1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/bitops.h>
3 #include <linux/types.h>
4 #include <linux/slab.h>
5 #include <linux/sched/clock.h>
6
7 #include <asm/cpu_entry_area.h>
8 #include <asm/debugreg.h>
9 #include <asm/perf_event.h>
10 #include <asm/tlbflush.h>
11 #include <asm/insn.h>
12 #include <asm/io.h>
13 #include <asm/timer.h>
14
15 #include "../perf_event.h"
16
17 /* Waste a full page so it can be mapped into the cpu_entry_area */
18 DEFINE_PER_CPU_PAGE_ALIGNED(struct debug_store, cpu_debug_store);
19
20 /* The size of a BTS record in bytes: */
21 #define BTS_RECORD_SIZE 24
22
23 #define PEBS_FIXUP_SIZE PAGE_SIZE
24
25 /*
26 * pebs_record_32 for p4 and core not supported
27
28 struct pebs_record_32 {
29 u32 flags, ip;
30 u32 ax, bc, cx, dx;
31 u32 si, di, bp, sp;
32 };
33
34 */
35
36 union intel_x86_pebs_dse {
37 u64 val;
38 struct {
39 unsigned int ld_dse:4;
40 unsigned int ld_stlb_miss:1;
41 unsigned int ld_locked:1;
42 unsigned int ld_data_blk:1;
43 unsigned int ld_addr_blk:1;
44 unsigned int ld_reserved:24;
45 };
46 struct {
47 unsigned int st_l1d_hit:1;
48 unsigned int st_reserved1:3;
49 unsigned int st_stlb_miss:1;
50 unsigned int st_locked:1;
51 unsigned int st_reserved2:26;
52 };
53 struct {
54 unsigned int st_lat_dse:4;
55 unsigned int st_lat_stlb_miss:1;
56 unsigned int st_lat_locked:1;
57 unsigned int ld_reserved3:26;
58 };
59 struct {
60 unsigned int mtl_dse:5;
61 unsigned int mtl_locked:1;
62 unsigned int mtl_stlb_miss:1;
63 unsigned int mtl_fwd_blk:1;
64 unsigned int ld_reserved4:24;
65 };
66 struct {
67 unsigned int lnc_dse:8;
68 unsigned int ld_reserved5:2;
69 unsigned int lnc_stlb_miss:1;
70 unsigned int lnc_locked:1;
71 unsigned int lnc_data_blk:1;
72 unsigned int lnc_addr_blk:1;
73 unsigned int ld_reserved6:18;
74 };
75 };
76
77
78 /*
79 * Map PEBS Load Latency Data Source encodings to generic
80 * memory data source information
81 */
82 #define P(a, b) PERF_MEM_S(a, b)
83 #define OP_LH (P(OP, LOAD) | P(LVL, HIT))
84 #define LEVEL(x) P(LVLNUM, x)
85 #define REM P(REMOTE, REMOTE)
86 #define SNOOP_NONE_MISS (P(SNOOP, NONE) | P(SNOOP, MISS))
87
88 /* Version for Sandy Bridge and later */
89 static u64 pebs_data_source[PERF_PEBS_DATA_SOURCE_MAX] = {
90 P(OP, LOAD) | P(LVL, MISS) | LEVEL(L3) | P(SNOOP, NA),/* 0x00:ukn L3 */
91 OP_LH | P(LVL, L1) | LEVEL(L1) | P(SNOOP, NONE), /* 0x01: L1 local */
92 OP_LH | P(LVL, LFB) | LEVEL(LFB) | P(SNOOP, NONE), /* 0x02: LFB hit */
93 OP_LH | P(LVL, L2) | LEVEL(L2) | P(SNOOP, NONE), /* 0x03: L2 hit */
94 OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, NONE), /* 0x04: L3 hit */
95 OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, MISS), /* 0x05: L3 hit, snoop miss */
96 OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HIT), /* 0x06: L3 hit, snoop hit */
97 OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM), /* 0x07: L3 hit, snoop hitm */
98 OP_LH | P(LVL, REM_CCE1) | REM | LEVEL(L3) | P(SNOOP, HIT), /* 0x08: L3 miss snoop hit */
99 OP_LH | P(LVL, REM_CCE1) | REM | LEVEL(L3) | P(SNOOP, HITM), /* 0x09: L3 miss snoop hitm*/
100 OP_LH | P(LVL, LOC_RAM) | LEVEL(RAM) | P(SNOOP, HIT), /* 0x0a: L3 miss, shared */
101 OP_LH | P(LVL, REM_RAM1) | REM | LEVEL(L3) | P(SNOOP, HIT), /* 0x0b: L3 miss, shared */
102 OP_LH | P(LVL, LOC_RAM) | LEVEL(RAM) | SNOOP_NONE_MISS, /* 0x0c: L3 miss, excl */
103 OP_LH | P(LVL, REM_RAM1) | LEVEL(RAM) | REM | SNOOP_NONE_MISS, /* 0x0d: L3 miss, excl */
104 OP_LH | P(LVL, IO) | LEVEL(NA) | P(SNOOP, NONE), /* 0x0e: I/O */
105 OP_LH | P(LVL, UNC) | LEVEL(NA) | P(SNOOP, NONE), /* 0x0f: uncached */
106 };
107
108 /* Patch up minor differences in the bits */
intel_pmu_pebs_data_source_nhm(void)109 void __init intel_pmu_pebs_data_source_nhm(void)
110 {
111 pebs_data_source[0x05] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HIT);
112 pebs_data_source[0x06] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM);
113 pebs_data_source[0x07] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM);
114 }
115
__intel_pmu_pebs_data_source_skl(bool pmem,u64 * data_source)116 static void __init __intel_pmu_pebs_data_source_skl(bool pmem, u64 *data_source)
117 {
118 u64 pmem_or_l4 = pmem ? LEVEL(PMEM) : LEVEL(L4);
119
120 data_source[0x08] = OP_LH | pmem_or_l4 | P(SNOOP, HIT);
121 data_source[0x09] = OP_LH | pmem_or_l4 | REM | P(SNOOP, HIT);
122 data_source[0x0b] = OP_LH | LEVEL(RAM) | REM | P(SNOOP, NONE);
123 data_source[0x0c] = OP_LH | LEVEL(ANY_CACHE) | REM | P(SNOOPX, FWD);
124 data_source[0x0d] = OP_LH | LEVEL(ANY_CACHE) | REM | P(SNOOP, HITM);
125 }
126
intel_pmu_pebs_data_source_skl(bool pmem)127 void __init intel_pmu_pebs_data_source_skl(bool pmem)
128 {
129 __intel_pmu_pebs_data_source_skl(pmem, pebs_data_source);
130 }
131
__intel_pmu_pebs_data_source_grt(u64 * data_source)132 static void __init __intel_pmu_pebs_data_source_grt(u64 *data_source)
133 {
134 data_source[0x05] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HIT);
135 data_source[0x06] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM);
136 data_source[0x08] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOPX, FWD);
137 }
138
intel_pmu_pebs_data_source_grt(void)139 void __init intel_pmu_pebs_data_source_grt(void)
140 {
141 __intel_pmu_pebs_data_source_grt(pebs_data_source);
142 }
143
intel_pmu_pebs_data_source_adl(void)144 void __init intel_pmu_pebs_data_source_adl(void)
145 {
146 u64 *data_source;
147
148 data_source = x86_pmu.hybrid_pmu[X86_HYBRID_PMU_CORE_IDX].pebs_data_source;
149 memcpy(data_source, pebs_data_source, sizeof(pebs_data_source));
150 __intel_pmu_pebs_data_source_skl(false, data_source);
151
152 data_source = x86_pmu.hybrid_pmu[X86_HYBRID_PMU_ATOM_IDX].pebs_data_source;
153 memcpy(data_source, pebs_data_source, sizeof(pebs_data_source));
154 __intel_pmu_pebs_data_source_grt(data_source);
155 }
156
__intel_pmu_pebs_data_source_cmt(u64 * data_source)157 static void __init __intel_pmu_pebs_data_source_cmt(u64 *data_source)
158 {
159 data_source[0x07] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOPX, FWD);
160 data_source[0x08] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM);
161 data_source[0x0a] = OP_LH | P(LVL, LOC_RAM) | LEVEL(RAM) | P(SNOOP, NONE);
162 data_source[0x0b] = OP_LH | LEVEL(RAM) | REM | P(SNOOP, NONE);
163 data_source[0x0c] = OP_LH | LEVEL(RAM) | REM | P(SNOOPX, FWD);
164 data_source[0x0d] = OP_LH | LEVEL(RAM) | REM | P(SNOOP, HITM);
165 }
166
intel_pmu_pebs_data_source_mtl(void)167 void __init intel_pmu_pebs_data_source_mtl(void)
168 {
169 u64 *data_source;
170
171 data_source = x86_pmu.hybrid_pmu[X86_HYBRID_PMU_CORE_IDX].pebs_data_source;
172 memcpy(data_source, pebs_data_source, sizeof(pebs_data_source));
173 __intel_pmu_pebs_data_source_skl(false, data_source);
174
175 data_source = x86_pmu.hybrid_pmu[X86_HYBRID_PMU_ATOM_IDX].pebs_data_source;
176 memcpy(data_source, pebs_data_source, sizeof(pebs_data_source));
177 __intel_pmu_pebs_data_source_cmt(data_source);
178 }
179
intel_pmu_pebs_data_source_cmt(void)180 void __init intel_pmu_pebs_data_source_cmt(void)
181 {
182 __intel_pmu_pebs_data_source_cmt(pebs_data_source);
183 }
184
185 /* Version for Lion Cove and later */
186 static u64 lnc_pebs_data_source[PERF_PEBS_DATA_SOURCE_MAX] = {
187 P(OP, LOAD) | P(LVL, MISS) | LEVEL(L3) | P(SNOOP, NA), /* 0x00: ukn L3 */
188 OP_LH | P(LVL, L1) | LEVEL(L1) | P(SNOOP, NONE), /* 0x01: L1 hit */
189 OP_LH | P(LVL, L1) | LEVEL(L1) | P(SNOOP, NONE), /* 0x02: L1 hit */
190 OP_LH | P(LVL, LFB) | LEVEL(LFB) | P(SNOOP, NONE), /* 0x03: LFB/L1 Miss Handling Buffer hit */
191 0, /* 0x04: Reserved */
192 OP_LH | P(LVL, L2) | LEVEL(L2) | P(SNOOP, NONE), /* 0x05: L2 Hit */
193 OP_LH | LEVEL(L2_MHB) | P(SNOOP, NONE), /* 0x06: L2 Miss Handling Buffer Hit */
194 0, /* 0x07: Reserved */
195 OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, NONE), /* 0x08: L3 Hit */
196 0, /* 0x09: Reserved */
197 0, /* 0x0a: Reserved */
198 0, /* 0x0b: Reserved */
199 OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOPX, FWD), /* 0x0c: L3 Hit Snoop Fwd */
200 OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM), /* 0x0d: L3 Hit Snoop HitM */
201 0, /* 0x0e: Reserved */
202 P(OP, LOAD) | P(LVL, MISS) | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM), /* 0x0f: L3 Miss Snoop HitM */
203 OP_LH | LEVEL(MSC) | P(SNOOP, NONE), /* 0x10: Memory-side Cache Hit */
204 OP_LH | P(LVL, LOC_RAM) | LEVEL(RAM) | P(SNOOP, NONE), /* 0x11: Local Memory Hit */
205 };
206
intel_pmu_pebs_data_source_lnl(void)207 void __init intel_pmu_pebs_data_source_lnl(void)
208 {
209 u64 *data_source;
210
211 data_source = x86_pmu.hybrid_pmu[X86_HYBRID_PMU_CORE_IDX].pebs_data_source;
212 memcpy(data_source, lnc_pebs_data_source, sizeof(lnc_pebs_data_source));
213
214 data_source = x86_pmu.hybrid_pmu[X86_HYBRID_PMU_ATOM_IDX].pebs_data_source;
215 memcpy(data_source, pebs_data_source, sizeof(pebs_data_source));
216 __intel_pmu_pebs_data_source_cmt(data_source);
217 }
218
precise_store_data(u64 status)219 static u64 precise_store_data(u64 status)
220 {
221 union intel_x86_pebs_dse dse;
222 u64 val = P(OP, STORE) | P(SNOOP, NA) | P(LVL, L1) | P(TLB, L2);
223
224 dse.val = status;
225
226 /*
227 * bit 4: TLB access
228 * 1 = stored missed 2nd level TLB
229 *
230 * so it either hit the walker or the OS
231 * otherwise hit 2nd level TLB
232 */
233 if (dse.st_stlb_miss)
234 val |= P(TLB, MISS);
235 else
236 val |= P(TLB, HIT);
237
238 /*
239 * bit 0: hit L1 data cache
240 * if not set, then all we know is that
241 * it missed L1D
242 */
243 if (dse.st_l1d_hit)
244 val |= P(LVL, HIT);
245 else
246 val |= P(LVL, MISS);
247
248 /*
249 * bit 5: Locked prefix
250 */
251 if (dse.st_locked)
252 val |= P(LOCK, LOCKED);
253
254 return val;
255 }
256
precise_datala_hsw(struct perf_event * event,u64 status)257 static u64 precise_datala_hsw(struct perf_event *event, u64 status)
258 {
259 union perf_mem_data_src dse;
260
261 dse.val = PERF_MEM_NA;
262
263 if (event->hw.flags & PERF_X86_EVENT_PEBS_ST_HSW)
264 dse.mem_op = PERF_MEM_OP_STORE;
265 else if (event->hw.flags & PERF_X86_EVENT_PEBS_LD_HSW)
266 dse.mem_op = PERF_MEM_OP_LOAD;
267
268 /*
269 * L1 info only valid for following events:
270 *
271 * MEM_UOPS_RETIRED.STLB_MISS_STORES
272 * MEM_UOPS_RETIRED.LOCK_STORES
273 * MEM_UOPS_RETIRED.SPLIT_STORES
274 * MEM_UOPS_RETIRED.ALL_STORES
275 */
276 if (event->hw.flags & PERF_X86_EVENT_PEBS_ST_HSW) {
277 if (status & 1)
278 dse.mem_lvl = PERF_MEM_LVL_L1 | PERF_MEM_LVL_HIT;
279 else
280 dse.mem_lvl = PERF_MEM_LVL_L1 | PERF_MEM_LVL_MISS;
281 }
282 return dse.val;
283 }
284
pebs_set_tlb_lock(u64 * val,bool tlb,bool lock)285 static inline void pebs_set_tlb_lock(u64 *val, bool tlb, bool lock)
286 {
287 /*
288 * TLB access
289 * 0 = did not miss 2nd level TLB
290 * 1 = missed 2nd level TLB
291 */
292 if (tlb)
293 *val |= P(TLB, MISS) | P(TLB, L2);
294 else
295 *val |= P(TLB, HIT) | P(TLB, L1) | P(TLB, L2);
296
297 /* locked prefix */
298 if (lock)
299 *val |= P(LOCK, LOCKED);
300 }
301
302 /* Retrieve the latency data for e-core of ADL */
__grt_latency_data(struct perf_event * event,u64 status,u8 dse,bool tlb,bool lock,bool blk)303 static u64 __grt_latency_data(struct perf_event *event, u64 status,
304 u8 dse, bool tlb, bool lock, bool blk)
305 {
306 u64 val;
307
308 WARN_ON_ONCE(hybrid_pmu(event->pmu)->pmu_type == hybrid_big);
309
310 dse &= PERF_PEBS_DATA_SOURCE_GRT_MASK;
311 val = hybrid_var(event->pmu, pebs_data_source)[dse];
312
313 pebs_set_tlb_lock(&val, tlb, lock);
314
315 if (blk)
316 val |= P(BLK, DATA);
317 else
318 val |= P(BLK, NA);
319
320 return val;
321 }
322
grt_latency_data(struct perf_event * event,u64 status)323 u64 grt_latency_data(struct perf_event *event, u64 status)
324 {
325 union intel_x86_pebs_dse dse;
326
327 dse.val = status;
328
329 return __grt_latency_data(event, status, dse.ld_dse,
330 dse.ld_locked, dse.ld_stlb_miss,
331 dse.ld_data_blk);
332 }
333
334 /* Retrieve the latency data for e-core of MTL */
cmt_latency_data(struct perf_event * event,u64 status)335 u64 cmt_latency_data(struct perf_event *event, u64 status)
336 {
337 union intel_x86_pebs_dse dse;
338
339 dse.val = status;
340
341 return __grt_latency_data(event, status, dse.mtl_dse,
342 dse.mtl_stlb_miss, dse.mtl_locked,
343 dse.mtl_fwd_blk);
344 }
345
lnc_latency_data(struct perf_event * event,u64 status)346 static u64 lnc_latency_data(struct perf_event *event, u64 status)
347 {
348 union intel_x86_pebs_dse dse;
349 union perf_mem_data_src src;
350 u64 val;
351
352 dse.val = status;
353
354 /* LNC core latency data */
355 val = hybrid_var(event->pmu, pebs_data_source)[status & PERF_PEBS_DATA_SOURCE_MASK];
356 if (!val)
357 val = P(OP, LOAD) | LEVEL(NA) | P(SNOOP, NA);
358
359 if (dse.lnc_stlb_miss)
360 val |= P(TLB, MISS) | P(TLB, L2);
361 else
362 val |= P(TLB, HIT) | P(TLB, L1) | P(TLB, L2);
363
364 if (dse.lnc_locked)
365 val |= P(LOCK, LOCKED);
366
367 if (dse.lnc_data_blk)
368 val |= P(BLK, DATA);
369 if (dse.lnc_addr_blk)
370 val |= P(BLK, ADDR);
371 if (!dse.lnc_data_blk && !dse.lnc_addr_blk)
372 val |= P(BLK, NA);
373
374 src.val = val;
375 if (event->hw.flags & PERF_X86_EVENT_PEBS_ST_HSW)
376 src.mem_op = P(OP, STORE);
377
378 return src.val;
379 }
380
lnl_latency_data(struct perf_event * event,u64 status)381 u64 lnl_latency_data(struct perf_event *event, u64 status)
382 {
383 struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
384
385 if (pmu->pmu_type == hybrid_small)
386 return cmt_latency_data(event, status);
387
388 return lnc_latency_data(event, status);
389 }
390
load_latency_data(struct perf_event * event,u64 status)391 static u64 load_latency_data(struct perf_event *event, u64 status)
392 {
393 union intel_x86_pebs_dse dse;
394 u64 val;
395
396 dse.val = status;
397
398 /*
399 * use the mapping table for bit 0-3
400 */
401 val = hybrid_var(event->pmu, pebs_data_source)[dse.ld_dse];
402
403 /*
404 * Nehalem models do not support TLB, Lock infos
405 */
406 if (x86_pmu.pebs_no_tlb) {
407 val |= P(TLB, NA) | P(LOCK, NA);
408 return val;
409 }
410
411 pebs_set_tlb_lock(&val, dse.ld_stlb_miss, dse.ld_locked);
412
413 /*
414 * Ice Lake and earlier models do not support block infos.
415 */
416 if (!x86_pmu.pebs_block) {
417 val |= P(BLK, NA);
418 return val;
419 }
420 /*
421 * bit 6: load was blocked since its data could not be forwarded
422 * from a preceding store
423 */
424 if (dse.ld_data_blk)
425 val |= P(BLK, DATA);
426
427 /*
428 * bit 7: load was blocked due to potential address conflict with
429 * a preceding store
430 */
431 if (dse.ld_addr_blk)
432 val |= P(BLK, ADDR);
433
434 if (!dse.ld_data_blk && !dse.ld_addr_blk)
435 val |= P(BLK, NA);
436
437 return val;
438 }
439
store_latency_data(struct perf_event * event,u64 status)440 static u64 store_latency_data(struct perf_event *event, u64 status)
441 {
442 union intel_x86_pebs_dse dse;
443 union perf_mem_data_src src;
444 u64 val;
445
446 dse.val = status;
447
448 /*
449 * use the mapping table for bit 0-3
450 */
451 val = hybrid_var(event->pmu, pebs_data_source)[dse.st_lat_dse];
452
453 pebs_set_tlb_lock(&val, dse.st_lat_stlb_miss, dse.st_lat_locked);
454
455 val |= P(BLK, NA);
456
457 /*
458 * the pebs_data_source table is only for loads
459 * so override the mem_op to say STORE instead
460 */
461 src.val = val;
462 src.mem_op = P(OP,STORE);
463
464 return src.val;
465 }
466
467 struct pebs_record_core {
468 u64 flags, ip;
469 u64 ax, bx, cx, dx;
470 u64 si, di, bp, sp;
471 u64 r8, r9, r10, r11;
472 u64 r12, r13, r14, r15;
473 };
474
475 struct pebs_record_nhm {
476 u64 flags, ip;
477 u64 ax, bx, cx, dx;
478 u64 si, di, bp, sp;
479 u64 r8, r9, r10, r11;
480 u64 r12, r13, r14, r15;
481 u64 status, dla, dse, lat;
482 };
483
484 /*
485 * Same as pebs_record_nhm, with two additional fields.
486 */
487 struct pebs_record_hsw {
488 u64 flags, ip;
489 u64 ax, bx, cx, dx;
490 u64 si, di, bp, sp;
491 u64 r8, r9, r10, r11;
492 u64 r12, r13, r14, r15;
493 u64 status, dla, dse, lat;
494 u64 real_ip, tsx_tuning;
495 };
496
497 union hsw_tsx_tuning {
498 struct {
499 u32 cycles_last_block : 32,
500 hle_abort : 1,
501 rtm_abort : 1,
502 instruction_abort : 1,
503 non_instruction_abort : 1,
504 retry : 1,
505 data_conflict : 1,
506 capacity_writes : 1,
507 capacity_reads : 1;
508 };
509 u64 value;
510 };
511
512 #define PEBS_HSW_TSX_FLAGS 0xff00000000ULL
513
514 /* Same as HSW, plus TSC */
515
516 struct pebs_record_skl {
517 u64 flags, ip;
518 u64 ax, bx, cx, dx;
519 u64 si, di, bp, sp;
520 u64 r8, r9, r10, r11;
521 u64 r12, r13, r14, r15;
522 u64 status, dla, dse, lat;
523 u64 real_ip, tsx_tuning;
524 u64 tsc;
525 };
526
init_debug_store_on_cpu(int cpu)527 void init_debug_store_on_cpu(int cpu)
528 {
529 struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
530
531 if (!ds)
532 return;
533
534 wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA,
535 (u32)((u64)(unsigned long)ds),
536 (u32)((u64)(unsigned long)ds >> 32));
537 }
538
fini_debug_store_on_cpu(int cpu)539 void fini_debug_store_on_cpu(int cpu)
540 {
541 if (!per_cpu(cpu_hw_events, cpu).ds)
542 return;
543
544 wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA, 0, 0);
545 }
546
547 static DEFINE_PER_CPU(void *, insn_buffer);
548
ds_update_cea(void * cea,void * addr,size_t size,pgprot_t prot)549 static void ds_update_cea(void *cea, void *addr, size_t size, pgprot_t prot)
550 {
551 unsigned long start = (unsigned long)cea;
552 phys_addr_t pa;
553 size_t msz = 0;
554
555 pa = virt_to_phys(addr);
556
557 preempt_disable();
558 for (; msz < size; msz += PAGE_SIZE, pa += PAGE_SIZE, cea += PAGE_SIZE)
559 cea_set_pte(cea, pa, prot);
560
561 /*
562 * This is a cross-CPU update of the cpu_entry_area, we must shoot down
563 * all TLB entries for it.
564 */
565 flush_tlb_kernel_range(start, start + size);
566 preempt_enable();
567 }
568
ds_clear_cea(void * cea,size_t size)569 static void ds_clear_cea(void *cea, size_t size)
570 {
571 unsigned long start = (unsigned long)cea;
572 size_t msz = 0;
573
574 preempt_disable();
575 for (; msz < size; msz += PAGE_SIZE, cea += PAGE_SIZE)
576 cea_set_pte(cea, 0, PAGE_NONE);
577
578 flush_tlb_kernel_range(start, start + size);
579 preempt_enable();
580 }
581
dsalloc_pages(size_t size,gfp_t flags,int cpu)582 static void *dsalloc_pages(size_t size, gfp_t flags, int cpu)
583 {
584 unsigned int order = get_order(size);
585 int node = cpu_to_node(cpu);
586 struct page *page;
587
588 page = __alloc_pages_node(node, flags | __GFP_ZERO, order);
589 return page ? page_address(page) : NULL;
590 }
591
dsfree_pages(const void * buffer,size_t size)592 static void dsfree_pages(const void *buffer, size_t size)
593 {
594 if (buffer)
595 free_pages((unsigned long)buffer, get_order(size));
596 }
597
alloc_pebs_buffer(int cpu)598 static int alloc_pebs_buffer(int cpu)
599 {
600 struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu);
601 struct debug_store *ds = hwev->ds;
602 size_t bsiz = x86_pmu.pebs_buffer_size;
603 int max, node = cpu_to_node(cpu);
604 void *buffer, *insn_buff, *cea;
605
606 if (!x86_pmu.pebs)
607 return 0;
608
609 buffer = dsalloc_pages(bsiz, GFP_KERNEL, cpu);
610 if (unlikely(!buffer))
611 return -ENOMEM;
612
613 /*
614 * HSW+ already provides us the eventing ip; no need to allocate this
615 * buffer then.
616 */
617 if (x86_pmu.intel_cap.pebs_format < 2) {
618 insn_buff = kzalloc_node(PEBS_FIXUP_SIZE, GFP_KERNEL, node);
619 if (!insn_buff) {
620 dsfree_pages(buffer, bsiz);
621 return -ENOMEM;
622 }
623 per_cpu(insn_buffer, cpu) = insn_buff;
624 }
625 hwev->ds_pebs_vaddr = buffer;
626 /* Update the cpu entry area mapping */
627 cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.pebs_buffer;
628 ds->pebs_buffer_base = (unsigned long) cea;
629 ds_update_cea(cea, buffer, bsiz, PAGE_KERNEL);
630 ds->pebs_index = ds->pebs_buffer_base;
631 max = x86_pmu.pebs_record_size * (bsiz / x86_pmu.pebs_record_size);
632 ds->pebs_absolute_maximum = ds->pebs_buffer_base + max;
633 return 0;
634 }
635
release_pebs_buffer(int cpu)636 static void release_pebs_buffer(int cpu)
637 {
638 struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu);
639 void *cea;
640
641 if (!x86_pmu.pebs)
642 return;
643
644 kfree(per_cpu(insn_buffer, cpu));
645 per_cpu(insn_buffer, cpu) = NULL;
646
647 /* Clear the fixmap */
648 cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.pebs_buffer;
649 ds_clear_cea(cea, x86_pmu.pebs_buffer_size);
650 dsfree_pages(hwev->ds_pebs_vaddr, x86_pmu.pebs_buffer_size);
651 hwev->ds_pebs_vaddr = NULL;
652 }
653
alloc_bts_buffer(int cpu)654 static int alloc_bts_buffer(int cpu)
655 {
656 struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu);
657 struct debug_store *ds = hwev->ds;
658 void *buffer, *cea;
659 int max;
660
661 if (!x86_pmu.bts)
662 return 0;
663
664 buffer = dsalloc_pages(BTS_BUFFER_SIZE, GFP_KERNEL | __GFP_NOWARN, cpu);
665 if (unlikely(!buffer)) {
666 WARN_ONCE(1, "%s: BTS buffer allocation failure\n", __func__);
667 return -ENOMEM;
668 }
669 hwev->ds_bts_vaddr = buffer;
670 /* Update the fixmap */
671 cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.bts_buffer;
672 ds->bts_buffer_base = (unsigned long) cea;
673 ds_update_cea(cea, buffer, BTS_BUFFER_SIZE, PAGE_KERNEL);
674 ds->bts_index = ds->bts_buffer_base;
675 max = BTS_BUFFER_SIZE / BTS_RECORD_SIZE;
676 ds->bts_absolute_maximum = ds->bts_buffer_base +
677 max * BTS_RECORD_SIZE;
678 ds->bts_interrupt_threshold = ds->bts_absolute_maximum -
679 (max / 16) * BTS_RECORD_SIZE;
680 return 0;
681 }
682
release_bts_buffer(int cpu)683 static void release_bts_buffer(int cpu)
684 {
685 struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu);
686 void *cea;
687
688 if (!x86_pmu.bts)
689 return;
690
691 /* Clear the fixmap */
692 cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.bts_buffer;
693 ds_clear_cea(cea, BTS_BUFFER_SIZE);
694 dsfree_pages(hwev->ds_bts_vaddr, BTS_BUFFER_SIZE);
695 hwev->ds_bts_vaddr = NULL;
696 }
697
alloc_ds_buffer(int cpu)698 static int alloc_ds_buffer(int cpu)
699 {
700 struct debug_store *ds = &get_cpu_entry_area(cpu)->cpu_debug_store;
701
702 memset(ds, 0, sizeof(*ds));
703 per_cpu(cpu_hw_events, cpu).ds = ds;
704 return 0;
705 }
706
release_ds_buffer(int cpu)707 static void release_ds_buffer(int cpu)
708 {
709 per_cpu(cpu_hw_events, cpu).ds = NULL;
710 }
711
release_ds_buffers(void)712 void release_ds_buffers(void)
713 {
714 int cpu;
715
716 if (!x86_pmu.bts && !x86_pmu.pebs)
717 return;
718
719 for_each_possible_cpu(cpu)
720 release_ds_buffer(cpu);
721
722 for_each_possible_cpu(cpu) {
723 /*
724 * Again, ignore errors from offline CPUs, they will no longer
725 * observe cpu_hw_events.ds and not program the DS_AREA when
726 * they come up.
727 */
728 fini_debug_store_on_cpu(cpu);
729 }
730
731 for_each_possible_cpu(cpu) {
732 release_pebs_buffer(cpu);
733 release_bts_buffer(cpu);
734 }
735 }
736
reserve_ds_buffers(void)737 void reserve_ds_buffers(void)
738 {
739 int bts_err = 0, pebs_err = 0;
740 int cpu;
741
742 x86_pmu.bts_active = 0;
743 x86_pmu.pebs_active = 0;
744
745 if (!x86_pmu.bts && !x86_pmu.pebs)
746 return;
747
748 if (!x86_pmu.bts)
749 bts_err = 1;
750
751 if (!x86_pmu.pebs)
752 pebs_err = 1;
753
754 for_each_possible_cpu(cpu) {
755 if (alloc_ds_buffer(cpu)) {
756 bts_err = 1;
757 pebs_err = 1;
758 }
759
760 if (!bts_err && alloc_bts_buffer(cpu))
761 bts_err = 1;
762
763 if (!pebs_err && alloc_pebs_buffer(cpu))
764 pebs_err = 1;
765
766 if (bts_err && pebs_err)
767 break;
768 }
769
770 if (bts_err) {
771 for_each_possible_cpu(cpu)
772 release_bts_buffer(cpu);
773 }
774
775 if (pebs_err) {
776 for_each_possible_cpu(cpu)
777 release_pebs_buffer(cpu);
778 }
779
780 if (bts_err && pebs_err) {
781 for_each_possible_cpu(cpu)
782 release_ds_buffer(cpu);
783 } else {
784 if (x86_pmu.bts && !bts_err)
785 x86_pmu.bts_active = 1;
786
787 if (x86_pmu.pebs && !pebs_err)
788 x86_pmu.pebs_active = 1;
789
790 for_each_possible_cpu(cpu) {
791 /*
792 * Ignores wrmsr_on_cpu() errors for offline CPUs they
793 * will get this call through intel_pmu_cpu_starting().
794 */
795 init_debug_store_on_cpu(cpu);
796 }
797 }
798 }
799
800 /*
801 * BTS
802 */
803
804 struct event_constraint bts_constraint =
805 EVENT_CONSTRAINT(0, 1ULL << INTEL_PMC_IDX_FIXED_BTS, 0);
806
intel_pmu_enable_bts(u64 config)807 void intel_pmu_enable_bts(u64 config)
808 {
809 unsigned long debugctlmsr;
810
811 debugctlmsr = get_debugctlmsr();
812
813 debugctlmsr |= DEBUGCTLMSR_TR;
814 debugctlmsr |= DEBUGCTLMSR_BTS;
815 if (config & ARCH_PERFMON_EVENTSEL_INT)
816 debugctlmsr |= DEBUGCTLMSR_BTINT;
817
818 if (!(config & ARCH_PERFMON_EVENTSEL_OS))
819 debugctlmsr |= DEBUGCTLMSR_BTS_OFF_OS;
820
821 if (!(config & ARCH_PERFMON_EVENTSEL_USR))
822 debugctlmsr |= DEBUGCTLMSR_BTS_OFF_USR;
823
824 update_debugctlmsr(debugctlmsr);
825 }
826
intel_pmu_disable_bts(void)827 void intel_pmu_disable_bts(void)
828 {
829 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
830 unsigned long debugctlmsr;
831
832 if (!cpuc->ds)
833 return;
834
835 debugctlmsr = get_debugctlmsr();
836
837 debugctlmsr &=
838 ~(DEBUGCTLMSR_TR | DEBUGCTLMSR_BTS | DEBUGCTLMSR_BTINT |
839 DEBUGCTLMSR_BTS_OFF_OS | DEBUGCTLMSR_BTS_OFF_USR);
840
841 update_debugctlmsr(debugctlmsr);
842 }
843
intel_pmu_drain_bts_buffer(void)844 int intel_pmu_drain_bts_buffer(void)
845 {
846 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
847 struct debug_store *ds = cpuc->ds;
848 struct bts_record {
849 u64 from;
850 u64 to;
851 u64 flags;
852 };
853 struct perf_event *event = cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
854 struct bts_record *at, *base, *top;
855 struct perf_output_handle handle;
856 struct perf_event_header header;
857 struct perf_sample_data data;
858 unsigned long skip = 0;
859 struct pt_regs regs;
860
861 if (!event)
862 return 0;
863
864 if (!x86_pmu.bts_active)
865 return 0;
866
867 base = (struct bts_record *)(unsigned long)ds->bts_buffer_base;
868 top = (struct bts_record *)(unsigned long)ds->bts_index;
869
870 if (top <= base)
871 return 0;
872
873 memset(®s, 0, sizeof(regs));
874
875 ds->bts_index = ds->bts_buffer_base;
876
877 perf_sample_data_init(&data, 0, event->hw.last_period);
878
879 /*
880 * BTS leaks kernel addresses in branches across the cpl boundary,
881 * such as traps or system calls, so unless the user is asking for
882 * kernel tracing (and right now it's not possible), we'd need to
883 * filter them out. But first we need to count how many of those we
884 * have in the current batch. This is an extra O(n) pass, however,
885 * it's much faster than the other one especially considering that
886 * n <= 2560 (BTS_BUFFER_SIZE / BTS_RECORD_SIZE * 15/16; see the
887 * alloc_bts_buffer()).
888 */
889 for (at = base; at < top; at++) {
890 /*
891 * Note that right now *this* BTS code only works if
892 * attr::exclude_kernel is set, but let's keep this extra
893 * check here in case that changes.
894 */
895 if (event->attr.exclude_kernel &&
896 (kernel_ip(at->from) || kernel_ip(at->to)))
897 skip++;
898 }
899
900 /*
901 * Prepare a generic sample, i.e. fill in the invariant fields.
902 * We will overwrite the from and to address before we output
903 * the sample.
904 */
905 rcu_read_lock();
906 perf_prepare_sample(&data, event, ®s);
907 perf_prepare_header(&header, &data, event, ®s);
908
909 if (perf_output_begin(&handle, &data, event,
910 header.size * (top - base - skip)))
911 goto unlock;
912
913 for (at = base; at < top; at++) {
914 /* Filter out any records that contain kernel addresses. */
915 if (event->attr.exclude_kernel &&
916 (kernel_ip(at->from) || kernel_ip(at->to)))
917 continue;
918
919 data.ip = at->from;
920 data.addr = at->to;
921
922 perf_output_sample(&handle, &header, &data, event);
923 }
924
925 perf_output_end(&handle);
926
927 /* There's new data available. */
928 event->hw.interrupts++;
929 event->pending_kill = POLL_IN;
930 unlock:
931 rcu_read_unlock();
932 return 1;
933 }
934
intel_pmu_drain_pebs_buffer(void)935 void intel_pmu_drain_pebs_buffer(void)
936 {
937 struct perf_sample_data data;
938
939 static_call(x86_pmu_drain_pebs)(NULL, &data);
940 }
941
942 /*
943 * PEBS
944 */
945 struct event_constraint intel_core2_pebs_event_constraints[] = {
946 INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c0, 0x1), /* INST_RETIRED.ANY */
947 INTEL_FLAGS_UEVENT_CONSTRAINT(0xfec1, 0x1), /* X87_OPS_RETIRED.ANY */
948 INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c5, 0x1), /* BR_INST_RETIRED.MISPRED */
949 INTEL_FLAGS_UEVENT_CONSTRAINT(0x1fc7, 0x1), /* SIMD_INST_RETURED.ANY */
950 INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED.* */
951 /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
952 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x01),
953 EVENT_CONSTRAINT_END
954 };
955
956 struct event_constraint intel_atom_pebs_event_constraints[] = {
957 INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c0, 0x1), /* INST_RETIRED.ANY */
958 INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c5, 0x1), /* MISPREDICTED_BRANCH_RETIRED */
959 INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED.* */
960 /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
961 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x01),
962 /* Allow all events as PEBS with no flags */
963 INTEL_ALL_EVENT_CONSTRAINT(0, 0x1),
964 EVENT_CONSTRAINT_END
965 };
966
967 struct event_constraint intel_slm_pebs_event_constraints[] = {
968 /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
969 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x1),
970 /* Allow all events as PEBS with no flags */
971 INTEL_ALL_EVENT_CONSTRAINT(0, 0x1),
972 EVENT_CONSTRAINT_END
973 };
974
975 struct event_constraint intel_glm_pebs_event_constraints[] = {
976 /* Allow all events as PEBS with no flags */
977 INTEL_ALL_EVENT_CONSTRAINT(0, 0x1),
978 EVENT_CONSTRAINT_END
979 };
980
981 struct event_constraint intel_grt_pebs_event_constraints[] = {
982 /* Allow all events as PEBS with no flags */
983 INTEL_HYBRID_LAT_CONSTRAINT(0x5d0, 0x3),
984 INTEL_HYBRID_LAT_CONSTRAINT(0x6d0, 0xf),
985 EVENT_CONSTRAINT_END
986 };
987
988 struct event_constraint intel_nehalem_pebs_event_constraints[] = {
989 INTEL_PLD_CONSTRAINT(0x100b, 0xf), /* MEM_INST_RETIRED.* */
990 INTEL_FLAGS_EVENT_CONSTRAINT(0x0f, 0xf), /* MEM_UNCORE_RETIRED.* */
991 INTEL_FLAGS_UEVENT_CONSTRAINT(0x010c, 0xf), /* MEM_STORE_RETIRED.DTLB_MISS */
992 INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xf), /* INST_RETIRED.ANY */
993 INTEL_EVENT_CONSTRAINT(0xc2, 0xf), /* UOPS_RETIRED.* */
994 INTEL_FLAGS_EVENT_CONSTRAINT(0xc4, 0xf), /* BR_INST_RETIRED.* */
995 INTEL_FLAGS_UEVENT_CONSTRAINT(0x02c5, 0xf), /* BR_MISP_RETIRED.NEAR_CALL */
996 INTEL_FLAGS_EVENT_CONSTRAINT(0xc7, 0xf), /* SSEX_UOPS_RETIRED.* */
997 INTEL_FLAGS_UEVENT_CONSTRAINT(0x20c8, 0xf), /* ITLB_MISS_RETIRED */
998 INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0xf), /* MEM_LOAD_RETIRED.* */
999 INTEL_FLAGS_EVENT_CONSTRAINT(0xf7, 0xf), /* FP_ASSIST.* */
1000 /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
1001 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x0f),
1002 EVENT_CONSTRAINT_END
1003 };
1004
1005 struct event_constraint intel_westmere_pebs_event_constraints[] = {
1006 INTEL_PLD_CONSTRAINT(0x100b, 0xf), /* MEM_INST_RETIRED.* */
1007 INTEL_FLAGS_EVENT_CONSTRAINT(0x0f, 0xf), /* MEM_UNCORE_RETIRED.* */
1008 INTEL_FLAGS_UEVENT_CONSTRAINT(0x010c, 0xf), /* MEM_STORE_RETIRED.DTLB_MISS */
1009 INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xf), /* INSTR_RETIRED.* */
1010 INTEL_EVENT_CONSTRAINT(0xc2, 0xf), /* UOPS_RETIRED.* */
1011 INTEL_FLAGS_EVENT_CONSTRAINT(0xc4, 0xf), /* BR_INST_RETIRED.* */
1012 INTEL_FLAGS_EVENT_CONSTRAINT(0xc5, 0xf), /* BR_MISP_RETIRED.* */
1013 INTEL_FLAGS_EVENT_CONSTRAINT(0xc7, 0xf), /* SSEX_UOPS_RETIRED.* */
1014 INTEL_FLAGS_UEVENT_CONSTRAINT(0x20c8, 0xf), /* ITLB_MISS_RETIRED */
1015 INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0xf), /* MEM_LOAD_RETIRED.* */
1016 INTEL_FLAGS_EVENT_CONSTRAINT(0xf7, 0xf), /* FP_ASSIST.* */
1017 /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
1018 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x0f),
1019 EVENT_CONSTRAINT_END
1020 };
1021
1022 struct event_constraint intel_snb_pebs_event_constraints[] = {
1023 INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
1024 INTEL_PLD_CONSTRAINT(0x01cd, 0x8), /* MEM_TRANS_RETIRED.LAT_ABOVE_THR */
1025 INTEL_PST_CONSTRAINT(0x02cd, 0x8), /* MEM_TRANS_RETIRED.PRECISE_STORES */
1026 /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
1027 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c2, 0xf),
1028 INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOP_RETIRED.* */
1029 INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
1030 INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
1031 INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
1032 /* Allow all events as PEBS with no flags */
1033 INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
1034 EVENT_CONSTRAINT_END
1035 };
1036
1037 struct event_constraint intel_ivb_pebs_event_constraints[] = {
1038 INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
1039 INTEL_PLD_CONSTRAINT(0x01cd, 0x8), /* MEM_TRANS_RETIRED.LAT_ABOVE_THR */
1040 INTEL_PST_CONSTRAINT(0x02cd, 0x8), /* MEM_TRANS_RETIRED.PRECISE_STORES */
1041 /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
1042 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c2, 0xf),
1043 /* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
1044 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c0, 0x2),
1045 INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOP_RETIRED.* */
1046 INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
1047 INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
1048 INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
1049 /* Allow all events as PEBS with no flags */
1050 INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
1051 EVENT_CONSTRAINT_END
1052 };
1053
1054 struct event_constraint intel_hsw_pebs_event_constraints[] = {
1055 INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
1056 INTEL_PLD_CONSTRAINT(0x01cd, 0xf), /* MEM_TRANS_RETIRED.* */
1057 /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
1058 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c2, 0xf),
1059 /* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
1060 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c0, 0x2),
1061 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_NA(0x01c2, 0xf), /* UOPS_RETIRED.ALL */
1062 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x11d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_LOADS */
1063 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x21d0, 0xf), /* MEM_UOPS_RETIRED.LOCK_LOADS */
1064 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x41d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_LOADS */
1065 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x81d0, 0xf), /* MEM_UOPS_RETIRED.ALL_LOADS */
1066 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x12d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_STORES */
1067 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x42d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_STORES */
1068 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x82d0, 0xf), /* MEM_UOPS_RETIRED.ALL_STORES */
1069 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
1070 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd2, 0xf), /* MEM_LOAD_UOPS_L3_HIT_RETIRED.* */
1071 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd3, 0xf), /* MEM_LOAD_UOPS_L3_MISS_RETIRED.* */
1072 /* Allow all events as PEBS with no flags */
1073 INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
1074 EVENT_CONSTRAINT_END
1075 };
1076
1077 struct event_constraint intel_bdw_pebs_event_constraints[] = {
1078 INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
1079 INTEL_PLD_CONSTRAINT(0x01cd, 0xf), /* MEM_TRANS_RETIRED.* */
1080 /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
1081 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c2, 0xf),
1082 /* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
1083 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c0, 0x2),
1084 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_NA(0x01c2, 0xf), /* UOPS_RETIRED.ALL */
1085 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_LOADS */
1086 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf), /* MEM_UOPS_RETIRED.LOCK_LOADS */
1087 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_LOADS */
1088 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf), /* MEM_UOPS_RETIRED.ALL_LOADS */
1089 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_STORES */
1090 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_STORES */
1091 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf), /* MEM_UOPS_RETIRED.ALL_STORES */
1092 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
1093 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd2, 0xf), /* MEM_LOAD_UOPS_L3_HIT_RETIRED.* */
1094 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd3, 0xf), /* MEM_LOAD_UOPS_L3_MISS_RETIRED.* */
1095 /* Allow all events as PEBS with no flags */
1096 INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
1097 EVENT_CONSTRAINT_END
1098 };
1099
1100
1101 struct event_constraint intel_skl_pebs_event_constraints[] = {
1102 INTEL_FLAGS_UEVENT_CONSTRAINT(0x1c0, 0x2), /* INST_RETIRED.PREC_DIST */
1103 /* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
1104 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c0, 0x2),
1105 /* INST_RETIRED.TOTAL_CYCLES_PS (inv=1, cmask=16) (cycles:p). */
1106 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x0f),
1107 INTEL_PLD_CONSTRAINT(0x1cd, 0xf), /* MEM_TRANS_RETIRED.* */
1108 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_LOADS */
1109 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_STORES */
1110 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf), /* MEM_INST_RETIRED.LOCK_LOADS */
1111 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x22d0, 0xf), /* MEM_INST_RETIRED.LOCK_STORES */
1112 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf), /* MEM_INST_RETIRED.SPLIT_LOADS */
1113 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf), /* MEM_INST_RETIRED.SPLIT_STORES */
1114 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf), /* MEM_INST_RETIRED.ALL_LOADS */
1115 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf), /* MEM_INST_RETIRED.ALL_STORES */
1116 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd1, 0xf), /* MEM_LOAD_RETIRED.* */
1117 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd2, 0xf), /* MEM_LOAD_L3_HIT_RETIRED.* */
1118 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd3, 0xf), /* MEM_LOAD_L3_MISS_RETIRED.* */
1119 /* Allow all events as PEBS with no flags */
1120 INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
1121 EVENT_CONSTRAINT_END
1122 };
1123
1124 struct event_constraint intel_icl_pebs_event_constraints[] = {
1125 INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x100000000ULL), /* old INST_RETIRED.PREC_DIST */
1126 INTEL_FLAGS_UEVENT_CONSTRAINT(0x0100, 0x100000000ULL), /* INST_RETIRED.PREC_DIST */
1127 INTEL_FLAGS_UEVENT_CONSTRAINT(0x0400, 0x800000000ULL), /* SLOTS */
1128
1129 INTEL_PLD_CONSTRAINT(0x1cd, 0xff), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
1130 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_LOADS */
1131 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_STORES */
1132 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf), /* MEM_INST_RETIRED.LOCK_LOADS */
1133 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf), /* MEM_INST_RETIRED.SPLIT_LOADS */
1134 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf), /* MEM_INST_RETIRED.SPLIT_STORES */
1135 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf), /* MEM_INST_RETIRED.ALL_LOADS */
1136 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf), /* MEM_INST_RETIRED.ALL_STORES */
1137
1138 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD_RANGE(0xd1, 0xd4, 0xf), /* MEM_LOAD_*_RETIRED.* */
1139
1140 INTEL_FLAGS_EVENT_CONSTRAINT(0xd0, 0xf), /* MEM_INST_RETIRED.* */
1141
1142 /*
1143 * Everything else is handled by PMU_FL_PEBS_ALL, because we
1144 * need the full constraints from the main table.
1145 */
1146
1147 EVENT_CONSTRAINT_END
1148 };
1149
1150 struct event_constraint intel_glc_pebs_event_constraints[] = {
1151 INTEL_FLAGS_UEVENT_CONSTRAINT(0x100, 0x100000000ULL), /* INST_RETIRED.PREC_DIST */
1152 INTEL_FLAGS_UEVENT_CONSTRAINT(0x0400, 0x800000000ULL),
1153
1154 INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xfe),
1155 INTEL_PLD_CONSTRAINT(0x1cd, 0xfe),
1156 INTEL_PSD_CONSTRAINT(0x2cd, 0x1),
1157 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_LOADS */
1158 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_STORES */
1159 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf), /* MEM_INST_RETIRED.LOCK_LOADS */
1160 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf), /* MEM_INST_RETIRED.SPLIT_LOADS */
1161 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf), /* MEM_INST_RETIRED.SPLIT_STORES */
1162 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf), /* MEM_INST_RETIRED.ALL_LOADS */
1163 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf), /* MEM_INST_RETIRED.ALL_STORES */
1164
1165 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD_RANGE(0xd1, 0xd4, 0xf),
1166
1167 INTEL_FLAGS_EVENT_CONSTRAINT(0xd0, 0xf),
1168
1169 /*
1170 * Everything else is handled by PMU_FL_PEBS_ALL, because we
1171 * need the full constraints from the main table.
1172 */
1173
1174 EVENT_CONSTRAINT_END
1175 };
1176
1177 struct event_constraint intel_lnc_pebs_event_constraints[] = {
1178 INTEL_FLAGS_UEVENT_CONSTRAINT(0x100, 0x100000000ULL), /* INST_RETIRED.PREC_DIST */
1179 INTEL_FLAGS_UEVENT_CONSTRAINT(0x0400, 0x800000000ULL),
1180
1181 INTEL_HYBRID_LDLAT_CONSTRAINT(0x1cd, 0x3fc),
1182 INTEL_HYBRID_STLAT_CONSTRAINT(0x2cd, 0x3),
1183 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_LOADS */
1184 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_STORES */
1185 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf), /* MEM_INST_RETIRED.LOCK_LOADS */
1186 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf), /* MEM_INST_RETIRED.SPLIT_LOADS */
1187 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf), /* MEM_INST_RETIRED.SPLIT_STORES */
1188 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf), /* MEM_INST_RETIRED.ALL_LOADS */
1189 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf), /* MEM_INST_RETIRED.ALL_STORES */
1190
1191 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD_RANGE(0xd1, 0xd4, 0xf),
1192
1193 INTEL_FLAGS_EVENT_CONSTRAINT(0xd0, 0xf),
1194
1195 /*
1196 * Everything else is handled by PMU_FL_PEBS_ALL, because we
1197 * need the full constraints from the main table.
1198 */
1199
1200 EVENT_CONSTRAINT_END
1201 };
1202
intel_pebs_constraints(struct perf_event * event)1203 struct event_constraint *intel_pebs_constraints(struct perf_event *event)
1204 {
1205 struct event_constraint *pebs_constraints = hybrid(event->pmu, pebs_constraints);
1206 struct event_constraint *c;
1207
1208 if (!event->attr.precise_ip)
1209 return NULL;
1210
1211 if (pebs_constraints) {
1212 for_each_event_constraint(c, pebs_constraints) {
1213 if (constraint_match(c, event->hw.config)) {
1214 event->hw.flags |= c->flags;
1215 return c;
1216 }
1217 }
1218 }
1219
1220 /*
1221 * Extended PEBS support
1222 * Makes the PEBS code search the normal constraints.
1223 */
1224 if (x86_pmu.flags & PMU_FL_PEBS_ALL)
1225 return NULL;
1226
1227 return &emptyconstraint;
1228 }
1229
1230 /*
1231 * We need the sched_task callback even for per-cpu events when we use
1232 * the large interrupt threshold, such that we can provide PID and TID
1233 * to PEBS samples.
1234 */
pebs_needs_sched_cb(struct cpu_hw_events * cpuc)1235 static inline bool pebs_needs_sched_cb(struct cpu_hw_events *cpuc)
1236 {
1237 if (cpuc->n_pebs == cpuc->n_pebs_via_pt)
1238 return false;
1239
1240 return cpuc->n_pebs && (cpuc->n_pebs == cpuc->n_large_pebs);
1241 }
1242
intel_pmu_pebs_sched_task(struct perf_event_pmu_context * pmu_ctx,bool sched_in)1243 void intel_pmu_pebs_sched_task(struct perf_event_pmu_context *pmu_ctx, bool sched_in)
1244 {
1245 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1246
1247 if (!sched_in && pebs_needs_sched_cb(cpuc))
1248 intel_pmu_drain_pebs_buffer();
1249 }
1250
pebs_update_threshold(struct cpu_hw_events * cpuc)1251 static inline void pebs_update_threshold(struct cpu_hw_events *cpuc)
1252 {
1253 struct debug_store *ds = cpuc->ds;
1254 int max_pebs_events = intel_pmu_max_num_pebs(cpuc->pmu);
1255 u64 threshold;
1256 int reserved;
1257
1258 if (cpuc->n_pebs_via_pt)
1259 return;
1260
1261 if (x86_pmu.flags & PMU_FL_PEBS_ALL)
1262 reserved = max_pebs_events + x86_pmu_max_num_counters_fixed(cpuc->pmu);
1263 else
1264 reserved = max_pebs_events;
1265
1266 if (cpuc->n_pebs == cpuc->n_large_pebs) {
1267 threshold = ds->pebs_absolute_maximum -
1268 reserved * cpuc->pebs_record_size;
1269 } else {
1270 threshold = ds->pebs_buffer_base + cpuc->pebs_record_size;
1271 }
1272
1273 ds->pebs_interrupt_threshold = threshold;
1274 }
1275
adaptive_pebs_record_size_update(void)1276 static void adaptive_pebs_record_size_update(void)
1277 {
1278 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1279 u64 pebs_data_cfg = cpuc->pebs_data_cfg;
1280 int sz = sizeof(struct pebs_basic);
1281
1282 if (pebs_data_cfg & PEBS_DATACFG_MEMINFO)
1283 sz += sizeof(struct pebs_meminfo);
1284 if (pebs_data_cfg & PEBS_DATACFG_GP)
1285 sz += sizeof(struct pebs_gprs);
1286 if (pebs_data_cfg & PEBS_DATACFG_XMMS)
1287 sz += sizeof(struct pebs_xmm);
1288 if (pebs_data_cfg & PEBS_DATACFG_LBRS)
1289 sz += x86_pmu.lbr_nr * sizeof(struct lbr_entry);
1290
1291 cpuc->pebs_record_size = sz;
1292 }
1293
1294 #define PERF_PEBS_MEMINFO_TYPE (PERF_SAMPLE_ADDR | PERF_SAMPLE_DATA_SRC | \
1295 PERF_SAMPLE_PHYS_ADDR | \
1296 PERF_SAMPLE_WEIGHT_TYPE | \
1297 PERF_SAMPLE_TRANSACTION | \
1298 PERF_SAMPLE_DATA_PAGE_SIZE)
1299
pebs_update_adaptive_cfg(struct perf_event * event)1300 static u64 pebs_update_adaptive_cfg(struct perf_event *event)
1301 {
1302 struct perf_event_attr *attr = &event->attr;
1303 u64 sample_type = attr->sample_type;
1304 u64 pebs_data_cfg = 0;
1305 bool gprs, tsx_weight;
1306
1307 if (!(sample_type & ~(PERF_SAMPLE_IP|PERF_SAMPLE_TIME)) &&
1308 attr->precise_ip > 1)
1309 return pebs_data_cfg;
1310
1311 if (sample_type & PERF_PEBS_MEMINFO_TYPE)
1312 pebs_data_cfg |= PEBS_DATACFG_MEMINFO;
1313
1314 /*
1315 * We need GPRs when:
1316 * + user requested them
1317 * + precise_ip < 2 for the non event IP
1318 * + For RTM TSX weight we need GPRs for the abort code.
1319 */
1320 gprs = ((sample_type & PERF_SAMPLE_REGS_INTR) &&
1321 (attr->sample_regs_intr & PEBS_GP_REGS)) ||
1322 ((sample_type & PERF_SAMPLE_REGS_USER) &&
1323 (attr->sample_regs_user & PEBS_GP_REGS));
1324
1325 tsx_weight = (sample_type & PERF_SAMPLE_WEIGHT_TYPE) &&
1326 ((attr->config & INTEL_ARCH_EVENT_MASK) ==
1327 x86_pmu.rtm_abort_event);
1328
1329 if (gprs || (attr->precise_ip < 2) || tsx_weight)
1330 pebs_data_cfg |= PEBS_DATACFG_GP;
1331
1332 if ((sample_type & PERF_SAMPLE_REGS_INTR) &&
1333 (attr->sample_regs_intr & PERF_REG_EXTENDED_MASK))
1334 pebs_data_cfg |= PEBS_DATACFG_XMMS;
1335
1336 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
1337 /*
1338 * For now always log all LBRs. Could configure this
1339 * later.
1340 */
1341 pebs_data_cfg |= PEBS_DATACFG_LBRS |
1342 ((x86_pmu.lbr_nr-1) << PEBS_DATACFG_LBR_SHIFT);
1343 }
1344
1345 return pebs_data_cfg;
1346 }
1347
1348 static void
pebs_update_state(bool needed_cb,struct cpu_hw_events * cpuc,struct perf_event * event,bool add)1349 pebs_update_state(bool needed_cb, struct cpu_hw_events *cpuc,
1350 struct perf_event *event, bool add)
1351 {
1352 struct pmu *pmu = event->pmu;
1353
1354 /*
1355 * Make sure we get updated with the first PEBS event.
1356 * During removal, ->pebs_data_cfg is still valid for
1357 * the last PEBS event. Don't clear it.
1358 */
1359 if ((cpuc->n_pebs == 1) && add)
1360 cpuc->pebs_data_cfg = PEBS_UPDATE_DS_SW;
1361
1362 if (needed_cb != pebs_needs_sched_cb(cpuc)) {
1363 if (!needed_cb)
1364 perf_sched_cb_inc(pmu);
1365 else
1366 perf_sched_cb_dec(pmu);
1367
1368 cpuc->pebs_data_cfg |= PEBS_UPDATE_DS_SW;
1369 }
1370
1371 /*
1372 * The PEBS record doesn't shrink on pmu::del(). Doing so would require
1373 * iterating all remaining PEBS events to reconstruct the config.
1374 */
1375 if (x86_pmu.intel_cap.pebs_baseline && add) {
1376 u64 pebs_data_cfg;
1377
1378 pebs_data_cfg = pebs_update_adaptive_cfg(event);
1379 /*
1380 * Be sure to update the thresholds when we change the record.
1381 */
1382 if (pebs_data_cfg & ~cpuc->pebs_data_cfg)
1383 cpuc->pebs_data_cfg |= pebs_data_cfg | PEBS_UPDATE_DS_SW;
1384 }
1385 }
1386
intel_pmu_pebs_add(struct perf_event * event)1387 void intel_pmu_pebs_add(struct perf_event *event)
1388 {
1389 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1390 struct hw_perf_event *hwc = &event->hw;
1391 bool needed_cb = pebs_needs_sched_cb(cpuc);
1392
1393 cpuc->n_pebs++;
1394 if (hwc->flags & PERF_X86_EVENT_LARGE_PEBS)
1395 cpuc->n_large_pebs++;
1396 if (hwc->flags & PERF_X86_EVENT_PEBS_VIA_PT)
1397 cpuc->n_pebs_via_pt++;
1398
1399 pebs_update_state(needed_cb, cpuc, event, true);
1400 }
1401
intel_pmu_pebs_via_pt_disable(struct perf_event * event)1402 static void intel_pmu_pebs_via_pt_disable(struct perf_event *event)
1403 {
1404 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1405
1406 if (!is_pebs_pt(event))
1407 return;
1408
1409 if (!(cpuc->pebs_enabled & ~PEBS_VIA_PT_MASK))
1410 cpuc->pebs_enabled &= ~PEBS_VIA_PT_MASK;
1411 }
1412
intel_pmu_pebs_via_pt_enable(struct perf_event * event)1413 static void intel_pmu_pebs_via_pt_enable(struct perf_event *event)
1414 {
1415 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1416 struct hw_perf_event *hwc = &event->hw;
1417 struct debug_store *ds = cpuc->ds;
1418 u64 value = ds->pebs_event_reset[hwc->idx];
1419 u32 base = MSR_RELOAD_PMC0;
1420 unsigned int idx = hwc->idx;
1421
1422 if (!is_pebs_pt(event))
1423 return;
1424
1425 if (!(event->hw.flags & PERF_X86_EVENT_LARGE_PEBS))
1426 cpuc->pebs_enabled |= PEBS_PMI_AFTER_EACH_RECORD;
1427
1428 cpuc->pebs_enabled |= PEBS_OUTPUT_PT;
1429
1430 if (hwc->idx >= INTEL_PMC_IDX_FIXED) {
1431 base = MSR_RELOAD_FIXED_CTR0;
1432 idx = hwc->idx - INTEL_PMC_IDX_FIXED;
1433 if (x86_pmu.intel_cap.pebs_format < 5)
1434 value = ds->pebs_event_reset[MAX_PEBS_EVENTS_FMT4 + idx];
1435 else
1436 value = ds->pebs_event_reset[MAX_PEBS_EVENTS + idx];
1437 }
1438 wrmsrl(base + idx, value);
1439 }
1440
intel_pmu_drain_large_pebs(struct cpu_hw_events * cpuc)1441 static inline void intel_pmu_drain_large_pebs(struct cpu_hw_events *cpuc)
1442 {
1443 if (cpuc->n_pebs == cpuc->n_large_pebs &&
1444 cpuc->n_pebs != cpuc->n_pebs_via_pt)
1445 intel_pmu_drain_pebs_buffer();
1446 }
1447
intel_pmu_pebs_enable(struct perf_event * event)1448 void intel_pmu_pebs_enable(struct perf_event *event)
1449 {
1450 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1451 u64 pebs_data_cfg = cpuc->pebs_data_cfg & ~PEBS_UPDATE_DS_SW;
1452 struct hw_perf_event *hwc = &event->hw;
1453 struct debug_store *ds = cpuc->ds;
1454 unsigned int idx = hwc->idx;
1455
1456 hwc->config &= ~ARCH_PERFMON_EVENTSEL_INT;
1457
1458 cpuc->pebs_enabled |= 1ULL << hwc->idx;
1459
1460 if ((event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT) && (x86_pmu.version < 5))
1461 cpuc->pebs_enabled |= 1ULL << (hwc->idx + 32);
1462 else if (event->hw.flags & PERF_X86_EVENT_PEBS_ST)
1463 cpuc->pebs_enabled |= 1ULL << 63;
1464
1465 if (x86_pmu.intel_cap.pebs_baseline) {
1466 hwc->config |= ICL_EVENTSEL_ADAPTIVE;
1467 if (pebs_data_cfg != cpuc->active_pebs_data_cfg) {
1468 /*
1469 * drain_pebs() assumes uniform record size;
1470 * hence we need to drain when changing said
1471 * size.
1472 */
1473 intel_pmu_drain_pebs_buffer();
1474 adaptive_pebs_record_size_update();
1475 wrmsrl(MSR_PEBS_DATA_CFG, pebs_data_cfg);
1476 cpuc->active_pebs_data_cfg = pebs_data_cfg;
1477 }
1478 }
1479 if (cpuc->pebs_data_cfg & PEBS_UPDATE_DS_SW) {
1480 cpuc->pebs_data_cfg = pebs_data_cfg;
1481 pebs_update_threshold(cpuc);
1482 }
1483
1484 if (idx >= INTEL_PMC_IDX_FIXED) {
1485 if (x86_pmu.intel_cap.pebs_format < 5)
1486 idx = MAX_PEBS_EVENTS_FMT4 + (idx - INTEL_PMC_IDX_FIXED);
1487 else
1488 idx = MAX_PEBS_EVENTS + (idx - INTEL_PMC_IDX_FIXED);
1489 }
1490
1491 /*
1492 * Use auto-reload if possible to save a MSR write in the PMI.
1493 * This must be done in pmu::start(), because PERF_EVENT_IOC_PERIOD.
1494 */
1495 if (hwc->flags & PERF_X86_EVENT_AUTO_RELOAD) {
1496 ds->pebs_event_reset[idx] =
1497 (u64)(-hwc->sample_period) & x86_pmu.cntval_mask;
1498 } else {
1499 ds->pebs_event_reset[idx] = 0;
1500 }
1501
1502 intel_pmu_pebs_via_pt_enable(event);
1503 }
1504
intel_pmu_pebs_del(struct perf_event * event)1505 void intel_pmu_pebs_del(struct perf_event *event)
1506 {
1507 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1508 struct hw_perf_event *hwc = &event->hw;
1509 bool needed_cb = pebs_needs_sched_cb(cpuc);
1510
1511 cpuc->n_pebs--;
1512 if (hwc->flags & PERF_X86_EVENT_LARGE_PEBS)
1513 cpuc->n_large_pebs--;
1514 if (hwc->flags & PERF_X86_EVENT_PEBS_VIA_PT)
1515 cpuc->n_pebs_via_pt--;
1516
1517 pebs_update_state(needed_cb, cpuc, event, false);
1518 }
1519
intel_pmu_pebs_disable(struct perf_event * event)1520 void intel_pmu_pebs_disable(struct perf_event *event)
1521 {
1522 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1523 struct hw_perf_event *hwc = &event->hw;
1524
1525 intel_pmu_drain_large_pebs(cpuc);
1526
1527 cpuc->pebs_enabled &= ~(1ULL << hwc->idx);
1528
1529 if ((event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT) &&
1530 (x86_pmu.version < 5))
1531 cpuc->pebs_enabled &= ~(1ULL << (hwc->idx + 32));
1532 else if (event->hw.flags & PERF_X86_EVENT_PEBS_ST)
1533 cpuc->pebs_enabled &= ~(1ULL << 63);
1534
1535 intel_pmu_pebs_via_pt_disable(event);
1536
1537 if (cpuc->enabled)
1538 wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled);
1539
1540 hwc->config |= ARCH_PERFMON_EVENTSEL_INT;
1541 }
1542
intel_pmu_pebs_enable_all(void)1543 void intel_pmu_pebs_enable_all(void)
1544 {
1545 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1546
1547 if (cpuc->pebs_enabled)
1548 wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled);
1549 }
1550
intel_pmu_pebs_disable_all(void)1551 void intel_pmu_pebs_disable_all(void)
1552 {
1553 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1554
1555 if (cpuc->pebs_enabled)
1556 __intel_pmu_pebs_disable_all();
1557 }
1558
intel_pmu_pebs_fixup_ip(struct pt_regs * regs)1559 static int intel_pmu_pebs_fixup_ip(struct pt_regs *regs)
1560 {
1561 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1562 unsigned long from = cpuc->lbr_entries[0].from;
1563 unsigned long old_to, to = cpuc->lbr_entries[0].to;
1564 unsigned long ip = regs->ip;
1565 int is_64bit = 0;
1566 void *kaddr;
1567 int size;
1568
1569 /*
1570 * We don't need to fixup if the PEBS assist is fault like
1571 */
1572 if (!x86_pmu.intel_cap.pebs_trap)
1573 return 1;
1574
1575 /*
1576 * No LBR entry, no basic block, no rewinding
1577 */
1578 if (!cpuc->lbr_stack.nr || !from || !to)
1579 return 0;
1580
1581 /*
1582 * Basic blocks should never cross user/kernel boundaries
1583 */
1584 if (kernel_ip(ip) != kernel_ip(to))
1585 return 0;
1586
1587 /*
1588 * unsigned math, either ip is before the start (impossible) or
1589 * the basic block is larger than 1 page (sanity)
1590 */
1591 if ((ip - to) > PEBS_FIXUP_SIZE)
1592 return 0;
1593
1594 /*
1595 * We sampled a branch insn, rewind using the LBR stack
1596 */
1597 if (ip == to) {
1598 set_linear_ip(regs, from);
1599 return 1;
1600 }
1601
1602 size = ip - to;
1603 if (!kernel_ip(ip)) {
1604 int bytes;
1605 u8 *buf = this_cpu_read(insn_buffer);
1606
1607 /* 'size' must fit our buffer, see above */
1608 bytes = copy_from_user_nmi(buf, (void __user *)to, size);
1609 if (bytes != 0)
1610 return 0;
1611
1612 kaddr = buf;
1613 } else {
1614 kaddr = (void *)to;
1615 }
1616
1617 do {
1618 struct insn insn;
1619
1620 old_to = to;
1621
1622 #ifdef CONFIG_X86_64
1623 is_64bit = kernel_ip(to) || any_64bit_mode(regs);
1624 #endif
1625 insn_init(&insn, kaddr, size, is_64bit);
1626
1627 /*
1628 * Make sure there was not a problem decoding the instruction.
1629 * This is doubly important because we have an infinite loop if
1630 * insn.length=0.
1631 */
1632 if (insn_get_length(&insn))
1633 break;
1634
1635 to += insn.length;
1636 kaddr += insn.length;
1637 size -= insn.length;
1638 } while (to < ip);
1639
1640 if (to == ip) {
1641 set_linear_ip(regs, old_to);
1642 return 1;
1643 }
1644
1645 /*
1646 * Even though we decoded the basic block, the instruction stream
1647 * never matched the given IP, either the TO or the IP got corrupted.
1648 */
1649 return 0;
1650 }
1651
intel_get_tsx_weight(u64 tsx_tuning)1652 static inline u64 intel_get_tsx_weight(u64 tsx_tuning)
1653 {
1654 if (tsx_tuning) {
1655 union hsw_tsx_tuning tsx = { .value = tsx_tuning };
1656 return tsx.cycles_last_block;
1657 }
1658 return 0;
1659 }
1660
intel_get_tsx_transaction(u64 tsx_tuning,u64 ax)1661 static inline u64 intel_get_tsx_transaction(u64 tsx_tuning, u64 ax)
1662 {
1663 u64 txn = (tsx_tuning & PEBS_HSW_TSX_FLAGS) >> 32;
1664
1665 /* For RTM XABORTs also log the abort code from AX */
1666 if ((txn & PERF_TXN_TRANSACTION) && (ax & 1))
1667 txn |= ((ax >> 24) & 0xff) << PERF_TXN_ABORT_SHIFT;
1668 return txn;
1669 }
1670
get_pebs_status(void * n)1671 static inline u64 get_pebs_status(void *n)
1672 {
1673 if (x86_pmu.intel_cap.pebs_format < 4)
1674 return ((struct pebs_record_nhm *)n)->status;
1675 return ((struct pebs_basic *)n)->applicable_counters;
1676 }
1677
1678 #define PERF_X86_EVENT_PEBS_HSW_PREC \
1679 (PERF_X86_EVENT_PEBS_ST_HSW | \
1680 PERF_X86_EVENT_PEBS_LD_HSW | \
1681 PERF_X86_EVENT_PEBS_NA_HSW)
1682
get_data_src(struct perf_event * event,u64 aux)1683 static u64 get_data_src(struct perf_event *event, u64 aux)
1684 {
1685 u64 val = PERF_MEM_NA;
1686 int fl = event->hw.flags;
1687 bool fst = fl & (PERF_X86_EVENT_PEBS_ST | PERF_X86_EVENT_PEBS_HSW_PREC);
1688
1689 if (fl & PERF_X86_EVENT_PEBS_LDLAT)
1690 val = load_latency_data(event, aux);
1691 else if (fl & PERF_X86_EVENT_PEBS_STLAT)
1692 val = store_latency_data(event, aux);
1693 else if (fl & PERF_X86_EVENT_PEBS_LAT_HYBRID)
1694 val = x86_pmu.pebs_latency_data(event, aux);
1695 else if (fst && (fl & PERF_X86_EVENT_PEBS_HSW_PREC))
1696 val = precise_datala_hsw(event, aux);
1697 else if (fst)
1698 val = precise_store_data(aux);
1699 return val;
1700 }
1701
setup_pebs_time(struct perf_event * event,struct perf_sample_data * data,u64 tsc)1702 static void setup_pebs_time(struct perf_event *event,
1703 struct perf_sample_data *data,
1704 u64 tsc)
1705 {
1706 /* Converting to a user-defined clock is not supported yet. */
1707 if (event->attr.use_clockid != 0)
1708 return;
1709
1710 /*
1711 * Doesn't support the conversion when the TSC is unstable.
1712 * The TSC unstable case is a corner case and very unlikely to
1713 * happen. If it happens, the TSC in a PEBS record will be
1714 * dropped and fall back to perf_event_clock().
1715 */
1716 if (!using_native_sched_clock() || !sched_clock_stable())
1717 return;
1718
1719 data->time = native_sched_clock_from_tsc(tsc) + __sched_clock_offset;
1720 data->sample_flags |= PERF_SAMPLE_TIME;
1721 }
1722
1723 #define PERF_SAMPLE_ADDR_TYPE (PERF_SAMPLE_ADDR | \
1724 PERF_SAMPLE_PHYS_ADDR | \
1725 PERF_SAMPLE_DATA_PAGE_SIZE)
1726
setup_pebs_fixed_sample_data(struct perf_event * event,struct pt_regs * iregs,void * __pebs,struct perf_sample_data * data,struct pt_regs * regs)1727 static void setup_pebs_fixed_sample_data(struct perf_event *event,
1728 struct pt_regs *iregs, void *__pebs,
1729 struct perf_sample_data *data,
1730 struct pt_regs *regs)
1731 {
1732 /*
1733 * We cast to the biggest pebs_record but are careful not to
1734 * unconditionally access the 'extra' entries.
1735 */
1736 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1737 struct pebs_record_skl *pebs = __pebs;
1738 u64 sample_type;
1739 int fll;
1740
1741 if (pebs == NULL)
1742 return;
1743
1744 sample_type = event->attr.sample_type;
1745 fll = event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT;
1746
1747 perf_sample_data_init(data, 0, event->hw.last_period);
1748
1749 data->period = event->hw.last_period;
1750
1751 /*
1752 * Use latency for weight (only avail with PEBS-LL)
1753 */
1754 if (fll && (sample_type & PERF_SAMPLE_WEIGHT_TYPE)) {
1755 data->weight.full = pebs->lat;
1756 data->sample_flags |= PERF_SAMPLE_WEIGHT_TYPE;
1757 }
1758
1759 /*
1760 * data.data_src encodes the data source
1761 */
1762 if (sample_type & PERF_SAMPLE_DATA_SRC) {
1763 data->data_src.val = get_data_src(event, pebs->dse);
1764 data->sample_flags |= PERF_SAMPLE_DATA_SRC;
1765 }
1766
1767 /*
1768 * We must however always use iregs for the unwinder to stay sane; the
1769 * record BP,SP,IP can point into thin air when the record is from a
1770 * previous PMI context or an (I)RET happened between the record and
1771 * PMI.
1772 */
1773 if (sample_type & PERF_SAMPLE_CALLCHAIN)
1774 perf_sample_save_callchain(data, event, iregs);
1775
1776 /*
1777 * We use the interrupt regs as a base because the PEBS record does not
1778 * contain a full regs set, specifically it seems to lack segment
1779 * descriptors, which get used by things like user_mode().
1780 *
1781 * In the simple case fix up only the IP for PERF_SAMPLE_IP.
1782 */
1783 *regs = *iregs;
1784
1785 /*
1786 * Initialize regs_>flags from PEBS,
1787 * Clear exact bit (which uses x86 EFLAGS Reserved bit 3),
1788 * i.e., do not rely on it being zero:
1789 */
1790 regs->flags = pebs->flags & ~PERF_EFLAGS_EXACT;
1791
1792 if (sample_type & PERF_SAMPLE_REGS_INTR) {
1793 regs->ax = pebs->ax;
1794 regs->bx = pebs->bx;
1795 regs->cx = pebs->cx;
1796 regs->dx = pebs->dx;
1797 regs->si = pebs->si;
1798 regs->di = pebs->di;
1799
1800 regs->bp = pebs->bp;
1801 regs->sp = pebs->sp;
1802
1803 #ifndef CONFIG_X86_32
1804 regs->r8 = pebs->r8;
1805 regs->r9 = pebs->r9;
1806 regs->r10 = pebs->r10;
1807 regs->r11 = pebs->r11;
1808 regs->r12 = pebs->r12;
1809 regs->r13 = pebs->r13;
1810 regs->r14 = pebs->r14;
1811 regs->r15 = pebs->r15;
1812 #endif
1813 }
1814
1815 if (event->attr.precise_ip > 1) {
1816 /*
1817 * Haswell and later processors have an 'eventing IP'
1818 * (real IP) which fixes the off-by-1 skid in hardware.
1819 * Use it when precise_ip >= 2 :
1820 */
1821 if (x86_pmu.intel_cap.pebs_format >= 2) {
1822 set_linear_ip(regs, pebs->real_ip);
1823 regs->flags |= PERF_EFLAGS_EXACT;
1824 } else {
1825 /* Otherwise, use PEBS off-by-1 IP: */
1826 set_linear_ip(regs, pebs->ip);
1827
1828 /*
1829 * With precise_ip >= 2, try to fix up the off-by-1 IP
1830 * using the LBR. If successful, the fixup function
1831 * corrects regs->ip and calls set_linear_ip() on regs:
1832 */
1833 if (intel_pmu_pebs_fixup_ip(regs))
1834 regs->flags |= PERF_EFLAGS_EXACT;
1835 }
1836 } else {
1837 /*
1838 * When precise_ip == 1, return the PEBS off-by-1 IP,
1839 * no fixup attempted:
1840 */
1841 set_linear_ip(regs, pebs->ip);
1842 }
1843
1844
1845 if ((sample_type & PERF_SAMPLE_ADDR_TYPE) &&
1846 x86_pmu.intel_cap.pebs_format >= 1) {
1847 data->addr = pebs->dla;
1848 data->sample_flags |= PERF_SAMPLE_ADDR;
1849 }
1850
1851 if (x86_pmu.intel_cap.pebs_format >= 2) {
1852 /* Only set the TSX weight when no memory weight. */
1853 if ((sample_type & PERF_SAMPLE_WEIGHT_TYPE) && !fll) {
1854 data->weight.full = intel_get_tsx_weight(pebs->tsx_tuning);
1855 data->sample_flags |= PERF_SAMPLE_WEIGHT_TYPE;
1856 }
1857 if (sample_type & PERF_SAMPLE_TRANSACTION) {
1858 data->txn = intel_get_tsx_transaction(pebs->tsx_tuning,
1859 pebs->ax);
1860 data->sample_flags |= PERF_SAMPLE_TRANSACTION;
1861 }
1862 }
1863
1864 /*
1865 * v3 supplies an accurate time stamp, so we use that
1866 * for the time stamp.
1867 *
1868 * We can only do this for the default trace clock.
1869 */
1870 if (x86_pmu.intel_cap.pebs_format >= 3)
1871 setup_pebs_time(event, data, pebs->tsc);
1872
1873 if (has_branch_stack(event))
1874 perf_sample_save_brstack(data, event, &cpuc->lbr_stack, NULL);
1875 }
1876
adaptive_pebs_save_regs(struct pt_regs * regs,struct pebs_gprs * gprs)1877 static void adaptive_pebs_save_regs(struct pt_regs *regs,
1878 struct pebs_gprs *gprs)
1879 {
1880 regs->ax = gprs->ax;
1881 regs->bx = gprs->bx;
1882 regs->cx = gprs->cx;
1883 regs->dx = gprs->dx;
1884 regs->si = gprs->si;
1885 regs->di = gprs->di;
1886 regs->bp = gprs->bp;
1887 regs->sp = gprs->sp;
1888 #ifndef CONFIG_X86_32
1889 regs->r8 = gprs->r8;
1890 regs->r9 = gprs->r9;
1891 regs->r10 = gprs->r10;
1892 regs->r11 = gprs->r11;
1893 regs->r12 = gprs->r12;
1894 regs->r13 = gprs->r13;
1895 regs->r14 = gprs->r14;
1896 regs->r15 = gprs->r15;
1897 #endif
1898 }
1899
1900 #define PEBS_LATENCY_MASK 0xffff
1901 #define PEBS_CACHE_LATENCY_OFFSET 32
1902 #define PEBS_RETIRE_LATENCY_OFFSET 32
1903
1904 /*
1905 * With adaptive PEBS the layout depends on what fields are configured.
1906 */
1907
setup_pebs_adaptive_sample_data(struct perf_event * event,struct pt_regs * iregs,void * __pebs,struct perf_sample_data * data,struct pt_regs * regs)1908 static void setup_pebs_adaptive_sample_data(struct perf_event *event,
1909 struct pt_regs *iregs, void *__pebs,
1910 struct perf_sample_data *data,
1911 struct pt_regs *regs)
1912 {
1913 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1914 struct pebs_basic *basic = __pebs;
1915 void *next_record = basic + 1;
1916 u64 sample_type;
1917 u64 format_size;
1918 struct pebs_meminfo *meminfo = NULL;
1919 struct pebs_gprs *gprs = NULL;
1920 struct x86_perf_regs *perf_regs;
1921
1922 if (basic == NULL)
1923 return;
1924
1925 perf_regs = container_of(regs, struct x86_perf_regs, regs);
1926 perf_regs->xmm_regs = NULL;
1927
1928 sample_type = event->attr.sample_type;
1929 format_size = basic->format_size;
1930 perf_sample_data_init(data, 0, event->hw.last_period);
1931 data->period = event->hw.last_period;
1932
1933 setup_pebs_time(event, data, basic->tsc);
1934
1935 /*
1936 * We must however always use iregs for the unwinder to stay sane; the
1937 * record BP,SP,IP can point into thin air when the record is from a
1938 * previous PMI context or an (I)RET happened between the record and
1939 * PMI.
1940 */
1941 if (sample_type & PERF_SAMPLE_CALLCHAIN)
1942 perf_sample_save_callchain(data, event, iregs);
1943
1944 *regs = *iregs;
1945 /* The ip in basic is EventingIP */
1946 set_linear_ip(regs, basic->ip);
1947 regs->flags = PERF_EFLAGS_EXACT;
1948
1949 if (sample_type & PERF_SAMPLE_WEIGHT_STRUCT) {
1950 if (x86_pmu.flags & PMU_FL_RETIRE_LATENCY)
1951 data->weight.var3_w = format_size >> PEBS_RETIRE_LATENCY_OFFSET & PEBS_LATENCY_MASK;
1952 else
1953 data->weight.var3_w = 0;
1954 }
1955
1956 /*
1957 * The record for MEMINFO is in front of GP
1958 * But PERF_SAMPLE_TRANSACTION needs gprs->ax.
1959 * Save the pointer here but process later.
1960 */
1961 if (format_size & PEBS_DATACFG_MEMINFO) {
1962 meminfo = next_record;
1963 next_record = meminfo + 1;
1964 }
1965
1966 if (format_size & PEBS_DATACFG_GP) {
1967 gprs = next_record;
1968 next_record = gprs + 1;
1969
1970 if (event->attr.precise_ip < 2) {
1971 set_linear_ip(regs, gprs->ip);
1972 regs->flags &= ~PERF_EFLAGS_EXACT;
1973 }
1974
1975 if (sample_type & (PERF_SAMPLE_REGS_INTR | PERF_SAMPLE_REGS_USER))
1976 adaptive_pebs_save_regs(regs, gprs);
1977 }
1978
1979 if (format_size & PEBS_DATACFG_MEMINFO) {
1980 if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) {
1981 u64 weight = meminfo->latency;
1982
1983 if (x86_pmu.flags & PMU_FL_INSTR_LATENCY) {
1984 data->weight.var2_w = weight & PEBS_LATENCY_MASK;
1985 weight >>= PEBS_CACHE_LATENCY_OFFSET;
1986 }
1987
1988 /*
1989 * Although meminfo::latency is defined as a u64,
1990 * only the lower 32 bits include the valid data
1991 * in practice on Ice Lake and earlier platforms.
1992 */
1993 if (sample_type & PERF_SAMPLE_WEIGHT) {
1994 data->weight.full = weight ?:
1995 intel_get_tsx_weight(meminfo->tsx_tuning);
1996 } else {
1997 data->weight.var1_dw = (u32)(weight & PEBS_LATENCY_MASK) ?:
1998 intel_get_tsx_weight(meminfo->tsx_tuning);
1999 }
2000 data->sample_flags |= PERF_SAMPLE_WEIGHT_TYPE;
2001 }
2002
2003 if (sample_type & PERF_SAMPLE_DATA_SRC) {
2004 data->data_src.val = get_data_src(event, meminfo->aux);
2005 data->sample_flags |= PERF_SAMPLE_DATA_SRC;
2006 }
2007
2008 if (sample_type & PERF_SAMPLE_ADDR_TYPE) {
2009 data->addr = meminfo->address;
2010 data->sample_flags |= PERF_SAMPLE_ADDR;
2011 }
2012
2013 if (sample_type & PERF_SAMPLE_TRANSACTION) {
2014 data->txn = intel_get_tsx_transaction(meminfo->tsx_tuning,
2015 gprs ? gprs->ax : 0);
2016 data->sample_flags |= PERF_SAMPLE_TRANSACTION;
2017 }
2018 }
2019
2020 if (format_size & PEBS_DATACFG_XMMS) {
2021 struct pebs_xmm *xmm = next_record;
2022
2023 next_record = xmm + 1;
2024 perf_regs->xmm_regs = xmm->xmm;
2025 }
2026
2027 if (format_size & PEBS_DATACFG_LBRS) {
2028 struct lbr_entry *lbr = next_record;
2029 int num_lbr = ((format_size >> PEBS_DATACFG_LBR_SHIFT)
2030 & 0xff) + 1;
2031 next_record = next_record + num_lbr * sizeof(struct lbr_entry);
2032
2033 if (has_branch_stack(event)) {
2034 intel_pmu_store_pebs_lbrs(lbr);
2035 intel_pmu_lbr_save_brstack(data, cpuc, event);
2036 }
2037 }
2038
2039 WARN_ONCE(next_record != __pebs + (format_size >> 48),
2040 "PEBS record size %llu, expected %llu, config %llx\n",
2041 format_size >> 48,
2042 (u64)(next_record - __pebs),
2043 basic->format_size);
2044 }
2045
2046 static inline void *
get_next_pebs_record_by_bit(void * base,void * top,int bit)2047 get_next_pebs_record_by_bit(void *base, void *top, int bit)
2048 {
2049 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2050 void *at;
2051 u64 pebs_status;
2052
2053 /*
2054 * fmt0 does not have a status bitfield (does not use
2055 * perf_record_nhm format)
2056 */
2057 if (x86_pmu.intel_cap.pebs_format < 1)
2058 return base;
2059
2060 if (base == NULL)
2061 return NULL;
2062
2063 for (at = base; at < top; at += cpuc->pebs_record_size) {
2064 unsigned long status = get_pebs_status(at);
2065
2066 if (test_bit(bit, (unsigned long *)&status)) {
2067 /* PEBS v3 has accurate status bits */
2068 if (x86_pmu.intel_cap.pebs_format >= 3)
2069 return at;
2070
2071 if (status == (1 << bit))
2072 return at;
2073
2074 /* clear non-PEBS bit and re-check */
2075 pebs_status = status & cpuc->pebs_enabled;
2076 pebs_status &= PEBS_COUNTER_MASK;
2077 if (pebs_status == (1 << bit))
2078 return at;
2079 }
2080 }
2081 return NULL;
2082 }
2083
2084 /*
2085 * Special variant of intel_pmu_save_and_restart() for auto-reload.
2086 */
2087 static int
intel_pmu_save_and_restart_reload(struct perf_event * event,int count)2088 intel_pmu_save_and_restart_reload(struct perf_event *event, int count)
2089 {
2090 struct hw_perf_event *hwc = &event->hw;
2091 int shift = 64 - x86_pmu.cntval_bits;
2092 u64 period = hwc->sample_period;
2093 u64 prev_raw_count, new_raw_count;
2094 s64 new, old;
2095
2096 WARN_ON(!period);
2097
2098 /*
2099 * drain_pebs() only happens when the PMU is disabled.
2100 */
2101 WARN_ON(this_cpu_read(cpu_hw_events.enabled));
2102
2103 prev_raw_count = local64_read(&hwc->prev_count);
2104 rdpmcl(hwc->event_base_rdpmc, new_raw_count);
2105 local64_set(&hwc->prev_count, new_raw_count);
2106
2107 /*
2108 * Since the counter increments a negative counter value and
2109 * overflows on the sign switch, giving the interval:
2110 *
2111 * [-period, 0]
2112 *
2113 * the difference between two consecutive reads is:
2114 *
2115 * A) value2 - value1;
2116 * when no overflows have happened in between,
2117 *
2118 * B) (0 - value1) + (value2 - (-period));
2119 * when one overflow happened in between,
2120 *
2121 * C) (0 - value1) + (n - 1) * (period) + (value2 - (-period));
2122 * when @n overflows happened in between.
2123 *
2124 * Here A) is the obvious difference, B) is the extension to the
2125 * discrete interval, where the first term is to the top of the
2126 * interval and the second term is from the bottom of the next
2127 * interval and C) the extension to multiple intervals, where the
2128 * middle term is the whole intervals covered.
2129 *
2130 * An equivalent of C, by reduction, is:
2131 *
2132 * value2 - value1 + n * period
2133 */
2134 new = ((s64)(new_raw_count << shift) >> shift);
2135 old = ((s64)(prev_raw_count << shift) >> shift);
2136 local64_add(new - old + count * period, &event->count);
2137
2138 local64_set(&hwc->period_left, -new);
2139
2140 perf_event_update_userpage(event);
2141
2142 return 0;
2143 }
2144
2145 static __always_inline void
__intel_pmu_pebs_event(struct perf_event * event,struct pt_regs * iregs,struct perf_sample_data * data,void * base,void * top,int bit,int count,void (* setup_sample)(struct perf_event *,struct pt_regs *,void *,struct perf_sample_data *,struct pt_regs *))2146 __intel_pmu_pebs_event(struct perf_event *event,
2147 struct pt_regs *iregs,
2148 struct perf_sample_data *data,
2149 void *base, void *top,
2150 int bit, int count,
2151 void (*setup_sample)(struct perf_event *,
2152 struct pt_regs *,
2153 void *,
2154 struct perf_sample_data *,
2155 struct pt_regs *))
2156 {
2157 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2158 struct hw_perf_event *hwc = &event->hw;
2159 struct x86_perf_regs perf_regs;
2160 struct pt_regs *regs = &perf_regs.regs;
2161 void *at = get_next_pebs_record_by_bit(base, top, bit);
2162 static struct pt_regs dummy_iregs;
2163
2164 if (hwc->flags & PERF_X86_EVENT_AUTO_RELOAD) {
2165 /*
2166 * Now, auto-reload is only enabled in fixed period mode.
2167 * The reload value is always hwc->sample_period.
2168 * May need to change it, if auto-reload is enabled in
2169 * freq mode later.
2170 */
2171 intel_pmu_save_and_restart_reload(event, count);
2172 } else if (!intel_pmu_save_and_restart(event))
2173 return;
2174
2175 if (!iregs)
2176 iregs = &dummy_iregs;
2177
2178 while (count > 1) {
2179 setup_sample(event, iregs, at, data, regs);
2180 perf_event_output(event, data, regs);
2181 at += cpuc->pebs_record_size;
2182 at = get_next_pebs_record_by_bit(at, top, bit);
2183 count--;
2184 }
2185
2186 setup_sample(event, iregs, at, data, regs);
2187 if (iregs == &dummy_iregs) {
2188 /*
2189 * The PEBS records may be drained in the non-overflow context,
2190 * e.g., large PEBS + context switch. Perf should treat the
2191 * last record the same as other PEBS records, and doesn't
2192 * invoke the generic overflow handler.
2193 */
2194 perf_event_output(event, data, regs);
2195 } else {
2196 /*
2197 * All but the last records are processed.
2198 * The last one is left to be able to call the overflow handler.
2199 */
2200 if (perf_event_overflow(event, data, regs))
2201 x86_pmu_stop(event, 0);
2202 }
2203 }
2204
intel_pmu_drain_pebs_core(struct pt_regs * iregs,struct perf_sample_data * data)2205 static void intel_pmu_drain_pebs_core(struct pt_regs *iregs, struct perf_sample_data *data)
2206 {
2207 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2208 struct debug_store *ds = cpuc->ds;
2209 struct perf_event *event = cpuc->events[0]; /* PMC0 only */
2210 struct pebs_record_core *at, *top;
2211 int n;
2212
2213 if (!x86_pmu.pebs_active)
2214 return;
2215
2216 at = (struct pebs_record_core *)(unsigned long)ds->pebs_buffer_base;
2217 top = (struct pebs_record_core *)(unsigned long)ds->pebs_index;
2218
2219 /*
2220 * Whatever else happens, drain the thing
2221 */
2222 ds->pebs_index = ds->pebs_buffer_base;
2223
2224 if (!test_bit(0, cpuc->active_mask))
2225 return;
2226
2227 WARN_ON_ONCE(!event);
2228
2229 if (!event->attr.precise_ip)
2230 return;
2231
2232 n = top - at;
2233 if (n <= 0) {
2234 if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD)
2235 intel_pmu_save_and_restart_reload(event, 0);
2236 return;
2237 }
2238
2239 __intel_pmu_pebs_event(event, iregs, data, at, top, 0, n,
2240 setup_pebs_fixed_sample_data);
2241 }
2242
intel_pmu_pebs_event_update_no_drain(struct cpu_hw_events * cpuc,u64 mask)2243 static void intel_pmu_pebs_event_update_no_drain(struct cpu_hw_events *cpuc, u64 mask)
2244 {
2245 u64 pebs_enabled = cpuc->pebs_enabled & mask;
2246 struct perf_event *event;
2247 int bit;
2248
2249 /*
2250 * The drain_pebs() could be called twice in a short period
2251 * for auto-reload event in pmu::read(). There are no
2252 * overflows have happened in between.
2253 * It needs to call intel_pmu_save_and_restart_reload() to
2254 * update the event->count for this case.
2255 */
2256 for_each_set_bit(bit, (unsigned long *)&pebs_enabled, X86_PMC_IDX_MAX) {
2257 event = cpuc->events[bit];
2258 if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD)
2259 intel_pmu_save_and_restart_reload(event, 0);
2260 }
2261 }
2262
intel_pmu_drain_pebs_nhm(struct pt_regs * iregs,struct perf_sample_data * data)2263 static void intel_pmu_drain_pebs_nhm(struct pt_regs *iregs, struct perf_sample_data *data)
2264 {
2265 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2266 struct debug_store *ds = cpuc->ds;
2267 struct perf_event *event;
2268 void *base, *at, *top;
2269 short counts[INTEL_PMC_IDX_FIXED + MAX_FIXED_PEBS_EVENTS] = {};
2270 short error[INTEL_PMC_IDX_FIXED + MAX_FIXED_PEBS_EVENTS] = {};
2271 int max_pebs_events = intel_pmu_max_num_pebs(NULL);
2272 int bit, i, size;
2273 u64 mask;
2274
2275 if (!x86_pmu.pebs_active)
2276 return;
2277
2278 base = (struct pebs_record_nhm *)(unsigned long)ds->pebs_buffer_base;
2279 top = (struct pebs_record_nhm *)(unsigned long)ds->pebs_index;
2280
2281 ds->pebs_index = ds->pebs_buffer_base;
2282
2283 mask = x86_pmu.pebs_events_mask;
2284 size = max_pebs_events;
2285 if (x86_pmu.flags & PMU_FL_PEBS_ALL) {
2286 mask |= x86_pmu.fixed_cntr_mask64 << INTEL_PMC_IDX_FIXED;
2287 size = INTEL_PMC_IDX_FIXED + x86_pmu_max_num_counters_fixed(NULL);
2288 }
2289
2290 if (unlikely(base >= top)) {
2291 intel_pmu_pebs_event_update_no_drain(cpuc, mask);
2292 return;
2293 }
2294
2295 for (at = base; at < top; at += x86_pmu.pebs_record_size) {
2296 struct pebs_record_nhm *p = at;
2297 u64 pebs_status;
2298
2299 pebs_status = p->status & cpuc->pebs_enabled;
2300 pebs_status &= mask;
2301
2302 /* PEBS v3 has more accurate status bits */
2303 if (x86_pmu.intel_cap.pebs_format >= 3) {
2304 for_each_set_bit(bit, (unsigned long *)&pebs_status, size)
2305 counts[bit]++;
2306
2307 continue;
2308 }
2309
2310 /*
2311 * On some CPUs the PEBS status can be zero when PEBS is
2312 * racing with clearing of GLOBAL_STATUS.
2313 *
2314 * Normally we would drop that record, but in the
2315 * case when there is only a single active PEBS event
2316 * we can assume it's for that event.
2317 */
2318 if (!pebs_status && cpuc->pebs_enabled &&
2319 !(cpuc->pebs_enabled & (cpuc->pebs_enabled-1)))
2320 pebs_status = p->status = cpuc->pebs_enabled;
2321
2322 bit = find_first_bit((unsigned long *)&pebs_status,
2323 max_pebs_events);
2324
2325 if (!(x86_pmu.pebs_events_mask & (1 << bit)))
2326 continue;
2327
2328 /*
2329 * The PEBS hardware does not deal well with the situation
2330 * when events happen near to each other and multiple bits
2331 * are set. But it should happen rarely.
2332 *
2333 * If these events include one PEBS and multiple non-PEBS
2334 * events, it doesn't impact PEBS record. The record will
2335 * be handled normally. (slow path)
2336 *
2337 * If these events include two or more PEBS events, the
2338 * records for the events can be collapsed into a single
2339 * one, and it's not possible to reconstruct all events
2340 * that caused the PEBS record. It's called collision.
2341 * If collision happened, the record will be dropped.
2342 */
2343 if (pebs_status != (1ULL << bit)) {
2344 for_each_set_bit(i, (unsigned long *)&pebs_status, size)
2345 error[i]++;
2346 continue;
2347 }
2348
2349 counts[bit]++;
2350 }
2351
2352 for_each_set_bit(bit, (unsigned long *)&mask, size) {
2353 if ((counts[bit] == 0) && (error[bit] == 0))
2354 continue;
2355
2356 event = cpuc->events[bit];
2357 if (WARN_ON_ONCE(!event))
2358 continue;
2359
2360 if (WARN_ON_ONCE(!event->attr.precise_ip))
2361 continue;
2362
2363 /* log dropped samples number */
2364 if (error[bit]) {
2365 perf_log_lost_samples(event, error[bit]);
2366
2367 if (iregs && perf_event_account_interrupt(event))
2368 x86_pmu_stop(event, 0);
2369 }
2370
2371 if (counts[bit]) {
2372 __intel_pmu_pebs_event(event, iregs, data, base,
2373 top, bit, counts[bit],
2374 setup_pebs_fixed_sample_data);
2375 }
2376 }
2377 }
2378
intel_pmu_drain_pebs_icl(struct pt_regs * iregs,struct perf_sample_data * data)2379 static void intel_pmu_drain_pebs_icl(struct pt_regs *iregs, struct perf_sample_data *data)
2380 {
2381 short counts[INTEL_PMC_IDX_FIXED + MAX_FIXED_PEBS_EVENTS] = {};
2382 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2383 struct debug_store *ds = cpuc->ds;
2384 struct perf_event *event;
2385 void *base, *at, *top;
2386 int bit;
2387 u64 mask;
2388
2389 if (!x86_pmu.pebs_active)
2390 return;
2391
2392 base = (struct pebs_basic *)(unsigned long)ds->pebs_buffer_base;
2393 top = (struct pebs_basic *)(unsigned long)ds->pebs_index;
2394
2395 ds->pebs_index = ds->pebs_buffer_base;
2396
2397 mask = hybrid(cpuc->pmu, pebs_events_mask) |
2398 (hybrid(cpuc->pmu, fixed_cntr_mask64) << INTEL_PMC_IDX_FIXED);
2399
2400 if (unlikely(base >= top)) {
2401 intel_pmu_pebs_event_update_no_drain(cpuc, mask);
2402 return;
2403 }
2404
2405 for (at = base; at < top; at += cpuc->pebs_record_size) {
2406 u64 pebs_status;
2407
2408 pebs_status = get_pebs_status(at) & cpuc->pebs_enabled;
2409 pebs_status &= mask;
2410
2411 for_each_set_bit(bit, (unsigned long *)&pebs_status, X86_PMC_IDX_MAX)
2412 counts[bit]++;
2413 }
2414
2415 for_each_set_bit(bit, (unsigned long *)&mask, X86_PMC_IDX_MAX) {
2416 if (counts[bit] == 0)
2417 continue;
2418
2419 event = cpuc->events[bit];
2420 if (WARN_ON_ONCE(!event))
2421 continue;
2422
2423 if (WARN_ON_ONCE(!event->attr.precise_ip))
2424 continue;
2425
2426 __intel_pmu_pebs_event(event, iregs, data, base,
2427 top, bit, counts[bit],
2428 setup_pebs_adaptive_sample_data);
2429 }
2430 }
2431
2432 /*
2433 * BTS, PEBS probe and setup
2434 */
2435
intel_ds_init(void)2436 void __init intel_ds_init(void)
2437 {
2438 /*
2439 * No support for 32bit formats
2440 */
2441 if (!boot_cpu_has(X86_FEATURE_DTES64))
2442 return;
2443
2444 x86_pmu.bts = boot_cpu_has(X86_FEATURE_BTS);
2445 x86_pmu.pebs = boot_cpu_has(X86_FEATURE_PEBS);
2446 x86_pmu.pebs_buffer_size = PEBS_BUFFER_SIZE;
2447 if (x86_pmu.version <= 4)
2448 x86_pmu.pebs_no_isolation = 1;
2449
2450 if (x86_pmu.pebs) {
2451 char pebs_type = x86_pmu.intel_cap.pebs_trap ? '+' : '-';
2452 char *pebs_qual = "";
2453 int format = x86_pmu.intel_cap.pebs_format;
2454
2455 if (format < 4)
2456 x86_pmu.intel_cap.pebs_baseline = 0;
2457
2458 switch (format) {
2459 case 0:
2460 pr_cont("PEBS fmt0%c, ", pebs_type);
2461 x86_pmu.pebs_record_size = sizeof(struct pebs_record_core);
2462 /*
2463 * Using >PAGE_SIZE buffers makes the WRMSR to
2464 * PERF_GLOBAL_CTRL in intel_pmu_enable_all()
2465 * mysteriously hang on Core2.
2466 *
2467 * As a workaround, we don't do this.
2468 */
2469 x86_pmu.pebs_buffer_size = PAGE_SIZE;
2470 x86_pmu.drain_pebs = intel_pmu_drain_pebs_core;
2471 break;
2472
2473 case 1:
2474 pr_cont("PEBS fmt1%c, ", pebs_type);
2475 x86_pmu.pebs_record_size = sizeof(struct pebs_record_nhm);
2476 x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm;
2477 break;
2478
2479 case 2:
2480 pr_cont("PEBS fmt2%c, ", pebs_type);
2481 x86_pmu.pebs_record_size = sizeof(struct pebs_record_hsw);
2482 x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm;
2483 break;
2484
2485 case 3:
2486 pr_cont("PEBS fmt3%c, ", pebs_type);
2487 x86_pmu.pebs_record_size =
2488 sizeof(struct pebs_record_skl);
2489 x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm;
2490 x86_pmu.large_pebs_flags |= PERF_SAMPLE_TIME;
2491 break;
2492
2493 case 6:
2494 case 5:
2495 x86_pmu.pebs_ept = 1;
2496 fallthrough;
2497 case 4:
2498 x86_pmu.drain_pebs = intel_pmu_drain_pebs_icl;
2499 x86_pmu.pebs_record_size = sizeof(struct pebs_basic);
2500 if (x86_pmu.intel_cap.pebs_baseline) {
2501 x86_pmu.large_pebs_flags |=
2502 PERF_SAMPLE_BRANCH_STACK |
2503 PERF_SAMPLE_TIME;
2504 x86_pmu.flags |= PMU_FL_PEBS_ALL;
2505 x86_pmu.pebs_capable = ~0ULL;
2506 pebs_qual = "-baseline";
2507 x86_get_pmu(smp_processor_id())->capabilities |= PERF_PMU_CAP_EXTENDED_REGS;
2508 } else {
2509 /* Only basic record supported */
2510 x86_pmu.large_pebs_flags &=
2511 ~(PERF_SAMPLE_ADDR |
2512 PERF_SAMPLE_TIME |
2513 PERF_SAMPLE_DATA_SRC |
2514 PERF_SAMPLE_TRANSACTION |
2515 PERF_SAMPLE_REGS_USER |
2516 PERF_SAMPLE_REGS_INTR);
2517 }
2518 pr_cont("PEBS fmt4%c%s, ", pebs_type, pebs_qual);
2519
2520 /*
2521 * The PEBS-via-PT is not supported on hybrid platforms,
2522 * because not all CPUs of a hybrid machine support it.
2523 * The global x86_pmu.intel_cap, which only contains the
2524 * common capabilities, is used to check the availability
2525 * of the feature. The per-PMU pebs_output_pt_available
2526 * in a hybrid machine should be ignored.
2527 */
2528 if (x86_pmu.intel_cap.pebs_output_pt_available) {
2529 pr_cont("PEBS-via-PT, ");
2530 x86_get_pmu(smp_processor_id())->capabilities |= PERF_PMU_CAP_AUX_OUTPUT;
2531 }
2532
2533 break;
2534
2535 default:
2536 pr_cont("no PEBS fmt%d%c, ", format, pebs_type);
2537 x86_pmu.pebs = 0;
2538 }
2539 }
2540 }
2541
perf_restore_debug_store(void)2542 void perf_restore_debug_store(void)
2543 {
2544 struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
2545
2546 if (!x86_pmu.bts && !x86_pmu.pebs)
2547 return;
2548
2549 wrmsrl(MSR_IA32_DS_AREA, (unsigned long)ds);
2550 }
2551