1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /*
3 * Copyright 2014-2022 Advanced Micro Devices, Inc.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice shall be included in
13 * all copies or substantial portions of the Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21 * OTHER DEALINGS IN THE SOFTWARE.
22 *
23 */
24
25 #include <linux/slab.h>
26 #include <linux/list.h>
27 #include "kfd_device_queue_manager.h"
28 #include "kfd_priv.h"
29 #include "kfd_kernel_queue.h"
30 #include "amdgpu_amdkfd.h"
31 #include "amdgpu_reset.h"
32
get_queue_by_qid(struct process_queue_manager * pqm,unsigned int qid)33 static inline struct process_queue_node *get_queue_by_qid(
34 struct process_queue_manager *pqm, unsigned int qid)
35 {
36 struct process_queue_node *pqn;
37
38 list_for_each_entry(pqn, &pqm->queues, process_queue_list) {
39 if ((pqn->q && pqn->q->properties.queue_id == qid) ||
40 (pqn->kq && pqn->kq->queue->properties.queue_id == qid))
41 return pqn;
42 }
43
44 return NULL;
45 }
46
assign_queue_slot_by_qid(struct process_queue_manager * pqm,unsigned int qid)47 static int assign_queue_slot_by_qid(struct process_queue_manager *pqm,
48 unsigned int qid)
49 {
50 if (qid >= KFD_MAX_NUM_OF_QUEUES_PER_PROCESS)
51 return -EINVAL;
52
53 if (__test_and_set_bit(qid, pqm->queue_slot_bitmap)) {
54 pr_err("Cannot create new queue because requested qid(%u) is in use\n", qid);
55 return -ENOSPC;
56 }
57
58 return 0;
59 }
60
find_available_queue_slot(struct process_queue_manager * pqm,unsigned int * qid)61 static int find_available_queue_slot(struct process_queue_manager *pqm,
62 unsigned int *qid)
63 {
64 unsigned long found;
65
66 found = find_first_zero_bit(pqm->queue_slot_bitmap,
67 KFD_MAX_NUM_OF_QUEUES_PER_PROCESS);
68
69 pr_debug("The new slot id %lu\n", found);
70
71 if (found >= KFD_MAX_NUM_OF_QUEUES_PER_PROCESS) {
72 pr_info("Cannot open more queues for process with pasid 0x%x\n",
73 pqm->process->pasid);
74 return -ENOMEM;
75 }
76
77 set_bit(found, pqm->queue_slot_bitmap);
78 *qid = found;
79
80 return 0;
81 }
82
kfd_process_dequeue_from_device(struct kfd_process_device * pdd)83 void kfd_process_dequeue_from_device(struct kfd_process_device *pdd)
84 {
85 struct kfd_node *dev = pdd->dev;
86
87 if (pdd->already_dequeued)
88 return;
89 /* The MES context flush needs to filter out the case which the
90 * KFD process is created without setting up the MES context and
91 * queue for creating a compute queue.
92 */
93 dev->dqm->ops.process_termination(dev->dqm, &pdd->qpd);
94 if (dev->kfd->shared_resources.enable_mes && !!pdd->proc_ctx_gpu_addr &&
95 down_read_trylock(&dev->adev->reset_domain->sem)) {
96 amdgpu_mes_flush_shader_debugger(dev->adev,
97 pdd->proc_ctx_gpu_addr);
98 up_read(&dev->adev->reset_domain->sem);
99 }
100 pdd->already_dequeued = true;
101 }
102
pqm_set_gws(struct process_queue_manager * pqm,unsigned int qid,void * gws)103 int pqm_set_gws(struct process_queue_manager *pqm, unsigned int qid,
104 void *gws)
105 {
106 struct mqd_update_info minfo = {0};
107 struct kfd_node *dev = NULL;
108 struct process_queue_node *pqn;
109 struct kfd_process_device *pdd;
110 struct kgd_mem *mem = NULL;
111 int ret;
112
113 pqn = get_queue_by_qid(pqm, qid);
114 if (!pqn) {
115 pr_err("Queue id does not match any known queue\n");
116 return -EINVAL;
117 }
118
119 if (pqn->q)
120 dev = pqn->q->device;
121 if (WARN_ON(!dev))
122 return -ENODEV;
123
124 pdd = kfd_get_process_device_data(dev, pqm->process);
125 if (!pdd) {
126 pr_err("Process device data doesn't exist\n");
127 return -EINVAL;
128 }
129
130 /* Only allow one queue per process can have GWS assigned */
131 if (gws && pdd->qpd.num_gws)
132 return -EBUSY;
133
134 if (!gws && pdd->qpd.num_gws == 0)
135 return -EINVAL;
136
137 if (KFD_GC_VERSION(dev) != IP_VERSION(9, 4, 3) &&
138 KFD_GC_VERSION(dev) != IP_VERSION(9, 4, 4) &&
139 !dev->kfd->shared_resources.enable_mes) {
140 if (gws)
141 ret = amdgpu_amdkfd_add_gws_to_process(pdd->process->kgd_process_info,
142 gws, &mem);
143 else
144 ret = amdgpu_amdkfd_remove_gws_from_process(pdd->process->kgd_process_info,
145 pqn->q->gws);
146 if (unlikely(ret))
147 return ret;
148 pqn->q->gws = mem;
149 } else {
150 /*
151 * Intentionally set GWS to a non-NULL value
152 * for devices that do not use GWS for global wave
153 * synchronization but require the formality
154 * of setting GWS for cooperative groups.
155 */
156 pqn->q->gws = gws ? ERR_PTR(-ENOMEM) : NULL;
157 }
158
159 pdd->qpd.num_gws = gws ? dev->adev->gds.gws_size : 0;
160 minfo.update_flag = gws ? UPDATE_FLAG_IS_GWS : 0;
161
162 return pqn->q->device->dqm->ops.update_queue(pqn->q->device->dqm,
163 pqn->q, &minfo);
164 }
165
kfd_process_dequeue_from_all_devices(struct kfd_process * p)166 void kfd_process_dequeue_from_all_devices(struct kfd_process *p)
167 {
168 int i;
169
170 for (i = 0; i < p->n_pdds; i++)
171 kfd_process_dequeue_from_device(p->pdds[i]);
172 }
173
pqm_init(struct process_queue_manager * pqm,struct kfd_process * p)174 int pqm_init(struct process_queue_manager *pqm, struct kfd_process *p)
175 {
176 INIT_LIST_HEAD(&pqm->queues);
177 pqm->queue_slot_bitmap = bitmap_zalloc(KFD_MAX_NUM_OF_QUEUES_PER_PROCESS,
178 GFP_KERNEL);
179 if (!pqm->queue_slot_bitmap)
180 return -ENOMEM;
181 pqm->process = p;
182
183 return 0;
184 }
185
pqm_clean_queue_resource(struct process_queue_manager * pqm,struct process_queue_node * pqn)186 static void pqm_clean_queue_resource(struct process_queue_manager *pqm,
187 struct process_queue_node *pqn)
188 {
189 struct kfd_node *dev;
190 struct kfd_process_device *pdd;
191
192 dev = pqn->q->device;
193
194 pdd = kfd_get_process_device_data(dev, pqm->process);
195 if (!pdd) {
196 pr_err("Process device data doesn't exist\n");
197 return;
198 }
199
200 if (pqn->q->gws) {
201 if (KFD_GC_VERSION(pqn->q->device) != IP_VERSION(9, 4, 3) &&
202 KFD_GC_VERSION(pqn->q->device) != IP_VERSION(9, 4, 4) &&
203 !dev->kfd->shared_resources.enable_mes)
204 amdgpu_amdkfd_remove_gws_from_process(
205 pqm->process->kgd_process_info, pqn->q->gws);
206 pdd->qpd.num_gws = 0;
207 }
208
209 if (dev->kfd->shared_resources.enable_mes) {
210 amdgpu_amdkfd_free_gtt_mem(dev->adev, &pqn->q->gang_ctx_bo);
211 amdgpu_amdkfd_free_gtt_mem(dev->adev, (void **)&pqn->q->wptr_bo_gart);
212 }
213 }
214
pqm_uninit(struct process_queue_manager * pqm)215 void pqm_uninit(struct process_queue_manager *pqm)
216 {
217 struct process_queue_node *pqn, *next;
218
219 list_for_each_entry_safe(pqn, next, &pqm->queues, process_queue_list) {
220 if (pqn->q) {
221 struct kfd_process_device *pdd = kfd_get_process_device_data(pqn->q->device,
222 pqm->process);
223 if (pdd) {
224 kfd_queue_unref_bo_vas(pdd, &pqn->q->properties);
225 kfd_queue_release_buffers(pdd, &pqn->q->properties);
226 } else {
227 WARN_ON(!pdd);
228 }
229 pqm_clean_queue_resource(pqm, pqn);
230 }
231
232 kfd_procfs_del_queue(pqn->q);
233 uninit_queue(pqn->q);
234 list_del(&pqn->process_queue_list);
235 kfree(pqn);
236 }
237
238 bitmap_free(pqm->queue_slot_bitmap);
239 pqm->queue_slot_bitmap = NULL;
240 }
241
init_user_queue(struct process_queue_manager * pqm,struct kfd_node * dev,struct queue ** q,struct queue_properties * q_properties,struct file * f,unsigned int qid)242 static int init_user_queue(struct process_queue_manager *pqm,
243 struct kfd_node *dev, struct queue **q,
244 struct queue_properties *q_properties,
245 struct file *f, unsigned int qid)
246 {
247 int retval;
248
249 /* Doorbell initialized in user space*/
250 q_properties->doorbell_ptr = NULL;
251 q_properties->exception_status = KFD_EC_MASK(EC_QUEUE_NEW);
252
253 /* let DQM handle it*/
254 q_properties->vmid = 0;
255 q_properties->queue_id = qid;
256
257 retval = init_queue(q, q_properties);
258 if (retval != 0)
259 return retval;
260
261 (*q)->device = dev;
262 (*q)->process = pqm->process;
263
264 if (dev->kfd->shared_resources.enable_mes) {
265 retval = amdgpu_amdkfd_alloc_gtt_mem(dev->adev,
266 AMDGPU_MES_GANG_CTX_SIZE,
267 &(*q)->gang_ctx_bo,
268 &(*q)->gang_ctx_gpu_addr,
269 &(*q)->gang_ctx_cpu_ptr,
270 false);
271 if (retval) {
272 pr_err("failed to allocate gang context bo\n");
273 goto cleanup;
274 }
275 memset((*q)->gang_ctx_cpu_ptr, 0, AMDGPU_MES_GANG_CTX_SIZE);
276
277 /* Starting with GFX11, wptr BOs must be mapped to GART for MES to determine work
278 * on unmapped queues for usermode queue oversubscription (no aggregated doorbell)
279 */
280 if (((dev->adev->mes.sched_version & AMDGPU_MES_API_VERSION_MASK)
281 >> AMDGPU_MES_API_VERSION_SHIFT) >= 2) {
282 if (dev->adev != amdgpu_ttm_adev(q_properties->wptr_bo->tbo.bdev)) {
283 pr_err("Queue memory allocated to wrong device\n");
284 retval = -EINVAL;
285 goto free_gang_ctx_bo;
286 }
287
288 retval = amdgpu_amdkfd_map_gtt_bo_to_gart(q_properties->wptr_bo,
289 &(*q)->wptr_bo_gart);
290 if (retval) {
291 pr_err("Failed to map wptr bo to GART\n");
292 goto free_gang_ctx_bo;
293 }
294 }
295 }
296
297 pr_debug("PQM After init queue");
298 return 0;
299
300 free_gang_ctx_bo:
301 amdgpu_amdkfd_free_gtt_mem(dev->adev, &(*q)->gang_ctx_bo);
302 cleanup:
303 uninit_queue(*q);
304 *q = NULL;
305 return retval;
306 }
307
pqm_create_queue(struct process_queue_manager * pqm,struct kfd_node * dev,struct file * f,struct queue_properties * properties,unsigned int * qid,const struct kfd_criu_queue_priv_data * q_data,const void * restore_mqd,const void * restore_ctl_stack,uint32_t * p_doorbell_offset_in_process)308 int pqm_create_queue(struct process_queue_manager *pqm,
309 struct kfd_node *dev,
310 struct file *f,
311 struct queue_properties *properties,
312 unsigned int *qid,
313 const struct kfd_criu_queue_priv_data *q_data,
314 const void *restore_mqd,
315 const void *restore_ctl_stack,
316 uint32_t *p_doorbell_offset_in_process)
317 {
318 int retval;
319 struct kfd_process_device *pdd;
320 struct queue *q;
321 struct process_queue_node *pqn;
322 struct kernel_queue *kq;
323 enum kfd_queue_type type = properties->type;
324 unsigned int max_queues = 127; /* HWS limit */
325
326 /*
327 * On GFX 9.4.3, increase the number of queues that
328 * can be created to 255. No HWS limit on GFX 9.4.3.
329 */
330 if (KFD_GC_VERSION(dev) == IP_VERSION(9, 4, 3) ||
331 KFD_GC_VERSION(dev) == IP_VERSION(9, 4, 4))
332 max_queues = 255;
333
334 q = NULL;
335 kq = NULL;
336
337 pdd = kfd_get_process_device_data(dev, pqm->process);
338 if (!pdd) {
339 pr_err("Process device data doesn't exist\n");
340 return -1;
341 }
342
343 /*
344 * for debug process, verify that it is within the static queues limit
345 * currently limit is set to half of the total avail HQD slots
346 * If we are just about to create DIQ, the is_debug flag is not set yet
347 * Hence we also check the type as well
348 */
349 if ((pdd->qpd.is_debug) || (type == KFD_QUEUE_TYPE_DIQ))
350 max_queues = dev->kfd->device_info.max_no_of_hqd/2;
351
352 if (pdd->qpd.queue_count >= max_queues)
353 return -ENOSPC;
354
355 if (q_data) {
356 retval = assign_queue_slot_by_qid(pqm, q_data->q_id);
357 *qid = q_data->q_id;
358 } else
359 retval = find_available_queue_slot(pqm, qid);
360
361 if (retval != 0)
362 return retval;
363
364 /* Register process if this is the first queue */
365 if (list_empty(&pdd->qpd.queues_list) &&
366 list_empty(&pdd->qpd.priv_queue_list))
367 dev->dqm->ops.register_process(dev->dqm, &pdd->qpd);
368
369 /* Allocate proc_ctx_bo only if MES is enabled and this is the first queue */
370 if (!pdd->proc_ctx_cpu_ptr && dev->kfd->shared_resources.enable_mes) {
371 retval = amdgpu_amdkfd_alloc_gtt_mem(dev->adev,
372 AMDGPU_MES_PROC_CTX_SIZE,
373 &pdd->proc_ctx_bo,
374 &pdd->proc_ctx_gpu_addr,
375 &pdd->proc_ctx_cpu_ptr,
376 false);
377 if (retval) {
378 dev_err(dev->adev->dev, "failed to allocate process context bo\n");
379 return retval;
380 }
381 memset(pdd->proc_ctx_cpu_ptr, 0, AMDGPU_MES_PROC_CTX_SIZE);
382 }
383
384 pqn = kzalloc(sizeof(*pqn), GFP_KERNEL);
385 if (!pqn) {
386 retval = -ENOMEM;
387 goto err_allocate_pqn;
388 }
389
390 switch (type) {
391 case KFD_QUEUE_TYPE_SDMA:
392 case KFD_QUEUE_TYPE_SDMA_XGMI:
393 case KFD_QUEUE_TYPE_SDMA_BY_ENG_ID:
394 /* SDMA queues are always allocated statically no matter
395 * which scheduler mode is used. We also do not need to
396 * check whether a SDMA queue can be allocated here, because
397 * allocate_sdma_queue() in create_queue() has the
398 * corresponding check logic.
399 */
400 retval = init_user_queue(pqm, dev, &q, properties, f, *qid);
401 if (retval != 0)
402 goto err_create_queue;
403 pqn->q = q;
404 pqn->kq = NULL;
405 retval = dev->dqm->ops.create_queue(dev->dqm, q, &pdd->qpd, q_data,
406 restore_mqd, restore_ctl_stack);
407 print_queue(q);
408 break;
409
410 case KFD_QUEUE_TYPE_COMPUTE:
411 /* check if there is over subscription */
412 if ((dev->dqm->sched_policy ==
413 KFD_SCHED_POLICY_HWS_NO_OVERSUBSCRIPTION) &&
414 ((dev->dqm->processes_count >= dev->vm_info.vmid_num_kfd) ||
415 (dev->dqm->active_queue_count >= get_cp_queues_num(dev->dqm)))) {
416 pr_debug("Over-subscription is not allowed when amdkfd.sched_policy == 1\n");
417 retval = -EPERM;
418 goto err_create_queue;
419 }
420
421 retval = init_user_queue(pqm, dev, &q, properties, f, *qid);
422 if (retval != 0)
423 goto err_create_queue;
424 pqn->q = q;
425 pqn->kq = NULL;
426 retval = dev->dqm->ops.create_queue(dev->dqm, q, &pdd->qpd, q_data,
427 restore_mqd, restore_ctl_stack);
428 print_queue(q);
429 break;
430 case KFD_QUEUE_TYPE_DIQ:
431 kq = kernel_queue_init(dev, KFD_QUEUE_TYPE_DIQ);
432 if (!kq) {
433 retval = -ENOMEM;
434 goto err_create_queue;
435 }
436 kq->queue->properties.queue_id = *qid;
437 pqn->kq = kq;
438 pqn->q = NULL;
439 retval = kfd_process_drain_interrupts(pdd);
440 if (retval)
441 break;
442
443 retval = dev->dqm->ops.create_kernel_queue(dev->dqm,
444 kq, &pdd->qpd);
445 break;
446 default:
447 WARN(1, "Invalid queue type %d", type);
448 retval = -EINVAL;
449 }
450
451 if (retval != 0) {
452 pr_err("Pasid 0x%x DQM create queue type %d failed. ret %d\n",
453 pqm->process->pasid, type, retval);
454 goto err_create_queue;
455 }
456
457 if (q && p_doorbell_offset_in_process) {
458 /* Return the doorbell offset within the doorbell page
459 * to the caller so it can be passed up to user mode
460 * (in bytes).
461 * relative doorbell index = Absolute doorbell index -
462 * absolute index of first doorbell in the page.
463 */
464 uint32_t first_db_index = amdgpu_doorbell_index_on_bar(pdd->dev->adev,
465 pdd->qpd.proc_doorbells,
466 0,
467 pdd->dev->kfd->device_info.doorbell_size);
468
469 *p_doorbell_offset_in_process = (q->properties.doorbell_off
470 - first_db_index) * sizeof(uint32_t);
471 }
472
473 pr_debug("PQM After DQM create queue\n");
474
475 list_add(&pqn->process_queue_list, &pqm->queues);
476
477 if (q) {
478 pr_debug("PQM done creating queue\n");
479 kfd_procfs_add_queue(q);
480 print_queue_properties(&q->properties);
481 }
482
483 return retval;
484
485 err_create_queue:
486 uninit_queue(q);
487 if (kq)
488 kernel_queue_uninit(kq);
489 kfree(pqn);
490 err_allocate_pqn:
491 /* check if queues list is empty unregister process from device */
492 clear_bit(*qid, pqm->queue_slot_bitmap);
493 if (list_empty(&pdd->qpd.queues_list) &&
494 list_empty(&pdd->qpd.priv_queue_list))
495 dev->dqm->ops.unregister_process(dev->dqm, &pdd->qpd);
496 return retval;
497 }
498
pqm_destroy_queue(struct process_queue_manager * pqm,unsigned int qid)499 int pqm_destroy_queue(struct process_queue_manager *pqm, unsigned int qid)
500 {
501 struct process_queue_node *pqn;
502 struct kfd_process_device *pdd;
503 struct device_queue_manager *dqm;
504 struct kfd_node *dev;
505 int retval;
506
507 dqm = NULL;
508
509 retval = 0;
510
511 pqn = get_queue_by_qid(pqm, qid);
512 if (!pqn) {
513 pr_err("Queue id does not match any known queue\n");
514 return -EINVAL;
515 }
516
517 dev = NULL;
518 if (pqn->kq)
519 dev = pqn->kq->dev;
520 if (pqn->q)
521 dev = pqn->q->device;
522 if (WARN_ON(!dev))
523 return -ENODEV;
524
525 pdd = kfd_get_process_device_data(dev, pqm->process);
526 if (!pdd) {
527 pr_err("Process device data doesn't exist\n");
528 return -1;
529 }
530
531 if (pqn->kq) {
532 /* destroy kernel queue (DIQ) */
533 dqm = pqn->kq->dev->dqm;
534 dqm->ops.destroy_kernel_queue(dqm, pqn->kq, &pdd->qpd);
535 kernel_queue_uninit(pqn->kq);
536 }
537
538 if (pqn->q) {
539 retval = kfd_queue_unref_bo_vas(pdd, &pqn->q->properties);
540 if (retval)
541 goto err_destroy_queue;
542
543 dqm = pqn->q->device->dqm;
544 retval = dqm->ops.destroy_queue(dqm, &pdd->qpd, pqn->q);
545 if (retval) {
546 pr_err("Pasid 0x%x destroy queue %d failed, ret %d\n",
547 pqm->process->pasid,
548 pqn->q->properties.queue_id, retval);
549 if (retval != -ETIME && retval != -EIO)
550 goto err_destroy_queue;
551 }
552 kfd_procfs_del_queue(pqn->q);
553 kfd_queue_release_buffers(pdd, &pqn->q->properties);
554 pqm_clean_queue_resource(pqm, pqn);
555 uninit_queue(pqn->q);
556 }
557
558 list_del(&pqn->process_queue_list);
559 kfree(pqn);
560 clear_bit(qid, pqm->queue_slot_bitmap);
561
562 if (list_empty(&pdd->qpd.queues_list) &&
563 list_empty(&pdd->qpd.priv_queue_list))
564 dqm->ops.unregister_process(dqm, &pdd->qpd);
565
566 err_destroy_queue:
567 return retval;
568 }
569
pqm_update_queue_properties(struct process_queue_manager * pqm,unsigned int qid,struct queue_properties * p)570 int pqm_update_queue_properties(struct process_queue_manager *pqm,
571 unsigned int qid, struct queue_properties *p)
572 {
573 int retval;
574 struct process_queue_node *pqn;
575
576 pqn = get_queue_by_qid(pqm, qid);
577 if (!pqn || !pqn->q) {
578 pr_debug("No queue %d exists for update operation\n", qid);
579 return -EFAULT;
580 }
581
582 /*
583 * Update with NULL ring address is used to disable the queue
584 */
585 if (p->queue_address && p->queue_size) {
586 struct kfd_process_device *pdd;
587 struct amdgpu_vm *vm;
588 struct queue *q = pqn->q;
589 int err;
590
591 pdd = kfd_get_process_device_data(q->device, q->process);
592 if (!pdd)
593 return -ENODEV;
594 vm = drm_priv_to_vm(pdd->drm_priv);
595 err = amdgpu_bo_reserve(vm->root.bo, false);
596 if (err)
597 return err;
598
599 if (kfd_queue_buffer_get(vm, (void *)p->queue_address, &p->ring_bo,
600 p->queue_size)) {
601 pr_debug("ring buf 0x%llx size 0x%llx not mapped on GPU\n",
602 p->queue_address, p->queue_size);
603 return -EFAULT;
604 }
605
606 kfd_queue_unref_bo_va(vm, &pqn->q->properties.ring_bo);
607 kfd_queue_buffer_put(&pqn->q->properties.ring_bo);
608 amdgpu_bo_unreserve(vm->root.bo);
609
610 pqn->q->properties.ring_bo = p->ring_bo;
611 }
612
613 pqn->q->properties.queue_address = p->queue_address;
614 pqn->q->properties.queue_size = p->queue_size;
615 pqn->q->properties.queue_percent = p->queue_percent;
616 pqn->q->properties.priority = p->priority;
617 pqn->q->properties.pm4_target_xcc = p->pm4_target_xcc;
618
619 retval = pqn->q->device->dqm->ops.update_queue(pqn->q->device->dqm,
620 pqn->q, NULL);
621 if (retval != 0)
622 return retval;
623
624 return 0;
625 }
626
pqm_update_mqd(struct process_queue_manager * pqm,unsigned int qid,struct mqd_update_info * minfo)627 int pqm_update_mqd(struct process_queue_manager *pqm,
628 unsigned int qid, struct mqd_update_info *minfo)
629 {
630 int retval;
631 struct process_queue_node *pqn;
632
633 pqn = get_queue_by_qid(pqm, qid);
634 if (!pqn) {
635 pr_debug("No queue %d exists for update operation\n", qid);
636 return -EFAULT;
637 }
638
639 /* CUs are masked for debugger requirements so deny user mask */
640 if (pqn->q->properties.is_dbg_wa && minfo && minfo->cu_mask.ptr)
641 return -EBUSY;
642
643 /* ASICs that have WGPs must enforce pairwise enabled mask checks. */
644 if (minfo && minfo->cu_mask.ptr &&
645 KFD_GC_VERSION(pqn->q->device) >= IP_VERSION(10, 0, 0)) {
646 int i;
647
648 for (i = 0; i < minfo->cu_mask.count; i += 2) {
649 uint32_t cu_pair = (minfo->cu_mask.ptr[i / 32] >> (i % 32)) & 0x3;
650
651 if (cu_pair && cu_pair != 0x3) {
652 pr_debug("CUs must be adjacent pairwise enabled.\n");
653 return -EINVAL;
654 }
655 }
656 }
657
658 retval = pqn->q->device->dqm->ops.update_queue(pqn->q->device->dqm,
659 pqn->q, minfo);
660 if (retval != 0)
661 return retval;
662
663 if (minfo && minfo->cu_mask.ptr)
664 pqn->q->properties.is_user_cu_masked = true;
665
666 return 0;
667 }
668
pqm_get_kernel_queue(struct process_queue_manager * pqm,unsigned int qid)669 struct kernel_queue *pqm_get_kernel_queue(
670 struct process_queue_manager *pqm,
671 unsigned int qid)
672 {
673 struct process_queue_node *pqn;
674
675 pqn = get_queue_by_qid(pqm, qid);
676 if (pqn && pqn->kq)
677 return pqn->kq;
678
679 return NULL;
680 }
681
pqm_get_user_queue(struct process_queue_manager * pqm,unsigned int qid)682 struct queue *pqm_get_user_queue(struct process_queue_manager *pqm,
683 unsigned int qid)
684 {
685 struct process_queue_node *pqn;
686
687 pqn = get_queue_by_qid(pqm, qid);
688 return pqn ? pqn->q : NULL;
689 }
690
pqm_get_wave_state(struct process_queue_manager * pqm,unsigned int qid,void __user * ctl_stack,u32 * ctl_stack_used_size,u32 * save_area_used_size)691 int pqm_get_wave_state(struct process_queue_manager *pqm,
692 unsigned int qid,
693 void __user *ctl_stack,
694 u32 *ctl_stack_used_size,
695 u32 *save_area_used_size)
696 {
697 struct process_queue_node *pqn;
698
699 pqn = get_queue_by_qid(pqm, qid);
700 if (!pqn) {
701 pr_debug("amdkfd: No queue %d exists for operation\n",
702 qid);
703 return -EFAULT;
704 }
705
706 return pqn->q->device->dqm->ops.get_wave_state(pqn->q->device->dqm,
707 pqn->q,
708 ctl_stack,
709 ctl_stack_used_size,
710 save_area_used_size);
711 }
712
pqm_get_queue_snapshot(struct process_queue_manager * pqm,uint64_t exception_clear_mask,void __user * buf,int * num_qss_entries,uint32_t * entry_size)713 int pqm_get_queue_snapshot(struct process_queue_manager *pqm,
714 uint64_t exception_clear_mask,
715 void __user *buf,
716 int *num_qss_entries,
717 uint32_t *entry_size)
718 {
719 struct process_queue_node *pqn;
720 struct kfd_queue_snapshot_entry src;
721 uint32_t tmp_entry_size = *entry_size, tmp_qss_entries = *num_qss_entries;
722 int r = 0;
723
724 *num_qss_entries = 0;
725 if (!(*entry_size))
726 return -EINVAL;
727
728 *entry_size = min_t(size_t, *entry_size, sizeof(struct kfd_queue_snapshot_entry));
729 mutex_lock(&pqm->process->event_mutex);
730
731 memset(&src, 0, sizeof(src));
732
733 list_for_each_entry(pqn, &pqm->queues, process_queue_list) {
734 if (!pqn->q)
735 continue;
736
737 if (*num_qss_entries < tmp_qss_entries) {
738 set_queue_snapshot_entry(pqn->q, exception_clear_mask, &src);
739
740 if (copy_to_user(buf, &src, *entry_size)) {
741 r = -EFAULT;
742 break;
743 }
744 buf += tmp_entry_size;
745 }
746 *num_qss_entries += 1;
747 }
748
749 mutex_unlock(&pqm->process->event_mutex);
750 return r;
751 }
752
get_queue_data_sizes(struct kfd_process_device * pdd,struct queue * q,uint32_t * mqd_size,uint32_t * ctl_stack_size)753 static int get_queue_data_sizes(struct kfd_process_device *pdd,
754 struct queue *q,
755 uint32_t *mqd_size,
756 uint32_t *ctl_stack_size)
757 {
758 int ret;
759
760 ret = pqm_get_queue_checkpoint_info(&pdd->process->pqm,
761 q->properties.queue_id,
762 mqd_size,
763 ctl_stack_size);
764 if (ret)
765 pr_err("Failed to get queue dump info (%d)\n", ret);
766
767 return ret;
768 }
769
kfd_process_get_queue_info(struct kfd_process * p,uint32_t * num_queues,uint64_t * priv_data_sizes)770 int kfd_process_get_queue_info(struct kfd_process *p,
771 uint32_t *num_queues,
772 uint64_t *priv_data_sizes)
773 {
774 uint32_t extra_data_sizes = 0;
775 struct queue *q;
776 int i;
777 int ret;
778
779 *num_queues = 0;
780
781 /* Run over all PDDs of the process */
782 for (i = 0; i < p->n_pdds; i++) {
783 struct kfd_process_device *pdd = p->pdds[i];
784
785 list_for_each_entry(q, &pdd->qpd.queues_list, list) {
786 if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE ||
787 q->properties.type == KFD_QUEUE_TYPE_SDMA ||
788 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
789 uint32_t mqd_size, ctl_stack_size;
790
791 *num_queues = *num_queues + 1;
792
793 ret = get_queue_data_sizes(pdd, q, &mqd_size, &ctl_stack_size);
794 if (ret)
795 return ret;
796
797 extra_data_sizes += mqd_size + ctl_stack_size;
798 } else {
799 pr_err("Unsupported queue type (%d)\n", q->properties.type);
800 return -EOPNOTSUPP;
801 }
802 }
803 }
804 *priv_data_sizes = extra_data_sizes +
805 (*num_queues * sizeof(struct kfd_criu_queue_priv_data));
806
807 return 0;
808 }
809
pqm_checkpoint_mqd(struct process_queue_manager * pqm,unsigned int qid,void * mqd,void * ctl_stack)810 static int pqm_checkpoint_mqd(struct process_queue_manager *pqm,
811 unsigned int qid,
812 void *mqd,
813 void *ctl_stack)
814 {
815 struct process_queue_node *pqn;
816
817 pqn = get_queue_by_qid(pqm, qid);
818 if (!pqn) {
819 pr_debug("amdkfd: No queue %d exists for operation\n", qid);
820 return -EFAULT;
821 }
822
823 if (!pqn->q->device->dqm->ops.checkpoint_mqd) {
824 pr_err("amdkfd: queue dumping not supported on this device\n");
825 return -EOPNOTSUPP;
826 }
827
828 return pqn->q->device->dqm->ops.checkpoint_mqd(pqn->q->device->dqm,
829 pqn->q, mqd, ctl_stack);
830 }
831
criu_checkpoint_queue(struct kfd_process_device * pdd,struct queue * q,struct kfd_criu_queue_priv_data * q_data)832 static int criu_checkpoint_queue(struct kfd_process_device *pdd,
833 struct queue *q,
834 struct kfd_criu_queue_priv_data *q_data)
835 {
836 uint8_t *mqd, *ctl_stack;
837 int ret;
838
839 mqd = (void *)(q_data + 1);
840 ctl_stack = mqd + q_data->mqd_size;
841
842 q_data->gpu_id = pdd->user_gpu_id;
843 q_data->type = q->properties.type;
844 q_data->format = q->properties.format;
845 q_data->q_id = q->properties.queue_id;
846 q_data->q_address = q->properties.queue_address;
847 q_data->q_size = q->properties.queue_size;
848 q_data->priority = q->properties.priority;
849 q_data->q_percent = q->properties.queue_percent;
850 q_data->read_ptr_addr = (uint64_t)q->properties.read_ptr;
851 q_data->write_ptr_addr = (uint64_t)q->properties.write_ptr;
852 q_data->doorbell_id = q->doorbell_id;
853
854 q_data->sdma_id = q->sdma_id;
855
856 q_data->eop_ring_buffer_address =
857 q->properties.eop_ring_buffer_address;
858
859 q_data->eop_ring_buffer_size = q->properties.eop_ring_buffer_size;
860
861 q_data->ctx_save_restore_area_address =
862 q->properties.ctx_save_restore_area_address;
863
864 q_data->ctx_save_restore_area_size =
865 q->properties.ctx_save_restore_area_size;
866
867 q_data->gws = !!q->gws;
868
869 ret = pqm_checkpoint_mqd(&pdd->process->pqm, q->properties.queue_id, mqd, ctl_stack);
870 if (ret) {
871 pr_err("Failed checkpoint queue_mqd (%d)\n", ret);
872 return ret;
873 }
874
875 pr_debug("Dumping Queue: gpu_id:%x queue_id:%u\n", q_data->gpu_id, q_data->q_id);
876 return ret;
877 }
878
criu_checkpoint_queues_device(struct kfd_process_device * pdd,uint8_t __user * user_priv,unsigned int * q_index,uint64_t * queues_priv_data_offset)879 static int criu_checkpoint_queues_device(struct kfd_process_device *pdd,
880 uint8_t __user *user_priv,
881 unsigned int *q_index,
882 uint64_t *queues_priv_data_offset)
883 {
884 unsigned int q_private_data_size = 0;
885 uint8_t *q_private_data = NULL; /* Local buffer to store individual queue private data */
886 struct queue *q;
887 int ret = 0;
888
889 list_for_each_entry(q, &pdd->qpd.queues_list, list) {
890 struct kfd_criu_queue_priv_data *q_data;
891 uint64_t q_data_size;
892 uint32_t mqd_size;
893 uint32_t ctl_stack_size;
894
895 if (q->properties.type != KFD_QUEUE_TYPE_COMPUTE &&
896 q->properties.type != KFD_QUEUE_TYPE_SDMA &&
897 q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI) {
898
899 pr_err("Unsupported queue type (%d)\n", q->properties.type);
900 ret = -EOPNOTSUPP;
901 break;
902 }
903
904 ret = get_queue_data_sizes(pdd, q, &mqd_size, &ctl_stack_size);
905 if (ret)
906 break;
907
908 q_data_size = sizeof(*q_data) + mqd_size + ctl_stack_size;
909
910 /* Increase local buffer space if needed */
911 if (q_private_data_size < q_data_size) {
912 kfree(q_private_data);
913
914 q_private_data = kzalloc(q_data_size, GFP_KERNEL);
915 if (!q_private_data) {
916 ret = -ENOMEM;
917 break;
918 }
919 q_private_data_size = q_data_size;
920 }
921
922 q_data = (struct kfd_criu_queue_priv_data *)q_private_data;
923
924 /* data stored in this order: priv_data, mqd, ctl_stack */
925 q_data->mqd_size = mqd_size;
926 q_data->ctl_stack_size = ctl_stack_size;
927
928 ret = criu_checkpoint_queue(pdd, q, q_data);
929 if (ret)
930 break;
931
932 q_data->object_type = KFD_CRIU_OBJECT_TYPE_QUEUE;
933
934 ret = copy_to_user(user_priv + *queues_priv_data_offset,
935 q_data, q_data_size);
936 if (ret) {
937 ret = -EFAULT;
938 break;
939 }
940 *queues_priv_data_offset += q_data_size;
941 *q_index = *q_index + 1;
942 }
943
944 kfree(q_private_data);
945
946 return ret;
947 }
948
kfd_criu_checkpoint_queues(struct kfd_process * p,uint8_t __user * user_priv_data,uint64_t * priv_data_offset)949 int kfd_criu_checkpoint_queues(struct kfd_process *p,
950 uint8_t __user *user_priv_data,
951 uint64_t *priv_data_offset)
952 {
953 int ret = 0, pdd_index, q_index = 0;
954
955 for (pdd_index = 0; pdd_index < p->n_pdds; pdd_index++) {
956 struct kfd_process_device *pdd = p->pdds[pdd_index];
957
958 /*
959 * criu_checkpoint_queues_device will copy data to user and update q_index and
960 * queues_priv_data_offset
961 */
962 ret = criu_checkpoint_queues_device(pdd, user_priv_data, &q_index,
963 priv_data_offset);
964
965 if (ret)
966 break;
967 }
968
969 return ret;
970 }
971
set_queue_properties_from_criu(struct queue_properties * qp,struct kfd_criu_queue_priv_data * q_data)972 static void set_queue_properties_from_criu(struct queue_properties *qp,
973 struct kfd_criu_queue_priv_data *q_data)
974 {
975 qp->is_interop = false;
976 qp->queue_percent = q_data->q_percent;
977 qp->priority = q_data->priority;
978 qp->queue_address = q_data->q_address;
979 qp->queue_size = q_data->q_size;
980 qp->read_ptr = (uint32_t *) q_data->read_ptr_addr;
981 qp->write_ptr = (uint32_t *) q_data->write_ptr_addr;
982 qp->eop_ring_buffer_address = q_data->eop_ring_buffer_address;
983 qp->eop_ring_buffer_size = q_data->eop_ring_buffer_size;
984 qp->ctx_save_restore_area_address = q_data->ctx_save_restore_area_address;
985 qp->ctx_save_restore_area_size = q_data->ctx_save_restore_area_size;
986 qp->ctl_stack_size = q_data->ctl_stack_size;
987 qp->type = q_data->type;
988 qp->format = q_data->format;
989 }
990
kfd_criu_restore_queue(struct kfd_process * p,uint8_t __user * user_priv_ptr,uint64_t * priv_data_offset,uint64_t max_priv_data_size)991 int kfd_criu_restore_queue(struct kfd_process *p,
992 uint8_t __user *user_priv_ptr,
993 uint64_t *priv_data_offset,
994 uint64_t max_priv_data_size)
995 {
996 uint8_t *mqd, *ctl_stack, *q_extra_data = NULL;
997 struct kfd_criu_queue_priv_data *q_data;
998 struct kfd_process_device *pdd;
999 uint64_t q_extra_data_size;
1000 struct queue_properties qp;
1001 unsigned int queue_id;
1002 int ret = 0;
1003
1004 if (*priv_data_offset + sizeof(*q_data) > max_priv_data_size)
1005 return -EINVAL;
1006
1007 q_data = kmalloc(sizeof(*q_data), GFP_KERNEL);
1008 if (!q_data)
1009 return -ENOMEM;
1010
1011 ret = copy_from_user(q_data, user_priv_ptr + *priv_data_offset, sizeof(*q_data));
1012 if (ret) {
1013 ret = -EFAULT;
1014 goto exit;
1015 }
1016
1017 *priv_data_offset += sizeof(*q_data);
1018 q_extra_data_size = (uint64_t)q_data->ctl_stack_size + q_data->mqd_size;
1019
1020 if (*priv_data_offset + q_extra_data_size > max_priv_data_size) {
1021 ret = -EINVAL;
1022 goto exit;
1023 }
1024
1025 q_extra_data = kmalloc(q_extra_data_size, GFP_KERNEL);
1026 if (!q_extra_data) {
1027 ret = -ENOMEM;
1028 goto exit;
1029 }
1030
1031 ret = copy_from_user(q_extra_data, user_priv_ptr + *priv_data_offset, q_extra_data_size);
1032 if (ret) {
1033 ret = -EFAULT;
1034 goto exit;
1035 }
1036
1037 *priv_data_offset += q_extra_data_size;
1038
1039 pdd = kfd_process_device_data_by_id(p, q_data->gpu_id);
1040 if (!pdd) {
1041 pr_err("Failed to get pdd\n");
1042 ret = -EINVAL;
1043 goto exit;
1044 }
1045
1046 /* data stored in this order: mqd, ctl_stack */
1047 mqd = q_extra_data;
1048 ctl_stack = mqd + q_data->mqd_size;
1049
1050 memset(&qp, 0, sizeof(qp));
1051 set_queue_properties_from_criu(&qp, q_data);
1052
1053 print_queue_properties(&qp);
1054
1055 ret = pqm_create_queue(&p->pqm, pdd->dev, NULL, &qp, &queue_id, q_data, mqd, ctl_stack,
1056 NULL);
1057 if (ret) {
1058 pr_err("Failed to create new queue err:%d\n", ret);
1059 goto exit;
1060 }
1061
1062 if (q_data->gws)
1063 ret = pqm_set_gws(&p->pqm, q_data->q_id, pdd->dev->gws);
1064
1065 exit:
1066 if (ret)
1067 pr_err("Failed to restore queue (%d)\n", ret);
1068 else
1069 pr_debug("Queue id %d was restored successfully\n", queue_id);
1070
1071 kfree(q_data);
1072 kfree(q_extra_data);
1073
1074 return ret;
1075 }
1076
pqm_get_queue_checkpoint_info(struct process_queue_manager * pqm,unsigned int qid,uint32_t * mqd_size,uint32_t * ctl_stack_size)1077 int pqm_get_queue_checkpoint_info(struct process_queue_manager *pqm,
1078 unsigned int qid,
1079 uint32_t *mqd_size,
1080 uint32_t *ctl_stack_size)
1081 {
1082 struct process_queue_node *pqn;
1083
1084 pqn = get_queue_by_qid(pqm, qid);
1085 if (!pqn) {
1086 pr_debug("amdkfd: No queue %d exists for operation\n", qid);
1087 return -EFAULT;
1088 }
1089
1090 if (!pqn->q->device->dqm->ops.get_queue_checkpoint_info) {
1091 pr_err("amdkfd: queue dumping not supported on this device\n");
1092 return -EOPNOTSUPP;
1093 }
1094
1095 pqn->q->device->dqm->ops.get_queue_checkpoint_info(pqn->q->device->dqm,
1096 pqn->q, mqd_size,
1097 ctl_stack_size);
1098 return 0;
1099 }
1100
1101 #if defined(CONFIG_DEBUG_FS)
1102
pqm_debugfs_mqds(struct seq_file * m,void * data)1103 int pqm_debugfs_mqds(struct seq_file *m, void *data)
1104 {
1105 struct process_queue_manager *pqm = data;
1106 struct process_queue_node *pqn;
1107 struct queue *q;
1108 enum KFD_MQD_TYPE mqd_type;
1109 struct mqd_manager *mqd_mgr;
1110 int r = 0, xcc, num_xccs = 1;
1111 void *mqd;
1112 uint64_t size = 0;
1113
1114 list_for_each_entry(pqn, &pqm->queues, process_queue_list) {
1115 if (pqn->q) {
1116 q = pqn->q;
1117 switch (q->properties.type) {
1118 case KFD_QUEUE_TYPE_SDMA:
1119 case KFD_QUEUE_TYPE_SDMA_XGMI:
1120 seq_printf(m, " SDMA queue on device %x\n",
1121 q->device->id);
1122 mqd_type = KFD_MQD_TYPE_SDMA;
1123 break;
1124 case KFD_QUEUE_TYPE_COMPUTE:
1125 seq_printf(m, " Compute queue on device %x\n",
1126 q->device->id);
1127 mqd_type = KFD_MQD_TYPE_CP;
1128 num_xccs = NUM_XCC(q->device->xcc_mask);
1129 break;
1130 default:
1131 seq_printf(m,
1132 " Bad user queue type %d on device %x\n",
1133 q->properties.type, q->device->id);
1134 continue;
1135 }
1136 mqd_mgr = q->device->dqm->mqd_mgrs[mqd_type];
1137 size = mqd_mgr->mqd_stride(mqd_mgr,
1138 &q->properties);
1139 } else if (pqn->kq) {
1140 q = pqn->kq->queue;
1141 mqd_mgr = pqn->kq->mqd_mgr;
1142 switch (q->properties.type) {
1143 case KFD_QUEUE_TYPE_DIQ:
1144 seq_printf(m, " DIQ on device %x\n",
1145 pqn->kq->dev->id);
1146 break;
1147 default:
1148 seq_printf(m,
1149 " Bad kernel queue type %d on device %x\n",
1150 q->properties.type,
1151 pqn->kq->dev->id);
1152 continue;
1153 }
1154 } else {
1155 seq_printf(m,
1156 " Weird: Queue node with neither kernel nor user queue\n");
1157 continue;
1158 }
1159
1160 for (xcc = 0; xcc < num_xccs; xcc++) {
1161 mqd = q->mqd + size * xcc;
1162 r = mqd_mgr->debugfs_show_mqd(m, mqd);
1163 if (r != 0)
1164 break;
1165 }
1166 }
1167
1168 return r;
1169 }
1170
1171 #endif
1172