage(event);
11525 
11526 	return 0;
11527 }
11528 
task_clock_event_del(struct perf_event * event,int flags)11529 static void task_clock_event_del(struct perf_event *event, int flags)
11530 {
11531 	task_clock_event_stop(event, PERF_EF_UPDATE);
11532 }
11533 
task_clock_event_read(struct perf_event * event)11534 static void task_clock_event_read(struct perf_event *event)
11535 {
11536 	u64 now = perf_clock();
11537 	u64 delta = now - event->ctx->timestamp;
11538 	u64 time = event->ctx->time + delta;
11539 
11540 	task_clock_event_update(event, time);
11541 }
11542 
task_clock_event_init(struct perf_event * event)11543 static int task_clock_event_init(struct perf_event *event)
11544 {
11545 	if (event->attr.type != perf_task_clock.type)
11546 		return -ENOENT;
11547 
11548 	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
11549 		return -ENOENT;
11550 
11551 	/*
11552 	 * no branch sampling for software events
11553 	 */
11554 	if (has_branch_stack(event))
11555 		return -EOPNOTSUPP;
11556 
11557 	perf_swevent_init_hrtimer(event);
11558 
11559 	return 0;
11560 }
11561 
11562 static struct pmu perf_task_clock = {
11563 	.task_ctx_nr	= perf_sw_context,
11564 
11565 	.capabilities	= PERF_PMU_CAP_NO_NMI,
11566 	.dev		= PMU_NULL_DEV,
11567 
11568 	.event_init	= task_clock_event_init,
11569 	.add		= task_clock_event_add,
11570 	.del		= task_clock_event_del,
11571 	.start		= task_clock_event_start,
11572 	.stop		= task_clock_event_stop,
11573 	.read		= task_clock_event_read,
11574 };
11575 
perf_pmu_nop_void(struct pmu * pmu)11576 static void perf_pmu_nop_void(struct pmu *pmu)
11577 {
11578 }
11579 
perf_pmu_nop_txn(struct pmu * pmu,unsigned int flags)11580 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
11581 {
11582 }
11583 
perf_pmu_nop_int(struct pmu * pmu)11584 static int perf_pmu_nop_int(struct pmu *pmu)
11585 {
11586 	return 0;
11587 }
11588 
perf_event_nop_int(struct perf_event * event,u64 value)11589 static int perf_event_nop_int(struct perf_event *event, u64 value)
11590 {
11591 	return 0;
11592 }
11593 
11594 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
11595 
perf_pmu_start_txn(struct pmu * pmu,unsigned int flags)11596 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
11597 {
11598 	__this_cpu_write(nop_txn_flags, flags);
11599 
11600 	if (flags & ~PERF_PMU_TXN_ADD)
11601 		return;
11602 
11603 	perf_pmu_disable(pmu);
11604 }
11605 
perf_pmu_commit_txn(struct pmu * pmu)11606 static int perf_pmu_commit_txn(struct pmu *pmu)
11607 {
11608 	unsigned int flags = __this_cpu_read(nop_txn_flags);
11609 
11610 	__this_cpu_write(nop_txn_flags, 0);
11611 
11612 	if (flags & ~PERF_PMU_TXN_ADD)
11613 		return 0;
11614 
11615 	perf_pmu_enable(pmu);
11616 	return 0;
11617 }
11618 
perf_pmu_cancel_txn(struct pmu * pmu)11619 static void perf_pmu_cancel_txn(struct pmu *pmu)
11620 {
11621 	unsigned int flags =  __this_cpu_read(nop_txn_flags);
11622 
11623 	__this_cpu_write(nop_txn_flags, 0);
11624 
11625 	if (flags & ~PERF_PMU_TXN_ADD)
11626 		return;
11627 
11628 	perf_pmu_enable(pmu);
11629 }
11630 
perf_event_idx_default(struct perf_event * event)11631 static int perf_event_idx_default(struct perf_event *event)
11632 {
11633 	return 0;
11634 }
11635 
free_pmu_context(struct pmu * pmu)11636 static void free_pmu_context(struct pmu *pmu)
11637 {
11638 	free_percpu(pmu->cpu_pmu_context);
11639 }
11640 
11641 /*
11642  * Let userspace know that this PMU supports address range filtering:
11643  */
nr_addr_filters_show(struct device * dev,struct device_attribute * attr,char * page)11644 static ssize_t nr_addr_filters_show(struct device *dev,
11645 				    struct device_attribute *attr,
11646 				    char *page)
11647 {
11648 	struct pmu *pmu = dev_get_drvdata(dev);
11649 
11650 	return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
11651 }
11652 DEVICE_ATTR_RO(nr_addr_filters);
11653 
11654 static struct idr pmu_idr;
11655 
11656 static ssize_t
type_show(struct device * dev,struct device_attribute * attr,char * page)11657 type_show(struct device *dev, struct device_attribute *attr, char *page)
11658 {
11659 	struct pmu *pmu = dev_get_drvdata(dev);
11660 
11661 	return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->type);
11662 }
11663 static DEVICE_ATTR_RO(type);
11664 
11665 static ssize_t
perf_event_mux_interval_ms_show(struct device * dev,struct device_attribute * attr,char * page)11666 perf_event_mux_interval_ms_show(struct device *dev,
11667 				struct device_attribute *attr,
11668 				char *page)
11669 {
11670 	struct pmu *pmu = dev_get_drvdata(dev);
11671 
11672 	return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->hrtimer_interval_ms);
11673 }
11674 
11675 static DEFINE_MUTEX(mux_interval_mutex);
11676 
11677 static ssize_t
perf_event_mux_interval_ms_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)11678 perf_event_mux_interval_ms_store(struct device *dev,
11679 				 struct device_attribute *attr,
11680 				 const char *buf, size_t count)
11681 {
11682 	struct pmu *pmu = dev_get_drvdata(dev);
11683 	int timer, cpu, ret;
11684 
11685 	ret = kstrtoint(buf, 0, &timer);
11686 	if (ret)
11687 		return ret;
11688 
11689 	if (timer < 1)
11690 		return -EINVAL;
11691 
11692 	/* same value, noting to do */
11693 	if (timer == pmu->hrtimer_interval_ms)
11694 		return count;
11695 
11696 	mutex_lock(&mux_interval_mutex);
11697 	pmu->hrtimer_interval_ms = timer;
11698 
11699 	/* update all cpuctx for this PMU */
11700 	cpus_read_lock();
11701 	for_each_online_cpu(cpu) {
11702 		struct perf_cpu_pmu_context *cpc;
11703 		cpc = per_cpu_ptr(pmu->cpu_pmu_context, cpu);
11704 		cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
11705 
11706 		cpu_function_call(cpu, perf_mux_hrtimer_restart_ipi, cpc);
11707 	}
11708 	cpus_read_unlock();
11709 	mutex_unlock(&mux_interval_mutex);
11710 
11711 	return count;
11712 }
11713 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
11714 
perf_scope_cpu_topology_cpumask(unsigned int scope,int cpu)11715 static inline const struct cpumask *perf_scope_cpu_topology_cpumask(unsigned int scope, int cpu)
11716 {
11717 	switch (scope) {
11718 	case PERF_PMU_SCOPE_CORE:
11719 		return topology_sibling_cpumask(cpu);
11720 	case PERF_PMU_SCOPE_DIE:
11721 		return topology_die_cpumask(cpu);
11722 	case PERF_PMU_SCOPE_CLUSTER:
11723 		return topology_cluster_cpumask(cpu);
11724 	case PERF_PMU_SCOPE_PKG:
11725 		return topology_core_cpumask(cpu);
11726 	case PERF_PMU_SCOPE_SYS_WIDE:
11727 		return cpu_online_mask;
11728 	}
11729 
11730 	return NULL;
11731 }
11732 
perf_scope_cpumask(unsigned int scope)11733 static inline struct cpumask *perf_scope_cpumask(unsigned int scope)
11734 {
11735 	switch (scope) {
11736 	case PERF_PMU_SCOPE_CORE:
11737 		return perf_online_core_mask;
11738 	case PERF_PMU_SCOPE_DIE:
11739 		return perf_online_die_mask;
11740 	case PERF_PMU_SCOPE_CLUSTER:
11741 		return perf_online_cluster_mask;
11742 	case PERF_PMU_SCOPE_PKG:
11743 		return perf_online_pkg_mask;
11744 	case PERF_PMU_SCOPE_SYS_WIDE:
11745 		return perf_online_sys_mask;
11746 	}
11747 
11748 	return NULL;
11749 }
11750 
cpumask_show(struct device * dev,struct device_attribute * attr,char * buf)11751 static ssize_t cpumask_show(struct device *dev, struct device_attribute *attr,
11752 			    char *buf)
11753 {
11754 	struct pmu *pmu = dev_get_drvdata(dev);
11755 	struct cpumask *mask = perf_scope_cpumask(pmu->scope);
11756 
11757 	if (mask)
11758 		return cpumap_print_to_pagebuf(true, buf, mask);
11759 	return 0;
11760 }
11761 
11762 static DEVICE_ATTR_RO(cpumask);
11763 
11764 static struct attribute *pmu_dev_attrs[] = {
11765 	&dev_attr_type.attr,
11766 	&dev_attr_perf_event_mux_interval_ms.attr,
11767 	&dev_attr_nr_addr_filters.attr,
11768 	&dev_attr_cpumask.attr,
11769 	NULL,
11770 };
11771 
pmu_dev_is_visible(struct kobject * kobj,struct attribute * a,int n)11772 static umode_t pmu_dev_is_visible(struct kobject *kobj, struct attribute *a, int n)
11773 {
11774 	struct device *dev = kobj_to_dev(kobj);
11775 	struct pmu *pmu = dev_get_drvdata(dev);
11776 
11777 	if (n == 2 && !pmu->nr_addr_filters)
11778 		return 0;
11779 
11780 	/* cpumask */
11781 	if (n == 3 && pmu->scope == PERF_PMU_SCOPE_NONE)
11782 		return 0;
11783 
11784 	return a->mode;
11785 }
11786 
11787 static struct attribute_group pmu_dev_attr_group = {
11788 	.is_visible = pmu_dev_is_visible,
11789 	.attrs = pmu_dev_attrs,
11790 };
11791 
11792 static const struct attribute_group *pmu_dev_groups[] = {
11793 	&pmu_dev_attr_group,
11794 	NULL,
11795 };
11796 
11797 static int pmu_bus_running;
11798 static struct bus_type pmu_bus = {
11799 	.name		= "event_source",
11800 	.dev_groups	= pmu_dev_groups,
11801 };
11802 
pmu_dev_release(struct device * dev)11803 static void pmu_dev_release(struct device *dev)
11804 {
11805 	kfree(dev);
11806 }
11807 
pmu_dev_alloc(struct pmu * pmu)11808 static int pmu_dev_alloc(struct pmu *pmu)
11809 {
11810 	int ret = -ENOMEM;
11811 
11812 	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
11813 	if (!pmu->dev)
11814 		goto out;
11815 
11816 	pmu->dev->groups = pmu->attr_groups;
11817 	device_initialize(pmu->dev);
11818 
11819 	dev_set_drvdata(pmu->dev, pmu);
11820 	pmu->dev->bus = &pmu_bus;
11821 	pmu->dev->parent = pmu->parent;
11822 	pmu->dev->release = pmu_dev_release;
11823 
11824 	ret = dev_set_name(pmu->dev, "%s", pmu->name);
11825 	if (ret)
11826 		goto free_dev;
11827 
11828 	ret = device_add(pmu->dev);
11829 	if (ret)
11830 		goto free_dev;
11831 
11832 	if (pmu->attr_update) {
11833 		ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update);
11834 		if (ret)
11835 			goto del_dev;
11836 	}
11837 
11838 out:
11839 	return ret;
11840 
11841 del_dev:
11842 	device_del(pmu->dev);
11843 
11844 free_dev:
11845 	put_device(pmu->dev);
11846 	goto out;
11847 }
11848 
11849 static struct lock_class_key cpuctx_mutex;
11850 static struct lock_class_key cpuctx_lock;
11851 
idr_cmpxchg(struct idr * idr,unsigned long id,void * old,void * new)11852 static bool idr_cmpxchg(struct idr *idr, unsigned long id, void *old, void *new)
11853 {
11854 	void *tmp, *val = idr_find(idr, id);
11855 
11856 	if (val != old)
11857 		return false;
11858 
11859 	tmp = idr_replace(idr, new, id);
11860 	if (IS_ERR(tmp))
11861 		return false;
11862 
11863 	WARN_ON_ONCE(tmp != val);
11864 	return true;
11865 }
11866 
perf_pmu_register(struct pmu * pmu,const char * name,int type)11867 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
11868 {
11869 	int cpu, ret, max = PERF_TYPE_MAX;
11870 
11871 	mutex_lock(&pmus_lock);
11872 	ret = -ENOMEM;
11873 	pmu->pmu_disable_count = alloc_percpu(int);
11874 	if (!pmu->pmu_disable_count)
11875 		goto unlock;
11876 
11877 	pmu->type = -1;
11878 	if (WARN_ONCE(!name, "Can not register anonymous pmu.\n")) {
11879 		ret = -EINVAL;
11880 		goto free_pdc;
11881 	}
11882 
11883 	if (WARN_ONCE(pmu->scope >= PERF_PMU_MAX_SCOPE, "Can not register a pmu with an invalid scope.\n")) {
11884 		ret = -EINVAL;
11885 		goto free_pdc;
11886 	}
11887 
11888 	pmu->name = name;
11889 
11890 	if (type >= 0)
11891 		max = type;
11892 
11893 	ret = idr_alloc(&pmu_idr, NULL, max, 0, GFP_KERNEL);
11894 	if (ret < 0)
11895 		goto free_pdc;
11896 
11897 	WARN_ON(type >= 0 && ret != type);
11898 
11899 	type = ret;
11900 	pmu->type = type;
11901 	atomic_set(&pmu->exclusive_cnt, 0);
11902 
11903 	if (pmu_bus_running && !pmu->dev) {
11904 		ret = pmu_dev_alloc(pmu);
11905 		if (ret)
11906 			goto free_idr;
11907 	}
11908 
11909 	ret = -ENOMEM;
11910 	pmu->cpu_pmu_context = alloc_percpu(struct perf_cpu_pmu_context);
11911 	if (!pmu->cpu_pmu_context)
11912 		goto free_dev;
11913 
11914 	for_each_possible_cpu(cpu) {
11915 		struct perf_cpu_pmu_context *cpc;
11916 
11917 		cpc = per_cpu_ptr(pmu->cpu_pmu_context, cpu);
11918 		__perf_init_event_pmu_context(&cpc->epc, pmu);
11919 		__perf_mux_hrtimer_init(cpc, cpu);
11920 	}
11921 
11922 	if (!pmu->start_txn) {
11923 		if (pmu->pmu_enable) {
11924 			/*
11925 			 * If we have pmu_enable/pmu_disable calls, install
11926 			 * transaction stubs that use that to try and batch
11927 			 * hardware accesses.
11928 			 */
11929 			pmu->start_txn  = perf_pmu_start_txn;
11930 			pmu->commit_txn = perf_pmu_commit_txn;
11931 			pmu->cancel_txn = perf_pmu_cancel_txn;
11932 		} else {
11933 			pmu->start_txn  = perf_pmu_nop_txn;
11934 			pmu->commit_txn = perf_pmu_nop_int;
11935 			pmu->cancel_txn = perf_pmu_nop_void;
11936 		}
11937 	}
11938 
11939 	if (!pmu->pmu_enable) {
11940 		pmu->pmu_enable  = perf_pmu_nop_void;
11941 		pmu->pmu_disable = perf_pmu_nop_void;
11942 	}
11943 
11944 	if (!pmu->check_period)
11945 		pmu->check_period = perf_event_nop_int;
11946 
11947 	if (!pmu->event_idx)
11948 		pmu->event_idx = perf_event_idx_default;
11949 
11950 	/*
11951 	 * Now that the PMU is complete, make it visible to perf_try_init_event().
11952 	 */
11953 	if (!idr_cmpxchg(&pmu_idr, pmu->type, NULL, pmu))
11954 		goto free_context;
11955 	list_add_rcu(&pmu->entry, &pmus);
11956 
11957 	ret = 0;
11958 unlock:
11959 	mutex_unlock(&pmus_lock);
11960 
11961 	return ret;
11962 
11963 free_context:
11964 	free_percpu(pmu->cpu_pmu_context);
11965 
11966 free_dev:
11967 	if (pmu->dev && pmu->dev != PMU_NULL_DEV) {
11968 		device_del(pmu->dev);
11969 		put_device(pmu->dev);
11970 	}
11971 
11972 free_idr:
11973 	idr_remove(&pmu_idr, pmu->type);
11974 
11975 free_pdc:
11976 	free_percpu(pmu->pmu_disable_count);
11977 	goto unlock;
11978 }
11979 EXPORT_SYMBOL_GPL(perf_pmu_register);
11980 
perf_pmu_unregister(struct pmu * pmu)11981 void perf_pmu_unregister(struct pmu *pmu)
11982 {
11983 	mutex_lock(&pmus_lock);
11984 	list_del_rcu(&pmu->entry);
11985 	idr_remove(&pmu_idr, pmu->type);
11986 	mutex_unlock(&pmus_lock);
11987 
11988 	/*
11989 	 * We dereference the pmu list under both SRCU and regular RCU, so
11990 	 * synchronize against both of those.
11991 	 */
11992 	synchronize_srcu(&pmus_srcu);
11993 	synchronize_rcu();
11994 
11995 	free_percpu(pmu->pmu_disable_count);
11996 	if (pmu_bus_running && pmu->dev && pmu->dev != PMU_NULL_DEV) {
11997 		if (pmu->nr_addr_filters)
11998 			device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
11999 		device_del(pmu->dev);
12000 		put_device(pmu->dev);
12001 	}
12002 	free_pmu_context(pmu);
12003 }
12004 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
12005 
has_extended_regs(struct perf_event * event)12006 static inline bool has_extended_regs(struct perf_event *event)
12007 {
12008 	return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) ||
12009 	       (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK);
12010 }
12011 
perf_try_init_event(struct pmu * pmu,struct perf_event * event)12012 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
12013 {
12014 	struct perf_event_context *ctx = NULL;
12015 	int ret;
12016 
12017 	if (!try_module_get(pmu->module))
12018 		return -ENODEV;
12019 
12020 	/*
12021 	 * A number of pmu->event_init() methods iterate the sibling_list to,
12022 	 * for example, validate if the group fits on the PMU. Therefore,
12023 	 * if this is a sibling event, acquire the ctx->mutex to protect
12024 	 * the sibling_list.
12025 	 */
12026 	if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
12027 		/*
12028 		 * This ctx->mutex can nest when we're called through
12029 		 * inheritance. See the perf_event_ctx_lock_nested() comment.
12030 		 */
12031 		ctx = perf_event_ctx_lock_nested(event->group_leader,
12032 						 SINGLE_DEPTH_NESTING);
12033 		BUG_ON(!ctx);
12034 	}
12035 
12036 	event->pmu = pmu;
12037 	ret = pmu->event_init(event);
12038 
12039 	if (ctx)
12040 		perf_event_ctx_unlock(event->group_leader, ctx);
12041 
12042 	if (ret)
12043 		goto err_pmu;
12044 
12045 	if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) &&
12046 	    has_extended_regs(event)) {
12047 		ret = -EOPNOTSUPP;
12048 		goto err_destroy;
12049 	}
12050 
12051 	if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
12052 	    event_has_any_exclude_flag(event)) {
12053 		ret = -EINVAL;
12054 		goto err_destroy;
12055 	}
12056 
12057 	if (pmu->scope != PERF_PMU_SCOPE_NONE && event->cpu >= 0) {
12058 		const struct cpumask *cpumask;
12059 		struct cpumask *pmu_cpumask;
12060 		int cpu;
12061 
12062 		cpumask = perf_scope_cpu_topology_cpumask(pmu->scope, event->cpu);
12063 		pmu_cpumask = perf_scope_cpumask(pmu->scope);
12064 
12065 		ret = -ENODEV;
12066 		if (!pmu_cpumask || !cpumask)
12067 			goto err_destroy;
12068 
12069 		cpu = cpumask_any_and(pmu_cpumask, cpumask);
12070 		if (cpu >= nr_cpu_ids)
12071 			goto err_destroy;
12072 
12073 		event->event_caps |= PERF_EV_CAP_READ_SCOPE;
12074 	}
12075 
12076 	return 0;
12077 
12078 err_destroy:
12079 	if (event->destroy) {
12080 		event->destroy(event);
12081 		event->destroy = NULL;
12082 	}
12083 
12084 err_pmu:
12085 	event->pmu = NULL;
12086 	module_put(pmu->module);
12087 	return ret;
12088 }
12089 
perf_init_event(struct perf_event * event)12090 static struct pmu *perf_init_event(struct perf_event *event)
12091 {
12092 	bool extended_type = false;
12093 	int idx, type, ret;
12094 	struct pmu *pmu;
12095 
12096 	idx = srcu_read_lock(&pmus_srcu);
12097 
12098 	/*
12099 	 * Save original type before calling pmu->event_init() since certain
12100 	 * pmus overwrites event->attr.type to forward event to another pmu.
12101 	 */
12102 	event->orig_type = event->attr.type;
12103 
12104 	/* Try parent's PMU first: */
12105 	if (event->parent && event->parent->pmu) {
12106 		pmu = event->parent->pmu;
12107 		ret = perf_try_init_event(pmu, event);
12108 		if (!ret)
12109 			goto unlock;
12110 	}
12111 
12112 	/*
12113 	 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE
12114 	 * are often aliases for PERF_TYPE_RAW.
12115 	 */
12116 	type = event->attr.type;
12117 	if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE) {
12118 		type = event->attr.config >> PERF_PMU_TYPE_SHIFT;
12119 		if (!type) {
12120 			type = PERF_TYPE_RAW;
12121 		} else {
12122 			extended_type = true;
12123 			event->attr.config &= PERF_HW_EVENT_MASK;
12124 		}
12125 	}
12126 
12127 again:
12128 	rcu_read_lock();
12129 	pmu = idr_find(&pmu_idr, type);
12130 	rcu_read_unlock();
12131 	if (pmu) {
12132 		if (event->attr.type != type && type != PERF_TYPE_RAW &&
12133 		    !(pmu->capabilities & PERF_PMU_CAP_EXTENDED_HW_TYPE))
12134 			goto fail;
12135 
12136 		ret = perf_try_init_event(pmu, event);
12137 		if (ret == -ENOENT && event->attr.type != type && !extended_type) {
12138 			type = event->attr.type;
12139 			goto again;
12140 		}
12141 
12142 		if (ret)
12143 			pmu = ERR_PTR(ret);
12144 
12145 		goto unlock;
12146 	}
12147 
12148 	list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) {
12149 		ret = perf_try_init_event(pmu, event);
12150 		if (!ret)
12151 			goto unlock;
12152 
12153 		if (ret != -ENOENT) {
12154 			pmu = ERR_PTR(ret);
12155 			goto unlock;
12156 		}
12157 	}
12158 fail:
12159 	pmu = ERR_PTR(-ENOENT);
12160 unlock:
12161 	srcu_read_unlock(&pmus_srcu, idx);
12162 
12163 	return pmu;
12164 }
12165 
attach_sb_event(struct perf_event * event)12166 static void attach_sb_event(struct perf_event *event)
12167 {
12168 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
12169 
12170 	raw_spin_lock(&pel->lock);
12171 	list_add_rcu(&event->sb_list, &pel->list);
12172 	raw_spin_unlock(&pel->lock);
12173 }
12174 
12175 /*
12176  * We keep a list of all !task (and therefore per-cpu) events
12177  * that need to receive side-band records.
12178  *
12179  * This avoids having to scan all the various PMU per-cpu contexts
12180  * looking for them.
12181  */
account_pmu_sb_event(struct perf_event * event)12182 static void account_pmu_sb_event(struct perf_event *event)
12183 {
12184 	if (is_sb_event(event))
12185 		attach_sb_event(event);
12186 }
12187 
12188 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
account_freq_event_nohz(void)12189 static void account_freq_event_nohz(void)
12190 {
12191 #ifdef CONFIG_NO_HZ_FULL
12192 	/* Lock so we don't race with concurrent unaccount */
12193 	spin_lock(&nr_freq_lock);
12194 	if (atomic_inc_return(&nr_freq_events) == 1)
12195 		tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
12196 	spin_unlock(&nr_freq_lock);
12197 #endif
12198 }
12199 
account_freq_event(void)12200 static void account_freq_event(void)
12201 {
12202 	if (tick_nohz_full_enabled())
12203 		account_freq_event_nohz();
12204 	else
12205 		atomic_inc(&nr_freq_events);
12206 }
12207 
12208 
account_event(struct perf_event * event)12209 static void account_event(struct perf_event *event)
12210 {
12211 	bool inc = false;
12212 
12213 	if (event->parent)
12214 		return;
12215 
12216 	if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
12217 		inc = true;
12218 	if (event->attr.mmap || event->attr.mmap_data)
12219 		atomic_inc(&nr_mmap_events);
12220 	if (event->attr.build_id)
12221 		atomic_inc(&nr_build_id_events);
12222 	if (event->attr.comm)
12223 		atomic_inc(&nr_comm_events);
12224 	if (event->attr.namespaces)
12225 		atomic_inc(&nr_namespaces_events);
12226 	if (event->attr.cgroup)
12227 		atomic_inc(&nr_cgroup_events);
12228 	if (event->attr.task)
12229 		atomic_inc(&nr_task_events);
12230 	if (event->attr.freq)
12231 		account_freq_event();
12232 	if (event->attr.context_switch) {
12233 		atomic_inc(&nr_switch_events);
12234 		inc = true;
12235 	}
12236 	if (has_branch_stack(event))
12237 		inc = true;
12238 	if (is_cgroup_event(event))
12239 		inc = true;
12240 	if (event->attr.ksymbol)
12241 		atomic_inc(&nr_ksymbol_events);
12242 	if (event->attr.bpf_event)
12243 		atomic_inc(&nr_bpf_events);
12244 	if (event->attr.text_poke)
12245 		atomic_inc(&nr_text_poke_events);
12246 
12247 	if (inc) {
12248 		/*
12249 		 * We need the mutex here because static_branch_enable()
12250 		 * must complete *before* the perf_sched_count increment
12251 		 * becomes visible.
12252 		 */
12253 		if (atomic_inc_not_zero(&perf_sched_count))
12254 			goto enabled;
12255 
12256 		mutex_lock(&perf_sched_mutex);
12257 		if (!atomic_read(&perf_sched_count)) {
12258 			static_branch_enable(&perf_sched_events);
12259 			/*
12260 			 * Guarantee that all CPUs observe they key change and
12261 			 * call the perf scheduling hooks before proceeding to
12262 			 * install events that need them.
12263 			 */
12264 			synchronize_rcu();
12265 		}
12266 		/*
12267 		 * Now that we have waited for the sync_sched(), allow further
12268 		 * increments to by-pass the mutex.
12269 		 */
12270 		atomic_inc(&perf_sched_count);
12271 		mutex_unlock(&perf_sched_mutex);
12272 	}
12273 enabled:
12274 
12275 	account_pmu_sb_event(event);
12276 }
12277 
12278 /*
12279  * Allocate and initialize an event structure
12280  */
12281 static struct perf_event *
perf_event_alloc(struct perf_event_attr * attr,int cpu,struct task_struct * task,struct perf_event * group_leader,struct perf_event * parent_event,perf_overflow_handler_t overflow_handler,void * context,int cgroup_fd)12282 perf_event_alloc(struct perf_event_attr *attr, int cpu,
12283 		 struct task_struct *task,
12284 		 struct perf_event *group_leader,
12285 		 struct perf_event *parent_event,
12286 		 perf_overflow_handler_t overflow_handler,
12287 		 void *context, int cgroup_fd)
12288 {
12289 	struct pmu *pmu;
12290 	struct perf_event *event;
12291 	struct hw_perf_event *hwc;
12292 	long err = -EINVAL;
12293 	int node;
12294 
12295 	if ((unsigned)cpu >= nr_cpu_ids) {
12296 		if (!task || cpu != -1)
12297 			return ERR_PTR(-EINVAL);
12298 	}
12299 	if (attr->sigtrap && !task) {
12300 		/* Requires a task: avoid signalling random tasks. */
12301 		return ERR_PTR(-EINVAL);
12302 	}
12303 
12304 	node = (cpu >= 0) ? cpu_to_node(cpu) : -1;
12305 	event = kmem_cache_alloc_node(perf_event_cache, GFP_KERNEL | __GFP_ZERO,
12306 				      node);
12307 	if (!event)
12308 		return ERR_PTR(-ENOMEM);
12309 
12310 	/*
12311 	 * Single events are their own group leaders, with an
12312 	 * empty sibling list:
12313 	 */
12314 	if (!group_leader)
12315 		group_leader = event;
12316 
12317 	mutex_init(&event->child_mutex);
12318 	INIT_LIST_HEAD(&event->child_list);
12319 
12320 	INIT_LIST_HEAD(&event->event_entry);
12321 	INIT_LIST_HEAD(&event->sibling_list);
12322 	INIT_LIST_HEAD(&event->active_list);
12323 	init_event_group(event);
12324 	INIT_LIST_HEAD(&event->rb_entry);
12325 	INIT_LIST_HEAD(&event->active_entry);
12326 	INIT_LIST_HEAD(&event->addr_filters.list);
12327 	INIT_HLIST_NODE(&event->hlist_entry);
12328 
12329 
12330 	init_waitqueue_head(&event->waitq);
12331 	init_irq_work(&event->pending_irq, perf_pending_irq);
12332 	event->pending_disable_irq = IRQ_WORK_INIT_HARD(perf_pending_disable);
12333 	init_task_work(&event->pending_task, perf_pending_task);
12334 
12335 	mutex_init(&event->mmap_mutex);
12336 	raw_spin_lock_init(&event->addr_filters.lock);
12337 
12338 	atomic_long_set(&event->refcount, 1);
12339 	event->cpu		= cpu;
12340 	event->attr		= *attr;
12341 	event->group_leader	= group_leader;
12342 	event->pmu		= NULL;
12343 	event->oncpu		= -1;
12344 
12345 	event->parent		= parent_event;
12346 
12347 	event->ns		= get_pid_ns(task_active_pid_ns(current));
12348 	event->id		= atomic64_inc_return(&perf_event_id);
12349 
12350 	event->state		= PERF_EVENT_STATE_INACTIVE;
12351 
12352 	if (parent_event)
12353 		event->event_caps = parent_event->event_caps;
12354 
12355 	if (task) {
12356 		event->attach_state = PERF_ATTACH_TASK;
12357 		/*
12358 		 * XXX pmu::event_init needs to know what task to account to
12359 		 * and we cannot use the ctx information because we need the
12360 		 * pmu before we get a ctx.
12361 		 */
12362 		event->hw.target = get_task_struct(task);
12363 	}
12364 
12365 	event->clock = &local_clock;
12366 	if (parent_event)
12367 		event->clock = parent_event->clock;
12368 
12369 	if (!overflow_handler && parent_event) {
12370 		overflow_handler = parent_event->overflow_handler;
12371 		context = parent_event->overflow_handler_context;
12372 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
12373 		if (parent_event->prog) {
12374 			struct bpf_prog *prog = parent_event->prog;
12375 
12376 			bpf_prog_inc(prog);
12377 			event->prog = prog;
12378 		}
12379 #endif
12380 	}
12381 
12382 	if (overflow_handler) {
12383 		event->overflow_handler	= overflow_handler;
12384 		event->overflow_handler_context = context;
12385 	} else if (is_write_backward(event)){
12386 		event->overflow_handler = perf_event_output_backward;
12387 		event->overflow_handler_context = NULL;
12388 	} else {
12389 		event->overflow_handler = perf_event_output_forward;
12390 		event->overflow_handler_context = NULL;
12391 	}
12392 
12393 	perf_event__state_init(event);
12394 
12395 	pmu = NULL;
12396 
12397 	hwc = &event->hw;
12398 	hwc->sample_period = attr->sample_period;
12399 	if (attr->freq && attr->sample_freq)
12400 		hwc->sample_period = 1;
12401 	hwc->last_period = hwc->sample_period;
12402 
12403 	local64_set(&hwc->period_left, hwc->sample_period);
12404 
12405 	/*
12406 	 * We do not support PERF_SAMPLE_READ on inherited events unless
12407 	 * PERF_SAMPLE_TID is also selected, which allows inherited events to
12408 	 * collect per-thread samples.
12409 	 * See perf_output_read().
12410 	 */
12411 	if (has_inherit_and_sample_read(attr) && !(attr->sample_type & PERF_SAMPLE_TID))
12412 		goto err;
12413 
12414 	if (!has_branch_stack(event))
12415 		event->attr.branch_sample_type = 0;
12416 
12417 	pmu = perf_init_event(event);
12418 	if (IS_ERR(pmu)) {
12419 		err = PTR_ERR(pmu);
12420 		goto err;
12421 	}
12422 
12423 	/*
12424 	 * Disallow uncore-task events. Similarly, disallow uncore-cgroup
12425 	 * events (they don't make sense as the cgroup will be different
12426 	 * on other CPUs in the uncore mask).
12427 	 */
12428 	if (pmu->task_ctx_nr == perf_invalid_context && (task || cgroup_fd != -1)) {
12429 		err = -EINVAL;
12430 		goto err;
12431 	}
12432 
12433 	if (event->attr.aux_output &&
12434 	    (!(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT) ||
12435 	     event->attr.aux_pause || event->attr.aux_resume)) {
12436 		err = -EOPNOTSUPP;
12437 		goto err;
12438 	}
12439 
12440 	if (event->attr.aux_pause && event->attr.aux_resume) {
12441 		err = -EINVAL;
12442 		goto err;
12443 	}
12444 
12445 	if (event->attr.aux_start_paused) {
12446 		if (!(pmu->capabilities & PERF_PMU_CAP_AUX_PAUSE)) {
12447 			err = -EOPNOTSUPP;
12448 			goto err;
12449 		}
12450 		event->hw.aux_paused = 1;
12451 	}
12452 
12453 	if (cgroup_fd != -1) {
12454 		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
12455 		if (err)
12456 			goto err;
12457 	}
12458 
12459 	err = exclusive_event_init(event);
12460 	if (err)
12461 		goto err;
12462 
12463 	if (has_addr_filter(event)) {
12464 		event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
12465 						    sizeof(struct perf_addr_filter_range),
12466 						    GFP_KERNEL);
12467 		if (!event->addr_filter_ranges) {
12468 			err = -ENOMEM;
12469 			goto err;
12470 		}
12471 
12472 		/*
12473 		 * Clone the parent's vma offsets: they are valid until exec()
12474 		 * even if the mm is not shared with the parent.
12475 		 */
12476 		if (event->parent) {
12477 			struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
12478 
12479 			raw_spin_lock_irq(&ifh->lock);
12480 			memcpy(event->addr_filter_ranges,
12481 			       event->parent->addr_filter_ranges,
12482 			       pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
12483 			raw_spin_unlock_irq(&ifh->lock);
12484 		}
12485 
12486 		/* force hw sync on the address filters */
12487 		event->addr_filters_gen = 1;
12488 	}
12489 
12490 	if (!event->parent) {
12491 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
12492 			err = get_callchain_buffers(attr->sample_max_stack);
12493 			if (err)
12494 				goto err;
12495 			event->attach_state |= PERF_ATTACH_CALLCHAIN;
12496 		}
12497 	}
12498 
12499 	err = security_perf_event_alloc(event);
12500 	if (err)
12501 		goto err;
12502 
12503 	/* symmetric to unaccount_event() in _free_event() */
12504 	account_event(event);
12505 
12506 	return event;
12507 
12508 err:
12509 	__free_event(event);
12510 	return ERR_PTR(err);
12511 }
12512 
perf_copy_attr(struct perf_event_attr __user * uattr,struct perf_event_attr * attr)12513 static int perf_copy_attr(struct perf_event_attr __user *uattr,
12514 			  struct perf_event_attr *attr)
12515 {
12516 	u32 size;
12517 	int ret;
12518 
12519 	/* Zero the full structure, so that a short copy will be nice. */
12520 	memset(attr, 0, sizeof(*attr));
12521 
12522 	ret = get_user(size, &uattr->size);
12523 	if (ret)
12524 		return ret;
12525 
12526 	/* ABI compatibility quirk: */
12527 	if (!size)
12528 		size = PERF_ATTR_SIZE_VER0;
12529 	if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE)
12530 		goto err_size;
12531 
12532 	ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
12533 	if (ret) {
12534 		if (ret == -E2BIG)
12535 			goto err_size;
12536 		return ret;
12537 	}
12538 
12539 	attr->size = size;
12540 
12541 	if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
12542 		return -EINVAL;
12543 
12544 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
12545 		return -EINVAL;
12546 
12547 	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
12548 		return -EINVAL;
12549 
12550 	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
12551 		u64 mask = attr->branch_sample_type;
12552 
12553 		/* only using defined bits */
12554 		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
12555 			return -EINVAL;
12556 
12557 		/* at least one branch bit must be set */
12558 		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
12559 			return -EINVAL;
12560 
12561 		/* propagate priv level, when not set for branch */
12562 		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
12563 
12564 			/* exclude_kernel checked on syscall entry */
12565 			if (!attr->exclude_kernel)
12566 				mask |= PERF_SAMPLE_BRANCH_KERNEL;
12567 
12568 			if (!attr->exclude_user)
12569 				mask |= PERF_SAMPLE_BRANCH_USER;
12570 
12571 			if (!attr->exclude_hv)
12572 				mask |= PERF_SAMPLE_BRANCH_HV;
12573 			/*
12574 			 * adjust user setting (for HW filter setup)
12575 			 */
12576 			attr->branch_sample_type = mask;
12577 		}
12578 		/* privileged levels capture (kernel, hv): check permissions */
12579 		if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) {
12580 			ret = perf_allow_kernel(attr);
12581 			if (ret)
12582 				return ret;
12583 		}
12584 	}
12585 
12586 	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
12587 		ret = perf_reg_validate(attr->sample_regs_user);
12588 		if (ret)
12589 			return ret;
12590 	}
12591 
12592 	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
12593 		if (!arch_perf_have_user_stack_dump())
12594 			return -ENOSYS;
12595 
12596 		/*
12597 		 * We have __u32 type for the size, but so far
12598 		 * we can only use __u16 as maximum due to the
12599 		 * __u16 sample size limit.
12600 		 */
12601 		if (attr->sample_stack_user >= USHRT_MAX)
12602 			return -EINVAL;
12603 		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
12604 			return -EINVAL;
12605 	}
12606 
12607 	if (!attr->sample_max_stack)
12608 		attr->sample_max_stack = sysctl_perf_event_max_stack;
12609 
12610 	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
12611 		ret = perf_reg_validate(attr->sample_regs_intr);
12612 
12613 #ifndef CONFIG_CGROUP_PERF
12614 	if (attr->sample_type & PERF_SAMPLE_CGROUP)
12615 		return -EINVAL;
12616 #endif
12617 	if ((attr->sample_type & PERF_SAMPLE_WEIGHT) &&
12618 	    (attr->sample_type & PERF_SAMPLE_WEIGHT_STRUCT))
12619 		return -EINVAL;
12620 
12621 	if (!attr->inherit && attr->inherit_thread)
12622 		return -EINVAL;
12623 
12624 	if (attr->remove_on_exec && attr->enable_on_exec)
12625 		return -EINVAL;
12626 
12627 	if (attr->sigtrap && !attr->remove_on_exec)
12628 		return -EINVAL;
12629 
12630 out:
12631 	return ret;
12632 
12633 err_size:
12634 	put_user(sizeof(*attr), &uattr->size);
12635 	ret = -E2BIG;
12636 	goto out;
12637 }
12638 
mutex_lock_double(struct mutex * a,struct mutex * b)12639 static void mutex_lock_double(struct mutex *a, struct mutex *b)
12640 {
12641 	if (b < a)
12642 		swap(a, b);
12643 
12644 	mutex_lock(a);
12645 	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
12646 }
12647 
12648 static int
perf_event_set_output(struct perf_event * event,struct perf_event * output_event)12649 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
12650 {
12651 	struct perf_buffer *rb = NULL;
12652 	int ret = -EINVAL;
12653 
12654 	if (!output_event) {
12655 		mutex_lock(&event->mmap_mutex);
12656 		goto set;
12657 	}
12658 
12659 	/* don't allow circular references */
12660 	if (event == output_event)
12661 		goto out;
12662 
12663 	/*
12664 	 * Don't allow cross-cpu buffers
12665 	 */
12666 	if (output_event->cpu != event->cpu)
12667 		goto out;
12668 
12669 	/*
12670 	 * If its not a per-cpu rb, it must be the same task.
12671 	 */
12672 	if (output_event->cpu == -1 && output_event->hw.target != event->hw.target)
12673 		goto out;
12674 
12675 	/*
12676 	 * Mixing clocks in the same buffer is trouble you don't need.
12677 	 */
12678 	if (output_event->clock != event->clock)
12679 		goto out;
12680 
12681 	/*
12682 	 * Either writing ring buffer from beginning or from end.
12683 	 * Mixing is not allowed.
12684 	 */
12685 	if (is_write_backward(output_event) != is_write_backward(event))
12686 		goto out;
12687 
12688 	/*
12689 	 * If both events generate aux data, they must be on the same PMU
12690 	 */
12691 	if (has_aux(event) && has_aux(output_event) &&
12692 	    event->pmu != output_event->pmu)
12693 		goto out;
12694 
12695 	/*
12696 	 * Hold both mmap_mutex to serialize against perf_mmap_close().  Since
12697 	 * output_event is already on rb->event_list, and the list iteration
12698 	 * restarts after every removal, it is guaranteed this new event is
12699 	 * observed *OR* if output_event is already removed, it's guaranteed we
12700 	 * observe !rb->mmap_count.
12701 	 */
12702 	mutex_lock_double(&event->mmap_mutex, &output_event->mmap_mutex);
12703 set:
12704 	/* Can't redirect output if we've got an active mmap() */
12705 	if (atomic_read(&event->mmap_count))
12706 		goto unlock;
12707 
12708 	if (output_event) {
12709 		/* get the rb we want to redirect to */
12710 		rb = ring_buffer_get(output_event);
12711 		if (!rb)
12712 			goto unlock;
12713 
12714 		/* did we race against perf_mmap_close() */
12715 		if (!atomic_read(&rb->mmap_count)) {
12716 			ring_buffer_put(rb);
12717 			goto unlock;
12718 		}
12719 	}
12720 
12721 	ring_buffer_attach(event, rb);
12722 
12723 	ret = 0;
12724 unlock:
12725 	mutex_unlock(&event->mmap_mutex);
12726 	if (output_event)
12727 		mutex_unlock(&output_event->mmap_mutex);
12728 
12729 out:
12730 	return ret;
12731 }
12732 
perf_event_set_clock(struct perf_event * event,clockid_t clk_id)12733 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
12734 {
12735 	bool nmi_safe = false;
12736 
12737 	switch (clk_id) {
12738 	case CLOCK_MONOTONIC:
12739 		event->clock = &ktime_get_mono_fast_ns;
12740 		nmi_safe = true;
12741 		break;
12742 
12743 	case CLOCK_MONOTONIC_RAW:
12744 		event->clock = &ktime_get_raw_fast_ns;
12745 		nmi_safe = true;
12746 		break;
12747 
12748 	case CLOCK_REALTIME:
12749 		event->clock = &ktime_get_real_ns;
12750 		break;
12751 
12752 	case CLOCK_BOOTTIME:
12753 		event->clock = &ktime_get_boottime_ns;
12754 		break;
12755 
12756 	case CLOCK_TAI:
12757 		event->clock = &ktime_get_clocktai_ns;
12758 		break;
12759 
12760 	default:
12761 		return -EINVAL;
12762 	}
12763 
12764 	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
12765 		return -EINVAL;
12766 
12767 	return 0;
12768 }
12769 
12770 static bool
perf_check_permission(struct perf_event_attr * attr,struct task_struct * task)12771 perf_check_permission(struct perf_event_attr *attr, struct task_struct *task)
12772 {
12773 	unsigned int ptrace_mode = PTRACE_MODE_READ_REALCREDS;
12774 	bool is_capable = perfmon_capable();
12775 
12776 	if (attr->sigtrap) {
12777 		/*
12778 		 * perf_event_attr::sigtrap sends signals to the other task.
12779 		 * Require the current task to also have CAP_KILL.
12780 		 */
12781 		rcu_read_lock();
12782 		is_capable &= ns_capable(__task_cred(task)->user_ns, CAP_KILL);
12783 		rcu_read_unlock();
12784 
12785 		/*
12786 		 * If the required capabilities aren't available, checks for
12787 		 * ptrace permissions: upgrade to ATTACH, since sending signals
12788 		 * can effectively change the target task.
12789 		 */
12790 		ptrace_mode = PTRACE_MODE_ATTACH_REALCREDS;
12791 	}
12792 
12793 	/*
12794 	 * Preserve ptrace permission check for backwards compatibility. The
12795 	 * ptrace check also includes checks that the current task and other
12796 	 * task have matching uids, and is therefore not done here explicitly.
12797 	 */
12798 	return is_capable || ptrace_may_access(task, ptrace_mode);
12799 }
12800 
12801 /**
12802  * sys_perf_event_open - open a performance event, associate it to a task/cpu
12803  *
12804  * @attr_uptr:	event_id type attributes for monitoring/sampling
12805  * @pid:		target pid
12806  * @cpu:		target cpu
12807  * @group_fd:		group leader event fd
12808  * @flags:		perf event open flags
12809  */
SYSCALL_DEFINE5(perf_event_open,struct perf_event_attr __user *,attr_uptr,pid_t,pid,int,cpu,int,group_fd,unsigned long,flags)12810 SYSCALL_DEFINE5(perf_event_open,
12811 		struct perf_event_attr __user *, attr_uptr,
12812 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
12813 {
12814 	struct perf_event *group_leader = NULL, *output_event = NULL;
12815 	struct perf_event_pmu_context *pmu_ctx;
12816 	struct perf_event *event, *sibling;
12817 	struct perf_event_attr attr;
12818 	struct perf_event_context *ctx;
12819 	struct file *event_file = NULL;
12820 	struct fd group = EMPTY_FD;
12821 	struct task_struct *task = NULL;
12822 	struct pmu *pmu;
12823 	int event_fd;
12824 	int move_group = 0;
12825 	int err;
12826 	int f_flags = O_RDWR;
12827 	int cgroup_fd = -1;
12828 
12829 	/* for future expandability... */
12830 	if (flags & ~PERF_FLAG_ALL)
12831 		return -EINVAL;
12832 
12833 	err = perf_copy_attr(attr_uptr, &attr);
12834 	if (err)
12835 		return err;
12836 
12837 	/* Do we allow access to perf_event_open(2) ? */
12838 	err = security_perf_event_open(&attr, PERF_SECURITY_OPEN);
12839 	if (err)
12840 		return err;
12841 
12842 	if (!attr.exclude_kernel) {
12843 		err = perf_allow_kernel(&attr);
12844 		if (err)
12845 			return err;
12846 	}
12847 
12848 	if (attr.namespaces) {
12849 		if (!perfmon_capable())
12850 			return -EACCES;
12851 	}
12852 
12853 	if (attr.freq) {
12854 		if (attr.sample_freq > sysctl_perf_event_sample_rate)
12855 			return -EINVAL;
12856 	} else {
12857 		if (attr.sample_period & (1ULL << 63))
12858 			return -EINVAL;
12859 	}
12860 
12861 	/* Only privileged users can get physical addresses */
12862 	if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) {
12863 		err = perf_allow_kernel(&attr);
12864 		if (err)
12865 			return err;
12866 	}
12867 
12868 	/* REGS_INTR can leak data, lockdown must prevent this */
12869 	if (attr.sample_type & PERF_SAMPLE_REGS_INTR) {
12870 		err = security_locked_down(LOCKDOWN_PERF);
12871 		if (err)
12872 			return err;
12873 	}
12874 
12875 	/*
12876 	 * In cgroup mode, the pid argument is used to pass the fd
12877 	 * opened to the cgroup directory in cgroupfs. The cpu argument
12878 	 * designates the cpu on which to monitor threads from that
12879 	 * cgroup.
12880 	 */
12881 	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
12882 		return -EINVAL;
12883 
12884 	if (flags & PERF_FLAG_FD_CLOEXEC)
12885 		f_flags |= O_CLOEXEC;
12886 
12887 	event_fd = get_unused_fd_flags(f_flags);
12888 	if (event_fd < 0)
12889 		return event_fd;
12890 
12891 	if (group_fd != -1) {
12892 		err = perf_fget_light(group_fd, &group);
12893 		if (err)
12894 			goto err_fd;
12895 		group_leader = fd_file(group)->private_data;
12896 		if (flags & PERF_FLAG_FD_OUTPUT)
12897 			output_event = group_leader;
12898 		if (flags & PERF_FLAG_FD_NO_GROUP)
12899 			group_leader = NULL;
12900 	}
12901 
12902 	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
12903 		task = find_lively_task_by_vpid(pid);
12904 		if (IS_ERR(task)) {
12905 			err = PTR_ERR(task);
12906 			goto err_group_fd;
12907 		}
12908 	}
12909 
12910 	if (task && group_leader &&
12911 	    group_leader->attr.inherit != attr.inherit) {
12912 		err = -EINVAL;
12913 		goto err_task;
12914 	}
12915 
12916 	if (flags & PERF_FLAG_PID_CGROUP)
12917 		cgroup_fd = pid;
12918 
12919 	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
12920 				 NULL, NULL, cgroup_fd);
12921 	if (IS_ERR(event)) {
12922 		err = PTR_ERR(event);
12923 		goto err_task;
12924 	}
12925 
12926 	if (is_sampling_event(event)) {
12927 		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
12928 			err = -EOPNOTSUPP;
12929 			goto err_alloc;
12930 		}
12931 	}
12932 
12933 	/*
12934 	 * Special case software events and allow them to be part of
12935 	 * any hardware group.
12936 	 */
12937 	pmu = event->pmu;
12938 
12939 	if (attr.use_clockid) {
12940 		err = perf_event_set_clock(event, attr.clockid);
12941 		if (err)
12942 			goto err_alloc;
12943 	}
12944 
12945 	if (pmu->task_ctx_nr == perf_sw_context)
12946 		event->event_caps |= PERF_EV_CAP_SOFTWARE;
12947 
12948 	if (task) {
12949 		err = down_read_interruptible(&task->signal->exec_update_lock);
12950 		if (err)
12951 			goto err_alloc;
12952 
12953 		/*
12954 		 * We must hold exec_update_lock across this and any potential
12955 		 * perf_install_in_context() call for this new event to
12956 		 * serialize against exec() altering our credentials (and the
12957 		 * perf_event_exit_task() that could imply).
12958 		 */
12959 		err = -EACCES;
12960 		if (!perf_check_permission(&attr, task))
12961 			goto err_cred;
12962 	}
12963 
12964 	/*
12965 	 * Get the target context (task or percpu):
12966 	 */
12967 	ctx = find_get_context(task, event);
12968 	if (IS_ERR(ctx)) {
12969 		err = PTR_ERR(ctx);
12970 		goto err_cred;
12971 	}
12972 
12973 	mutex_lock(&ctx->mutex);
12974 
12975 	if (ctx->task == TASK_TOMBSTONE) {
12976 		err = -ESRCH;
12977 		goto err_locked;
12978 	}
12979 
12980 	if (!task) {
12981 		/*
12982 		 * Check if the @cpu we're creating an event for is online.
12983 		 *
12984 		 * We use the perf_cpu_context::ctx::mutex to serialize against
12985 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12986 		 */
12987 		struct perf_cpu_context *cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu);
12988 
12989 		if (!cpuctx->online) {
12990 			err = -ENODEV;
12991 			goto err_locked;
12992 		}
12993 	}
12994 
12995 	if (group_leader) {
12996 		err = -EINVAL;
12997 
12998 		/*
12999 		 * Do not allow a recursive hierarchy (this new sibling
13000 		 * becoming part of another group-sibling):
13001 		 */
13002 		if (group_leader->group_leader != group_leader)
13003 			goto err_locked;
13004 
13005 		/* All events in a group should have the same clock */
13006 		if (group_leader->clock != event->clock)
13007 			goto err_locked;
13008 
13009 		/*
13010 		 * Make sure we're both events for the same CPU;
13011 		 * grouping events for different CPUs is broken; since
13012 		 * you can never concurrently schedule them anyhow.
13013 		 */
13014 		if (group_leader->cpu != event->cpu)
13015 			goto err_locked;
13016 
13017 		/*
13018 		 * Make sure we're both on the same context; either task or cpu.
13019 		 */
13020 		if (group_leader->ctx != ctx)
13021 			goto err_locked;
13022 
13023 		/*
13024 		 * Only a group leader can be exclusive or pinned
13025 		 */
13026 		if (attr.exclusive || attr.pinned)
13027 			goto err_locked;
13028 
13029 		if (is_software_event(event) &&
13030 		    !in_software_context(group_leader)) {
13031 			/*
13032 			 * If the event is a sw event, but the group_leader
13033 			 * is on hw context.
13034 			 *
13035 			 * Allow the addition of software events to hw
13036 			 * groups, this is safe because software events
13037 			 * never fail to schedule.
13038 			 *
13039 			 * Note the comment that goes with struct
13040 			 * perf_event_pmu_context.
13041 			 */
13042 			pmu = group_leader->pmu_ctx->pmu;
13043 		} else if (!is_software_event(event)) {
13044 			if (is_software_event(group_leader) &&
13045 			    (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
13046 				/*
13047 				 * In case the group is a pure software group, and we
13048 				 * try to add a hardware event, move the whole group to
13049 				 * the hardware context.
13050 				 */
13051 				move_group = 1;
13052 			}
13053 
13054 			/* Don't allow group of multiple hw events from different pmus */
13055 			if (!in_software_context(group_leader) &&
13056 			    group_leader->pmu_ctx->pmu != pmu)
13057 				goto err_locked;
13058 		}
13059 	}
13060 
13061 	/*
13062 	 * Now that we're certain of the pmu; find the pmu_ctx.
13063 	 */
13064 	pmu_ctx = find_get_pmu_context(pmu, ctx, event);
13065 	if (IS_ERR(pmu_ctx)) {
13066 		err = PTR_ERR(pmu_ctx);
13067 		goto err_locked;
13068 	}
13069 	event->pmu_ctx = pmu_ctx;
13070 
13071 	if (output_event) {
13072 		err = perf_event_set_output(event, output_event);
13073 		if (err)
13074 			goto err_context;
13075 	}
13076 
13077 	if (!perf_event_validate_size(event)) {
13078 		err = -E2BIG;
13079 		goto err_context;
13080 	}
13081 
13082 	if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) {
13083 		err = -EINVAL;
13084 		goto err_context;
13085 	}
13086 
13087 	/*
13088 	 * Must be under the same ctx::mutex as perf_install_in_context(),
13089 	 * because we need to serialize with concurrent event creation.
13090 	 */
13091 	if (!exclusive_event_installable(event, ctx)) {
13092 		err = -EBUSY;
13093 		goto err_context;
13094 	}
13095 
13096 	WARN_ON_ONCE(ctx->parent_ctx);
13097 
13098 	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, f_flags);
13099 	if (IS_ERR(event_file)) {
13100 		err = PTR_ERR(event_file);
13101 		event_file = NULL;
13102 		goto err_context;
13103 	}
13104 
13105 	/*
13106 	 * This is the point on no return; we cannot fail hereafter. This is
13107 	 * where we start modifying current state.
13108 	 */
13109 
13110 	if (move_group) {
13111 		perf_remove_from_context(group_leader, 0);
13112 		put_pmu_ctx(group_leader->pmu_ctx);
13113 
13114 		for_each_sibling_event(sibling, group_leader) {
13115 			perf_remove_from_context(sibling, 0);
13116 			put_pmu_ctx(sibling->pmu_ctx);
13117 		}
13118 
13119 		/*
13120 		 * Install the group siblings before the group leader.
13121 		 *
13122 		 * Because a group leader will try and install the entire group
13123 		 * (through the sibling list, which is still in-tact), we can
13124 		 * end up with siblings installed in the wrong context.
13125 		 *
13126 		 * By installing siblings first we NO-OP because they're not
13127 		 * reachable through the group lists.
13128 		 */
13129 		for_each_sibling_event(sibling, group_leader) {
13130 			sibling->pmu_ctx = pmu_ctx;
13131 			get_pmu_ctx(pmu_ctx);
13132 			perf_event__state_init(sibling);
13133 			perf_install_in_context(ctx, sibling, sibling->cpu);
13134 		}
13135 
13136 		/*
13137 		 * Removing from the context ends up with disabled
13138 		 * event. What we want here is event in the initial
13139 		 * startup state, ready to be add into new context.
13140 		 */
13141 		group_leader->pmu_ctx = pmu_ctx;
13142 		get_pmu_ctx(pmu_ctx);
13143 		perf_event__state_init(group_leader);
13144 		perf_install_in_context(ctx, group_leader, group_leader->cpu);
13145 	}
13146 
13147 	/*
13148 	 * Precalculate sample_data sizes; do while holding ctx::mutex such
13149 	 * that we're serialized against further additions and before
13150 	 * perf_install_in_context() which is the point the event is active and
13151 	 * can use these values.
13152 	 */
13153 	perf_event__header_size(event);
13154 	perf_event__id_header_size(event);
13155 
13156 	event->owner = current;
13157 
13158 	perf_install_in_context(ctx, event, event->cpu);
13159 	perf_unpin_context(ctx);
13160 
13161 	mutex_unlock(&ctx->mutex);
13162 
13163 	if (task) {
13164 		up_read(&task->signal->exec_update_lock);
13165 		put_task_struct(task);
13166 	}
13167 
13168 	mutex_lock(&current->perf_event_mutex);
13169 	list_add_tail(&event->owner_entry, &current->perf_event_list);
13170 	mutex_unlock(&current->perf_event_mutex);
13171 
13172 	/*
13173 	 * Drop the reference on the group_event after placing the
13174 	 * new event on the sibling_list. This ensures destruction
13175 	 * of the group leader will find the pointer to itself in
13176 	 * perf_group_detach().
13177 	 */
13178 	fdput(group);
13179 	fd_install(event_fd, event_file);
13180 	return event_fd;
13181 
13182 err_context:
13183 	put_pmu_ctx(event->pmu_ctx);
13184 	event->pmu_ctx = NULL; /* _free_event() */
13185 err_locked:
13186 	mutex_unlock(&ctx->mutex);
13187 	perf_unpin_context(ctx);
13188 	put_ctx(ctx);
13189 err_cred:
13190 	if (task)
13191 		up_read(&task->signal->exec_update_lock);
13192 err_alloc:
13193 	free_event(event);
13194 err_task:
13195 	if (task)
13196 		put_task_struct(task);
13197 err_group_fd:
13198 	fdput(group);
13199 err_fd:
13200 	put_unused_fd(event_fd);
13201 	return err;
13202 }
13203 
13204 /**
13205  * perf_event_create_kernel_counter
13206  *
13207  * @attr: attributes of the counter to create
13208  * @cpu: cpu in which the counter is bound
13209  * @task: task to profile (NULL for percpu)
13210  * @overflow_handler: callback to trigger when we hit the event
13211  * @context: context data could be used in overflow_handler callback
13212  */
13213 struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr * attr,int cpu,struct task_struct * task,perf_overflow_handler_t overflow_handler,void * context)13214 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
13215 				 struct task_struct *task,
13216 				 perf_overflow_handler_t overflow_handler,
13217 				 void *context)
13218 {
13219 	struct perf_event_pmu_context *pmu_ctx;
13220 	struct perf_event_context *ctx;
13221 	struct perf_event *event;
13222 	struct pmu *pmu;
13223 	int err;
13224 
13225 	/*
13226 	 * Grouping is not supported for kernel events, neither is 'AUX',
13227 	 * make sure the caller's intentions are adjusted.
13228 	 */
13229 	if (attr->aux_output || attr->aux_action)
13230 		return ERR_PTR(-EINVAL);
13231 
13232 	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
13233 				 overflow_handler, context, -1);
13234 	if (IS_ERR(event)) {
13235 		err = PTR_ERR(event);
13236 		goto err;
13237 	}
13238 
13239 	/* Mark owner so we could distinguish it from user events. */
13240 	event->owner = TASK_TOMBSTONE;
13241 	pmu = event->pmu;
13242 
13243 	if (pmu->task_ctx_nr == perf_sw_context)
13244 		event->event_caps |= PERF_EV_CAP_SOFTWARE;
13245 
13246 	/*
13247 	 * Get the target context (task or percpu):
13248 	 */
13249 	ctx = find_get_context(task, event);
13250 	if (IS_ERR(ctx)) {
13251 		err = PTR_ERR(ctx);
13252 		goto err_alloc;
13253 	}
13254 
13255 	WARN_ON_ONCE(ctx->parent_ctx);
13256 	mutex_lock(&ctx->mutex);
13257 	if (ctx->task == TASK_TOMBSTONE) {
13258 		err = -ESRCH;
13259 		goto err_unlock;
13260 	}
13261 
13262 	pmu_ctx = find_get_pmu_context(pmu, ctx, event);
13263 	if (IS_ERR(pmu_ctx)) {
13264 		err = PTR_ERR(pmu_ctx);
13265 		goto err_unlock;
13266 	}
13267 	event->pmu_ctx = pmu_ctx;
13268 
13269 	if (!task) {
13270 		/*
13271 		 * Check if the @cpu we're creating an event for is online.
13272 		 *
13273 		 * We use the perf_cpu_context::ctx::mutex to serialize against
13274 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
13275 		 */
13276 		struct perf_cpu_context *cpuctx =
13277 			container_of(ctx, struct perf_cpu_context, ctx);
13278 		if (!cpuctx->online) {
13279 			err = -ENODEV;
13280 			goto err_pmu_ctx;
13281 		}
13282 	}
13283 
13284 	if (!exclusive_event_installable(event, ctx)) {
13285 		err = -EBUSY;
13286 		goto err_pmu_ctx;
13287 	}
13288 
13289 	perf_install_in_context(ctx, event, event->cpu);
13290 	perf_unpin_context(ctx);
13291 	mutex_unlock(&ctx->mutex);
13292 
13293 	return event;
13294 
13295 err_pmu_ctx:
13296 	put_pmu_ctx(pmu_ctx);
13297 	event->pmu_ctx = NULL; /* _free_event() */
13298 err_unlock:
13299 	mutex_unlock(&ctx->mutex);
13300 	perf_unpin_context(ctx);
13301 	put_ctx(ctx);
13302 err_alloc:
13303 	free_event(event);
13304 err:
13305 	return ERR_PTR(err);
13306 }
13307 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
13308 
__perf_pmu_remove(struct perf_event_context * ctx,int cpu,struct pmu * pmu,struct perf_event_groups * groups,struct list_head * events)13309 static void __perf_pmu_remove(struct perf_event_context *ctx,
13310 			      int cpu, struct pmu *pmu,
13311 			      struct perf_event_groups *groups,
13312 			      struct list_head *events)
13313 {
13314 	struct perf_event *event, *sibling;
13315 
13316 	perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu) {
13317 		perf_remove_from_context(event, 0);
13318 		put_pmu_ctx(event->pmu_ctx);
13319 		list_add(&event->migrate_entry, events);
13320 
13321 		for_each_sibling_event(sibling, event) {
13322 			perf_remove_from_context(sibling, 0);
13323 			put_pmu_ctx(sibling->pmu_ctx);
13324 			list_add(&sibling->migrate_entry, events);
13325 		}
13326 	}
13327 }
13328 
__perf_pmu_install_event(struct pmu * pmu,struct perf_event_context * ctx,int cpu,struct perf_event * event)13329 static void __perf_pmu_install_event(struct pmu *pmu,
13330 				     struct perf_event_context *ctx,
13331 				     int cpu, struct perf_event *event)
13332 {
13333 	struct perf_event_pmu_context *epc;
13334 	struct perf_event_context *old_ctx = event->ctx;
13335 
13336 	get_ctx(ctx); /* normally find_get_context() */
13337 
13338 	event->cpu = cpu;
13339 	epc = find_get_pmu_context(pmu, ctx, event);
13340 	event->pmu_ctx = epc;
13341 
13342 	if (event->state >= PERF_EVENT_STATE_OFF)
13343 		event->state = PERF_EVENT_STATE_INACTIVE;
13344 	perf_install_in_context(ctx, event, cpu);
13345 
13346 	/*
13347 	 * Now that event->ctx is updated and visible, put the old ctx.
13348 	 */
13349 	put_ctx(old_ctx);
13350 }
13351 
__perf_pmu_install(struct perf_event_context * ctx,int cpu,struct pmu * pmu,struct list_head * events)13352 static void __perf_pmu_install(struct perf_event_context *ctx,
13353 			       int cpu, struct pmu *pmu, struct list_head *events)
13354 {
13355 	struct perf_event *event, *tmp;
13356 
13357 	/*
13358 	 * Re-instate events in 2 passes.
13359 	 *
13360 	 * Skip over group leaders and only install siblings on this first
13361 	 * pass, siblings will not get enabled without a leader, however a
13362 	 * leader will enable its siblings, even if those are still on the old
13363 	 * context.
13364 	 */
13365 	list_for_each_entry_safe(event, tmp, events, migrate_entry) {
13366 		if (event->group_leader == event)
13367 			continue;
13368 
13369 		list_del(&event->migrate_entry);
13370 		__perf_pmu_install_event(pmu, ctx, cpu, event);
13371 	}
13372 
13373 	/*
13374 	 * Once all the siblings are setup properly, install the group leaders
13375 	 * to make it go.
13376 	 */
13377 	list_for_each_entry_safe(event, tmp, events, migrate_entry) {
13378 		list_del(&event->migrate_entry);
13379 		__perf_pmu_install_event(pmu, ctx, cpu, event);
13380 	}
13381 }
13382 
perf_pmu_migrate_context(struct pmu * pmu,int src_cpu,int dst_cpu)13383 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
13384 {
13385 	struct perf_event_context *src_ctx, *dst_ctx;
13386 	LIST_HEAD(events);
13387 
13388 	/*
13389 	 * Since per-cpu context is persistent, no need to grab an extra
13390 	 * reference.
13391 	 */
13392 	src_ctx = &per_cpu_ptr(&perf_cpu_context, src_cpu)->ctx;
13393 	dst_ctx = &per_cpu_ptr(&perf_cpu_context, dst_cpu)->ctx;
13394 
13395 	/*
13396 	 * See perf_event_ctx_lock() for comments on the details
13397 	 * of swizzling perf_event::ctx.
13398 	 */
13399 	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
13400 
13401 	__perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->pinned_groups, &events);
13402 	__perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->flexible_groups, &events);
13403 
13404 	if (!list_empty(&events)) {
13405 		/*
13406 		 * Wait for the events to quiesce before re-instating them.
13407 		 */
13408 		synchronize_rcu();
13409 
13410 		__perf_pmu_install(dst_ctx, dst_cpu, pmu, &events);
13411 	}
13412 
13413 	mutex_unlock(&dst_ctx->mutex);
13414 	mutex_unlock(&src_ctx->mutex);
13415 }
13416 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
13417 
sync_child_event(struct perf_event * child_event)13418 static void sync_child_event(struct perf_event *child_event)
13419 {
13420 	struct perf_event *parent_event = child_event->parent;
13421 	u64 child_val;
13422 
13423 	if (child_event->attr.inherit_stat) {
13424 		struct task_struct *task = child_event->ctx->task;
13425 
13426 		if (task && task != TASK_TOMBSTONE)
13427 			perf_event_read_event(child_event, task);
13428 	}
13429 
13430 	child_val = perf_event_count(child_event, false);
13431 
13432 	/*
13433 	 * Add back the child's count to the parent's count:
13434 	 */
13435 	atomic64_add(child_val, &parent_event->child_count);
13436 	atomic64_add(child_event->total_time_enabled,
13437 		     &parent_event->child_total_time_enabled);
13438 	atomic64_add(child_event->total_time_running,
13439 		     &parent_event->child_total_time_running);
13440 }
13441 
13442 static void
perf_event_exit_event(struct perf_event * event,struct perf_event_context * ctx)13443 perf_event_exit_event(struct perf_event *event, struct perf_event_context *ctx)
13444 {
13445 	struct perf_event *parent_event = event->parent;
13446 	unsigned long detach_flags = 0;
13447 
13448 	if (parent_event) {
13449 		/*
13450 		 * Do not destroy the 'original' grouping; because of the
13451 		 * context switch optimization the original events could've
13452 		 * ended up in a random child task.
13453 		 *
13454 		 * If we were to destroy the original group, all group related
13455 		 * operations would cease to function properly after this
13456 		 * random child dies.
13457 		 *
13458 		 * Do destroy all inherited groups, we don't care about those
13459 		 * and being thorough is better.
13460 		 */
13461 		detach_flags = DETACH_GROUP | DETACH_CHILD;
13462 		mutex_lock(&parent_event->child_mutex);
13463 	}
13464 
13465 	perf_remove_from_context(event, detach_flags | DETACH_EXIT);
13466 
13467 	/*
13468 	 * Child events can be freed.
13469 	 */
13470 	if (parent_event) {
13471 		mutex_unlock(&parent_event->child_mutex);
13472 		/*
13473 		 * Kick perf_poll() for is_event_hup();
13474 		 */
13475 		perf_event_wakeup(parent_event);
13476 		put_event(event);
13477 		return;
13478 	}
13479 
13480 	/*
13481 	 * Parent events are governed by their filedesc, retain them.
13482 	 */
13483 	perf_event_wakeup(event);
13484 }
13485 
perf_event_exit_task_context(struct task_struct * child)13486 static void perf_event_exit_task_context(struct task_struct *child)
13487 {
13488 	struct perf_event_context *child_ctx, *clone_ctx = NULL;
13489 	struct perf_event *child_event, *next;
13490 
13491 	WARN_ON_ONCE(child != current);
13492 
13493 	child_ctx = perf_pin_task_context(child);
13494 	if (!child_ctx)
13495 		return;
13496 
13497 	/*
13498 	 * In order to reduce the amount of tricky in ctx tear-down, we hold
13499 	 * ctx::mutex over the entire thing. This serializes against almost
13500 	 * everything that wants to access the ctx.
13501 	 *
13502 	 * The exception is sys_perf_event_open() /
13503 	 * perf_event_create_kernel_count() which does find_get_context()
13504 	 * without ctx::mutex (it cannot because of the move_group double mutex
13505 	 * lock thing). See the comments in perf_install_in_context().
13506 	 */
13507 	mutex_lock(&child_ctx->mutex);
13508 
13509 	/*
13510 	 * In a single ctx::lock section, de-schedule the events and detach the
13511 	 * context from the task such that we cannot ever get it scheduled back
13512 	 * in.
13513 	 */
13514 	raw_spin_lock_irq(&child_ctx->lock);
13515 	task_ctx_sched_out(child_ctx, NULL, EVENT_ALL);
13516 
13517 	/*
13518 	 * Now that the context is inactive, destroy the task <-> ctx relation
13519 	 * and mark the context dead.
13520 	 */
13521 	RCU_INIT_POINTER(child->perf_event_ctxp, NULL);
13522 	put_ctx(child_ctx); /* cannot be last */
13523 	WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
13524 	put_task_struct(current); /* cannot be last */
13525 
13526 	clone_ctx = unclone_ctx(child_ctx);
13527 	raw_spin_unlock_irq(&child_ctx->lock);
13528 
13529 	if (clone_ctx)
13530 		put_ctx(clone_ctx);
13531 
13532 	/*
13533 	 * Report the task dead after unscheduling the events so that we
13534 	 * won't get any samples after PERF_RECORD_EXIT. We can however still
13535 	 * get a few PERF_RECORD_READ events.
13536 	 */
13537 	perf_event_task(child, child_ctx, 0);
13538 
13539 	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
13540 		perf_event_exit_event(child_event, child_ctx);
13541 
13542 	mutex_unlock(&child_ctx->mutex);
13543 
13544 	put_ctx(child_ctx);
13545 }
13546 
13547 /*
13548  * When a child task exits, feed back event values to parent events.
13549  *
13550  * Can be called with exec_update_lock held when called from
13551  * setup_new_exec().
13552  */
perf_event_exit_task(struct task_struct * child)13553 void perf_event_exit_task(struct task_struct *child)
13554 {
13555 	struct perf_event *event, *tmp;
13556 
13557 	mutex_lock(&child->perf_event_mutex);
13558 	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
13559 				 owner_entry) {
13560 		list_del_init(&event->owner_entry);
13561 
13562 		/*
13563 		 * Ensure the list deletion is visible before we clear
13564 		 * the owner, closes a race against perf_release() where
13565 		 * we need to serialize on the owner->perf_event_mutex.
13566 		 */
13567 		smp_store_release(&event->owner, NULL);
13568 	}
13569 	mutex_unlock(&child->perf_event_mutex);
13570 
13571 	perf_event_exit_task_context(child);
13572 
13573 	/*
13574 	 * The perf_event_exit_task_context calls perf_event_task
13575 	 * with child's task_ctx, which generates EXIT events for
13576 	 * child contexts and sets child->perf_event_ctxp[] to NULL.
13577 	 * At this point we need to send EXIT events to cpu contexts.
13578 	 */
13579 	perf_event_task(child, NULL, 0);
13580 }
13581 
perf_free_event(struct perf_event * event,struct perf_event_context * ctx)13582 static void perf_free_event(struct perf_event *event,
13583 			    struct perf_event_context *ctx)
13584 {
13585 	struct perf_event *parent = event->parent;
13586 
13587 	if (WARN_ON_ONCE(!parent))
13588 		return;
13589 
13590 	mutex_lock(&parent->child_mutex);
13591 	list_del_init(&event->child_list);
13592 	mutex_unlock(&parent->child_mutex);
13593 
13594 	raw_spin_lock_irq(&ctx->lock);
13595 	perf_group_detach(event);
13596 	list_del_event(event, ctx);
13597 	raw_spin_unlock_irq(&ctx->lock);
13598 	put_event(event);
13599 }
13600 
13601 /*
13602  * Free a context as created by inheritance by perf_event_init_task() below,
13603  * used by fork() in case of fail.
13604  *
13605  * Even though the task has never lived, the context and events have been
13606  * exposed through the child_list, so we must take care tearing it all down.
13607  */
perf_event_free_task(struct task_struct * task)13608 void perf_event_free_task(struct task_struct *task)
13609 {
13610 	struct perf_event_context *ctx;
13611 	struct perf_event *event, *tmp;
13612 
13613 	ctx = rcu_access_pointer(task->perf_event_ctxp);
13614 	if (!ctx)
13615 		return;
13616 
13617 	mutex_lock(&ctx->mutex);
13618 	raw_spin_lock_irq(&ctx->lock);
13619 	/*
13620 	 * Destroy the task <-> ctx relation and mark the context dead.
13621 	 *
13622 	 * This is important because even though the task hasn't been
13623 	 * exposed yet the context has been (through child_list).
13624 	 */
13625 	RCU_INIT_POINTER(task->perf_event_ctxp, NULL);
13626 	WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
13627 	put_task_struct(task); /* cannot be last */
13628 	raw_spin_unlock_irq(&ctx->lock);
13629 
13630 
13631 	list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
13632 		perf_free_event(event, ctx);
13633 
13634 	mutex_unlock(&ctx->mutex);
13635 
13636 	/*
13637 	 * perf_event_release_kernel() could've stolen some of our
13638 	 * child events and still have them on its free_list. In that
13639 	 * case we must wait for these events to have been freed (in
13640 	 * particular all their references to this task must've been
13641 	 * dropped).
13642 	 *
13643 	 * Without this copy_process() will unconditionally free this
13644 	 * task (irrespective of its reference count) and
13645 	 * _free_event()'s put_task_struct(event->hw.target) will be a
13646 	 * use-after-free.
13647 	 *
13648 	 * Wait for all events to drop their context reference.
13649 	 */
13650 	wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1);
13651 	put_ctx(ctx); /* must be last */
13652 }
13653 
perf_event_delayed_put(struct task_struct * task)13654 void perf_event_delayed_put(struct task_struct *task)
13655 {
13656 	WARN_ON_ONCE(task->perf_event_ctxp);
13657 }
13658 
perf_event_get(unsigned int fd)13659 struct file *perf_event_get(unsigned int fd)
13660 {
13661 	struct file *file = fget(fd);
13662 	if (!file)
13663 		return ERR_PTR(-EBADF);
13664 
13665 	if (file->f_op != &perf_fops) {
13666 		fput(file);
13667 		return ERR_PTR(-EBADF);
13668 	}
13669 
13670 	return file;
13671 }
13672 
perf_get_event(struct file * file)13673 const struct perf_event *perf_get_event(struct file *file)
13674 {
13675 	if (file->f_op != &perf_fops)
13676 		return ERR_PTR(-EINVAL);
13677 
13678 	return file->private_data;
13679 }
13680 
perf_event_attrs(struct perf_event * event)13681 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
13682 {
13683 	if (!event)
13684 		return ERR_PTR(-EINVAL);
13685 
13686 	return &event->attr;
13687 }
13688 
perf_allow_kernel(struct perf_event_attr * attr)13689 int perf_allow_kernel(struct perf_event_attr *attr)
13690 {
13691 	if (sysctl_perf_event_paranoid > 1 && !perfmon_capable())
13692 		return -EACCES;
13693 
13694 	return security_perf_event_open(attr, PERF_SECURITY_KERNEL);
13695 }
13696 EXPORT_SYMBOL_GPL(perf_allow_kernel);
13697 
13698 /*
13699  * Inherit an event from parent task to child task.
13700  *
13701  * Returns:
13702  *  - valid pointer on success
13703  *  - NULL for orphaned events
13704  *  - IS_ERR() on error
13705  */
13706 static struct perf_event *
inherit_event(struct perf_event * parent_event,struct task_struct * parent,struct perf_event_context * parent_ctx,struct task_struct * child,struct perf_event * group_leader,struct perf_event_context * child_ctx)13707 inherit_event(struct perf_event *parent_event,
13708 	      struct task_struct *parent,
13709 	      struct perf_event_context *parent_ctx,
13710 	      struct task_struct *child,
13711 	      struct perf_event *group_leader,
13712 	      struct perf_event_context *child_ctx)
13713 {
13714 	enum perf_event_state parent_state = parent_event->state;
13715 	struct perf_event_pmu_context *pmu_ctx;
13716 	struct perf_event *child_event;
13717 	unsigned long flags;
13718 
13719 	/*
13720 	 * Instead of creating recursive hierarchies of events,
13721 	 * we link inherited events back to the original parent,
13722 	 * which has a filp for sure, which we use as the reference
13723 	 * count:
13724 	 */
13725 	if (parent_event->parent)
13726 		parent_event = parent_event->parent;
13727 
13728 	child_event = perf_event_alloc(&parent_event->attr,
13729 					   parent_event->cpu,
13730 					   child,
13731 					   group_leader, parent_event,
13732 					   NULL, NULL, -1);
13733 	if (IS_ERR(child_event))
13734 		return child_event;
13735 
13736 	get_ctx(child_ctx);
13737 	child_event->ctx = child_ctx;
13738 
13739 	pmu_ctx = find_get_pmu_context(child_event->pmu, child_ctx, child_event);
13740 	if (IS_ERR(pmu_ctx)) {
13741 		free_event(child_event);
13742 		return ERR_CAST(pmu_ctx);
13743 	}
13744 	child_event->pmu_ctx = pmu_ctx;
13745 
13746 	/*
13747 	 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
13748 	 * must be under the same lock in order to serialize against
13749 	 * perf_event_release_kernel(), such that either we must observe
13750 	 * is_orphaned_event() or they will observe us on the child_list.
13751 	 */
13752 	mutex_lock(&parent_event->child_mutex);
13753 	if (is_orphaned_event(parent_event) ||
13754 	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
13755 		mutex_unlock(&parent_event->child_mutex);
13756 		/* task_ctx_data is freed with child_ctx */
13757 		free_event(child_event);
13758 		return NULL;
13759 	}
13760 
13761 	/*
13762 	 * Make the child state follow the state of the parent event,
13763 	 * not its attr.disabled bit.  We hold the parent's mutex,
13764 	 * so we won't race with perf_event_{en, dis}able_family.
13765 	 */
13766 	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
13767 		child_event->state = PERF_EVENT_STATE_INACTIVE;
13768 	else
13769 		child_event->state = PERF_EVENT_STATE_OFF;
13770 
13771 	if (parent_event->attr.freq) {
13772 		u64 sample_period = parent_event->hw.sample_period;
13773 		struct hw_perf_event *hwc = &child_event->hw;
13774 
13775 		hwc->sample_period = sample_period;
13776 		hwc->last_period   = sample_period;
13777 
13778 		local64_set(&hwc->period_left, sample_period);
13779 	}
13780 
13781 	child_event->overflow_handler = parent_event->overflow_handler;
13782 	child_event->overflow_handler_context
13783 		= parent_event->overflow_handler_context;
13784 
13785 	/*
13786 	 * Precalculate sample_data sizes
13787 	 */
13788 	perf_event__header_size(child_event);
13789 	perf_event__id_header_size(child_event);
13790 
13791 	/*
13792 	 * Link it up in the child's context:
13793 	 */
13794 	raw_spin_lock_irqsave(&child_ctx->lock, flags);
13795 	add_event_to_ctx(child_event, child_ctx);
13796 	child_event->attach_state |= PERF_ATTACH_CHILD;
13797 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
13798 
13799 	/*
13800 	 * Link this into the parent event's child list
13801 	 */
13802 	list_add_tail(&child_event->child_list, &parent_event->child_list);
13803 	mutex_unlock(&parent_event->child_mutex);
13804 
13805 	return child_event;
13806 }
13807 
13808 /*
13809  * Inherits an event group.
13810  *
13811  * This will quietly suppress orphaned events; !inherit_event() is not an error.
13812  * This matches with perf_event_release_kernel() removing all child events.
13813  *
13814  * Returns:
13815  *  - 0 on success
13816  *  - <0 on error
13817  */
inherit_group(struct perf_event * parent_event,struct task_struct * parent,struct perf_event_context * parent_ctx,struct task_struct * child,struct perf_event_context * child_ctx)13818 static int inherit_group(struct perf_event *parent_event,
13819 	      struct task_struct *parent,
13820 	      struct perf_event_context *parent_ctx,
13821 	      struct task_struct *child,
13822 	      struct perf_event_context *child_ctx)
13823 {
13824 	struct perf_event *leader;
13825 	struct perf_event *sub;
13826 	struct perf_event *child_ctr;
13827 
13828 	leader = inherit_event(parent_event, parent, parent_ctx,
13829 				 child, NULL, child_ctx);
13830 	if (IS_ERR(leader))
13831 		return PTR_ERR(leader);
13832 	/*
13833 	 * @leader can be NULL here because of is_orphaned_event(). In this
13834 	 * case inherit_event() will create individual events, similar to what
13835 	 * perf_group_detach() would do anyway.
13836 	 */
13837 	for_each_sibling_event(sub, parent_event) {
13838 		child_ctr = inherit_event(sub, parent, parent_ctx,
13839 					    child, leader, child_ctx);
13840 		if (IS_ERR(child_ctr))
13841 			return PTR_ERR(child_ctr);
13842 
13843 		if (sub->aux_event == parent_event && child_ctr &&
13844 		    !perf_get_aux_event(child_ctr, leader))
13845 			return -EINVAL;
13846 	}
13847 	if (leader)
13848 		leader->group_generation = parent_event->group_generation;
13849 	return 0;
13850 }
13851 
13852 /*
13853  * Creates the child task context and tries to inherit the event-group.
13854  *
13855  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
13856  * inherited_all set when we 'fail' to inherit an orphaned event; this is
13857  * consistent with perf_event_release_kernel() removing all child events.
13858  *
13859  * Returns:
13860  *  - 0 on success
13861  *  - <0 on error
13862  */
13863 static int
inherit_task_group(struct perf_event * event,struct task_struct * parent,struct perf_event_context * parent_ctx,struct task_struct * child,u64 clone_flags,int * inherited_all)13864 inherit_task_group(struct perf_event *event, struct task_struct *parent,
13865 		   struct perf_event_context *parent_ctx,
13866 		   struct task_struct *child,
13867 		   u64 clone_flags, int *inherited_all)
13868 {
13869 	struct perf_event_context *child_ctx;
13870 	int ret;
13871 
13872 	if (!event->attr.inherit ||
13873 	    (event->attr.inherit_thread && !(clone_flags & CLONE_THREAD)) ||
13874 	    /* Do not inherit if sigtrap and signal handlers were cleared. */
13875 	    (event->attr.sigtrap && (clone_flags & CLONE_CLEAR_SIGHAND))) {
13876 		*inherited_all = 0;
13877 		return 0;
13878 	}
13879 
13880 	child_ctx = child->perf_event_ctxp;
13881 	if (!child_ctx) {
13882 		/*
13883 		 * This is executed from the parent task context, so
13884 		 * inherit events that have been marked for cloning.
13885 		 * First allocate and initialize a context for the
13886 		 * child.
13887 		 */
13888 		child_ctx = alloc_perf_context(child);
13889 		if (!child_ctx)
13890 			return -ENOMEM;
13891 
13892 		child->perf_event_ctxp = child_ctx;
13893 	}
13894 
13895 	ret = inherit_group(event, parent, parent_ctx, child, child_ctx);
13896 	if (ret)
13897 		*inherited_all = 0;
13898 
13899 	return ret;
13900 }
13901 
13902 /*
13903  * Initialize the perf_event context in task_struct
13904  */
perf_event_init_context(struct task_struct * child,u64 clone_flags)13905 static int perf_event_init_context(struct task_struct *child, u64 clone_flags)
13906 {
13907 	struct perf_event_context *child_ctx, *parent_ctx;
13908 	struct perf_event_context *cloned_ctx;
13909 	struct perf_event *event;
13910 	struct task_struct *parent = current;
13911 	int inherited_all = 1;
13912 	unsigned long flags;
13913 	int ret = 0;
13914 
13915 	if (likely(!parent->perf_event_ctxp))
13916 		return 0;
13917 
13918 	/*
13919 	 * If the parent's context is a clone, pin it so it won't get
13920 	 * swapped under us.
13921 	 */
13922 	parent_ctx = perf_pin_task_context(parent);
13923 	if (!parent_ctx)
13924 		return 0;
13925 
13926 	/*
13927 	 * No need to check if parent_ctx != NULL here; since we saw
13928 	 * it non-NULL earlier, the only reason for it to become NULL
13929 	 * is if we exit, and since we're currently in the middle of
13930 	 * a fork we can't be exiting at the same time.
13931 	 */
13932 
13933 	/*
13934 	 * Lock the parent list. No need to lock the child - not PID
13935 	 * hashed yet and not running, so nobody can access it.
13936 	 */
13937 	mutex_lock(&parent_ctx->mutex);
13938 
13939 	/*
13940 	 * We dont have to disable NMIs - we are only looking at
13941 	 * the list, not manipulating it:
13942 	 */
13943 	perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
13944 		ret = inherit_task_group(event, parent, parent_ctx,
13945 					 child, clone_flags, &inherited_all);
13946 		if (ret)
13947 			goto out_unlock;
13948 	}
13949 
13950 	/*
13951 	 * We can't hold ctx->lock when iterating the ->flexible_group list due
13952 	 * to allocations, but we need to prevent rotation because
13953 	 * rotate_ctx() will change the list from interrupt context.
13954 	 */
13955 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13956 	parent_ctx->rotate_disable = 1;
13957 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13958 
13959 	perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
13960 		ret = inherit_task_group(event, parent, parent_ctx,
13961 					 child, clone_flags, &inherited_all);
13962 		if (ret)
13963 			goto out_unlock;
13964 	}
13965 
13966 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13967 	parent_ctx->rotate_disable = 0;
13968 
13969 	child_ctx = child->perf_event_ctxp;
13970 
13971 	if (child_ctx && inherited_all) {
13972 		/*
13973 		 * Mark the child context as a clone of the parent
13974 		 * context, or of whatever the parent is a clone of.
13975 		 *
13976 		 * Note that if the parent is a clone, the holding of
13977 		 * parent_ctx->lock avoids it from being uncloned.
13978 		 */
13979 		cloned_ctx = parent_ctx->parent_ctx;
13980 		if (cloned_ctx) {
13981 			child_ctx->parent_ctx = cloned_ctx;
13982 			child_ctx->parent_gen = parent_ctx->parent_gen;
13983 		} else {
13984 			child_ctx->parent_ctx = parent_ctx;
13985 			child_ctx->parent_gen = parent_ctx->generation;
13986 		}
13987 		get_ctx(child_ctx->parent_ctx);
13988 	}
13989 
13990 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13991 out_unlock:
13992 	mutex_unlock(&parent_ctx->mutex);
13993 
13994 	perf_unpin_context(parent_ctx);
13995 	put_ctx(parent_ctx);
13996 
13997 	return ret;
13998 }
13999 
14000 /*
14001  * Initialize the perf_event context in task_struct
14002  */
perf_event_init_task(struct task_struct * child,u64 clone_flags)14003 int perf_event_init_task(struct task_struct *child, u64 clone_flags)
14004 {
14005 	int ret;
14006 
14007 	memset(child->perf_recursion, 0, sizeof(child->perf_recursion));
14008 	child->perf_event_ctxp = NULL;
14009 	mutex_init(&child->perf_event_mutex);
14010 	INIT_LIST_HEAD(&child->perf_event_list);
14011 
14012 	ret = perf_event_init_context(child, clone_flags);
14013 	if (ret) {
14014 		perf_event_free_task(child);
14015 		return ret;
14016 	}
14017 
14018 	return 0;
14019 }
14020 
perf_event_init_all_cpus(void)14021 static void __init perf_event_init_all_cpus(void)
14022 {
14023 	struct swevent_htable *swhash;
14024 	struct perf_cpu_context *cpuctx;
14025 	int cpu;
14026 
14027 	zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
14028 	zalloc_cpumask_var(&perf_online_core_mask, GFP_KERNEL);
14029 	zalloc_cpumask_var(&perf_online_die_mask, GFP_KERNEL);
14030 	zalloc_cpumask_var(&perf_online_cluster_mask, GFP_KERNEL);
14031 	zalloc_cpumask_var(&perf_online_pkg_mask, GFP_KERNEL);
14032 	zalloc_cpumask_var(&perf_online_sys_mask, GFP_KERNEL);
14033 
14034 
14035 	for_each_possible_cpu(cpu) {
14036 		swhash = &per_cpu(swevent_htable, cpu);
14037 		mutex_init(&swhash->hlist_mutex);
14038 
14039 		INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
14040 		raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
14041 
14042 		INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
14043 
14044 		cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
14045 		__perf_event_init_context(&cpuctx->ctx);
14046 		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
14047 		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
14048 		cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
14049 		cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default);
14050 		cpuctx->heap = cpuctx->heap_default;
14051 	}
14052 }
14053 
perf_swevent_init_cpu(unsigned int cpu)14054 static void perf_swevent_init_cpu(unsigned int cpu)
14055 {
14056 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
14057 
14058 	mutex_lock(&swhash->hlist_mutex);
14059 	if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
14060 		struct swevent_hlist *hlist;
14061 
14062 		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
14063 		WARN_ON(!hlist);
14064 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
14065 	}
14066 	mutex_unlock(&swhash->hlist_mutex);
14067 }
14068 
14069 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
__perf_event_exit_context(void * __info)14070 static void __perf_event_exit_context(void *__info)
14071 {
14072 	struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
14073 	struct perf_event_context *ctx = __info;
14074 	struct perf_event *event;
14075 
14076 	raw_spin_lock(&ctx->lock);
14077 	ctx_sched_out(ctx, NULL, EVENT_TIME);
14078 	list_for_each_entry(event, &ctx->event_list, event_entry)
14079 		__perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
14080 	raw_spin_unlock(&ctx->lock);
14081 }
14082 
perf_event_clear_cpumask(unsigned int cpu)14083 static void perf_event_clear_cpumask(unsigned int cpu)
14084 {
14085 	int target[PERF_PMU_MAX_SCOPE];
14086 	unsigned int scope;
14087 	struct pmu *pmu;
14088 
14089 	cpumask_clear_cpu(cpu, perf_online_mask);
14090 
14091 	for (scope = PERF_PMU_SCOPE_NONE + 1; scope < PERF_PMU_MAX_SCOPE; scope++) {
14092 		const struct cpumask *cpumask = perf_scope_cpu_topology_cpumask(scope, cpu);
14093 		struct cpumask *pmu_cpumask = perf_scope_cpumask(scope);
14094 
14095 		target[scope] = -1;
14096 		if (WARN_ON_ONCE(!pmu_cpumask || !cpumask))
14097 			continue;
14098 
14099 		if (!cpumask_test_and_clear_cpu(cpu, pmu_cpumask))
14100 			continue;
14101 		target[scope] = cpumask_any_but(cpumask, cpu);
14102 		if (target[scope] < nr_cpu_ids)
14103 			cpumask_set_cpu(target[scope], pmu_cpumask);
14104 	}
14105 
14106 	/* migrate */
14107 	list_for_each_entry(pmu, &pmus, entry) {
14108 		if (pmu->scope == PERF_PMU_SCOPE_NONE ||
14109 		    WARN_ON_ONCE(pmu->scope >= PERF_PMU_MAX_SCOPE))
14110 			continue;
14111 
14112 		if (target[pmu->scope] >= 0 && target[pmu->scope] < nr_cpu_ids)
14113 			perf_pmu_migrate_context(pmu, cpu, target[pmu->scope]);
14114 	}
14115 }
14116 
perf_event_exit_cpu_context(int cpu)14117 static void perf_event_exit_cpu_context(int cpu)
14118 {
14119 	struct perf_cpu_context *cpuctx;
14120 	struct perf_event_context *ctx;
14121 
14122 	// XXX simplify cpuctx->online
14123 	mutex_lock(&pmus_lock);
14124 	/*
14125 	 * Clear the cpumasks, and migrate to other CPUs if possible.
14126 	 * Must be invoked before the __perf_event_exit_context.
14127 	 */
14128 	perf_event_clear_cpumask(cpu);
14129 	cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
14130 	ctx = &cpuctx->ctx;
14131 
14132 	mutex_lock(&ctx->mutex);
14133 	smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
14134 	cpuctx->online = 0;
14135 	mutex_unlock(&ctx->mutex);
14136 	mutex_unlock(&pmus_lock);
14137 }
14138 #else
14139 
perf_event_exit_cpu_context(int cpu)14140 static void perf_event_exit_cpu_context(int cpu) { }
14141 
14142 #endif
14143 
perf_event_setup_cpumask(unsigned int cpu)14144 static void perf_event_setup_cpumask(unsigned int cpu)
14145 {
14146 	struct cpumask *pmu_cpumask;
14147 	unsigned int scope;
14148 
14149 	/*
14150 	 * Early boot stage, the cpumask hasn't been set yet.
14151 	 * The perf_online_<domain>_masks includes the first CPU of each domain.
14152 	 * Always unconditionally set the boot CPU for the perf_online_<domain>_masks.
14153 	 */
14154 	if (cpumask_empty(perf_online_mask)) {
14155 		for (scope = PERF_PMU_SCOPE_NONE + 1; scope < PERF_PMU_MAX_SCOPE; scope++) {
14156 			pmu_cpumask = perf_scope_cpumask(scope);
14157 			if (WARN_ON_ONCE(!pmu_cpumask))
14158 				continue;
14159 			cpumask_set_cpu(cpu, pmu_cpumask);
14160 		}
14161 		goto end;
14162 	}
14163 
14164 	for (scope = PERF_PMU_SCOPE_NONE + 1; scope < PERF_PMU_MAX_SCOPE; scope++) {
14165 		const struct cpumask *cpumask = perf_scope_cpu_topology_cpumask(scope, cpu);
14166 
14167 		pmu_cpumask = perf_scope_cpumask(scope);
14168 
14169 		if (WARN_ON_ONCE(!pmu_cpumask || !cpumask))
14170 			continue;
14171 
14172 		if (!cpumask_empty(cpumask) &&
14173 		    cpumask_any_and(pmu_cpumask, cpumask) >= nr_cpu_ids)
14174 			cpumask_set_cpu(cpu, pmu_cpumask);
14175 	}
14176 end:
14177 	cpumask_set_cpu(cpu, perf_online_mask);
14178 }
14179 
perf_event_init_cpu(unsigned int cpu)14180 int perf_event_init_cpu(unsigned int cpu)
14181 {
14182 	struct perf_cpu_context *cpuctx;
14183 	struct perf_event_context *ctx;
14184 
14185 	perf_swevent_init_cpu(cpu);
14186 
14187 	mutex_lock(&pmus_lock);
14188 	perf_event_setup_cpumask(cpu);
14189 	cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
14190 	ctx = &cpuctx->ctx;
14191 
14192 	mutex_lock(&ctx->mutex);
14193 	cpuctx->online = 1;
14194 	mutex_unlock(&ctx->mutex);
14195 	mutex_unlock(&pmus_lock);
14196 
14197 	return 0;
14198 }
14199 
perf_event_exit_cpu(unsigned int cpu)14200 int perf_event_exit_cpu(unsigned int cpu)
14201 {
14202 	perf_event_exit_cpu_context(cpu);
14203 	return 0;
14204 }
14205 
14206 static int
perf_reboot(struct notifier_block * notifier,unsigned long val,void * v)14207 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
14208 {
14209 	int cpu;
14210 
14211 	for_each_online_cpu(cpu)
14212 		perf_event_exit_cpu(cpu);
14213 
14214 	return NOTIFY_OK;
14215 }
14216 
14217 /*
14218  * Run the perf reboot notifier at the very last possible moment so that
14219  * the generic watchdog code runs as long as possible.
14220  */
14221 static struct notifier_block perf_reboot_notifier = {
14222 	.notifier_call = perf_reboot,
14223 	.priority = INT_MIN,
14224 };
14225 
perf_event_init(void)14226 void __init perf_event_init(void)
14227 {
14228 	int ret;
14229 
14230 	idr_init(&pmu_idr);
14231 
14232 	perf_event_init_all_cpus();
14233 	init_srcu_struct(&pmus_srcu);
14234 	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
14235 	perf_pmu_register(&perf_cpu_clock, "cpu_clock", -1);
14236 	perf_pmu_register(&perf_task_clock, "task_clock", -1);
14237 	perf_tp_register();
14238 	perf_event_init_cpu(smp_processor_id());
14239 	register_reboot_notifier(&perf_reboot_notifier);
14240 
14241 	ret = init_hw_breakpoint();
14242 	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
14243 
14244 	perf_event_cache = KMEM_CACHE(perf_event, SLAB_PANIC);
14245 
14246 	/*
14247 	 * Build time assertion that we keep the data_head at the intended
14248 	 * location.  IOW, validation we got the __reserved[] size right.
14249 	 */
14250 	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
14251 		     != 1024);
14252 }
14253 
perf_event_sysfs_show(struct device * dev,struct device_attribute * attr,char * page)14254 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
14255 			      char *page)
14256 {
14257 	struct perf_pmu_events_attr *pmu_attr =
14258 		container_of(attr, struct perf_pmu_events_attr, attr);
14259 
14260 	if (pmu_attr->event_str)
14261 		return sprintf(page, "%s\n", pmu_attr->event_str);
14262 
14263 	return 0;
14264 }
14265 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
14266 
perf_event_sysfs_init(void)14267 static int __init perf_event_sysfs_init(void)
14268 {
14269 	struct pmu *pmu;
14270 	int ret;
14271 
14272 	mutex_lock(&pmus_lock);
14273 
14274 	ret = bus_register(&pmu_bus);
14275 	if (ret)
14276 		goto unlock;
14277 
14278 	list_for_each_entry(pmu, &pmus, entry) {
14279 		if (pmu->dev)
14280 			continue;
14281 
14282 		ret = pmu_dev_alloc(pmu);
14283 		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
14284 	}
14285 	pmu_bus_running = 1;
14286 	ret = 0;
14287 
14288 unlock:
14289 	mutex_unlock(&pmus_lock);
14290 
14291 	return ret;
14292 }
14293 device_initcall(perf_event_sysfs_init);
14294 
14295 #ifdef CONFIG_CGROUP_PERF
14296 static struct cgroup_subsys_state *
perf_cgroup_css_alloc(struct cgroup_subsys_state * parent_css)14297 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
14298 {
14299 	struct perf_cgroup *jc;
14300 
14301 	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
14302 	if (!jc)
14303 		return ERR_PTR(-ENOMEM);
14304 
14305 	jc->info = alloc_percpu(struct perf_cgroup_info);
14306 	if (!jc->info) {
14307 		kfree(jc);
14308 		return ERR_PTR(-ENOMEM);
14309 	}
14310 
14311 	return &jc->css;
14312 }
14313 
perf_cgroup_css_free(struct cgroup_subsys_state * css)14314 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
14315 {
14316 	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
14317 
14318 	free_percpu(jc->info);
14319 	kfree(jc);
14320 }
14321 
perf_cgroup_css_online(struct cgroup_subsys_state * css)14322 static int perf_cgroup_css_online(struct cgroup_subsys_state *css)
14323 {
14324 	perf_event_cgroup(css->cgroup);
14325 	return 0;
14326 }
14327 
__perf_cgroup_move(void * info)14328 static int __perf_cgroup_move(void *info)
14329 {
14330 	struct task_struct *task = info;
14331 
14332 	preempt_disable();
14333 	perf_cgroup_switch(task);
14334 	preempt_enable();
14335 
14336 	return 0;
14337 }
14338 
perf_cgroup_attach(struct cgroup_taskset * tset)14339 static void perf_cgroup_attach(struct cgroup_taskset *tset)
14340 {
14341 	struct task_struct *task;
14342 	struct cgroup_subsys_state *css;
14343 
14344 	cgroup_taskset_for_each(task, css, tset)
14345 		task_function_call(task, __perf_cgroup_move, task);
14346 }
14347 
14348 struct cgroup_subsys perf_event_cgrp_subsys = {
14349 	.css_alloc	= perf_cgroup_css_alloc,
14350 	.css_free	= perf_cgroup_css_free,
14351 	.css_online	= perf_cgroup_css_online,
14352 	.attach		= perf_cgroup_attach,
14353 	/*
14354 	 * Implicitly enable on dfl hierarchy so that perf events can
14355 	 * always be filtered by cgroup2 path as long as perf_event
14356 	 * controller is not mounted on a legacy hierarchy.
14357 	 */
14358 	.implicit_on_dfl = true,
14359 	.threaded	= true,
14360 };
14361 #endif /* CONFIG_CGROUP_PERF */
14362 
14363 DEFINE_STATIC_CALL_RET0(perf_snapshot_branch_stack, perf_snapshot_branch_stack_t);
14364