• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  kernel/sched/core.c
4  *
5  *  Core kernel CPU scheduler code
6  *
7  *  Copyright (C) 1991-2002  Linus Torvalds
8  *  Copyright (C) 1998-2024  Ingo Molnar, Red Hat
9  */
10 #include <linux/highmem.h>
11 #include <linux/hrtimer_api.h>
12 #include <linux/ktime_api.h>
13 #include <linux/sched/signal.h>
14 #include <linux/syscalls_api.h>
15 #include <linux/debug_locks.h>
16 #include <linux/prefetch.h>
17 #include <linux/capability.h>
18 #include <linux/pgtable_api.h>
19 #include <linux/wait_bit.h>
20 #include <linux/jiffies.h>
21 #include <linux/spinlock_api.h>
22 #include <linux/cpumask_api.h>
23 #include <linux/lockdep_api.h>
24 #include <linux/hardirq.h>
25 #include <linux/softirq.h>
26 #include <linux/refcount_api.h>
27 #include <linux/topology.h>
28 #include <linux/sched/clock.h>
29 #include <linux/sched/cond_resched.h>
30 #include <linux/sched/cputime.h>
31 #include <linux/sched/debug.h>
32 #include <linux/sched/hotplug.h>
33 #include <linux/sched/init.h>
34 #include <linux/sched/isolation.h>
35 #include <linux/sched/loadavg.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/nohz.h>
38 #include <linux/sched/rseq_api.h>
39 #include <linux/sched/rt.h>
40 
41 #include <linux/blkdev.h>
42 #include <linux/context_tracking.h>
43 #include <linux/cpuset.h>
44 #include <linux/delayacct.h>
45 #include <linux/init_task.h>
46 #include <linux/interrupt.h>
47 #include <linux/ioprio.h>
48 #include <linux/kallsyms.h>
49 #include <linux/kcov.h>
50 #include <linux/kprobes.h>
51 #include <linux/llist_api.h>
52 #include <linux/mmu_context.h>
53 #include <linux/mmzone.h>
54 #include <linux/mutex_api.h>
55 #include <linux/nmi.h>
56 #include <linux/nospec.h>
57 #include <linux/perf_event_api.h>
58 #include <linux/profile.h>
59 #include <linux/psi.h>
60 #include <linux/rcuwait_api.h>
61 #include <linux/rseq.h>
62 #include <linux/sched/wake_q.h>
63 #include <linux/scs.h>
64 #include <linux/slab.h>
65 #include <linux/syscalls.h>
66 #include <linux/vtime.h>
67 #include <linux/wait_api.h>
68 #include <linux/workqueue_api.h>
69 
70 #ifdef CONFIG_PREEMPT_DYNAMIC
71 # ifdef CONFIG_GENERIC_ENTRY
72 #  include <linux/entry-common.h>
73 # endif
74 #endif
75 
76 #include <uapi/linux/sched/types.h>
77 
78 #include <asm/irq_regs.h>
79 #include <asm/switch_to.h>
80 #include <asm/tlb.h>
81 
82 #define CREATE_TRACE_POINTS
83 #include <linux/sched/rseq_api.h>
84 #include <trace/events/sched.h>
85 #include <trace/events/ipi.h>
86 #undef CREATE_TRACE_POINTS
87 
88 #include "sched.h"
89 #include "stats.h"
90 
91 #include "autogroup.h"
92 #include "pelt.h"
93 #include "smp.h"
94 #include "stats.h"
95 
96 #include "../workqueue_internal.h"
97 #include "../../io_uring/io-wq.h"
98 #include "../smpboot.h"
99 #include "../locking/mutex.h"
100 
101 #include <trace/hooks/sched.h>
102 #include <trace/hooks/cgroup.h>
103 #include <trace/hooks/dtask.h>
104 
105 EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpu);
106 EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpumask);
107 
108 /*
109  * Export tracepoints that act as a bare tracehook (ie: have no trace event
110  * associated with them) to allow external modules to probe them.
111  */
112 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
113 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
114 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
115 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
116 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
117 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_hw_tp);
118 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp);
119 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
120 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp);
121 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp);
122 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp);
123 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_compute_energy_tp);
124 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_switch);
125 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_waking);
126 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_wakeup);
127 #if defined(CONFIG_SCHEDSTATS)
128 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_stat_sleep);
129 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_stat_wait);
130 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_stat_blocked);
131 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_stat_iowait);
132 #endif
133 
134 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
135 EXPORT_SYMBOL_GPL(runqueues);
136 
137 #ifdef CONFIG_SCHED_PROXY_EXEC
138 DEFINE_STATIC_KEY_FALSE(__sched_proxy_exec);
setup_proxy_exec(char * str)139 static int __init setup_proxy_exec(char *str)
140 {
141 	bool proxy_enable;
142 
143 	if (kstrtobool(str, &proxy_enable)) {
144 		pr_warn("Unable to parse sched_proxy_exec=\n");
145 		return 0;
146 	}
147 
148 	if (proxy_enable) {
149 		pr_info("sched_proxy_exec enabled via boot arg\n");
150 		static_branch_enable(&__sched_proxy_exec);
151 	} else {
152 		pr_info("sched_proxy_exec disabled via boot arg\n");
153 		static_branch_disable(&__sched_proxy_exec);
154 	}
155 	return 1;
156 }
157 #else
setup_proxy_exec(char * str)158 static int __init setup_proxy_exec(char *str)
159 {
160 	pr_warn("CONFIG_SCHED_PROXY_EXEC=n, so it cannot be enabled or disabled at boot time\n");
161 	return 0;
162 }
163 #endif
164 __setup("sched_proxy_exec=", setup_proxy_exec);
165 
166 #ifdef CONFIG_SCHED_DEBUG
167 /*
168  * Debugging: various feature bits
169  *
170  * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
171  * sysctl_sched_features, defined in sched.h, to allow constants propagation
172  * at compile time and compiler optimization based on features default.
173  */
174 #define SCHED_FEAT(name, enabled)	\
175 	(1UL << __SCHED_FEAT_##name) * enabled |
176 const_debug unsigned int sysctl_sched_features =
177 #include "features.h"
178 	0;
179 EXPORT_SYMBOL_GPL(sysctl_sched_features);
180 #undef SCHED_FEAT
181 
182 /*
183  * Print a warning if need_resched is set for the given duration (if
184  * LATENCY_WARN is enabled).
185  *
186  * If sysctl_resched_latency_warn_once is set, only one warning will be shown
187  * per boot.
188  */
189 __read_mostly int sysctl_resched_latency_warn_ms = 100;
190 __read_mostly int sysctl_resched_latency_warn_once = 1;
191 #endif /* CONFIG_SCHED_DEBUG */
192 
193 /*
194  * Number of tasks to iterate in a single balance run.
195  * Limited because this is done with IRQs disabled.
196  */
197 const_debug unsigned int sysctl_sched_nr_migrate = SCHED_NR_MIGRATE_BREAK;
198 
199 __read_mostly int scheduler_running;
200 
201 #ifdef CONFIG_SCHED_CORE
202 
203 DEFINE_STATIC_KEY_FALSE(__sched_core_enabled);
204 
205 /* kernel prio, less is more */
__task_prio(const struct task_struct * p)206 static inline int __task_prio(const struct task_struct *p)
207 {
208 	if (p->sched_class == &stop_sched_class) /* trumps deadline */
209 		return -2;
210 
211 	if (p->dl_server)
212 		return -1; /* deadline */
213 
214 	if (rt_or_dl_prio(p->prio))
215 		return p->prio; /* [-1, 99] */
216 
217 	if (p->sched_class == &idle_sched_class)
218 		return MAX_RT_PRIO + NICE_WIDTH; /* 140 */
219 
220 	if (task_on_scx(p))
221 		return MAX_RT_PRIO + MAX_NICE + 1; /* 120, squash ext */
222 
223 	return MAX_RT_PRIO + MAX_NICE; /* 119, squash fair */
224 }
225 
226 /*
227  * l(a,b)
228  * le(a,b) := !l(b,a)
229  * g(a,b)  := l(b,a)
230  * ge(a,b) := !l(a,b)
231  */
232 
233 /* real prio, less is less */
prio_less(const struct task_struct * a,const struct task_struct * b,bool in_fi)234 static inline bool prio_less(const struct task_struct *a,
235 			     const struct task_struct *b, bool in_fi)
236 {
237 
238 	int pa = __task_prio(a), pb = __task_prio(b);
239 
240 	if (-pa < -pb)
241 		return true;
242 
243 	if (-pb < -pa)
244 		return false;
245 
246 	if (pa == -1) { /* dl_prio() doesn't work because of stop_class above */
247 		const struct sched_dl_entity *a_dl, *b_dl;
248 
249 		a_dl = &a->dl;
250 		/*
251 		 * Since,'a' and 'b' can be CFS tasks served by DL server,
252 		 * __task_prio() can return -1 (for DL) even for those. In that
253 		 * case, get to the dl_server's DL entity.
254 		 */
255 		if (a->dl_server)
256 			a_dl = a->dl_server;
257 
258 		b_dl = &b->dl;
259 		if (b->dl_server)
260 			b_dl = b->dl_server;
261 
262 		return !dl_time_before(a_dl->deadline, b_dl->deadline);
263 	}
264 
265 	if (pa == MAX_RT_PRIO + MAX_NICE)	/* fair */
266 		return cfs_prio_less(a, b, in_fi);
267 
268 #ifdef CONFIG_SCHED_CLASS_EXT
269 	if (pa == MAX_RT_PRIO + MAX_NICE + 1)	/* ext */
270 		return scx_prio_less(a, b, in_fi);
271 #endif
272 
273 	return false;
274 }
275 
__sched_core_less(const struct task_struct * a,const struct task_struct * b)276 static inline bool __sched_core_less(const struct task_struct *a,
277 				     const struct task_struct *b)
278 {
279 	if (a->core_cookie < b->core_cookie)
280 		return true;
281 
282 	if (a->core_cookie > b->core_cookie)
283 		return false;
284 
285 	/* flip prio, so high prio is leftmost */
286 	if (prio_less(b, a, !!task_rq(a)->core->core_forceidle_count))
287 		return true;
288 
289 	return false;
290 }
291 
292 #define __node_2_sc(node) rb_entry((node), struct task_struct, core_node)
293 
rb_sched_core_less(struct rb_node * a,const struct rb_node * b)294 static inline bool rb_sched_core_less(struct rb_node *a, const struct rb_node *b)
295 {
296 	return __sched_core_less(__node_2_sc(a), __node_2_sc(b));
297 }
298 
rb_sched_core_cmp(const void * key,const struct rb_node * node)299 static inline int rb_sched_core_cmp(const void *key, const struct rb_node *node)
300 {
301 	const struct task_struct *p = __node_2_sc(node);
302 	unsigned long cookie = (unsigned long)key;
303 
304 	if (cookie < p->core_cookie)
305 		return -1;
306 
307 	if (cookie > p->core_cookie)
308 		return 1;
309 
310 	return 0;
311 }
312 
sched_core_enqueue(struct rq * rq,struct task_struct * p)313 void sched_core_enqueue(struct rq *rq, struct task_struct *p)
314 {
315 	if (p->se.sched_delayed)
316 		return;
317 
318 	rq->core->core_task_seq++;
319 
320 	if (!p->core_cookie)
321 		return;
322 
323 	rb_add(&p->core_node, &rq->core_tree, rb_sched_core_less);
324 }
325 
sched_core_dequeue(struct rq * rq,struct task_struct * p,int flags)326 void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags)
327 {
328 	if (p->se.sched_delayed)
329 		return;
330 
331 	rq->core->core_task_seq++;
332 
333 	if (sched_core_enqueued(p)) {
334 		rb_erase(&p->core_node, &rq->core_tree);
335 		RB_CLEAR_NODE(&p->core_node);
336 	}
337 
338 	/*
339 	 * Migrating the last task off the cpu, with the cpu in forced idle
340 	 * state. Reschedule to create an accounting edge for forced idle,
341 	 * and re-examine whether the core is still in forced idle state.
342 	 */
343 	if (!(flags & DEQUEUE_SAVE) && rq->nr_running == 1 &&
344 	    rq->core->core_forceidle_count && rq->curr == rq->idle)
345 		resched_curr(rq);
346 }
347 
sched_task_is_throttled(struct task_struct * p,int cpu)348 static int sched_task_is_throttled(struct task_struct *p, int cpu)
349 {
350 	if (p->sched_class->task_is_throttled)
351 		return p->sched_class->task_is_throttled(p, cpu);
352 
353 	return 0;
354 }
355 
sched_core_next(struct task_struct * p,unsigned long cookie)356 static struct task_struct *sched_core_next(struct task_struct *p, unsigned long cookie)
357 {
358 	struct rb_node *node = &p->core_node;
359 	int cpu = task_cpu(p);
360 
361 	do {
362 		node = rb_next(node);
363 		if (!node)
364 			return NULL;
365 
366 		p = __node_2_sc(node);
367 		if (p->core_cookie != cookie)
368 			return NULL;
369 
370 	} while (sched_task_is_throttled(p, cpu));
371 
372 	return p;
373 }
374 
375 /*
376  * Find left-most (aka, highest priority) and unthrottled task matching @cookie.
377  * If no suitable task is found, NULL will be returned.
378  */
sched_core_find(struct rq * rq,unsigned long cookie)379 static struct task_struct *sched_core_find(struct rq *rq, unsigned long cookie)
380 {
381 	struct task_struct *p;
382 	struct rb_node *node;
383 
384 	node = rb_find_first((void *)cookie, &rq->core_tree, rb_sched_core_cmp);
385 	if (!node)
386 		return NULL;
387 
388 	p = __node_2_sc(node);
389 	if (!sched_task_is_throttled(p, rq->cpu))
390 		return p;
391 
392 	return sched_core_next(p, cookie);
393 }
394 
395 /*
396  * Magic required such that:
397  *
398  *	raw_spin_rq_lock(rq);
399  *	...
400  *	raw_spin_rq_unlock(rq);
401  *
402  * ends up locking and unlocking the _same_ lock, and all CPUs
403  * always agree on what rq has what lock.
404  *
405  * XXX entirely possible to selectively enable cores, don't bother for now.
406  */
407 
408 static DEFINE_MUTEX(sched_core_mutex);
409 static atomic_t sched_core_count;
410 static struct cpumask sched_core_mask;
411 
sched_core_lock(int cpu,unsigned long * flags)412 static void sched_core_lock(int cpu, unsigned long *flags)
413 {
414 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
415 	int t, i = 0;
416 
417 	local_irq_save(*flags);
418 	for_each_cpu(t, smt_mask)
419 		raw_spin_lock_nested(&cpu_rq(t)->__lock, i++);
420 }
421 
sched_core_unlock(int cpu,unsigned long * flags)422 static void sched_core_unlock(int cpu, unsigned long *flags)
423 {
424 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
425 	int t;
426 
427 	for_each_cpu(t, smt_mask)
428 		raw_spin_unlock(&cpu_rq(t)->__lock);
429 	local_irq_restore(*flags);
430 }
431 
__sched_core_flip(bool enabled)432 static void __sched_core_flip(bool enabled)
433 {
434 	unsigned long flags;
435 	int cpu, t;
436 
437 	cpus_read_lock();
438 
439 	/*
440 	 * Toggle the online cores, one by one.
441 	 */
442 	cpumask_copy(&sched_core_mask, cpu_online_mask);
443 	for_each_cpu(cpu, &sched_core_mask) {
444 		const struct cpumask *smt_mask = cpu_smt_mask(cpu);
445 
446 		sched_core_lock(cpu, &flags);
447 
448 		for_each_cpu(t, smt_mask)
449 			cpu_rq(t)->core_enabled = enabled;
450 
451 		cpu_rq(cpu)->core->core_forceidle_start = 0;
452 
453 		sched_core_unlock(cpu, &flags);
454 
455 		cpumask_andnot(&sched_core_mask, &sched_core_mask, smt_mask);
456 	}
457 
458 	/*
459 	 * Toggle the offline CPUs.
460 	 */
461 	for_each_cpu_andnot(cpu, cpu_possible_mask, cpu_online_mask)
462 		cpu_rq(cpu)->core_enabled = enabled;
463 
464 	cpus_read_unlock();
465 }
466 
sched_core_assert_empty(void)467 static void sched_core_assert_empty(void)
468 {
469 	int cpu;
470 
471 	for_each_possible_cpu(cpu)
472 		WARN_ON_ONCE(!RB_EMPTY_ROOT(&cpu_rq(cpu)->core_tree));
473 }
474 
__sched_core_enable(void)475 static void __sched_core_enable(void)
476 {
477 	static_branch_enable(&__sched_core_enabled);
478 	/*
479 	 * Ensure all previous instances of raw_spin_rq_*lock() have finished
480 	 * and future ones will observe !sched_core_disabled().
481 	 */
482 	synchronize_rcu();
483 	__sched_core_flip(true);
484 	sched_core_assert_empty();
485 }
486 
__sched_core_disable(void)487 static void __sched_core_disable(void)
488 {
489 	sched_core_assert_empty();
490 	__sched_core_flip(false);
491 	static_branch_disable(&__sched_core_enabled);
492 }
493 
sched_core_get(void)494 void sched_core_get(void)
495 {
496 	if (atomic_inc_not_zero(&sched_core_count))
497 		return;
498 
499 	mutex_lock(&sched_core_mutex);
500 	if (!atomic_read(&sched_core_count))
501 		__sched_core_enable();
502 
503 	smp_mb__before_atomic();
504 	atomic_inc(&sched_core_count);
505 	mutex_unlock(&sched_core_mutex);
506 }
507 
__sched_core_put(struct work_struct * work)508 static void __sched_core_put(struct work_struct *work)
509 {
510 	if (atomic_dec_and_mutex_lock(&sched_core_count, &sched_core_mutex)) {
511 		__sched_core_disable();
512 		mutex_unlock(&sched_core_mutex);
513 	}
514 }
515 
sched_core_put(void)516 void sched_core_put(void)
517 {
518 	static DECLARE_WORK(_work, __sched_core_put);
519 
520 	/*
521 	 * "There can be only one"
522 	 *
523 	 * Either this is the last one, or we don't actually need to do any
524 	 * 'work'. If it is the last *again*, we rely on
525 	 * WORK_STRUCT_PENDING_BIT.
526 	 */
527 	if (!atomic_add_unless(&sched_core_count, -1, 1))
528 		schedule_work(&_work);
529 }
530 
531 #else /* !CONFIG_SCHED_CORE */
532 
sched_core_enqueue(struct rq * rq,struct task_struct * p)533 static inline void sched_core_enqueue(struct rq *rq, struct task_struct *p) { }
534 static inline void
sched_core_dequeue(struct rq * rq,struct task_struct * p,int flags)535 sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) { }
536 
537 #endif /* CONFIG_SCHED_CORE */
538 
539 /*
540  * Serialization rules:
541  *
542  * Lock order:
543  *
544  *   p->pi_lock
545  *     rq->lock
546  *       hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls)
547  *
548  *  rq1->lock
549  *    rq2->lock  where: rq1 < rq2
550  *
551  * Regular state:
552  *
553  * Normal scheduling state is serialized by rq->lock. __schedule() takes the
554  * local CPU's rq->lock, it optionally removes the task from the runqueue and
555  * always looks at the local rq data structures to find the most eligible task
556  * to run next.
557  *
558  * Task enqueue is also under rq->lock, possibly taken from another CPU.
559  * Wakeups from another LLC domain might use an IPI to transfer the enqueue to
560  * the local CPU to avoid bouncing the runqueue state around [ see
561  * ttwu_queue_wakelist() ]
562  *
563  * Task wakeup, specifically wakeups that involve migration, are horribly
564  * complicated to avoid having to take two rq->locks.
565  *
566  * Special state:
567  *
568  * System-calls and anything external will use task_rq_lock() which acquires
569  * both p->pi_lock and rq->lock. As a consequence the state they change is
570  * stable while holding either lock:
571  *
572  *  - sched_setaffinity()/
573  *    set_cpus_allowed_ptr():	p->cpus_ptr, p->nr_cpus_allowed
574  *  - set_user_nice():		p->se.load, p->*prio
575  *  - __sched_setscheduler():	p->sched_class, p->policy, p->*prio,
576  *				p->se.load, p->rt_priority,
577  *				p->dl.dl_{runtime, deadline, period, flags, bw, density}
578  *  - sched_setnuma():		p->numa_preferred_nid
579  *  - sched_move_task():	p->sched_task_group
580  *  - uclamp_update_active()	p->uclamp*
581  *
582  * p->state <- TASK_*:
583  *
584  *   is changed locklessly using set_current_state(), __set_current_state() or
585  *   set_special_state(), see their respective comments, or by
586  *   try_to_wake_up(). This latter uses p->pi_lock to serialize against
587  *   concurrent self.
588  *
589  * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }:
590  *
591  *   is set by activate_task() and cleared by deactivate_task(), under
592  *   rq->lock. Non-zero indicates the task is runnable, the special
593  *   ON_RQ_MIGRATING state is used for migration without holding both
594  *   rq->locks. It indicates task_cpu() is not stable, see task_rq_lock().
595  *
596  *   Additionally it is possible to be ->on_rq but still be considered not
597  *   runnable when p->se.sched_delayed is true. These tasks are on the runqueue
598  *   but will be dequeued as soon as they get picked again. See the
599  *   task_is_runnable() helper.
600  *
601  * p->on_cpu <- { 0, 1 }:
602  *
603  *   is set by prepare_task() and cleared by finish_task() such that it will be
604  *   set before p is scheduled-in and cleared after p is scheduled-out, both
605  *   under rq->lock. Non-zero indicates the task is running on its CPU.
606  *
607  *   [ The astute reader will observe that it is possible for two tasks on one
608  *     CPU to have ->on_cpu = 1 at the same time. ]
609  *
610  * task_cpu(p): is changed by set_task_cpu(), the rules are:
611  *
612  *  - Don't call set_task_cpu() on a blocked task:
613  *
614  *    We don't care what CPU we're not running on, this simplifies hotplug,
615  *    the CPU assignment of blocked tasks isn't required to be valid.
616  *
617  *  - for try_to_wake_up(), called under p->pi_lock:
618  *
619  *    This allows try_to_wake_up() to only take one rq->lock, see its comment.
620  *
621  *  - for migration called under rq->lock:
622  *    [ see task_on_rq_migrating() in task_rq_lock() ]
623  *
624  *    o move_queued_task()
625  *    o detach_task()
626  *
627  *  - for migration called under double_rq_lock():
628  *
629  *    o __migrate_swap_task()
630  *    o push_rt_task() / pull_rt_task()
631  *    o push_dl_task() / pull_dl_task()
632  *    o dl_task_offline_migration()
633  *
634  */
635 
raw_spin_rq_lock_nested(struct rq * rq,int subclass)636 void raw_spin_rq_lock_nested(struct rq *rq, int subclass)
637 {
638 	raw_spinlock_t *lock;
639 
640 	/* Matches synchronize_rcu() in __sched_core_enable() */
641 	preempt_disable();
642 	if (sched_core_disabled()) {
643 		raw_spin_lock_nested(&rq->__lock, subclass);
644 		/* preempt_count *MUST* be > 1 */
645 		preempt_enable_no_resched();
646 		return;
647 	}
648 
649 	for (;;) {
650 		lock = __rq_lockp(rq);
651 		raw_spin_lock_nested(lock, subclass);
652 		if (likely(lock == __rq_lockp(rq))) {
653 			/* preempt_count *MUST* be > 1 */
654 			preempt_enable_no_resched();
655 			return;
656 		}
657 		raw_spin_unlock(lock);
658 	}
659 }
660 EXPORT_SYMBOL_GPL(raw_spin_rq_lock_nested);
661 
raw_spin_rq_trylock(struct rq * rq)662 bool raw_spin_rq_trylock(struct rq *rq)
663 {
664 	raw_spinlock_t *lock;
665 	bool ret;
666 
667 	/* Matches synchronize_rcu() in __sched_core_enable() */
668 	preempt_disable();
669 	if (sched_core_disabled()) {
670 		ret = raw_spin_trylock(&rq->__lock);
671 		preempt_enable();
672 		return ret;
673 	}
674 
675 	for (;;) {
676 		lock = __rq_lockp(rq);
677 		ret = raw_spin_trylock(lock);
678 		if (!ret || (likely(lock == __rq_lockp(rq)))) {
679 			preempt_enable();
680 			return ret;
681 		}
682 		raw_spin_unlock(lock);
683 	}
684 }
685 
raw_spin_rq_unlock(struct rq * rq)686 void raw_spin_rq_unlock(struct rq *rq)
687 {
688 	raw_spin_unlock(rq_lockp(rq));
689 }
690 EXPORT_SYMBOL_GPL(raw_spin_rq_unlock);
691 
692 #ifdef CONFIG_SMP
693 /*
694  * double_rq_lock - safely lock two runqueues
695  */
double_rq_lock(struct rq * rq1,struct rq * rq2)696 void double_rq_lock(struct rq *rq1, struct rq *rq2)
697 {
698 	lockdep_assert_irqs_disabled();
699 
700 	if (rq_order_less(rq2, rq1))
701 		swap(rq1, rq2);
702 
703 	raw_spin_rq_lock(rq1);
704 	if (__rq_lockp(rq1) != __rq_lockp(rq2))
705 		raw_spin_rq_lock_nested(rq2, SINGLE_DEPTH_NESTING);
706 
707 	double_rq_clock_clear_update(rq1, rq2);
708 }
709 EXPORT_SYMBOL_GPL(double_rq_lock);
710 #endif
711 
712 /*
713  * __task_rq_lock - lock the rq @p resides on.
714  */
__task_rq_lock(struct task_struct * p,struct rq_flags * rf)715 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
716 	__acquires(rq->lock)
717 {
718 	struct rq *rq;
719 
720 	lockdep_assert_held(&p->pi_lock);
721 
722 	for (;;) {
723 		rq = task_rq(p);
724 		raw_spin_rq_lock(rq);
725 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
726 			rq_pin_lock(rq, rf);
727 			return rq;
728 		}
729 		raw_spin_rq_unlock(rq);
730 
731 		while (unlikely(task_on_rq_migrating(p)))
732 			cpu_relax();
733 	}
734 }
735 EXPORT_SYMBOL_GPL(__task_rq_lock);
736 
737 /*
738  * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
739  */
task_rq_lock(struct task_struct * p,struct rq_flags * rf)740 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
741 	__acquires(p->pi_lock)
742 	__acquires(rq->lock)
743 {
744 	struct rq *rq;
745 
746 	for (;;) {
747 		raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
748 		rq = task_rq(p);
749 		raw_spin_rq_lock(rq);
750 		/*
751 		 *	move_queued_task()		task_rq_lock()
752 		 *
753 		 *	ACQUIRE (rq->lock)
754 		 *	[S] ->on_rq = MIGRATING		[L] rq = task_rq()
755 		 *	WMB (__set_task_cpu())		ACQUIRE (rq->lock);
756 		 *	[S] ->cpu = new_cpu		[L] task_rq()
757 		 *					[L] ->on_rq
758 		 *	RELEASE (rq->lock)
759 		 *
760 		 * If we observe the old CPU in task_rq_lock(), the acquire of
761 		 * the old rq->lock will fully serialize against the stores.
762 		 *
763 		 * If we observe the new CPU in task_rq_lock(), the address
764 		 * dependency headed by '[L] rq = task_rq()' and the acquire
765 		 * will pair with the WMB to ensure we then also see migrating.
766 		 */
767 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
768 			rq_pin_lock(rq, rf);
769 			return rq;
770 		}
771 		raw_spin_rq_unlock(rq);
772 		raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
773 
774 		while (unlikely(task_on_rq_migrating(p)))
775 			cpu_relax();
776 	}
777 }
778 EXPORT_SYMBOL_GPL(task_rq_lock);
779 
780 /*
781  * RQ-clock updating methods:
782  */
783 
update_rq_clock_task(struct rq * rq,s64 delta)784 static void update_rq_clock_task(struct rq *rq, s64 delta)
785 {
786 /*
787  * In theory, the compile should just see 0 here, and optimize out the call
788  * to sched_rt_avg_update. But I don't trust it...
789  */
790 	s64 __maybe_unused steal = 0, irq_delta = 0;
791 
792 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
793 	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
794 
795 	/*
796 	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
797 	 * this case when a previous update_rq_clock() happened inside a
798 	 * {soft,}IRQ region.
799 	 *
800 	 * When this happens, we stop ->clock_task and only update the
801 	 * prev_irq_time stamp to account for the part that fit, so that a next
802 	 * update will consume the rest. This ensures ->clock_task is
803 	 * monotonic.
804 	 *
805 	 * It does however cause some slight miss-attribution of {soft,}IRQ
806 	 * time, a more accurate solution would be to update the irq_time using
807 	 * the current rq->clock timestamp, except that would require using
808 	 * atomic ops.
809 	 */
810 	if (irq_delta > delta)
811 		irq_delta = delta;
812 
813 	rq->prev_irq_time += irq_delta;
814 	delta -= irq_delta;
815 	delayacct_irq(rq->curr, irq_delta);
816 #endif
817 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
818 	if (static_key_false((&paravirt_steal_rq_enabled))) {
819 		u64 prev_steal;
820 
821 		steal = prev_steal = paravirt_steal_clock(cpu_of(rq));
822 		steal -= rq->prev_steal_time_rq;
823 
824 		if (unlikely(steal > delta))
825 			steal = delta;
826 
827 		rq->prev_steal_time_rq = prev_steal;
828 		delta -= steal;
829 	}
830 #endif
831 
832 	rq->clock_task += delta;
833 
834 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
835 	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
836 		update_irq_load_avg(rq, irq_delta + steal);
837 #endif
838 	update_rq_clock_task_mult(rq, delta);
839 }
840 
update_rq_clock(struct rq * rq)841 void update_rq_clock(struct rq *rq)
842 {
843 	s64 delta;
844 
845 	lockdep_assert_rq_held(rq);
846 
847 	if (rq->clock_update_flags & RQCF_ACT_SKIP)
848 		return;
849 
850 #ifdef CONFIG_SCHED_DEBUG
851 	if (sched_feat(WARN_DOUBLE_CLOCK))
852 		SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
853 	rq->clock_update_flags |= RQCF_UPDATED;
854 #endif
855 
856 	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
857 	if (delta < 0)
858 		return;
859 	rq->clock += delta;
860 	update_rq_clock_task(rq, delta);
861 }
862 EXPORT_SYMBOL_GPL(update_rq_clock);
863 
864 #ifdef CONFIG_SCHED_HRTICK
865 /*
866  * Use HR-timers to deliver accurate preemption points.
867  */
868 
hrtick_clear(struct rq * rq)869 static void hrtick_clear(struct rq *rq)
870 {
871 	if (hrtimer_active(&rq->hrtick_timer))
872 		hrtimer_cancel(&rq->hrtick_timer);
873 }
874 
875 /*
876  * High-resolution timer tick.
877  * Runs from hardirq context with interrupts disabled.
878  */
hrtick(struct hrtimer * timer)879 static enum hrtimer_restart hrtick(struct hrtimer *timer)
880 {
881 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
882 	struct rq_flags rf;
883 
884 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
885 
886 	rq_lock(rq, &rf);
887 	update_rq_clock(rq);
888 	rq->donor->sched_class->task_tick(rq, rq->curr, 1);
889 	rq_unlock(rq, &rf);
890 
891 	return HRTIMER_NORESTART;
892 }
893 
894 #ifdef CONFIG_SMP
895 
__hrtick_restart(struct rq * rq)896 static void __hrtick_restart(struct rq *rq)
897 {
898 	struct hrtimer *timer = &rq->hrtick_timer;
899 	ktime_t time = rq->hrtick_time;
900 
901 	hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD);
902 }
903 
904 /*
905  * called from hardirq (IPI) context
906  */
__hrtick_start(void * arg)907 static void __hrtick_start(void *arg)
908 {
909 	struct rq *rq = arg;
910 	struct rq_flags rf;
911 
912 	rq_lock(rq, &rf);
913 	__hrtick_restart(rq);
914 	rq_unlock(rq, &rf);
915 }
916 
917 /*
918  * Called to set the hrtick timer state.
919  *
920  * called with rq->lock held and IRQs disabled
921  */
hrtick_start(struct rq * rq,u64 delay)922 void hrtick_start(struct rq *rq, u64 delay)
923 {
924 	struct hrtimer *timer = &rq->hrtick_timer;
925 	s64 delta;
926 
927 	/*
928 	 * Don't schedule slices shorter than 10000ns, that just
929 	 * doesn't make sense and can cause timer DoS.
930 	 */
931 	delta = max_t(s64, delay, 10000LL);
932 	rq->hrtick_time = ktime_add_ns(timer->base->get_time(), delta);
933 
934 	if (rq == this_rq())
935 		__hrtick_restart(rq);
936 	else
937 		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
938 }
939 
940 #else
941 /*
942  * Called to set the hrtick timer state.
943  *
944  * called with rq->lock held and IRQs disabled
945  */
hrtick_start(struct rq * rq,u64 delay)946 void hrtick_start(struct rq *rq, u64 delay)
947 {
948 	/*
949 	 * Don't schedule slices shorter than 10000ns, that just
950 	 * doesn't make sense. Rely on vruntime for fairness.
951 	 */
952 	delay = max_t(u64, delay, 10000LL);
953 	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
954 		      HRTIMER_MODE_REL_PINNED_HARD);
955 }
956 
957 #endif /* CONFIG_SMP */
958 
hrtick_rq_init(struct rq * rq)959 static void hrtick_rq_init(struct rq *rq)
960 {
961 #ifdef CONFIG_SMP
962 	INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq);
963 #endif
964 	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
965 	rq->hrtick_timer.function = hrtick;
966 }
967 #else	/* CONFIG_SCHED_HRTICK */
hrtick_clear(struct rq * rq)968 static inline void hrtick_clear(struct rq *rq)
969 {
970 }
971 
hrtick_rq_init(struct rq * rq)972 static inline void hrtick_rq_init(struct rq *rq)
973 {
974 }
975 #endif	/* CONFIG_SCHED_HRTICK */
976 
977 /*
978  * try_cmpxchg based fetch_or() macro so it works for different integer types:
979  */
980 #define fetch_or(ptr, mask)						\
981 	({								\
982 		typeof(ptr) _ptr = (ptr);				\
983 		typeof(mask) _mask = (mask);				\
984 		typeof(*_ptr) _val = *_ptr;				\
985 									\
986 		do {							\
987 		} while (!try_cmpxchg(_ptr, &_val, _val | _mask));	\
988 	_val;								\
989 })
990 
991 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
992 /*
993  * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
994  * this avoids any races wrt polling state changes and thereby avoids
995  * spurious IPIs.
996  */
set_nr_and_not_polling(struct task_struct * p)997 static inline bool set_nr_and_not_polling(struct task_struct *p)
998 {
999 	struct thread_info *ti = task_thread_info(p);
1000 	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
1001 }
1002 
1003 /*
1004  * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
1005  *
1006  * If this returns true, then the idle task promises to call
1007  * sched_ttwu_pending() and reschedule soon.
1008  */
set_nr_if_polling(struct task_struct * p)1009 static bool set_nr_if_polling(struct task_struct *p)
1010 {
1011 	struct thread_info *ti = task_thread_info(p);
1012 	typeof(ti->flags) val = READ_ONCE(ti->flags);
1013 
1014 	do {
1015 		if (!(val & _TIF_POLLING_NRFLAG))
1016 			return false;
1017 		if (val & _TIF_NEED_RESCHED)
1018 			return true;
1019 	} while (!try_cmpxchg(&ti->flags, &val, val | _TIF_NEED_RESCHED));
1020 
1021 	return true;
1022 }
1023 
1024 #else
set_nr_and_not_polling(struct task_struct * p)1025 static inline bool set_nr_and_not_polling(struct task_struct *p)
1026 {
1027 	set_tsk_need_resched(p);
1028 	return true;
1029 }
1030 
1031 #ifdef CONFIG_SMP
set_nr_if_polling(struct task_struct * p)1032 static inline bool set_nr_if_polling(struct task_struct *p)
1033 {
1034 	return false;
1035 }
1036 #endif
1037 #endif
1038 
__wake_q_add(struct wake_q_head * head,struct task_struct * task)1039 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
1040 {
1041 	struct wake_q_node *node = &task->wake_q;
1042 
1043 	/*
1044 	 * Atomically grab the task, if ->wake_q is !nil already it means
1045 	 * it's already queued (either by us or someone else) and will get the
1046 	 * wakeup due to that.
1047 	 *
1048 	 * In order to ensure that a pending wakeup will observe our pending
1049 	 * state, even in the failed case, an explicit smp_mb() must be used.
1050 	 */
1051 	smp_mb__before_atomic();
1052 	if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
1053 		return false;
1054 
1055 	/*
1056 	 * The head is context local, there can be no concurrency.
1057 	 */
1058 	*head->lastp = node;
1059 	head->lastp = &node->next;
1060 	head->count++;
1061 	return true;
1062 }
1063 
1064 /**
1065  * wake_q_add() - queue a wakeup for 'later' waking.
1066  * @head: the wake_q_head to add @task to
1067  * @task: the task to queue for 'later' wakeup
1068  *
1069  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
1070  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
1071  * instantly.
1072  *
1073  * This function must be used as-if it were wake_up_process(); IOW the task
1074  * must be ready to be woken at this location.
1075  */
wake_q_add(struct wake_q_head * head,struct task_struct * task)1076 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
1077 {
1078 	if (__wake_q_add(head, task))
1079 		get_task_struct(task);
1080 }
1081 
1082 /**
1083  * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
1084  * @head: the wake_q_head to add @task to
1085  * @task: the task to queue for 'later' wakeup
1086  *
1087  * Queue a task for later wakeup, most likely by the wake_up_q() call in the
1088  * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
1089  * instantly.
1090  *
1091  * This function must be used as-if it were wake_up_process(); IOW the task
1092  * must be ready to be woken at this location.
1093  *
1094  * This function is essentially a task-safe equivalent to wake_q_add(). Callers
1095  * that already hold reference to @task can call the 'safe' version and trust
1096  * wake_q to do the right thing depending whether or not the @task is already
1097  * queued for wakeup.
1098  */
wake_q_add_safe(struct wake_q_head * head,struct task_struct * task)1099 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
1100 {
1101 	if (!__wake_q_add(head, task))
1102 		put_task_struct(task);
1103 }
1104 
wake_up_q(struct wake_q_head * head)1105 void wake_up_q(struct wake_q_head *head)
1106 {
1107 	struct wake_q_node *node = head->first;
1108 
1109 	while (node != WAKE_Q_TAIL) {
1110 		struct task_struct *task;
1111 
1112 		task = container_of(node, struct task_struct, wake_q);
1113 		node = node->next;
1114 		task->wake_q_count = head->count;
1115 		/* pairs with cmpxchg_relaxed() in __wake_q_add() */
1116 		WRITE_ONCE(task->wake_q.next, NULL);
1117 		/* Task can safely be re-inserted now. */
1118 
1119 		/*
1120 		 * wake_up_process() executes a full barrier, which pairs with
1121 		 * the queueing in wake_q_add() so as not to miss wakeups.
1122 		 */
1123 		wake_up_process(task);
1124 		task->wake_q_count = 0;
1125 		put_task_struct(task);
1126 	}
1127 }
1128 
1129 /*
1130  * resched_curr - mark rq's current task 'to be rescheduled now'.
1131  *
1132  * On UP this means the setting of the need_resched flag, on SMP it
1133  * might also involve a cross-CPU call to trigger the scheduler on
1134  * the target CPU.
1135  */
resched_curr(struct rq * rq)1136 void resched_curr(struct rq *rq)
1137 {
1138 	struct task_struct *curr = rq->curr;
1139 	int cpu, need_lazy = 0;
1140 
1141 	lockdep_assert_rq_held(rq);
1142 
1143 	if (test_tsk_need_resched(curr))
1144 		return;
1145 
1146 	trace_android_vh_set_tsk_need_resched_lazy(curr, rq, &need_lazy);
1147 	if (need_lazy)
1148 		return;
1149 
1150 	cpu = cpu_of(rq);
1151 
1152 	if (cpu == smp_processor_id()) {
1153 		set_tsk_need_resched(curr);
1154 		set_preempt_need_resched();
1155 		return;
1156 	}
1157 
1158 	if (set_nr_and_not_polling(curr))
1159 		smp_send_reschedule(cpu);
1160 	else
1161 		trace_sched_wake_idle_without_ipi(cpu);
1162 }
1163 EXPORT_SYMBOL_GPL(resched_curr);
1164 
resched_cpu(int cpu)1165 void resched_cpu(int cpu)
1166 {
1167 	struct rq *rq = cpu_rq(cpu);
1168 	unsigned long flags;
1169 
1170 	raw_spin_rq_lock_irqsave(rq, flags);
1171 	if (cpu_online(cpu) || cpu == smp_processor_id())
1172 		resched_curr(rq);
1173 	raw_spin_rq_unlock_irqrestore(rq, flags);
1174 }
1175 
1176 #ifdef CONFIG_SMP
1177 #ifdef CONFIG_NO_HZ_COMMON
1178 /*
1179  * In the semi idle case, use the nearest busy CPU for migrating timers
1180  * from an idle CPU.  This is good for power-savings.
1181  *
1182  * We don't do similar optimization for completely idle system, as
1183  * selecting an idle CPU will add more delays to the timers than intended
1184  * (as that CPU's timer base may not be up to date wrt jiffies etc).
1185  */
get_nohz_timer_target(void)1186 int get_nohz_timer_target(void)
1187 {
1188 	int i, cpu = smp_processor_id(), default_cpu = -1;
1189 	struct sched_domain *sd;
1190 	const struct cpumask *hk_mask;
1191 	bool done = false;
1192 
1193 	trace_android_rvh_get_nohz_timer_target(&cpu, &done);
1194 	if (done)
1195 		return cpu;
1196 
1197 	if (housekeeping_cpu(cpu, HK_TYPE_TIMER)) {
1198 		if (!idle_cpu(cpu))
1199 			return cpu;
1200 		default_cpu = cpu;
1201 	}
1202 
1203 	hk_mask = housekeeping_cpumask(HK_TYPE_TIMER);
1204 
1205 	guard(rcu)();
1206 
1207 	for_each_domain(cpu, sd) {
1208 		for_each_cpu_and(i, sched_domain_span(sd), hk_mask) {
1209 			if (cpu == i)
1210 				continue;
1211 
1212 			if (!idle_cpu(i))
1213 				return i;
1214 		}
1215 	}
1216 
1217 	if (default_cpu == -1)
1218 		default_cpu = housekeeping_any_cpu(HK_TYPE_TIMER);
1219 
1220 	return default_cpu;
1221 }
1222 
1223 /*
1224  * When add_timer_on() enqueues a timer into the timer wheel of an
1225  * idle CPU then this timer might expire before the next timer event
1226  * which is scheduled to wake up that CPU. In case of a completely
1227  * idle system the next event might even be infinite time into the
1228  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1229  * leaves the inner idle loop so the newly added timer is taken into
1230  * account when the CPU goes back to idle and evaluates the timer
1231  * wheel for the next timer event.
1232  */
wake_up_idle_cpu(int cpu)1233 static void wake_up_idle_cpu(int cpu)
1234 {
1235 	struct rq *rq = cpu_rq(cpu);
1236 
1237 	if (cpu == smp_processor_id())
1238 		return;
1239 
1240 	/*
1241 	 * Set TIF_NEED_RESCHED and send an IPI if in the non-polling
1242 	 * part of the idle loop. This forces an exit from the idle loop
1243 	 * and a round trip to schedule(). Now this could be optimized
1244 	 * because a simple new idle loop iteration is enough to
1245 	 * re-evaluate the next tick. Provided some re-ordering of tick
1246 	 * nohz functions that would need to follow TIF_NR_POLLING
1247 	 * clearing:
1248 	 *
1249 	 * - On most architectures, a simple fetch_or on ti::flags with a
1250 	 *   "0" value would be enough to know if an IPI needs to be sent.
1251 	 *
1252 	 * - x86 needs to perform a last need_resched() check between
1253 	 *   monitor and mwait which doesn't take timers into account.
1254 	 *   There a dedicated TIF_TIMER flag would be required to
1255 	 *   fetch_or here and be checked along with TIF_NEED_RESCHED
1256 	 *   before mwait().
1257 	 *
1258 	 * However, remote timer enqueue is not such a frequent event
1259 	 * and testing of the above solutions didn't appear to report
1260 	 * much benefits.
1261 	 */
1262 	if (set_nr_and_not_polling(rq->idle))
1263 		smp_send_reschedule(cpu);
1264 	else
1265 		trace_sched_wake_idle_without_ipi(cpu);
1266 }
1267 
wake_up_full_nohz_cpu(int cpu)1268 static bool wake_up_full_nohz_cpu(int cpu)
1269 {
1270 	/*
1271 	 * We just need the target to call irq_exit() and re-evaluate
1272 	 * the next tick. The nohz full kick at least implies that.
1273 	 * If needed we can still optimize that later with an
1274 	 * empty IRQ.
1275 	 */
1276 	if (cpu_is_offline(cpu))
1277 		return true;  /* Don't try to wake offline CPUs. */
1278 	if (tick_nohz_full_cpu(cpu)) {
1279 		if (cpu != smp_processor_id() ||
1280 		    tick_nohz_tick_stopped())
1281 			tick_nohz_full_kick_cpu(cpu);
1282 		return true;
1283 	}
1284 
1285 	return false;
1286 }
1287 
1288 /*
1289  * Wake up the specified CPU.  If the CPU is going offline, it is the
1290  * caller's responsibility to deal with the lost wakeup, for example,
1291  * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
1292  */
wake_up_nohz_cpu(int cpu)1293 void wake_up_nohz_cpu(int cpu)
1294 {
1295 	if (!wake_up_full_nohz_cpu(cpu))
1296 		wake_up_idle_cpu(cpu);
1297 }
1298 
nohz_csd_func(void * info)1299 static void nohz_csd_func(void *info)
1300 {
1301 	struct rq *rq = info;
1302 	int cpu = cpu_of(rq);
1303 	unsigned int flags;
1304 
1305 	/*
1306 	 * Release the rq::nohz_csd.
1307 	 */
1308 	flags = atomic_fetch_andnot(NOHZ_KICK_MASK | NOHZ_NEWILB_KICK, nohz_flags(cpu));
1309 	WARN_ON(!(flags & NOHZ_KICK_MASK));
1310 
1311 	rq->idle_balance = idle_cpu(cpu);
1312 	if (rq->idle_balance) {
1313 		rq->nohz_idle_balance = flags;
1314 		__raise_softirq_irqoff(SCHED_SOFTIRQ);
1315 	}
1316 }
1317 
1318 #endif /* CONFIG_NO_HZ_COMMON */
1319 
1320 #ifdef CONFIG_NO_HZ_FULL
__need_bw_check(struct rq * rq,struct task_struct * p)1321 static inline bool __need_bw_check(struct rq *rq, struct task_struct *p)
1322 {
1323 	if (rq->nr_running != 1)
1324 		return false;
1325 
1326 	if (p->sched_class != &fair_sched_class)
1327 		return false;
1328 
1329 	if (!task_on_rq_queued(p))
1330 		return false;
1331 
1332 	return true;
1333 }
1334 
sched_can_stop_tick(struct rq * rq)1335 bool sched_can_stop_tick(struct rq *rq)
1336 {
1337 	int fifo_nr_running;
1338 
1339 	/* Deadline tasks, even if single, need the tick */
1340 	if (rq->dl.dl_nr_running)
1341 		return false;
1342 
1343 	/*
1344 	 * If there are more than one RR tasks, we need the tick to affect the
1345 	 * actual RR behaviour.
1346 	 */
1347 	if (rq->rt.rr_nr_running) {
1348 		if (rq->rt.rr_nr_running == 1)
1349 			return true;
1350 		else
1351 			return false;
1352 	}
1353 
1354 	/*
1355 	 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
1356 	 * forced preemption between FIFO tasks.
1357 	 */
1358 	fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
1359 	if (fifo_nr_running)
1360 		return true;
1361 
1362 	/*
1363 	 * If there are no DL,RR/FIFO tasks, there must only be CFS or SCX tasks
1364 	 * left. For CFS, if there's more than one we need the tick for
1365 	 * involuntary preemption. For SCX, ask.
1366 	 */
1367 	if (scx_enabled() && !scx_can_stop_tick(rq))
1368 		return false;
1369 
1370 	if (rq->cfs.h_nr_running > 1)
1371 		return false;
1372 
1373 	/*
1374 	 * If there is one task and it has CFS runtime bandwidth constraints
1375 	 * and it's on the cpu now we don't want to stop the tick.
1376 	 * This check prevents clearing the bit if a newly enqueued task here is
1377 	 * dequeued by migrating while the constrained task continues to run.
1378 	 * E.g. going from 2->1 without going through pick_next_task().
1379 	 */
1380 	if (__need_bw_check(rq, rq->curr)) {
1381 		if (cfs_task_bw_constrained(rq->curr))
1382 			return false;
1383 	}
1384 
1385 	return true;
1386 }
1387 #endif /* CONFIG_NO_HZ_FULL */
1388 #endif /* CONFIG_SMP */
1389 
1390 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
1391 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
1392 /*
1393  * Iterate task_group tree rooted at *from, calling @down when first entering a
1394  * node and @up when leaving it for the final time.
1395  *
1396  * Caller must hold rcu_lock or sufficient equivalent.
1397  */
walk_tg_tree_from(struct task_group * from,tg_visitor down,tg_visitor up,void * data)1398 int walk_tg_tree_from(struct task_group *from,
1399 			     tg_visitor down, tg_visitor up, void *data)
1400 {
1401 	struct task_group *parent, *child;
1402 	int ret;
1403 
1404 	parent = from;
1405 
1406 down:
1407 	ret = (*down)(parent, data);
1408 	if (ret)
1409 		goto out;
1410 	list_for_each_entry_rcu(child, &parent->children, siblings) {
1411 		parent = child;
1412 		goto down;
1413 
1414 up:
1415 		continue;
1416 	}
1417 	ret = (*up)(parent, data);
1418 	if (ret || parent == from)
1419 		goto out;
1420 
1421 	child = parent;
1422 	parent = parent->parent;
1423 	if (parent)
1424 		goto up;
1425 out:
1426 	return ret;
1427 }
1428 
tg_nop(struct task_group * tg,void * data)1429 int tg_nop(struct task_group *tg, void *data)
1430 {
1431 	return 0;
1432 }
1433 #endif
1434 
set_load_weight(struct task_struct * p,bool update_load)1435 void set_load_weight(struct task_struct *p, bool update_load)
1436 {
1437 	int prio = p->static_prio - MAX_RT_PRIO;
1438 	struct load_weight lw;
1439 
1440 	if (task_has_idle_policy(p)) {
1441 		lw.weight = scale_load(WEIGHT_IDLEPRIO);
1442 		lw.inv_weight = WMULT_IDLEPRIO;
1443 	} else {
1444 		lw.weight = scale_load(sched_prio_to_weight[prio]);
1445 		lw.inv_weight = sched_prio_to_wmult[prio];
1446 	}
1447 
1448 	/*
1449 	 * SCHED_OTHER tasks have to update their load when changing their
1450 	 * weight
1451 	 */
1452 	if (update_load && p->sched_class->reweight_task)
1453 		p->sched_class->reweight_task(task_rq(p), p, &lw);
1454 	else
1455 		p->se.load = lw;
1456 }
1457 
1458 #ifdef CONFIG_UCLAMP_TASK
1459 /*
1460  * Serializes updates of utilization clamp values
1461  *
1462  * The (slow-path) user-space triggers utilization clamp value updates which
1463  * can require updates on (fast-path) scheduler's data structures used to
1464  * support enqueue/dequeue operations.
1465  * While the per-CPU rq lock protects fast-path update operations, user-space
1466  * requests are serialized using a mutex to reduce the risk of conflicting
1467  * updates or API abuses.
1468  */
1469 static DEFINE_MUTEX(uclamp_mutex);
1470 
1471 /* Max allowed minimum utilization */
1472 static unsigned int __maybe_unused sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
1473 
1474 /* Max allowed maximum utilization */
1475 static unsigned int __maybe_unused sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
1476 
1477 /*
1478  * By default RT tasks run at the maximum performance point/capacity of the
1479  * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to
1480  * SCHED_CAPACITY_SCALE.
1481  *
1482  * This knob allows admins to change the default behavior when uclamp is being
1483  * used. In battery powered devices, particularly, running at the maximum
1484  * capacity and frequency will increase energy consumption and shorten the
1485  * battery life.
1486  *
1487  * This knob only affects RT tasks that their uclamp_se->user_defined == false.
1488  *
1489  * This knob will not override the system default sched_util_clamp_min defined
1490  * above.
1491  */
1492 unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE;
1493 
1494 /* All clamps are required to be less or equal than these values */
1495 static struct uclamp_se uclamp_default[UCLAMP_CNT];
1496 
1497 /*
1498  * This static key is used to reduce the uclamp overhead in the fast path. It
1499  * primarily disables the call to uclamp_rq_{inc, dec}() in
1500  * enqueue/dequeue_task().
1501  *
1502  * This allows users to continue to enable uclamp in their kernel config with
1503  * minimum uclamp overhead in the fast path.
1504  *
1505  * As soon as userspace modifies any of the uclamp knobs, the static key is
1506  * enabled, since we have an actual users that make use of uclamp
1507  * functionality.
1508  *
1509  * The knobs that would enable this static key are:
1510  *
1511  *   * A task modifying its uclamp value with sched_setattr().
1512  *   * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs.
1513  *   * An admin modifying the cgroup cpu.uclamp.{min, max}
1514  */
1515 DEFINE_STATIC_KEY_FALSE(sched_uclamp_used);
1516 EXPORT_SYMBOL_GPL(sched_uclamp_used);
1517 
1518 static inline unsigned int
uclamp_idle_value(struct rq * rq,enum uclamp_id clamp_id,unsigned int clamp_value)1519 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
1520 		  unsigned int clamp_value)
1521 {
1522 	/*
1523 	 * Avoid blocked utilization pushing up the frequency when we go
1524 	 * idle (which drops the max-clamp) by retaining the last known
1525 	 * max-clamp.
1526 	 */
1527 	if (clamp_id == UCLAMP_MAX) {
1528 		rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
1529 		return clamp_value;
1530 	}
1531 
1532 	return uclamp_none(UCLAMP_MIN);
1533 }
1534 
uclamp_idle_reset(struct rq * rq,enum uclamp_id clamp_id,unsigned int clamp_value)1535 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
1536 				     unsigned int clamp_value)
1537 {
1538 	/* Reset max-clamp retention only on idle exit */
1539 	if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1540 		return;
1541 
1542 	uclamp_rq_set(rq, clamp_id, clamp_value);
1543 }
1544 
1545 static inline
uclamp_rq_max_value(struct rq * rq,enum uclamp_id clamp_id,unsigned int clamp_value)1546 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
1547 				   unsigned int clamp_value)
1548 {
1549 	struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
1550 	int bucket_id = UCLAMP_BUCKETS - 1;
1551 
1552 	/*
1553 	 * Since both min and max clamps are max aggregated, find the
1554 	 * top most bucket with tasks in.
1555 	 */
1556 	for ( ; bucket_id >= 0; bucket_id--) {
1557 		if (!bucket[bucket_id].tasks)
1558 			continue;
1559 		return bucket[bucket_id].value;
1560 	}
1561 
1562 	/* No tasks -- default clamp values */
1563 	return uclamp_idle_value(rq, clamp_id, clamp_value);
1564 }
1565 
__uclamp_update_util_min_rt_default(struct task_struct * p)1566 static void __uclamp_update_util_min_rt_default(struct task_struct *p)
1567 {
1568 	unsigned int default_util_min;
1569 	struct uclamp_se *uc_se;
1570 
1571 	lockdep_assert_held(&p->pi_lock);
1572 
1573 	uc_se = &p->uclamp_req[UCLAMP_MIN];
1574 
1575 	/* Only sync if user didn't override the default */
1576 	if (uc_se->user_defined)
1577 		return;
1578 
1579 	default_util_min = sysctl_sched_uclamp_util_min_rt_default;
1580 	uclamp_se_set(uc_se, default_util_min, false);
1581 }
1582 
uclamp_update_util_min_rt_default(struct task_struct * p)1583 static void uclamp_update_util_min_rt_default(struct task_struct *p)
1584 {
1585 	if (!rt_task(p))
1586 		return;
1587 
1588 	/* Protect updates to p->uclamp_* */
1589 	guard(task_rq_lock)(p);
1590 	__uclamp_update_util_min_rt_default(p);
1591 }
1592 
1593 static inline struct uclamp_se
uclamp_tg_restrict(struct task_struct * p,enum uclamp_id clamp_id)1594 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
1595 {
1596 	/* Copy by value as we could modify it */
1597 	struct uclamp_se uc_req = p->uclamp_req[clamp_id];
1598 #ifdef CONFIG_UCLAMP_TASK_GROUP
1599 	unsigned int tg_min, tg_max, value;
1600 
1601 	/*
1602 	 * Tasks in autogroups or root task group will be
1603 	 * restricted by system defaults.
1604 	 */
1605 	if (task_group_is_autogroup(task_group(p)))
1606 		return uc_req;
1607 	if (task_group(p) == &root_task_group)
1608 		return uc_req;
1609 
1610 	tg_min = task_group(p)->uclamp[UCLAMP_MIN].value;
1611 	tg_max = task_group(p)->uclamp[UCLAMP_MAX].value;
1612 	value = uc_req.value;
1613 	value = clamp(value, tg_min, tg_max);
1614 	uclamp_se_set(&uc_req, value, false);
1615 #endif
1616 
1617 	return uc_req;
1618 }
1619 
1620 /*
1621  * The effective clamp bucket index of a task depends on, by increasing
1622  * priority:
1623  * - the task specific clamp value, when explicitly requested from userspace
1624  * - the task group effective clamp value, for tasks not either in the root
1625  *   group or in an autogroup
1626  * - the system default clamp value, defined by the sysadmin
1627  */
1628 static inline struct uclamp_se
uclamp_eff_get(struct task_struct * p,enum uclamp_id clamp_id)1629 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
1630 {
1631 	struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
1632 	struct uclamp_se uc_max = uclamp_default[clamp_id];
1633 	struct uclamp_se uc_eff;
1634 	int ret = 0;
1635 
1636 	trace_android_rvh_uclamp_eff_get(p, clamp_id, &uc_max, &uc_eff, &ret);
1637 	if (ret)
1638 		return uc_eff;
1639 
1640 	/* System default restrictions always apply */
1641 	if (unlikely(uc_req.value > uc_max.value))
1642 		return uc_max;
1643 
1644 	return uc_req;
1645 }
1646 
uclamp_eff_value(struct task_struct * p,enum uclamp_id clamp_id)1647 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
1648 {
1649 	struct uclamp_se uc_eff;
1650 
1651 	/* Task currently refcounted: use back-annotated (effective) value */
1652 	if (p->uclamp[clamp_id].active)
1653 		return (unsigned long)p->uclamp[clamp_id].value;
1654 
1655 	uc_eff = uclamp_eff_get(p, clamp_id);
1656 
1657 	return (unsigned long)uc_eff.value;
1658 }
1659 EXPORT_SYMBOL_GPL(uclamp_eff_value);
1660 
1661 /*
1662  * When a task is enqueued on a rq, the clamp bucket currently defined by the
1663  * task's uclamp::bucket_id is refcounted on that rq. This also immediately
1664  * updates the rq's clamp value if required.
1665  *
1666  * Tasks can have a task-specific value requested from user-space, track
1667  * within each bucket the maximum value for tasks refcounted in it.
1668  * This "local max aggregation" allows to track the exact "requested" value
1669  * for each bucket when all its RUNNABLE tasks require the same clamp.
1670  */
uclamp_rq_inc_id(struct rq * rq,struct task_struct * p,enum uclamp_id clamp_id)1671 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
1672 				    enum uclamp_id clamp_id)
1673 {
1674 	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1675 	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1676 	struct uclamp_bucket *bucket;
1677 
1678 	lockdep_assert_rq_held(rq);
1679 
1680 	/* Update task effective clamp */
1681 	p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
1682 
1683 	bucket = &uc_rq->bucket[uc_se->bucket_id];
1684 	bucket->tasks++;
1685 	uc_se->active = true;
1686 
1687 	uclamp_idle_reset(rq, clamp_id, uc_se->value);
1688 
1689 	/*
1690 	 * Local max aggregation: rq buckets always track the max
1691 	 * "requested" clamp value of its RUNNABLE tasks.
1692 	 */
1693 	if (bucket->tasks == 1 || uc_se->value > bucket->value)
1694 		bucket->value = uc_se->value;
1695 
1696 	if (uc_se->value > uclamp_rq_get(rq, clamp_id))
1697 		uclamp_rq_set(rq, clamp_id, uc_se->value);
1698 }
1699 
1700 /*
1701  * When a task is dequeued from a rq, the clamp bucket refcounted by the task
1702  * is released. If this is the last task reference counting the rq's max
1703  * active clamp value, then the rq's clamp value is updated.
1704  *
1705  * Both refcounted tasks and rq's cached clamp values are expected to be
1706  * always valid. If it's detected they are not, as defensive programming,
1707  * enforce the expected state and warn.
1708  */
uclamp_rq_dec_id(struct rq * rq,struct task_struct * p,enum uclamp_id clamp_id)1709 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
1710 				    enum uclamp_id clamp_id)
1711 {
1712 	struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1713 	struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1714 	struct uclamp_bucket *bucket;
1715 	unsigned int bkt_clamp;
1716 	unsigned int rq_clamp;
1717 
1718 	lockdep_assert_rq_held(rq);
1719 
1720 	/*
1721 	 * If sched_uclamp_used was enabled after task @p was enqueued,
1722 	 * we could end up with unbalanced call to uclamp_rq_dec_id().
1723 	 *
1724 	 * In this case the uc_se->active flag should be false since no uclamp
1725 	 * accounting was performed at enqueue time and we can just return
1726 	 * here.
1727 	 *
1728 	 * Need to be careful of the following enqueue/dequeue ordering
1729 	 * problem too
1730 	 *
1731 	 *	enqueue(taskA)
1732 	 *	// sched_uclamp_used gets enabled
1733 	 *	enqueue(taskB)
1734 	 *	dequeue(taskA)
1735 	 *	// Must not decrement bucket->tasks here
1736 	 *	dequeue(taskB)
1737 	 *
1738 	 * where we could end up with stale data in uc_se and
1739 	 * bucket[uc_se->bucket_id].
1740 	 *
1741 	 * The following check here eliminates the possibility of such race.
1742 	 */
1743 	if (unlikely(!uc_se->active))
1744 		return;
1745 
1746 	bucket = &uc_rq->bucket[uc_se->bucket_id];
1747 
1748 	SCHED_WARN_ON(!bucket->tasks);
1749 	if (likely(bucket->tasks))
1750 		bucket->tasks--;
1751 
1752 	uc_se->active = false;
1753 
1754 	/*
1755 	 * Keep "local max aggregation" simple and accept to (possibly)
1756 	 * overboost some RUNNABLE tasks in the same bucket.
1757 	 * The rq clamp bucket value is reset to its base value whenever
1758 	 * there are no more RUNNABLE tasks refcounting it.
1759 	 */
1760 	if (likely(bucket->tasks))
1761 		return;
1762 
1763 	rq_clamp = uclamp_rq_get(rq, clamp_id);
1764 	/*
1765 	 * Defensive programming: this should never happen. If it happens,
1766 	 * e.g. due to future modification, warn and fix up the expected value.
1767 	 */
1768 	SCHED_WARN_ON(bucket->value > rq_clamp);
1769 	if (bucket->value >= rq_clamp) {
1770 		bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
1771 		uclamp_rq_set(rq, clamp_id, bkt_clamp);
1772 	}
1773 }
1774 
uclamp_rq_inc(struct rq * rq,struct task_struct * p,int flags)1775 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p, int flags)
1776 {
1777 	enum uclamp_id clamp_id;
1778 
1779 	/*
1780 	 * Avoid any overhead until uclamp is actually used by the userspace.
1781 	 *
1782 	 * The condition is constructed such that a NOP is generated when
1783 	 * sched_uclamp_used is disabled.
1784 	 */
1785 	if (!uclamp_is_used())
1786 		return;
1787 
1788 	if (unlikely(!p->sched_class->uclamp_enabled))
1789 		return;
1790 
1791 	/* Only inc the delayed task which being woken up. */
1792 	if (p->se.sched_delayed && !(flags & ENQUEUE_DELAYED))
1793 		return;
1794 
1795 	for_each_clamp_id(clamp_id)
1796 		uclamp_rq_inc_id(rq, p, clamp_id);
1797 
1798 	/* Reset clamp idle holding when there is one RUNNABLE task */
1799 	if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
1800 		rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1801 }
1802 
uclamp_rq_dec(struct rq * rq,struct task_struct * p)1803 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
1804 {
1805 	enum uclamp_id clamp_id;
1806 
1807 	/*
1808 	 * Avoid any overhead until uclamp is actually used by the userspace.
1809 	 *
1810 	 * The condition is constructed such that a NOP is generated when
1811 	 * sched_uclamp_used is disabled.
1812 	 */
1813 	if (!uclamp_is_used())
1814 		return;
1815 
1816 	if (unlikely(!p->sched_class->uclamp_enabled))
1817 		return;
1818 
1819 	if (p->se.sched_delayed)
1820 		return;
1821 
1822 	for_each_clamp_id(clamp_id)
1823 		uclamp_rq_dec_id(rq, p, clamp_id);
1824 }
1825 
uclamp_rq_reinc_id(struct rq * rq,struct task_struct * p,enum uclamp_id clamp_id)1826 static inline void uclamp_rq_reinc_id(struct rq *rq, struct task_struct *p,
1827 				      enum uclamp_id clamp_id)
1828 {
1829 	if (!p->uclamp[clamp_id].active)
1830 		return;
1831 
1832 	uclamp_rq_dec_id(rq, p, clamp_id);
1833 	uclamp_rq_inc_id(rq, p, clamp_id);
1834 
1835 	/*
1836 	 * Make sure to clear the idle flag if we've transiently reached 0
1837 	 * active tasks on rq.
1838 	 */
1839 	if (clamp_id == UCLAMP_MAX && (rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1840 		rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1841 }
1842 
1843 static inline void
uclamp_update_active(struct task_struct * p)1844 uclamp_update_active(struct task_struct *p)
1845 {
1846 	enum uclamp_id clamp_id;
1847 	struct rq_flags rf;
1848 	struct rq *rq;
1849 
1850 	/*
1851 	 * Lock the task and the rq where the task is (or was) queued.
1852 	 *
1853 	 * We might lock the (previous) rq of a !RUNNABLE task, but that's the
1854 	 * price to pay to safely serialize util_{min,max} updates with
1855 	 * enqueues, dequeues and migration operations.
1856 	 * This is the same locking schema used by __set_cpus_allowed_ptr().
1857 	 */
1858 	rq = task_rq_lock(p, &rf);
1859 
1860 	/*
1861 	 * Setting the clamp bucket is serialized by task_rq_lock().
1862 	 * If the task is not yet RUNNABLE and its task_struct is not
1863 	 * affecting a valid clamp bucket, the next time it's enqueued,
1864 	 * it will already see the updated clamp bucket value.
1865 	 */
1866 	for_each_clamp_id(clamp_id)
1867 		uclamp_rq_reinc_id(rq, p, clamp_id);
1868 
1869 	task_rq_unlock(rq, p, &rf);
1870 }
1871 
1872 #ifdef CONFIG_UCLAMP_TASK_GROUP
1873 static inline void
uclamp_update_active_tasks(struct cgroup_subsys_state * css)1874 uclamp_update_active_tasks(struct cgroup_subsys_state *css)
1875 {
1876 	struct css_task_iter it;
1877 	struct task_struct *p;
1878 
1879 	css_task_iter_start(css, 0, &it);
1880 	while ((p = css_task_iter_next(&it)))
1881 		uclamp_update_active(p);
1882 	css_task_iter_end(&it);
1883 }
1884 
1885 static void cpu_util_update_eff(struct cgroup_subsys_state *css);
1886 #endif
1887 
1888 #ifdef CONFIG_SYSCTL
1889 #ifdef CONFIG_UCLAMP_TASK_GROUP
uclamp_update_root_tg(void)1890 static void uclamp_update_root_tg(void)
1891 {
1892 	struct task_group *tg = &root_task_group;
1893 
1894 	uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
1895 		      sysctl_sched_uclamp_util_min, false);
1896 	uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
1897 		      sysctl_sched_uclamp_util_max, false);
1898 
1899 	guard(rcu)();
1900 	cpu_util_update_eff(&root_task_group.css);
1901 }
1902 #else
uclamp_update_root_tg(void)1903 static void uclamp_update_root_tg(void) { }
1904 #endif
1905 
uclamp_sync_util_min_rt_default(void)1906 static void uclamp_sync_util_min_rt_default(void)
1907 {
1908 	struct task_struct *g, *p;
1909 
1910 	/*
1911 	 * copy_process()			sysctl_uclamp
1912 	 *					  uclamp_min_rt = X;
1913 	 *   write_lock(&tasklist_lock)		  read_lock(&tasklist_lock)
1914 	 *   // link thread			  smp_mb__after_spinlock()
1915 	 *   write_unlock(&tasklist_lock)	  read_unlock(&tasklist_lock);
1916 	 *   sched_post_fork()			  for_each_process_thread()
1917 	 *     __uclamp_sync_rt()		    __uclamp_sync_rt()
1918 	 *
1919 	 * Ensures that either sched_post_fork() will observe the new
1920 	 * uclamp_min_rt or for_each_process_thread() will observe the new
1921 	 * task.
1922 	 */
1923 	read_lock(&tasklist_lock);
1924 	smp_mb__after_spinlock();
1925 	read_unlock(&tasklist_lock);
1926 
1927 	guard(rcu)();
1928 	for_each_process_thread(g, p)
1929 		uclamp_update_util_min_rt_default(p);
1930 }
1931 
sysctl_sched_uclamp_handler(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)1932 static int sysctl_sched_uclamp_handler(const struct ctl_table *table, int write,
1933 				void *buffer, size_t *lenp, loff_t *ppos)
1934 {
1935 	bool update_root_tg = false;
1936 	int old_min, old_max, old_min_rt;
1937 	int result;
1938 
1939 	guard(mutex)(&uclamp_mutex);
1940 
1941 	old_min = sysctl_sched_uclamp_util_min;
1942 	old_max = sysctl_sched_uclamp_util_max;
1943 	old_min_rt = sysctl_sched_uclamp_util_min_rt_default;
1944 
1945 	result = proc_dointvec(table, write, buffer, lenp, ppos);
1946 	if (result)
1947 		goto undo;
1948 	if (!write)
1949 		return 0;
1950 
1951 	if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
1952 	    sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE	||
1953 	    sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) {
1954 
1955 		result = -EINVAL;
1956 		goto undo;
1957 	}
1958 
1959 	if (old_min != sysctl_sched_uclamp_util_min) {
1960 		uclamp_se_set(&uclamp_default[UCLAMP_MIN],
1961 			      sysctl_sched_uclamp_util_min, false);
1962 		update_root_tg = true;
1963 	}
1964 	if (old_max != sysctl_sched_uclamp_util_max) {
1965 		uclamp_se_set(&uclamp_default[UCLAMP_MAX],
1966 			      sysctl_sched_uclamp_util_max, false);
1967 		update_root_tg = true;
1968 	}
1969 
1970 	if (update_root_tg) {
1971 		static_branch_enable(&sched_uclamp_used);
1972 		uclamp_update_root_tg();
1973 	}
1974 
1975 	if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) {
1976 		static_branch_enable(&sched_uclamp_used);
1977 		uclamp_sync_util_min_rt_default();
1978 	}
1979 
1980 	/*
1981 	 * We update all RUNNABLE tasks only when task groups are in use.
1982 	 * Otherwise, keep it simple and do just a lazy update at each next
1983 	 * task enqueue time.
1984 	 */
1985 	return 0;
1986 
1987 undo:
1988 	sysctl_sched_uclamp_util_min = old_min;
1989 	sysctl_sched_uclamp_util_max = old_max;
1990 	sysctl_sched_uclamp_util_min_rt_default = old_min_rt;
1991 	return result;
1992 }
1993 #endif
1994 
uclamp_fork(struct task_struct * p)1995 static void uclamp_fork(struct task_struct *p)
1996 {
1997 	enum uclamp_id clamp_id;
1998 
1999 	/*
2000 	 * We don't need to hold task_rq_lock() when updating p->uclamp_* here
2001 	 * as the task is still at its early fork stages.
2002 	 */
2003 	for_each_clamp_id(clamp_id)
2004 		p->uclamp[clamp_id].active = false;
2005 
2006 	if (likely(!p->sched_reset_on_fork))
2007 		return;
2008 
2009 	for_each_clamp_id(clamp_id) {
2010 		uclamp_se_set(&p->uclamp_req[clamp_id],
2011 			      uclamp_none(clamp_id), false);
2012 	}
2013 }
2014 
uclamp_post_fork(struct task_struct * p)2015 static void uclamp_post_fork(struct task_struct *p)
2016 {
2017 	uclamp_update_util_min_rt_default(p);
2018 }
2019 
init_uclamp_rq(struct rq * rq)2020 static void __init init_uclamp_rq(struct rq *rq)
2021 {
2022 	enum uclamp_id clamp_id;
2023 	struct uclamp_rq *uc_rq = rq->uclamp;
2024 
2025 	for_each_clamp_id(clamp_id) {
2026 		uc_rq[clamp_id] = (struct uclamp_rq) {
2027 			.value = uclamp_none(clamp_id)
2028 		};
2029 	}
2030 
2031 	rq->uclamp_flags = UCLAMP_FLAG_IDLE;
2032 }
2033 
init_uclamp(void)2034 static void __init init_uclamp(void)
2035 {
2036 	struct uclamp_se uc_max = {};
2037 	enum uclamp_id clamp_id;
2038 	int cpu;
2039 
2040 	for_each_possible_cpu(cpu)
2041 		init_uclamp_rq(cpu_rq(cpu));
2042 
2043 	for_each_clamp_id(clamp_id) {
2044 		uclamp_se_set(&init_task.uclamp_req[clamp_id],
2045 			      uclamp_none(clamp_id), false);
2046 	}
2047 
2048 	/* System defaults allow max clamp values for both indexes */
2049 	uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
2050 	for_each_clamp_id(clamp_id) {
2051 		uclamp_default[clamp_id] = uc_max;
2052 #ifdef CONFIG_UCLAMP_TASK_GROUP
2053 		root_task_group.uclamp_req[clamp_id] = uc_max;
2054 		root_task_group.uclamp[clamp_id] = uc_max;
2055 #endif
2056 	}
2057 }
2058 
2059 #else /* !CONFIG_UCLAMP_TASK */
uclamp_rq_inc(struct rq * rq,struct task_struct * p,int flags)2060 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p, int flags) { }
uclamp_rq_dec(struct rq * rq,struct task_struct * p)2061 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
uclamp_fork(struct task_struct * p)2062 static inline void uclamp_fork(struct task_struct *p) { }
uclamp_post_fork(struct task_struct * p)2063 static inline void uclamp_post_fork(struct task_struct *p) { }
init_uclamp(void)2064 static inline void init_uclamp(void) { }
2065 #endif /* CONFIG_UCLAMP_TASK */
2066 
sched_task_on_rq(struct task_struct * p)2067 bool sched_task_on_rq(struct task_struct *p)
2068 {
2069 	return task_on_rq_queued(p);
2070 }
2071 
get_wchan(struct task_struct * p)2072 unsigned long get_wchan(struct task_struct *p)
2073 {
2074 	unsigned long ip = 0;
2075 	unsigned int state;
2076 
2077 	if (!p || p == current)
2078 		return 0;
2079 
2080 	/* Only get wchan if task is blocked and we can keep it that way. */
2081 	raw_spin_lock_irq(&p->pi_lock);
2082 	state = READ_ONCE(p->__state);
2083 	smp_rmb(); /* see try_to_wake_up() */
2084 	if (state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq)
2085 		ip = __get_wchan(p);
2086 	raw_spin_unlock_irq(&p->pi_lock);
2087 
2088 	return ip;
2089 }
2090 EXPORT_SYMBOL_GPL(get_wchan);
2091 
enqueue_task(struct rq * rq,struct task_struct * p,int flags)2092 void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2093 {
2094 	if (!(flags & ENQUEUE_NOCLOCK))
2095 		update_rq_clock(rq);
2096 
2097 	/*
2098 	 * Can be before ->enqueue_task() because uclamp considers the
2099 	 * ENQUEUE_DELAYED task before its ->sched_delayed gets cleared
2100 	 * in ->enqueue_task().
2101 	 */
2102 	uclamp_rq_inc(rq, p, flags);
2103 	trace_android_rvh_enqueue_task(rq, p, flags);
2104 	p->sched_class->enqueue_task(rq, p, flags);
2105 	trace_android_rvh_after_enqueue_task(rq, p, flags);
2106 
2107 	psi_enqueue(p, flags);
2108 
2109 	if (!(flags & ENQUEUE_RESTORE))
2110 		sched_info_enqueue(rq, p);
2111 
2112 	if (sched_core_enabled(rq))
2113 		sched_core_enqueue(rq, p);
2114 }
2115 
2116 /*
2117  * Must only return false when DEQUEUE_SLEEP.
2118  */
dequeue_task(struct rq * rq,struct task_struct * p,int flags)2119 inline bool dequeue_task(struct rq *rq, struct task_struct *p, int flags)
2120 {
2121 	bool dequeue_task_result;
2122 	if (sched_core_enabled(rq))
2123 		sched_core_dequeue(rq, p, flags);
2124 
2125 	if (!(flags & DEQUEUE_NOCLOCK))
2126 		update_rq_clock(rq);
2127 
2128 	if (!(flags & DEQUEUE_SAVE))
2129 		sched_info_dequeue(rq, p);
2130 
2131 	psi_dequeue(p, flags);
2132 
2133 	/*
2134 	 * Must be before ->dequeue_task() because ->dequeue_task() can 'fail'
2135 	 * and mark the task ->sched_delayed.
2136 	 */
2137 	uclamp_rq_dec(rq, p);
2138 	trace_android_rvh_dequeue_task(rq, p, flags);
2139 	dequeue_task_result = p->sched_class->dequeue_task(rq, p, flags);
2140 	trace_android_rvh_after_dequeue_task(rq, p, flags, &dequeue_task_result);
2141 	return dequeue_task_result;
2142 }
2143 
__activate_task(struct rq * rq,struct task_struct * p,int flags)2144 static inline void __activate_task(struct rq *rq, struct task_struct *p, int flags)
2145 {
2146 	if (task_on_rq_migrating(p))
2147 		flags |= ENQUEUE_MIGRATED;
2148 	if (flags & ENQUEUE_MIGRATED)
2149 		sched_mm_cid_migrate_to(rq, p);
2150 
2151 	enqueue_task(rq, p, flags);
2152 
2153 	WRITE_ONCE(p->on_rq, TASK_ON_RQ_QUEUED);
2154 	ASSERT_EXCLUSIVE_WRITER(p->on_rq);
2155 }
2156 EXPORT_SYMBOL_GPL(activate_task);
2157 
2158 #ifdef CONFIG_SCHED_PROXY_EXEC
2159 static inline
__proxy_remove_from_sleeping_owner(struct task_struct * owner,struct task_struct * p)2160 void __proxy_remove_from_sleeping_owner(struct task_struct *owner, struct task_struct *p)
2161 {
2162 	lockdep_assert_held(&owner->blocked_lock);
2163 
2164 	if (p->sleeping_owner == owner) {
2165 		list_del_init(&p->blocked_node);
2166 		WRITE_ONCE(p->sleeping_owner, NULL);
2167 		put_task_struct(owner); // matches get in proxy_enqueue_on_owner
2168 	}
2169 }
2170 
proxy_remove_from_sleeping_owner(struct task_struct * p)2171 static inline void proxy_remove_from_sleeping_owner(struct task_struct *p)
2172 {
2173 	struct task_struct *owner = READ_ONCE(p->sleeping_owner);
2174 
2175 	if (owner) {
2176 		raw_spin_lock(&owner->blocked_lock);
2177 		__proxy_remove_from_sleeping_owner(owner, p);
2178 		raw_spin_unlock(&owner->blocked_lock);
2179 	}
2180 }
2181 
activate_task(struct rq * rq,struct task_struct * p,int flags)2182 void activate_task(struct rq *rq, struct task_struct *p, int flags)
2183 {
2184 	if (!sched_proxy_exec()) {
2185 		__activate_task(rq, p, flags);
2186 		return;
2187 	}
2188 
2189 	lockdep_assert_rq_held(rq);
2190 	proxy_remove_from_sleeping_owner(p);
2191 	/*
2192 	 * By calling __activate_task() with blocked_lock held, we
2193 	 * order against the find_proxy_task() blocked_task case
2194 	 * such that no more blocked tasks will be enqueued on p
2195 	 * once we release p->blocked_lock.
2196 	 */
2197 	raw_spin_lock(&p->blocked_lock);
2198 	WARN_ON(task_cpu(p) != cpu_of(rq));
2199 	__activate_task(rq, p, flags);
2200 	raw_spin_unlock(&p->blocked_lock);
2201 }
2202 #else
proxy_remove_from_sleeping_owner(struct task_struct * p)2203 static inline void proxy_remove_from_sleeping_owner(struct task_struct *p)
2204 {
2205 }
2206 
activate_task(struct rq * rq,struct task_struct * p,int flags)2207 void activate_task(struct rq *rq, struct task_struct *p, int flags)
2208 {
2209 	__activate_task(rq, p, flags);
2210 }
2211 #endif
2212 
deactivate_task(struct rq * rq,struct task_struct * p,int flags)2213 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
2214 {
2215 	SCHED_WARN_ON(flags & DEQUEUE_SLEEP);
2216 
2217 	WRITE_ONCE(p->on_rq, TASK_ON_RQ_MIGRATING);
2218 	ASSERT_EXCLUSIVE_WRITER(p->on_rq);
2219 
2220 	/*
2221 	 * Code explicitly relies on TASK_ON_RQ_MIGRATING begin set *before*
2222 	 * dequeue_task() and cleared *after* enqueue_task().
2223 	 */
2224 
2225 	dequeue_task(rq, p, flags);
2226 }
2227 EXPORT_SYMBOL_GPL(deactivate_task);
2228 
block_task(struct rq * rq,struct task_struct * p,int flags)2229 static void block_task(struct rq *rq, struct task_struct *p, int flags)
2230 {
2231 	if (dequeue_task(rq, p, DEQUEUE_SLEEP | flags))
2232 		__block_task(rq, p);
2233 }
2234 
2235 /**
2236  * task_curr - is this task currently executing on a CPU?
2237  * @p: the task in question.
2238  *
2239  * Return: 1 if the task is currently executing. 0 otherwise.
2240  */
task_curr(const struct task_struct * p)2241 inline int task_curr(const struct task_struct *p)
2242 {
2243 	return cpu_curr(task_cpu(p)) == p;
2244 }
2245 
2246 /*
2247  * ->switching_to() is called with the pi_lock and rq_lock held and must not
2248  * mess with locking.
2249  */
check_class_changing(struct rq * rq,struct task_struct * p,const struct sched_class * prev_class)2250 void check_class_changing(struct rq *rq, struct task_struct *p,
2251 			  const struct sched_class *prev_class)
2252 {
2253 	if (prev_class != p->sched_class && p->sched_class->switching_to)
2254 		p->sched_class->switching_to(rq, p);
2255 }
2256 
2257 /*
2258  * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
2259  * use the balance_callback list if you want balancing.
2260  *
2261  * this means any call to check_class_changed() must be followed by a call to
2262  * balance_callback().
2263  */
check_class_changed(struct rq * rq,struct task_struct * p,const struct sched_class * prev_class,int oldprio)2264 void check_class_changed(struct rq *rq, struct task_struct *p,
2265 			 const struct sched_class *prev_class,
2266 			 int oldprio)
2267 {
2268 	if (prev_class != p->sched_class) {
2269 		if (prev_class->switched_from)
2270 			prev_class->switched_from(rq, p);
2271 
2272 		p->sched_class->switched_to(rq, p);
2273 	} else if (oldprio != p->prio || dl_task(p))
2274 		p->sched_class->prio_changed(rq, p, oldprio);
2275 }
2276 
wakeup_preempt(struct rq * rq,struct task_struct * p,int flags)2277 void wakeup_preempt(struct rq *rq, struct task_struct *p, int flags)
2278 {
2279 	struct task_struct *donor = rq->donor;
2280 
2281 	if (p->sched_class == donor->sched_class)
2282 		donor->sched_class->wakeup_preempt(rq, p, flags);
2283 	else if (sched_class_above(p->sched_class, donor->sched_class))
2284 		resched_curr(rq);
2285 
2286 	/*
2287 	 * A queue event has occurred, and we're going to schedule.  In
2288 	 * this case, we can save a useless back to back clock update.
2289 	 */
2290 	if (task_on_rq_queued(donor) && test_tsk_need_resched(rq->curr))
2291 		rq_clock_skip_update(rq);
2292 }
2293 EXPORT_SYMBOL_GPL(wakeup_preempt);
2294 
2295 static __always_inline
__task_state_match(struct task_struct * p,unsigned int state)2296 int __task_state_match(struct task_struct *p, unsigned int state)
2297 {
2298 	if (READ_ONCE(p->__state) & state)
2299 		return 1;
2300 
2301 	if (READ_ONCE(p->saved_state) & state)
2302 		return -1;
2303 
2304 	return 0;
2305 }
2306 
2307 static __always_inline
task_state_match(struct task_struct * p,unsigned int state)2308 int task_state_match(struct task_struct *p, unsigned int state)
2309 {
2310 	/*
2311 	 * Serialize against current_save_and_set_rtlock_wait_state(),
2312 	 * current_restore_rtlock_saved_state(), and __refrigerator().
2313 	 */
2314 	guard(raw_spinlock_irq)(&p->pi_lock);
2315 	return __task_state_match(p, state);
2316 }
2317 
2318 /*
2319  * wait_task_inactive - wait for a thread to unschedule.
2320  *
2321  * Wait for the thread to block in any of the states set in @match_state.
2322  * If it changes, i.e. @p might have woken up, then return zero.  When we
2323  * succeed in waiting for @p to be off its CPU, we return a positive number
2324  * (its total switch count).  If a second call a short while later returns the
2325  * same number, the caller can be sure that @p has remained unscheduled the
2326  * whole time.
2327  *
2328  * The caller must ensure that the task *will* unschedule sometime soon,
2329  * else this function might spin for a *long* time. This function can't
2330  * be called with interrupts off, or it may introduce deadlock with
2331  * smp_call_function() if an IPI is sent by the same process we are
2332  * waiting to become inactive.
2333  */
wait_task_inactive(struct task_struct * p,unsigned int match_state)2334 unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state)
2335 {
2336 	int running, queued, match;
2337 	struct rq_flags rf;
2338 	unsigned long ncsw;
2339 	struct rq *rq;
2340 
2341 	for (;;) {
2342 		/*
2343 		 * We do the initial early heuristics without holding
2344 		 * any task-queue locks at all. We'll only try to get
2345 		 * the runqueue lock when things look like they will
2346 		 * work out!
2347 		 */
2348 		rq = task_rq(p);
2349 
2350 		/*
2351 		 * If the task is actively running on another CPU
2352 		 * still, just relax and busy-wait without holding
2353 		 * any locks.
2354 		 *
2355 		 * NOTE! Since we don't hold any locks, it's not
2356 		 * even sure that "rq" stays as the right runqueue!
2357 		 * But we don't care, since "task_on_cpu()" will
2358 		 * return false if the runqueue has changed and p
2359 		 * is actually now running somewhere else!
2360 		 */
2361 		while (task_on_cpu(rq, p)) {
2362 			if (!task_state_match(p, match_state))
2363 				return 0;
2364 			cpu_relax();
2365 		}
2366 
2367 		/*
2368 		 * Ok, time to look more closely! We need the rq
2369 		 * lock now, to be *sure*. If we're wrong, we'll
2370 		 * just go back and repeat.
2371 		 */
2372 		rq = task_rq_lock(p, &rf);
2373 		/*
2374 		 * If task is sched_delayed, force dequeue it, to avoid always
2375 		 * hitting the tick timeout in the queued case
2376 		 */
2377 		if (p->se.sched_delayed)
2378 			dequeue_task(rq, p, DEQUEUE_SLEEP | DEQUEUE_DELAYED);
2379 		trace_sched_wait_task(p);
2380 		running = task_on_cpu(rq, p);
2381 		queued = task_on_rq_queued(p);
2382 		ncsw = 0;
2383 		if ((match = __task_state_match(p, match_state))) {
2384 			/*
2385 			 * When matching on p->saved_state, consider this task
2386 			 * still queued so it will wait.
2387 			 */
2388 			if (match < 0)
2389 				queued = 1;
2390 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2391 		}
2392 		task_rq_unlock(rq, p, &rf);
2393 
2394 		/*
2395 		 * If it changed from the expected state, bail out now.
2396 		 */
2397 		if (unlikely(!ncsw))
2398 			break;
2399 
2400 		/*
2401 		 * Was it really running after all now that we
2402 		 * checked with the proper locks actually held?
2403 		 *
2404 		 * Oops. Go back and try again..
2405 		 */
2406 		if (unlikely(running)) {
2407 			cpu_relax();
2408 			continue;
2409 		}
2410 
2411 		/*
2412 		 * It's not enough that it's not actively running,
2413 		 * it must be off the runqueue _entirely_, and not
2414 		 * preempted!
2415 		 *
2416 		 * So if it was still runnable (but just not actively
2417 		 * running right now), it's preempted, and we should
2418 		 * yield - it could be a while.
2419 		 */
2420 		if (unlikely(queued)) {
2421 			ktime_t to = NSEC_PER_SEC / HZ;
2422 
2423 			set_current_state(TASK_UNINTERRUPTIBLE);
2424 			schedule_hrtimeout(&to, HRTIMER_MODE_REL_HARD);
2425 			continue;
2426 		}
2427 
2428 		/*
2429 		 * Ahh, all good. It wasn't running, and it wasn't
2430 		 * runnable, which means that it will never become
2431 		 * running in the future either. We're all done!
2432 		 */
2433 		break;
2434 	}
2435 
2436 	return ncsw;
2437 }
2438 
2439 #ifdef CONFIG_SMP
2440 
2441 static void
2442 __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx);
2443 
migrate_disable_switch(struct rq * rq,struct task_struct * p)2444 static void migrate_disable_switch(struct rq *rq, struct task_struct *p)
2445 {
2446 	struct affinity_context ac = {
2447 		.new_mask  = cpumask_of(rq->cpu),
2448 		.flags     = SCA_MIGRATE_DISABLE,
2449 	};
2450 
2451 	if (likely(!p->migration_disabled))
2452 		return;
2453 
2454 	if (p->cpus_ptr != &p->cpus_mask)
2455 		return;
2456 
2457 	/*
2458 	 * Violates locking rules! See comment in __do_set_cpus_allowed().
2459 	 */
2460 	__do_set_cpus_allowed(p, &ac);
2461 }
2462 
migrate_disable(void)2463 void migrate_disable(void)
2464 {
2465 	struct task_struct *p = current;
2466 
2467 	if (p->migration_disabled) {
2468 #ifdef CONFIG_DEBUG_PREEMPT
2469 		/*
2470 		 *Warn about overflow half-way through the range.
2471 		 */
2472 		WARN_ON_ONCE((s16)p->migration_disabled < 0);
2473 #endif
2474 		p->migration_disabled++;
2475 		return;
2476 	}
2477 
2478 	guard(preempt)();
2479 	this_rq()->nr_pinned++;
2480 	p->migration_disabled = 1;
2481 }
2482 EXPORT_SYMBOL_GPL(migrate_disable);
2483 
migrate_enable(void)2484 void migrate_enable(void)
2485 {
2486 	struct task_struct *p = current;
2487 	struct affinity_context ac = {
2488 		.new_mask  = &p->cpus_mask,
2489 		.flags     = SCA_MIGRATE_ENABLE,
2490 	};
2491 
2492 #ifdef CONFIG_DEBUG_PREEMPT
2493 	/*
2494 	 * Check both overflow from migrate_disable() and superfluous
2495 	 * migrate_enable().
2496 	 */
2497 	if (WARN_ON_ONCE((s16)p->migration_disabled <= 0))
2498 		return;
2499 #endif
2500 
2501 	if (p->migration_disabled > 1) {
2502 		p->migration_disabled--;
2503 		return;
2504 	}
2505 
2506 	/*
2507 	 * Ensure stop_task runs either before or after this, and that
2508 	 * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule().
2509 	 */
2510 	guard(preempt)();
2511 	if (p->cpus_ptr != &p->cpus_mask)
2512 		__set_cpus_allowed_ptr(p, &ac);
2513 	/*
2514 	 * Mustn't clear migration_disabled() until cpus_ptr points back at the
2515 	 * regular cpus_mask, otherwise things that race (eg.
2516 	 * select_fallback_rq) get confused.
2517 	 */
2518 	barrier();
2519 	p->migration_disabled = 0;
2520 	this_rq()->nr_pinned--;
2521 }
2522 EXPORT_SYMBOL_GPL(migrate_enable);
2523 
rq_has_pinned_tasks(struct rq * rq)2524 static inline bool rq_has_pinned_tasks(struct rq *rq)
2525 {
2526 	return rq->nr_pinned;
2527 }
2528 
2529 /*
2530  * Per-CPU kthreads are allowed to run on !active && online CPUs, see
2531  * __set_cpus_allowed_ptr() and select_fallback_rq().
2532  */
is_cpu_allowed(struct task_struct * p,int cpu)2533 static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
2534 {
2535 	bool allowed = true;
2536 
2537 	/* When not in the task's cpumask, no point in looking further. */
2538 	if (!task_allowed_on_cpu(p, cpu))
2539 		return false;
2540 
2541 	/* migrate_disabled() must be allowed to finish. */
2542 	if (is_migration_disabled(p))
2543 		return cpu_online(cpu);
2544 
2545 	/* check for all cases */
2546 	trace_android_rvh_is_cpu_allowed(p, cpu, &allowed);
2547 
2548 	/* Non kernel threads are not allowed during either online or offline. */
2549 	if (!(p->flags & PF_KTHREAD))
2550 		return cpu_active(cpu) && allowed;
2551 
2552 	/* KTHREAD_IS_PER_CPU is always allowed. */
2553 	if (kthread_is_per_cpu(p))
2554 		return cpu_online(cpu);
2555 
2556 	if (!allowed)
2557 		return false;
2558 
2559 	/* Regular kernel threads don't get to stay during offline. */
2560 	if (cpu_dying(cpu))
2561 		return false;
2562 
2563 	/* But are allowed during online. */
2564 	return cpu_online(cpu);
2565 }
2566 
2567 /*
2568  * This is how migration works:
2569  *
2570  * 1) we invoke migration_cpu_stop() on the target CPU using
2571  *    stop_one_cpu().
2572  * 2) stopper starts to run (implicitly forcing the migrated thread
2573  *    off the CPU)
2574  * 3) it checks whether the migrated task is still in the wrong runqueue.
2575  * 4) if it's in the wrong runqueue then the migration thread removes
2576  *    it and puts it into the right queue.
2577  * 5) stopper completes and stop_one_cpu() returns and the migration
2578  *    is done.
2579  */
2580 
2581 /*
2582  * move_queued_task - move a queued task to new rq.
2583  *
2584  * Returns (locked) new rq. Old rq's lock is released.
2585  */
move_queued_task(struct rq * rq,struct rq_flags * rf,struct task_struct * p,int new_cpu)2586 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
2587 				   struct task_struct *p, int new_cpu)
2588 {
2589 	int detached = 0;
2590 
2591 	lockdep_assert_rq_held(rq);
2592 
2593 	/*
2594 	 * The vendor hook may drop the lock temporarily, so
2595 	 * pass the rq flags to unpin lock. We expect the
2596 	 * rq lock to be held after return.
2597 	 */
2598 	trace_android_rvh_migrate_queued_task(rq, rf, p, new_cpu, &detached);
2599 	if (detached)
2600 		goto attach;
2601 
2602 	deactivate_task(rq, p, DEQUEUE_NOCLOCK);
2603 	set_task_cpu(p, new_cpu);
2604 
2605 attach:
2606 	rq_unlock(rq, rf);
2607 	rq = cpu_rq(new_cpu);
2608 
2609 	rq_lock(rq, rf);
2610 	WARN_ON_ONCE(task_cpu(p) != new_cpu);
2611 	activate_task(rq, p, 0);
2612 	wakeup_preempt(rq, p, 0);
2613 
2614 	return rq;
2615 }
2616 
2617 struct migration_arg {
2618 	struct task_struct		*task;
2619 	int				dest_cpu;
2620 	struct set_affinity_pending	*pending;
2621 };
2622 
2623 /*
2624  * @refs: number of wait_for_completion()
2625  * @stop_pending: is @stop_work in use
2626  */
2627 struct set_affinity_pending {
2628 	refcount_t		refs;
2629 	unsigned int		stop_pending;
2630 	struct completion	done;
2631 	struct cpu_stop_work	stop_work;
2632 	struct migration_arg	arg;
2633 };
2634 
2635 /*
2636  * Move (not current) task off this CPU, onto the destination CPU. We're doing
2637  * this because either it can't run here any more (set_cpus_allowed()
2638  * away from this CPU, or CPU going down), or because we're
2639  * attempting to rebalance this task on exec (sched_exec).
2640  *
2641  * So we race with normal scheduler movements, but that's OK, as long
2642  * as the task is no longer on this CPU.
2643  */
__migrate_task(struct rq * rq,struct rq_flags * rf,struct task_struct * p,int dest_cpu)2644 struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
2645 			  struct task_struct *p, int dest_cpu)
2646 {
2647 	/* Affinity changed (again). */
2648 	if (!is_cpu_allowed(p, dest_cpu))
2649 		return rq;
2650 
2651 	rq = move_queued_task(rq, rf, p, dest_cpu);
2652 
2653 	return rq;
2654 }
2655 EXPORT_SYMBOL_GPL(__migrate_task);
2656 
2657 /*
2658  * migration_cpu_stop - this will be executed by a high-prio stopper thread
2659  * and performs thread migration by bumping thread off CPU then
2660  * 'pushing' onto another runqueue.
2661  */
migration_cpu_stop(void * data)2662 static int migration_cpu_stop(void *data)
2663 {
2664 	struct migration_arg *arg = data;
2665 	struct set_affinity_pending *pending = arg->pending;
2666 	struct task_struct *p = arg->task;
2667 	struct rq *rq = this_rq();
2668 	bool complete = false;
2669 	struct rq_flags rf;
2670 
2671 	/*
2672 	 * The original target CPU might have gone down and we might
2673 	 * be on another CPU but it doesn't matter.
2674 	 */
2675 	local_irq_save(rf.flags);
2676 	/*
2677 	 * We need to explicitly wake pending tasks before running
2678 	 * __migrate_task() such that we will not miss enforcing cpus_ptr
2679 	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
2680 	 */
2681 	flush_smp_call_function_queue();
2682 
2683 	raw_spin_lock(&p->pi_lock);
2684 	rq_lock(rq, &rf);
2685 
2686 	/*
2687 	 * If we were passed a pending, then ->stop_pending was set, thus
2688 	 * p->migration_pending must have remained stable.
2689 	 */
2690 	WARN_ON_ONCE(pending && pending != p->migration_pending);
2691 
2692 	/*
2693 	 * If task_rq(p) != rq, it cannot be migrated here, because we're
2694 	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
2695 	 * we're holding p->pi_lock.
2696 	 */
2697 	if (task_rq(p) == rq) {
2698 		if (is_migration_disabled(p))
2699 			goto out;
2700 
2701 		if (pending) {
2702 			p->migration_pending = NULL;
2703 			complete = true;
2704 
2705 			if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask))
2706 				goto out;
2707 		}
2708 
2709 		if (task_on_rq_queued(p)) {
2710 			update_rq_clock(rq);
2711 			rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
2712 		} else {
2713 			p->wake_cpu = arg->dest_cpu;
2714 		}
2715 
2716 		/*
2717 		 * XXX __migrate_task() can fail, at which point we might end
2718 		 * up running on a dodgy CPU, AFAICT this can only happen
2719 		 * during CPU hotplug, at which point we'll get pushed out
2720 		 * anyway, so it's probably not a big deal.
2721 		 */
2722 
2723 	} else if (pending) {
2724 		/*
2725 		 * This happens when we get migrated between migrate_enable()'s
2726 		 * preempt_enable() and scheduling the stopper task. At that
2727 		 * point we're a regular task again and not current anymore.
2728 		 *
2729 		 * A !PREEMPT kernel has a giant hole here, which makes it far
2730 		 * more likely.
2731 		 */
2732 
2733 		/*
2734 		 * The task moved before the stopper got to run. We're holding
2735 		 * ->pi_lock, so the allowed mask is stable - if it got
2736 		 * somewhere allowed, we're done.
2737 		 */
2738 		if (cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) {
2739 			p->migration_pending = NULL;
2740 			complete = true;
2741 			goto out;
2742 		}
2743 
2744 		/*
2745 		 * When migrate_enable() hits a rq mis-match we can't reliably
2746 		 * determine is_migration_disabled() and so have to chase after
2747 		 * it.
2748 		 */
2749 		WARN_ON_ONCE(!pending->stop_pending);
2750 		preempt_disable();
2751 		task_rq_unlock(rq, p, &rf);
2752 		stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop,
2753 				    &pending->arg, &pending->stop_work);
2754 		preempt_enable();
2755 		return 0;
2756 	}
2757 out:
2758 	if (pending)
2759 		pending->stop_pending = false;
2760 	task_rq_unlock(rq, p, &rf);
2761 
2762 	if (complete)
2763 		complete_all(&pending->done);
2764 
2765 	return 0;
2766 }
2767 
push_cpu_stop(void * arg)2768 int push_cpu_stop(void *arg)
2769 {
2770 	struct rq *lowest_rq = NULL, *rq = this_rq();
2771 	struct task_struct *p = arg;
2772 
2773 	raw_spin_lock_irq(&p->pi_lock);
2774 	raw_spin_rq_lock(rq);
2775 
2776 	if (task_rq(p) != rq)
2777 		goto out_unlock;
2778 
2779 	if (is_migration_disabled(p)) {
2780 		p->migration_flags |= MDF_PUSH;
2781 		goto out_unlock;
2782 	}
2783 
2784 	p->migration_flags &= ~MDF_PUSH;
2785 
2786 	if (p->sched_class->find_lock_rq)
2787 		lowest_rq = p->sched_class->find_lock_rq(p, rq);
2788 
2789 	if (!lowest_rq)
2790 		goto out_unlock;
2791 
2792 	// XXX validate p is still the highest prio task
2793 	if (task_rq(p) == rq) {
2794 		move_queued_task_locked(rq, lowest_rq, p);
2795 		resched_curr(lowest_rq);
2796 	}
2797 
2798 	double_unlock_balance(rq, lowest_rq);
2799 
2800 out_unlock:
2801 	rq->push_busy = false;
2802 	raw_spin_rq_unlock(rq);
2803 	raw_spin_unlock_irq(&p->pi_lock);
2804 
2805 	put_task_struct(p);
2806 	return 0;
2807 }
2808 EXPORT_SYMBOL_GPL(push_cpu_stop);
2809 
2810 /*
2811  * sched_class::set_cpus_allowed must do the below, but is not required to
2812  * actually call this function.
2813  */
set_cpus_allowed_common(struct task_struct * p,struct affinity_context * ctx)2814 void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx)
2815 {
2816 	if (ctx->flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) {
2817 		p->cpus_ptr = ctx->new_mask;
2818 		return;
2819 	}
2820 
2821 	cpumask_copy(&p->cpus_mask, ctx->new_mask);
2822 	p->nr_cpus_allowed = cpumask_weight(ctx->new_mask);
2823 
2824 	/*
2825 	 * Swap in a new user_cpus_ptr if SCA_USER flag set
2826 	 */
2827 	if (ctx->flags & SCA_USER)
2828 		swap(p->user_cpus_ptr, ctx->user_mask);
2829 
2830 	trace_android_rvh_set_cpus_allowed_comm(p, ctx->new_mask);
2831 }
2832 
2833 static void
__do_set_cpus_allowed(struct task_struct * p,struct affinity_context * ctx)2834 __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx)
2835 {
2836 	struct rq *rq = task_rq(p);
2837 	bool queued, running;
2838 
2839 	/*
2840 	 * This here violates the locking rules for affinity, since we're only
2841 	 * supposed to change these variables while holding both rq->lock and
2842 	 * p->pi_lock.
2843 	 *
2844 	 * HOWEVER, it magically works, because ttwu() is the only code that
2845 	 * accesses these variables under p->pi_lock and only does so after
2846 	 * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule()
2847 	 * before finish_task().
2848 	 *
2849 	 * XXX do further audits, this smells like something putrid.
2850 	 */
2851 	if (ctx->flags & SCA_MIGRATE_DISABLE)
2852 		SCHED_WARN_ON(!p->on_cpu);
2853 	else
2854 		lockdep_assert_held(&p->pi_lock);
2855 
2856 	queued = task_on_rq_queued(p);
2857 	running = task_current_donor(rq, p);
2858 
2859 	if (queued) {
2860 		/*
2861 		 * Because __kthread_bind() calls this on blocked tasks without
2862 		 * holding rq->lock.
2863 		 */
2864 		lockdep_assert_rq_held(rq);
2865 		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
2866 	}
2867 	if (running)
2868 		put_prev_task(rq, p);
2869 
2870 	p->sched_class->set_cpus_allowed(p, ctx);
2871 
2872 	if (queued)
2873 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
2874 	if (running)
2875 		set_next_task(rq, p);
2876 }
2877 
2878 /*
2879  * Used for kthread_bind() and select_fallback_rq(), in both cases the user
2880  * affinity (if any) should be destroyed too.
2881  */
do_set_cpus_allowed(struct task_struct * p,const struct cpumask * new_mask)2882 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
2883 {
2884 	struct affinity_context ac = {
2885 		.new_mask  = new_mask,
2886 		.user_mask = NULL,
2887 		.flags     = SCA_USER,	/* clear the user requested mask */
2888 	};
2889 	union cpumask_rcuhead {
2890 		cpumask_t cpumask;
2891 		struct rcu_head rcu;
2892 	};
2893 
2894 	__do_set_cpus_allowed(p, &ac);
2895 
2896 	/*
2897 	 * Because this is called with p->pi_lock held, it is not possible
2898 	 * to use kfree() here (when PREEMPT_RT=y), therefore punt to using
2899 	 * kfree_rcu().
2900 	 */
2901 	kfree_rcu((union cpumask_rcuhead *)ac.user_mask, rcu);
2902 }
2903 
dup_user_cpus_ptr(struct task_struct * dst,struct task_struct * src,int node)2904 int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src,
2905 		      int node)
2906 {
2907 	cpumask_t *user_mask;
2908 	unsigned long flags;
2909 
2910 	/*
2911 	 * Always clear dst->user_cpus_ptr first as their user_cpus_ptr's
2912 	 * may differ by now due to racing.
2913 	 */
2914 	dst->user_cpus_ptr = NULL;
2915 
2916 	/*
2917 	 * This check is racy and losing the race is a valid situation.
2918 	 * It is not worth the extra overhead of taking the pi_lock on
2919 	 * every fork/clone.
2920 	 */
2921 	if (data_race(!src->user_cpus_ptr))
2922 		return 0;
2923 
2924 	user_mask = alloc_user_cpus_ptr(node);
2925 	if (!user_mask)
2926 		return -ENOMEM;
2927 
2928 	/*
2929 	 * Use pi_lock to protect content of user_cpus_ptr
2930 	 *
2931 	 * Though unlikely, user_cpus_ptr can be reset to NULL by a concurrent
2932 	 * do_set_cpus_allowed().
2933 	 */
2934 	raw_spin_lock_irqsave(&src->pi_lock, flags);
2935 	if (src->user_cpus_ptr) {
2936 		swap(dst->user_cpus_ptr, user_mask);
2937 		cpumask_copy(dst->user_cpus_ptr, src->user_cpus_ptr);
2938 	}
2939 	raw_spin_unlock_irqrestore(&src->pi_lock, flags);
2940 
2941 	if (unlikely(user_mask))
2942 		kfree(user_mask);
2943 
2944 	return 0;
2945 }
2946 
clear_user_cpus_ptr(struct task_struct * p)2947 static inline struct cpumask *clear_user_cpus_ptr(struct task_struct *p)
2948 {
2949 	struct cpumask *user_mask = NULL;
2950 
2951 	swap(p->user_cpus_ptr, user_mask);
2952 
2953 	return user_mask;
2954 }
2955 
release_user_cpus_ptr(struct task_struct * p)2956 void release_user_cpus_ptr(struct task_struct *p)
2957 {
2958 	kfree(clear_user_cpus_ptr(p));
2959 }
2960 
2961 /*
2962  * This function is wildly self concurrent; here be dragons.
2963  *
2964  *
2965  * When given a valid mask, __set_cpus_allowed_ptr() must block until the
2966  * designated task is enqueued on an allowed CPU. If that task is currently
2967  * running, we have to kick it out using the CPU stopper.
2968  *
2969  * Migrate-Disable comes along and tramples all over our nice sandcastle.
2970  * Consider:
2971  *
2972  *     Initial conditions: P0->cpus_mask = [0, 1]
2973  *
2974  *     P0@CPU0                  P1
2975  *
2976  *     migrate_disable();
2977  *     <preempted>
2978  *                              set_cpus_allowed_ptr(P0, [1]);
2979  *
2980  * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes
2981  * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region).
2982  * This means we need the following scheme:
2983  *
2984  *     P0@CPU0                  P1
2985  *
2986  *     migrate_disable();
2987  *     <preempted>
2988  *                              set_cpus_allowed_ptr(P0, [1]);
2989  *                                <blocks>
2990  *     <resumes>
2991  *     migrate_enable();
2992  *       __set_cpus_allowed_ptr();
2993  *       <wakes local stopper>
2994  *                         `--> <woken on migration completion>
2995  *
2996  * Now the fun stuff: there may be several P1-like tasks, i.e. multiple
2997  * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any
2998  * task p are serialized by p->pi_lock, which we can leverage: the one that
2999  * should come into effect at the end of the Migrate-Disable region is the last
3000  * one. This means we only need to track a single cpumask (i.e. p->cpus_mask),
3001  * but we still need to properly signal those waiting tasks at the appropriate
3002  * moment.
3003  *
3004  * This is implemented using struct set_affinity_pending. The first
3005  * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will
3006  * setup an instance of that struct and install it on the targeted task_struct.
3007  * Any and all further callers will reuse that instance. Those then wait for
3008  * a completion signaled at the tail of the CPU stopper callback (1), triggered
3009  * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()).
3010  *
3011  *
3012  * (1) In the cases covered above. There is one more where the completion is
3013  * signaled within affine_move_task() itself: when a subsequent affinity request
3014  * occurs after the stopper bailed out due to the targeted task still being
3015  * Migrate-Disable. Consider:
3016  *
3017  *     Initial conditions: P0->cpus_mask = [0, 1]
3018  *
3019  *     CPU0		  P1				P2
3020  *     <P0>
3021  *       migrate_disable();
3022  *       <preempted>
3023  *                        set_cpus_allowed_ptr(P0, [1]);
3024  *                          <blocks>
3025  *     <migration/0>
3026  *       migration_cpu_stop()
3027  *         is_migration_disabled()
3028  *           <bails>
3029  *                                                       set_cpus_allowed_ptr(P0, [0, 1]);
3030  *                                                         <signal completion>
3031  *                          <awakes>
3032  *
3033  * Note that the above is safe vs a concurrent migrate_enable(), as any
3034  * pending affinity completion is preceded by an uninstallation of
3035  * p->migration_pending done with p->pi_lock held.
3036  */
affine_move_task(struct rq * rq,struct task_struct * p,struct rq_flags * rf,int dest_cpu,unsigned int flags)3037 static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf,
3038 			    int dest_cpu, unsigned int flags)
3039 	__releases(rq->lock)
3040 	__releases(p->pi_lock)
3041 {
3042 	struct set_affinity_pending my_pending = { }, *pending = NULL;
3043 	bool stop_pending, complete = false;
3044 
3045 	/*
3046 	 * Can the task run on the task's current CPU? If so, we're done
3047 	 *
3048 	 * We are also done if the task is the current donor, boosting a lock-
3049 	 * holding proxy, (and potentially has been migrated outside its
3050 	 * current or previous affinity mask)
3051 	 */
3052 	if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask) ||
3053 	    (task_current_donor(rq, p) && !task_current(rq, p))) {
3054 		struct task_struct *push_task = NULL;
3055 
3056 		if ((flags & SCA_MIGRATE_ENABLE) &&
3057 		    (p->migration_flags & MDF_PUSH) && !rq->push_busy) {
3058 			rq->push_busy = true;
3059 			push_task = get_task_struct(p);
3060 		}
3061 
3062 		/*
3063 		 * If there are pending waiters, but no pending stop_work,
3064 		 * then complete now.
3065 		 */
3066 		pending = p->migration_pending;
3067 		if (pending && !pending->stop_pending) {
3068 			p->migration_pending = NULL;
3069 			complete = true;
3070 		}
3071 
3072 		preempt_disable();
3073 		task_rq_unlock(rq, p, rf);
3074 		if (push_task) {
3075 			stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
3076 					    p, &rq->push_work);
3077 		}
3078 		preempt_enable();
3079 
3080 		if (complete)
3081 			complete_all(&pending->done);
3082 
3083 		return 0;
3084 	}
3085 
3086 	if (!(flags & SCA_MIGRATE_ENABLE)) {
3087 		/* serialized by p->pi_lock */
3088 		if (!p->migration_pending) {
3089 			/* Install the request */
3090 			refcount_set(&my_pending.refs, 1);
3091 			init_completion(&my_pending.done);
3092 			my_pending.arg = (struct migration_arg) {
3093 				.task = p,
3094 				.dest_cpu = dest_cpu,
3095 				.pending = &my_pending,
3096 			};
3097 
3098 			p->migration_pending = &my_pending;
3099 		} else {
3100 			pending = p->migration_pending;
3101 			refcount_inc(&pending->refs);
3102 			/*
3103 			 * Affinity has changed, but we've already installed a
3104 			 * pending. migration_cpu_stop() *must* see this, else
3105 			 * we risk a completion of the pending despite having a
3106 			 * task on a disallowed CPU.
3107 			 *
3108 			 * Serialized by p->pi_lock, so this is safe.
3109 			 */
3110 			pending->arg.dest_cpu = dest_cpu;
3111 		}
3112 	}
3113 	pending = p->migration_pending;
3114 	/*
3115 	 * - !MIGRATE_ENABLE:
3116 	 *   we'll have installed a pending if there wasn't one already.
3117 	 *
3118 	 * - MIGRATE_ENABLE:
3119 	 *   we're here because the current CPU isn't matching anymore,
3120 	 *   the only way that can happen is because of a concurrent
3121 	 *   set_cpus_allowed_ptr() call, which should then still be
3122 	 *   pending completion.
3123 	 *
3124 	 * Either way, we really should have a @pending here.
3125 	 */
3126 	if (WARN_ON_ONCE(!pending)) {
3127 		task_rq_unlock(rq, p, rf);
3128 		return -EINVAL;
3129 	}
3130 
3131 	if (task_on_cpu(rq, p) || READ_ONCE(p->__state) == TASK_WAKING) {
3132 		/*
3133 		 * MIGRATE_ENABLE gets here because 'p == current', but for
3134 		 * anything else we cannot do is_migration_disabled(), punt
3135 		 * and have the stopper function handle it all race-free.
3136 		 */
3137 		stop_pending = pending->stop_pending;
3138 		if (!stop_pending)
3139 			pending->stop_pending = true;
3140 
3141 		if (flags & SCA_MIGRATE_ENABLE)
3142 			p->migration_flags &= ~MDF_PUSH;
3143 
3144 		preempt_disable();
3145 		task_rq_unlock(rq, p, rf);
3146 		if (!stop_pending) {
3147 			stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop,
3148 					    &pending->arg, &pending->stop_work);
3149 		}
3150 		preempt_enable();
3151 
3152 		if (flags & SCA_MIGRATE_ENABLE)
3153 			return 0;
3154 	} else {
3155 
3156 		if (!is_migration_disabled(p)) {
3157 			if (task_on_rq_queued(p))
3158 				rq = move_queued_task(rq, rf, p, dest_cpu);
3159 
3160 			if (!pending->stop_pending) {
3161 				p->migration_pending = NULL;
3162 				complete = true;
3163 			}
3164 		}
3165 		task_rq_unlock(rq, p, rf);
3166 
3167 		if (complete)
3168 			complete_all(&pending->done);
3169 	}
3170 
3171 	wait_for_completion(&pending->done);
3172 
3173 	if (refcount_dec_and_test(&pending->refs))
3174 		wake_up_var(&pending->refs); /* No UaF, just an address */
3175 
3176 	/*
3177 	 * Block the original owner of &pending until all subsequent callers
3178 	 * have seen the completion and decremented the refcount
3179 	 */
3180 	wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs));
3181 
3182 	/* ARGH */
3183 	WARN_ON_ONCE(my_pending.stop_pending);
3184 
3185 	return 0;
3186 }
3187 
3188 /*
3189  * Called with both p->pi_lock and rq->lock held; drops both before returning.
3190  */
__set_cpus_allowed_ptr_locked(struct task_struct * p,struct affinity_context * ctx,struct rq * rq,struct rq_flags * rf)3191 static int __set_cpus_allowed_ptr_locked(struct task_struct *p,
3192 					 struct affinity_context *ctx,
3193 					 struct rq *rq,
3194 					 struct rq_flags *rf)
3195 	__releases(rq->lock)
3196 	__releases(p->pi_lock)
3197 {
3198 	const struct cpumask *cpu_allowed_mask = task_cpu_possible_mask(p);
3199 	const struct cpumask *cpu_valid_mask = cpu_active_mask;
3200 	bool kthread = p->flags & PF_KTHREAD;
3201 	unsigned int dest_cpu;
3202 	int ret = 0;
3203 
3204 	update_rq_clock(rq);
3205 
3206 	if (kthread || is_migration_disabled(p)) {
3207 		/*
3208 		 * Kernel threads are allowed on online && !active CPUs,
3209 		 * however, during cpu-hot-unplug, even these might get pushed
3210 		 * away if not KTHREAD_IS_PER_CPU.
3211 		 *
3212 		 * Specifically, migration_disabled() tasks must not fail the
3213 		 * cpumask_any_and_distribute() pick below, esp. so on
3214 		 * SCA_MIGRATE_ENABLE, otherwise we'll not call
3215 		 * set_cpus_allowed_common() and actually reset p->cpus_ptr.
3216 		 */
3217 		cpu_valid_mask = cpu_online_mask;
3218 	}
3219 
3220 	if (!kthread && !cpumask_subset(ctx->new_mask, cpu_allowed_mask)) {
3221 		ret = -EINVAL;
3222 		goto out;
3223 	}
3224 
3225 	/*
3226 	 * Must re-check here, to close a race against __kthread_bind(),
3227 	 * sched_setaffinity() is not guaranteed to observe the flag.
3228 	 */
3229 	if ((ctx->flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) {
3230 		ret = -EINVAL;
3231 		goto out;
3232 	}
3233 
3234 	if (!(ctx->flags & SCA_MIGRATE_ENABLE)) {
3235 		if (cpumask_equal(&p->cpus_mask, ctx->new_mask)) {
3236 			if (ctx->flags & SCA_USER)
3237 				swap(p->user_cpus_ptr, ctx->user_mask);
3238 			goto out;
3239 		}
3240 
3241 		if (WARN_ON_ONCE(p == current &&
3242 				 is_migration_disabled(p) &&
3243 				 !cpumask_test_cpu(task_cpu(p), ctx->new_mask))) {
3244 			ret = -EBUSY;
3245 			goto out;
3246 		}
3247 	}
3248 
3249 	/*
3250 	 * Picking a ~random cpu helps in cases where we are changing affinity
3251 	 * for groups of tasks (ie. cpuset), so that load balancing is not
3252 	 * immediately required to distribute the tasks within their new mask.
3253 	 */
3254 	dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, ctx->new_mask);
3255 	trace_android_rvh_set_cpus_allowed_by_task(cpu_valid_mask, ctx->new_mask, p, &dest_cpu);
3256 	if (dest_cpu >= nr_cpu_ids) {
3257 		ret = -EINVAL;
3258 		goto out;
3259 	}
3260 
3261 	__do_set_cpus_allowed(p, ctx);
3262 
3263 	/*
3264 	 * It might be that the p->wake_cpu is no longer
3265 	 * allowed, so set it to the dest_cpu so return
3266 	 * migration doesn't send it to an invalid cpu
3267 	 */
3268 	if (!is_cpu_allowed(p, p->wake_cpu))
3269 		p->wake_cpu = dest_cpu;
3270 
3271 	return affine_move_task(rq, p, rf, dest_cpu, ctx->flags);
3272 
3273 out:
3274 	task_rq_unlock(rq, p, rf);
3275 
3276 	return ret;
3277 }
3278 
3279 /*
3280  * Change a given task's CPU affinity. Migrate the thread to a
3281  * proper CPU and schedule it away if the CPU it's executing on
3282  * is removed from the allowed bitmask.
3283  *
3284  * NOTE: the caller must have a valid reference to the task, the
3285  * task must not exit() & deallocate itself prematurely. The
3286  * call is not atomic; no spinlocks may be held.
3287  */
__set_cpus_allowed_ptr(struct task_struct * p,struct affinity_context * ctx)3288 int __set_cpus_allowed_ptr(struct task_struct *p, struct affinity_context *ctx)
3289 {
3290 	struct rq_flags rf;
3291 	struct rq *rq;
3292 	bool skip_user_ptr = false;
3293 
3294 	trace_android_rvh_set_cpus_allowed_ptr(p, ctx, &skip_user_ptr);
3295 	rq = task_rq_lock(p, &rf);
3296 	/*
3297 	 * Masking should be skipped if SCA_USER or any of the SCA_MIGRATE_*
3298 	 * flags are set.
3299 	 */
3300 	if (!skip_user_ptr && p->user_cpus_ptr &&
3301 	    !(ctx->flags & (SCA_USER | SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) &&
3302 	    cpumask_and(rq->scratch_mask, ctx->new_mask, p->user_cpus_ptr))
3303 		ctx->new_mask = rq->scratch_mask;
3304 
3305 	return __set_cpus_allowed_ptr_locked(p, ctx, rq, &rf);
3306 }
3307 
set_cpus_allowed_ptr(struct task_struct * p,const struct cpumask * new_mask)3308 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
3309 {
3310 	struct affinity_context ac = {
3311 		.new_mask  = new_mask,
3312 		.flags     = 0,
3313 	};
3314 
3315 	return __set_cpus_allowed_ptr(p, &ac);
3316 }
3317 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
3318 
3319 /*
3320  * Change a given task's CPU affinity to the intersection of its current
3321  * affinity mask and @subset_mask, writing the resulting mask to @new_mask.
3322  * If user_cpus_ptr is defined, use it as the basis for restricting CPU
3323  * affinity or use cpu_online_mask instead.
3324  *
3325  * If the resulting mask is empty, leave the affinity unchanged and return
3326  * -EINVAL.
3327  */
restrict_cpus_allowed_ptr(struct task_struct * p,struct cpumask * new_mask,const struct cpumask * subset_mask)3328 static int restrict_cpus_allowed_ptr(struct task_struct *p,
3329 				     struct cpumask *new_mask,
3330 				     const struct cpumask *subset_mask)
3331 {
3332 	struct affinity_context ac = {
3333 		.new_mask  = new_mask,
3334 		.flags     = 0,
3335 	};
3336 	struct rq_flags rf;
3337 	struct rq *rq;
3338 	int err;
3339 
3340 	rq = task_rq_lock(p, &rf);
3341 
3342 	/*
3343 	 * Forcefully restricting the affinity of a deadline task is
3344 	 * likely to cause problems, so fail and noisily override the
3345 	 * mask entirely.
3346 	 */
3347 	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
3348 		err = -EPERM;
3349 		goto err_unlock;
3350 	}
3351 
3352 	if (!cpumask_and(new_mask, task_user_cpus(p), subset_mask)) {
3353 		err = -EINVAL;
3354 		goto err_unlock;
3355 	}
3356 
3357 	return __set_cpus_allowed_ptr_locked(p, &ac, rq, &rf);
3358 
3359 err_unlock:
3360 	task_rq_unlock(rq, p, &rf);
3361 	return err;
3362 }
3363 
3364 /*
3365  * Restrict the CPU affinity of task @p so that it is a subset of
3366  * task_cpu_possible_mask() and point @p->user_cpus_ptr to a copy of the
3367  * old affinity mask. If the resulting mask is empty, we warn and walk
3368  * up the cpuset hierarchy until we find a suitable mask.
3369  */
force_compatible_cpus_allowed_ptr(struct task_struct * p)3370 void force_compatible_cpus_allowed_ptr(struct task_struct *p)
3371 {
3372 	cpumask_var_t new_mask;
3373 	const struct cpumask *override_mask = task_cpu_possible_mask(p);
3374 
3375 	alloc_cpumask_var(&new_mask, GFP_KERNEL);
3376 
3377 	/*
3378 	 * __migrate_task() can fail silently in the face of concurrent
3379 	 * offlining of the chosen destination CPU, so take the hotplug
3380 	 * lock to ensure that the migration succeeds.
3381 	 */
3382 	cpus_read_lock();
3383 	if (!cpumask_available(new_mask))
3384 		goto out_set_mask;
3385 
3386 	if (!restrict_cpus_allowed_ptr(p, new_mask, override_mask))
3387 		goto out_free_mask;
3388 
3389 	/*
3390 	 * We failed to find a valid subset of the affinity mask for the
3391 	 * task, so override it based on its cpuset hierarchy.
3392 	 */
3393 	cpuset_cpus_allowed(p, new_mask);
3394 	override_mask = new_mask;
3395 
3396 out_set_mask:
3397 	if (printk_ratelimit()) {
3398 		printk_deferred("Overriding affinity for process %d (%s) to CPUs %*pbl\n",
3399 				task_pid_nr(p), p->comm,
3400 				cpumask_pr_args(override_mask));
3401 	}
3402 
3403 	WARN_ON(set_cpus_allowed_ptr(p, override_mask));
3404 out_free_mask:
3405 	cpus_read_unlock();
3406 	free_cpumask_var(new_mask);
3407 }
3408 
3409 /*
3410  * Restore the affinity of a task @p which was previously restricted by a
3411  * call to force_compatible_cpus_allowed_ptr().
3412  *
3413  * It is the caller's responsibility to serialise this with any calls to
3414  * force_compatible_cpus_allowed_ptr(@p).
3415  */
relax_compatible_cpus_allowed_ptr(struct task_struct * p)3416 void relax_compatible_cpus_allowed_ptr(struct task_struct *p)
3417 {
3418 	struct affinity_context ac = {
3419 		.new_mask  = task_user_cpus(p),
3420 		.flags     = 0,
3421 	};
3422 	int ret;
3423 
3424 	/*
3425 	 * Try to restore the old affinity mask with __sched_setaffinity().
3426 	 * Cpuset masking will be done there too.
3427 	 */
3428 	ret = __sched_setaffinity(p, &ac);
3429 	WARN_ON_ONCE(ret);
3430 }
3431 
set_task_cpu(struct task_struct * p,unsigned int new_cpu)3432 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
3433 {
3434 #ifdef CONFIG_SCHED_DEBUG
3435 	unsigned int state = READ_ONCE(p->__state);
3436 
3437 	/*
3438 	 * We should never call set_task_cpu() on a blocked task,
3439 	 * ttwu() will sort out the placement.
3440 	 */
3441 	WARN_ON_ONCE(state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq);
3442 
3443 	/*
3444 	 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
3445 	 * because schedstat_wait_{start,end} rebase migrating task's wait_start
3446 	 * time relying on p->on_rq.
3447 	 */
3448 	WARN_ON_ONCE(state == TASK_RUNNING &&
3449 		     p->sched_class == &fair_sched_class &&
3450 		     (p->on_rq && !task_on_rq_migrating(p)));
3451 
3452 #ifdef CONFIG_LOCKDEP
3453 	/*
3454 	 * The caller should hold either p->pi_lock or rq->lock, when changing
3455 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
3456 	 *
3457 	 * sched_move_task() holds both and thus holding either pins the cgroup,
3458 	 * see task_group().
3459 	 *
3460 	 * Furthermore, all task_rq users should acquire both locks, see
3461 	 * task_rq_lock().
3462 	 */
3463 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
3464 				      lockdep_is_held(__rq_lockp(task_rq(p)))));
3465 #endif
3466 	/*
3467 	 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
3468 	 */
3469 	WARN_ON_ONCE(!cpu_online(new_cpu));
3470 
3471 	WARN_ON_ONCE(is_migration_disabled(p));
3472 #endif
3473 
3474 	trace_sched_migrate_task(p, new_cpu);
3475 
3476 	if (task_cpu(p) != new_cpu) {
3477 		if (p->sched_class->migrate_task_rq)
3478 			p->sched_class->migrate_task_rq(p, new_cpu);
3479 		p->se.nr_migrations++;
3480 		rseq_migrate(p);
3481 		sched_mm_cid_migrate_from(p);
3482 		perf_event_task_migrate(p);
3483 		trace_android_rvh_set_task_cpu(p, new_cpu);
3484 	}
3485 
3486 	__set_task_cpu(p, new_cpu);
3487 }
3488 EXPORT_SYMBOL_GPL(set_task_cpu);
3489 
__migrate_swap_task(struct task_struct * p,int cpu)3490 static void __migrate_swap_task(struct task_struct *p, int cpu)
3491 {
3492 	if (task_on_rq_queued(p)) {
3493 		struct rq *src_rq, *dst_rq;
3494 		struct rq_flags srf, drf;
3495 
3496 		src_rq = task_rq(p);
3497 		dst_rq = cpu_rq(cpu);
3498 
3499 		rq_pin_lock(src_rq, &srf);
3500 		rq_pin_lock(dst_rq, &drf);
3501 
3502 		move_queued_task_locked(src_rq, dst_rq, p);
3503 		wakeup_preempt(dst_rq, p, 0);
3504 
3505 		rq_unpin_lock(dst_rq, &drf);
3506 		rq_unpin_lock(src_rq, &srf);
3507 
3508 	} else {
3509 		/*
3510 		 * Task isn't running anymore; make it appear like we migrated
3511 		 * it before it went to sleep. This means on wakeup we make the
3512 		 * previous CPU our target instead of where it really is.
3513 		 */
3514 		p->wake_cpu = cpu;
3515 	}
3516 }
3517 
3518 struct migration_swap_arg {
3519 	struct task_struct *src_task, *dst_task;
3520 	int src_cpu, dst_cpu;
3521 };
3522 
migrate_swap_stop(void * data)3523 static int migrate_swap_stop(void *data)
3524 {
3525 	struct migration_swap_arg *arg = data;
3526 	struct rq *src_rq, *dst_rq;
3527 
3528 	if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
3529 		return -EAGAIN;
3530 
3531 	src_rq = cpu_rq(arg->src_cpu);
3532 	dst_rq = cpu_rq(arg->dst_cpu);
3533 
3534 	guard(double_raw_spinlock)(&arg->src_task->pi_lock, &arg->dst_task->pi_lock);
3535 	guard(double_rq_lock)(src_rq, dst_rq);
3536 
3537 	if (task_cpu(arg->dst_task) != arg->dst_cpu)
3538 		return -EAGAIN;
3539 
3540 	if (task_cpu(arg->src_task) != arg->src_cpu)
3541 		return -EAGAIN;
3542 
3543 	if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
3544 		return -EAGAIN;
3545 
3546 	if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
3547 		return -EAGAIN;
3548 
3549 	__migrate_swap_task(arg->src_task, arg->dst_cpu);
3550 	__migrate_swap_task(arg->dst_task, arg->src_cpu);
3551 
3552 	return 0;
3553 }
3554 
3555 /*
3556  * Cross migrate two tasks
3557  */
migrate_swap(struct task_struct * cur,struct task_struct * p,int target_cpu,int curr_cpu)3558 int migrate_swap(struct task_struct *cur, struct task_struct *p,
3559 		int target_cpu, int curr_cpu)
3560 {
3561 	struct migration_swap_arg arg;
3562 	int ret = -EINVAL;
3563 
3564 	arg = (struct migration_swap_arg){
3565 		.src_task = cur,
3566 		.src_cpu = curr_cpu,
3567 		.dst_task = p,
3568 		.dst_cpu = target_cpu,
3569 	};
3570 
3571 	if (arg.src_cpu == arg.dst_cpu)
3572 		goto out;
3573 
3574 	/*
3575 	 * These three tests are all lockless; this is OK since all of them
3576 	 * will be re-checked with proper locks held further down the line.
3577 	 */
3578 	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
3579 		goto out;
3580 
3581 	if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
3582 		goto out;
3583 
3584 	if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
3585 		goto out;
3586 
3587 	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
3588 	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
3589 
3590 out:
3591 	return ret;
3592 }
3593 EXPORT_SYMBOL_GPL(migrate_swap);
3594 
3595 /***
3596  * kick_process - kick a running thread to enter/exit the kernel
3597  * @p: the to-be-kicked thread
3598  *
3599  * Cause a process which is running on another CPU to enter
3600  * kernel-mode, without any delay. (to get signals handled.)
3601  *
3602  * NOTE: this function doesn't have to take the runqueue lock,
3603  * because all it wants to ensure is that the remote task enters
3604  * the kernel. If the IPI races and the task has been migrated
3605  * to another CPU then no harm is done and the purpose has been
3606  * achieved as well.
3607  */
kick_process(struct task_struct * p)3608 void kick_process(struct task_struct *p)
3609 {
3610 	guard(preempt)();
3611 	int cpu = task_cpu(p);
3612 
3613 	if ((cpu != smp_processor_id()) && task_curr(p))
3614 		smp_send_reschedule(cpu);
3615 }
3616 EXPORT_SYMBOL_GPL(kick_process);
3617 
3618 /*
3619  * ->cpus_ptr is protected by both rq->lock and p->pi_lock
3620  *
3621  * A few notes on cpu_active vs cpu_online:
3622  *
3623  *  - cpu_active must be a subset of cpu_online
3624  *
3625  *  - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
3626  *    see __set_cpus_allowed_ptr(). At this point the newly online
3627  *    CPU isn't yet part of the sched domains, and balancing will not
3628  *    see it.
3629  *
3630  *  - on CPU-down we clear cpu_active() to mask the sched domains and
3631  *    avoid the load balancer to place new tasks on the to be removed
3632  *    CPU. Existing tasks will remain running there and will be taken
3633  *    off.
3634  *
3635  * This means that fallback selection must not select !active CPUs.
3636  * And can assume that any active CPU must be online. Conversely
3637  * select_task_rq() below may allow selection of !active CPUs in order
3638  * to satisfy the above rules.
3639  */
select_fallback_rq(int cpu,struct task_struct * p)3640 int select_fallback_rq(int cpu, struct task_struct *p)
3641 {
3642 	int nid = cpu_to_node(cpu);
3643 	const struct cpumask *nodemask = NULL;
3644 	enum { cpuset, possible, fail } state = cpuset;
3645 	int dest_cpu = -1;
3646 
3647 	trace_android_rvh_select_fallback_rq(cpu, p, &dest_cpu);
3648 	if (dest_cpu >= 0)
3649 		return dest_cpu;
3650 
3651 	/*
3652 	 * If the node that the CPU is on has been offlined, cpu_to_node()
3653 	 * will return -1. There is no CPU on the node, and we should
3654 	 * select the CPU on the other node.
3655 	 */
3656 	if (nid != -1) {
3657 		nodemask = cpumask_of_node(nid);
3658 
3659 		/* Look for allowed, online CPU in same node. */
3660 		for_each_cpu(dest_cpu, nodemask) {
3661 			if (is_cpu_allowed(p, dest_cpu))
3662 				return dest_cpu;
3663 		}
3664 	}
3665 
3666 	for (;;) {
3667 		/* Any allowed, online CPU? */
3668 		for_each_cpu(dest_cpu, p->cpus_ptr) {
3669 			if (!is_cpu_allowed(p, dest_cpu))
3670 				continue;
3671 
3672 			goto out;
3673 		}
3674 
3675 		/* No more Mr. Nice Guy. */
3676 		switch (state) {
3677 		case cpuset:
3678 			if (cpuset_cpus_allowed_fallback(p)) {
3679 				state = possible;
3680 				break;
3681 			}
3682 			fallthrough;
3683 		case possible:
3684 			/*
3685 			 * XXX When called from select_task_rq() we only
3686 			 * hold p->pi_lock and again violate locking order.
3687 			 *
3688 			 * More yuck to audit.
3689 			 */
3690 			do_set_cpus_allowed(p, task_cpu_possible_mask(p));
3691 			state = fail;
3692 			break;
3693 		case fail:
3694 			BUG();
3695 			break;
3696 		}
3697 	}
3698 
3699 out:
3700 	if (state != cpuset) {
3701 		/*
3702 		 * Don't tell them about moving exiting tasks or
3703 		 * kernel threads (both mm NULL), since they never
3704 		 * leave kernel.
3705 		 */
3706 		if (p->mm && printk_ratelimit()) {
3707 			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
3708 					task_pid_nr(p), p->comm, cpu);
3709 		}
3710 	}
3711 
3712 	return dest_cpu;
3713 }
3714 EXPORT_SYMBOL_GPL(select_fallback_rq);
3715 
3716 /*
3717  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
3718  */
3719 static inline
select_task_rq(struct task_struct * p,int cpu,int * wake_flags)3720 int select_task_rq(struct task_struct *p, int cpu, int *wake_flags)
3721 {
3722 	lockdep_assert_held(&p->pi_lock);
3723 
3724 	if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p)) {
3725 		cpu = p->sched_class->select_task_rq(p, cpu, *wake_flags);
3726 		*wake_flags |= WF_RQ_SELECTED;
3727 	} else {
3728 		cpu = cpumask_any(p->cpus_ptr);
3729 	}
3730 
3731 	/*
3732 	 * In order not to call set_task_cpu() on a blocking task we need
3733 	 * to rely on ttwu() to place the task on a valid ->cpus_ptr
3734 	 * CPU.
3735 	 *
3736 	 * Since this is common to all placement strategies, this lives here.
3737 	 *
3738 	 * [ this allows ->select_task() to simply return task_cpu(p) and
3739 	 *   not worry about this generic constraint ]
3740 	 */
3741 	if (unlikely(!is_cpu_allowed(p, cpu)))
3742 		cpu = select_fallback_rq(task_cpu(p), p);
3743 
3744 	return cpu;
3745 }
3746 
sched_set_stop_task(int cpu,struct task_struct * stop)3747 void sched_set_stop_task(int cpu, struct task_struct *stop)
3748 {
3749 	static struct lock_class_key stop_pi_lock;
3750 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
3751 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
3752 
3753 	if (stop) {
3754 		/*
3755 		 * Make it appear like a SCHED_FIFO task, its something
3756 		 * userspace knows about and won't get confused about.
3757 		 *
3758 		 * Also, it will make PI more or less work without too
3759 		 * much confusion -- but then, stop work should not
3760 		 * rely on PI working anyway.
3761 		 */
3762 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
3763 
3764 		stop->sched_class = &stop_sched_class;
3765 
3766 		/*
3767 		 * The PI code calls rt_mutex_setprio() with ->pi_lock held to
3768 		 * adjust the effective priority of a task. As a result,
3769 		 * rt_mutex_setprio() can trigger (RT) balancing operations,
3770 		 * which can then trigger wakeups of the stop thread to push
3771 		 * around the current task.
3772 		 *
3773 		 * The stop task itself will never be part of the PI-chain, it
3774 		 * never blocks, therefore that ->pi_lock recursion is safe.
3775 		 * Tell lockdep about this by placing the stop->pi_lock in its
3776 		 * own class.
3777 		 */
3778 		lockdep_set_class(&stop->pi_lock, &stop_pi_lock);
3779 	}
3780 
3781 	cpu_rq(cpu)->stop = stop;
3782 
3783 	if (old_stop) {
3784 		/*
3785 		 * Reset it back to a normal scheduling class so that
3786 		 * it can die in pieces.
3787 		 */
3788 		old_stop->sched_class = &rt_sched_class;
3789 	}
3790 }
3791 
3792 #else /* CONFIG_SMP */
3793 
migrate_disable_switch(struct rq * rq,struct task_struct * p)3794 static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { }
3795 
rq_has_pinned_tasks(struct rq * rq)3796 static inline bool rq_has_pinned_tasks(struct rq *rq)
3797 {
3798 	return false;
3799 }
3800 
3801 #endif /* !CONFIG_SMP */
3802 
3803 static void
ttwu_stat(struct task_struct * p,int cpu,int wake_flags)3804 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
3805 {
3806 	struct rq *rq;
3807 
3808 	if (!schedstat_enabled())
3809 		return;
3810 
3811 	rq = this_rq();
3812 
3813 #ifdef CONFIG_SMP
3814 	if (cpu == rq->cpu) {
3815 		__schedstat_inc(rq->ttwu_local);
3816 		__schedstat_inc(p->stats.nr_wakeups_local);
3817 	} else {
3818 		struct sched_domain *sd;
3819 
3820 		__schedstat_inc(p->stats.nr_wakeups_remote);
3821 
3822 		guard(rcu)();
3823 		for_each_domain(rq->cpu, sd) {
3824 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3825 				__schedstat_inc(sd->ttwu_wake_remote);
3826 				break;
3827 			}
3828 		}
3829 	}
3830 
3831 	if (wake_flags & WF_MIGRATED)
3832 		__schedstat_inc(p->stats.nr_wakeups_migrate);
3833 #endif /* CONFIG_SMP */
3834 
3835 	__schedstat_inc(rq->ttwu_count);
3836 	__schedstat_inc(p->stats.nr_wakeups);
3837 
3838 	if (wake_flags & WF_SYNC)
3839 		__schedstat_inc(p->stats.nr_wakeups_sync);
3840 }
3841 
3842 /*
3843  * Mark the task runnable.
3844  */
ttwu_do_wakeup(struct task_struct * p)3845 static inline void ttwu_do_wakeup(struct task_struct *p)
3846 {
3847 	WRITE_ONCE(p->__state, TASK_RUNNING);
3848 	trace_sched_wakeup(p);
3849 }
3850 
3851 #ifdef CONFIG_SCHED_PROXY_EXEC
3852 #ifdef CONFIG_SMP
proxy_set_task_cpu(struct task_struct * p,int cpu)3853 static inline void proxy_set_task_cpu(struct task_struct *p, int cpu)
3854 {
3855 	unsigned int wake_cpu;
3856 
3857 	/*
3858 	 * Since we are enqueuing a blocked task on a cpu it may
3859 	 * not be able to run on, preserve wake_cpu when we
3860 	 * __set_task_cpu so we can return the task to where it
3861 	 * was previously runnable.
3862 	 */
3863 	wake_cpu = p->wake_cpu;
3864 	__set_task_cpu(p, cpu);
3865 	p->wake_cpu = wake_cpu;
3866 }
3867 #else /* !CONFIG_SMP */
proxy_set_task_cpu(struct task_struct * p,int cpu)3868 static inline void proxy_set_task_cpu(struct task_struct *p, int cpu)
3869 {
3870 	__set_task_cpu(p, cpu);
3871 }
3872 #endif /* CONFIG_SMP */
proxy_task_runnable_but_waking(struct task_struct * p)3873 static bool proxy_task_runnable_but_waking(struct task_struct *p)
3874 {
3875 	if (!sched_proxy_exec())
3876 		return false;
3877 	return (READ_ONCE(p->__state) == TASK_RUNNING &&
3878 		READ_ONCE(p->blocked_on_state) == BO_WAKING);
3879 }
3880 
do_activate_blocked_waiter(struct rq * target_rq,struct task_struct * p,int en_flags)3881 static void do_activate_blocked_waiter(struct rq *target_rq, struct task_struct *p, int en_flags)
3882 {
3883 	unsigned int state;
3884 	struct rq_flags rf;
3885 	int target_cpu = cpu_of(target_rq);
3886 
3887 	scoped_guard (raw_spinlock_irqsave, &p->pi_lock) {
3888 		state = READ_ONCE(p->__state);
3889 		/* Avoid racing with ttwu */
3890 		if (state == TASK_WAKING)
3891 			return;
3892 
3893 		if (READ_ONCE(p->on_rq)) {
3894 			/*
3895 			 * We raced with a non mutex handoff activation of p.
3896 			 * That activation will also take care of activating
3897 			 * all of the tasks after p in the blocked_head list,
3898 			 * so we're done here.
3899 			 */
3900 			return;
3901 		}
3902 		if (task_on_cpu(task_rq(p), p)) {
3903 			/*
3904 			 * Its possible this activation is very late, and
3905 			 * we already were woken up and are running on a
3906 			 * different cpu. If that task blocked, it could be
3907 			 * dequeued (so on_rq == 0), but still on_cpu.
3908 			 * Bail in this case, as we definitely don't want to
3909 			 * activate a task when its on_cpu elsewhere.
3910 			 */
3911 			return;
3912 		}
3913 		proxy_set_task_cpu(p, target_cpu);
3914 		rq_lock_irqsave(target_rq, &rf);
3915 		update_rq_clock(target_rq);
3916 		activate_task(target_rq, p, en_flags);
3917 		resched_curr(target_rq);
3918 		rq_unlock_irqrestore(target_rq, &rf);
3919 	}
3920 }
3921 
activate_blocked_waiters(struct rq * target_rq,struct task_struct * owner,int wake_flags)3922 static void activate_blocked_waiters(struct rq *target_rq,
3923 				     struct task_struct *owner,
3924 				     int wake_flags)
3925 {
3926 	struct list_head bal_head;
3927 	unsigned long flags;
3928 	int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
3929 
3930 	if (!sched_proxy_exec())
3931 		return;
3932 
3933 	INIT_LIST_HEAD(&bal_head);
3934 
3935 	if (wake_flags & WF_MIGRATED)
3936 		en_flags |= ENQUEUE_MIGRATED;
3937 
3938 	/*
3939 	 * A whole bunch of waiting donor tasks back this blocked
3940 	 * lock owner task, wake them all up to give this task its
3941 	 * 'fair' share.
3942 	 *
3943 	 * This is a little unique here and the locking is messy.
3944 	 * At this point we only hold the blocked_lock, so the
3945 	 * owner task may be able to run and do all sorts of
3946 	 * things while we are processing the blocked_head list,
3947 	 * including going back to sleep, which can cause tasks
3948 	 * to be added to the owners->blocked_head while we are
3949 	 * processing it!
3950 	 * Thus, we pull the entire list off the owner->blocked_head
3951 	 * here so that we will only process a finite amount of
3952 	 * tasks. Tasks added after this will be processed by the
3953 	 * future wake events.
3954 	 * Even though we have pulled the list off the blocked_head
3955 	 * the removed list is *still* "owned" and serialized by
3956 	 * the owner->blocked_lock! As we have to serialize against
3957 	 * mid-chain wakeups, who may try to remove themselves from
3958 	 * the list.
3959 	 */
3960 	raw_spin_lock_irqsave(&owner->blocked_lock, flags);
3961 	if (!list_empty(&owner->blocked_activation_node)) {
3962 		raw_spin_unlock_irqrestore(&owner->blocked_lock, flags);
3963 		return;
3964 	}
3965 	get_task_struct(owner);
3966 	list_add_tail(&owner->blocked_activation_node, &bal_head);
3967 	raw_spin_unlock_irqrestore(&owner->blocked_lock, flags);
3968 
3969 	while (!list_empty(&bal_head)) {
3970 		struct list_head tmp_head;
3971 
3972 		INIT_LIST_HEAD(&tmp_head);
3973 		owner = list_first_entry(&bal_head, struct task_struct, blocked_activation_node);
3974 
3975 		raw_spin_lock_irqsave(&owner->blocked_lock, flags);
3976 		list_replace_init(&owner->blocked_head, &tmp_head);
3977 		list_del_init(&owner->blocked_activation_node);
3978 		while (!list_empty(&tmp_head)) {
3979 			struct task_struct *p;
3980 
3981 			p = list_first_entry(&tmp_head,
3982 					     struct task_struct,
3983 					     blocked_node);
3984 			WARN_ON(p == owner);
3985 			WARN_ON(p->sleeping_owner != owner);
3986 			__proxy_remove_from_sleeping_owner(owner, p);
3987 			raw_spin_unlock_irqrestore(&owner->blocked_lock, flags);
3988 
3989 			do_activate_blocked_waiter(target_rq, p, en_flags);
3990 			trace_sched_pe_activate_blocked_entity(owner, p);
3991 
3992 			raw_spin_lock_irqsave(&p->blocked_lock, flags);
3993 			if (list_empty(&p->blocked_activation_node)) {
3994 				get_task_struct(p);
3995 				list_add_tail(&p->blocked_activation_node, &bal_head);
3996 			}
3997 			raw_spin_unlock_irqrestore(&p->blocked_lock, flags);
3998 
3999 			raw_spin_lock_irqsave(&owner->blocked_lock, flags);
4000 		}
4001 		put_task_struct(owner); // put matches get prior to adding to local bal_head
4002 		raw_spin_unlock_irqrestore(&owner->blocked_lock, flags);
4003 	}
4004 }
4005 
4006 /* XXX: Add detailed comment! */
task_queued_on_rq(struct rq * rq,struct task_struct * task)4007 static inline bool task_queued_on_rq(struct rq *rq, struct task_struct *task)
4008 {
4009 	if (!task_on_rq_queued(task))
4010 		return false;
4011 
4012 	smp_rmb();
4013 
4014 	if (task_rq(task) != rq)
4015 		return false;
4016 
4017 	smp_rmb();
4018 
4019 	return task_on_rq_queued(task);
4020 }
4021 
4022 /*
4023  * Returns the unblocked task at the end of the blocked chain starting with p
4024  * if that chain is composed entirely of tasks enqueued on rq, or NULL otherwise.
4025  */
find_exec_ctx(struct rq * rq,struct task_struct * p)4026 struct task_struct *find_exec_ctx(struct rq *rq, struct task_struct *p)
4027 {
4028 	struct task_struct *exec_ctx, *owner;
4029 
4030 	if (!sched_proxy_exec())
4031 		return p;
4032 
4033 	lockdep_assert_rq_held(rq);
4034 
4035 	for (exec_ctx = p; task_is_blocked(exec_ctx) && !task_on_cpu(rq, exec_ctx);
4036 							exec_ctx = owner) {
4037 		owner = __mutex_owner(exec_ctx->blocked_on);
4038 		if (!owner || owner == exec_ctx)
4039 			break;
4040 
4041 		if (!task_queued_on_rq(rq, owner) || task_current_donor(rq, owner)) {
4042 			exec_ctx = NULL;
4043 			break;
4044 		}
4045 	}
4046 	return exec_ctx;
4047 }
4048 
4049 #ifdef CONFIG_SMP
move_queued_task_locked(struct rq * src_rq,struct rq * dst_rq,struct task_struct * task)4050 void move_queued_task_locked(struct rq *src_rq, struct rq *dst_rq, struct task_struct *task)
4051 {
4052 	lockdep_assert_rq_held(src_rq);
4053 	lockdep_assert_rq_held(dst_rq);
4054 
4055 	if (!sched_proxy_exec()) {
4056 		__move_queued_task_locked(src_rq, dst_rq, task);
4057 		return;
4058 	}
4059 
4060 	WARN_ON(!task_queued_on_rq(src_rq, task));
4061 	WARN_ON(task_current_donor(src_rq, task));
4062 
4063 	while (task) {
4064 		struct task_struct *owner = NULL;
4065 
4066 		if (!task_queued_on_rq(src_rq, task) || task_current_donor(src_rq, task))
4067 			break;
4068 
4069 		if (task_is_blocked(task))
4070 			owner = __mutex_owner(task->blocked_on);
4071 
4072 		__move_queued_task_locked(src_rq, dst_rq, task);
4073 		if (task == owner)
4074 			break;
4075 		task = owner;
4076 	}
4077 }
4078 
4079 /*
4080  * Returns:
4081  * 1 if chain is pushable and affinity does not prevent pushing to cpu
4082  * 0 if chain is unpushable
4083  * -1 if chain is pushable but affinity blocks running on cpu.
4084  */
task_is_pushable(struct rq * rq,struct task_struct * p,int cpu)4085 int task_is_pushable(struct rq *rq, struct task_struct *p, int cpu)
4086 {
4087 	struct task_struct *exec_ctx;
4088 
4089 	lockdep_assert_rq_held(rq);
4090 
4091 	if (!sched_proxy_exec())
4092 		return __task_is_pushable(rq, p, cpu);
4093 
4094 	if (task_rq(p) != rq || !task_on_rq_queued(p))
4095 		return 0;
4096 
4097 	exec_ctx = find_exec_ctx(rq, p);
4098 	/*
4099 	 * Chain leads off the rq, we're free to push it anywhere.
4100 	 *
4101 	 * One wrinkle with relying on find_exec_ctx is that when the chain
4102 	 * leads to a task currently migrating to rq, we see the chain as
4103 	 * pushable & push everything prior to the migrating task. Even if
4104 	 * we checked explicitly for this case, we could still race with a
4105 	 * migration after the check.
4106 	 * This shouldn't permanently produce a bad state though, as
4107 	 * find_proxy_task() will send the chain back to rq and by that point
4108 	 * the migration should be complete & a proper push can occur.
4109 	 */
4110 	if (!exec_ctx)
4111 		return 1;
4112 
4113 	if (task_on_cpu(rq, exec_ctx) || exec_ctx->nr_cpus_allowed <= 1)
4114 		return 0;
4115 
4116 	return cpumask_test_cpu(cpu, &exec_ctx->cpus_mask) ? 1 : -1;
4117 }
4118 #else /* !CONFIG_SMP */
move_queued_task_locked(struct rq * src_rq,struct rq * dst_rq,struct task_struct * task)4119 void move_queued_task_locked(struct rq *src_rq, struct rq *dst_rq, struct task_struct *task)
4120 {
4121 }
4122 #endif /* CONFIG_SMP */
4123 #else /* !CONFIG_SCHED_PROXY_EXEC */
proxy_task_runnable_but_waking(struct task_struct * p)4124 static bool proxy_task_runnable_but_waking(struct task_struct *p)
4125 {
4126 	return false;
4127 }
4128 
activate_blocked_waiters(struct rq * target_rq,struct task_struct * owner,int wake_flags)4129 static inline void activate_blocked_waiters(struct rq *target_rq,
4130 					    struct task_struct *owner,
4131 					    int wake_flags)
4132 {
4133 }
4134 #endif /* CONFIG_SCHED_PROXY_EXEC */
4135 
4136 #ifdef CONFIG_SMP
4137 /*
4138  * Checks to see if task p has been proxy-migrated to another rq
4139  * and needs to be returned. If so, we deactivate the task here
4140  * so that it can be properly woken up on the p->wake_cpu
4141  * (or whichever cpu select_task_rq() picks at the bottom of
4142  * try_to_wake_up()
4143  */
proxy_needs_return(struct rq * rq,struct task_struct * p)4144 static inline bool proxy_needs_return(struct rq *rq, struct task_struct *p)
4145 {
4146 	bool ret = false;
4147 
4148 	if (!sched_proxy_exec())
4149 		return false;
4150 
4151 	raw_spin_lock(&p->blocked_lock);
4152 	if (__get_task_blocked_on(p) && p->blocked_on_state == BO_WAKING) {
4153 		if (!task_current(rq, p) && (p->wake_cpu != cpu_of(rq))) {
4154 			if (task_current_donor(rq, p)) {
4155 				put_prev_task(rq, p);
4156 				rq_set_donor(rq, rq->idle);
4157 			}
4158 			deactivate_task(rq, p, DEQUEUE_NOCLOCK);
4159 			ret = true;
4160 		}
4161 		__set_blocked_on_runnable(p);
4162 		resched_curr(rq);
4163 	}
4164 	raw_spin_unlock(&p->blocked_lock);
4165 	return ret;
4166 }
4167 
_trace_sched_pe_return_migration(struct task_struct * p)4168 static inline void _trace_sched_pe_return_migration(struct task_struct *p)
4169 {
4170 	trace_sched_pe_return_migration(p, p->wake_cpu);
4171 }
4172 #else /* !CONFIG_SMP */
proxy_needs_return(struct rq * rq,struct task_struct * p)4173 static inline bool proxy_needs_return(struct rq *rq, struct task_struct *p)
4174 {
4175 	return false;
4176 }
4177 
_trace_sched_pe_return_migration(struct task_struct * p)4178 static inline void _trace_sched_pe_return_migration(struct task_struct *p)
4179 {
4180 }
4181 #endif /*CONFIG_SMP */
4182 
4183 static void
ttwu_do_activate(struct rq * rq,struct task_struct * p,int wake_flags,struct rq_flags * rf)4184 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
4185 		 struct rq_flags *rf)
4186 {
4187 	int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
4188 
4189 	if (wake_flags & WF_SYNC)
4190 		en_flags |= ENQUEUE_WAKEUP_SYNC;
4191 
4192 	lockdep_assert_rq_held(rq);
4193 
4194 	if (p->sched_contributes_to_load)
4195 		rq->nr_uninterruptible--;
4196 
4197 #ifdef CONFIG_SMP
4198 	if (wake_flags & WF_RQ_SELECTED)
4199 		en_flags |= ENQUEUE_RQ_SELECTED;
4200 	if (wake_flags & WF_MIGRATED)
4201 		en_flags |= ENQUEUE_MIGRATED;
4202 	else
4203 #endif
4204 	if (p->in_iowait) {
4205 		delayacct_blkio_end(p);
4206 		atomic_dec(&task_rq(p)->nr_iowait);
4207 	}
4208 
4209 	activate_task(rq, p, en_flags);
4210 	wakeup_preempt(rq, p, wake_flags);
4211 
4212 	ttwu_do_wakeup(p);
4213 
4214 #ifdef CONFIG_SMP
4215 	if (p->sched_class->task_woken) {
4216 		/*
4217 		 * Our task @p is fully woken up and running; so it's safe to
4218 		 * drop the rq->lock, hereafter rq is only used for statistics.
4219 		 */
4220 		rq_unpin_lock(rq, rf);
4221 		p->sched_class->task_woken(rq, p);
4222 		rq_repin_lock(rq, rf);
4223 	}
4224 
4225 	if (rq->idle_stamp) {
4226 		u64 delta = rq_clock(rq) - rq->idle_stamp;
4227 		u64 max = 2*rq->max_idle_balance_cost;
4228 
4229 		update_avg(&rq->avg_idle, delta);
4230 
4231 		if (rq->avg_idle > max)
4232 			rq->avg_idle = max;
4233 
4234 		rq->idle_stamp = 0;
4235 	}
4236 #endif
4237 }
4238 
4239 /*
4240  * Consider @p being inside a wait loop:
4241  *
4242  *   for (;;) {
4243  *      set_current_state(TASK_UNINTERRUPTIBLE);
4244  *
4245  *      if (CONDITION)
4246  *         break;
4247  *
4248  *      schedule();
4249  *   }
4250  *   __set_current_state(TASK_RUNNING);
4251  *
4252  * between set_current_state() and schedule(). In this case @p is still
4253  * runnable, so all that needs doing is change p->state back to TASK_RUNNING in
4254  * an atomic manner.
4255  *
4256  * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq
4257  * then schedule() must still happen and p->state can be changed to
4258  * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we
4259  * need to do a full wakeup with enqueue.
4260  *
4261  * Returns: %true when the wakeup is done,
4262  *          %false otherwise.
4263  */
ttwu_runnable(struct task_struct * p,int wake_flags)4264 static int ttwu_runnable(struct task_struct *p, int wake_flags)
4265 {
4266 	struct rq_flags rf;
4267 	struct rq *rq;
4268 	int ret = 0;
4269 
4270 	rq = __task_rq_lock(p, &rf);
4271 	if (task_on_rq_queued(p)) {
4272 		update_rq_clock(rq);
4273 		if (p->se.sched_delayed) {
4274 			proxy_remove_from_sleeping_owner(p);
4275 			enqueue_task(rq, p, ENQUEUE_NOCLOCK | ENQUEUE_DELAYED);
4276 		}
4277 		if (proxy_needs_return(rq, p)) {
4278 			_trace_sched_pe_return_migration(p);
4279 			goto out;
4280 		}
4281 		if (!task_on_cpu(rq, p)) {
4282 			/*
4283 			 * When on_rq && !on_cpu the task is preempted, see if
4284 			 * it should preempt the task that is current now.
4285 			 */
4286 			wakeup_preempt(rq, p, wake_flags);
4287 		}
4288 		ttwu_do_wakeup(p);
4289 		ret = 1;
4290 	}
4291 out:
4292 	__task_rq_unlock(rq, &rf);
4293 
4294 	return ret;
4295 }
4296 
4297 #ifdef CONFIG_SMP
sched_ttwu_pending(void * arg)4298 void sched_ttwu_pending(void *arg)
4299 {
4300 	struct llist_node *llist = arg;
4301 	struct rq *rq = this_rq();
4302 	struct task_struct *p, *t;
4303 	struct rq_flags rf;
4304 
4305 	if (!llist)
4306 		return;
4307 
4308 	rq_lock_irqsave(rq, &rf);
4309 	update_rq_clock(rq);
4310 
4311 	llist_for_each_entry_safe(p, t, llist, wake_entry.llist) {
4312 		int wake_flags;
4313 		if (WARN_ON_ONCE(p->on_cpu))
4314 			smp_cond_load_acquire(&p->on_cpu, !VAL);
4315 
4316 		if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq)))
4317 			set_task_cpu(p, cpu_of(rq));
4318 
4319 		wake_flags = p->sched_remote_wakeup ? WF_MIGRATED : 0;
4320 		ttwu_do_activate(rq, p, wake_flags, &rf);
4321 		rq_unlock(rq, &rf);
4322 		activate_blocked_waiters(rq, p, wake_flags);
4323 		rq_lock(rq, &rf);
4324 		update_rq_clock(rq);
4325 	}
4326 
4327 	/*
4328 	 * Must be after enqueueing at least once task such that
4329 	 * idle_cpu() does not observe a false-negative -- if it does,
4330 	 * it is possible for select_idle_siblings() to stack a number
4331 	 * of tasks on this CPU during that window.
4332 	 *
4333 	 * It is OK to clear ttwu_pending when another task pending.
4334 	 * We will receive IPI after local IRQ enabled and then enqueue it.
4335 	 * Since now nr_running > 0, idle_cpu() will always get correct result.
4336 	 */
4337 	WRITE_ONCE(rq->ttwu_pending, 0);
4338 	rq_unlock_irqrestore(rq, &rf);
4339 }
4340 
4341 /*
4342  * Prepare the scene for sending an IPI for a remote smp_call
4343  *
4344  * Returns true if the caller can proceed with sending the IPI.
4345  * Returns false otherwise.
4346  */
call_function_single_prep_ipi(int cpu)4347 bool call_function_single_prep_ipi(int cpu)
4348 {
4349 	if (set_nr_if_polling(cpu_rq(cpu)->idle)) {
4350 		trace_sched_wake_idle_without_ipi(cpu);
4351 		return false;
4352 	}
4353 
4354 	return true;
4355 }
4356 
4357 /*
4358  * Queue a task on the target CPUs wake_list and wake the CPU via IPI if
4359  * necessary. The wakee CPU on receipt of the IPI will queue the task
4360  * via sched_ttwu_wakeup() for activation so the wakee incurs the cost
4361  * of the wakeup instead of the waker.
4362  */
__ttwu_queue_wakelist(struct task_struct * p,int cpu,int wake_flags)4363 static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
4364 {
4365 	struct rq *rq = cpu_rq(cpu);
4366 
4367 	p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
4368 
4369 	WRITE_ONCE(rq->ttwu_pending, 1);
4370 	__smp_call_single_queue(cpu, &p->wake_entry.llist);
4371 }
4372 
wake_up_if_idle(int cpu)4373 void wake_up_if_idle(int cpu)
4374 {
4375 	struct rq *rq = cpu_rq(cpu);
4376 
4377 	guard(rcu)();
4378 	if (is_idle_task(rcu_dereference(rq->curr))) {
4379 		guard(rq_lock_irqsave)(rq);
4380 		if (is_idle_task(rq->curr))
4381 			resched_curr(rq);
4382 	}
4383 }
4384 EXPORT_SYMBOL_GPL(wake_up_if_idle);
4385 
cpus_equal_capacity(int this_cpu,int that_cpu)4386 bool cpus_equal_capacity(int this_cpu, int that_cpu)
4387 {
4388 	if (!sched_asym_cpucap_active())
4389 		return true;
4390 
4391 	if (this_cpu == that_cpu)
4392 		return true;
4393 
4394 	return arch_scale_cpu_capacity(this_cpu) == arch_scale_cpu_capacity(that_cpu);
4395 }
4396 
cpus_share_cache(int this_cpu,int that_cpu)4397 bool cpus_share_cache(int this_cpu, int that_cpu)
4398 {
4399 	if (this_cpu == that_cpu)
4400 		return true;
4401 
4402 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
4403 }
4404 
4405 /*
4406  * Whether CPUs are share cache resources, which means LLC on non-cluster
4407  * machines and LLC tag or L2 on machines with clusters.
4408  */
cpus_share_resources(int this_cpu,int that_cpu)4409 bool cpus_share_resources(int this_cpu, int that_cpu)
4410 {
4411 	if (this_cpu == that_cpu)
4412 		return true;
4413 
4414 	return per_cpu(sd_share_id, this_cpu) == per_cpu(sd_share_id, that_cpu);
4415 }
4416 
ttwu_queue_cond(struct task_struct * p,int cpu)4417 static inline bool ttwu_queue_cond(struct task_struct *p, int cpu)
4418 {
4419 	/*
4420 	 * The BPF scheduler may depend on select_task_rq() being invoked during
4421 	 * wakeups. In addition, @p may end up executing on a different CPU
4422 	 * regardless of what happens in the wakeup path making the ttwu_queue
4423 	 * optimization less meaningful. Skip if on SCX.
4424 	 */
4425 	if (task_on_scx(p))
4426 		return false;
4427 
4428 #ifdef CONFIG_SMP
4429 	if (p->sched_class == &stop_sched_class)
4430 		return false;
4431 #endif
4432 
4433 	/*
4434 	 * Do not complicate things with the async wake_list while the CPU is
4435 	 * in hotplug state.
4436 	 */
4437 	if (!cpu_active(cpu))
4438 		return false;
4439 
4440 	/* Ensure the task will still be allowed to run on the CPU. */
4441 	if (!cpumask_test_cpu(cpu, p->cpus_ptr))
4442 		return false;
4443 
4444 	/*
4445 	 * If the CPU does not share cache, then queue the task on the
4446 	 * remote rqs wakelist to avoid accessing remote data.
4447 	 */
4448 	if (!cpus_share_cache(smp_processor_id(), cpu))
4449 		return true;
4450 
4451 	if (cpu == smp_processor_id())
4452 		return false;
4453 
4454 	/*
4455 	 * If the wakee cpu is idle, or the task is descheduling and the
4456 	 * only running task on the CPU, then use the wakelist to offload
4457 	 * the task activation to the idle (or soon-to-be-idle) CPU as
4458 	 * the current CPU is likely busy. nr_running is checked to
4459 	 * avoid unnecessary task stacking.
4460 	 *
4461 	 * Note that we can only get here with (wakee) p->on_rq=0,
4462 	 * p->on_cpu can be whatever, we've done the dequeue, so
4463 	 * the wakee has been accounted out of ->nr_running.
4464 	 */
4465 	if (!cpu_rq(cpu)->nr_running)
4466 		return true;
4467 
4468 	return false;
4469 }
4470 
ttwu_queue_wakelist(struct task_struct * p,int cpu,int wake_flags)4471 static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
4472 {
4473 	bool cond = false;
4474 
4475 	trace_android_rvh_ttwu_cond(cpu, &cond);
4476 
4477 	if ((sched_feat(TTWU_QUEUE) && ttwu_queue_cond(p, cpu)) ||
4478 			cond) {
4479 		sched_clock_cpu(cpu); /* Sync clocks across CPUs */
4480 		__ttwu_queue_wakelist(p, cpu, wake_flags);
4481 		return true;
4482 	}
4483 
4484 	return false;
4485 }
4486 
4487 #else /* !CONFIG_SMP */
4488 
ttwu_queue_wakelist(struct task_struct * p,int cpu,int wake_flags)4489 static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
4490 {
4491 	return false;
4492 }
4493 
4494 #endif /* CONFIG_SMP */
4495 
ttwu_queue(struct task_struct * p,int cpu,int wake_flags)4496 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
4497 {
4498 	struct rq *rq = cpu_rq(cpu);
4499 	struct rq_flags rf;
4500 
4501 	if (ttwu_queue_wakelist(p, cpu, wake_flags))
4502 		return;
4503 
4504 	rq_lock(rq, &rf);
4505 	update_rq_clock(rq);
4506 	ttwu_do_activate(rq, p, wake_flags, &rf);
4507 	rq_unlock(rq, &rf);
4508 }
4509 
4510 /*
4511  * Invoked from try_to_wake_up() to check whether the task can be woken up.
4512  *
4513  * The caller holds p::pi_lock if p != current or has preemption
4514  * disabled when p == current.
4515  *
4516  * The rules of saved_state:
4517  *
4518  *   The related locking code always holds p::pi_lock when updating
4519  *   p::saved_state, which means the code is fully serialized in both cases.
4520  *
4521  *   For PREEMPT_RT, the lock wait and lock wakeups happen via TASK_RTLOCK_WAIT.
4522  *   No other bits set. This allows to distinguish all wakeup scenarios.
4523  *
4524  *   For FREEZER, the wakeup happens via TASK_FROZEN. No other bits set. This
4525  *   allows us to prevent early wakeup of tasks before they can be run on
4526  *   asymmetric ISA architectures (eg ARMv9).
4527  */
4528 static __always_inline
ttwu_state_match(struct task_struct * p,unsigned int state,int * success)4529 bool ttwu_state_match(struct task_struct *p, unsigned int state, int *success)
4530 {
4531 	int match;
4532 
4533 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) {
4534 		WARN_ON_ONCE((state & TASK_RTLOCK_WAIT) &&
4535 			     state != TASK_RTLOCK_WAIT);
4536 	}
4537 
4538 	*success = !!(match = __task_state_match(p, state));
4539 
4540 	/*
4541 	 * Saved state preserves the task state across blocking on
4542 	 * an RT lock or TASK_FREEZABLE tasks.  If the state matches,
4543 	 * set p::saved_state to TASK_RUNNING, but do not wake the task
4544 	 * because it waits for a lock wakeup or __thaw_task(). Also
4545 	 * indicate success because from the regular waker's point of
4546 	 * view this has succeeded.
4547 	 *
4548 	 * After acquiring the lock the task will restore p::__state
4549 	 * from p::saved_state which ensures that the regular
4550 	 * wakeup is not lost. The restore will also set
4551 	 * p::saved_state to TASK_RUNNING so any further tests will
4552 	 * not result in false positives vs. @success
4553 	 */
4554 	if (match < 0)
4555 		p->saved_state = TASK_RUNNING;
4556 
4557 	return match > 0;
4558 }
4559 
4560 /*
4561  * Notes on Program-Order guarantees on SMP systems.
4562  *
4563  *  MIGRATION
4564  *
4565  * The basic program-order guarantee on SMP systems is that when a task [t]
4566  * migrates, all its activity on its old CPU [c0] happens-before any subsequent
4567  * execution on its new CPU [c1].
4568  *
4569  * For migration (of runnable tasks) this is provided by the following means:
4570  *
4571  *  A) UNLOCK of the rq(c0)->lock scheduling out task t
4572  *  B) migration for t is required to synchronize *both* rq(c0)->lock and
4573  *     rq(c1)->lock (if not at the same time, then in that order).
4574  *  C) LOCK of the rq(c1)->lock scheduling in task
4575  *
4576  * Release/acquire chaining guarantees that B happens after A and C after B.
4577  * Note: the CPU doing B need not be c0 or c1
4578  *
4579  * Example:
4580  *
4581  *   CPU0            CPU1            CPU2
4582  *
4583  *   LOCK rq(0)->lock
4584  *   sched-out X
4585  *   sched-in Y
4586  *   UNLOCK rq(0)->lock
4587  *
4588  *                                   LOCK rq(0)->lock // orders against CPU0
4589  *                                   dequeue X
4590  *                                   UNLOCK rq(0)->lock
4591  *
4592  *                                   LOCK rq(1)->lock
4593  *                                   enqueue X
4594  *                                   UNLOCK rq(1)->lock
4595  *
4596  *                   LOCK rq(1)->lock // orders against CPU2
4597  *                   sched-out Z
4598  *                   sched-in X
4599  *                   UNLOCK rq(1)->lock
4600  *
4601  *
4602  *  BLOCKING -- aka. SLEEP + WAKEUP
4603  *
4604  * For blocking we (obviously) need to provide the same guarantee as for
4605  * migration. However the means are completely different as there is no lock
4606  * chain to provide order. Instead we do:
4607  *
4608  *   1) smp_store_release(X->on_cpu, 0)   -- finish_task()
4609  *   2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up()
4610  *
4611  * Example:
4612  *
4613  *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
4614  *
4615  *   LOCK rq(0)->lock LOCK X->pi_lock
4616  *   dequeue X
4617  *   sched-out X
4618  *   smp_store_release(X->on_cpu, 0);
4619  *
4620  *                    smp_cond_load_acquire(&X->on_cpu, !VAL);
4621  *                    X->state = WAKING
4622  *                    set_task_cpu(X,2)
4623  *
4624  *                    LOCK rq(2)->lock
4625  *                    enqueue X
4626  *                    X->state = RUNNING
4627  *                    UNLOCK rq(2)->lock
4628  *
4629  *                                          LOCK rq(2)->lock // orders against CPU1
4630  *                                          sched-out Z
4631  *                                          sched-in X
4632  *                                          UNLOCK rq(2)->lock
4633  *
4634  *                    UNLOCK X->pi_lock
4635  *   UNLOCK rq(0)->lock
4636  *
4637  *
4638  * However, for wakeups there is a second guarantee we must provide, namely we
4639  * must ensure that CONDITION=1 done by the caller can not be reordered with
4640  * accesses to the task state; see try_to_wake_up() and set_current_state().
4641  */
4642 
4643 /**
4644  * try_to_wake_up - wake up a thread
4645  * @p: the thread to be awakened
4646  * @state: the mask of task states that can be woken
4647  * @wake_flags: wake modifier flags (WF_*)
4648  *
4649  * Conceptually does:
4650  *
4651  *   If (@state & @p->state) @p->state = TASK_RUNNING.
4652  *
4653  * If the task was not queued/runnable, also place it back on a runqueue.
4654  *
4655  * This function is atomic against schedule() which would dequeue the task.
4656  *
4657  * It issues a full memory barrier before accessing @p->state, see the comment
4658  * with set_current_state().
4659  *
4660  * Uses p->pi_lock to serialize against concurrent wake-ups.
4661  *
4662  * Relies on p->pi_lock stabilizing:
4663  *  - p->sched_class
4664  *  - p->cpus_ptr
4665  *  - p->sched_task_group
4666  * in order to do migration, see its use of select_task_rq()/set_task_cpu().
4667  *
4668  * Tries really hard to only take one task_rq(p)->lock for performance.
4669  * Takes rq->lock in:
4670  *  - ttwu_runnable()    -- old rq, unavoidable, see comment there;
4671  *  - ttwu_queue()       -- new rq, for enqueue of the task;
4672  *  - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us.
4673  *
4674  * As a consequence we race really badly with just about everything. See the
4675  * many memory barriers and their comments for details.
4676  *
4677  * Return: %true if @p->state changes (an actual wakeup was done),
4678  *	   %false otherwise.
4679  */
try_to_wake_up(struct task_struct * p,unsigned int state,int wake_flags)4680 int try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
4681 {
4682 	guard(preempt)();
4683 	int cpu, success = 0;
4684 
4685 	wake_flags |= WF_TTWU;
4686 
4687 	if (p == current) {
4688 		/*
4689 		 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
4690 		 * == smp_processor_id()'. Together this means we can special
4691 		 * case the whole 'p->on_rq && ttwu_runnable()' case below
4692 		 * without taking any locks.
4693 		 *
4694 		 * Specifically, given current runs ttwu() we must be before
4695 		 * schedule()'s block_task(), as such this must not observe
4696 		 * sched_delayed.
4697 		 *
4698 		 * In particular:
4699 		 *  - we rely on Program-Order guarantees for all the ordering,
4700 		 *  - we're serialized against set_special_state() by virtue of
4701 		 *    it disabling IRQs (this allows not taking ->pi_lock).
4702 		 */
4703 		SCHED_WARN_ON(p->se.sched_delayed);
4704 		/* If current is waking up, we know we can run here, so set BO_RUNNBLE */
4705 		set_blocked_on_runnable(p);
4706 		if (!ttwu_state_match(p, state, &success))
4707 			goto out;
4708 
4709 		trace_sched_waking(p);
4710 		ttwu_do_wakeup(p);
4711 		goto out;
4712 	}
4713 
4714 	/*
4715 	 * If we are going to wake up a thread waiting for CONDITION we
4716 	 * need to ensure that CONDITION=1 done by the caller can not be
4717 	 * reordered with p->state check below. This pairs with smp_store_mb()
4718 	 * in set_current_state() that the waiting thread does.
4719 	 */
4720 	scoped_guard (raw_spinlock_irqsave, &p->pi_lock) {
4721 		smp_mb__after_spinlock();
4722 		if (!ttwu_state_match(p, state, &success)) {
4723 			/*
4724 			 * If we're already TASK_RUNNING, and BO_WAKING
4725 			 * continue on to ttwu_runnable check to force
4726 			 * proxy_needs_return evaluation
4727 			 */
4728 			if (!proxy_task_runnable_but_waking(p))
4729 				break;
4730 		}
4731 
4732 		trace_sched_waking(p);
4733 
4734 		/*
4735 		 * Ensure we load p->on_rq _after_ p->state, otherwise it would
4736 		 * be possible to, falsely, observe p->on_rq == 0 and get stuck
4737 		 * in smp_cond_load_acquire() below.
4738 		 *
4739 		 * sched_ttwu_pending()			try_to_wake_up()
4740 		 *   STORE p->on_rq = 1			  LOAD p->state
4741 		 *   UNLOCK rq->lock
4742 		 *
4743 		 * __schedule() (switch to task 'p')
4744 		 *   LOCK rq->lock			  smp_rmb();
4745 		 *   smp_mb__after_spinlock();
4746 		 *   UNLOCK rq->lock
4747 		 *
4748 		 * [task p]
4749 		 *   STORE p->state = UNINTERRUPTIBLE	  LOAD p->on_rq
4750 		 *
4751 		 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
4752 		 * __schedule().  See the comment for smp_mb__after_spinlock().
4753 		 *
4754 		 * A similar smp_rmb() lives in __task_needs_rq_lock().
4755 		 */
4756 		smp_rmb();
4757 		if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags))
4758 			break;
4759 
4760 #ifdef CONFIG_SMP
4761 		/*
4762 		 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
4763 		 * possible to, falsely, observe p->on_cpu == 0.
4764 		 *
4765 		 * One must be running (->on_cpu == 1) in order to remove oneself
4766 		 * from the runqueue.
4767 		 *
4768 		 * __schedule() (switch to task 'p')	try_to_wake_up()
4769 		 *   STORE p->on_cpu = 1		  LOAD p->on_rq
4770 		 *   UNLOCK rq->lock
4771 		 *
4772 		 * __schedule() (put 'p' to sleep)
4773 		 *   LOCK rq->lock			  smp_rmb();
4774 		 *   smp_mb__after_spinlock();
4775 		 *   STORE p->on_rq = 0			  LOAD p->on_cpu
4776 		 *
4777 		 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
4778 		 * __schedule().  See the comment for smp_mb__after_spinlock().
4779 		 *
4780 		 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure
4781 		 * schedule()'s deactivate_task() has 'happened' and p will no longer
4782 		 * care about it's own p->state. See the comment in __schedule().
4783 		 */
4784 		smp_acquire__after_ctrl_dep();
4785 
4786 		/*
4787 		 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq
4788 		 * == 0), which means we need to do an enqueue, change p->state to
4789 		 * TASK_WAKING such that we can unlock p->pi_lock before doing the
4790 		 * enqueue, such as ttwu_queue_wakelist().
4791 		 */
4792 		WRITE_ONCE(p->__state, TASK_WAKING);
4793 		set_blocked_on_runnable(p);
4794 
4795 		/*
4796 		 * If the owning (remote) CPU is still in the middle of schedule() with
4797 		 * this task as prev, considering queueing p on the remote CPUs wake_list
4798 		 * which potentially sends an IPI instead of spinning on p->on_cpu to
4799 		 * let the waker make forward progress. This is safe because IRQs are
4800 		 * disabled and the IPI will deliver after on_cpu is cleared.
4801 		 *
4802 		 * Ensure we load task_cpu(p) after p->on_cpu:
4803 		 *
4804 		 * set_task_cpu(p, cpu);
4805 		 *   STORE p->cpu = @cpu
4806 		 * __schedule() (switch to task 'p')
4807 		 *   LOCK rq->lock
4808 		 *   smp_mb__after_spin_lock()		smp_cond_load_acquire(&p->on_cpu)
4809 		 *   STORE p->on_cpu = 1		LOAD p->cpu
4810 		 *
4811 		 * to ensure we observe the correct CPU on which the task is currently
4812 		 * scheduling.
4813 		 */
4814 		if (smp_load_acquire(&p->on_cpu) &&
4815 		    ttwu_queue_wakelist(p, task_cpu(p), wake_flags))
4816 			break;
4817 
4818 		/*
4819 		 * If the owning (remote) CPU is still in the middle of schedule() with
4820 		 * this task as prev, wait until it's done referencing the task.
4821 		 *
4822 		 * Pairs with the smp_store_release() in finish_task().
4823 		 *
4824 		 * This ensures that tasks getting woken will be fully ordered against
4825 		 * their previous state and preserve Program Order.
4826 		 */
4827 		smp_cond_load_acquire(&p->on_cpu, !VAL);
4828 
4829 		trace_android_rvh_try_to_wake_up(p);
4830 
4831 		cpu = select_task_rq(p, p->wake_cpu, &wake_flags);
4832 		if (task_cpu(p) != cpu) {
4833 			if (p->in_iowait) {
4834 				delayacct_blkio_end(p);
4835 				atomic_dec(&task_rq(p)->nr_iowait);
4836 			}
4837 
4838 			wake_flags |= WF_MIGRATED;
4839 			psi_ttwu_dequeue(p);
4840 			set_task_cpu(p, cpu);
4841 		}
4842 #else
4843 		cpu = task_cpu(p);
4844 #endif /* CONFIG_SMP */
4845 		ttwu_queue(p, cpu, wake_flags);
4846 	}
4847 out:
4848 	activate_blocked_waiters(cpu_rq(task_cpu(p)), p, wake_flags);
4849 	if (success) {
4850 		trace_android_rvh_try_to_wake_up_success(p);
4851 		ttwu_stat(p, task_cpu(p), wake_flags);
4852 	}
4853 	return success;
4854 }
4855 
__task_needs_rq_lock(struct task_struct * p)4856 static bool __task_needs_rq_lock(struct task_struct *p)
4857 {
4858 	unsigned int state = READ_ONCE(p->__state);
4859 
4860 	/*
4861 	 * Since pi->lock blocks try_to_wake_up(), we don't need rq->lock when
4862 	 * the task is blocked. Make sure to check @state since ttwu() can drop
4863 	 * locks at the end, see ttwu_queue_wakelist().
4864 	 */
4865 	if (state == TASK_RUNNING || state == TASK_WAKING)
4866 		return true;
4867 
4868 	/*
4869 	 * Ensure we load p->on_rq after p->__state, otherwise it would be
4870 	 * possible to, falsely, observe p->on_rq == 0.
4871 	 *
4872 	 * See try_to_wake_up() for a longer comment.
4873 	 */
4874 	smp_rmb();
4875 	if (p->on_rq)
4876 		return true;
4877 
4878 #ifdef CONFIG_SMP
4879 	/*
4880 	 * Ensure the task has finished __schedule() and will not be referenced
4881 	 * anymore. Again, see try_to_wake_up() for a longer comment.
4882 	 */
4883 	smp_rmb();
4884 	smp_cond_load_acquire(&p->on_cpu, !VAL);
4885 #endif
4886 
4887 	return false;
4888 }
4889 
4890 /**
4891  * task_call_func - Invoke a function on task in fixed state
4892  * @p: Process for which the function is to be invoked, can be @current.
4893  * @func: Function to invoke.
4894  * @arg: Argument to function.
4895  *
4896  * Fix the task in it's current state by avoiding wakeups and or rq operations
4897  * and call @func(@arg) on it.  This function can use task_is_runnable() and
4898  * task_curr() to work out what the state is, if required.  Given that @func
4899  * can be invoked with a runqueue lock held, it had better be quite
4900  * lightweight.
4901  *
4902  * Returns:
4903  *   Whatever @func returns
4904  */
task_call_func(struct task_struct * p,task_call_f func,void * arg)4905 int task_call_func(struct task_struct *p, task_call_f func, void *arg)
4906 {
4907 	struct rq *rq = NULL;
4908 	struct rq_flags rf;
4909 	int ret;
4910 
4911 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
4912 
4913 	if (__task_needs_rq_lock(p))
4914 		rq = __task_rq_lock(p, &rf);
4915 
4916 	/*
4917 	 * At this point the task is pinned; either:
4918 	 *  - blocked and we're holding off wakeups	 (pi->lock)
4919 	 *  - woken, and we're holding off enqueue	 (rq->lock)
4920 	 *  - queued, and we're holding off schedule	 (rq->lock)
4921 	 *  - running, and we're holding off de-schedule (rq->lock)
4922 	 *
4923 	 * The called function (@func) can use: task_curr(), p->on_rq and
4924 	 * p->__state to differentiate between these states.
4925 	 */
4926 	ret = func(p, arg);
4927 
4928 	if (rq)
4929 		rq_unlock(rq, &rf);
4930 
4931 	raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
4932 	return ret;
4933 }
4934 
4935 /**
4936  * cpu_curr_snapshot - Return a snapshot of the currently running task
4937  * @cpu: The CPU on which to snapshot the task.
4938  *
4939  * Returns the task_struct pointer of the task "currently" running on
4940  * the specified CPU.
4941  *
4942  * If the specified CPU was offline, the return value is whatever it
4943  * is, perhaps a pointer to the task_struct structure of that CPU's idle
4944  * task, but there is no guarantee.  Callers wishing a useful return
4945  * value must take some action to ensure that the specified CPU remains
4946  * online throughout.
4947  *
4948  * This function executes full memory barriers before and after fetching
4949  * the pointer, which permits the caller to confine this function's fetch
4950  * with respect to the caller's accesses to other shared variables.
4951  */
cpu_curr_snapshot(int cpu)4952 struct task_struct *cpu_curr_snapshot(int cpu)
4953 {
4954 	struct rq *rq = cpu_rq(cpu);
4955 	struct task_struct *t;
4956 	struct rq_flags rf;
4957 
4958 	rq_lock_irqsave(rq, &rf);
4959 	smp_mb__after_spinlock(); /* Pairing determined by caller's synchronization design. */
4960 	t = rcu_dereference(cpu_curr(cpu));
4961 	rq_unlock_irqrestore(rq, &rf);
4962 	smp_mb(); /* Pairing determined by caller's synchronization design. */
4963 
4964 	return t;
4965 }
4966 
4967 /**
4968  * wake_up_process - Wake up a specific process
4969  * @p: The process to be woken up.
4970  *
4971  * Attempt to wake up the nominated process and move it to the set of runnable
4972  * processes.
4973  *
4974  * Return: 1 if the process was woken up, 0 if it was already running.
4975  *
4976  * This function executes a full memory barrier before accessing the task state.
4977  */
wake_up_process(struct task_struct * p)4978 int wake_up_process(struct task_struct *p)
4979 {
4980 	return try_to_wake_up(p, TASK_NORMAL, 0);
4981 }
4982 EXPORT_SYMBOL(wake_up_process);
4983 
wake_up_state(struct task_struct * p,unsigned int state)4984 int wake_up_state(struct task_struct *p, unsigned int state)
4985 {
4986 	return try_to_wake_up(p, state, 0);
4987 }
4988 
4989 /*
4990  * Perform scheduler related setup for a newly forked process p.
4991  * p is forked by current.
4992  *
4993  * __sched_fork() is basic setup which is also used by sched_init() to
4994  * initialize the boot CPU's idle task.
4995  */
__sched_fork(unsigned long clone_flags,struct task_struct * p)4996 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
4997 {
4998 	p->on_rq			= 0;
4999 
5000 	p->se.on_rq			= 0;
5001 	p->se.exec_start		= 0;
5002 	p->se.sum_exec_runtime		= 0;
5003 	p->se.prev_sum_exec_runtime	= 0;
5004 	p->se.nr_migrations		= 0;
5005 	p->se.vruntime			= 0;
5006 	p->se.vlag			= 0;
5007 	INIT_LIST_HEAD(&p->se.group_node);
5008 
5009 	/* A delayed task cannot be in clone(). */
5010 	SCHED_WARN_ON(p->se.sched_delayed);
5011 
5012 #ifdef CONFIG_FAIR_GROUP_SCHED
5013 	p->se.cfs_rq			= NULL;
5014 #endif
5015 
5016 	trace_android_rvh_sched_fork_init(p);
5017 
5018 #ifdef CONFIG_SCHEDSTATS
5019 	/* Even if schedstat is disabled, there should not be garbage */
5020 	memset(&p->stats, 0, sizeof(p->stats));
5021 #endif
5022 
5023 	init_dl_entity(&p->dl);
5024 
5025 	INIT_LIST_HEAD(&p->rt.run_list);
5026 	p->rt.timeout		= 0;
5027 	p->rt.time_slice	= sched_rr_timeslice;
5028 	p->rt.on_rq		= 0;
5029 	p->rt.on_list		= 0;
5030 
5031 #ifdef CONFIG_SCHED_CLASS_EXT
5032 	init_scx_entity(&p->scx);
5033 #endif
5034 
5035 #ifdef CONFIG_PREEMPT_NOTIFIERS
5036 	INIT_HLIST_HEAD(&p->preempt_notifiers);
5037 #endif
5038 
5039 #ifdef CONFIG_COMPACTION
5040 	p->capture_control = NULL;
5041 #endif
5042 	init_numa_balancing(clone_flags, p);
5043 #ifdef CONFIG_SMP
5044 	p->wake_entry.u_flags = CSD_TYPE_TTWU;
5045 	p->migration_pending = NULL;
5046 #endif
5047 	init_sched_mm_cid(p);
5048 }
5049 
5050 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
5051 
5052 #ifdef CONFIG_NUMA_BALANCING
5053 
5054 int sysctl_numa_balancing_mode;
5055 
__set_numabalancing_state(bool enabled)5056 static void __set_numabalancing_state(bool enabled)
5057 {
5058 	if (enabled)
5059 		static_branch_enable(&sched_numa_balancing);
5060 	else
5061 		static_branch_disable(&sched_numa_balancing);
5062 }
5063 
set_numabalancing_state(bool enabled)5064 void set_numabalancing_state(bool enabled)
5065 {
5066 	if (enabled)
5067 		sysctl_numa_balancing_mode = NUMA_BALANCING_NORMAL;
5068 	else
5069 		sysctl_numa_balancing_mode = NUMA_BALANCING_DISABLED;
5070 	__set_numabalancing_state(enabled);
5071 }
5072 
5073 #ifdef CONFIG_PROC_SYSCTL
reset_memory_tiering(void)5074 static void reset_memory_tiering(void)
5075 {
5076 	struct pglist_data *pgdat;
5077 
5078 	for_each_online_pgdat(pgdat) {
5079 		pgdat->nbp_threshold = 0;
5080 		pgdat->nbp_th_nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
5081 		pgdat->nbp_th_start = jiffies_to_msecs(jiffies);
5082 	}
5083 }
5084 
sysctl_numa_balancing(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)5085 static int sysctl_numa_balancing(const struct ctl_table *table, int write,
5086 			  void *buffer, size_t *lenp, loff_t *ppos)
5087 {
5088 	struct ctl_table t;
5089 	int err;
5090 	int state = sysctl_numa_balancing_mode;
5091 
5092 	if (write && !capable(CAP_SYS_ADMIN))
5093 		return -EPERM;
5094 
5095 	t = *table;
5096 	t.data = &state;
5097 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
5098 	if (err < 0)
5099 		return err;
5100 	if (write) {
5101 		if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
5102 		    (state & NUMA_BALANCING_MEMORY_TIERING))
5103 			reset_memory_tiering();
5104 		sysctl_numa_balancing_mode = state;
5105 		__set_numabalancing_state(state);
5106 	}
5107 	return err;
5108 }
5109 #endif
5110 #endif
5111 
5112 #ifdef CONFIG_SCHEDSTATS
5113 
5114 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
5115 
set_schedstats(bool enabled)5116 static void set_schedstats(bool enabled)
5117 {
5118 	if (enabled)
5119 		static_branch_enable(&sched_schedstats);
5120 	else
5121 		static_branch_disable(&sched_schedstats);
5122 }
5123 
force_schedstat_enabled(void)5124 void force_schedstat_enabled(void)
5125 {
5126 	if (!schedstat_enabled()) {
5127 		pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
5128 		static_branch_enable(&sched_schedstats);
5129 	}
5130 }
5131 
setup_schedstats(char * str)5132 static int __init setup_schedstats(char *str)
5133 {
5134 	int ret = 0;
5135 	if (!str)
5136 		goto out;
5137 
5138 	if (!strcmp(str, "enable")) {
5139 		set_schedstats(true);
5140 		ret = 1;
5141 	} else if (!strcmp(str, "disable")) {
5142 		set_schedstats(false);
5143 		ret = 1;
5144 	}
5145 out:
5146 	if (!ret)
5147 		pr_warn("Unable to parse schedstats=\n");
5148 
5149 	return ret;
5150 }
5151 __setup("schedstats=", setup_schedstats);
5152 
5153 #ifdef CONFIG_PROC_SYSCTL
sysctl_schedstats(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)5154 static int sysctl_schedstats(const struct ctl_table *table, int write, void *buffer,
5155 		size_t *lenp, loff_t *ppos)
5156 {
5157 	struct ctl_table t;
5158 	int err;
5159 	int state = static_branch_likely(&sched_schedstats);
5160 
5161 	if (write && !capable(CAP_SYS_ADMIN))
5162 		return -EPERM;
5163 
5164 	t = *table;
5165 	t.data = &state;
5166 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
5167 	if (err < 0)
5168 		return err;
5169 	if (write)
5170 		set_schedstats(state);
5171 	return err;
5172 }
5173 #endif /* CONFIG_PROC_SYSCTL */
5174 #endif /* CONFIG_SCHEDSTATS */
5175 
5176 #ifdef CONFIG_SYSCTL
5177 static struct ctl_table sched_core_sysctls[] = {
5178 #ifdef CONFIG_SCHEDSTATS
5179 	{
5180 		.procname       = "sched_schedstats",
5181 		.data           = NULL,
5182 		.maxlen         = sizeof(unsigned int),
5183 		.mode           = 0644,
5184 		.proc_handler   = sysctl_schedstats,
5185 		.extra1         = SYSCTL_ZERO,
5186 		.extra2         = SYSCTL_ONE,
5187 	},
5188 #endif /* CONFIG_SCHEDSTATS */
5189 #ifdef CONFIG_UCLAMP_TASK
5190 	{
5191 		.procname       = "sched_util_clamp_min",
5192 		.data           = &sysctl_sched_uclamp_util_min,
5193 		.maxlen         = sizeof(unsigned int),
5194 		.mode           = 0644,
5195 		.proc_handler   = sysctl_sched_uclamp_handler,
5196 	},
5197 	{
5198 		.procname       = "sched_util_clamp_max",
5199 		.data           = &sysctl_sched_uclamp_util_max,
5200 		.maxlen         = sizeof(unsigned int),
5201 		.mode           = 0644,
5202 		.proc_handler   = sysctl_sched_uclamp_handler,
5203 	},
5204 	{
5205 		.procname       = "sched_util_clamp_min_rt_default",
5206 		.data           = &sysctl_sched_uclamp_util_min_rt_default,
5207 		.maxlen         = sizeof(unsigned int),
5208 		.mode           = 0644,
5209 		.proc_handler   = sysctl_sched_uclamp_handler,
5210 	},
5211 #endif /* CONFIG_UCLAMP_TASK */
5212 #ifdef CONFIG_NUMA_BALANCING
5213 	{
5214 		.procname	= "numa_balancing",
5215 		.data		= NULL, /* filled in by handler */
5216 		.maxlen		= sizeof(unsigned int),
5217 		.mode		= 0644,
5218 		.proc_handler	= sysctl_numa_balancing,
5219 		.extra1		= SYSCTL_ZERO,
5220 		.extra2		= SYSCTL_FOUR,
5221 	},
5222 #endif /* CONFIG_NUMA_BALANCING */
5223 };
sched_core_sysctl_init(void)5224 static int __init sched_core_sysctl_init(void)
5225 {
5226 	register_sysctl_init("kernel", sched_core_sysctls);
5227 	return 0;
5228 }
5229 late_initcall(sched_core_sysctl_init);
5230 #endif /* CONFIG_SYSCTL */
5231 
5232 /*
5233  * fork()/clone()-time setup:
5234  */
sched_fork(unsigned long clone_flags,struct task_struct * p)5235 int sched_fork(unsigned long clone_flags, struct task_struct *p)
5236 {
5237 	int should_scx = 0;
5238 
5239 	trace_android_rvh_sched_fork(p);
5240 
5241 	__sched_fork(clone_flags, p);
5242 	/*
5243 	 * We mark the process as NEW here. This guarantees that
5244 	 * nobody will actually run it, and a signal or other external
5245 	 * event cannot wake it up and insert it on the runqueue either.
5246 	 */
5247 	p->__state = TASK_NEW;
5248 
5249 	/*
5250 	 * Make sure we do not leak PI boosting priority to the child.
5251 	 */
5252 	p->prio = current->normal_prio;
5253 	trace_android_rvh_prepare_prio_fork(p);
5254 
5255 	uclamp_fork(p);
5256 
5257 	/*
5258 	 * Revert to default priority/policy on fork if requested.
5259 	 */
5260 	if (unlikely(p->sched_reset_on_fork)) {
5261 		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
5262 			p->policy = SCHED_NORMAL;
5263 			p->static_prio = NICE_TO_PRIO(0);
5264 			p->rt_priority = 0;
5265 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
5266 			p->static_prio = NICE_TO_PRIO(0);
5267 
5268 		p->prio = p->normal_prio = p->static_prio;
5269 		set_load_weight(p, false);
5270 		p->se.custom_slice = 0;
5271 		p->se.slice = sysctl_sched_base_slice;
5272 
5273 		/*
5274 		 * We don't need the reset flag anymore after the fork. It has
5275 		 * fulfilled its duty:
5276 		 */
5277 		p->sched_reset_on_fork = 0;
5278 	}
5279 
5280 	if (dl_prio(p->prio))
5281 		return -EAGAIN;
5282 
5283 	scx_pre_fork(p);
5284 
5285 	trace_android_vh_task_should_scx(&should_scx, p->policy, p->prio);
5286 	if (rt_prio(p->prio) && !should_scx) {
5287 		p->sched_class = &rt_sched_class;
5288 #ifdef CONFIG_SCHED_CLASS_EXT
5289 	} else if (task_should_scx(p->policy) || should_scx) {
5290 		p->sched_class = &ext_sched_class;
5291 #endif
5292 	} else {
5293 		p->sched_class = &fair_sched_class;
5294 	}
5295 
5296 	init_entity_runnable_average(&p->se);
5297 	trace_android_rvh_finish_prio_fork(p);
5298 
5299 
5300 #ifdef CONFIG_SCHED_INFO
5301 	if (likely(sched_info_on()))
5302 		memset(&p->sched_info, 0, sizeof(p->sched_info));
5303 #endif
5304 #if defined(CONFIG_SMP)
5305 	p->on_cpu = 0;
5306 #endif
5307 	init_task_preempt_count(p);
5308 #ifdef CONFIG_SMP
5309 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
5310 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
5311 #endif
5312 	return 0;
5313 }
5314 
sched_cgroup_fork(struct task_struct * p,struct kernel_clone_args * kargs)5315 int sched_cgroup_fork(struct task_struct *p, struct kernel_clone_args *kargs)
5316 {
5317 	unsigned long flags;
5318 
5319 	/*
5320 	 * Because we're not yet on the pid-hash, p->pi_lock isn't strictly
5321 	 * required yet, but lockdep gets upset if rules are violated.
5322 	 */
5323 	raw_spin_lock_irqsave(&p->pi_lock, flags);
5324 #ifdef CONFIG_CGROUP_SCHED
5325 	if (1) {
5326 		struct task_group *tg;
5327 		tg = container_of(kargs->cset->subsys[cpu_cgrp_id],
5328 				  struct task_group, css);
5329 		tg = autogroup_task_group(p, tg);
5330 		p->sched_task_group = tg;
5331 	}
5332 #endif
5333 	rseq_migrate(p);
5334 	/*
5335 	 * We're setting the CPU for the first time, we don't migrate,
5336 	 * so use __set_task_cpu().
5337 	 */
5338 	__set_task_cpu(p, smp_processor_id());
5339 	if (p->sched_class->task_fork)
5340 		p->sched_class->task_fork(p);
5341 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5342 
5343 	return scx_fork(p);
5344 }
5345 
sched_cancel_fork(struct task_struct * p)5346 void sched_cancel_fork(struct task_struct *p)
5347 {
5348 	scx_cancel_fork(p);
5349 }
5350 
sched_post_fork(struct task_struct * p)5351 void sched_post_fork(struct task_struct *p)
5352 {
5353 	uclamp_post_fork(p);
5354 	scx_post_fork(p);
5355 }
5356 
to_ratio(u64 period,u64 runtime)5357 unsigned long to_ratio(u64 period, u64 runtime)
5358 {
5359 	if (runtime == RUNTIME_INF)
5360 		return BW_UNIT;
5361 
5362 	/*
5363 	 * Doing this here saves a lot of checks in all
5364 	 * the calling paths, and returning zero seems
5365 	 * safe for them anyway.
5366 	 */
5367 	if (period == 0)
5368 		return 0;
5369 
5370 	return div64_u64(runtime << BW_SHIFT, period);
5371 }
5372 
5373 /*
5374  * wake_up_new_task - wake up a newly created task for the first time.
5375  *
5376  * This function will do some initial scheduler statistics housekeeping
5377  * that must be done for every newly created context, then puts the task
5378  * on the runqueue and wakes it.
5379  */
wake_up_new_task(struct task_struct * p)5380 void wake_up_new_task(struct task_struct *p)
5381 {
5382 	struct rq_flags rf;
5383 	struct rq *rq;
5384 	int wake_flags = WF_FORK;
5385 
5386 	trace_android_rvh_wake_up_new_task(p);
5387 
5388 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
5389 	WRITE_ONCE(p->__state, TASK_RUNNING);
5390 #ifdef CONFIG_SMP
5391 	/*
5392 	 * Fork balancing, do it here and not earlier because:
5393 	 *  - cpus_ptr can change in the fork path
5394 	 *  - any previously selected CPU might disappear through hotplug
5395 	 *
5396 	 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
5397 	 * as we're not fully set-up yet.
5398 	 */
5399 	p->recent_used_cpu = task_cpu(p);
5400 	rseq_migrate(p);
5401 	__set_task_cpu(p, select_task_rq(p, task_cpu(p), &wake_flags));
5402 #endif
5403 	rq = __task_rq_lock(p, &rf);
5404 	update_rq_clock(rq);
5405 	post_init_entity_util_avg(p);
5406 	trace_android_rvh_new_task_stats(p);
5407 
5408 	activate_task(rq, p, ENQUEUE_NOCLOCK | ENQUEUE_INITIAL);
5409 	trace_sched_wakeup_new(p);
5410 	wakeup_preempt(rq, p, wake_flags);
5411 #ifdef CONFIG_SMP
5412 	if (p->sched_class->task_woken) {
5413 		/*
5414 		 * Nothing relies on rq->lock after this, so it's fine to
5415 		 * drop it.
5416 		 */
5417 		rq_unpin_lock(rq, &rf);
5418 		p->sched_class->task_woken(rq, p);
5419 		rq_repin_lock(rq, &rf);
5420 	}
5421 #endif
5422 	task_rq_unlock(rq, p, &rf);
5423 }
5424 
5425 #ifdef CONFIG_PREEMPT_NOTIFIERS
5426 
5427 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
5428 
preempt_notifier_inc(void)5429 void preempt_notifier_inc(void)
5430 {
5431 	static_branch_inc(&preempt_notifier_key);
5432 }
5433 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
5434 
preempt_notifier_dec(void)5435 void preempt_notifier_dec(void)
5436 {
5437 	static_branch_dec(&preempt_notifier_key);
5438 }
5439 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
5440 
5441 /**
5442  * preempt_notifier_register - tell me when current is being preempted & rescheduled
5443  * @notifier: notifier struct to register
5444  */
preempt_notifier_register(struct preempt_notifier * notifier)5445 void preempt_notifier_register(struct preempt_notifier *notifier)
5446 {
5447 	if (!static_branch_unlikely(&preempt_notifier_key))
5448 		WARN(1, "registering preempt_notifier while notifiers disabled\n");
5449 
5450 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
5451 }
5452 EXPORT_SYMBOL_GPL(preempt_notifier_register);
5453 
5454 /**
5455  * preempt_notifier_unregister - no longer interested in preemption notifications
5456  * @notifier: notifier struct to unregister
5457  *
5458  * This is *not* safe to call from within a preemption notifier.
5459  */
preempt_notifier_unregister(struct preempt_notifier * notifier)5460 void preempt_notifier_unregister(struct preempt_notifier *notifier)
5461 {
5462 	hlist_del(&notifier->link);
5463 }
5464 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
5465 
__fire_sched_in_preempt_notifiers(struct task_struct * curr)5466 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
5467 {
5468 	struct preempt_notifier *notifier;
5469 
5470 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
5471 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
5472 }
5473 
fire_sched_in_preempt_notifiers(struct task_struct * curr)5474 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
5475 {
5476 	if (static_branch_unlikely(&preempt_notifier_key))
5477 		__fire_sched_in_preempt_notifiers(curr);
5478 }
5479 
5480 static void
__fire_sched_out_preempt_notifiers(struct task_struct * curr,struct task_struct * next)5481 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
5482 				   struct task_struct *next)
5483 {
5484 	struct preempt_notifier *notifier;
5485 
5486 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
5487 		notifier->ops->sched_out(notifier, next);
5488 }
5489 
5490 static __always_inline void
fire_sched_out_preempt_notifiers(struct task_struct * curr,struct task_struct * next)5491 fire_sched_out_preempt_notifiers(struct task_struct *curr,
5492 				 struct task_struct *next)
5493 {
5494 	if (static_branch_unlikely(&preempt_notifier_key))
5495 		__fire_sched_out_preempt_notifiers(curr, next);
5496 }
5497 
5498 #else /* !CONFIG_PREEMPT_NOTIFIERS */
5499 
fire_sched_in_preempt_notifiers(struct task_struct * curr)5500 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
5501 {
5502 }
5503 
5504 static inline void
fire_sched_out_preempt_notifiers(struct task_struct * curr,struct task_struct * next)5505 fire_sched_out_preempt_notifiers(struct task_struct *curr,
5506 				 struct task_struct *next)
5507 {
5508 }
5509 
5510 #endif /* CONFIG_PREEMPT_NOTIFIERS */
5511 
prepare_task(struct task_struct * next)5512 static inline void prepare_task(struct task_struct *next)
5513 {
5514 #ifdef CONFIG_SMP
5515 	/*
5516 	 * Claim the task as running, we do this before switching to it
5517 	 * such that any running task will have this set.
5518 	 *
5519 	 * See the smp_load_acquire(&p->on_cpu) case in ttwu() and
5520 	 * its ordering comment.
5521 	 */
5522 	WRITE_ONCE(next->on_cpu, 1);
5523 #endif
5524 }
5525 
finish_task(struct task_struct * prev)5526 static inline void finish_task(struct task_struct *prev)
5527 {
5528 #ifdef CONFIG_SMP
5529 	/*
5530 	 * This must be the very last reference to @prev from this CPU. After
5531 	 * p->on_cpu is cleared, the task can be moved to a different CPU. We
5532 	 * must ensure this doesn't happen until the switch is completely
5533 	 * finished.
5534 	 *
5535 	 * In particular, the load of prev->state in finish_task_switch() must
5536 	 * happen before this.
5537 	 *
5538 	 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
5539 	 */
5540 	smp_store_release(&prev->on_cpu, 0);
5541 #endif
5542 }
5543 
5544 #ifdef CONFIG_SMP
5545 
do_balance_callbacks(struct rq * rq,struct balance_callback * head)5546 static void do_balance_callbacks(struct rq *rq, struct balance_callback *head)
5547 {
5548 	void (*func)(struct rq *rq);
5549 	struct balance_callback *next;
5550 
5551 	lockdep_assert_rq_held(rq);
5552 
5553 	while (head) {
5554 		func = (void (*)(struct rq *))head->func;
5555 		next = head->next;
5556 		head->next = NULL;
5557 		head = next;
5558 
5559 		func(rq);
5560 	}
5561 }
5562 
5563 #ifdef CONFIG_SCHED_PROXY_EXEC
5564 /*
5565  * Only called from __schedule context
5566  *
5567  * There are some cases where we are going to re-do the action
5568  * that added the balance callbacks. We may not be in a state
5569  * where we can run them, so just zap them so they can be
5570  * properly re-added on the next time around. This is similar
5571  * handling to running the callbacks, except we just don't call
5572  * them.
5573  */
zap_balance_callbacks(struct rq * rq)5574 static void zap_balance_callbacks(struct rq *rq)
5575 {
5576 	struct balance_callback *next, *head;
5577 	bool found = false;
5578 
5579 	lockdep_assert_rq_held(rq);
5580 
5581 	head = rq->balance_callback;
5582 	while (head) {
5583 		if (head == &balance_push_callback)
5584 			found = true;
5585 		next = head->next;
5586 		head->next = NULL;
5587 		head = next;
5588 	}
5589 	rq->balance_callback = found ? &balance_push_callback : NULL;
5590 }
5591 #endif
5592 
5593 static void balance_push(struct rq *rq);
5594 
5595 /*
5596  * balance_push_callback is a right abuse of the callback interface and plays
5597  * by significantly different rules.
5598  *
5599  * Where the normal balance_callback's purpose is to be ran in the same context
5600  * that queued it (only later, when it's safe to drop rq->lock again),
5601  * balance_push_callback is specifically targeted at __schedule().
5602  *
5603  * This abuse is tolerated because it places all the unlikely/odd cases behind
5604  * a single test, namely: rq->balance_callback == NULL.
5605  */
5606 struct balance_callback balance_push_callback = {
5607 	.next = NULL,
5608 	.func = balance_push,
5609 };
5610 EXPORT_SYMBOL_GPL(balance_push_callback);
5611 
5612 static inline struct balance_callback *
__splice_balance_callbacks(struct rq * rq,bool split)5613 __splice_balance_callbacks(struct rq *rq, bool split)
5614 {
5615 	struct balance_callback *head = rq->balance_callback;
5616 
5617 	if (likely(!head))
5618 		return NULL;
5619 
5620 	lockdep_assert_rq_held(rq);
5621 	/*
5622 	 * Must not take balance_push_callback off the list when
5623 	 * splice_balance_callbacks() and balance_callbacks() are not
5624 	 * in the same rq->lock section.
5625 	 *
5626 	 * In that case it would be possible for __schedule() to interleave
5627 	 * and observe the list empty.
5628 	 */
5629 	if (split && head == &balance_push_callback)
5630 		head = NULL;
5631 	else
5632 		rq->balance_callback = NULL;
5633 
5634 	return head;
5635 }
5636 
splice_balance_callbacks(struct rq * rq)5637 struct balance_callback *splice_balance_callbacks(struct rq *rq)
5638 {
5639 	return __splice_balance_callbacks(rq, true);
5640 }
5641 
__balance_callbacks(struct rq * rq)5642 void __balance_callbacks(struct rq *rq)
5643 {
5644 	do_balance_callbacks(rq, __splice_balance_callbacks(rq, false));
5645 }
5646 EXPORT_SYMBOL_GPL(__balance_callbacks);
5647 
balance_callbacks(struct rq * rq,struct balance_callback * head)5648 void balance_callbacks(struct rq *rq, struct balance_callback *head)
5649 {
5650 	unsigned long flags;
5651 
5652 	if (unlikely(head)) {
5653 		raw_spin_rq_lock_irqsave(rq, flags);
5654 		do_balance_callbacks(rq, head);
5655 		raw_spin_rq_unlock_irqrestore(rq, flags);
5656 	}
5657 }
5658 
5659 #else
5660 
zap_balance_callbacks(struct rq * rq)5661 static inline void zap_balance_callbacks(struct rq *rq)
5662 {
5663 }
5664 
__balance_callbacks(struct rq * rq)5665 static inline void __balance_callbacks(struct rq *rq)
5666 {
5667 }
5668 
5669 #endif
5670 
5671 static inline void
prepare_lock_switch(struct rq * rq,struct task_struct * next,struct rq_flags * rf)5672 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
5673 {
5674 	/*
5675 	 * Since the runqueue lock will be released by the next
5676 	 * task (which is an invalid locking op but in the case
5677 	 * of the scheduler it's an obvious special-case), so we
5678 	 * do an early lockdep release here:
5679 	 */
5680 	rq_unpin_lock(rq, rf);
5681 	spin_release(&__rq_lockp(rq)->dep_map, _THIS_IP_);
5682 #ifdef CONFIG_DEBUG_SPINLOCK
5683 	/* this is a valid case when another task releases the spinlock */
5684 	rq_lockp(rq)->owner = next;
5685 #endif
5686 }
5687 
finish_lock_switch(struct rq * rq)5688 static inline void finish_lock_switch(struct rq *rq)
5689 {
5690 	/*
5691 	 * If we are tracking spinlock dependencies then we have to
5692 	 * fix up the runqueue lock - which gets 'carried over' from
5693 	 * prev into current:
5694 	 */
5695 	spin_acquire(&__rq_lockp(rq)->dep_map, 0, 0, _THIS_IP_);
5696 	__balance_callbacks(rq);
5697 	raw_spin_rq_unlock_irq(rq);
5698 }
5699 
5700 /*
5701  * NOP if the arch has not defined these:
5702  */
5703 
5704 #ifndef prepare_arch_switch
5705 # define prepare_arch_switch(next)	do { } while (0)
5706 #endif
5707 
5708 #ifndef finish_arch_post_lock_switch
5709 # define finish_arch_post_lock_switch()	do { } while (0)
5710 #endif
5711 
kmap_local_sched_out(void)5712 static inline void kmap_local_sched_out(void)
5713 {
5714 #ifdef CONFIG_KMAP_LOCAL
5715 	if (unlikely(current->kmap_ctrl.idx))
5716 		__kmap_local_sched_out();
5717 #endif
5718 }
5719 
kmap_local_sched_in(void)5720 static inline void kmap_local_sched_in(void)
5721 {
5722 #ifdef CONFIG_KMAP_LOCAL
5723 	if (unlikely(current->kmap_ctrl.idx))
5724 		__kmap_local_sched_in();
5725 #endif
5726 }
5727 
5728 /**
5729  * prepare_task_switch - prepare to switch tasks
5730  * @rq: the runqueue preparing to switch
5731  * @prev: the current task that is being switched out
5732  * @next: the task we are going to switch to.
5733  *
5734  * This is called with the rq lock held and interrupts off. It must
5735  * be paired with a subsequent finish_task_switch after the context
5736  * switch.
5737  *
5738  * prepare_task_switch sets up locking and calls architecture specific
5739  * hooks.
5740  */
5741 static inline void
prepare_task_switch(struct rq * rq,struct task_struct * prev,struct task_struct * next)5742 prepare_task_switch(struct rq *rq, struct task_struct *prev,
5743 		    struct task_struct *next)
5744 {
5745 	kcov_prepare_switch(prev);
5746 	sched_info_switch(rq, prev, next);
5747 	perf_event_task_sched_out(prev, next);
5748 	rseq_preempt(prev);
5749 	fire_sched_out_preempt_notifiers(prev, next);
5750 	kmap_local_sched_out();
5751 	prepare_task(next);
5752 	prepare_arch_switch(next);
5753 }
5754 
5755 /**
5756  * finish_task_switch - clean up after a task-switch
5757  * @prev: the thread we just switched away from.
5758  *
5759  * finish_task_switch must be called after the context switch, paired
5760  * with a prepare_task_switch call before the context switch.
5761  * finish_task_switch will reconcile locking set up by prepare_task_switch,
5762  * and do any other architecture-specific cleanup actions.
5763  *
5764  * Note that we may have delayed dropping an mm in context_switch(). If
5765  * so, we finish that here outside of the runqueue lock. (Doing it
5766  * with the lock held can cause deadlocks; see schedule() for
5767  * details.)
5768  *
5769  * The context switch have flipped the stack from under us and restored the
5770  * local variables which were saved when this task called schedule() in the
5771  * past. 'prev == current' is still correct but we need to recalculate this_rq
5772  * because prev may have moved to another CPU.
5773  */
finish_task_switch(struct task_struct * prev)5774 static struct rq *finish_task_switch(struct task_struct *prev)
5775 	__releases(rq->lock)
5776 {
5777 	struct rq *rq = this_rq();
5778 	struct mm_struct *mm = rq->prev_mm;
5779 	unsigned int prev_state;
5780 
5781 	/*
5782 	 * The previous task will have left us with a preempt_count of 2
5783 	 * because it left us after:
5784 	 *
5785 	 *	schedule()
5786 	 *	  preempt_disable();			// 1
5787 	 *	  __schedule()
5788 	 *	    raw_spin_lock_irq(&rq->lock)	// 2
5789 	 *
5790 	 * Also, see FORK_PREEMPT_COUNT.
5791 	 */
5792 	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
5793 		      "corrupted preempt_count: %s/%d/0x%x\n",
5794 		      current->comm, current->pid, preempt_count()))
5795 		preempt_count_set(FORK_PREEMPT_COUNT);
5796 
5797 	rq->prev_mm = NULL;
5798 
5799 	/*
5800 	 * A task struct has one reference for the use as "current".
5801 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
5802 	 * schedule one last time. The schedule call will never return, and
5803 	 * the scheduled task must drop that reference.
5804 	 *
5805 	 * We must observe prev->state before clearing prev->on_cpu (in
5806 	 * finish_task), otherwise a concurrent wakeup can get prev
5807 	 * running on another CPU and we could rave with its RUNNING -> DEAD
5808 	 * transition, resulting in a double drop.
5809 	 */
5810 	prev_state = READ_ONCE(prev->__state);
5811 	vtime_task_switch(prev);
5812 	perf_event_task_sched_in(prev, current);
5813 	finish_task(prev);
5814 	tick_nohz_task_switch();
5815 	finish_lock_switch(rq);
5816 	finish_arch_post_lock_switch();
5817 	kcov_finish_switch(current);
5818 	/*
5819 	 * kmap_local_sched_out() is invoked with rq::lock held and
5820 	 * interrupts disabled. There is no requirement for that, but the
5821 	 * sched out code does not have an interrupt enabled section.
5822 	 * Restoring the maps on sched in does not require interrupts being
5823 	 * disabled either.
5824 	 */
5825 	kmap_local_sched_in();
5826 
5827 	fire_sched_in_preempt_notifiers(current);
5828 	/*
5829 	 * When switching through a kernel thread, the loop in
5830 	 * membarrier_{private,global}_expedited() may have observed that
5831 	 * kernel thread and not issued an IPI. It is therefore possible to
5832 	 * schedule between user->kernel->user threads without passing though
5833 	 * switch_mm(). Membarrier requires a barrier after storing to
5834 	 * rq->curr, before returning to userspace, so provide them here:
5835 	 *
5836 	 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
5837 	 *   provided by mmdrop_lazy_tlb(),
5838 	 * - a sync_core for SYNC_CORE.
5839 	 */
5840 	if (mm) {
5841 		membarrier_mm_sync_core_before_usermode(mm);
5842 		mmdrop_lazy_tlb_sched(mm);
5843 	}
5844 
5845 	if (unlikely(prev_state == TASK_DEAD)) {
5846 		if (prev->sched_class->task_dead)
5847 			prev->sched_class->task_dead(prev);
5848 
5849 		trace_android_rvh_flush_task(prev);
5850 
5851 		/* Task is done with its stack. */
5852 		put_task_stack(prev);
5853 
5854 		put_task_struct_rcu_user(prev);
5855 	}
5856 
5857 	return rq;
5858 }
5859 
5860 /**
5861  * schedule_tail - first thing a freshly forked thread must call.
5862  * @prev: the thread we just switched away from.
5863  */
schedule_tail(struct task_struct * prev)5864 asmlinkage __visible void schedule_tail(struct task_struct *prev)
5865 	__releases(rq->lock)
5866 {
5867 	/*
5868 	 * New tasks start with FORK_PREEMPT_COUNT, see there and
5869 	 * finish_task_switch() for details.
5870 	 *
5871 	 * finish_task_switch() will drop rq->lock() and lower preempt_count
5872 	 * and the preempt_enable() will end up enabling preemption (on
5873 	 * PREEMPT_COUNT kernels).
5874 	 */
5875 
5876 	finish_task_switch(prev);
5877 	preempt_enable();
5878 
5879 	if (current->set_child_tid)
5880 		put_user(task_pid_vnr(current), current->set_child_tid);
5881 
5882 	calculate_sigpending();
5883 }
5884 
5885 /*
5886  * context_switch - switch to the new MM and the new thread's register state.
5887  */
5888 static __always_inline struct rq *
context_switch(struct rq * rq,struct task_struct * prev,struct task_struct * next,struct rq_flags * rf)5889 context_switch(struct rq *rq, struct task_struct *prev,
5890 	       struct task_struct *next, struct rq_flags *rf)
5891 {
5892 	prepare_task_switch(rq, prev, next);
5893 
5894 	/*
5895 	 * For paravirt, this is coupled with an exit in switch_to to
5896 	 * combine the page table reload and the switch backend into
5897 	 * one hypercall.
5898 	 */
5899 	arch_start_context_switch(prev);
5900 
5901 	/*
5902 	 * kernel -> kernel   lazy + transfer active
5903 	 *   user -> kernel   lazy + mmgrab_lazy_tlb() active
5904 	 *
5905 	 * kernel ->   user   switch + mmdrop_lazy_tlb() active
5906 	 *   user ->   user   switch
5907 	 *
5908 	 * switch_mm_cid() needs to be updated if the barriers provided
5909 	 * by context_switch() are modified.
5910 	 */
5911 	if (!next->mm) {                                // to kernel
5912 		enter_lazy_tlb(prev->active_mm, next);
5913 
5914 		next->active_mm = prev->active_mm;
5915 		if (prev->mm)                           // from user
5916 			mmgrab_lazy_tlb(prev->active_mm);
5917 		else
5918 			prev->active_mm = NULL;
5919 	} else {                                        // to user
5920 		membarrier_switch_mm(rq, prev->active_mm, next->mm);
5921 		/*
5922 		 * sys_membarrier() requires an smp_mb() between setting
5923 		 * rq->curr / membarrier_switch_mm() and returning to userspace.
5924 		 *
5925 		 * The below provides this either through switch_mm(), or in
5926 		 * case 'prev->active_mm == next->mm' through
5927 		 * finish_task_switch()'s mmdrop().
5928 		 */
5929 		switch_mm_irqs_off(prev->active_mm, next->mm, next);
5930 		lru_gen_use_mm(next->mm);
5931 
5932 		if (!prev->mm) {                        // from kernel
5933 			/* will mmdrop_lazy_tlb() in finish_task_switch(). */
5934 			rq->prev_mm = prev->active_mm;
5935 			prev->active_mm = NULL;
5936 		}
5937 	}
5938 
5939 	/* switch_mm_cid() requires the memory barriers above. */
5940 	switch_mm_cid(rq, prev, next);
5941 
5942 	prepare_lock_switch(rq, next, rf);
5943 
5944 	/* Here we just switch the register state and the stack. */
5945 	switch_to(prev, next, prev);
5946 	barrier();
5947 
5948 	return finish_task_switch(prev);
5949 }
5950 
5951 /*
5952  * nr_running and nr_context_switches:
5953  *
5954  * externally visible scheduler statistics: current number of runnable
5955  * threads, total number of context switches performed since bootup.
5956  */
nr_running(void)5957 unsigned int nr_running(void)
5958 {
5959 	unsigned int i, sum = 0;
5960 
5961 	for_each_online_cpu(i)
5962 		sum += cpu_rq(i)->nr_running;
5963 
5964 	return sum;
5965 }
5966 
5967 /*
5968  * Check if only the current task is running on the CPU.
5969  *
5970  * Caution: this function does not check that the caller has disabled
5971  * preemption, thus the result might have a time-of-check-to-time-of-use
5972  * race.  The caller is responsible to use it correctly, for example:
5973  *
5974  * - from a non-preemptible section (of course)
5975  *
5976  * - from a thread that is bound to a single CPU
5977  *
5978  * - in a loop with very short iterations (e.g. a polling loop)
5979  */
single_task_running(void)5980 bool single_task_running(void)
5981 {
5982 	return raw_rq()->nr_running == 1;
5983 }
5984 EXPORT_SYMBOL(single_task_running);
5985 
nr_context_switches_cpu(int cpu)5986 unsigned long long nr_context_switches_cpu(int cpu)
5987 {
5988 	return cpu_rq(cpu)->nr_switches;
5989 }
5990 
nr_context_switches(void)5991 unsigned long long nr_context_switches(void)
5992 {
5993 	int i;
5994 	unsigned long long sum = 0;
5995 
5996 	for_each_possible_cpu(i)
5997 		sum += cpu_rq(i)->nr_switches;
5998 
5999 	return sum;
6000 }
6001 
6002 /*
6003  * Consumers of these two interfaces, like for example the cpuidle menu
6004  * governor, are using nonsensical data. Preferring shallow idle state selection
6005  * for a CPU that has IO-wait which might not even end up running the task when
6006  * it does become runnable.
6007  */
6008 
nr_iowait_cpu(int cpu)6009 unsigned int nr_iowait_cpu(int cpu)
6010 {
6011 	return atomic_read(&cpu_rq(cpu)->nr_iowait);
6012 }
6013 
6014 /*
6015  * IO-wait accounting, and how it's mostly bollocks (on SMP).
6016  *
6017  * The idea behind IO-wait account is to account the idle time that we could
6018  * have spend running if it were not for IO. That is, if we were to improve the
6019  * storage performance, we'd have a proportional reduction in IO-wait time.
6020  *
6021  * This all works nicely on UP, where, when a task blocks on IO, we account
6022  * idle time as IO-wait, because if the storage were faster, it could've been
6023  * running and we'd not be idle.
6024  *
6025  * This has been extended to SMP, by doing the same for each CPU. This however
6026  * is broken.
6027  *
6028  * Imagine for instance the case where two tasks block on one CPU, only the one
6029  * CPU will have IO-wait accounted, while the other has regular idle. Even
6030  * though, if the storage were faster, both could've ran at the same time,
6031  * utilising both CPUs.
6032  *
6033  * This means, that when looking globally, the current IO-wait accounting on
6034  * SMP is a lower bound, by reason of under accounting.
6035  *
6036  * Worse, since the numbers are provided per CPU, they are sometimes
6037  * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
6038  * associated with any one particular CPU, it can wake to another CPU than it
6039  * blocked on. This means the per CPU IO-wait number is meaningless.
6040  *
6041  * Task CPU affinities can make all that even more 'interesting'.
6042  */
6043 
nr_iowait(void)6044 unsigned int nr_iowait(void)
6045 {
6046 	unsigned int i, sum = 0;
6047 
6048 	for_each_possible_cpu(i)
6049 		sum += nr_iowait_cpu(i);
6050 
6051 	return sum;
6052 }
6053 
6054 #ifdef CONFIG_SMP
6055 
6056 /*
6057  * sched_exec - execve() is a valuable balancing opportunity, because at
6058  * this point the task has the smallest effective memory and cache footprint.
6059  */
sched_exec(void)6060 void sched_exec(void)
6061 {
6062 	struct task_struct *p = current;
6063 	struct migration_arg arg;
6064 	int dest_cpu;
6065 	bool cond = false;
6066 
6067 	trace_android_rvh_sched_exec(&cond);
6068 	if (cond)
6069 		return;
6070 
6071 	scoped_guard (raw_spinlock_irqsave, &p->pi_lock) {
6072 		dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC);
6073 		if (dest_cpu == smp_processor_id())
6074 			return;
6075 
6076 		if (unlikely(!cpu_active(dest_cpu)))
6077 			return;
6078 
6079 		arg = (struct migration_arg){ p, dest_cpu };
6080 	}
6081 	stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
6082 }
6083 
6084 #endif
6085 
6086 DEFINE_PER_CPU(struct kernel_stat, kstat);
6087 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
6088 
6089 EXPORT_PER_CPU_SYMBOL(kstat);
6090 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
6091 
6092 /*
6093  * The function fair_sched_class.update_curr accesses the struct curr
6094  * and its field curr->exec_start; when called from task_sched_runtime(),
6095  * we observe a high rate of cache misses in practice.
6096  * Prefetching this data results in improved performance.
6097  */
prefetch_curr_exec_start(struct task_struct * p)6098 static inline void prefetch_curr_exec_start(struct task_struct *p)
6099 {
6100 #ifdef CONFIG_FAIR_GROUP_SCHED
6101 	struct sched_entity *curr = p->se.cfs_rq->curr;
6102 #else
6103 	struct sched_entity *curr = task_rq(p)->cfs.curr;
6104 #endif
6105 	prefetch(curr);
6106 	prefetch(&curr->exec_start);
6107 }
6108 
6109 /*
6110  * Return accounted runtime for the task.
6111  * In case the task is currently running, return the runtime plus current's
6112  * pending runtime that have not been accounted yet.
6113  */
task_sched_runtime(struct task_struct * p)6114 unsigned long long task_sched_runtime(struct task_struct *p)
6115 {
6116 	struct rq_flags rf;
6117 	struct rq *rq;
6118 	u64 ns;
6119 
6120 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
6121 	/*
6122 	 * 64-bit doesn't need locks to atomically read a 64-bit value.
6123 	 * So we have a optimization chance when the task's delta_exec is 0.
6124 	 * Reading ->on_cpu is racy, but this is OK.
6125 	 *
6126 	 * If we race with it leaving CPU, we'll take a lock. So we're correct.
6127 	 * If we race with it entering CPU, unaccounted time is 0. This is
6128 	 * indistinguishable from the read occurring a few cycles earlier.
6129 	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
6130 	 * been accounted, so we're correct here as well.
6131 	 */
6132 	if (!p->on_cpu || !task_on_rq_queued(p))
6133 		return p->se.sum_exec_runtime;
6134 #endif
6135 
6136 	rq = task_rq_lock(p, &rf);
6137 	/*
6138 	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
6139 	 * project cycles that may never be accounted to this
6140 	 * thread, breaking clock_gettime().
6141 	 */
6142 	if (task_current_donor(rq, p) && task_on_rq_queued(p)) {
6143 		prefetch_curr_exec_start(p);
6144 		update_rq_clock(rq);
6145 		p->sched_class->update_curr(rq);
6146 	}
6147 	ns = p->se.sum_exec_runtime;
6148 	task_rq_unlock(rq, p, &rf);
6149 
6150 	return ns;
6151 }
6152 
6153 #ifdef CONFIG_SCHED_DEBUG
cpu_resched_latency(struct rq * rq)6154 static u64 cpu_resched_latency(struct rq *rq)
6155 {
6156 	int latency_warn_ms = READ_ONCE(sysctl_resched_latency_warn_ms);
6157 	u64 resched_latency, now = rq_clock(rq);
6158 	static bool warned_once;
6159 
6160 	if (sysctl_resched_latency_warn_once && warned_once)
6161 		return 0;
6162 
6163 	if (!need_resched() || !latency_warn_ms)
6164 		return 0;
6165 
6166 	if (system_state == SYSTEM_BOOTING)
6167 		return 0;
6168 
6169 	if (!rq->last_seen_need_resched_ns) {
6170 		rq->last_seen_need_resched_ns = now;
6171 		rq->ticks_without_resched = 0;
6172 		return 0;
6173 	}
6174 
6175 	rq->ticks_without_resched++;
6176 	resched_latency = now - rq->last_seen_need_resched_ns;
6177 	if (resched_latency <= latency_warn_ms * NSEC_PER_MSEC)
6178 		return 0;
6179 
6180 	warned_once = true;
6181 
6182 	return resched_latency;
6183 }
6184 
setup_resched_latency_warn_ms(char * str)6185 static int __init setup_resched_latency_warn_ms(char *str)
6186 {
6187 	long val;
6188 
6189 	if ((kstrtol(str, 0, &val))) {
6190 		pr_warn("Unable to set resched_latency_warn_ms\n");
6191 		return 1;
6192 	}
6193 
6194 	sysctl_resched_latency_warn_ms = val;
6195 	return 1;
6196 }
6197 __setup("resched_latency_warn_ms=", setup_resched_latency_warn_ms);
6198 #else
cpu_resched_latency(struct rq * rq)6199 static inline u64 cpu_resched_latency(struct rq *rq) { return 0; }
6200 #endif /* CONFIG_SCHED_DEBUG */
6201 
6202 /*
6203  * This function gets called by the timer code, with HZ frequency.
6204  * We call it with interrupts disabled.
6205  */
sched_tick(void)6206 void sched_tick(void)
6207 {
6208 	int cpu = smp_processor_id();
6209 	struct rq *rq = cpu_rq(cpu);
6210 	/* accounting goes to the donor task */
6211 	struct task_struct *donor;
6212 	struct rq_flags rf;
6213 	unsigned long hw_pressure;
6214 	u64 resched_latency;
6215 
6216 	if (housekeeping_cpu(cpu, HK_TYPE_TICK))
6217 		arch_scale_freq_tick();
6218 
6219 	sched_clock_tick();
6220 
6221 	rq_lock(rq, &rf);
6222 	donor = rq->donor;
6223 
6224 	psi_account_irqtime(rq, donor, NULL);
6225 
6226 	update_rq_clock(rq);
6227 	trace_android_rvh_tick_entry(rq);
6228 	hw_pressure = arch_scale_hw_pressure(cpu_of(rq));
6229 	update_hw_load_avg(rq_clock_task(rq), rq, hw_pressure);
6230 	donor->sched_class->task_tick(rq, donor, 0);
6231 	if (sched_feat(LATENCY_WARN))
6232 		resched_latency = cpu_resched_latency(rq);
6233 	calc_global_load_tick(rq);
6234 	sched_core_tick(rq);
6235 	task_tick_mm_cid(rq, donor);
6236 	scx_tick(rq);
6237 
6238 	rq_unlock(rq, &rf);
6239 
6240 	if (sched_feat(LATENCY_WARN) && resched_latency)
6241 		resched_latency_warn(cpu, resched_latency);
6242 
6243 	perf_event_task_tick();
6244 
6245 	if (donor->flags & PF_WQ_WORKER)
6246 		wq_worker_tick(donor);
6247 
6248 #ifdef CONFIG_SMP
6249 	if (!scx_switched_all()) {
6250 		rq->idle_balance = idle_cpu(cpu);
6251 		sched_balance_trigger(rq);
6252 	}
6253 #endif
6254 
6255 	trace_android_vh_scheduler_tick(rq);
6256 }
6257 
6258 #ifdef CONFIG_NO_HZ_FULL
6259 
6260 struct tick_work {
6261 	int			cpu;
6262 	atomic_t		state;
6263 	struct delayed_work	work;
6264 };
6265 /* Values for ->state, see diagram below. */
6266 #define TICK_SCHED_REMOTE_OFFLINE	0
6267 #define TICK_SCHED_REMOTE_OFFLINING	1
6268 #define TICK_SCHED_REMOTE_RUNNING	2
6269 
6270 /*
6271  * State diagram for ->state:
6272  *
6273  *
6274  *          TICK_SCHED_REMOTE_OFFLINE
6275  *                    |   ^
6276  *                    |   |
6277  *                    |   | sched_tick_remote()
6278  *                    |   |
6279  *                    |   |
6280  *                    +--TICK_SCHED_REMOTE_OFFLINING
6281  *                    |   ^
6282  *                    |   |
6283  * sched_tick_start() |   | sched_tick_stop()
6284  *                    |   |
6285  *                    V   |
6286  *          TICK_SCHED_REMOTE_RUNNING
6287  *
6288  *
6289  * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
6290  * and sched_tick_start() are happy to leave the state in RUNNING.
6291  */
6292 
6293 static struct tick_work __percpu *tick_work_cpu;
6294 
sched_tick_remote(struct work_struct * work)6295 static void sched_tick_remote(struct work_struct *work)
6296 {
6297 	struct delayed_work *dwork = to_delayed_work(work);
6298 	struct tick_work *twork = container_of(dwork, struct tick_work, work);
6299 	int cpu = twork->cpu;
6300 	struct rq *rq = cpu_rq(cpu);
6301 	int os;
6302 
6303 	/*
6304 	 * Handle the tick only if it appears the remote CPU is running in full
6305 	 * dynticks mode. The check is racy by nature, but missing a tick or
6306 	 * having one too much is no big deal because the scheduler tick updates
6307 	 * statistics and checks timeslices in a time-independent way, regardless
6308 	 * of when exactly it is running.
6309 	 */
6310 	if (tick_nohz_tick_stopped_cpu(cpu)) {
6311 		guard(rq_lock_irq)(rq);
6312 		struct task_struct *curr = rq->curr;
6313 
6314 		if (cpu_online(cpu)) {
6315 			/*
6316 			 * Since this is a remote tick for full dynticks mode,
6317 			 * we are always sure that there is no proxy (only a
6318 			 * single task is running).
6319 			 */
6320 			SCHED_WARN_ON(rq->curr != rq->donor);
6321 			update_rq_clock(rq);
6322 
6323 			if (!is_idle_task(curr)) {
6324 				/*
6325 				 * Make sure the next tick runs within a
6326 				 * reasonable amount of time.
6327 				 */
6328 				u64 delta = rq_clock_task(rq) - curr->se.exec_start;
6329 				WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
6330 			}
6331 			curr->sched_class->task_tick(rq, curr, 0);
6332 
6333 			calc_load_nohz_remote(rq);
6334 		}
6335 	}
6336 
6337 	/*
6338 	 * Run the remote tick once per second (1Hz). This arbitrary
6339 	 * frequency is large enough to avoid overload but short enough
6340 	 * to keep scheduler internal stats reasonably up to date.  But
6341 	 * first update state to reflect hotplug activity if required.
6342 	 */
6343 	os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
6344 	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
6345 	if (os == TICK_SCHED_REMOTE_RUNNING)
6346 		queue_delayed_work(system_unbound_wq, dwork, HZ);
6347 }
6348 
sched_tick_start(int cpu)6349 static void sched_tick_start(int cpu)
6350 {
6351 	int os;
6352 	struct tick_work *twork;
6353 
6354 	if (housekeeping_cpu(cpu, HK_TYPE_TICK))
6355 		return;
6356 
6357 	WARN_ON_ONCE(!tick_work_cpu);
6358 
6359 	twork = per_cpu_ptr(tick_work_cpu, cpu);
6360 	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
6361 	WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
6362 	if (os == TICK_SCHED_REMOTE_OFFLINE) {
6363 		twork->cpu = cpu;
6364 		INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
6365 		queue_delayed_work(system_unbound_wq, &twork->work, HZ);
6366 	}
6367 }
6368 
6369 #ifdef CONFIG_HOTPLUG_CPU
sched_tick_stop(int cpu)6370 static void sched_tick_stop(int cpu)
6371 {
6372 	struct tick_work *twork;
6373 	int os;
6374 
6375 	if (housekeeping_cpu(cpu, HK_TYPE_TICK))
6376 		return;
6377 
6378 	WARN_ON_ONCE(!tick_work_cpu);
6379 
6380 	twork = per_cpu_ptr(tick_work_cpu, cpu);
6381 	/* There cannot be competing actions, but don't rely on stop-machine. */
6382 	os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
6383 	WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
6384 	/* Don't cancel, as this would mess up the state machine. */
6385 }
6386 #endif /* CONFIG_HOTPLUG_CPU */
6387 
sched_tick_offload_init(void)6388 int __init sched_tick_offload_init(void)
6389 {
6390 	tick_work_cpu = alloc_percpu(struct tick_work);
6391 	BUG_ON(!tick_work_cpu);
6392 	return 0;
6393 }
6394 
6395 #else /* !CONFIG_NO_HZ_FULL */
sched_tick_start(int cpu)6396 static inline void sched_tick_start(int cpu) { }
sched_tick_stop(int cpu)6397 static inline void sched_tick_stop(int cpu) { }
6398 #endif
6399 
6400 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
6401 				defined(CONFIG_TRACE_PREEMPT_TOGGLE))
6402 /*
6403  * If the value passed in is equal to the current preempt count
6404  * then we just disabled preemption. Start timing the latency.
6405  */
preempt_latency_start(int val)6406 static inline void preempt_latency_start(int val)
6407 {
6408 	if (preempt_count() == val) {
6409 		unsigned long ip = get_lock_parent_ip();
6410 #ifdef CONFIG_DEBUG_PREEMPT
6411 		current->preempt_disable_ip = ip;
6412 #endif
6413 		trace_preempt_off(CALLER_ADDR0, ip);
6414 	}
6415 }
6416 
preempt_count_add(int val)6417 void preempt_count_add(int val)
6418 {
6419 #ifdef CONFIG_DEBUG_PREEMPT
6420 	/*
6421 	 * Underflow?
6422 	 */
6423 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
6424 		return;
6425 #endif
6426 	__preempt_count_add(val);
6427 #ifdef CONFIG_DEBUG_PREEMPT
6428 	/*
6429 	 * Spinlock count overflowing soon?
6430 	 */
6431 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
6432 				PREEMPT_MASK - 10);
6433 #endif
6434 	preempt_latency_start(val);
6435 }
6436 EXPORT_SYMBOL(preempt_count_add);
6437 NOKPROBE_SYMBOL(preempt_count_add);
6438 
6439 /*
6440  * If the value passed in equals to the current preempt count
6441  * then we just enabled preemption. Stop timing the latency.
6442  */
preempt_latency_stop(int val)6443 static inline void preempt_latency_stop(int val)
6444 {
6445 	if (preempt_count() == val)
6446 		trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
6447 }
6448 
preempt_count_sub(int val)6449 void preempt_count_sub(int val)
6450 {
6451 #ifdef CONFIG_DEBUG_PREEMPT
6452 	/*
6453 	 * Underflow?
6454 	 */
6455 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
6456 		return;
6457 	/*
6458 	 * Is the spinlock portion underflowing?
6459 	 */
6460 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
6461 			!(preempt_count() & PREEMPT_MASK)))
6462 		return;
6463 #endif
6464 
6465 	preempt_latency_stop(val);
6466 	__preempt_count_sub(val);
6467 }
6468 EXPORT_SYMBOL(preempt_count_sub);
6469 NOKPROBE_SYMBOL(preempt_count_sub);
6470 
6471 #else
preempt_latency_start(int val)6472 static inline void preempt_latency_start(int val) { }
preempt_latency_stop(int val)6473 static inline void preempt_latency_stop(int val) { }
6474 #endif
6475 
get_preempt_disable_ip(struct task_struct * p)6476 static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
6477 {
6478 #ifdef CONFIG_DEBUG_PREEMPT
6479 	return p->preempt_disable_ip;
6480 #else
6481 	return 0;
6482 #endif
6483 }
6484 
6485 /*
6486  * Print scheduling while atomic bug:
6487  */
__schedule_bug(struct task_struct * prev)6488 static noinline void __schedule_bug(struct task_struct *prev)
6489 {
6490 	/* Save this before calling printk(), since that will clobber it */
6491 	unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
6492 
6493 	if (oops_in_progress)
6494 		return;
6495 
6496 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
6497 		prev->comm, prev->pid, preempt_count());
6498 
6499 	debug_show_held_locks(prev);
6500 	print_modules();
6501 	if (irqs_disabled())
6502 		print_irqtrace_events(prev);
6503 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) {
6504 		pr_err("Preemption disabled at:");
6505 		print_ip_sym(KERN_ERR, preempt_disable_ip);
6506 	}
6507 	check_panic_on_warn("scheduling while atomic");
6508 
6509 	trace_android_rvh_schedule_bug(prev);
6510 
6511 	dump_stack();
6512 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
6513 }
6514 
6515 /*
6516  * Various schedule()-time debugging checks and statistics:
6517  */
schedule_debug(struct task_struct * prev,bool preempt)6518 static inline void schedule_debug(struct task_struct *prev, bool preempt)
6519 {
6520 #ifdef CONFIG_SCHED_STACK_END_CHECK
6521 	if (task_stack_end_corrupted(prev))
6522 		panic("corrupted stack end detected inside scheduler\n");
6523 
6524 	if (task_scs_end_corrupted(prev))
6525 		panic("corrupted shadow stack detected inside scheduler\n");
6526 #endif
6527 
6528 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6529 	if (!preempt && READ_ONCE(prev->__state) && prev->non_block_count) {
6530 		printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
6531 			prev->comm, prev->pid, prev->non_block_count);
6532 		dump_stack();
6533 		add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
6534 	}
6535 #endif
6536 
6537 	if (unlikely(in_atomic_preempt_off())) {
6538 		__schedule_bug(prev);
6539 		preempt_count_set(PREEMPT_DISABLED);
6540 	}
6541 	rcu_sleep_check();
6542 	SCHED_WARN_ON(ct_state() == CT_STATE_USER);
6543 
6544 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
6545 
6546 	schedstat_inc(this_rq()->sched_count);
6547 }
6548 
prev_balance(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)6549 static void prev_balance(struct rq *rq, struct task_struct *prev,
6550 			 struct rq_flags *rf)
6551 {
6552 	const struct sched_class *start_class = prev->sched_class;
6553 	const struct sched_class *class;
6554 
6555 #ifdef CONFIG_SCHED_CLASS_EXT
6556 	/*
6557 	 * SCX requires a balance() call before every pick_task() including when
6558 	 * waking up from SCHED_IDLE. If @start_class is below SCX, start from
6559 	 * SCX instead. Also, set a flag to detect missing balance() call.
6560 	 */
6561 	if (scx_enabled()) {
6562 		rq->scx.flags |= SCX_RQ_BAL_PENDING;
6563 		if (sched_class_above(&ext_sched_class, start_class))
6564 			start_class = &ext_sched_class;
6565 	}
6566 #endif
6567 
6568 	/*
6569 	 * We must do the balancing pass before put_prev_task(), such
6570 	 * that when we release the rq->lock the task is in the same
6571 	 * state as before we took rq->lock.
6572 	 *
6573 	 * We can terminate the balance pass as soon as we know there is
6574 	 * a runnable task of @class priority or higher.
6575 	 */
6576 	for_active_class_range(class, start_class, &idle_sched_class) {
6577 		if (class->balance && class->balance(rq, prev, rf))
6578 			break;
6579 	}
6580 }
6581 
6582 /*
6583  * Pick up the highest-prio task:
6584  */
6585 static inline struct task_struct *
__pick_next_task(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)6586 __pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6587 {
6588 	const struct sched_class *class;
6589 	struct task_struct *p;
6590 
6591 	rq->dl_server = NULL;
6592 
6593 	if (scx_enabled())
6594 		goto restart;
6595 
6596 	/*
6597 	 * Optimization: we know that if all tasks are in the fair class we can
6598 	 * call that function directly, but only if the @prev task wasn't of a
6599 	 * higher scheduling class, because otherwise those lose the
6600 	 * opportunity to pull in more work from other CPUs.
6601 	 */
6602 	if (likely(!sched_class_above(prev->sched_class, &fair_sched_class) &&
6603 		   rq->nr_running == rq->cfs.h_nr_running)) {
6604 
6605 		p = pick_next_task_fair(rq, prev, rf);
6606 		if (unlikely(p == RETRY_TASK))
6607 			goto restart;
6608 
6609 		/* Assume the next prioritized class is idle_sched_class */
6610 		if (!p) {
6611 			p = pick_task_idle(rq);
6612 			put_prev_set_next_task(rq, prev, p);
6613 		}
6614 
6615 		return p;
6616 	}
6617 
6618 restart:
6619 	prev_balance(rq, prev, rf);
6620 
6621 	for_each_active_class(class) {
6622 		if (class->pick_next_task) {
6623 			p = class->pick_next_task(rq, prev);
6624 			if (p)
6625 				return p;
6626 		} else {
6627 			p = class->pick_task(rq);
6628 			if (p) {
6629 				put_prev_set_next_task(rq, prev, p);
6630 				return p;
6631 			}
6632 		}
6633 	}
6634 
6635 	BUG(); /* The idle class should always have a runnable task. */
6636 }
6637 
pick_task(struct rq * rq)6638 struct task_struct *pick_task(struct rq *rq)
6639 {
6640 	const struct sched_class *class;
6641 	struct task_struct *p;
6642 
6643 	rq->dl_server = NULL;
6644 
6645 	for_each_active_class(class) {
6646 		p = class->pick_task(rq);
6647 		if (p)
6648 			return p;
6649 	}
6650 
6651 	BUG(); /* The idle class should always have a runnable task. */
6652 }
6653 EXPORT_SYMBOL_GPL(pick_task);
6654 
6655 #ifdef CONFIG_SCHED_CORE
is_task_rq_idle(struct task_struct * t)6656 static inline bool is_task_rq_idle(struct task_struct *t)
6657 {
6658 	return (task_rq(t)->idle == t);
6659 }
6660 
cookie_equals(struct task_struct * a,unsigned long cookie)6661 static inline bool cookie_equals(struct task_struct *a, unsigned long cookie)
6662 {
6663 	return is_task_rq_idle(a) || (a->core_cookie == cookie);
6664 }
6665 
cookie_match(struct task_struct * a,struct task_struct * b)6666 static inline bool cookie_match(struct task_struct *a, struct task_struct *b)
6667 {
6668 	if (is_task_rq_idle(a) || is_task_rq_idle(b))
6669 		return true;
6670 
6671 	return a->core_cookie == b->core_cookie;
6672 }
6673 
6674 extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi);
6675 
6676 static void queue_core_balance(struct rq *rq);
6677 
6678 static struct task_struct *
pick_next_task(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)6679 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6680 {
6681 	struct task_struct *next, *p, *max = NULL;
6682 	const struct cpumask *smt_mask;
6683 	bool fi_before = false;
6684 	bool core_clock_updated = (rq == rq->core);
6685 	unsigned long cookie;
6686 	int i, cpu, occ = 0;
6687 	struct rq *rq_i;
6688 	bool need_sync;
6689 
6690 	if (!sched_core_enabled(rq))
6691 		return __pick_next_task(rq, prev, rf);
6692 
6693 	cpu = cpu_of(rq);
6694 
6695 	/* Stopper task is switching into idle, no need core-wide selection. */
6696 	if (cpu_is_offline(cpu)) {
6697 		/*
6698 		 * Reset core_pick so that we don't enter the fastpath when
6699 		 * coming online. core_pick would already be migrated to
6700 		 * another cpu during offline.
6701 		 */
6702 		rq->core_pick = NULL;
6703 		rq->core_dl_server = NULL;
6704 		return __pick_next_task(rq, prev, rf);
6705 	}
6706 
6707 	/*
6708 	 * If there were no {en,de}queues since we picked (IOW, the task
6709 	 * pointers are all still valid), and we haven't scheduled the last
6710 	 * pick yet, do so now.
6711 	 *
6712 	 * rq->core_pick can be NULL if no selection was made for a CPU because
6713 	 * it was either offline or went offline during a sibling's core-wide
6714 	 * selection. In this case, do a core-wide selection.
6715 	 */
6716 	if (rq->core->core_pick_seq == rq->core->core_task_seq &&
6717 	    rq->core->core_pick_seq != rq->core_sched_seq &&
6718 	    rq->core_pick) {
6719 		WRITE_ONCE(rq->core_sched_seq, rq->core->core_pick_seq);
6720 
6721 		next = rq->core_pick;
6722 		rq->dl_server = rq->core_dl_server;
6723 		rq->core_pick = NULL;
6724 		rq->core_dl_server = NULL;
6725 		goto out_set_next;
6726 	}
6727 
6728 	prev_balance(rq, prev, rf);
6729 
6730 	smt_mask = cpu_smt_mask(cpu);
6731 	need_sync = !!rq->core->core_cookie;
6732 
6733 	/* reset state */
6734 	rq->core->core_cookie = 0UL;
6735 	if (rq->core->core_forceidle_count) {
6736 		if (!core_clock_updated) {
6737 			update_rq_clock(rq->core);
6738 			core_clock_updated = true;
6739 		}
6740 		sched_core_account_forceidle(rq);
6741 		/* reset after accounting force idle */
6742 		rq->core->core_forceidle_start = 0;
6743 		rq->core->core_forceidle_count = 0;
6744 		rq->core->core_forceidle_occupation = 0;
6745 		need_sync = true;
6746 		fi_before = true;
6747 	}
6748 
6749 	/*
6750 	 * core->core_task_seq, core->core_pick_seq, rq->core_sched_seq
6751 	 *
6752 	 * @task_seq guards the task state ({en,de}queues)
6753 	 * @pick_seq is the @task_seq we did a selection on
6754 	 * @sched_seq is the @pick_seq we scheduled
6755 	 *
6756 	 * However, preemptions can cause multiple picks on the same task set.
6757 	 * 'Fix' this by also increasing @task_seq for every pick.
6758 	 */
6759 	rq->core->core_task_seq++;
6760 
6761 	/*
6762 	 * Optimize for common case where this CPU has no cookies
6763 	 * and there are no cookied tasks running on siblings.
6764 	 */
6765 	if (!need_sync) {
6766 		next = pick_task(rq);
6767 		if (!next->core_cookie) {
6768 			rq->core_pick = NULL;
6769 			rq->core_dl_server = NULL;
6770 			/*
6771 			 * For robustness, update the min_vruntime_fi for
6772 			 * unconstrained picks as well.
6773 			 */
6774 			WARN_ON_ONCE(fi_before);
6775 			task_vruntime_update(rq, next, false);
6776 			goto out_set_next;
6777 		}
6778 	}
6779 
6780 	/*
6781 	 * For each thread: do the regular task pick and find the max prio task
6782 	 * amongst them.
6783 	 *
6784 	 * Tie-break prio towards the current CPU
6785 	 */
6786 	for_each_cpu_wrap(i, smt_mask, cpu) {
6787 		rq_i = cpu_rq(i);
6788 
6789 		/*
6790 		 * Current cpu always has its clock updated on entrance to
6791 		 * pick_next_task(). If the current cpu is not the core,
6792 		 * the core may also have been updated above.
6793 		 */
6794 		if (i != cpu && (rq_i != rq->core || !core_clock_updated))
6795 			update_rq_clock(rq_i);
6796 
6797 		rq_i->core_pick = p = pick_task(rq_i);
6798 		rq_i->core_dl_server = rq_i->dl_server;
6799 
6800 		if (!max || prio_less(max, p, fi_before))
6801 			max = p;
6802 	}
6803 
6804 	cookie = rq->core->core_cookie = max->core_cookie;
6805 
6806 	/*
6807 	 * For each thread: try and find a runnable task that matches @max or
6808 	 * force idle.
6809 	 */
6810 	for_each_cpu(i, smt_mask) {
6811 		rq_i = cpu_rq(i);
6812 		p = rq_i->core_pick;
6813 
6814 		if (!cookie_equals(p, cookie)) {
6815 			p = NULL;
6816 			if (cookie)
6817 				p = sched_core_find(rq_i, cookie);
6818 			if (!p)
6819 				p = idle_sched_class.pick_task(rq_i);
6820 		}
6821 
6822 		rq_i->core_pick = p;
6823 		rq_i->core_dl_server = NULL;
6824 
6825 		if (p == rq_i->idle) {
6826 			if (rq_i->nr_running) {
6827 				rq->core->core_forceidle_count++;
6828 				if (!fi_before)
6829 					rq->core->core_forceidle_seq++;
6830 			}
6831 		} else {
6832 			occ++;
6833 		}
6834 	}
6835 
6836 	if (schedstat_enabled() && rq->core->core_forceidle_count) {
6837 		rq->core->core_forceidle_start = rq_clock(rq->core);
6838 		rq->core->core_forceidle_occupation = occ;
6839 	}
6840 
6841 	rq->core->core_pick_seq = rq->core->core_task_seq;
6842 	next = rq->core_pick;
6843 	rq->core_sched_seq = rq->core->core_pick_seq;
6844 
6845 	/* Something should have been selected for current CPU */
6846 	WARN_ON_ONCE(!next);
6847 
6848 	/*
6849 	 * Reschedule siblings
6850 	 *
6851 	 * NOTE: L1TF -- at this point we're no longer running the old task and
6852 	 * sending an IPI (below) ensures the sibling will no longer be running
6853 	 * their task. This ensures there is no inter-sibling overlap between
6854 	 * non-matching user state.
6855 	 */
6856 	for_each_cpu(i, smt_mask) {
6857 		rq_i = cpu_rq(i);
6858 
6859 		/*
6860 		 * An online sibling might have gone offline before a task
6861 		 * could be picked for it, or it might be offline but later
6862 		 * happen to come online, but its too late and nothing was
6863 		 * picked for it.  That's Ok - it will pick tasks for itself,
6864 		 * so ignore it.
6865 		 */
6866 		if (!rq_i->core_pick)
6867 			continue;
6868 
6869 		/*
6870 		 * Update for new !FI->FI transitions, or if continuing to be in !FI:
6871 		 * fi_before     fi      update?
6872 		 *  0            0       1
6873 		 *  0            1       1
6874 		 *  1            0       1
6875 		 *  1            1       0
6876 		 */
6877 		if (!(fi_before && rq->core->core_forceidle_count))
6878 			task_vruntime_update(rq_i, rq_i->core_pick, !!rq->core->core_forceidle_count);
6879 
6880 		rq_i->core_pick->core_occupation = occ;
6881 
6882 		if (i == cpu) {
6883 			rq_i->core_pick = NULL;
6884 			rq_i->core_dl_server = NULL;
6885 			continue;
6886 		}
6887 
6888 		/* Did we break L1TF mitigation requirements? */
6889 		WARN_ON_ONCE(!cookie_match(next, rq_i->core_pick));
6890 
6891 		if (rq_i->curr == rq_i->core_pick) {
6892 			rq_i->core_pick = NULL;
6893 			rq_i->core_dl_server = NULL;
6894 			continue;
6895 		}
6896 
6897 		resched_curr(rq_i);
6898 	}
6899 
6900 out_set_next:
6901 	put_prev_set_next_task(rq, prev, next);
6902 	if (rq->core->core_forceidle_count && next == rq->idle)
6903 		queue_core_balance(rq);
6904 
6905 	return next;
6906 }
6907 
try_steal_cookie(int this,int that)6908 static bool try_steal_cookie(int this, int that)
6909 {
6910 	struct rq *dst = cpu_rq(this), *src = cpu_rq(that);
6911 	struct task_struct *p;
6912 	unsigned long cookie;
6913 	bool success = false;
6914 
6915 	guard(irq)();
6916 	guard(double_rq_lock)(dst, src);
6917 
6918 	cookie = dst->core->core_cookie;
6919 	if (!cookie)
6920 		return false;
6921 
6922 	if (dst->curr != dst->idle)
6923 		return false;
6924 
6925 	p = sched_core_find(src, cookie);
6926 	if (!p)
6927 		return false;
6928 
6929 	do {
6930 		if (p == src->core_pick || p == src->curr)
6931 			goto next;
6932 
6933 		if (!is_cpu_allowed(p, this))
6934 			goto next;
6935 
6936 		if (p->core_occupation > dst->idle->core_occupation)
6937 			goto next;
6938 		/*
6939 		 * sched_core_find() and sched_core_next() will ensure
6940 		 * that task @p is not throttled now, we also need to
6941 		 * check whether the runqueue of the destination CPU is
6942 		 * being throttled.
6943 		 */
6944 		if (sched_task_is_throttled(p, this))
6945 			goto next;
6946 
6947 		move_queued_task_locked(src, dst, p);
6948 		resched_curr(dst);
6949 
6950 		success = true;
6951 		break;
6952 
6953 next:
6954 		p = sched_core_next(p, cookie);
6955 	} while (p);
6956 
6957 	return success;
6958 }
6959 
steal_cookie_task(int cpu,struct sched_domain * sd)6960 static bool steal_cookie_task(int cpu, struct sched_domain *sd)
6961 {
6962 	int i;
6963 
6964 	for_each_cpu_wrap(i, sched_domain_span(sd), cpu + 1) {
6965 		if (i == cpu)
6966 			continue;
6967 
6968 		if (need_resched())
6969 			break;
6970 
6971 		if (try_steal_cookie(cpu, i))
6972 			return true;
6973 	}
6974 
6975 	return false;
6976 }
6977 
sched_core_balance(struct rq * rq)6978 static void sched_core_balance(struct rq *rq)
6979 {
6980 	struct sched_domain *sd;
6981 	int cpu = cpu_of(rq);
6982 
6983 	guard(preempt)();
6984 	guard(rcu)();
6985 
6986 	raw_spin_rq_unlock_irq(rq);
6987 	for_each_domain(cpu, sd) {
6988 		if (need_resched())
6989 			break;
6990 
6991 		if (steal_cookie_task(cpu, sd))
6992 			break;
6993 	}
6994 	raw_spin_rq_lock_irq(rq);
6995 }
6996 
6997 static DEFINE_PER_CPU(struct balance_callback, core_balance_head);
6998 
queue_core_balance(struct rq * rq)6999 static void queue_core_balance(struct rq *rq)
7000 {
7001 	if (!sched_core_enabled(rq))
7002 		return;
7003 
7004 	if (!rq->core->core_cookie)
7005 		return;
7006 
7007 	if (!rq->nr_running) /* not forced idle */
7008 		return;
7009 
7010 	queue_balance_callback(rq, &per_cpu(core_balance_head, rq->cpu), sched_core_balance);
7011 }
7012 
7013 DEFINE_LOCK_GUARD_1(core_lock, int,
7014 		    sched_core_lock(*_T->lock, &_T->flags),
7015 		    sched_core_unlock(*_T->lock, &_T->flags),
7016 		    unsigned long flags)
7017 
sched_core_cpu_starting(unsigned int cpu)7018 static void sched_core_cpu_starting(unsigned int cpu)
7019 {
7020 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
7021 	struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
7022 	int t;
7023 
7024 	guard(core_lock)(&cpu);
7025 
7026 	WARN_ON_ONCE(rq->core != rq);
7027 
7028 	/* if we're the first, we'll be our own leader */
7029 	if (cpumask_weight(smt_mask) == 1)
7030 		return;
7031 
7032 	/* find the leader */
7033 	for_each_cpu(t, smt_mask) {
7034 		if (t == cpu)
7035 			continue;
7036 		rq = cpu_rq(t);
7037 		if (rq->core == rq) {
7038 			core_rq = rq;
7039 			break;
7040 		}
7041 	}
7042 
7043 	if (WARN_ON_ONCE(!core_rq)) /* whoopsie */
7044 		return;
7045 
7046 	/* install and validate core_rq */
7047 	for_each_cpu(t, smt_mask) {
7048 		rq = cpu_rq(t);
7049 
7050 		if (t == cpu)
7051 			rq->core = core_rq;
7052 
7053 		WARN_ON_ONCE(rq->core != core_rq);
7054 	}
7055 }
7056 
sched_core_cpu_deactivate(unsigned int cpu)7057 static void sched_core_cpu_deactivate(unsigned int cpu)
7058 {
7059 	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
7060 	struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
7061 	int t;
7062 
7063 	guard(core_lock)(&cpu);
7064 
7065 	/* if we're the last man standing, nothing to do */
7066 	if (cpumask_weight(smt_mask) == 1) {
7067 		WARN_ON_ONCE(rq->core != rq);
7068 		return;
7069 	}
7070 
7071 	/* if we're not the leader, nothing to do */
7072 	if (rq->core != rq)
7073 		return;
7074 
7075 	/* find a new leader */
7076 	for_each_cpu(t, smt_mask) {
7077 		if (t == cpu)
7078 			continue;
7079 		core_rq = cpu_rq(t);
7080 		break;
7081 	}
7082 
7083 	if (WARN_ON_ONCE(!core_rq)) /* impossible */
7084 		return;
7085 
7086 	/* copy the shared state to the new leader */
7087 	core_rq->core_task_seq             = rq->core_task_seq;
7088 	core_rq->core_pick_seq             = rq->core_pick_seq;
7089 	core_rq->core_cookie               = rq->core_cookie;
7090 	core_rq->core_forceidle_count      = rq->core_forceidle_count;
7091 	core_rq->core_forceidle_seq        = rq->core_forceidle_seq;
7092 	core_rq->core_forceidle_occupation = rq->core_forceidle_occupation;
7093 
7094 	/*
7095 	 * Accounting edge for forced idle is handled in pick_next_task().
7096 	 * Don't need another one here, since the hotplug thread shouldn't
7097 	 * have a cookie.
7098 	 */
7099 	core_rq->core_forceidle_start = 0;
7100 
7101 	/* install new leader */
7102 	for_each_cpu(t, smt_mask) {
7103 		rq = cpu_rq(t);
7104 		rq->core = core_rq;
7105 	}
7106 }
7107 
sched_core_cpu_dying(unsigned int cpu)7108 static inline void sched_core_cpu_dying(unsigned int cpu)
7109 {
7110 	struct rq *rq = cpu_rq(cpu);
7111 
7112 	if (rq->core != rq)
7113 		rq->core = rq;
7114 }
7115 
7116 #else /* !CONFIG_SCHED_CORE */
7117 
sched_core_cpu_starting(unsigned int cpu)7118 static inline void sched_core_cpu_starting(unsigned int cpu) {}
sched_core_cpu_deactivate(unsigned int cpu)7119 static inline void sched_core_cpu_deactivate(unsigned int cpu) {}
sched_core_cpu_dying(unsigned int cpu)7120 static inline void sched_core_cpu_dying(unsigned int cpu) {}
7121 
7122 static struct task_struct *
pick_next_task(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)7123 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
7124 {
7125 	return __pick_next_task(rq, prev, rf);
7126 }
7127 
7128 #endif /* CONFIG_SCHED_CORE */
7129 
7130 /*
7131  * Constants for the sched_mode argument of __schedule().
7132  *
7133  * The mode argument allows RT enabled kernels to differentiate a
7134  * preemption from blocking on an 'sleeping' spin/rwlock.
7135  */
7136 #define SM_IDLE			(-1)
7137 #define SM_NONE			0
7138 #define SM_PREEMPT		1
7139 #define SM_RTLOCK_WAIT		2
7140 
7141 /*
7142  * Helper function for __schedule()
7143  *
7144  * Tries to deactivate the task, unless the should_block arg
7145  * is false or if a signal is pending. In the case a signal
7146  * is pending, marks the task's __state as RUNNING (and clear
7147  * blocked_on).
7148  */
try_to_block_task(struct rq * rq,struct task_struct * p,unsigned long * task_state_p,bool should_block)7149 static bool try_to_block_task(struct rq *rq, struct task_struct *p,
7150 			      unsigned long *task_state_p, bool should_block)
7151 {
7152 	unsigned long task_state = *task_state_p;
7153 	int flags = DEQUEUE_NOCLOCK;
7154 
7155 	if (signal_pending_state(task_state, p)) {
7156 		WRITE_ONCE(p->__state, TASK_RUNNING);
7157 		*task_state_p = TASK_RUNNING;
7158 		return false;
7159 	}
7160 
7161 	/*
7162 	 * We check should_block after signal_pending because we
7163 	 * will want to wake the task in that case. But if
7164 	 * should_block is false, its likely due to the task being
7165 	 * blocked on a mutex, and we want to keep it on the runqueue
7166 	 * to be selectable for proxy-execution.
7167 	 */
7168 	if (!should_block)
7169 		return false;
7170 
7171 	p->sched_contributes_to_load =
7172 		(task_state & TASK_UNINTERRUPTIBLE) &&
7173 		!(task_state & TASK_NOLOAD) &&
7174 		!(task_state & TASK_FROZEN);
7175 
7176 	if (unlikely(is_special_task_state(task_state)))
7177 		flags |= DEQUEUE_SPECIAL;
7178 
7179 	/*
7180 	 * __schedule()			ttwu()
7181 	 *   prev_state = prev->state;    if (p->on_rq && ...)
7182 	 *   if (prev_state)		    goto out;
7183 	 *     p->on_rq = 0;		  smp_acquire__after_ctrl_dep();
7184 	 *				  p->state = TASK_WAKING
7185 	 *
7186 	 * Where __schedule() and ttwu() have matching control dependencies.
7187 	 *
7188 	 * After this, schedule() must not care about p->state any more.
7189 	 */
7190 	block_task(rq, p, flags);
7191 	return true;
7192 }
7193 
7194 #ifdef CONFIG_SCHED_PROXY_EXEC
proxy_resched_idle(struct rq * rq)7195 static inline struct task_struct *proxy_resched_idle(struct rq *rq)
7196 {
7197 	put_prev_set_next_task(rq, rq->donor, rq->idle);
7198 	rq_set_donor(rq, rq->idle);
7199 	set_tsk_need_resched(rq->idle);
7200 	return rq->idle;
7201 }
7202 
7203 #ifdef CONFIG_SMP
7204 /*
7205  * If the blocked-on relationship crosses CPUs, migrate @p to the
7206  * owner's CPU.
7207  *
7208  * This is because we must respect the CPU affinity of execution
7209  * contexts (owner) but we can ignore affinity for scheduling
7210  * contexts (@p). So we have to move scheduling contexts towards
7211  * potential execution contexts.
7212  *
7213  * Note: The owner can disappear, but simply migrate to @target_cpu
7214  * and leave that CPU to sort things out.
7215  */
proxy_migrate_task(struct rq * rq,struct rq_flags * rf,struct task_struct * p,int target_cpu)7216 static void proxy_migrate_task(struct rq *rq, struct rq_flags *rf,
7217 			       struct task_struct *p, int target_cpu)
7218 {
7219 	struct rq *target_rq = cpu_rq(target_cpu);
7220 	LIST_HEAD(migrate_list);
7221 
7222 	lockdep_assert_rq_held(rq);
7223 
7224 	/*
7225 	 * Since we're going to drop @rq, we have to put(@rq->donor) first,
7226 	 * otherwise we have a reference that no longer belongs to us.
7227 	 *
7228 	 * Additionally, as we put_prev_task(prev) earlier, its possible that
7229 	 * prev will migrate away as soon as we drop the rq lock, however we
7230 	 * still have it marked as rq->curr, as we've not yet switched tasks.
7231 	 *
7232 	 * After the migration, we are going to pick_again in the __schedule
7233 	 * logic, so backtrack a bit before we release the lock:
7234 	 * Put rq->donor, and set rq->curr as rq->donor and set_next_task,
7235 	 * so that we're close to the situation we had entering __schedule
7236 	 * the first time.
7237 	 *
7238 	 * Then when we re-aquire the lock, we will re-put rq->curr then
7239 	 * rq_set_donor(rq->idle) and set_next_task(rq->idle), before
7240 	 * picking again.
7241 	 */
7242 	/* XXX - Added to address problems with changed dl_server semantics - double check */
7243 	__put_prev_set_next_dl_server(rq, rq->donor, rq->curr);
7244 	put_prev_task(rq, rq->donor);
7245 	rq_set_donor(rq, rq->idle);
7246 	set_next_task(rq, rq->idle);
7247 
7248 	for (; p; p = p->blocked_donor) {
7249 		WARN_ON(p == rq->curr);
7250 		deactivate_task(rq, p, 0);
7251 		proxy_set_task_cpu(p, target_cpu);
7252 		/*
7253 		 * We can abuse blocked_node to migrate the thing,
7254 		 * because @p was still on the rq.
7255 		 */
7256 		list_add(&p->migration_node, &migrate_list);
7257 	}
7258 	zap_balance_callbacks(rq);
7259 	rq_unpin_lock(rq, rf);
7260 	raw_spin_rq_unlock(rq);
7261 	raw_spin_rq_lock(target_rq);
7262 	while (!list_empty(&migrate_list)) {
7263 		p = list_first_entry(&migrate_list, struct task_struct, migration_node);
7264 		list_del_init(&p->migration_node);
7265 
7266 		activate_task(target_rq, p, 0);
7267 		wakeup_preempt(target_rq, p, 0);
7268 	}
7269 	raw_spin_rq_unlock(target_rq);
7270 	raw_spin_rq_lock(rq);
7271 	rq_repin_lock(rq, rf);
7272 }
7273 
proxy_force_return(struct rq * rq,struct rq_flags * rf,struct task_struct * p)7274 static void proxy_force_return(struct rq *rq, struct rq_flags *rf,
7275 			       struct task_struct *p)
7276 {
7277 	lockdep_assert_rq_held(rq);
7278 
7279 	_trace_sched_pe_return_migration(p);
7280 
7281 	put_prev_task(rq, rq->donor);
7282 	rq_set_donor(rq, rq->idle);
7283 	set_next_task(rq, rq->idle);
7284 
7285 	WARN_ON(p == rq->curr);
7286 
7287 	p->blocked_on_state = BO_WAKING;
7288 	get_task_struct(p);
7289 	block_task(rq, p, 0);
7290 
7291 	zap_balance_callbacks(rq);
7292 	rq_unpin_lock(rq, rf);
7293 	raw_spin_rq_unlock(rq);
7294 
7295 	wake_up_process(p);
7296 	put_task_struct(p);
7297 
7298 	raw_spin_rq_lock(rq);
7299 	rq_repin_lock(rq, rf);
7300 }
7301 
proxy_can_run_here(struct rq * rq,struct task_struct * p)7302 static inline bool proxy_can_run_here(struct rq *rq, struct task_struct *p)
7303 {
7304 	if (p == rq->curr || p->wake_cpu == cpu_of(rq))
7305 		return true;
7306 	return false;
7307 }
7308 #else /* !CONFIG_SMP */
7309 static inline
proxy_migrate_task(struct rq * rq,struct rq_flags * rf,struct task_struct * p,int target_cpu)7310 void proxy_migrate_task(struct rq *rq, struct rq_flags *rf,
7311 			struct task_struct *p, int target_cpu)
7312 {
7313 }
7314 
7315 static inline
proxy_force_return(struct rq * rq,struct rq_flags * rf,struct task_struct * p)7316 void proxy_force_return(struct rq *rq, struct rq_flags *rf,
7317 			struct task_struct *p)
7318 {
7319 	force_blocked_on_runnable(p);
7320 }
7321 
proxy_can_run_here(struct rq * rq,struct task_struct * p)7322 static inline bool proxy_can_run_here(struct rq *rq, struct task_struct *p)
7323 {
7324 	return true;
7325 }
7326 #endif /* CONFIG_SMP */
7327 
proxy_enqueue_on_owner(struct rq * rq,struct task_struct * owner,struct task_struct * p)7328 static void proxy_enqueue_on_owner(struct rq *rq, struct task_struct *owner,
7329 				   struct task_struct *p)
7330 {
7331 	lockdep_assert_rq_held(rq);
7332 	lockdep_assert_held(&owner->blocked_lock);
7333 	/*
7334 	 * ttwu_activate() will pick them up and place them on whatever rq
7335 	 * @owner will run next.
7336 	 */
7337 	trace_sched_pe_enqueue_sleeping_task(owner, p);
7338 	WARN_ON(p == owner);
7339 	WARN_ON(!p->on_rq);
7340 	WARN_ON(p->sleeping_owner);
7341 	get_task_struct(owner);
7342 	WRITE_ONCE(p->sleeping_owner, owner);
7343 	/*
7344 	 * ttwu_do_activate must not have a chance to activate p
7345 	 * elsewhere before it's fully extricated from its old rq.
7346 	 */
7347 	list_add(&p->blocked_node, &owner->blocked_head);
7348 	block_task(rq, p, 0);
7349 }
7350 
7351 /*
7352  * Find runnable lock owner to proxy for mutex blocked donor
7353  *
7354  * Follow the blocked-on relation:
7355  *
7356  *                ,-> task
7357  *                |     | blocked-on
7358  *                |     v
7359  *  blocked_donor |   mutex
7360  *                |     | owner
7361  *                |     v
7362  *                `-- task
7363  *
7364  * and set the blocked_donor relation, this latter is used by the mutex
7365  * code to find which (blocked) task to hand-off to.
7366  *
7367  * Lock order:
7368  *
7369  *   p->pi_lock
7370  *     rq->lock
7371  *       mutex->wait_lock
7372  *         p->blocked_lock
7373  *
7374  * Returns the task that is going to be used as execution context (the one
7375  * that is actually going to be run on cpu_of(rq)).
7376  */
7377 static struct task_struct *
find_proxy_task(struct rq * rq,struct task_struct * donor,struct rq_flags * rf)7378 find_proxy_task(struct rq *rq, struct task_struct *donor, struct rq_flags *rf)
7379 {
7380 	struct task_struct *owner = NULL;
7381 	bool curr_in_chain = false;
7382 	int this_cpu = cpu_of(rq);
7383 	struct task_struct *p;
7384 	struct mutex *mutex;
7385 	int owner_cpu;
7386 
7387 	/* Follow blocked_on chain. */
7388 	for (p = donor; task_is_blocked(p); p = owner) {
7389 		mutex = p->blocked_on;
7390 		/* Something changed in the chain, so pick again */
7391 		if (!mutex)
7392 			return NULL;
7393 		/*
7394 		 * By taking mutex->wait_lock we hold off concurrent mutex_unlock()
7395 		 * and ensure @owner sticks around.
7396 		 */
7397 		guard(raw_spinlock)(&mutex->wait_lock);
7398 		guard(raw_spinlock)(&p->blocked_lock);
7399 
7400 		/* Check again that p is blocked with blocked_lock held */
7401 		if (mutex != __get_task_blocked_on(p)) {
7402 			/*
7403 			 * Something changed in the blocked_on chain and
7404 			 * we don't know if only at this level. So, let's
7405 			 * just bail out completely and let __schedule()
7406 			 * figure things out (pick_again loop).
7407 			 */
7408 			return NULL;
7409 		}
7410 
7411 		/* Double check blocked_on_state now we're holding the lock */
7412 		if (p->blocked_on_state == BO_RUNNABLE)
7413 			return p;
7414 
7415 		/*
7416 		 * If a ww_mutex hits the die/wound case, it marks the task as
7417 		 * BO_WAKING and calls try_to_wake_up(), so that the mutex
7418 		 * cycle can be broken and we avoid a deadlock.
7419 		 *
7420 		 * However, if at that moment, we are here on the cpu which the
7421 		 * die/wounded task is enqueued, we might loop on the cycle as
7422 		 * BO_WAKING still causes task_is_blocked() to return true
7423 		 * (since we want return migration to occur before we run the
7424 		 * task).
7425 		 *
7426 		 * Unfortunately since we hold the rq lock, it will block
7427 		 * try_to_wake_up from completing and doing the return
7428 		 * migration.
7429 		 *
7430 		 * So when we hit a BO_WAKING task try to wake it up ourselves.
7431 		 */
7432 		if (p->blocked_on_state == BO_WAKING) {
7433 			if (task_current(rq, p)) {
7434 				/* If its current just set it runnable */
7435 				__force_blocked_on_runnable(p);
7436 				return p;
7437 			}
7438 			goto needs_return;
7439 		}
7440 
7441 		if (task_current(rq, p))
7442 			curr_in_chain = true;
7443 
7444 		owner = __mutex_owner(mutex);
7445 		if (!owner) {
7446 			/* If the owner is null, we may have some work to do */
7447 			if (!proxy_can_run_here(rq, p))
7448 				goto needs_return;
7449 
7450 			__force_blocked_on_runnable(p);
7451 			return p;
7452 		}
7453 
7454 		if (!READ_ONCE(owner->on_rq) || owner->se.sched_delayed) {
7455 			/*
7456 			 * rq->curr must not be added to the blocked_head list or else
7457 			 * ttwu_do_activate could enqueue it elsewhere before it switches
7458 			 * out here. The approach to avoid this is the same as in the
7459 			 * migrate_task case.
7460 			 */
7461 			if (curr_in_chain)
7462 				return proxy_resched_idle(rq);
7463 
7464 			/*
7465 			 * If !@owner->on_rq, holding @rq->lock will not pin the task,
7466 			 * so we cannot drop @mutex->wait_lock until we're sure its a blocked
7467 			 * task on this rq.
7468 			 *
7469 			 * We use @owner->blocked_lock to serialize against ttwu_activate().
7470 			 * Either we see its new owner->on_rq or it will see our list_add().
7471 			 */
7472 			WARN_ON(owner == p);
7473 			raw_spin_unlock(&p->blocked_lock);
7474 			raw_spin_lock(&owner->blocked_lock);
7475 			proxy_resched_idle(rq);
7476 			proxy_enqueue_on_owner(rq, owner, p);
7477 			raw_spin_unlock(&owner->blocked_lock);
7478 			raw_spin_lock(&p->blocked_lock);
7479 
7480 			return NULL; /* retry task selection */
7481 		}
7482 
7483 		owner_cpu = task_cpu(owner);
7484 		if (owner_cpu != this_cpu) {
7485 			trace_sched_pe_migration(donor, owner);
7486 			/*
7487 			 * @owner can disappear, simply migrate to @owner_cpu
7488 			 * and leave that CPU to sort things out.
7489 			 */
7490 			if (curr_in_chain)
7491 				return proxy_resched_idle(rq);
7492 			goto migrate;
7493 		}
7494 
7495 		if (task_on_rq_migrating(owner)) {
7496 			trace_sched_pe_owner_is_migrating(owner, p);
7497 			/*
7498 			 * One of the chain of mutex owners is currently migrating to this
7499 			 * CPU, but has not yet been enqueued because we are holding the
7500 			 * rq lock. As a simple solution, just schedule rq->idle to give
7501 			 * the migration a chance to complete. Much like the migrate_task
7502 			 * case we should end up back in find_proxy_task(), this time
7503 			 * hopefully with all relevant tasks already enqueued.
7504 			 */
7505 			return proxy_resched_idle(rq);
7506 		}
7507 
7508 		/*
7509 		 * Its possible to race where after we check owner->on_rq
7510 		 * but before we check (owner_cpu != this_cpu) that the
7511 		 * task on another cpu was migrated back to this cpu. In
7512 		 * that case it could slip by our  checks. So double check
7513 		 * we are still on this cpu and not migrating. If we get
7514 		 * inconsistent results, try again.
7515 		 */
7516 		if (!task_on_rq_queued(owner) || task_cpu(owner) != this_cpu)
7517 			return NULL;
7518 
7519 		if (owner == p) {
7520 			/*
7521 			 * It's possible we interleave with mutex_unlock like:
7522 			 *
7523 			 *				lock(&rq->lock);
7524 			 *				  find_proxy_task()
7525 			 * mutex_unlock()
7526 			 *   lock(&wait_lock);
7527 			 *   donor(owner) = current->blocked_donor;
7528 			 *   unlock(&wait_lock);
7529 			 *
7530 			 *   wake_up_q();
7531 			 *     ...
7532 			 *       ttwu_runnable()
7533 			 *         __task_rq_lock()
7534 			 *				  lock(&wait_lock);
7535 			 *				  owner == p
7536 			 *
7537 			 * Which leaves us to finish the ttwu_runnable() and make it go.
7538 			 *
7539 			 * So schedule rq->idle so that ttwu_runnable() can get the rq
7540 			 * lock and mark owner as running.
7541 			 */
7542 			return proxy_resched_idle(rq);
7543 		}
7544 		/*
7545 		 * OK, now we're absolutely sure @owner is on this
7546 		 * rq, therefore holding @rq->lock is sufficient to
7547 		 * guarantee its existence, as per ttwu_remote().
7548 		 */
7549 		owner->blocked_donor = p;
7550 	}
7551 
7552 	WARN_ON_ONCE(owner && !owner->on_rq);
7553 	return owner;
7554 
7555 	/*
7556 	 * NOTE: This logic is down here, because we need to call
7557 	 * the functions with the mutex wait_lock and task
7558 	 * blocked_lock released, so we have to get out of the
7559 	 * guard() scope.
7560 	 */
7561 migrate:
7562 	proxy_migrate_task(rq, rf, p, owner_cpu);
7563 	return NULL;
7564 needs_return:
7565 	proxy_force_return(rq, rf, p);
7566 	return NULL;
7567 }
7568 #else /* SCHED_PROXY_EXEC */
7569 static struct task_struct *
find_proxy_task(struct rq * rq,struct task_struct * donor,struct rq_flags * rf)7570 find_proxy_task(struct rq *rq, struct task_struct *donor, struct rq_flags *rf)
7571 {
7572 	WARN_ONCE(1, "This should never be called in the !SCHED_PROXY_EXEC case\n");
7573 	return donor;
7574 }
7575 #endif /* SCHED_PROXY_EXEC */
7576 
proxy_tag_curr(struct rq * rq,struct task_struct * owner)7577 static inline void proxy_tag_curr(struct rq *rq, struct task_struct *owner)
7578 {
7579 	if (!sched_proxy_exec())
7580 		return;
7581 	/*
7582 	 * pick_next_task() calls set_next_task() on the chosen task
7583 	 * at some point, which ensures it is not push/pullable.
7584 	 * However, the chosen/donor task *and* the mutex owner form an
7585 	 * atomic pair wrt push/pull.
7586 	 *
7587 	 * Make sure owner we run is not pushable. Unfortunately we can
7588 	 * only deal with that by means of a dequeue/enqueue cycle. :-/
7589 	 */
7590 	dequeue_task(rq, owner, DEQUEUE_NOCLOCK | DEQUEUE_SAVE);
7591 	enqueue_task(rq, owner, ENQUEUE_NOCLOCK | ENQUEUE_RESTORE);
7592 }
7593 
7594 /*
7595  * __schedule() is the main scheduler function.
7596  *
7597  * The main means of driving the scheduler and thus entering this function are:
7598  *
7599  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
7600  *
7601  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
7602  *      paths. For example, see arch/x86/entry_64.S.
7603  *
7604  *      To drive preemption between tasks, the scheduler sets the flag in timer
7605  *      interrupt handler sched_tick().
7606  *
7607  *   3. Wakeups don't really cause entry into schedule(). They add a
7608  *      task to the run-queue and that's it.
7609  *
7610  *      Now, if the new task added to the run-queue preempts the current
7611  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
7612  *      called on the nearest possible occasion:
7613  *
7614  *       - If the kernel is preemptible (CONFIG_PREEMPTION=y):
7615  *
7616  *         - in syscall or exception context, at the next outmost
7617  *           preempt_enable(). (this might be as soon as the wake_up()'s
7618  *           spin_unlock()!)
7619  *
7620  *         - in IRQ context, return from interrupt-handler to
7621  *           preemptible context
7622  *
7623  *       - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
7624  *         then at the next:
7625  *
7626  *          - cond_resched() call
7627  *          - explicit schedule() call
7628  *          - return from syscall or exception to user-space
7629  *          - return from interrupt-handler to user-space
7630  *
7631  * WARNING: must be called with preemption disabled!
7632  */
__schedule(int sched_mode)7633 static void __sched notrace __schedule(int sched_mode)
7634 {
7635 	struct task_struct *prev, *next;
7636 	/*
7637 	 * On PREEMPT_RT kernel, SM_RTLOCK_WAIT is noted
7638 	 * as a preemption by schedule_debug() and RCU.
7639 	 */
7640 	bool preempt = sched_mode > SM_NONE;
7641 	bool block = false;
7642 	unsigned long *switch_count;
7643 	unsigned long prev_state;
7644 	struct rq_flags rf;
7645 	struct rq *rq;
7646 	bool prev_not_proxied;
7647 	int cpu;
7648 
7649 	cpu = smp_processor_id();
7650 	rq = cpu_rq(cpu);
7651 	prev = rq->curr;
7652 
7653 	schedule_debug(prev, preempt);
7654 
7655 	if (sched_feat(HRTICK) || sched_feat(HRTICK_DL))
7656 		hrtick_clear(rq);
7657 
7658 	local_irq_disable();
7659 	rcu_note_context_switch(preempt);
7660 
7661 	/*
7662 	 * Make sure that signal_pending_state()->signal_pending() below
7663 	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
7664 	 * done by the caller to avoid the race with signal_wake_up():
7665 	 *
7666 	 * __set_current_state(@state)		signal_wake_up()
7667 	 * schedule()				  set_tsk_thread_flag(p, TIF_SIGPENDING)
7668 	 *					  wake_up_state(p, state)
7669 	 *   LOCK rq->lock			    LOCK p->pi_state
7670 	 *   smp_mb__after_spinlock()		    smp_mb__after_spinlock()
7671 	 *     if (signal_pending_state())	    if (p->state & @state)
7672 	 *
7673 	 * Also, the membarrier system call requires a full memory barrier
7674 	 * after coming from user-space, before storing to rq->curr; this
7675 	 * barrier matches a full barrier in the proximity of the membarrier
7676 	 * system call exit.
7677 	 */
7678 	rq_lock(rq, &rf);
7679 	smp_mb__after_spinlock();
7680 
7681 	/* Promote REQ to ACT */
7682 	rq->clock_update_flags <<= 1;
7683 	update_rq_clock(rq);
7684 	rq->clock_update_flags = RQCF_UPDATED;
7685 
7686 	switch_count = &prev->nivcsw;
7687 
7688 	/* Task state changes only considers SM_PREEMPT as preemption */
7689 	preempt = sched_mode == SM_PREEMPT;
7690 
7691 	/*
7692 	 * We must load prev->state once (task_struct::state is volatile), such
7693 	 * that we form a control dependency vs deactivate_task() below.
7694 	 */
7695 	prev_state = READ_ONCE(prev->__state);
7696 	if (sched_mode == SM_IDLE) {
7697 		/* SCX must consult the BPF scheduler to tell if rq is empty */
7698 		if (!rq->nr_running && !scx_enabled()) {
7699 			next = prev;
7700 			goto picked;
7701 		}
7702 	} else if (!preempt && prev_state) {
7703 		/*
7704 		 * We pass task_is_blocked() as the should_block arg
7705 		 * in order to keep mutex-blocked tasks on the runqueue
7706 		 * for slection with proxy-exec (without proxy-exec
7707 		 * task_is_blocked() will always be false).
7708 		 */
7709 		block = try_to_block_task(rq, prev, &prev_state,
7710 					  !task_is_blocked(prev));
7711 		switch_count = &prev->nvcsw;
7712 	}
7713 
7714 	prev_not_proxied = !prev->blocked_donor;
7715 
7716 	trace_sched_start_task_selection(prev, cpu, task_is_blocked(prev));
7717 pick_again:
7718 	next = pick_next_task(rq, rq->donor, &rf);
7719 	rq_set_donor(rq, next);
7720 	next->blocked_donor = NULL;
7721 	if (unlikely(task_is_blocked(next))) {
7722 		next = find_proxy_task(rq, next, &rf);
7723 		if (!next)
7724 			goto pick_again;
7725 		if (next == rq->idle)
7726 			goto keep_resched;
7727 	}
7728 	trace_sched_finish_task_selection(rq->donor, next, cpu);
7729 picked:
7730 	clear_tsk_need_resched(prev);
7731 	clear_preempt_need_resched();
7732 keep_resched:
7733 #ifdef CONFIG_SCHED_DEBUG
7734 	rq->last_seen_need_resched_ns = 0;
7735 #endif
7736 
7737 	trace_android_rvh_schedule(prev, next, rq);
7738 	if (likely(prev != next)) {
7739 		rq->nr_switches++;
7740 		/*
7741 		 * RCU users of rcu_dereference(rq->curr) may not see
7742 		 * changes to task_struct made by pick_next_task().
7743 		 */
7744 		RCU_INIT_POINTER(rq->curr, next);
7745 
7746 		if (!task_current_donor(rq, next))
7747 			proxy_tag_curr(rq, next);
7748 
7749 		/*
7750 		 * The membarrier system call requires each architecture
7751 		 * to have a full memory barrier after updating
7752 		 * rq->curr, before returning to user-space.
7753 		 *
7754 		 * Here are the schemes providing that barrier on the
7755 		 * various architectures:
7756 		 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC,
7757 		 *   RISC-V.  switch_mm() relies on membarrier_arch_switch_mm()
7758 		 *   on PowerPC and on RISC-V.
7759 		 * - finish_lock_switch() for weakly-ordered
7760 		 *   architectures where spin_unlock is a full barrier,
7761 		 * - switch_to() for arm64 (weakly-ordered, spin_unlock
7762 		 *   is a RELEASE barrier),
7763 		 *
7764 		 * The barrier matches a full barrier in the proximity of
7765 		 * the membarrier system call entry.
7766 		 *
7767 		 * On RISC-V, this barrier pairing is also needed for the
7768 		 * SYNC_CORE command when switching between processes, cf.
7769 		 * the inline comments in membarrier_arch_switch_mm().
7770 		 */
7771 		++*switch_count;
7772 
7773 		migrate_disable_switch(rq, prev);
7774 		psi_account_irqtime(rq, prev, next);
7775 		psi_sched_switch(prev, next, !task_on_rq_queued(prev) ||
7776 					     prev->se.sched_delayed);
7777 
7778 		trace_sched_switch(preempt, prev, next, prev_state);
7779 
7780 		if (block && (prev_state & TASK_UNINTERRUPTIBLE)
7781 			&& trace_sched_blocked_reason_enabled()) {
7782 			unsigned long blocked_func = 0;
7783 
7784 #ifdef CONFIG_STACKTRACE
7785 			stack_trace_save_tsk(prev, &blocked_func, 1, 0);
7786 #endif
7787 			trace_sched_blocked_reason(prev, (void *)blocked_func);
7788 		}
7789 
7790 		/* Also unlocks the rq: */
7791 		rq = context_switch(rq, prev, next, &rf);
7792 	} else {
7793 		/* In case next was already curr but just got blocked_donor */
7794 		if (prev_not_proxied && next->blocked_donor)
7795 			proxy_tag_curr(rq, next);
7796 
7797 		rq_unpin_lock(rq, &rf);
7798 		__balance_callbacks(rq);
7799 		raw_spin_rq_unlock_irq(rq);
7800 	}
7801 }
7802 
do_task_dead(void)7803 void __noreturn do_task_dead(void)
7804 {
7805 	/* Causes final put_task_struct in finish_task_switch(): */
7806 	set_special_state(TASK_DEAD);
7807 
7808 	/* Tell freezer to ignore us: */
7809 	current->flags |= PF_NOFREEZE;
7810 
7811 	__schedule(SM_NONE);
7812 	BUG();
7813 
7814 	/* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
7815 	for (;;)
7816 		cpu_relax();
7817 }
7818 
sched_submit_work(struct task_struct * tsk)7819 static inline void sched_submit_work(struct task_struct *tsk)
7820 {
7821 	static DEFINE_WAIT_OVERRIDE_MAP(sched_map, LD_WAIT_CONFIG);
7822 	unsigned int task_flags;
7823 
7824 	/*
7825 	 * Establish LD_WAIT_CONFIG context to ensure none of the code called
7826 	 * will use a blocking primitive -- which would lead to recursion.
7827 	 */
7828 	lock_map_acquire_try(&sched_map);
7829 
7830 	task_flags = tsk->flags;
7831 	/*
7832 	 * If a worker goes to sleep, notify and ask workqueue whether it
7833 	 * wants to wake up a task to maintain concurrency.
7834 	 */
7835 	if (task_flags & PF_WQ_WORKER)
7836 		wq_worker_sleeping(tsk);
7837 	else if (task_flags & PF_IO_WORKER)
7838 		io_wq_worker_sleeping(tsk);
7839 
7840 	/*
7841 	 * spinlock and rwlock must not flush block requests.  This will
7842 	 * deadlock if the callback attempts to acquire a lock which is
7843 	 * already acquired.
7844 	 */
7845 	SCHED_WARN_ON(current->__state & TASK_RTLOCK_WAIT);
7846 
7847 	/*
7848 	 * If we are going to sleep and we have plugged IO queued,
7849 	 * make sure to submit it to avoid deadlocks.
7850 	 */
7851 	blk_flush_plug(tsk->plug, true);
7852 
7853 	lock_map_release(&sched_map);
7854 }
7855 
sched_update_worker(struct task_struct * tsk)7856 static void sched_update_worker(struct task_struct *tsk)
7857 {
7858 	if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER | PF_BLOCK_TS)) {
7859 		if (tsk->flags & PF_BLOCK_TS)
7860 			blk_plug_invalidate_ts(tsk);
7861 		if (tsk->flags & PF_WQ_WORKER)
7862 			wq_worker_running(tsk);
7863 		else if (tsk->flags & PF_IO_WORKER)
7864 			io_wq_worker_running(tsk);
7865 	}
7866 }
7867 
__schedule_loop(int sched_mode)7868 static __always_inline void __schedule_loop(int sched_mode)
7869 {
7870 	do {
7871 		preempt_disable();
7872 		__schedule(sched_mode);
7873 		sched_preempt_enable_no_resched();
7874 	} while (need_resched());
7875 }
7876 
schedule(void)7877 asmlinkage __visible void __sched schedule(void)
7878 {
7879 	struct task_struct *tsk = current;
7880 
7881 #ifdef CONFIG_RT_MUTEXES
7882 	lockdep_assert(!tsk->sched_rt_mutex);
7883 #endif
7884 
7885 	if (!task_is_running(tsk))
7886 		sched_submit_work(tsk);
7887 	__schedule_loop(SM_NONE);
7888 	sched_update_worker(tsk);
7889 }
7890 EXPORT_SYMBOL(schedule);
7891 
7892 /*
7893  * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
7894  * state (have scheduled out non-voluntarily) by making sure that all
7895  * tasks have either left the run queue or have gone into user space.
7896  * As idle tasks do not do either, they must not ever be preempted
7897  * (schedule out non-voluntarily).
7898  *
7899  * schedule_idle() is similar to schedule_preempt_disable() except that it
7900  * never enables preemption because it does not call sched_submit_work().
7901  */
schedule_idle(void)7902 void __sched schedule_idle(void)
7903 {
7904 	/*
7905 	 * As this skips calling sched_submit_work(), which the idle task does
7906 	 * regardless because that function is a NOP when the task is in a
7907 	 * TASK_RUNNING state, make sure this isn't used someplace that the
7908 	 * current task can be in any other state. Note, idle is always in the
7909 	 * TASK_RUNNING state.
7910 	 */
7911 	WARN_ON_ONCE(current->__state);
7912 	do {
7913 		__schedule(SM_IDLE);
7914 	} while (need_resched());
7915 }
7916 
7917 #if defined(CONFIG_CONTEXT_TRACKING_USER) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_USER_OFFSTACK)
schedule_user(void)7918 asmlinkage __visible void __sched schedule_user(void)
7919 {
7920 	/*
7921 	 * If we come here after a random call to set_need_resched(),
7922 	 * or we have been woken up remotely but the IPI has not yet arrived,
7923 	 * we haven't yet exited the RCU idle mode. Do it here manually until
7924 	 * we find a better solution.
7925 	 *
7926 	 * NB: There are buggy callers of this function.  Ideally we
7927 	 * should warn if prev_state != CT_STATE_USER, but that will trigger
7928 	 * too frequently to make sense yet.
7929 	 */
7930 	enum ctx_state prev_state = exception_enter();
7931 	schedule();
7932 	exception_exit(prev_state);
7933 }
7934 #endif
7935 
7936 /**
7937  * schedule_preempt_disabled - called with preemption disabled
7938  *
7939  * Returns with preemption disabled. Note: preempt_count must be 1
7940  */
schedule_preempt_disabled(void)7941 void __sched schedule_preempt_disabled(void)
7942 {
7943 	sched_preempt_enable_no_resched();
7944 	schedule();
7945 	preempt_disable();
7946 }
7947 
7948 #ifdef CONFIG_PREEMPT_RT
schedule_rtlock(void)7949 void __sched notrace schedule_rtlock(void)
7950 {
7951 	__schedule_loop(SM_RTLOCK_WAIT);
7952 }
7953 NOKPROBE_SYMBOL(schedule_rtlock);
7954 #endif
7955 
preempt_schedule_common(void)7956 static void __sched notrace preempt_schedule_common(void)
7957 {
7958 	do {
7959 		/*
7960 		 * Because the function tracer can trace preempt_count_sub()
7961 		 * and it also uses preempt_enable/disable_notrace(), if
7962 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
7963 		 * by the function tracer will call this function again and
7964 		 * cause infinite recursion.
7965 		 *
7966 		 * Preemption must be disabled here before the function
7967 		 * tracer can trace. Break up preempt_disable() into two
7968 		 * calls. One to disable preemption without fear of being
7969 		 * traced. The other to still record the preemption latency,
7970 		 * which can also be traced by the function tracer.
7971 		 */
7972 		preempt_disable_notrace();
7973 		preempt_latency_start(1);
7974 		__schedule(SM_PREEMPT);
7975 		preempt_latency_stop(1);
7976 		preempt_enable_no_resched_notrace();
7977 
7978 		/*
7979 		 * Check again in case we missed a preemption opportunity
7980 		 * between schedule and now.
7981 		 */
7982 	} while (need_resched());
7983 }
7984 
7985 #ifdef CONFIG_PREEMPTION
7986 /*
7987  * This is the entry point to schedule() from in-kernel preemption
7988  * off of preempt_enable.
7989  */
preempt_schedule(void)7990 asmlinkage __visible void __sched notrace preempt_schedule(void)
7991 {
7992 	/*
7993 	 * If there is a non-zero preempt_count or interrupts are disabled,
7994 	 * we do not want to preempt the current task. Just return..
7995 	 */
7996 	if (likely(!preemptible()))
7997 		return;
7998 	preempt_schedule_common();
7999 }
8000 NOKPROBE_SYMBOL(preempt_schedule);
8001 EXPORT_SYMBOL(preempt_schedule);
8002 
8003 #ifdef CONFIG_PREEMPT_DYNAMIC
8004 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
8005 #ifndef preempt_schedule_dynamic_enabled
8006 #define preempt_schedule_dynamic_enabled	preempt_schedule
8007 #define preempt_schedule_dynamic_disabled	NULL
8008 #endif
8009 DEFINE_STATIC_CALL(preempt_schedule, preempt_schedule_dynamic_enabled);
8010 EXPORT_STATIC_CALL_TRAMP(preempt_schedule);
8011 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
8012 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule);
dynamic_preempt_schedule(void)8013 void __sched notrace dynamic_preempt_schedule(void)
8014 {
8015 	if (!static_branch_unlikely(&sk_dynamic_preempt_schedule))
8016 		return;
8017 	preempt_schedule();
8018 }
8019 NOKPROBE_SYMBOL(dynamic_preempt_schedule);
8020 EXPORT_SYMBOL(dynamic_preempt_schedule);
8021 #endif
8022 #endif
8023 
8024 /**
8025  * preempt_schedule_notrace - preempt_schedule called by tracing
8026  *
8027  * The tracing infrastructure uses preempt_enable_notrace to prevent
8028  * recursion and tracing preempt enabling caused by the tracing
8029  * infrastructure itself. But as tracing can happen in areas coming
8030  * from userspace or just about to enter userspace, a preempt enable
8031  * can occur before user_exit() is called. This will cause the scheduler
8032  * to be called when the system is still in usermode.
8033  *
8034  * To prevent this, the preempt_enable_notrace will use this function
8035  * instead of preempt_schedule() to exit user context if needed before
8036  * calling the scheduler.
8037  */
preempt_schedule_notrace(void)8038 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
8039 {
8040 	enum ctx_state prev_ctx;
8041 
8042 	if (likely(!preemptible()))
8043 		return;
8044 
8045 	do {
8046 		/*
8047 		 * Because the function tracer can trace preempt_count_sub()
8048 		 * and it also uses preempt_enable/disable_notrace(), if
8049 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
8050 		 * by the function tracer will call this function again and
8051 		 * cause infinite recursion.
8052 		 *
8053 		 * Preemption must be disabled here before the function
8054 		 * tracer can trace. Break up preempt_disable() into two
8055 		 * calls. One to disable preemption without fear of being
8056 		 * traced. The other to still record the preemption latency,
8057 		 * which can also be traced by the function tracer.
8058 		 */
8059 		preempt_disable_notrace();
8060 		preempt_latency_start(1);
8061 		/*
8062 		 * Needs preempt disabled in case user_exit() is traced
8063 		 * and the tracer calls preempt_enable_notrace() causing
8064 		 * an infinite recursion.
8065 		 */
8066 		prev_ctx = exception_enter();
8067 		__schedule(SM_PREEMPT);
8068 		exception_exit(prev_ctx);
8069 
8070 		preempt_latency_stop(1);
8071 		preempt_enable_no_resched_notrace();
8072 	} while (need_resched());
8073 }
8074 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
8075 
8076 #ifdef CONFIG_PREEMPT_DYNAMIC
8077 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
8078 #ifndef preempt_schedule_notrace_dynamic_enabled
8079 #define preempt_schedule_notrace_dynamic_enabled	preempt_schedule_notrace
8080 #define preempt_schedule_notrace_dynamic_disabled	NULL
8081 #endif
8082 DEFINE_STATIC_CALL(preempt_schedule_notrace, preempt_schedule_notrace_dynamic_enabled);
8083 EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace);
8084 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
8085 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule_notrace);
dynamic_preempt_schedule_notrace(void)8086 void __sched notrace dynamic_preempt_schedule_notrace(void)
8087 {
8088 	if (!static_branch_unlikely(&sk_dynamic_preempt_schedule_notrace))
8089 		return;
8090 	preempt_schedule_notrace();
8091 }
8092 NOKPROBE_SYMBOL(dynamic_preempt_schedule_notrace);
8093 EXPORT_SYMBOL(dynamic_preempt_schedule_notrace);
8094 #endif
8095 #endif
8096 
8097 #endif /* CONFIG_PREEMPTION */
8098 
8099 /*
8100  * This is the entry point to schedule() from kernel preemption
8101  * off of IRQ context.
8102  * Note, that this is called and return with IRQs disabled. This will
8103  * protect us against recursive calling from IRQ contexts.
8104  */
preempt_schedule_irq(void)8105 asmlinkage __visible void __sched preempt_schedule_irq(void)
8106 {
8107 	enum ctx_state prev_state;
8108 
8109 	/* Catch callers which need to be fixed */
8110 	BUG_ON(preempt_count() || !irqs_disabled());
8111 
8112 	prev_state = exception_enter();
8113 
8114 	do {
8115 		preempt_disable();
8116 		local_irq_enable();
8117 		__schedule(SM_PREEMPT);
8118 		local_irq_disable();
8119 		sched_preempt_enable_no_resched();
8120 	} while (need_resched());
8121 
8122 	exception_exit(prev_state);
8123 }
8124 
default_wake_function(wait_queue_entry_t * curr,unsigned mode,int wake_flags,void * key)8125 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
8126 			  void *key)
8127 {
8128 	WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags &
8129 		     ~(WF_SYNC|WF_CURRENT_CPU|WF_ANDROID_VENDOR));
8130 	return try_to_wake_up(curr->private, mode, wake_flags);
8131 }
8132 EXPORT_SYMBOL(default_wake_function);
8133 
__setscheduler_class(int policy,int prio)8134 const struct sched_class *__setscheduler_class(int policy, int prio)
8135 {
8136 #ifdef CONFIG_SCHED_CLASS_EXT
8137 	int should_scx = 0;
8138 #endif
8139 
8140 	if (dl_prio(prio))
8141 		return &dl_sched_class;
8142 
8143 #ifdef CONFIG_SCHED_CLASS_EXT
8144 	trace_android_vh_task_should_scx(&should_scx, policy, prio);
8145 	if (should_scx)
8146 		return &ext_sched_class;
8147 #endif
8148 
8149 	if (rt_prio(prio))
8150 		return &rt_sched_class;
8151 
8152 #ifdef CONFIG_SCHED_CLASS_EXT
8153 	if (task_should_scx(policy))
8154 		return &ext_sched_class;
8155 #endif
8156 
8157 	return &fair_sched_class;
8158 }
8159 
8160 #ifdef CONFIG_RT_MUTEXES
8161 
8162 /*
8163  * Would be more useful with typeof()/auto_type but they don't mix with
8164  * bit-fields. Since it's a local thing, use int. Keep the generic sounding
8165  * name such that if someone were to implement this function we get to compare
8166  * notes.
8167  */
8168 #define fetch_and_set(x, v) ({ int _x = (x); (x) = (v); _x; })
8169 
rt_mutex_pre_schedule(void)8170 void rt_mutex_pre_schedule(void)
8171 {
8172 	lockdep_assert(!fetch_and_set(current->sched_rt_mutex, 1));
8173 	sched_submit_work(current);
8174 }
8175 
rt_mutex_schedule(void)8176 void rt_mutex_schedule(void)
8177 {
8178 	lockdep_assert(current->sched_rt_mutex);
8179 	__schedule_loop(SM_NONE);
8180 }
8181 
rt_mutex_post_schedule(void)8182 void rt_mutex_post_schedule(void)
8183 {
8184 	sched_update_worker(current);
8185 	lockdep_assert(fetch_and_set(current->sched_rt_mutex, 0));
8186 }
8187 
8188 /*
8189  * rt_mutex_setprio - set the current priority of a task
8190  * @p: task to boost
8191  * @pi_task: donor task
8192  *
8193  * This function changes the 'effective' priority of a task. It does
8194  * not touch ->normal_prio like __setscheduler().
8195  *
8196  * Used by the rt_mutex code to implement priority inheritance
8197  * logic. Call site only calls if the priority of the task changed.
8198  */
rt_mutex_setprio(struct task_struct * p,struct task_struct * pi_task)8199 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
8200 {
8201 	int prio, oldprio, queued, running, queue_flag =
8202 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
8203 	const struct sched_class *prev_class, *next_class;
8204 	struct rq_flags rf;
8205 	struct rq *rq;
8206 
8207 	trace_android_rvh_rtmutex_prepare_setprio(p, pi_task);
8208 	/* XXX used to be waiter->prio, not waiter->task->prio */
8209 	prio = __rt_effective_prio(pi_task, p->normal_prio);
8210 
8211 	/*
8212 	 * If nothing changed; bail early.
8213 	 */
8214 	if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
8215 		return;
8216 
8217 	rq = __task_rq_lock(p, &rf);
8218 	update_rq_clock(rq);
8219 	/*
8220 	 * Set under pi_lock && rq->lock, such that the value can be used under
8221 	 * either lock.
8222 	 *
8223 	 * Note that there is loads of tricky to make this pointer cache work
8224 	 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
8225 	 * ensure a task is de-boosted (pi_task is set to NULL) before the
8226 	 * task is allowed to run again (and can exit). This ensures the pointer
8227 	 * points to a blocked task -- which guarantees the task is present.
8228 	 */
8229 	p->pi_top_task = pi_task;
8230 
8231 	/*
8232 	 * For FIFO/RR we only need to set prio, if that matches we're done.
8233 	 */
8234 	if (prio == p->prio && !dl_prio(prio))
8235 		goto out_unlock;
8236 
8237 	/*
8238 	 * Idle task boosting is a no-no in general. There is one
8239 	 * exception, when PREEMPT_RT and NOHZ is active:
8240 	 *
8241 	 * The idle task calls get_next_timer_interrupt() and holds
8242 	 * the timer wheel base->lock on the CPU and another CPU wants
8243 	 * to access the timer (probably to cancel it). We can safely
8244 	 * ignore the boosting request, as the idle CPU runs this code
8245 	 * with interrupts disabled and will complete the lock
8246 	 * protected section without being interrupted. So there is no
8247 	 * real need to boost.
8248 	 */
8249 	if (unlikely(p == rq->idle)) {
8250 		WARN_ON(p != rq->curr);
8251 		WARN_ON(p->pi_blocked_on);
8252 		goto out_unlock;
8253 	}
8254 
8255 	trace_sched_pi_setprio(p, pi_task);
8256 	oldprio = p->prio;
8257 
8258 	if (oldprio == prio)
8259 		queue_flag &= ~DEQUEUE_MOVE;
8260 
8261 	prev_class = p->sched_class;
8262 	next_class = __setscheduler_class(p->policy, prio);
8263 
8264 	if (prev_class != next_class && p->se.sched_delayed)
8265 		dequeue_task(rq, p, DEQUEUE_SLEEP | DEQUEUE_DELAYED | DEQUEUE_NOCLOCK);
8266 
8267 	queued = task_on_rq_queued(p);
8268 	running = task_current_donor(rq, p);
8269 	if (queued)
8270 		dequeue_task(rq, p, queue_flag);
8271 	if (running)
8272 		put_prev_task(rq, p);
8273 
8274 	/*
8275 	 * Boosting condition are:
8276 	 * 1. -rt task is running and holds mutex A
8277 	 *      --> -dl task blocks on mutex A
8278 	 *
8279 	 * 2. -dl task is running and holds mutex A
8280 	 *      --> -dl task blocks on mutex A and could preempt the
8281 	 *          running task
8282 	 */
8283 	if (dl_prio(prio)) {
8284 		if (!dl_prio(p->normal_prio) ||
8285 		    (pi_task && dl_prio(pi_task->prio) &&
8286 		     dl_entity_preempt(&pi_task->dl, &p->dl))) {
8287 			p->dl.pi_se = pi_task->dl.pi_se;
8288 			queue_flag |= ENQUEUE_REPLENISH;
8289 		} else {
8290 			p->dl.pi_se = &p->dl;
8291 		}
8292 	} else if (rt_prio(prio)) {
8293 		if (dl_prio(oldprio))
8294 			p->dl.pi_se = &p->dl;
8295 		if (oldprio < prio)
8296 			queue_flag |= ENQUEUE_HEAD;
8297 	} else {
8298 		if (dl_prio(oldprio))
8299 			p->dl.pi_se = &p->dl;
8300 		else if (rt_prio(oldprio))
8301 			p->rt.timeout = 0;
8302 		else if (!task_has_idle_policy(p)) {
8303 			struct load_weight lw;
8304 
8305 			lw.weight = scale_load(sched_prio_to_weight[prio - MAX_RT_PRIO]);
8306 			lw.inv_weight = sched_prio_to_wmult[prio - MAX_RT_PRIO];
8307 			p->sched_class->reweight_task(rq, p, &lw);
8308 		}
8309 	}
8310 
8311 	p->sched_class = next_class;
8312 	p->prio = prio;
8313 	trace_android_rvh_setscheduler_prio(p);
8314 
8315 	check_class_changing(rq, p, prev_class);
8316 
8317 	if (queued)
8318 		enqueue_task(rq, p, queue_flag);
8319 	if (running)
8320 		set_next_task(rq, p);
8321 
8322 	check_class_changed(rq, p, prev_class, oldprio);
8323 out_unlock:
8324 	/* Avoid rq from going away on us: */
8325 	preempt_disable();
8326 
8327 	rq_unpin_lock(rq, &rf);
8328 	__balance_callbacks(rq);
8329 	raw_spin_rq_unlock(rq);
8330 
8331 	preempt_enable();
8332 }
8333 #endif
8334 
8335 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
__cond_resched(void)8336 int __sched __cond_resched(void)
8337 {
8338 	if (should_resched(0) && !irqs_disabled()) {
8339 		preempt_schedule_common();
8340 		return 1;
8341 	}
8342 	/*
8343 	 * In preemptible kernels, ->rcu_read_lock_nesting tells the tick
8344 	 * whether the current CPU is in an RCU read-side critical section,
8345 	 * so the tick can report quiescent states even for CPUs looping
8346 	 * in kernel context.  In contrast, in non-preemptible kernels,
8347 	 * RCU readers leave no in-memory hints, which means that CPU-bound
8348 	 * processes executing in kernel context might never report an
8349 	 * RCU quiescent state.  Therefore, the following code causes
8350 	 * cond_resched() to report a quiescent state, but only when RCU
8351 	 * is in urgent need of one.
8352 	 */
8353 #ifndef CONFIG_PREEMPT_RCU
8354 	rcu_all_qs();
8355 #endif
8356 	return 0;
8357 }
8358 EXPORT_SYMBOL(__cond_resched);
8359 #endif
8360 
8361 #ifdef CONFIG_PREEMPT_DYNAMIC
8362 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
8363 #define cond_resched_dynamic_enabled	__cond_resched
8364 #define cond_resched_dynamic_disabled	((void *)&__static_call_return0)
8365 DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched);
8366 EXPORT_STATIC_CALL_TRAMP(cond_resched);
8367 
8368 #define might_resched_dynamic_enabled	__cond_resched
8369 #define might_resched_dynamic_disabled	((void *)&__static_call_return0)
8370 DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched);
8371 EXPORT_STATIC_CALL_TRAMP(might_resched);
8372 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
8373 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_cond_resched);
dynamic_cond_resched(void)8374 int __sched dynamic_cond_resched(void)
8375 {
8376 	klp_sched_try_switch();
8377 	if (!static_branch_unlikely(&sk_dynamic_cond_resched))
8378 		return 0;
8379 	return __cond_resched();
8380 }
8381 EXPORT_SYMBOL(dynamic_cond_resched);
8382 
8383 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_might_resched);
dynamic_might_resched(void)8384 int __sched dynamic_might_resched(void)
8385 {
8386 	if (!static_branch_unlikely(&sk_dynamic_might_resched))
8387 		return 0;
8388 	return __cond_resched();
8389 }
8390 EXPORT_SYMBOL(dynamic_might_resched);
8391 #endif
8392 #endif
8393 
8394 /*
8395  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
8396  * call schedule, and on return reacquire the lock.
8397  *
8398  * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
8399  * operations here to prevent schedule() from being called twice (once via
8400  * spin_unlock(), once by hand).
8401  */
__cond_resched_lock(spinlock_t * lock)8402 int __cond_resched_lock(spinlock_t *lock)
8403 {
8404 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
8405 	int ret = 0;
8406 
8407 	lockdep_assert_held(lock);
8408 
8409 	if (spin_needbreak(lock) || resched) {
8410 		spin_unlock(lock);
8411 		if (!_cond_resched())
8412 			cpu_relax();
8413 		ret = 1;
8414 		spin_lock(lock);
8415 	}
8416 	return ret;
8417 }
8418 EXPORT_SYMBOL(__cond_resched_lock);
8419 
__cond_resched_rwlock_read(rwlock_t * lock)8420 int __cond_resched_rwlock_read(rwlock_t *lock)
8421 {
8422 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
8423 	int ret = 0;
8424 
8425 	lockdep_assert_held_read(lock);
8426 
8427 	if (rwlock_needbreak(lock) || resched) {
8428 		read_unlock(lock);
8429 		if (!_cond_resched())
8430 			cpu_relax();
8431 		ret = 1;
8432 		read_lock(lock);
8433 	}
8434 	return ret;
8435 }
8436 EXPORT_SYMBOL(__cond_resched_rwlock_read);
8437 
__cond_resched_rwlock_write(rwlock_t * lock)8438 int __cond_resched_rwlock_write(rwlock_t *lock)
8439 {
8440 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
8441 	int ret = 0;
8442 
8443 	lockdep_assert_held_write(lock);
8444 
8445 	if (rwlock_needbreak(lock) || resched) {
8446 		write_unlock(lock);
8447 		if (!_cond_resched())
8448 			cpu_relax();
8449 		ret = 1;
8450 		write_lock(lock);
8451 	}
8452 	return ret;
8453 }
8454 EXPORT_SYMBOL(__cond_resched_rwlock_write);
8455 
8456 #ifdef CONFIG_PREEMPT_DYNAMIC
8457 
8458 #ifdef CONFIG_GENERIC_ENTRY
8459 #include <linux/entry-common.h>
8460 #endif
8461 
8462 /*
8463  * SC:cond_resched
8464  * SC:might_resched
8465  * SC:preempt_schedule
8466  * SC:preempt_schedule_notrace
8467  * SC:irqentry_exit_cond_resched
8468  *
8469  *
8470  * NONE:
8471  *   cond_resched               <- __cond_resched
8472  *   might_resched              <- RET0
8473  *   preempt_schedule           <- NOP
8474  *   preempt_schedule_notrace   <- NOP
8475  *   irqentry_exit_cond_resched <- NOP
8476  *
8477  * VOLUNTARY:
8478  *   cond_resched               <- __cond_resched
8479  *   might_resched              <- __cond_resched
8480  *   preempt_schedule           <- NOP
8481  *   preempt_schedule_notrace   <- NOP
8482  *   irqentry_exit_cond_resched <- NOP
8483  *
8484  * FULL:
8485  *   cond_resched               <- RET0
8486  *   might_resched              <- RET0
8487  *   preempt_schedule           <- preempt_schedule
8488  *   preempt_schedule_notrace   <- preempt_schedule_notrace
8489  *   irqentry_exit_cond_resched <- irqentry_exit_cond_resched
8490  */
8491 
8492 enum {
8493 	preempt_dynamic_undefined = -1,
8494 	preempt_dynamic_none,
8495 	preempt_dynamic_voluntary,
8496 	preempt_dynamic_full,
8497 };
8498 
8499 int preempt_dynamic_mode = preempt_dynamic_undefined;
8500 
sched_dynamic_mode(const char * str)8501 int sched_dynamic_mode(const char *str)
8502 {
8503 	if (!strcmp(str, "none"))
8504 		return preempt_dynamic_none;
8505 
8506 	if (!strcmp(str, "voluntary"))
8507 		return preempt_dynamic_voluntary;
8508 
8509 	if (!strcmp(str, "full"))
8510 		return preempt_dynamic_full;
8511 
8512 	return -EINVAL;
8513 }
8514 
8515 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
8516 #define preempt_dynamic_enable(f)	static_call_update(f, f##_dynamic_enabled)
8517 #define preempt_dynamic_disable(f)	static_call_update(f, f##_dynamic_disabled)
8518 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
8519 #define preempt_dynamic_enable(f)	static_key_enable(&sk_dynamic_##f.key)
8520 #define preempt_dynamic_disable(f)	static_key_disable(&sk_dynamic_##f.key)
8521 #else
8522 #error "Unsupported PREEMPT_DYNAMIC mechanism"
8523 #endif
8524 
8525 static DEFINE_MUTEX(sched_dynamic_mutex);
8526 static bool klp_override;
8527 
__sched_dynamic_update(int mode)8528 static void __sched_dynamic_update(int mode)
8529 {
8530 	/*
8531 	 * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in
8532 	 * the ZERO state, which is invalid.
8533 	 */
8534 	if (!klp_override)
8535 		preempt_dynamic_enable(cond_resched);
8536 	preempt_dynamic_enable(might_resched);
8537 	preempt_dynamic_enable(preempt_schedule);
8538 	preempt_dynamic_enable(preempt_schedule_notrace);
8539 	preempt_dynamic_enable(irqentry_exit_cond_resched);
8540 
8541 	switch (mode) {
8542 	case preempt_dynamic_none:
8543 		if (!klp_override)
8544 			preempt_dynamic_enable(cond_resched);
8545 		preempt_dynamic_disable(might_resched);
8546 		preempt_dynamic_disable(preempt_schedule);
8547 		preempt_dynamic_disable(preempt_schedule_notrace);
8548 		preempt_dynamic_disable(irqentry_exit_cond_resched);
8549 		if (mode != preempt_dynamic_mode)
8550 			pr_info("Dynamic Preempt: none\n");
8551 		break;
8552 
8553 	case preempt_dynamic_voluntary:
8554 		if (!klp_override)
8555 			preempt_dynamic_enable(cond_resched);
8556 		preempt_dynamic_enable(might_resched);
8557 		preempt_dynamic_disable(preempt_schedule);
8558 		preempt_dynamic_disable(preempt_schedule_notrace);
8559 		preempt_dynamic_disable(irqentry_exit_cond_resched);
8560 		if (mode != preempt_dynamic_mode)
8561 			pr_info("Dynamic Preempt: voluntary\n");
8562 		break;
8563 
8564 	case preempt_dynamic_full:
8565 		if (!klp_override)
8566 			preempt_dynamic_disable(cond_resched);
8567 		preempt_dynamic_disable(might_resched);
8568 		preempt_dynamic_enable(preempt_schedule);
8569 		preempt_dynamic_enable(preempt_schedule_notrace);
8570 		preempt_dynamic_enable(irqentry_exit_cond_resched);
8571 		if (mode != preempt_dynamic_mode)
8572 			pr_info("Dynamic Preempt: full\n");
8573 		break;
8574 	}
8575 
8576 	preempt_dynamic_mode = mode;
8577 }
8578 
sched_dynamic_update(int mode)8579 void sched_dynamic_update(int mode)
8580 {
8581 	mutex_lock(&sched_dynamic_mutex);
8582 	__sched_dynamic_update(mode);
8583 	mutex_unlock(&sched_dynamic_mutex);
8584 }
8585 
8586 #ifdef CONFIG_HAVE_PREEMPT_DYNAMIC_CALL
8587 
klp_cond_resched(void)8588 static int klp_cond_resched(void)
8589 {
8590 	__klp_sched_try_switch();
8591 	return __cond_resched();
8592 }
8593 
sched_dynamic_klp_enable(void)8594 void sched_dynamic_klp_enable(void)
8595 {
8596 	mutex_lock(&sched_dynamic_mutex);
8597 
8598 	klp_override = true;
8599 	static_call_update(cond_resched, klp_cond_resched);
8600 
8601 	mutex_unlock(&sched_dynamic_mutex);
8602 }
8603 
sched_dynamic_klp_disable(void)8604 void sched_dynamic_klp_disable(void)
8605 {
8606 	mutex_lock(&sched_dynamic_mutex);
8607 
8608 	klp_override = false;
8609 	__sched_dynamic_update(preempt_dynamic_mode);
8610 
8611 	mutex_unlock(&sched_dynamic_mutex);
8612 }
8613 
8614 #endif /* CONFIG_HAVE_PREEMPT_DYNAMIC_CALL */
8615 
setup_preempt_mode(char * str)8616 static int __init setup_preempt_mode(char *str)
8617 {
8618 	int mode = sched_dynamic_mode(str);
8619 	if (mode < 0) {
8620 		pr_warn("Dynamic Preempt: unsupported mode: %s\n", str);
8621 		return 0;
8622 	}
8623 
8624 	sched_dynamic_update(mode);
8625 	return 1;
8626 }
8627 __setup("preempt=", setup_preempt_mode);
8628 
preempt_dynamic_init(void)8629 static void __init preempt_dynamic_init(void)
8630 {
8631 	if (preempt_dynamic_mode == preempt_dynamic_undefined) {
8632 		if (IS_ENABLED(CONFIG_PREEMPT_NONE)) {
8633 			sched_dynamic_update(preempt_dynamic_none);
8634 		} else if (IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY)) {
8635 			sched_dynamic_update(preempt_dynamic_voluntary);
8636 		} else {
8637 			/* Default static call setting, nothing to do */
8638 			WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT));
8639 			preempt_dynamic_mode = preempt_dynamic_full;
8640 			pr_info("Dynamic Preempt: full\n");
8641 		}
8642 	}
8643 }
8644 
8645 #define PREEMPT_MODEL_ACCESSOR(mode) \
8646 	bool preempt_model_##mode(void)						 \
8647 	{									 \
8648 		WARN_ON_ONCE(preempt_dynamic_mode == preempt_dynamic_undefined); \
8649 		return preempt_dynamic_mode == preempt_dynamic_##mode;		 \
8650 	}									 \
8651 	EXPORT_SYMBOL_GPL(preempt_model_##mode)
8652 
8653 PREEMPT_MODEL_ACCESSOR(none);
8654 PREEMPT_MODEL_ACCESSOR(voluntary);
8655 PREEMPT_MODEL_ACCESSOR(full);
8656 
8657 #else /* !CONFIG_PREEMPT_DYNAMIC: */
8658 
preempt_dynamic_init(void)8659 static inline void preempt_dynamic_init(void) { }
8660 
8661 #endif /* CONFIG_PREEMPT_DYNAMIC */
8662 
io_schedule_prepare(void)8663 int io_schedule_prepare(void)
8664 {
8665 	int old_iowait = current->in_iowait;
8666 
8667 	current->in_iowait = 1;
8668 	blk_flush_plug(current->plug, true);
8669 	return old_iowait;
8670 }
8671 
io_schedule_finish(int token)8672 void io_schedule_finish(int token)
8673 {
8674 	current->in_iowait = token;
8675 }
8676 
8677 /*
8678  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
8679  * that process accounting knows that this is a task in IO wait state.
8680  */
io_schedule_timeout(long timeout)8681 long __sched io_schedule_timeout(long timeout)
8682 {
8683 	int token;
8684 	long ret;
8685 
8686 	token = io_schedule_prepare();
8687 	ret = schedule_timeout(timeout);
8688 	io_schedule_finish(token);
8689 
8690 	return ret;
8691 }
8692 EXPORT_SYMBOL(io_schedule_timeout);
8693 
io_schedule(void)8694 void __sched io_schedule(void)
8695 {
8696 	int token;
8697 
8698 	token = io_schedule_prepare();
8699 	schedule();
8700 	io_schedule_finish(token);
8701 }
8702 EXPORT_SYMBOL(io_schedule);
8703 
sched_show_task(struct task_struct * p)8704 void sched_show_task(struct task_struct *p)
8705 {
8706 	unsigned long free;
8707 	int ppid;
8708 
8709 	if (!try_get_task_stack(p))
8710 		return;
8711 
8712 	pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p));
8713 
8714 	if (task_is_running(p))
8715 		pr_cont("  running task    ");
8716 	free = stack_not_used(p);
8717 	ppid = 0;
8718 	rcu_read_lock();
8719 	if (pid_alive(p))
8720 		ppid = task_pid_nr(rcu_dereference(p->real_parent));
8721 	rcu_read_unlock();
8722 	pr_cont(" stack:%-5lu pid:%-5d tgid:%-5d ppid:%-6d flags:0x%08lx\n",
8723 		free, task_pid_nr(p), task_tgid_nr(p),
8724 		ppid, read_task_thread_flags(p));
8725 
8726 	print_worker_info(KERN_INFO, p);
8727 	print_stop_info(KERN_INFO, p);
8728 	print_scx_info(KERN_INFO, p);
8729 	trace_android_vh_sched_show_task(p);
8730 	show_stack(p, NULL, KERN_INFO);
8731 	put_task_stack(p);
8732 }
8733 EXPORT_SYMBOL_GPL(sched_show_task);
8734 
8735 static inline bool
state_filter_match(unsigned long state_filter,struct task_struct * p)8736 state_filter_match(unsigned long state_filter, struct task_struct *p)
8737 {
8738 	unsigned int state = READ_ONCE(p->__state);
8739 
8740 	/* no filter, everything matches */
8741 	if (!state_filter)
8742 		return true;
8743 
8744 	/* filter, but doesn't match */
8745 	if (!(state & state_filter))
8746 		return false;
8747 
8748 	/*
8749 	 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
8750 	 * TASK_KILLABLE).
8751 	 */
8752 	if (state_filter == TASK_UNINTERRUPTIBLE && (state & TASK_NOLOAD))
8753 		return false;
8754 
8755 	return true;
8756 }
8757 
8758 
show_state_filter(unsigned int state_filter)8759 void show_state_filter(unsigned int state_filter)
8760 {
8761 	struct task_struct *g, *p;
8762 
8763 	rcu_read_lock();
8764 	for_each_process_thread(g, p) {
8765 		/*
8766 		 * reset the NMI-timeout, listing all files on a slow
8767 		 * console might take a lot of time:
8768 		 * Also, reset softlockup watchdogs on all CPUs, because
8769 		 * another CPU might be blocked waiting for us to process
8770 		 * an IPI.
8771 		 */
8772 		touch_nmi_watchdog();
8773 		touch_all_softlockup_watchdogs();
8774 		if (state_filter_match(state_filter, p))
8775 			sched_show_task(p);
8776 	}
8777 
8778 #ifdef CONFIG_SCHED_DEBUG
8779 	if (!state_filter)
8780 		sysrq_sched_debug_show();
8781 #endif
8782 	rcu_read_unlock();
8783 	/*
8784 	 * Only show locks if all tasks are dumped:
8785 	 */
8786 	if (!state_filter)
8787 		debug_show_all_locks();
8788 }
8789 
8790 /**
8791  * init_idle - set up an idle thread for a given CPU
8792  * @idle: task in question
8793  * @cpu: CPU the idle task belongs to
8794  *
8795  * NOTE: this function does not set the idle thread's NEED_RESCHED
8796  * flag, to make booting more robust.
8797  */
init_idle(struct task_struct * idle,int cpu)8798 void __init init_idle(struct task_struct *idle, int cpu)
8799 {
8800 #ifdef CONFIG_SMP
8801 	struct affinity_context ac = (struct affinity_context) {
8802 		.new_mask  = cpumask_of(cpu),
8803 		.flags     = 0,
8804 	};
8805 #endif
8806 	struct rq *rq = cpu_rq(cpu);
8807 	unsigned long flags;
8808 
8809 	raw_spin_lock_irqsave(&idle->pi_lock, flags);
8810 	raw_spin_rq_lock(rq);
8811 
8812 	idle->__state = TASK_RUNNING;
8813 	idle->se.exec_start = sched_clock();
8814 	/*
8815 	 * PF_KTHREAD should already be set at this point; regardless, make it
8816 	 * look like a proper per-CPU kthread.
8817 	 */
8818 	idle->flags |= PF_KTHREAD | PF_NO_SETAFFINITY;
8819 	kthread_set_per_cpu(idle, cpu);
8820 
8821 #ifdef CONFIG_SMP
8822 	/*
8823 	 * No validation and serialization required at boot time and for
8824 	 * setting up the idle tasks of not yet online CPUs.
8825 	 */
8826 	set_cpus_allowed_common(idle, &ac);
8827 #endif
8828 	/*
8829 	 * We're having a chicken and egg problem, even though we are
8830 	 * holding rq->lock, the CPU isn't yet set to this CPU so the
8831 	 * lockdep check in task_group() will fail.
8832 	 *
8833 	 * Similar case to sched_fork(). / Alternatively we could
8834 	 * use task_rq_lock() here and obtain the other rq->lock.
8835 	 *
8836 	 * Silence PROVE_RCU
8837 	 */
8838 	rcu_read_lock();
8839 	__set_task_cpu(idle, cpu);
8840 	rcu_read_unlock();
8841 
8842 	rq->idle = idle;
8843 	rq_set_donor(rq, idle);
8844 	rcu_assign_pointer(rq->curr, idle);
8845 	idle->on_rq = TASK_ON_RQ_QUEUED;
8846 #ifdef CONFIG_SMP
8847 	idle->on_cpu = 1;
8848 #endif
8849 	raw_spin_rq_unlock(rq);
8850 	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
8851 
8852 	/* Set the preempt count _outside_ the spinlocks! */
8853 	init_idle_preempt_count(idle, cpu);
8854 
8855 	/*
8856 	 * The idle tasks have their own, simple scheduling class:
8857 	 */
8858 	idle->sched_class = &idle_sched_class;
8859 	ftrace_graph_init_idle_task(idle, cpu);
8860 	vtime_init_idle(idle, cpu);
8861 #ifdef CONFIG_SMP
8862 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
8863 #endif
8864 }
8865 
8866 #ifdef CONFIG_SMP
8867 
cpuset_cpumask_can_shrink(const struct cpumask * cur,const struct cpumask * trial)8868 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
8869 			      const struct cpumask *trial)
8870 {
8871 	int ret = 1;
8872 
8873 	if (cpumask_empty(cur))
8874 		return ret;
8875 
8876 	ret = dl_cpuset_cpumask_can_shrink(cur, trial);
8877 
8878 	return ret;
8879 }
8880 
task_can_attach(struct task_struct * p)8881 int task_can_attach(struct task_struct *p)
8882 {
8883 	int ret = 0;
8884 
8885 	/*
8886 	 * Kthreads which disallow setaffinity shouldn't be moved
8887 	 * to a new cpuset; we don't want to change their CPU
8888 	 * affinity and isolating such threads by their set of
8889 	 * allowed nodes is unnecessary.  Thus, cpusets are not
8890 	 * applicable for such threads.  This prevents checking for
8891 	 * success of set_cpus_allowed_ptr() on all attached tasks
8892 	 * before cpus_mask may be changed.
8893 	 */
8894 	if (p->flags & PF_NO_SETAFFINITY)
8895 		ret = -EINVAL;
8896 
8897 	return ret;
8898 }
8899 
8900 bool sched_smp_initialized __read_mostly;
8901 
8902 #ifdef CONFIG_NUMA_BALANCING
8903 /* Migrate current task p to target_cpu */
migrate_task_to(struct task_struct * p,int target_cpu)8904 int migrate_task_to(struct task_struct *p, int target_cpu)
8905 {
8906 	struct migration_arg arg = { p, target_cpu };
8907 	int curr_cpu = task_cpu(p);
8908 
8909 	if (curr_cpu == target_cpu)
8910 		return 0;
8911 
8912 	if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
8913 		return -EINVAL;
8914 
8915 	/* TODO: This is not properly updating schedstats */
8916 
8917 	trace_sched_move_numa(p, curr_cpu, target_cpu);
8918 	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
8919 }
8920 
8921 /*
8922  * Requeue a task on a given node and accurately track the number of NUMA
8923  * tasks on the runqueues
8924  */
sched_setnuma(struct task_struct * p,int nid)8925 void sched_setnuma(struct task_struct *p, int nid)
8926 {
8927 	bool queued, running;
8928 	struct rq_flags rf;
8929 	struct rq *rq;
8930 
8931 	rq = task_rq_lock(p, &rf);
8932 	queued = task_on_rq_queued(p);
8933 	running = task_current_donor(rq, p);
8934 
8935 	if (queued)
8936 		dequeue_task(rq, p, DEQUEUE_SAVE);
8937 	if (running)
8938 		put_prev_task(rq, p);
8939 
8940 	p->numa_preferred_nid = nid;
8941 
8942 	if (queued)
8943 		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
8944 	if (running)
8945 		set_next_task(rq, p);
8946 	task_rq_unlock(rq, p, &rf);
8947 }
8948 #endif /* CONFIG_NUMA_BALANCING */
8949 
8950 #ifdef CONFIG_HOTPLUG_CPU
8951 /*
8952  * Ensure that the idle task is using init_mm right before its CPU goes
8953  * offline.
8954  */
idle_task_exit(void)8955 void idle_task_exit(void)
8956 {
8957 	struct mm_struct *mm = current->active_mm;
8958 
8959 	BUG_ON(cpu_online(smp_processor_id()));
8960 	BUG_ON(current != this_rq()->idle);
8961 
8962 	if (mm != &init_mm) {
8963 		switch_mm(mm, &init_mm, current);
8964 		finish_arch_post_lock_switch();
8965 	}
8966 
8967 	/* finish_cpu(), as ran on the BP, will clean up the active_mm state */
8968 }
8969 
__balance_push_cpu_stop(void * arg)8970 static int __balance_push_cpu_stop(void *arg)
8971 {
8972 	struct task_struct *p = arg;
8973 	struct rq *rq = this_rq();
8974 	struct rq_flags rf;
8975 	int cpu;
8976 
8977 	raw_spin_lock_irq(&p->pi_lock);
8978 	rq_lock(rq, &rf);
8979 
8980 	update_rq_clock(rq);
8981 
8982 	if (task_rq(p) == rq && task_on_rq_queued(p)) {
8983 		cpu = select_fallback_rq(rq->cpu, p);
8984 		rq = __migrate_task(rq, &rf, p, cpu);
8985 	}
8986 
8987 	rq_unlock(rq, &rf);
8988 	raw_spin_unlock_irq(&p->pi_lock);
8989 
8990 	put_task_struct(p);
8991 
8992 	return 0;
8993 }
8994 
8995 static DEFINE_PER_CPU(struct cpu_stop_work, push_work);
8996 
8997 /*
8998  * Ensure we only run per-cpu kthreads once the CPU goes !active.
8999  *
9000  * This is enabled below SCHED_AP_ACTIVE; when !cpu_active(), but only
9001  * effective when the hotplug motion is down.
9002  */
balance_push(struct rq * rq)9003 static void balance_push(struct rq *rq)
9004 {
9005 	struct task_struct *push_task = rq->curr;
9006 
9007 	lockdep_assert_rq_held(rq);
9008 
9009 	/*
9010 	 * Ensure the thing is persistent until balance_push_set(.on = false);
9011 	 */
9012 	rq->balance_callback = &balance_push_callback;
9013 
9014 	/*
9015 	 * Only active while going offline and when invoked on the outgoing
9016 	 * CPU.
9017 	 */
9018 	if (!cpu_dying(rq->cpu) || rq != this_rq())
9019 		return;
9020 
9021 	/*
9022 	 * Both the cpu-hotplug and stop task are in this case and are
9023 	 * required to complete the hotplug process.
9024 	 */
9025 	if (kthread_is_per_cpu(push_task) ||
9026 	    is_migration_disabled(push_task)) {
9027 
9028 		/*
9029 		 * If this is the idle task on the outgoing CPU try to wake
9030 		 * up the hotplug control thread which might wait for the
9031 		 * last task to vanish. The rcuwait_active() check is
9032 		 * accurate here because the waiter is pinned on this CPU
9033 		 * and can't obviously be running in parallel.
9034 		 *
9035 		 * On RT kernels this also has to check whether there are
9036 		 * pinned and scheduled out tasks on the runqueue. They
9037 		 * need to leave the migrate disabled section first.
9038 		 */
9039 		if (!rq->nr_running && !rq_has_pinned_tasks(rq) &&
9040 		    rcuwait_active(&rq->hotplug_wait)) {
9041 			raw_spin_rq_unlock(rq);
9042 			rcuwait_wake_up(&rq->hotplug_wait);
9043 			raw_spin_rq_lock(rq);
9044 		}
9045 		return;
9046 	}
9047 
9048 	get_task_struct(push_task);
9049 	/*
9050 	 * Temporarily drop rq->lock such that we can wake-up the stop task.
9051 	 * Both preemption and IRQs are still disabled.
9052 	 */
9053 	preempt_disable();
9054 	raw_spin_rq_unlock(rq);
9055 	stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task,
9056 			    this_cpu_ptr(&push_work));
9057 	preempt_enable();
9058 	/*
9059 	 * At this point need_resched() is true and we'll take the loop in
9060 	 * schedule(). The next pick is obviously going to be the stop task
9061 	 * which kthread_is_per_cpu() and will push this task away.
9062 	 */
9063 	raw_spin_rq_lock(rq);
9064 }
9065 
balance_push_set(int cpu,bool on)9066 static void balance_push_set(int cpu, bool on)
9067 {
9068 	struct rq *rq = cpu_rq(cpu);
9069 	struct rq_flags rf;
9070 
9071 	rq_lock_irqsave(rq, &rf);
9072 	if (on) {
9073 		WARN_ON_ONCE(rq->balance_callback);
9074 		rq->balance_callback = &balance_push_callback;
9075 	} else if (rq->balance_callback == &balance_push_callback) {
9076 		rq->balance_callback = NULL;
9077 	}
9078 	rq_unlock_irqrestore(rq, &rf);
9079 }
9080 
9081 /*
9082  * Invoked from a CPUs hotplug control thread after the CPU has been marked
9083  * inactive. All tasks which are not per CPU kernel threads are either
9084  * pushed off this CPU now via balance_push() or placed on a different CPU
9085  * during wakeup. Wait until the CPU is quiescent.
9086  */
balance_hotplug_wait(void)9087 static void balance_hotplug_wait(void)
9088 {
9089 	struct rq *rq = this_rq();
9090 
9091 	rcuwait_wait_event(&rq->hotplug_wait,
9092 			   rq->nr_running == 1 && !rq_has_pinned_tasks(rq),
9093 			   TASK_UNINTERRUPTIBLE);
9094 }
9095 
9096 #else
9097 
balance_push(struct rq * rq)9098 static inline void balance_push(struct rq *rq)
9099 {
9100 }
9101 
balance_push_set(int cpu,bool on)9102 static inline void balance_push_set(int cpu, bool on)
9103 {
9104 }
9105 
balance_hotplug_wait(void)9106 static inline void balance_hotplug_wait(void)
9107 {
9108 }
9109 
9110 #endif /* CONFIG_HOTPLUG_CPU */
9111 
set_rq_online(struct rq * rq)9112 void set_rq_online(struct rq *rq)
9113 {
9114 	if (!rq->online) {
9115 		const struct sched_class *class;
9116 
9117 		cpumask_set_cpu(rq->cpu, rq->rd->online);
9118 		rq->online = 1;
9119 
9120 		for_each_class(class) {
9121 			if (class->rq_online)
9122 				class->rq_online(rq);
9123 		}
9124 	}
9125 }
9126 
set_rq_offline(struct rq * rq)9127 void set_rq_offline(struct rq *rq)
9128 {
9129 	if (rq->online) {
9130 		const struct sched_class *class;
9131 
9132 		update_rq_clock(rq);
9133 		for_each_class(class) {
9134 			if (class->rq_offline)
9135 				class->rq_offline(rq);
9136 		}
9137 
9138 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
9139 		rq->online = 0;
9140 	}
9141 }
9142 
sched_set_rq_online(struct rq * rq,int cpu)9143 static inline void sched_set_rq_online(struct rq *rq, int cpu)
9144 {
9145 	struct rq_flags rf;
9146 
9147 	rq_lock_irqsave(rq, &rf);
9148 	if (rq->rd) {
9149 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
9150 		set_rq_online(rq);
9151 	}
9152 	rq_unlock_irqrestore(rq, &rf);
9153 }
9154 
sched_set_rq_offline(struct rq * rq,int cpu)9155 static inline void sched_set_rq_offline(struct rq *rq, int cpu)
9156 {
9157 	struct rq_flags rf;
9158 
9159 	rq_lock_irqsave(rq, &rf);
9160 	if (rq->rd) {
9161 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
9162 		set_rq_offline(rq);
9163 	}
9164 	rq_unlock_irqrestore(rq, &rf);
9165 }
9166 
9167 /*
9168  * used to mark begin/end of suspend/resume:
9169  */
9170 static int num_cpus_frozen;
9171 
9172 /*
9173  * Update cpusets according to cpu_active mask.  If cpusets are
9174  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
9175  * around partition_sched_domains().
9176  *
9177  * If we come here as part of a suspend/resume, don't touch cpusets because we
9178  * want to restore it back to its original state upon resume anyway.
9179  */
cpuset_cpu_active(void)9180 static void cpuset_cpu_active(void)
9181 {
9182 	if (cpuhp_tasks_frozen) {
9183 		/*
9184 		 * num_cpus_frozen tracks how many CPUs are involved in suspend
9185 		 * resume sequence. As long as this is not the last online
9186 		 * operation in the resume sequence, just build a single sched
9187 		 * domain, ignoring cpusets.
9188 		 */
9189 		partition_sched_domains(1, NULL, NULL);
9190 		if (--num_cpus_frozen)
9191 			return;
9192 		/*
9193 		 * This is the last CPU online operation. So fall through and
9194 		 * restore the original sched domains by considering the
9195 		 * cpuset configurations.
9196 		 */
9197 		cpuset_force_rebuild();
9198 	}
9199 	cpuset_update_active_cpus();
9200 }
9201 
cpuset_cpu_inactive(unsigned int cpu)9202 static int cpuset_cpu_inactive(unsigned int cpu)
9203 {
9204 	if (!cpuhp_tasks_frozen) {
9205 		int ret = dl_bw_check_overflow(cpu);
9206 
9207 		if (ret)
9208 			return ret;
9209 		cpuset_update_active_cpus();
9210 	} else {
9211 		num_cpus_frozen++;
9212 		partition_sched_domains(1, NULL, NULL);
9213 	}
9214 	return 0;
9215 }
9216 
sched_smt_present_inc(int cpu)9217 static inline void sched_smt_present_inc(int cpu)
9218 {
9219 #ifdef CONFIG_SCHED_SMT
9220 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
9221 		static_branch_inc_cpuslocked(&sched_smt_present);
9222 #endif
9223 }
9224 
sched_smt_present_dec(int cpu)9225 static inline void sched_smt_present_dec(int cpu)
9226 {
9227 #ifdef CONFIG_SCHED_SMT
9228 	if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
9229 		static_branch_dec_cpuslocked(&sched_smt_present);
9230 #endif
9231 }
9232 
sched_cpu_activate(unsigned int cpu)9233 int sched_cpu_activate(unsigned int cpu)
9234 {
9235 	struct rq *rq = cpu_rq(cpu);
9236 
9237 	/*
9238 	 * Clear the balance_push callback and prepare to schedule
9239 	 * regular tasks.
9240 	 */
9241 	balance_push_set(cpu, false);
9242 
9243 	/*
9244 	 * When going up, increment the number of cores with SMT present.
9245 	 */
9246 	sched_smt_present_inc(cpu);
9247 	set_cpu_active(cpu, true);
9248 
9249 	if (sched_smp_initialized) {
9250 		sched_update_numa(cpu, true);
9251 		sched_domains_numa_masks_set(cpu);
9252 		cpuset_cpu_active();
9253 	}
9254 
9255 	scx_rq_activate(rq);
9256 
9257 	/*
9258 	 * Put the rq online, if not already. This happens:
9259 	 *
9260 	 * 1) In the early boot process, because we build the real domains
9261 	 *    after all CPUs have been brought up.
9262 	 *
9263 	 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
9264 	 *    domains.
9265 	 */
9266 	sched_set_rq_online(rq, cpu);
9267 
9268 	return 0;
9269 }
9270 
sched_cpu_deactivate(unsigned int cpu)9271 int sched_cpu_deactivate(unsigned int cpu)
9272 {
9273 	struct rq *rq = cpu_rq(cpu);
9274 	int ret;
9275 
9276 	/*
9277 	 * Remove CPU from nohz.idle_cpus_mask to prevent participating in
9278 	 * load balancing when not active
9279 	 */
9280 	nohz_balance_exit_idle(rq);
9281 
9282 	set_cpu_active(cpu, false);
9283 
9284 	/*
9285 	 * From this point forward, this CPU will refuse to run any task that
9286 	 * is not: migrate_disable() or KTHREAD_IS_PER_CPU, and will actively
9287 	 * push those tasks away until this gets cleared, see
9288 	 * sched_cpu_dying().
9289 	 */
9290 	balance_push_set(cpu, true);
9291 
9292 	/*
9293 	 * We've cleared cpu_active_mask / set balance_push, wait for all
9294 	 * preempt-disabled and RCU users of this state to go away such that
9295 	 * all new such users will observe it.
9296 	 *
9297 	 * Specifically, we rely on ttwu to no longer target this CPU, see
9298 	 * ttwu_queue_cond() and is_cpu_allowed().
9299 	 *
9300 	 * Do sync before park smpboot threads to take care the RCU boost case.
9301 	 */
9302 	synchronize_rcu();
9303 
9304 	sched_set_rq_offline(rq, cpu);
9305 
9306 	scx_rq_deactivate(rq);
9307 
9308 	/*
9309 	 * When going down, decrement the number of cores with SMT present.
9310 	 */
9311 	sched_smt_present_dec(cpu);
9312 
9313 #ifdef CONFIG_SCHED_SMT
9314 	sched_core_cpu_deactivate(cpu);
9315 #endif
9316 
9317 	if (!sched_smp_initialized)
9318 		return 0;
9319 
9320 	sched_update_numa(cpu, false);
9321 	ret = cpuset_cpu_inactive(cpu);
9322 	if (ret) {
9323 		sched_smt_present_inc(cpu);
9324 		sched_set_rq_online(rq, cpu);
9325 		balance_push_set(cpu, false);
9326 		set_cpu_active(cpu, true);
9327 		sched_update_numa(cpu, true);
9328 		return ret;
9329 	}
9330 	sched_domains_numa_masks_clear(cpu);
9331 	return 0;
9332 }
9333 
sched_rq_cpu_starting(unsigned int cpu)9334 static void sched_rq_cpu_starting(unsigned int cpu)
9335 {
9336 	struct rq *rq = cpu_rq(cpu);
9337 
9338 	rq->calc_load_update = calc_load_update;
9339 	update_max_interval();
9340 }
9341 
sched_cpu_starting(unsigned int cpu)9342 int sched_cpu_starting(unsigned int cpu)
9343 {
9344 	sched_core_cpu_starting(cpu);
9345 	sched_rq_cpu_starting(cpu);
9346 	sched_tick_start(cpu);
9347 	trace_android_rvh_sched_cpu_starting(cpu);
9348 	return 0;
9349 }
9350 
9351 #ifdef CONFIG_HOTPLUG_CPU
9352 
9353 /*
9354  * Invoked immediately before the stopper thread is invoked to bring the
9355  * CPU down completely. At this point all per CPU kthreads except the
9356  * hotplug thread (current) and the stopper thread (inactive) have been
9357  * either parked or have been unbound from the outgoing CPU. Ensure that
9358  * any of those which might be on the way out are gone.
9359  *
9360  * If after this point a bound task is being woken on this CPU then the
9361  * responsible hotplug callback has failed to do it's job.
9362  * sched_cpu_dying() will catch it with the appropriate fireworks.
9363  */
sched_cpu_wait_empty(unsigned int cpu)9364 int sched_cpu_wait_empty(unsigned int cpu)
9365 {
9366 	balance_hotplug_wait();
9367 	return 0;
9368 }
9369 
9370 /*
9371  * Since this CPU is going 'away' for a while, fold any nr_active delta we
9372  * might have. Called from the CPU stopper task after ensuring that the
9373  * stopper is the last running task on the CPU, so nr_active count is
9374  * stable. We need to take the tear-down thread which is calling this into
9375  * account, so we hand in adjust = 1 to the load calculation.
9376  *
9377  * Also see the comment "Global load-average calculations".
9378  */
calc_load_migrate(struct rq * rq)9379 static void calc_load_migrate(struct rq *rq)
9380 {
9381 	long delta = calc_load_fold_active(rq, 1);
9382 
9383 	if (delta)
9384 		atomic_long_add(delta, &calc_load_tasks);
9385 }
9386 
dump_rq_tasks(struct rq * rq,const char * loglvl)9387 static void dump_rq_tasks(struct rq *rq, const char *loglvl)
9388 {
9389 	struct task_struct *g, *p;
9390 	int cpu = cpu_of(rq);
9391 
9392 	lockdep_assert_rq_held(rq);
9393 
9394 	printk("%sCPU%d enqueued tasks (%u total):\n", loglvl, cpu, rq->nr_running);
9395 	for_each_process_thread(g, p) {
9396 		if (task_cpu(p) != cpu)
9397 			continue;
9398 
9399 		if (!task_on_rq_queued(p))
9400 			continue;
9401 
9402 		printk("%s\tpid: %d, name: %s\n", loglvl, p->pid, p->comm);
9403 	}
9404 }
9405 
sched_cpu_dying(unsigned int cpu)9406 int sched_cpu_dying(unsigned int cpu)
9407 {
9408 	struct rq *rq = cpu_rq(cpu);
9409 	struct rq_flags rf;
9410 
9411 	/* Handle pending wakeups and then migrate everything off */
9412 	sched_tick_stop(cpu);
9413 
9414 	rq_lock_irqsave(rq, &rf);
9415 	if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) {
9416 		WARN(true, "Dying CPU not properly vacated!");
9417 		dump_rq_tasks(rq, KERN_WARNING);
9418 	}
9419 	rq_unlock_irqrestore(rq, &rf);
9420 
9421 	trace_android_rvh_sched_cpu_dying(cpu);
9422 
9423 	calc_load_migrate(rq);
9424 	update_max_interval();
9425 	hrtick_clear(rq);
9426 	sched_core_cpu_dying(cpu);
9427 	return 0;
9428 }
9429 #endif
9430 
sched_init_smp(void)9431 void __init sched_init_smp(void)
9432 {
9433 	sched_init_numa(NUMA_NO_NODE);
9434 
9435 	/*
9436 	 * There's no userspace yet to cause hotplug operations; hence all the
9437 	 * CPU masks are stable and all blatant races in the below code cannot
9438 	 * happen.
9439 	 */
9440 	mutex_lock(&sched_domains_mutex);
9441 	sched_init_domains(cpu_active_mask);
9442 	mutex_unlock(&sched_domains_mutex);
9443 
9444 	/* Move init over to a non-isolated CPU */
9445 	if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_TYPE_DOMAIN)) < 0)
9446 		BUG();
9447 	current->flags &= ~PF_NO_SETAFFINITY;
9448 	sched_init_granularity();
9449 
9450 	init_sched_rt_class();
9451 	init_sched_dl_class();
9452 
9453 	sched_smp_initialized = true;
9454 }
9455 
migration_init(void)9456 static int __init migration_init(void)
9457 {
9458 	sched_cpu_starting(smp_processor_id());
9459 	return 0;
9460 }
9461 early_initcall(migration_init);
9462 
9463 #else
sched_init_smp(void)9464 void __init sched_init_smp(void)
9465 {
9466 	sched_init_granularity();
9467 }
9468 #endif /* CONFIG_SMP */
9469 
in_sched_functions(unsigned long addr)9470 int in_sched_functions(unsigned long addr)
9471 {
9472 	return in_lock_functions(addr) ||
9473 		(addr >= (unsigned long)__sched_text_start
9474 		&& addr < (unsigned long)__sched_text_end);
9475 }
9476 
9477 #ifdef CONFIG_CGROUP_SCHED
9478 /*
9479  * Default task group.
9480  * Every task in system belongs to this group at bootup.
9481  */
9482 struct task_group root_task_group;
9483 EXPORT_SYMBOL_GPL(root_task_group);
9484 LIST_HEAD(task_groups);
9485 EXPORT_SYMBOL_GPL(task_groups);
9486 
9487 /* Cacheline aligned slab cache for task_group */
9488 static struct kmem_cache *task_group_cache __ro_after_init;
9489 #endif
9490 
sched_init(void)9491 void __init sched_init(void)
9492 {
9493 	unsigned long ptr = 0;
9494 	int i;
9495 
9496 	/* Make sure the linker didn't screw up */
9497 #ifdef CONFIG_SMP
9498 	BUG_ON(!sched_class_above(&stop_sched_class, &dl_sched_class));
9499 #endif
9500 	BUG_ON(!sched_class_above(&dl_sched_class, &rt_sched_class));
9501 	BUG_ON(!sched_class_above(&rt_sched_class, &fair_sched_class));
9502 	BUG_ON(!sched_class_above(&fair_sched_class, &idle_sched_class));
9503 #ifdef CONFIG_SCHED_CLASS_EXT
9504 	BUG_ON(!sched_class_above(&fair_sched_class, &ext_sched_class));
9505 	BUG_ON(!sched_class_above(&ext_sched_class, &idle_sched_class));
9506 #endif
9507 
9508 	wait_bit_init();
9509 
9510 #ifdef CONFIG_FAIR_GROUP_SCHED
9511 	ptr += 2 * nr_cpu_ids * sizeof(void **);
9512 #endif
9513 #ifdef CONFIG_RT_GROUP_SCHED
9514 	ptr += 2 * nr_cpu_ids * sizeof(void **);
9515 #endif
9516 	if (ptr) {
9517 		ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
9518 
9519 #ifdef CONFIG_FAIR_GROUP_SCHED
9520 		root_task_group.se = (struct sched_entity **)ptr;
9521 		ptr += nr_cpu_ids * sizeof(void **);
9522 
9523 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
9524 		ptr += nr_cpu_ids * sizeof(void **);
9525 
9526 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
9527 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth, NULL);
9528 #endif /* CONFIG_FAIR_GROUP_SCHED */
9529 #ifdef CONFIG_EXT_GROUP_SCHED
9530 		scx_tg_init(&root_task_group);
9531 #endif /* CONFIG_EXT_GROUP_SCHED */
9532 #ifdef CONFIG_RT_GROUP_SCHED
9533 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
9534 		ptr += nr_cpu_ids * sizeof(void **);
9535 
9536 		root_task_group.rt_rq = (struct rt_rq **)ptr;
9537 		ptr += nr_cpu_ids * sizeof(void **);
9538 
9539 #endif /* CONFIG_RT_GROUP_SCHED */
9540 	}
9541 
9542 #ifdef CONFIG_SMP
9543 	init_defrootdomain();
9544 #endif
9545 
9546 #ifdef CONFIG_RT_GROUP_SCHED
9547 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
9548 			global_rt_period(), global_rt_runtime());
9549 #endif /* CONFIG_RT_GROUP_SCHED */
9550 
9551 #ifdef CONFIG_CGROUP_SCHED
9552 	task_group_cache = KMEM_CACHE(task_group, 0);
9553 
9554 	list_add(&root_task_group.list, &task_groups);
9555 	INIT_LIST_HEAD(&root_task_group.children);
9556 	INIT_LIST_HEAD(&root_task_group.siblings);
9557 	autogroup_init(&init_task);
9558 #endif /* CONFIG_CGROUP_SCHED */
9559 
9560 	for_each_possible_cpu(i) {
9561 		struct rq *rq;
9562 
9563 		rq = cpu_rq(i);
9564 		raw_spin_lock_init(&rq->__lock);
9565 		rq->nr_running = 0;
9566 		rq->calc_load_active = 0;
9567 		rq->calc_load_update = jiffies + LOAD_FREQ;
9568 		init_cfs_rq(&rq->cfs);
9569 		init_rt_rq(&rq->rt);
9570 		init_dl_rq(&rq->dl);
9571 #ifdef CONFIG_FAIR_GROUP_SCHED
9572 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
9573 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
9574 		/*
9575 		 * How much CPU bandwidth does root_task_group get?
9576 		 *
9577 		 * In case of task-groups formed through the cgroup filesystem, it
9578 		 * gets 100% of the CPU resources in the system. This overall
9579 		 * system CPU resource is divided among the tasks of
9580 		 * root_task_group and its child task-groups in a fair manner,
9581 		 * based on each entity's (task or task-group's) weight
9582 		 * (se->load.weight).
9583 		 *
9584 		 * In other words, if root_task_group has 10 tasks of weight
9585 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
9586 		 * then A0's share of the CPU resource is:
9587 		 *
9588 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
9589 		 *
9590 		 * We achieve this by letting root_task_group's tasks sit
9591 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
9592 		 */
9593 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
9594 #endif /* CONFIG_FAIR_GROUP_SCHED */
9595 
9596 #ifdef CONFIG_RT_GROUP_SCHED
9597 		/*
9598 		 * This is required for init cpu because rt.c:__enable_runtime()
9599 		 * starts working after scheduler_running, which is not the case
9600 		 * yet.
9601 		 */
9602 		rq->rt.rt_runtime = global_rt_runtime();
9603 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
9604 #endif
9605 #ifdef CONFIG_SMP
9606 		rq->sd = NULL;
9607 		rq->rd = NULL;
9608 		rq->cpu_capacity = SCHED_CAPACITY_SCALE;
9609 		rq->balance_callback = &balance_push_callback;
9610 		rq->active_balance = 0;
9611 		rq->next_balance = jiffies;
9612 		rq->push_cpu = 0;
9613 		rq->cpu = i;
9614 		rq->online = 0;
9615 		rq->idle_stamp = 0;
9616 		rq->avg_idle = 2*sysctl_sched_migration_cost;
9617 		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
9618 
9619 		INIT_LIST_HEAD(&rq->cfs_tasks);
9620 
9621 		rq_attach_root(rq, &def_root_domain);
9622 #ifdef CONFIG_NO_HZ_COMMON
9623 		rq->last_blocked_load_update_tick = jiffies;
9624 		atomic_set(&rq->nohz_flags, 0);
9625 
9626 		INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq);
9627 #endif
9628 #ifdef CONFIG_HOTPLUG_CPU
9629 		rcuwait_init(&rq->hotplug_wait);
9630 #endif
9631 #endif /* CONFIG_SMP */
9632 		hrtick_rq_init(rq);
9633 		atomic_set(&rq->nr_iowait, 0);
9634 		fair_server_init(rq);
9635 
9636 #ifdef CONFIG_SCHED_CORE
9637 		rq->core = rq;
9638 		rq->core_pick = NULL;
9639 		rq->core_dl_server = NULL;
9640 		rq->core_enabled = 0;
9641 		rq->core_tree = RB_ROOT;
9642 		rq->core_forceidle_count = 0;
9643 		rq->core_forceidle_occupation = 0;
9644 		rq->core_forceidle_start = 0;
9645 
9646 		rq->core_cookie = 0UL;
9647 #endif
9648 		zalloc_cpumask_var_node(&rq->scratch_mask, GFP_KERNEL, cpu_to_node(i));
9649 	}
9650 
9651 	set_load_weight(&init_task, false);
9652 	init_task.se.slice = sysctl_sched_base_slice,
9653 
9654 	/*
9655 	 * The boot idle thread does lazy MMU switching as well:
9656 	 */
9657 	mmgrab_lazy_tlb(&init_mm);
9658 	enter_lazy_tlb(&init_mm, current);
9659 
9660 	/*
9661 	 * The idle task doesn't need the kthread struct to function, but it
9662 	 * is dressed up as a per-CPU kthread and thus needs to play the part
9663 	 * if we want to avoid special-casing it in code that deals with per-CPU
9664 	 * kthreads.
9665 	 */
9666 	WARN_ON(!set_kthread_struct(current));
9667 
9668 	/*
9669 	 * Make us the idle thread. Technically, schedule() should not be
9670 	 * called from this thread, however somewhere below it might be,
9671 	 * but because we are the idle thread, we just pick up running again
9672 	 * when this runqueue becomes "idle".
9673 	 */
9674 	__sched_fork(0, current);
9675 	init_idle(current, smp_processor_id());
9676 
9677 	calc_load_update = jiffies + LOAD_FREQ;
9678 
9679 #ifdef CONFIG_SMP
9680 	idle_thread_set_boot_cpu();
9681 	balance_push_set(smp_processor_id(), false);
9682 #endif
9683 	init_sched_fair_class();
9684 	init_sched_ext_class();
9685 
9686 	psi_init();
9687 
9688 	init_uclamp();
9689 
9690 	preempt_dynamic_init();
9691 
9692 	scheduler_running = 1;
9693 }
9694 
9695 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
9696 
__might_sleep(const char * file,int line)9697 void __might_sleep(const char *file, int line)
9698 {
9699 	unsigned int state = get_current_state();
9700 	/*
9701 	 * Blocking primitives will set (and therefore destroy) current->state,
9702 	 * since we will exit with TASK_RUNNING make sure we enter with it,
9703 	 * otherwise we will destroy state.
9704 	 */
9705 	WARN_ONCE(state != TASK_RUNNING && current->task_state_change,
9706 			"do not call blocking ops when !TASK_RUNNING; "
9707 			"state=%x set at [<%p>] %pS\n", state,
9708 			(void *)current->task_state_change,
9709 			(void *)current->task_state_change);
9710 
9711 	__might_resched(file, line, 0);
9712 }
9713 EXPORT_SYMBOL(__might_sleep);
9714 
print_preempt_disable_ip(int preempt_offset,unsigned long ip)9715 static void print_preempt_disable_ip(int preempt_offset, unsigned long ip)
9716 {
9717 	if (!IS_ENABLED(CONFIG_DEBUG_PREEMPT))
9718 		return;
9719 
9720 	if (preempt_count() == preempt_offset)
9721 		return;
9722 
9723 	pr_err("Preemption disabled at:");
9724 	print_ip_sym(KERN_ERR, ip);
9725 }
9726 
resched_offsets_ok(unsigned int offsets)9727 static inline bool resched_offsets_ok(unsigned int offsets)
9728 {
9729 	unsigned int nested = preempt_count();
9730 
9731 	nested += rcu_preempt_depth() << MIGHT_RESCHED_RCU_SHIFT;
9732 
9733 	return nested == offsets;
9734 }
9735 
__might_resched(const char * file,int line,unsigned int offsets)9736 void __might_resched(const char *file, int line, unsigned int offsets)
9737 {
9738 	/* Ratelimiting timestamp: */
9739 	static unsigned long prev_jiffy;
9740 
9741 	unsigned long preempt_disable_ip;
9742 
9743 	/* WARN_ON_ONCE() by default, no rate limit required: */
9744 	rcu_sleep_check();
9745 
9746 	if ((resched_offsets_ok(offsets) && !irqs_disabled() &&
9747 	     !is_idle_task(current) && !current->non_block_count) ||
9748 	    system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
9749 	    oops_in_progress)
9750 		return;
9751 
9752 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9753 		return;
9754 	prev_jiffy = jiffies;
9755 
9756 	/* Save this before calling printk(), since that will clobber it: */
9757 	preempt_disable_ip = get_preempt_disable_ip(current);
9758 
9759 	pr_err("BUG: sleeping function called from invalid context at %s:%d\n",
9760 	       file, line);
9761 	pr_err("in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
9762 	       in_atomic(), irqs_disabled(), current->non_block_count,
9763 	       current->pid, current->comm);
9764 	pr_err("preempt_count: %x, expected: %x\n", preempt_count(),
9765 	       offsets & MIGHT_RESCHED_PREEMPT_MASK);
9766 
9767 	if (IS_ENABLED(CONFIG_PREEMPT_RCU)) {
9768 		pr_err("RCU nest depth: %d, expected: %u\n",
9769 		       rcu_preempt_depth(), offsets >> MIGHT_RESCHED_RCU_SHIFT);
9770 	}
9771 
9772 	if (task_stack_end_corrupted(current))
9773 		pr_emerg("Thread overran stack, or stack corrupted\n");
9774 
9775 	debug_show_held_locks(current);
9776 	if (irqs_disabled())
9777 		print_irqtrace_events(current);
9778 
9779 	print_preempt_disable_ip(offsets & MIGHT_RESCHED_PREEMPT_MASK,
9780 				 preempt_disable_ip);
9781 
9782 	trace_android_rvh_schedule_bug(NULL);
9783 
9784 	dump_stack();
9785 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
9786 }
9787 EXPORT_SYMBOL(__might_resched);
9788 
__cant_sleep(const char * file,int line,int preempt_offset)9789 void __cant_sleep(const char *file, int line, int preempt_offset)
9790 {
9791 	static unsigned long prev_jiffy;
9792 
9793 	if (irqs_disabled())
9794 		return;
9795 
9796 	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
9797 		return;
9798 
9799 	if (preempt_count() > preempt_offset)
9800 		return;
9801 
9802 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9803 		return;
9804 	prev_jiffy = jiffies;
9805 
9806 	printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
9807 	printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
9808 			in_atomic(), irqs_disabled(),
9809 			current->pid, current->comm);
9810 
9811 	debug_show_held_locks(current);
9812 	dump_stack();
9813 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
9814 }
9815 EXPORT_SYMBOL_GPL(__cant_sleep);
9816 
9817 #ifdef CONFIG_SMP
__cant_migrate(const char * file,int line)9818 void __cant_migrate(const char *file, int line)
9819 {
9820 	static unsigned long prev_jiffy;
9821 
9822 	if (irqs_disabled())
9823 		return;
9824 
9825 	if (is_migration_disabled(current))
9826 		return;
9827 
9828 	if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
9829 		return;
9830 
9831 	if (preempt_count() > 0)
9832 		return;
9833 
9834 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9835 		return;
9836 	prev_jiffy = jiffies;
9837 
9838 	pr_err("BUG: assuming non migratable context at %s:%d\n", file, line);
9839 	pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n",
9840 	       in_atomic(), irqs_disabled(), is_migration_disabled(current),
9841 	       current->pid, current->comm);
9842 
9843 	debug_show_held_locks(current);
9844 	dump_stack();
9845 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
9846 }
9847 EXPORT_SYMBOL_GPL(__cant_migrate);
9848 #endif
9849 #endif
9850 
9851 #ifdef CONFIG_MAGIC_SYSRQ
normalize_rt_tasks(void)9852 void normalize_rt_tasks(void)
9853 {
9854 	struct task_struct *g, *p;
9855 	struct sched_attr attr = {
9856 		.sched_policy = SCHED_NORMAL,
9857 	};
9858 
9859 	read_lock(&tasklist_lock);
9860 	for_each_process_thread(g, p) {
9861 		/*
9862 		 * Only normalize user tasks:
9863 		 */
9864 		if (p->flags & PF_KTHREAD)
9865 			continue;
9866 
9867 		p->se.exec_start = 0;
9868 		schedstat_set(p->stats.wait_start,  0);
9869 		schedstat_set(p->stats.sleep_start, 0);
9870 		schedstat_set(p->stats.block_start, 0);
9871 
9872 		if (!rt_or_dl_task(p)) {
9873 			/*
9874 			 * Renice negative nice level userspace
9875 			 * tasks back to 0:
9876 			 */
9877 			if (task_nice(p) < 0)
9878 				set_user_nice(p, 0);
9879 			continue;
9880 		}
9881 
9882 		__sched_setscheduler(p, &attr, false, false);
9883 	}
9884 	read_unlock(&tasklist_lock);
9885 }
9886 
9887 #endif /* CONFIG_MAGIC_SYSRQ */
9888 
9889 #if defined(CONFIG_KGDB_KDB)
9890 /*
9891  * These functions are only useful for KDB.
9892  *
9893  * They can only be called when the whole system has been
9894  * stopped - every CPU needs to be quiescent, and no scheduling
9895  * activity can take place. Using them for anything else would
9896  * be a serious bug, and as a result, they aren't even visible
9897  * under any other configuration.
9898  */
9899 
9900 /**
9901  * curr_task - return the current task for a given CPU.
9902  * @cpu: the processor in question.
9903  *
9904  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9905  *
9906  * Return: The current task for @cpu.
9907  */
curr_task(int cpu)9908 struct task_struct *curr_task(int cpu)
9909 {
9910 	return cpu_curr(cpu);
9911 }
9912 
9913 #endif /* defined(CONFIG_KGDB_KDB) */
9914 
9915 #ifdef CONFIG_CGROUP_SCHED
9916 /* task_group_lock serializes the addition/removal of task groups */
9917 static DEFINE_SPINLOCK(task_group_lock);
9918 
alloc_uclamp_sched_group(struct task_group * tg,struct task_group * parent)9919 static inline void alloc_uclamp_sched_group(struct task_group *tg,
9920 					    struct task_group *parent)
9921 {
9922 #ifdef CONFIG_UCLAMP_TASK_GROUP
9923 	enum uclamp_id clamp_id;
9924 
9925 	for_each_clamp_id(clamp_id) {
9926 		uclamp_se_set(&tg->uclamp_req[clamp_id],
9927 			      uclamp_none(clamp_id), false);
9928 		tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
9929 	}
9930 #endif
9931 }
9932 
sched_free_group(struct task_group * tg)9933 static void sched_free_group(struct task_group *tg)
9934 {
9935 	free_fair_sched_group(tg);
9936 	free_rt_sched_group(tg);
9937 	autogroup_free(tg);
9938 	kmem_cache_free(task_group_cache, tg);
9939 }
9940 
sched_free_group_rcu(struct rcu_head * rcu)9941 static void sched_free_group_rcu(struct rcu_head *rcu)
9942 {
9943 	sched_free_group(container_of(rcu, struct task_group, rcu));
9944 }
9945 
sched_unregister_group(struct task_group * tg)9946 static void sched_unregister_group(struct task_group *tg)
9947 {
9948 	unregister_fair_sched_group(tg);
9949 	unregister_rt_sched_group(tg);
9950 	/*
9951 	 * We have to wait for yet another RCU grace period to expire, as
9952 	 * print_cfs_stats() might run concurrently.
9953 	 */
9954 	call_rcu(&tg->rcu, sched_free_group_rcu);
9955 }
9956 
9957 /* allocate runqueue etc for a new task group */
sched_create_group(struct task_group * parent)9958 struct task_group *sched_create_group(struct task_group *parent)
9959 {
9960 	struct task_group *tg;
9961 
9962 	tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
9963 	if (!tg)
9964 		return ERR_PTR(-ENOMEM);
9965 
9966 	if (!alloc_fair_sched_group(tg, parent))
9967 		goto err;
9968 
9969 	if (!alloc_rt_sched_group(tg, parent))
9970 		goto err;
9971 
9972 	scx_tg_init(tg);
9973 	alloc_uclamp_sched_group(tg, parent);
9974 
9975 	return tg;
9976 
9977 err:
9978 	sched_free_group(tg);
9979 	return ERR_PTR(-ENOMEM);
9980 }
9981 
sched_online_group(struct task_group * tg,struct task_group * parent)9982 void sched_online_group(struct task_group *tg, struct task_group *parent)
9983 {
9984 	unsigned long flags;
9985 
9986 	spin_lock_irqsave(&task_group_lock, flags);
9987 	list_add_rcu(&tg->list, &task_groups);
9988 
9989 	/* Root should already exist: */
9990 	WARN_ON(!parent);
9991 
9992 	tg->parent = parent;
9993 	INIT_LIST_HEAD(&tg->children);
9994 	list_add_rcu(&tg->siblings, &parent->children);
9995 	spin_unlock_irqrestore(&task_group_lock, flags);
9996 
9997 	online_fair_sched_group(tg);
9998 }
9999 
10000 /* RCU callback to free various structures associated with a task group */
sched_unregister_group_rcu(struct rcu_head * rhp)10001 static void sched_unregister_group_rcu(struct rcu_head *rhp)
10002 {
10003 	/* Now it should be safe to free those cfs_rqs: */
10004 	sched_unregister_group(container_of(rhp, struct task_group, rcu));
10005 }
10006 
sched_destroy_group(struct task_group * tg)10007 void sched_destroy_group(struct task_group *tg)
10008 {
10009 	/* Wait for possible concurrent references to cfs_rqs complete: */
10010 	call_rcu(&tg->rcu, sched_unregister_group_rcu);
10011 }
10012 
sched_release_group(struct task_group * tg)10013 void sched_release_group(struct task_group *tg)
10014 {
10015 	unsigned long flags;
10016 
10017 	/*
10018 	 * Unlink first, to avoid walk_tg_tree_from() from finding us (via
10019 	 * sched_cfs_period_timer()).
10020 	 *
10021 	 * For this to be effective, we have to wait for all pending users of
10022 	 * this task group to leave their RCU critical section to ensure no new
10023 	 * user will see our dying task group any more. Specifically ensure
10024 	 * that tg_unthrottle_up() won't add decayed cfs_rq's to it.
10025 	 *
10026 	 * We therefore defer calling unregister_fair_sched_group() to
10027 	 * sched_unregister_group() which is guarantied to get called only after the
10028 	 * current RCU grace period has expired.
10029 	 */
10030 	spin_lock_irqsave(&task_group_lock, flags);
10031 	list_del_rcu(&tg->list);
10032 	list_del_rcu(&tg->siblings);
10033 	spin_unlock_irqrestore(&task_group_lock, flags);
10034 }
10035 
sched_change_group(struct task_struct * tsk)10036 static void sched_change_group(struct task_struct *tsk)
10037 {
10038 	struct task_group *tg;
10039 
10040 	/*
10041 	 * All callers are synchronized by task_rq_lock(); we do not use RCU
10042 	 * which is pointless here. Thus, we pass "true" to task_css_check()
10043 	 * to prevent lockdep warnings.
10044 	 */
10045 	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
10046 			  struct task_group, css);
10047 	tg = autogroup_task_group(tsk, tg);
10048 	tsk->sched_task_group = tg;
10049 
10050 #ifdef CONFIG_FAIR_GROUP_SCHED
10051 	if (tsk->sched_class->task_change_group)
10052 		tsk->sched_class->task_change_group(tsk);
10053 	else
10054 #endif
10055 		set_task_rq(tsk, task_cpu(tsk));
10056 }
10057 
10058 /*
10059  * Change task's runqueue when it moves between groups.
10060  *
10061  * The caller of this function should have put the task in its new group by
10062  * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
10063  * its new group.
10064  */
sched_move_task(struct task_struct * tsk,bool for_autogroup)10065 void sched_move_task(struct task_struct *tsk, bool for_autogroup)
10066 {
10067 	int queued, running, queue_flags =
10068 		DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
10069 	struct rq *rq;
10070 
10071 	trace_android_vh_sched_move_task(tsk);
10072 	CLASS(task_rq_lock, rq_guard)(tsk);
10073 	rq = rq_guard.rq;
10074 
10075 	update_rq_clock(rq);
10076 
10077 	running = task_current_donor(rq, tsk);
10078 	queued = task_on_rq_queued(tsk);
10079 
10080 	if (queued)
10081 		dequeue_task(rq, tsk, queue_flags);
10082 	if (running)
10083 		put_prev_task(rq, tsk);
10084 
10085 	sched_change_group(tsk);
10086 	if (!for_autogroup)
10087 		scx_cgroup_move_task(tsk);
10088 
10089 	if (queued)
10090 		enqueue_task(rq, tsk, queue_flags);
10091 	if (running) {
10092 		set_next_task(rq, tsk);
10093 		/*
10094 		 * After changing group, the running task may have joined a
10095 		 * throttled one but it's still the running task. Trigger a
10096 		 * resched to make sure that task can still run.
10097 		 */
10098 		resched_curr(rq);
10099 	}
10100 }
10101 
10102 static struct cgroup_subsys_state *
cpu_cgroup_css_alloc(struct cgroup_subsys_state * parent_css)10103 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
10104 {
10105 	struct task_group *parent = css_tg(parent_css);
10106 	struct task_group *tg;
10107 
10108 	if (!parent) {
10109 		trace_android_vh_cpu_cgroup_css_alloc_early(parent);
10110 		/* This is early initialization for the top cgroup */
10111 		return &root_task_group.css;
10112 	}
10113 
10114 	tg = sched_create_group(parent);
10115 	if (IS_ERR(tg))
10116 		return ERR_PTR(-ENOMEM);
10117 
10118 	trace_android_vh_cpu_cgroup_css_alloc(tg, parent_css);
10119 
10120 	return &tg->css;
10121 }
10122 
10123 /* Expose task group only after completing cgroup initialization */
cpu_cgroup_css_online(struct cgroup_subsys_state * css)10124 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
10125 {
10126 	struct task_group *tg = css_tg(css);
10127 	struct task_group *parent = css_tg(css->parent);
10128 	int ret;
10129 
10130 	ret = scx_tg_online(tg);
10131 	if (ret)
10132 		return ret;
10133 
10134 	if (parent)
10135 		sched_online_group(tg, parent);
10136 
10137 #ifdef CONFIG_UCLAMP_TASK_GROUP
10138 	/* Propagate the effective uclamp value for the new group */
10139 	guard(mutex)(&uclamp_mutex);
10140 	guard(rcu)();
10141 	cpu_util_update_eff(css);
10142 #endif
10143 
10144 	trace_android_rvh_cpu_cgroup_online(css);
10145 	return 0;
10146 }
10147 
cpu_cgroup_css_offline(struct cgroup_subsys_state * css)10148 static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
10149 {
10150 	struct task_group *tg = css_tg(css);
10151 
10152 	scx_tg_offline(tg);
10153 }
10154 
cpu_cgroup_css_released(struct cgroup_subsys_state * css)10155 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
10156 {
10157 	struct task_group *tg = css_tg(css);
10158 
10159 	sched_release_group(tg);
10160 }
10161 
cpu_cgroup_css_free(struct cgroup_subsys_state * css)10162 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
10163 {
10164 	struct task_group *tg = css_tg(css);
10165 
10166 	/*
10167 	 * Relies on the RCU grace period between css_released() and this.
10168 	 */
10169 	sched_unregister_group(tg);
10170 
10171 	trace_android_vh_cpu_cgroup_css_free(css);
10172 }
10173 
cpu_cgroup_can_attach(struct cgroup_taskset * tset)10174 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
10175 {
10176 #ifdef CONFIG_RT_GROUP_SCHED
10177 	struct task_struct *task;
10178 	struct cgroup_subsys_state *css;
10179 
10180 	cgroup_taskset_for_each(task, css, tset) {
10181 		if (!sched_rt_can_attach(css_tg(css), task))
10182 			return -EINVAL;
10183 	}
10184 #endif
10185 	return scx_cgroup_can_attach(tset);
10186 }
10187 
cpu_cgroup_attach(struct cgroup_taskset * tset)10188 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
10189 {
10190 	struct task_struct *task;
10191 	struct cgroup_subsys_state *css;
10192 
10193 	cgroup_taskset_for_each(task, css, tset)
10194 		sched_move_task(task, false);
10195 
10196 	trace_android_rvh_cpu_cgroup_attach(tset);
10197 
10198 	scx_cgroup_finish_attach();
10199 }
10200 
cpu_cgroup_cancel_attach(struct cgroup_taskset * tset)10201 static void cpu_cgroup_cancel_attach(struct cgroup_taskset *tset)
10202 {
10203 	scx_cgroup_cancel_attach(tset);
10204 }
10205 
10206 #ifdef CONFIG_UCLAMP_TASK_GROUP
cpu_util_update_eff(struct cgroup_subsys_state * css)10207 static void cpu_util_update_eff(struct cgroup_subsys_state *css)
10208 {
10209 	struct cgroup_subsys_state *top_css = css;
10210 	struct uclamp_se *uc_parent = NULL;
10211 	struct uclamp_se *uc_se = NULL;
10212 	unsigned int eff[UCLAMP_CNT];
10213 	enum uclamp_id clamp_id;
10214 	unsigned int clamps;
10215 
10216 	lockdep_assert_held(&uclamp_mutex);
10217 	SCHED_WARN_ON(!rcu_read_lock_held());
10218 
10219 	css_for_each_descendant_pre(css, top_css) {
10220 		uc_parent = css_tg(css)->parent
10221 			? css_tg(css)->parent->uclamp : NULL;
10222 
10223 		for_each_clamp_id(clamp_id) {
10224 			/* Assume effective clamps matches requested clamps */
10225 			eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
10226 			/* Cap effective clamps with parent's effective clamps */
10227 			if (uc_parent &&
10228 			    eff[clamp_id] > uc_parent[clamp_id].value) {
10229 				eff[clamp_id] = uc_parent[clamp_id].value;
10230 			}
10231 		}
10232 		/* Ensure protection is always capped by limit */
10233 		eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
10234 
10235 		/* Propagate most restrictive effective clamps */
10236 		clamps = 0x0;
10237 		uc_se = css_tg(css)->uclamp;
10238 		for_each_clamp_id(clamp_id) {
10239 			if (eff[clamp_id] == uc_se[clamp_id].value)
10240 				continue;
10241 			uc_se[clamp_id].value = eff[clamp_id];
10242 			uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
10243 			clamps |= (0x1 << clamp_id);
10244 		}
10245 		if (!clamps) {
10246 			css = css_rightmost_descendant(css);
10247 			continue;
10248 		}
10249 
10250 		/* Immediately update descendants RUNNABLE tasks */
10251 		uclamp_update_active_tasks(css);
10252 	}
10253 }
10254 
10255 /*
10256  * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
10257  * C expression. Since there is no way to convert a macro argument (N) into a
10258  * character constant, use two levels of macros.
10259  */
10260 #define _POW10(exp) ((unsigned int)1e##exp)
10261 #define POW10(exp) _POW10(exp)
10262 
10263 struct uclamp_request {
10264 #define UCLAMP_PERCENT_SHIFT	2
10265 #define UCLAMP_PERCENT_SCALE	(100 * POW10(UCLAMP_PERCENT_SHIFT))
10266 	s64 percent;
10267 	u64 util;
10268 	int ret;
10269 };
10270 
10271 static inline struct uclamp_request
capacity_from_percent(char * buf)10272 capacity_from_percent(char *buf)
10273 {
10274 	struct uclamp_request req = {
10275 		.percent = UCLAMP_PERCENT_SCALE,
10276 		.util = SCHED_CAPACITY_SCALE,
10277 		.ret = 0,
10278 	};
10279 
10280 	buf = strim(buf);
10281 	if (strcmp(buf, "max")) {
10282 		req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
10283 					     &req.percent);
10284 		if (req.ret)
10285 			return req;
10286 		if ((u64)req.percent > UCLAMP_PERCENT_SCALE) {
10287 			req.ret = -ERANGE;
10288 			return req;
10289 		}
10290 
10291 		req.util = req.percent << SCHED_CAPACITY_SHIFT;
10292 		req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
10293 	}
10294 
10295 	return req;
10296 }
10297 
cpu_uclamp_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off,enum uclamp_id clamp_id)10298 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
10299 				size_t nbytes, loff_t off,
10300 				enum uclamp_id clamp_id)
10301 {
10302 	struct uclamp_request req;
10303 	struct task_group *tg;
10304 
10305 	req = capacity_from_percent(buf);
10306 	if (req.ret)
10307 		return req.ret;
10308 
10309 	static_branch_enable(&sched_uclamp_used);
10310 
10311 	guard(mutex)(&uclamp_mutex);
10312 	guard(rcu)();
10313 
10314 	tg = css_tg(of_css(of));
10315 	if (tg->uclamp_req[clamp_id].value != req.util)
10316 		uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
10317 
10318 	/*
10319 	 * Because of not recoverable conversion rounding we keep track of the
10320 	 * exact requested value
10321 	 */
10322 	tg->uclamp_pct[clamp_id] = req.percent;
10323 
10324 	/* Update effective clamps to track the most restrictive value */
10325 	cpu_util_update_eff(of_css(of));
10326 
10327 	return nbytes;
10328 }
10329 
cpu_uclamp_min_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)10330 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
10331 				    char *buf, size_t nbytes,
10332 				    loff_t off)
10333 {
10334 	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
10335 }
10336 
cpu_uclamp_max_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)10337 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
10338 				    char *buf, size_t nbytes,
10339 				    loff_t off)
10340 {
10341 	return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
10342 }
10343 
cpu_uclamp_print(struct seq_file * sf,enum uclamp_id clamp_id)10344 static inline void cpu_uclamp_print(struct seq_file *sf,
10345 				    enum uclamp_id clamp_id)
10346 {
10347 	struct task_group *tg;
10348 	u64 util_clamp;
10349 	u64 percent;
10350 	u32 rem;
10351 
10352 	scoped_guard (rcu) {
10353 		tg = css_tg(seq_css(sf));
10354 		util_clamp = tg->uclamp_req[clamp_id].value;
10355 	}
10356 
10357 	if (util_clamp == SCHED_CAPACITY_SCALE) {
10358 		seq_puts(sf, "max\n");
10359 		return;
10360 	}
10361 
10362 	percent = tg->uclamp_pct[clamp_id];
10363 	percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
10364 	seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
10365 }
10366 
cpu_uclamp_min_show(struct seq_file * sf,void * v)10367 static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
10368 {
10369 	cpu_uclamp_print(sf, UCLAMP_MIN);
10370 	return 0;
10371 }
10372 
cpu_uclamp_max_show(struct seq_file * sf,void * v)10373 static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
10374 {
10375 	cpu_uclamp_print(sf, UCLAMP_MAX);
10376 	return 0;
10377 }
10378 
cpu_uclamp_ls_write_u64(struct cgroup_subsys_state * css,struct cftype * cftype,u64 ls)10379 static int cpu_uclamp_ls_write_u64(struct cgroup_subsys_state *css,
10380 				   struct cftype *cftype, u64 ls)
10381 {
10382 	struct task_group *tg;
10383 
10384 	if (ls > 1)
10385 		return -EINVAL;
10386 	tg = css_tg(css);
10387 	tg->latency_sensitive = (unsigned int) ls;
10388 
10389 	return 0;
10390 }
10391 
cpu_uclamp_ls_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)10392 static u64 cpu_uclamp_ls_read_u64(struct cgroup_subsys_state *css,
10393 				  struct cftype *cft)
10394 {
10395 	struct task_group *tg = css_tg(css);
10396 
10397 	return (u64) tg->latency_sensitive;
10398 }
10399 #endif /* CONFIG_UCLAMP_TASK_GROUP */
10400 
10401 #ifdef CONFIG_GROUP_SCHED_WEIGHT
tg_weight(struct task_group * tg)10402 static unsigned long tg_weight(struct task_group *tg)
10403 {
10404 #ifdef CONFIG_FAIR_GROUP_SCHED
10405 	return scale_load_down(tg->shares);
10406 #else
10407 	return sched_weight_from_cgroup(tg->scx_weight);
10408 #endif
10409 }
10410 
cpu_shares_write_u64(struct cgroup_subsys_state * css,struct cftype * cftype,u64 shareval)10411 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
10412 				struct cftype *cftype, u64 shareval)
10413 {
10414 	int ret;
10415 
10416 	if (shareval > scale_load_down(ULONG_MAX))
10417 		shareval = MAX_SHARES;
10418 	ret = sched_group_set_shares(css_tg(css), scale_load(shareval));
10419 	if (!ret)
10420 		scx_group_set_weight(css_tg(css),
10421 				     sched_weight_to_cgroup(shareval));
10422 	return ret;
10423 }
10424 
cpu_shares_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)10425 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
10426 			       struct cftype *cft)
10427 {
10428 	return tg_weight(css_tg(css));
10429 }
10430 #endif /* CONFIG_GROUP_SCHED_WEIGHT */
10431 
10432 #ifdef CONFIG_CFS_BANDWIDTH
10433 static DEFINE_MUTEX(cfs_constraints_mutex);
10434 
10435 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
10436 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
10437 /* More than 203 days if BW_SHIFT equals 20. */
10438 static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC;
10439 
10440 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
10441 
tg_set_cfs_bandwidth(struct task_group * tg,u64 period,u64 quota,u64 burst)10442 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota,
10443 				u64 burst)
10444 {
10445 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
10446 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
10447 
10448 	if (tg == &root_task_group)
10449 		return -EINVAL;
10450 
10451 	/*
10452 	 * Ensure we have at some amount of bandwidth every period.  This is
10453 	 * to prevent reaching a state of large arrears when throttled via
10454 	 * entity_tick() resulting in prolonged exit starvation.
10455 	 */
10456 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
10457 		return -EINVAL;
10458 
10459 	/*
10460 	 * Likewise, bound things on the other side by preventing insane quota
10461 	 * periods.  This also allows us to normalize in computing quota
10462 	 * feasibility.
10463 	 */
10464 	if (period > max_cfs_quota_period)
10465 		return -EINVAL;
10466 
10467 	/*
10468 	 * Bound quota to defend quota against overflow during bandwidth shift.
10469 	 */
10470 	if (quota != RUNTIME_INF && quota > max_cfs_runtime)
10471 		return -EINVAL;
10472 
10473 	if (quota != RUNTIME_INF && (burst > quota ||
10474 				     burst + quota > max_cfs_runtime))
10475 		return -EINVAL;
10476 
10477 	/*
10478 	 * Prevent race between setting of cfs_rq->runtime_enabled and
10479 	 * unthrottle_offline_cfs_rqs().
10480 	 */
10481 	guard(cpus_read_lock)();
10482 	guard(mutex)(&cfs_constraints_mutex);
10483 
10484 	ret = __cfs_schedulable(tg, period, quota);
10485 	if (ret)
10486 		return ret;
10487 
10488 	runtime_enabled = quota != RUNTIME_INF;
10489 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
10490 	/*
10491 	 * If we need to toggle cfs_bandwidth_used, off->on must occur
10492 	 * before making related changes, and on->off must occur afterwards
10493 	 */
10494 	if (runtime_enabled && !runtime_was_enabled)
10495 		cfs_bandwidth_usage_inc();
10496 
10497 	scoped_guard (raw_spinlock_irq, &cfs_b->lock) {
10498 		cfs_b->period = ns_to_ktime(period);
10499 		cfs_b->quota = quota;
10500 		cfs_b->burst = burst;
10501 
10502 		__refill_cfs_bandwidth_runtime(cfs_b);
10503 
10504 		/*
10505 		 * Restart the period timer (if active) to handle new
10506 		 * period expiry:
10507 		 */
10508 		if (runtime_enabled)
10509 			start_cfs_bandwidth(cfs_b);
10510 	}
10511 
10512 	for_each_online_cpu(i) {
10513 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
10514 		struct rq *rq = cfs_rq->rq;
10515 
10516 		guard(rq_lock_irq)(rq);
10517 		cfs_rq->runtime_enabled = runtime_enabled;
10518 		cfs_rq->runtime_remaining = 0;
10519 
10520 		if (cfs_rq->throttled)
10521 			unthrottle_cfs_rq(cfs_rq);
10522 	}
10523 
10524 	if (runtime_was_enabled && !runtime_enabled)
10525 		cfs_bandwidth_usage_dec();
10526 
10527 	return 0;
10528 }
10529 
tg_set_cfs_quota(struct task_group * tg,long cfs_quota_us)10530 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
10531 {
10532 	u64 quota, period, burst;
10533 
10534 	period = ktime_to_ns(tg->cfs_bandwidth.period);
10535 	burst = tg->cfs_bandwidth.burst;
10536 	if (cfs_quota_us < 0)
10537 		quota = RUNTIME_INF;
10538 	else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
10539 		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
10540 	else
10541 		return -EINVAL;
10542 
10543 	return tg_set_cfs_bandwidth(tg, period, quota, burst);
10544 }
10545 
tg_get_cfs_quota(struct task_group * tg)10546 static long tg_get_cfs_quota(struct task_group *tg)
10547 {
10548 	u64 quota_us;
10549 
10550 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
10551 		return -1;
10552 
10553 	quota_us = tg->cfs_bandwidth.quota;
10554 	do_div(quota_us, NSEC_PER_USEC);
10555 
10556 	return quota_us;
10557 }
10558 
tg_set_cfs_period(struct task_group * tg,long cfs_period_us)10559 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
10560 {
10561 	u64 quota, period, burst;
10562 
10563 	if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
10564 		return -EINVAL;
10565 
10566 	period = (u64)cfs_period_us * NSEC_PER_USEC;
10567 	quota = tg->cfs_bandwidth.quota;
10568 	burst = tg->cfs_bandwidth.burst;
10569 
10570 	return tg_set_cfs_bandwidth(tg, period, quota, burst);
10571 }
10572 
tg_get_cfs_period(struct task_group * tg)10573 static long tg_get_cfs_period(struct task_group *tg)
10574 {
10575 	u64 cfs_period_us;
10576 
10577 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
10578 	do_div(cfs_period_us, NSEC_PER_USEC);
10579 
10580 	return cfs_period_us;
10581 }
10582 
tg_set_cfs_burst(struct task_group * tg,long cfs_burst_us)10583 static int tg_set_cfs_burst(struct task_group *tg, long cfs_burst_us)
10584 {
10585 	u64 quota, period, burst;
10586 
10587 	if ((u64)cfs_burst_us > U64_MAX / NSEC_PER_USEC)
10588 		return -EINVAL;
10589 
10590 	burst = (u64)cfs_burst_us * NSEC_PER_USEC;
10591 	period = ktime_to_ns(tg->cfs_bandwidth.period);
10592 	quota = tg->cfs_bandwidth.quota;
10593 
10594 	return tg_set_cfs_bandwidth(tg, period, quota, burst);
10595 }
10596 
tg_get_cfs_burst(struct task_group * tg)10597 static long tg_get_cfs_burst(struct task_group *tg)
10598 {
10599 	u64 burst_us;
10600 
10601 	burst_us = tg->cfs_bandwidth.burst;
10602 	do_div(burst_us, NSEC_PER_USEC);
10603 
10604 	return burst_us;
10605 }
10606 
cpu_cfs_quota_read_s64(struct cgroup_subsys_state * css,struct cftype * cft)10607 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
10608 				  struct cftype *cft)
10609 {
10610 	return tg_get_cfs_quota(css_tg(css));
10611 }
10612 
cpu_cfs_quota_write_s64(struct cgroup_subsys_state * css,struct cftype * cftype,s64 cfs_quota_us)10613 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
10614 				   struct cftype *cftype, s64 cfs_quota_us)
10615 {
10616 	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
10617 }
10618 
cpu_cfs_period_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)10619 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
10620 				   struct cftype *cft)
10621 {
10622 	return tg_get_cfs_period(css_tg(css));
10623 }
10624 
cpu_cfs_period_write_u64(struct cgroup_subsys_state * css,struct cftype * cftype,u64 cfs_period_us)10625 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
10626 				    struct cftype *cftype, u64 cfs_period_us)
10627 {
10628 	return tg_set_cfs_period(css_tg(css), cfs_period_us);
10629 }
10630 
cpu_cfs_burst_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)10631 static u64 cpu_cfs_burst_read_u64(struct cgroup_subsys_state *css,
10632 				  struct cftype *cft)
10633 {
10634 	return tg_get_cfs_burst(css_tg(css));
10635 }
10636 
cpu_cfs_burst_write_u64(struct cgroup_subsys_state * css,struct cftype * cftype,u64 cfs_burst_us)10637 static int cpu_cfs_burst_write_u64(struct cgroup_subsys_state *css,
10638 				   struct cftype *cftype, u64 cfs_burst_us)
10639 {
10640 	return tg_set_cfs_burst(css_tg(css), cfs_burst_us);
10641 }
10642 
10643 struct cfs_schedulable_data {
10644 	struct task_group *tg;
10645 	u64 period, quota;
10646 };
10647 
10648 /*
10649  * normalize group quota/period to be quota/max_period
10650  * note: units are usecs
10651  */
normalize_cfs_quota(struct task_group * tg,struct cfs_schedulable_data * d)10652 static u64 normalize_cfs_quota(struct task_group *tg,
10653 			       struct cfs_schedulable_data *d)
10654 {
10655 	u64 quota, period;
10656 
10657 	if (tg == d->tg) {
10658 		period = d->period;
10659 		quota = d->quota;
10660 	} else {
10661 		period = tg_get_cfs_period(tg);
10662 		quota = tg_get_cfs_quota(tg);
10663 	}
10664 
10665 	/* note: these should typically be equivalent */
10666 	if (quota == RUNTIME_INF || quota == -1)
10667 		return RUNTIME_INF;
10668 
10669 	return to_ratio(period, quota);
10670 }
10671 
tg_cfs_schedulable_down(struct task_group * tg,void * data)10672 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
10673 {
10674 	struct cfs_schedulable_data *d = data;
10675 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
10676 	s64 quota = 0, parent_quota = -1;
10677 
10678 	if (!tg->parent) {
10679 		quota = RUNTIME_INF;
10680 	} else {
10681 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
10682 
10683 		quota = normalize_cfs_quota(tg, d);
10684 		parent_quota = parent_b->hierarchical_quota;
10685 
10686 		/*
10687 		 * Ensure max(child_quota) <= parent_quota.  On cgroup2,
10688 		 * always take the non-RUNTIME_INF min.  On cgroup1, only
10689 		 * inherit when no limit is set. In both cases this is used
10690 		 * by the scheduler to determine if a given CFS task has a
10691 		 * bandwidth constraint at some higher level.
10692 		 */
10693 		if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
10694 			if (quota == RUNTIME_INF)
10695 				quota = parent_quota;
10696 			else if (parent_quota != RUNTIME_INF)
10697 				quota = min(quota, parent_quota);
10698 		} else {
10699 			if (quota == RUNTIME_INF)
10700 				quota = parent_quota;
10701 			else if (parent_quota != RUNTIME_INF && quota > parent_quota)
10702 				return -EINVAL;
10703 		}
10704 	}
10705 	cfs_b->hierarchical_quota = quota;
10706 
10707 	return 0;
10708 }
10709 
__cfs_schedulable(struct task_group * tg,u64 period,u64 quota)10710 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
10711 {
10712 	struct cfs_schedulable_data data = {
10713 		.tg = tg,
10714 		.period = period,
10715 		.quota = quota,
10716 	};
10717 
10718 	if (quota != RUNTIME_INF) {
10719 		do_div(data.period, NSEC_PER_USEC);
10720 		do_div(data.quota, NSEC_PER_USEC);
10721 	}
10722 
10723 	guard(rcu)();
10724 	return walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
10725 }
10726 
cpu_cfs_stat_show(struct seq_file * sf,void * v)10727 static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
10728 {
10729 	struct task_group *tg = css_tg(seq_css(sf));
10730 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
10731 
10732 	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
10733 	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
10734 	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
10735 
10736 	if (schedstat_enabled() && tg != &root_task_group) {
10737 		struct sched_statistics *stats;
10738 		u64 ws = 0;
10739 		int i;
10740 
10741 		for_each_possible_cpu(i) {
10742 			stats = __schedstats_from_se(tg->se[i]);
10743 			ws += schedstat_val(stats->wait_sum);
10744 		}
10745 
10746 		seq_printf(sf, "wait_sum %llu\n", ws);
10747 	}
10748 
10749 	seq_printf(sf, "nr_bursts %d\n", cfs_b->nr_burst);
10750 	seq_printf(sf, "burst_time %llu\n", cfs_b->burst_time);
10751 
10752 	return 0;
10753 }
10754 
throttled_time_self(struct task_group * tg)10755 static u64 throttled_time_self(struct task_group *tg)
10756 {
10757 	int i;
10758 	u64 total = 0;
10759 
10760 	for_each_possible_cpu(i) {
10761 		total += READ_ONCE(tg->cfs_rq[i]->throttled_clock_self_time);
10762 	}
10763 
10764 	return total;
10765 }
10766 
cpu_cfs_local_stat_show(struct seq_file * sf,void * v)10767 static int cpu_cfs_local_stat_show(struct seq_file *sf, void *v)
10768 {
10769 	struct task_group *tg = css_tg(seq_css(sf));
10770 
10771 	seq_printf(sf, "throttled_time %llu\n", throttled_time_self(tg));
10772 
10773 	return 0;
10774 }
10775 #endif /* CONFIG_CFS_BANDWIDTH */
10776 
10777 #ifdef CONFIG_RT_GROUP_SCHED
cpu_rt_runtime_write(struct cgroup_subsys_state * css,struct cftype * cft,s64 val)10778 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
10779 				struct cftype *cft, s64 val)
10780 {
10781 	return sched_group_set_rt_runtime(css_tg(css), val);
10782 }
10783 
cpu_rt_runtime_read(struct cgroup_subsys_state * css,struct cftype * cft)10784 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
10785 			       struct cftype *cft)
10786 {
10787 	return sched_group_rt_runtime(css_tg(css));
10788 }
10789 
cpu_rt_period_write_uint(struct cgroup_subsys_state * css,struct cftype * cftype,u64 rt_period_us)10790 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
10791 				    struct cftype *cftype, u64 rt_period_us)
10792 {
10793 	return sched_group_set_rt_period(css_tg(css), rt_period_us);
10794 }
10795 
cpu_rt_period_read_uint(struct cgroup_subsys_state * css,struct cftype * cft)10796 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
10797 				   struct cftype *cft)
10798 {
10799 	return sched_group_rt_period(css_tg(css));
10800 }
10801 #endif /* CONFIG_RT_GROUP_SCHED */
10802 
10803 #ifdef CONFIG_GROUP_SCHED_WEIGHT
cpu_idle_read_s64(struct cgroup_subsys_state * css,struct cftype * cft)10804 static s64 cpu_idle_read_s64(struct cgroup_subsys_state *css,
10805 			       struct cftype *cft)
10806 {
10807 	return css_tg(css)->idle;
10808 }
10809 
cpu_idle_write_s64(struct cgroup_subsys_state * css,struct cftype * cft,s64 idle)10810 static int cpu_idle_write_s64(struct cgroup_subsys_state *css,
10811 				struct cftype *cft, s64 idle)
10812 {
10813 	int ret;
10814 
10815 	ret = sched_group_set_idle(css_tg(css), idle);
10816 	if (!ret)
10817 		scx_group_set_idle(css_tg(css), idle);
10818 	return ret;
10819 }
10820 #endif
10821 
10822 static struct cftype cpu_legacy_files[] = {
10823 #ifdef CONFIG_GROUP_SCHED_WEIGHT
10824 	{
10825 		.name = "shares",
10826 		.read_u64 = cpu_shares_read_u64,
10827 		.write_u64 = cpu_shares_write_u64,
10828 	},
10829 	{
10830 		.name = "idle",
10831 		.read_s64 = cpu_idle_read_s64,
10832 		.write_s64 = cpu_idle_write_s64,
10833 	},
10834 #endif
10835 #ifdef CONFIG_CFS_BANDWIDTH
10836 	{
10837 		.name = "cfs_quota_us",
10838 		.read_s64 = cpu_cfs_quota_read_s64,
10839 		.write_s64 = cpu_cfs_quota_write_s64,
10840 	},
10841 	{
10842 		.name = "cfs_period_us",
10843 		.read_u64 = cpu_cfs_period_read_u64,
10844 		.write_u64 = cpu_cfs_period_write_u64,
10845 	},
10846 	{
10847 		.name = "cfs_burst_us",
10848 		.read_u64 = cpu_cfs_burst_read_u64,
10849 		.write_u64 = cpu_cfs_burst_write_u64,
10850 	},
10851 	{
10852 		.name = "stat",
10853 		.seq_show = cpu_cfs_stat_show,
10854 	},
10855 	{
10856 		.name = "stat.local",
10857 		.seq_show = cpu_cfs_local_stat_show,
10858 	},
10859 #endif
10860 #ifdef CONFIG_RT_GROUP_SCHED
10861 	{
10862 		.name = "rt_runtime_us",
10863 		.read_s64 = cpu_rt_runtime_read,
10864 		.write_s64 = cpu_rt_runtime_write,
10865 	},
10866 	{
10867 		.name = "rt_period_us",
10868 		.read_u64 = cpu_rt_period_read_uint,
10869 		.write_u64 = cpu_rt_period_write_uint,
10870 	},
10871 #endif
10872 #ifdef CONFIG_UCLAMP_TASK_GROUP
10873 	{
10874 		.name = "uclamp.min",
10875 		.flags = CFTYPE_NOT_ON_ROOT,
10876 		.seq_show = cpu_uclamp_min_show,
10877 		.write = cpu_uclamp_min_write,
10878 	},
10879 	{
10880 		.name = "uclamp.max",
10881 		.flags = CFTYPE_NOT_ON_ROOT,
10882 		.seq_show = cpu_uclamp_max_show,
10883 		.write = cpu_uclamp_max_write,
10884 	},
10885 	{
10886 		.name = "uclamp.latency_sensitive",
10887 		.flags = CFTYPE_NOT_ON_ROOT,
10888 		.read_u64 = cpu_uclamp_ls_read_u64,
10889 		.write_u64 = cpu_uclamp_ls_write_u64,
10890 	},
10891 #endif
10892 	{ }	/* Terminate */
10893 };
10894 
cpu_extra_stat_show(struct seq_file * sf,struct cgroup_subsys_state * css)10895 static int cpu_extra_stat_show(struct seq_file *sf,
10896 			       struct cgroup_subsys_state *css)
10897 {
10898 #ifdef CONFIG_CFS_BANDWIDTH
10899 	{
10900 		struct task_group *tg = css_tg(css);
10901 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
10902 		u64 throttled_usec, burst_usec;
10903 
10904 		throttled_usec = cfs_b->throttled_time;
10905 		do_div(throttled_usec, NSEC_PER_USEC);
10906 		burst_usec = cfs_b->burst_time;
10907 		do_div(burst_usec, NSEC_PER_USEC);
10908 
10909 		seq_printf(sf, "nr_periods %d\n"
10910 			   "nr_throttled %d\n"
10911 			   "throttled_usec %llu\n"
10912 			   "nr_bursts %d\n"
10913 			   "burst_usec %llu\n",
10914 			   cfs_b->nr_periods, cfs_b->nr_throttled,
10915 			   throttled_usec, cfs_b->nr_burst, burst_usec);
10916 	}
10917 #endif
10918 	return 0;
10919 }
10920 
cpu_local_stat_show(struct seq_file * sf,struct cgroup_subsys_state * css)10921 static int cpu_local_stat_show(struct seq_file *sf,
10922 			       struct cgroup_subsys_state *css)
10923 {
10924 #ifdef CONFIG_CFS_BANDWIDTH
10925 	{
10926 		struct task_group *tg = css_tg(css);
10927 		u64 throttled_self_usec;
10928 
10929 		throttled_self_usec = throttled_time_self(tg);
10930 		do_div(throttled_self_usec, NSEC_PER_USEC);
10931 
10932 		seq_printf(sf, "throttled_usec %llu\n",
10933 			   throttled_self_usec);
10934 	}
10935 #endif
10936 	return 0;
10937 }
10938 
10939 #ifdef CONFIG_GROUP_SCHED_WEIGHT
10940 
cpu_weight_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)10941 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
10942 			       struct cftype *cft)
10943 {
10944 	return sched_weight_to_cgroup(tg_weight(css_tg(css)));
10945 }
10946 
cpu_weight_write_u64(struct cgroup_subsys_state * css,struct cftype * cft,u64 cgrp_weight)10947 static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
10948 				struct cftype *cft, u64 cgrp_weight)
10949 {
10950 	unsigned long weight;
10951 	int ret;
10952 
10953 	if (cgrp_weight < CGROUP_WEIGHT_MIN || cgrp_weight > CGROUP_WEIGHT_MAX)
10954 		return -ERANGE;
10955 
10956 	weight = sched_weight_from_cgroup(cgrp_weight);
10957 
10958 	ret = sched_group_set_shares(css_tg(css), scale_load(weight));
10959 	if (!ret)
10960 		scx_group_set_weight(css_tg(css), cgrp_weight);
10961 	return ret;
10962 }
10963 
cpu_weight_nice_read_s64(struct cgroup_subsys_state * css,struct cftype * cft)10964 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
10965 				    struct cftype *cft)
10966 {
10967 	unsigned long weight = tg_weight(css_tg(css));
10968 	int last_delta = INT_MAX;
10969 	int prio, delta;
10970 
10971 	/* find the closest nice value to the current weight */
10972 	for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
10973 		delta = abs(sched_prio_to_weight[prio] - weight);
10974 		if (delta >= last_delta)
10975 			break;
10976 		last_delta = delta;
10977 	}
10978 
10979 	return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
10980 }
10981 
cpu_weight_nice_write_s64(struct cgroup_subsys_state * css,struct cftype * cft,s64 nice)10982 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
10983 				     struct cftype *cft, s64 nice)
10984 {
10985 	unsigned long weight;
10986 	int idx, ret;
10987 
10988 	if (nice < MIN_NICE || nice > MAX_NICE)
10989 		return -ERANGE;
10990 
10991 	idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
10992 	idx = array_index_nospec(idx, 40);
10993 	weight = sched_prio_to_weight[idx];
10994 
10995 	ret = sched_group_set_shares(css_tg(css), scale_load(weight));
10996 	if (!ret)
10997 		scx_group_set_weight(css_tg(css),
10998 				     sched_weight_to_cgroup(weight));
10999 	return ret;
11000 }
11001 #endif /* CONFIG_GROUP_SCHED_WEIGHT */
11002 
cpu_period_quota_print(struct seq_file * sf,long period,long quota)11003 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
11004 						  long period, long quota)
11005 {
11006 	if (quota < 0)
11007 		seq_puts(sf, "max");
11008 	else
11009 		seq_printf(sf, "%ld", quota);
11010 
11011 	seq_printf(sf, " %ld\n", period);
11012 }
11013 
11014 /* caller should put the current value in *@periodp before calling */
cpu_period_quota_parse(char * buf,u64 * periodp,u64 * quotap)11015 static int __maybe_unused cpu_period_quota_parse(char *buf,
11016 						 u64 *periodp, u64 *quotap)
11017 {
11018 	char tok[21];	/* U64_MAX */
11019 
11020 	if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
11021 		return -EINVAL;
11022 
11023 	*periodp *= NSEC_PER_USEC;
11024 
11025 	if (sscanf(tok, "%llu", quotap))
11026 		*quotap *= NSEC_PER_USEC;
11027 	else if (!strcmp(tok, "max"))
11028 		*quotap = RUNTIME_INF;
11029 	else
11030 		return -EINVAL;
11031 
11032 	return 0;
11033 }
11034 
11035 #ifdef CONFIG_CFS_BANDWIDTH
cpu_max_show(struct seq_file * sf,void * v)11036 static int cpu_max_show(struct seq_file *sf, void *v)
11037 {
11038 	struct task_group *tg = css_tg(seq_css(sf));
11039 
11040 	cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
11041 	return 0;
11042 }
11043 
cpu_max_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)11044 static ssize_t cpu_max_write(struct kernfs_open_file *of,
11045 			     char *buf, size_t nbytes, loff_t off)
11046 {
11047 	struct task_group *tg = css_tg(of_css(of));
11048 	u64 period = tg_get_cfs_period(tg);
11049 	u64 burst = tg->cfs_bandwidth.burst;
11050 	u64 quota;
11051 	int ret;
11052 
11053 	ret = cpu_period_quota_parse(buf, &period, &quota);
11054 	if (!ret)
11055 		ret = tg_set_cfs_bandwidth(tg, period, quota, burst);
11056 	return ret ?: nbytes;
11057 }
11058 #endif
11059 
11060 static struct cftype cpu_files[] = {
11061 #ifdef CONFIG_GROUP_SCHED_WEIGHT
11062 	{
11063 		.name = "weight",
11064 		.flags = CFTYPE_NOT_ON_ROOT,
11065 		.read_u64 = cpu_weight_read_u64,
11066 		.write_u64 = cpu_weight_write_u64,
11067 	},
11068 	{
11069 		.name = "weight.nice",
11070 		.flags = CFTYPE_NOT_ON_ROOT,
11071 		.read_s64 = cpu_weight_nice_read_s64,
11072 		.write_s64 = cpu_weight_nice_write_s64,
11073 	},
11074 	{
11075 		.name = "idle",
11076 		.flags = CFTYPE_NOT_ON_ROOT,
11077 		.read_s64 = cpu_idle_read_s64,
11078 		.write_s64 = cpu_idle_write_s64,
11079 	},
11080 #endif
11081 #ifdef CONFIG_CFS_BANDWIDTH
11082 	{
11083 		.name = "max",
11084 		.flags = CFTYPE_NOT_ON_ROOT,
11085 		.seq_show = cpu_max_show,
11086 		.write = cpu_max_write,
11087 	},
11088 	{
11089 		.name = "max.burst",
11090 		.flags = CFTYPE_NOT_ON_ROOT,
11091 		.read_u64 = cpu_cfs_burst_read_u64,
11092 		.write_u64 = cpu_cfs_burst_write_u64,
11093 	},
11094 #endif
11095 #ifdef CONFIG_UCLAMP_TASK_GROUP
11096 	{
11097 		.name = "uclamp.min",
11098 		.flags = CFTYPE_NOT_ON_ROOT,
11099 		.seq_show = cpu_uclamp_min_show,
11100 		.write = cpu_uclamp_min_write,
11101 	},
11102 	{
11103 		.name = "uclamp.max",
11104 		.flags = CFTYPE_NOT_ON_ROOT,
11105 		.seq_show = cpu_uclamp_max_show,
11106 		.write = cpu_uclamp_max_write,
11107 	},
11108 	{
11109 		.name = "uclamp.latency_sensitive",
11110 		.flags = CFTYPE_NOT_ON_ROOT,
11111 		.read_u64 = cpu_uclamp_ls_read_u64,
11112 		.write_u64 = cpu_uclamp_ls_write_u64,
11113 	},
11114 #endif
11115 	{ }	/* terminate */
11116 };
11117 
11118 struct cgroup_subsys cpu_cgrp_subsys = {
11119 	.css_alloc	= cpu_cgroup_css_alloc,
11120 	.css_online	= cpu_cgroup_css_online,
11121 	.css_offline	= cpu_cgroup_css_offline,
11122 	.css_released	= cpu_cgroup_css_released,
11123 	.css_free	= cpu_cgroup_css_free,
11124 	.css_extra_stat_show = cpu_extra_stat_show,
11125 	.css_local_stat_show = cpu_local_stat_show,
11126 	.can_attach	= cpu_cgroup_can_attach,
11127 	.attach		= cpu_cgroup_attach,
11128 	.cancel_attach	= cpu_cgroup_cancel_attach,
11129 	.legacy_cftypes	= cpu_legacy_files,
11130 	.dfl_cftypes	= cpu_files,
11131 	.early_init	= true,
11132 	.threaded	= true,
11133 };
11134 EXPORT_SYMBOL_GPL(cpu_cgrp_subsys);
11135 #endif	/* CONFIG_CGROUP_SCHED */
11136 
dump_cpu_task(int cpu)11137 void dump_cpu_task(int cpu)
11138 {
11139 	if (in_hardirq() && cpu == smp_processor_id()) {
11140 		struct pt_regs *regs;
11141 
11142 		regs = get_irq_regs();
11143 		if (regs) {
11144 			show_regs(regs);
11145 			return;
11146 		}
11147 	}
11148 
11149 	if (trigger_single_cpu_backtrace(cpu))
11150 		return;
11151 
11152 	pr_info("Task dump for CPU %d:\n", cpu);
11153 	sched_show_task(cpu_curr(cpu));
11154 }
11155 
11156 /*
11157  * Nice levels are multiplicative, with a gentle 10% change for every
11158  * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
11159  * nice 1, it will get ~10% less CPU time than another CPU-bound task
11160  * that remained on nice 0.
11161  *
11162  * The "10% effect" is relative and cumulative: from _any_ nice level,
11163  * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
11164  * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
11165  * If a task goes up by ~10% and another task goes down by ~10% then
11166  * the relative distance between them is ~25%.)
11167  */
11168 const int sched_prio_to_weight[40] = {
11169  /* -20 */     88761,     71755,     56483,     46273,     36291,
11170  /* -15 */     29154,     23254,     18705,     14949,     11916,
11171  /* -10 */      9548,      7620,      6100,      4904,      3906,
11172  /*  -5 */      3121,      2501,      1991,      1586,      1277,
11173  /*   0 */      1024,       820,       655,       526,       423,
11174  /*   5 */       335,       272,       215,       172,       137,
11175  /*  10 */       110,        87,        70,        56,        45,
11176  /*  15 */        36,        29,        23,        18,        15,
11177 };
11178 EXPORT_SYMBOL_GPL(sched_prio_to_weight);
11179 
11180 /*
11181  * Inverse (2^32/x) values of the sched_prio_to_weight[] array, pre-calculated.
11182  *
11183  * In cases where the weight does not change often, we can use the
11184  * pre-calculated inverse to speed up arithmetics by turning divisions
11185  * into multiplications:
11186  */
11187 const u32 sched_prio_to_wmult[40] = {
11188  /* -20 */     48388,     59856,     76040,     92818,    118348,
11189  /* -15 */    147320,    184698,    229616,    287308,    360437,
11190  /* -10 */    449829,    563644,    704093,    875809,   1099582,
11191  /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
11192  /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
11193  /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
11194  /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
11195  /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
11196 };
11197 EXPORT_SYMBOL_GPL(sched_prio_to_wmult);
11198 
call_trace_sched_update_nr_running(struct rq * rq,int count)11199 void call_trace_sched_update_nr_running(struct rq *rq, int count)
11200 {
11201         trace_sched_update_nr_running_tp(rq, count);
11202 }
11203 
11204 #ifdef CONFIG_SCHED_MM_CID
11205 
11206 /*
11207  * @cid_lock: Guarantee forward-progress of cid allocation.
11208  *
11209  * Concurrency ID allocation within a bitmap is mostly lock-free. The cid_lock
11210  * is only used when contention is detected by the lock-free allocation so
11211  * forward progress can be guaranteed.
11212  */
11213 DEFINE_RAW_SPINLOCK(cid_lock);
11214 
11215 /*
11216  * @use_cid_lock: Select cid allocation behavior: lock-free vs spinlock.
11217  *
11218  * When @use_cid_lock is 0, the cid allocation is lock-free. When contention is
11219  * detected, it is set to 1 to ensure that all newly coming allocations are
11220  * serialized by @cid_lock until the allocation which detected contention
11221  * completes and sets @use_cid_lock back to 0. This guarantees forward progress
11222  * of a cid allocation.
11223  */
11224 int use_cid_lock;
11225 
11226 /*
11227  * mm_cid remote-clear implements a lock-free algorithm to clear per-mm/cpu cid
11228  * concurrently with respect to the execution of the source runqueue context
11229  * switch.
11230  *
11231  * There is one basic properties we want to guarantee here:
11232  *
11233  * (1) Remote-clear should _never_ mark a per-cpu cid UNSET when it is actively
11234  * used by a task. That would lead to concurrent allocation of the cid and
11235  * userspace corruption.
11236  *
11237  * Provide this guarantee by introducing a Dekker memory ordering to guarantee
11238  * that a pair of loads observe at least one of a pair of stores, which can be
11239  * shown as:
11240  *
11241  *      X = Y = 0
11242  *
11243  *      w[X]=1          w[Y]=1
11244  *      MB              MB
11245  *      r[Y]=y          r[X]=x
11246  *
11247  * Which guarantees that x==0 && y==0 is impossible. But rather than using
11248  * values 0 and 1, this algorithm cares about specific state transitions of the
11249  * runqueue current task (as updated by the scheduler context switch), and the
11250  * per-mm/cpu cid value.
11251  *
11252  * Let's introduce task (Y) which has task->mm == mm and task (N) which has
11253  * task->mm != mm for the rest of the discussion. There are two scheduler state
11254  * transitions on context switch we care about:
11255  *
11256  * (TSA) Store to rq->curr with transition from (N) to (Y)
11257  *
11258  * (TSB) Store to rq->curr with transition from (Y) to (N)
11259  *
11260  * On the remote-clear side, there is one transition we care about:
11261  *
11262  * (TMA) cmpxchg to *pcpu_cid to set the LAZY flag
11263  *
11264  * There is also a transition to UNSET state which can be performed from all
11265  * sides (scheduler, remote-clear). It is always performed with a cmpxchg which
11266  * guarantees that only a single thread will succeed:
11267  *
11268  * (TMB) cmpxchg to *pcpu_cid to mark UNSET
11269  *
11270  * Just to be clear, what we do _not_ want to happen is a transition to UNSET
11271  * when a thread is actively using the cid (property (1)).
11272  *
11273  * Let's looks at the relevant combinations of TSA/TSB, and TMA transitions.
11274  *
11275  * Scenario A) (TSA)+(TMA) (from next task perspective)
11276  *
11277  * CPU0                                      CPU1
11278  *
11279  * Context switch CS-1                       Remote-clear
11280  *   - store to rq->curr: (N)->(Y) (TSA)     - cmpxchg to *pcpu_id to LAZY (TMA)
11281  *                                             (implied barrier after cmpxchg)
11282  *   - switch_mm_cid()
11283  *     - memory barrier (see switch_mm_cid()
11284  *       comment explaining how this barrier
11285  *       is combined with other scheduler
11286  *       barriers)
11287  *     - mm_cid_get (next)
11288  *       - READ_ONCE(*pcpu_cid)              - rcu_dereference(src_rq->curr)
11289  *
11290  * This Dekker ensures that either task (Y) is observed by the
11291  * rcu_dereference() or the LAZY flag is observed by READ_ONCE(), or both are
11292  * observed.
11293  *
11294  * If task (Y) store is observed by rcu_dereference(), it means that there is
11295  * still an active task on the cpu. Remote-clear will therefore not transition
11296  * to UNSET, which fulfills property (1).
11297  *
11298  * If task (Y) is not observed, but the lazy flag is observed by READ_ONCE(),
11299  * it will move its state to UNSET, which clears the percpu cid perhaps
11300  * uselessly (which is not an issue for correctness). Because task (Y) is not
11301  * observed, CPU1 can move ahead to set the state to UNSET. Because moving
11302  * state to UNSET is done with a cmpxchg expecting that the old state has the
11303  * LAZY flag set, only one thread will successfully UNSET.
11304  *
11305  * If both states (LAZY flag and task (Y)) are observed, the thread on CPU0
11306  * will observe the LAZY flag and transition to UNSET (perhaps uselessly), and
11307  * CPU1 will observe task (Y) and do nothing more, which is fine.
11308  *
11309  * What we are effectively preventing with this Dekker is a scenario where
11310  * neither LAZY flag nor store (Y) are observed, which would fail property (1)
11311  * because this would UNSET a cid which is actively used.
11312  */
11313 
sched_mm_cid_migrate_from(struct task_struct * t)11314 void sched_mm_cid_migrate_from(struct task_struct *t)
11315 {
11316 	t->migrate_from_cpu = task_cpu(t);
11317 }
11318 
11319 static
__sched_mm_cid_migrate_from_fetch_cid(struct rq * src_rq,struct task_struct * t,struct mm_cid * src_pcpu_cid)11320 int __sched_mm_cid_migrate_from_fetch_cid(struct rq *src_rq,
11321 					  struct task_struct *t,
11322 					  struct mm_cid *src_pcpu_cid)
11323 {
11324 	struct mm_struct *mm = t->mm;
11325 	struct task_struct *src_task;
11326 	int src_cid, last_mm_cid;
11327 
11328 	if (!mm)
11329 		return -1;
11330 
11331 	last_mm_cid = t->last_mm_cid;
11332 	/*
11333 	 * If the migrated task has no last cid, or if the current
11334 	 * task on src rq uses the cid, it means the source cid does not need
11335 	 * to be moved to the destination cpu.
11336 	 */
11337 	if (last_mm_cid == -1)
11338 		return -1;
11339 	src_cid = READ_ONCE(src_pcpu_cid->cid);
11340 	if (!mm_cid_is_valid(src_cid) || last_mm_cid != src_cid)
11341 		return -1;
11342 
11343 	/*
11344 	 * If we observe an active task using the mm on this rq, it means we
11345 	 * are not the last task to be migrated from this cpu for this mm, so
11346 	 * there is no need to move src_cid to the destination cpu.
11347 	 */
11348 	guard(rcu)();
11349 	src_task = rcu_dereference(src_rq->curr);
11350 	if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) {
11351 		t->last_mm_cid = -1;
11352 		return -1;
11353 	}
11354 
11355 	return src_cid;
11356 }
11357 
11358 static
__sched_mm_cid_migrate_from_try_steal_cid(struct rq * src_rq,struct task_struct * t,struct mm_cid * src_pcpu_cid,int src_cid)11359 int __sched_mm_cid_migrate_from_try_steal_cid(struct rq *src_rq,
11360 					      struct task_struct *t,
11361 					      struct mm_cid *src_pcpu_cid,
11362 					      int src_cid)
11363 {
11364 	struct task_struct *src_task;
11365 	struct mm_struct *mm = t->mm;
11366 	int lazy_cid;
11367 
11368 	if (src_cid == -1)
11369 		return -1;
11370 
11371 	/*
11372 	 * Attempt to clear the source cpu cid to move it to the destination
11373 	 * cpu.
11374 	 */
11375 	lazy_cid = mm_cid_set_lazy_put(src_cid);
11376 	if (!try_cmpxchg(&src_pcpu_cid->cid, &src_cid, lazy_cid))
11377 		return -1;
11378 
11379 	/*
11380 	 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
11381 	 * rq->curr->mm matches the scheduler barrier in context_switch()
11382 	 * between store to rq->curr and load of prev and next task's
11383 	 * per-mm/cpu cid.
11384 	 *
11385 	 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
11386 	 * rq->curr->mm_cid_active matches the barrier in
11387 	 * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and
11388 	 * sched_mm_cid_after_execve() between store to t->mm_cid_active and
11389 	 * load of per-mm/cpu cid.
11390 	 */
11391 
11392 	/*
11393 	 * If we observe an active task using the mm on this rq after setting
11394 	 * the lazy-put flag, this task will be responsible for transitioning
11395 	 * from lazy-put flag set to MM_CID_UNSET.
11396 	 */
11397 	scoped_guard (rcu) {
11398 		src_task = rcu_dereference(src_rq->curr);
11399 		if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) {
11400 			/*
11401 			 * We observed an active task for this mm, there is therefore
11402 			 * no point in moving this cid to the destination cpu.
11403 			 */
11404 			t->last_mm_cid = -1;
11405 			return -1;
11406 		}
11407 	}
11408 
11409 	/*
11410 	 * The src_cid is unused, so it can be unset.
11411 	 */
11412 	if (!try_cmpxchg(&src_pcpu_cid->cid, &lazy_cid, MM_CID_UNSET))
11413 		return -1;
11414 	return src_cid;
11415 }
11416 
11417 /*
11418  * Migration to dst cpu. Called with dst_rq lock held.
11419  * Interrupts are disabled, which keeps the window of cid ownership without the
11420  * source rq lock held small.
11421  */
sched_mm_cid_migrate_to(struct rq * dst_rq,struct task_struct * t)11422 void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t)
11423 {
11424 	struct mm_cid *src_pcpu_cid, *dst_pcpu_cid;
11425 	struct mm_struct *mm = t->mm;
11426 	int src_cid, dst_cid, src_cpu;
11427 	struct rq *src_rq;
11428 
11429 	lockdep_assert_rq_held(dst_rq);
11430 
11431 	if (!mm)
11432 		return;
11433 	src_cpu = t->migrate_from_cpu;
11434 	if (src_cpu == -1) {
11435 		t->last_mm_cid = -1;
11436 		return;
11437 	}
11438 	/*
11439 	 * Move the src cid if the dst cid is unset. This keeps id
11440 	 * allocation closest to 0 in cases where few threads migrate around
11441 	 * many CPUs.
11442 	 *
11443 	 * If destination cid is already set, we may have to just clear
11444 	 * the src cid to ensure compactness in frequent migrations
11445 	 * scenarios.
11446 	 *
11447 	 * It is not useful to clear the src cid when the number of threads is
11448 	 * greater or equal to the number of allowed CPUs, because user-space
11449 	 * can expect that the number of allowed cids can reach the number of
11450 	 * allowed CPUs.
11451 	 */
11452 	dst_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu_of(dst_rq));
11453 	dst_cid = READ_ONCE(dst_pcpu_cid->cid);
11454 	if (!mm_cid_is_unset(dst_cid) &&
11455 	    atomic_read(&mm->mm_users) >= t->nr_cpus_allowed)
11456 		return;
11457 	src_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, src_cpu);
11458 	src_rq = cpu_rq(src_cpu);
11459 	src_cid = __sched_mm_cid_migrate_from_fetch_cid(src_rq, t, src_pcpu_cid);
11460 	if (src_cid == -1)
11461 		return;
11462 	src_cid = __sched_mm_cid_migrate_from_try_steal_cid(src_rq, t, src_pcpu_cid,
11463 							    src_cid);
11464 	if (src_cid == -1)
11465 		return;
11466 	if (!mm_cid_is_unset(dst_cid)) {
11467 		__mm_cid_put(mm, src_cid);
11468 		return;
11469 	}
11470 	/* Move src_cid to dst cpu. */
11471 	mm_cid_snapshot_time(dst_rq, mm);
11472 	WRITE_ONCE(dst_pcpu_cid->cid, src_cid);
11473 }
11474 
sched_mm_cid_remote_clear(struct mm_struct * mm,struct mm_cid * pcpu_cid,int cpu)11475 static void sched_mm_cid_remote_clear(struct mm_struct *mm, struct mm_cid *pcpu_cid,
11476 				      int cpu)
11477 {
11478 	struct rq *rq = cpu_rq(cpu);
11479 	struct task_struct *t;
11480 	int cid, lazy_cid;
11481 
11482 	cid = READ_ONCE(pcpu_cid->cid);
11483 	if (!mm_cid_is_valid(cid))
11484 		return;
11485 
11486 	/*
11487 	 * Clear the cpu cid if it is set to keep cid allocation compact.  If
11488 	 * there happens to be other tasks left on the source cpu using this
11489 	 * mm, the next task using this mm will reallocate its cid on context
11490 	 * switch.
11491 	 */
11492 	lazy_cid = mm_cid_set_lazy_put(cid);
11493 	if (!try_cmpxchg(&pcpu_cid->cid, &cid, lazy_cid))
11494 		return;
11495 
11496 	/*
11497 	 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
11498 	 * rq->curr->mm matches the scheduler barrier in context_switch()
11499 	 * between store to rq->curr and load of prev and next task's
11500 	 * per-mm/cpu cid.
11501 	 *
11502 	 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
11503 	 * rq->curr->mm_cid_active matches the barrier in
11504 	 * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and
11505 	 * sched_mm_cid_after_execve() between store to t->mm_cid_active and
11506 	 * load of per-mm/cpu cid.
11507 	 */
11508 
11509 	/*
11510 	 * If we observe an active task using the mm on this rq after setting
11511 	 * the lazy-put flag, that task will be responsible for transitioning
11512 	 * from lazy-put flag set to MM_CID_UNSET.
11513 	 */
11514 	scoped_guard (rcu) {
11515 		t = rcu_dereference(rq->curr);
11516 		if (READ_ONCE(t->mm_cid_active) && t->mm == mm)
11517 			return;
11518 	}
11519 
11520 	/*
11521 	 * The cid is unused, so it can be unset.
11522 	 * Disable interrupts to keep the window of cid ownership without rq
11523 	 * lock small.
11524 	 */
11525 	scoped_guard (irqsave) {
11526 		if (try_cmpxchg(&pcpu_cid->cid, &lazy_cid, MM_CID_UNSET))
11527 			__mm_cid_put(mm, cid);
11528 	}
11529 }
11530 
sched_mm_cid_remote_clear_old(struct mm_struct * mm,int cpu)11531 static void sched_mm_cid_remote_clear_old(struct mm_struct *mm, int cpu)
11532 {
11533 	struct rq *rq = cpu_rq(cpu);
11534 	struct mm_cid *pcpu_cid;
11535 	struct task_struct *curr;
11536 	u64 rq_clock;
11537 
11538 	/*
11539 	 * rq->clock load is racy on 32-bit but one spurious clear once in a
11540 	 * while is irrelevant.
11541 	 */
11542 	rq_clock = READ_ONCE(rq->clock);
11543 	pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu);
11544 
11545 	/*
11546 	 * In order to take care of infrequently scheduled tasks, bump the time
11547 	 * snapshot associated with this cid if an active task using the mm is
11548 	 * observed on this rq.
11549 	 */
11550 	scoped_guard (rcu) {
11551 		curr = rcu_dereference(rq->curr);
11552 		if (READ_ONCE(curr->mm_cid_active) && curr->mm == mm) {
11553 			WRITE_ONCE(pcpu_cid->time, rq_clock);
11554 			return;
11555 		}
11556 	}
11557 
11558 	if (rq_clock < pcpu_cid->time + SCHED_MM_CID_PERIOD_NS)
11559 		return;
11560 	sched_mm_cid_remote_clear(mm, pcpu_cid, cpu);
11561 }
11562 
sched_mm_cid_remote_clear_weight(struct mm_struct * mm,int cpu,int weight)11563 static void sched_mm_cid_remote_clear_weight(struct mm_struct *mm, int cpu,
11564 					     int weight)
11565 {
11566 	struct mm_cid *pcpu_cid;
11567 	int cid;
11568 
11569 	pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu);
11570 	cid = READ_ONCE(pcpu_cid->cid);
11571 	if (!mm_cid_is_valid(cid) || cid < weight)
11572 		return;
11573 	sched_mm_cid_remote_clear(mm, pcpu_cid, cpu);
11574 }
11575 
task_mm_cid_work(struct callback_head * work)11576 static void task_mm_cid_work(struct callback_head *work)
11577 {
11578 	unsigned long now = jiffies, old_scan, next_scan;
11579 	struct task_struct *t = current;
11580 	struct cpumask *cidmask;
11581 	struct mm_struct *mm;
11582 	int weight, cpu;
11583 
11584 	SCHED_WARN_ON(t != container_of(work, struct task_struct, cid_work));
11585 
11586 	work->next = work;	/* Prevent double-add */
11587 	if (t->flags & PF_EXITING)
11588 		return;
11589 	mm = t->mm;
11590 	if (!mm)
11591 		return;
11592 	old_scan = READ_ONCE(mm->mm_cid_next_scan);
11593 	next_scan = now + msecs_to_jiffies(MM_CID_SCAN_DELAY);
11594 	if (!old_scan) {
11595 		unsigned long res;
11596 
11597 		res = cmpxchg(&mm->mm_cid_next_scan, old_scan, next_scan);
11598 		if (res != old_scan)
11599 			old_scan = res;
11600 		else
11601 			old_scan = next_scan;
11602 	}
11603 	if (time_before(now, old_scan))
11604 		return;
11605 	if (!try_cmpxchg(&mm->mm_cid_next_scan, &old_scan, next_scan))
11606 		return;
11607 	cidmask = mm_cidmask(mm);
11608 	/* Clear cids that were not recently used. */
11609 	for_each_possible_cpu(cpu)
11610 		sched_mm_cid_remote_clear_old(mm, cpu);
11611 	weight = cpumask_weight(cidmask);
11612 	/*
11613 	 * Clear cids that are greater or equal to the cidmask weight to
11614 	 * recompact it.
11615 	 */
11616 	for_each_possible_cpu(cpu)
11617 		sched_mm_cid_remote_clear_weight(mm, cpu, weight);
11618 }
11619 
init_sched_mm_cid(struct task_struct * t)11620 void init_sched_mm_cid(struct task_struct *t)
11621 {
11622 	struct mm_struct *mm = t->mm;
11623 	int mm_users = 0;
11624 
11625 	if (mm) {
11626 		mm_users = atomic_read(&mm->mm_users);
11627 		if (mm_users == 1)
11628 			mm->mm_cid_next_scan = jiffies + msecs_to_jiffies(MM_CID_SCAN_DELAY);
11629 	}
11630 	t->cid_work.next = &t->cid_work;	/* Protect against double add */
11631 	init_task_work(&t->cid_work, task_mm_cid_work);
11632 }
11633 
task_tick_mm_cid(struct rq * rq,struct task_struct * curr)11634 void task_tick_mm_cid(struct rq *rq, struct task_struct *curr)
11635 {
11636 	struct callback_head *work = &curr->cid_work;
11637 	unsigned long now = jiffies;
11638 
11639 	if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) ||
11640 	    work->next != work)
11641 		return;
11642 	if (time_before(now, READ_ONCE(curr->mm->mm_cid_next_scan)))
11643 		return;
11644 
11645 	/* No page allocation under rq lock */
11646 	task_work_add(curr, work, TWA_RESUME | TWAF_NO_ALLOC);
11647 }
11648 
sched_mm_cid_exit_signals(struct task_struct * t)11649 void sched_mm_cid_exit_signals(struct task_struct *t)
11650 {
11651 	struct mm_struct *mm = t->mm;
11652 	struct rq *rq;
11653 
11654 	if (!mm)
11655 		return;
11656 
11657 	preempt_disable();
11658 	rq = this_rq();
11659 	guard(rq_lock_irqsave)(rq);
11660 	preempt_enable_no_resched();	/* holding spinlock */
11661 	WRITE_ONCE(t->mm_cid_active, 0);
11662 	/*
11663 	 * Store t->mm_cid_active before loading per-mm/cpu cid.
11664 	 * Matches barrier in sched_mm_cid_remote_clear_old().
11665 	 */
11666 	smp_mb();
11667 	mm_cid_put(mm);
11668 	t->last_mm_cid = t->mm_cid = -1;
11669 }
11670 
sched_mm_cid_before_execve(struct task_struct * t)11671 void sched_mm_cid_before_execve(struct task_struct *t)
11672 {
11673 	struct mm_struct *mm = t->mm;
11674 	struct rq *rq;
11675 
11676 	if (!mm)
11677 		return;
11678 
11679 	preempt_disable();
11680 	rq = this_rq();
11681 	guard(rq_lock_irqsave)(rq);
11682 	preempt_enable_no_resched();	/* holding spinlock */
11683 	WRITE_ONCE(t->mm_cid_active, 0);
11684 	/*
11685 	 * Store t->mm_cid_active before loading per-mm/cpu cid.
11686 	 * Matches barrier in sched_mm_cid_remote_clear_old().
11687 	 */
11688 	smp_mb();
11689 	mm_cid_put(mm);
11690 	t->last_mm_cid = t->mm_cid = -1;
11691 }
11692 
sched_mm_cid_after_execve(struct task_struct * t)11693 void sched_mm_cid_after_execve(struct task_struct *t)
11694 {
11695 	struct mm_struct *mm = t->mm;
11696 	struct rq *rq;
11697 
11698 	if (!mm)
11699 		return;
11700 
11701 	preempt_disable();
11702 	rq = this_rq();
11703 	scoped_guard (rq_lock_irqsave, rq) {
11704 		preempt_enable_no_resched();	/* holding spinlock */
11705 		WRITE_ONCE(t->mm_cid_active, 1);
11706 		/*
11707 		 * Store t->mm_cid_active before loading per-mm/cpu cid.
11708 		 * Matches barrier in sched_mm_cid_remote_clear_old().
11709 		 */
11710 		smp_mb();
11711 		t->last_mm_cid = t->mm_cid = mm_cid_get(rq, mm);
11712 	}
11713 	rseq_set_notify_resume(t);
11714 }
11715 
sched_mm_cid_fork(struct task_struct * t)11716 void sched_mm_cid_fork(struct task_struct *t)
11717 {
11718 	WARN_ON_ONCE(!t->mm || t->mm_cid != -1);
11719 	t->mm_cid_active = 1;
11720 }
11721 #endif
11722 
11723 #ifdef CONFIG_SCHED_CLASS_EXT
sched_deq_and_put_task(struct task_struct * p,int queue_flags,struct sched_enq_and_set_ctx * ctx)11724 void sched_deq_and_put_task(struct task_struct *p, int queue_flags,
11725 			    struct sched_enq_and_set_ctx *ctx)
11726 {
11727 	struct rq *rq = task_rq(p);
11728 
11729 	lockdep_assert_rq_held(rq);
11730 
11731 	*ctx = (struct sched_enq_and_set_ctx){
11732 		.p = p,
11733 		.queue_flags = queue_flags,
11734 		.queued = task_on_rq_queued(p),
11735 		.running = task_current(rq, p),
11736 	};
11737 
11738 	update_rq_clock(rq);
11739 	if (ctx->queued)
11740 		dequeue_task(rq, p, queue_flags | DEQUEUE_NOCLOCK);
11741 	if (ctx->running)
11742 		put_prev_task(rq, p);
11743 }
11744 
sched_enq_and_set_task(struct sched_enq_and_set_ctx * ctx)11745 void sched_enq_and_set_task(struct sched_enq_and_set_ctx *ctx)
11746 {
11747 	struct rq *rq = task_rq(ctx->p);
11748 
11749 	lockdep_assert_rq_held(rq);
11750 
11751 	if (ctx->queued)
11752 		enqueue_task(rq, ctx->p, ctx->queue_flags | ENQUEUE_NOCLOCK);
11753 	if (ctx->running)
11754 		set_next_task(rq, ctx->p);
11755 }
11756 #endif	/* CONFIG_SCHED_CLASS_EXT */
11757