• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2002 Richard Henderson
4  * Copyright (C) 2001 Rusty Russell, 2002, 2010 Rusty Russell IBM.
5  * Copyright (C) 2023 Luis Chamberlain <mcgrof@kernel.org>
6  */
7 
8 #define INCLUDE_VERMAGIC
9 
10 #include <linux/export.h>
11 #include <linux/extable.h>
12 #include <linux/moduleloader.h>
13 #include <linux/module_signature.h>
14 #include <linux/trace_events.h>
15 #include <linux/init.h>
16 #include <linux/kallsyms.h>
17 #include <linux/buildid.h>
18 #include <linux/fs.h>
19 #include <linux/kernel.h>
20 #include <linux/kernel_read_file.h>
21 #include <linux/kstrtox.h>
22 #include <linux/slab.h>
23 #include <linux/vmalloc.h>
24 #include <linux/elf.h>
25 #include <linux/seq_file.h>
26 #include <linux/syscalls.h>
27 #include <linux/fcntl.h>
28 #include <linux/rcupdate.h>
29 #include <linux/capability.h>
30 #include <linux/cpu.h>
31 #include <linux/moduleparam.h>
32 #include <linux/errno.h>
33 #include <linux/err.h>
34 #include <linux/vermagic.h>
35 #include <linux/notifier.h>
36 #include <linux/sched.h>
37 #include <linux/device.h>
38 #include <linux/string.h>
39 #include <linux/mutex.h>
40 #include <linux/rculist.h>
41 #include <linux/uaccess.h>
42 #include <asm/cacheflush.h>
43 #include <linux/set_memory.h>
44 #include <asm/mmu_context.h>
45 #include <linux/license.h>
46 #include <asm/sections.h>
47 #include <linux/tracepoint.h>
48 #include <linux/ftrace.h>
49 #include <linux/livepatch.h>
50 #include <linux/async.h>
51 #include <linux/percpu.h>
52 #include <linux/kmemleak.h>
53 #include <linux/jump_label.h>
54 #include <linux/pfn.h>
55 #include <linux/bsearch.h>
56 #include <linux/dynamic_debug.h>
57 #include <linux/audit.h>
58 #include <linux/cfi.h>
59 #include <linux/codetag.h>
60 #include <linux/debugfs.h>
61 #include <linux/execmem.h>
62 #include <uapi/linux/module.h>
63 #include "internal.h"
64 
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/module.h>
67 
68 #undef CREATE_TRACE_POINTS
69 #include <trace/hooks/module.h>
70 
71 /*
72  * Mutex protects:
73  * 1) List of modules (also safely readable with preempt_disable),
74  * 2) module_use links,
75  * 3) mod_tree.addr_min/mod_tree.addr_max.
76  * (delete and add uses RCU list operations).
77  */
78 DEFINE_MUTEX(module_mutex);
79 LIST_HEAD(modules);
80 
81 /* Work queue for freeing init sections in success case */
82 static void do_free_init(struct work_struct *w);
83 static DECLARE_WORK(init_free_wq, do_free_init);
84 static LLIST_HEAD(init_free_list);
85 
86 struct mod_tree_root mod_tree __cacheline_aligned = {
87 	.addr_min = -1UL,
88 };
89 
90 struct symsearch {
91 	const struct kernel_symbol *start, *stop;
92 	const u32 *crcs;
93 	enum mod_license license;
94 };
95 
96 #if defined(CONFIG_MODULE_SIG_PROTECT) || defined(CONFIG_TRIM_UNUSED_KSYMS)
cmp_string(const void * a,const void * b)97 static int cmp_string(const void *a, const void *b)
98 {
99 	return strcmp((const char *)a, *(const char **)b);
100 }
101 #endif
102 
103 /*
104  * Bounds of module memory, for speeding up __module_address.
105  * Protected by module_mutex.
106  */
__mod_update_bounds(enum mod_mem_type type __maybe_unused,void * base,unsigned int size,struct mod_tree_root * tree)107 static void __mod_update_bounds(enum mod_mem_type type __maybe_unused, void *base,
108 				unsigned int size, struct mod_tree_root *tree)
109 {
110 	unsigned long min = (unsigned long)base;
111 	unsigned long max = min + size;
112 
113 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
114 	if (mod_mem_type_is_core_data(type)) {
115 		if (min < tree->data_addr_min)
116 			tree->data_addr_min = min;
117 		if (max > tree->data_addr_max)
118 			tree->data_addr_max = max;
119 		return;
120 	}
121 #endif
122 	if (min < tree->addr_min)
123 		tree->addr_min = min;
124 	if (max > tree->addr_max)
125 		tree->addr_max = max;
126 }
127 
mod_update_bounds(struct module * mod)128 static void mod_update_bounds(struct module *mod)
129 {
130 	for_each_mod_mem_type(type) {
131 		struct module_memory *mod_mem = &mod->mem[type];
132 
133 		if (mod_mem->size)
134 			__mod_update_bounds(type, mod_mem->base, mod_mem->size, &mod_tree);
135 	}
136 }
137 
138 /* Block module loading/unloading? */
139 int modules_disabled;
140 core_param(nomodule, modules_disabled, bint, 0);
141 
142 /* Waiting for a module to finish initializing? */
143 static DECLARE_WAIT_QUEUE_HEAD(module_wq);
144 
145 static BLOCKING_NOTIFIER_HEAD(module_notify_list);
146 
register_module_notifier(struct notifier_block * nb)147 int register_module_notifier(struct notifier_block *nb)
148 {
149 	return blocking_notifier_chain_register(&module_notify_list, nb);
150 }
151 EXPORT_SYMBOL(register_module_notifier);
152 
unregister_module_notifier(struct notifier_block * nb)153 int unregister_module_notifier(struct notifier_block *nb)
154 {
155 	return blocking_notifier_chain_unregister(&module_notify_list, nb);
156 }
157 EXPORT_SYMBOL(unregister_module_notifier);
158 
159 /*
160  * We require a truly strong try_module_get(): 0 means success.
161  * Otherwise an error is returned due to ongoing or failed
162  * initialization etc.
163  */
strong_try_module_get(struct module * mod)164 static inline int strong_try_module_get(struct module *mod)
165 {
166 	BUG_ON(mod && mod->state == MODULE_STATE_UNFORMED);
167 	if (mod && mod->state == MODULE_STATE_COMING)
168 		return -EBUSY;
169 	if (try_module_get(mod))
170 		return 0;
171 	else
172 		return -ENOENT;
173 }
174 
add_taint_module(struct module * mod,unsigned flag,enum lockdep_ok lockdep_ok)175 static inline void add_taint_module(struct module *mod, unsigned flag,
176 				    enum lockdep_ok lockdep_ok)
177 {
178 	add_taint(flag, lockdep_ok);
179 	set_bit(flag, &mod->taints);
180 }
181 
182 /*
183  * A thread that wants to hold a reference to a module only while it
184  * is running can call this to safely exit.
185  */
__module_put_and_kthread_exit(struct module * mod,long code)186 void __noreturn __module_put_and_kthread_exit(struct module *mod, long code)
187 {
188 	module_put(mod);
189 	kthread_exit(code);
190 }
191 EXPORT_SYMBOL(__module_put_and_kthread_exit);
192 
193 /* Find a module section: 0 means not found. */
find_sec(const struct load_info * info,const char * name)194 static unsigned int find_sec(const struct load_info *info, const char *name)
195 {
196 	unsigned int i;
197 
198 	for (i = 1; i < info->hdr->e_shnum; i++) {
199 		Elf_Shdr *shdr = &info->sechdrs[i];
200 		/* Alloc bit cleared means "ignore it." */
201 		if ((shdr->sh_flags & SHF_ALLOC)
202 		    && strcmp(info->secstrings + shdr->sh_name, name) == 0)
203 			return i;
204 	}
205 	return 0;
206 }
207 
208 /**
209  * find_any_unique_sec() - Find a unique section index by name
210  * @info: Load info for the module to scan
211  * @name: Name of the section we're looking for
212  *
213  * Locates a unique section by name. Ignores SHF_ALLOC.
214  *
215  * Return: Section index if found uniquely, zero if absent, negative count
216  *         of total instances if multiple were found.
217  */
find_any_unique_sec(const struct load_info * info,const char * name)218 static int find_any_unique_sec(const struct load_info *info, const char *name)
219 {
220 	unsigned int idx;
221 	unsigned int count = 0;
222 	int i;
223 
224 	for (i = 1; i < info->hdr->e_shnum; i++) {
225 		if (strcmp(info->secstrings + info->sechdrs[i].sh_name,
226 			   name) == 0) {
227 			count++;
228 			idx = i;
229 		}
230 	}
231 	if (count == 1) {
232 		return idx;
233 	} else if (count == 0) {
234 		return 0;
235 	} else {
236 		return -count;
237 	}
238 }
239 
240 /* Find a module section, or NULL. */
section_addr(const struct load_info * info,const char * name)241 static void *section_addr(const struct load_info *info, const char *name)
242 {
243 	/* Section 0 has sh_addr 0. */
244 	return (void *)info->sechdrs[find_sec(info, name)].sh_addr;
245 }
246 
247 /* Find a module section, or NULL.  Fill in number of "objects" in section. */
section_objs(const struct load_info * info,const char * name,size_t object_size,unsigned int * num)248 static void *section_objs(const struct load_info *info,
249 			  const char *name,
250 			  size_t object_size,
251 			  unsigned int *num)
252 {
253 	unsigned int sec = find_sec(info, name);
254 
255 	/* Section 0 has sh_addr 0 and sh_size 0. */
256 	*num = info->sechdrs[sec].sh_size / object_size;
257 	return (void *)info->sechdrs[sec].sh_addr;
258 }
259 
260 /* Find a module section: 0 means not found. Ignores SHF_ALLOC flag. */
find_any_sec(const struct load_info * info,const char * name)261 static unsigned int find_any_sec(const struct load_info *info, const char *name)
262 {
263 	unsigned int i;
264 
265 	for (i = 1; i < info->hdr->e_shnum; i++) {
266 		Elf_Shdr *shdr = &info->sechdrs[i];
267 		if (strcmp(info->secstrings + shdr->sh_name, name) == 0)
268 			return i;
269 	}
270 	return 0;
271 }
272 
273 /*
274  * Find a module section, or NULL. Fill in number of "objects" in section.
275  * Ignores SHF_ALLOC flag.
276  */
any_section_objs(const struct load_info * info,const char * name,size_t object_size,unsigned int * num)277 static __maybe_unused void *any_section_objs(const struct load_info *info,
278 					     const char *name,
279 					     size_t object_size,
280 					     unsigned int *num)
281 {
282 	unsigned int sec = find_any_sec(info, name);
283 
284 	/* Section 0 has sh_addr 0 and sh_size 0. */
285 	*num = info->sechdrs[sec].sh_size / object_size;
286 	return (void *)info->sechdrs[sec].sh_addr;
287 }
288 
289 #ifndef CONFIG_MODVERSIONS
290 #define symversion(base, idx) NULL
291 #else
292 #define symversion(base, idx) ((base != NULL) ? ((base) + (idx)) : NULL)
293 #endif
294 
kernel_symbol_name(const struct kernel_symbol * sym)295 static const char *kernel_symbol_name(const struct kernel_symbol *sym)
296 {
297 #ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS
298 	return offset_to_ptr(&sym->name_offset);
299 #else
300 	return sym->name;
301 #endif
302 }
303 
kernel_symbol_namespace(const struct kernel_symbol * sym)304 static const char *kernel_symbol_namespace(const struct kernel_symbol *sym)
305 {
306 #ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS
307 	if (!sym->namespace_offset)
308 		return NULL;
309 	return offset_to_ptr(&sym->namespace_offset);
310 #else
311 	return sym->namespace;
312 #endif
313 }
314 
cmp_name(const void * name,const void * sym)315 int cmp_name(const void *name, const void *sym)
316 {
317 	return strcmp(name, kernel_symbol_name(sym));
318 }
319 
find_exported_symbol_in_section(const struct symsearch * syms,struct module * owner,struct find_symbol_arg * fsa)320 static bool find_exported_symbol_in_section(const struct symsearch *syms,
321 					    struct module *owner,
322 					    struct find_symbol_arg *fsa)
323 {
324 	struct kernel_symbol *sym;
325 
326 	if (!fsa->gplok && syms->license == GPL_ONLY)
327 		return false;
328 
329 	sym = bsearch(fsa->name, syms->start, syms->stop - syms->start,
330 			sizeof(struct kernel_symbol), cmp_name);
331 	if (!sym)
332 		return false;
333 
334 	fsa->owner = owner;
335 	fsa->crc = symversion(syms->crcs, sym - syms->start);
336 	fsa->sym = sym;
337 	fsa->license = syms->license;
338 
339 	return true;
340 }
341 
342 /*
343  * Find an exported symbol and return it, along with, (optional) crc and
344  * (optional) module which owns it.  Needs preempt disabled or module_mutex.
345  */
find_symbol(struct find_symbol_arg * fsa)346 bool find_symbol(struct find_symbol_arg *fsa)
347 {
348 	static const struct symsearch arr[] = {
349 		{ __start___ksymtab, __stop___ksymtab, __start___kcrctab,
350 		  NOT_GPL_ONLY },
351 		{ __start___ksymtab_gpl, __stop___ksymtab_gpl,
352 		  __start___kcrctab_gpl,
353 		  GPL_ONLY },
354 	};
355 	struct module *mod;
356 	unsigned int i;
357 
358 	module_assert_mutex_or_preempt();
359 
360 	for (i = 0; i < ARRAY_SIZE(arr); i++)
361 		if (find_exported_symbol_in_section(&arr[i], NULL, fsa))
362 			return true;
363 
364 	list_for_each_entry_rcu(mod, &modules, list,
365 				lockdep_is_held(&module_mutex)) {
366 		struct symsearch arr[] = {
367 			{ mod->syms, mod->syms + mod->num_syms, mod->crcs,
368 			  NOT_GPL_ONLY },
369 			{ mod->gpl_syms, mod->gpl_syms + mod->num_gpl_syms,
370 			  mod->gpl_crcs,
371 			  GPL_ONLY },
372 		};
373 
374 		if (mod->state == MODULE_STATE_UNFORMED)
375 			continue;
376 
377 		for (i = 0; i < ARRAY_SIZE(arr); i++)
378 			if (find_exported_symbol_in_section(&arr[i], mod, fsa))
379 				return true;
380 	}
381 
382 	pr_debug("Failed to find symbol %s\n", fsa->name);
383 	return false;
384 }
385 
386 /*
387  * Search for module by name: must hold module_mutex (or preempt disabled
388  * for read-only access).
389  */
find_module_all(const char * name,size_t len,bool even_unformed)390 struct module *find_module_all(const char *name, size_t len,
391 			       bool even_unformed)
392 {
393 	struct module *mod;
394 
395 	module_assert_mutex_or_preempt();
396 
397 	list_for_each_entry_rcu(mod, &modules, list,
398 				lockdep_is_held(&module_mutex)) {
399 		if (!even_unformed && mod->state == MODULE_STATE_UNFORMED)
400 			continue;
401 		if (strlen(mod->name) == len && !memcmp(mod->name, name, len))
402 			return mod;
403 	}
404 	return NULL;
405 }
406 
find_module(const char * name)407 struct module *find_module(const char *name)
408 {
409 	return find_module_all(name, strlen(name), false);
410 }
411 
412 #ifdef CONFIG_SMP
413 
mod_percpu(struct module * mod)414 static inline void __percpu *mod_percpu(struct module *mod)
415 {
416 	return mod->percpu;
417 }
418 
percpu_modalloc(struct module * mod,struct load_info * info)419 static int percpu_modalloc(struct module *mod, struct load_info *info)
420 {
421 	Elf_Shdr *pcpusec = &info->sechdrs[info->index.pcpu];
422 	unsigned long align = pcpusec->sh_addralign;
423 
424 	if (!pcpusec->sh_size)
425 		return 0;
426 
427 	if (align > PAGE_SIZE) {
428 		pr_warn("%s: per-cpu alignment %li > %li\n",
429 			mod->name, align, PAGE_SIZE);
430 		align = PAGE_SIZE;
431 	}
432 
433 	mod->percpu = __alloc_reserved_percpu(pcpusec->sh_size, align);
434 	if (!mod->percpu) {
435 		pr_warn("%s: Could not allocate %lu bytes percpu data\n",
436 			mod->name, (unsigned long)pcpusec->sh_size);
437 		return -ENOMEM;
438 	}
439 	mod->percpu_size = pcpusec->sh_size;
440 	return 0;
441 }
442 
percpu_modfree(struct module * mod)443 static void percpu_modfree(struct module *mod)
444 {
445 	free_percpu(mod->percpu);
446 }
447 
find_pcpusec(struct load_info * info)448 static unsigned int find_pcpusec(struct load_info *info)
449 {
450 	return find_sec(info, ".data..percpu");
451 }
452 
percpu_modcopy(struct module * mod,const void * from,unsigned long size)453 static void percpu_modcopy(struct module *mod,
454 			   const void *from, unsigned long size)
455 {
456 	int cpu;
457 
458 	for_each_possible_cpu(cpu)
459 		memcpy(per_cpu_ptr(mod->percpu, cpu), from, size);
460 }
461 
__is_module_percpu_address(unsigned long addr,unsigned long * can_addr)462 bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr)
463 {
464 	struct module *mod;
465 	unsigned int cpu;
466 
467 	preempt_disable();
468 
469 	list_for_each_entry_rcu(mod, &modules, list) {
470 		if (mod->state == MODULE_STATE_UNFORMED)
471 			continue;
472 		if (!mod->percpu_size)
473 			continue;
474 		for_each_possible_cpu(cpu) {
475 			void *start = per_cpu_ptr(mod->percpu, cpu);
476 			void *va = (void *)addr;
477 
478 			if (va >= start && va < start + mod->percpu_size) {
479 				if (can_addr) {
480 					*can_addr = (unsigned long) (va - start);
481 					*can_addr += (unsigned long)
482 						per_cpu_ptr(mod->percpu,
483 							    get_boot_cpu_id());
484 				}
485 				preempt_enable();
486 				return true;
487 			}
488 		}
489 	}
490 
491 	preempt_enable();
492 	return false;
493 }
494 
495 /**
496  * is_module_percpu_address() - test whether address is from module static percpu
497  * @addr: address to test
498  *
499  * Test whether @addr belongs to module static percpu area.
500  *
501  * Return: %true if @addr is from module static percpu area
502  */
is_module_percpu_address(unsigned long addr)503 bool is_module_percpu_address(unsigned long addr)
504 {
505 	return __is_module_percpu_address(addr, NULL);
506 }
507 
508 #else /* ... !CONFIG_SMP */
509 
mod_percpu(struct module * mod)510 static inline void __percpu *mod_percpu(struct module *mod)
511 {
512 	return NULL;
513 }
percpu_modalloc(struct module * mod,struct load_info * info)514 static int percpu_modalloc(struct module *mod, struct load_info *info)
515 {
516 	/* UP modules shouldn't have this section: ENOMEM isn't quite right */
517 	if (info->sechdrs[info->index.pcpu].sh_size != 0)
518 		return -ENOMEM;
519 	return 0;
520 }
percpu_modfree(struct module * mod)521 static inline void percpu_modfree(struct module *mod)
522 {
523 }
find_pcpusec(struct load_info * info)524 static unsigned int find_pcpusec(struct load_info *info)
525 {
526 	return 0;
527 }
percpu_modcopy(struct module * mod,const void * from,unsigned long size)528 static inline void percpu_modcopy(struct module *mod,
529 				  const void *from, unsigned long size)
530 {
531 	/* pcpusec should be 0, and size of that section should be 0. */
532 	BUG_ON(size != 0);
533 }
is_module_percpu_address(unsigned long addr)534 bool is_module_percpu_address(unsigned long addr)
535 {
536 	return false;
537 }
538 
__is_module_percpu_address(unsigned long addr,unsigned long * can_addr)539 bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr)
540 {
541 	return false;
542 }
543 
544 #endif /* CONFIG_SMP */
545 
546 #define MODINFO_ATTR(field)	\
547 static void setup_modinfo_##field(struct module *mod, const char *s)  \
548 {                                                                     \
549 	mod->field = kstrdup(s, GFP_KERNEL);                          \
550 }                                                                     \
551 static ssize_t show_modinfo_##field(struct module_attribute *mattr,   \
552 			struct module_kobject *mk, char *buffer)      \
553 {                                                                     \
554 	return scnprintf(buffer, PAGE_SIZE, "%s\n", mk->mod->field);  \
555 }                                                                     \
556 static int modinfo_##field##_exists(struct module *mod)               \
557 {                                                                     \
558 	return mod->field != NULL;                                    \
559 }                                                                     \
560 static void free_modinfo_##field(struct module *mod)                  \
561 {                                                                     \
562 	kfree(mod->field);                                            \
563 	mod->field = NULL;                                            \
564 }                                                                     \
565 static struct module_attribute modinfo_##field = {                    \
566 	.attr = { .name = __stringify(field), .mode = 0444 },         \
567 	.show = show_modinfo_##field,                                 \
568 	.setup = setup_modinfo_##field,                               \
569 	.test = modinfo_##field##_exists,                             \
570 	.free = free_modinfo_##field,                                 \
571 };
572 
573 MODINFO_ATTR(version);
574 MODINFO_ATTR(srcversion);
575 MODINFO_ATTR(scmversion);
576 
577 static struct {
578 	char name[MODULE_NAME_LEN + 1];
579 	char taints[MODULE_FLAGS_BUF_SIZE];
580 } last_unloaded_module;
581 
582 #ifdef CONFIG_MODULE_UNLOAD
583 
584 EXPORT_TRACEPOINT_SYMBOL(module_get);
585 
586 /* MODULE_REF_BASE is the base reference count by kmodule loader. */
587 #define MODULE_REF_BASE	1
588 
589 /* Init the unload section of the module. */
module_unload_init(struct module * mod)590 static int module_unload_init(struct module *mod)
591 {
592 	/*
593 	 * Initialize reference counter to MODULE_REF_BASE.
594 	 * refcnt == 0 means module is going.
595 	 */
596 	atomic_set(&mod->refcnt, MODULE_REF_BASE);
597 
598 	INIT_LIST_HEAD(&mod->source_list);
599 	INIT_LIST_HEAD(&mod->target_list);
600 
601 	/* Hold reference count during initialization. */
602 	atomic_inc(&mod->refcnt);
603 
604 	return 0;
605 }
606 
607 /* Does a already use b? */
already_uses(struct module * a,struct module * b)608 static int already_uses(struct module *a, struct module *b)
609 {
610 	struct module_use *use;
611 
612 	list_for_each_entry(use, &b->source_list, source_list) {
613 		if (use->source == a)
614 			return 1;
615 	}
616 	pr_debug("%s does not use %s!\n", a->name, b->name);
617 	return 0;
618 }
619 
620 /*
621  * Module a uses b
622  *  - we add 'a' as a "source", 'b' as a "target" of module use
623  *  - the module_use is added to the list of 'b' sources (so
624  *    'b' can walk the list to see who sourced them), and of 'a'
625  *    targets (so 'a' can see what modules it targets).
626  */
add_module_usage(struct module * a,struct module * b)627 static int add_module_usage(struct module *a, struct module *b)
628 {
629 	struct module_use *use;
630 
631 	pr_debug("Allocating new usage for %s.\n", a->name);
632 	use = kmalloc(sizeof(*use), GFP_ATOMIC);
633 	if (!use)
634 		return -ENOMEM;
635 
636 	use->source = a;
637 	use->target = b;
638 	list_add(&use->source_list, &b->source_list);
639 	list_add(&use->target_list, &a->target_list);
640 	return 0;
641 }
642 
643 /* Module a uses b: caller needs module_mutex() */
ref_module(struct module * a,struct module * b)644 static int ref_module(struct module *a, struct module *b)
645 {
646 	int err;
647 
648 	if (b == NULL || already_uses(a, b))
649 		return 0;
650 
651 	/* If module isn't available, we fail. */
652 	err = strong_try_module_get(b);
653 	if (err)
654 		return err;
655 
656 	err = add_module_usage(a, b);
657 	if (err) {
658 		module_put(b);
659 		return err;
660 	}
661 	return 0;
662 }
663 
664 /* Clear the unload stuff of the module. */
module_unload_free(struct module * mod)665 static void module_unload_free(struct module *mod)
666 {
667 	struct module_use *use, *tmp;
668 
669 	mutex_lock(&module_mutex);
670 	list_for_each_entry_safe(use, tmp, &mod->target_list, target_list) {
671 		struct module *i = use->target;
672 		pr_debug("%s unusing %s\n", mod->name, i->name);
673 		module_put(i);
674 		list_del(&use->source_list);
675 		list_del(&use->target_list);
676 		kfree(use);
677 	}
678 	mutex_unlock(&module_mutex);
679 }
680 
681 #ifdef CONFIG_MODULE_FORCE_UNLOAD
try_force_unload(unsigned int flags)682 static inline int try_force_unload(unsigned int flags)
683 {
684 	int ret = (flags & O_TRUNC);
685 	if (ret)
686 		add_taint(TAINT_FORCED_RMMOD, LOCKDEP_NOW_UNRELIABLE);
687 	return ret;
688 }
689 #else
try_force_unload(unsigned int flags)690 static inline int try_force_unload(unsigned int flags)
691 {
692 	return 0;
693 }
694 #endif /* CONFIG_MODULE_FORCE_UNLOAD */
695 
696 /* Try to release refcount of module, 0 means success. */
try_release_module_ref(struct module * mod)697 static int try_release_module_ref(struct module *mod)
698 {
699 	int ret;
700 
701 	/* Try to decrement refcnt which we set at loading */
702 	ret = atomic_sub_return(MODULE_REF_BASE, &mod->refcnt);
703 	BUG_ON(ret < 0);
704 	if (ret)
705 		/* Someone can put this right now, recover with checking */
706 		ret = atomic_add_unless(&mod->refcnt, MODULE_REF_BASE, 0);
707 
708 	return ret;
709 }
710 
try_stop_module(struct module * mod,int flags,int * forced)711 static int try_stop_module(struct module *mod, int flags, int *forced)
712 {
713 	/* If it's not unused, quit unless we're forcing. */
714 	if (try_release_module_ref(mod) != 0) {
715 		*forced = try_force_unload(flags);
716 		if (!(*forced))
717 			return -EWOULDBLOCK;
718 	}
719 
720 	/* Mark it as dying. */
721 	mod->state = MODULE_STATE_GOING;
722 
723 	return 0;
724 }
725 
726 /**
727  * module_refcount() - return the refcount or -1 if unloading
728  * @mod:	the module we're checking
729  *
730  * Return:
731  *	-1 if the module is in the process of unloading
732  *	otherwise the number of references in the kernel to the module
733  */
module_refcount(struct module * mod)734 int module_refcount(struct module *mod)
735 {
736 	return atomic_read(&mod->refcnt) - MODULE_REF_BASE;
737 }
738 EXPORT_SYMBOL(module_refcount);
739 
740 /* This exists whether we can unload or not */
741 static void free_module(struct module *mod);
742 
SYSCALL_DEFINE2(delete_module,const char __user *,name_user,unsigned int,flags)743 SYSCALL_DEFINE2(delete_module, const char __user *, name_user,
744 		unsigned int, flags)
745 {
746 	struct module *mod;
747 	char name[MODULE_NAME_LEN];
748 	char buf[MODULE_FLAGS_BUF_SIZE];
749 	int ret, len, forced = 0;
750 
751 	if (!capable(CAP_SYS_MODULE) || modules_disabled)
752 		return -EPERM;
753 
754 	len = strncpy_from_user(name, name_user, MODULE_NAME_LEN);
755 	if (len == 0 || len == MODULE_NAME_LEN)
756 		return -ENOENT;
757 	if (len < 0)
758 		return len;
759 
760 	audit_log_kern_module(name);
761 
762 	if (mutex_lock_interruptible(&module_mutex) != 0)
763 		return -EINTR;
764 
765 	mod = find_module(name);
766 	if (!mod) {
767 		ret = -ENOENT;
768 		goto out;
769 	}
770 
771 	if (!list_empty(&mod->source_list)) {
772 		/* Other modules depend on us: get rid of them first. */
773 		ret = -EWOULDBLOCK;
774 		goto out;
775 	}
776 
777 	/* Doing init or already dying? */
778 	if (mod->state != MODULE_STATE_LIVE) {
779 		/* FIXME: if (force), slam module count damn the torpedoes */
780 		pr_debug("%s already dying\n", mod->name);
781 		ret = -EBUSY;
782 		goto out;
783 	}
784 
785 	/* If it has an init func, it must have an exit func to unload */
786 	if (mod->init && !mod->exit) {
787 		forced = try_force_unload(flags);
788 		if (!forced) {
789 			/* This module can't be removed */
790 			ret = -EBUSY;
791 			goto out;
792 		}
793 	}
794 
795 	ret = try_stop_module(mod, flags, &forced);
796 	if (ret != 0)
797 		goto out;
798 
799 	mutex_unlock(&module_mutex);
800 	/* Final destruction now no one is using it. */
801 	if (mod->exit != NULL)
802 		mod->exit();
803 	blocking_notifier_call_chain(&module_notify_list,
804 				     MODULE_STATE_GOING, mod);
805 	klp_module_going(mod);
806 	ftrace_release_mod(mod);
807 
808 	async_synchronize_full();
809 
810 	/* Store the name and taints of the last unloaded module for diagnostic purposes */
811 	strscpy(last_unloaded_module.name, mod->name, sizeof(last_unloaded_module.name));
812 	strscpy(last_unloaded_module.taints, module_flags(mod, buf, false), sizeof(last_unloaded_module.taints));
813 
814 	free_module(mod);
815 	/* someone could wait for the module in add_unformed_module() */
816 	wake_up_all(&module_wq);
817 	return 0;
818 out:
819 	mutex_unlock(&module_mutex);
820 	return ret;
821 }
822 
__symbol_put(const char * symbol)823 void __symbol_put(const char *symbol)
824 {
825 	struct find_symbol_arg fsa = {
826 		.name	= symbol,
827 		.gplok	= true,
828 	};
829 
830 	preempt_disable();
831 	BUG_ON(!find_symbol(&fsa));
832 	module_put(fsa.owner);
833 	preempt_enable();
834 }
835 EXPORT_SYMBOL(__symbol_put);
836 
837 /* Note this assumes addr is a function, which it currently always is. */
symbol_put_addr(void * addr)838 void symbol_put_addr(void *addr)
839 {
840 	struct module *modaddr;
841 	unsigned long a = (unsigned long)dereference_function_descriptor(addr);
842 
843 	if (core_kernel_text(a))
844 		return;
845 
846 	/*
847 	 * Even though we hold a reference on the module; we still need to
848 	 * disable preemption in order to safely traverse the data structure.
849 	 */
850 	preempt_disable();
851 	modaddr = __module_text_address(a);
852 	BUG_ON(!modaddr);
853 	module_put(modaddr);
854 	preempt_enable();
855 }
856 EXPORT_SYMBOL_GPL(symbol_put_addr);
857 
show_refcnt(struct module_attribute * mattr,struct module_kobject * mk,char * buffer)858 static ssize_t show_refcnt(struct module_attribute *mattr,
859 			   struct module_kobject *mk, char *buffer)
860 {
861 	return sprintf(buffer, "%i\n", module_refcount(mk->mod));
862 }
863 
864 static struct module_attribute modinfo_refcnt =
865 	__ATTR(refcnt, 0444, show_refcnt, NULL);
866 
__module_get(struct module * module)867 void __module_get(struct module *module)
868 {
869 	if (module) {
870 		atomic_inc(&module->refcnt);
871 		trace_module_get(module, _RET_IP_);
872 	}
873 }
874 EXPORT_SYMBOL(__module_get);
875 
try_module_get(struct module * module)876 bool try_module_get(struct module *module)
877 {
878 	bool ret = true;
879 
880 	if (module) {
881 		/* Note: here, we can fail to get a reference */
882 		if (likely(module_is_live(module) &&
883 			   atomic_inc_not_zero(&module->refcnt) != 0))
884 			trace_module_get(module, _RET_IP_);
885 		else
886 			ret = false;
887 	}
888 	return ret;
889 }
890 EXPORT_SYMBOL(try_module_get);
891 
module_put(struct module * module)892 void module_put(struct module *module)
893 {
894 	int ret;
895 
896 	if (module) {
897 		ret = atomic_dec_if_positive(&module->refcnt);
898 		WARN_ON(ret < 0);	/* Failed to put refcount */
899 		trace_module_put(module, _RET_IP_);
900 	}
901 }
902 EXPORT_SYMBOL(module_put);
903 
904 #else /* !CONFIG_MODULE_UNLOAD */
module_unload_free(struct module * mod)905 static inline void module_unload_free(struct module *mod)
906 {
907 }
908 
ref_module(struct module * a,struct module * b)909 static int ref_module(struct module *a, struct module *b)
910 {
911 	return strong_try_module_get(b);
912 }
913 
module_unload_init(struct module * mod)914 static inline int module_unload_init(struct module *mod)
915 {
916 	return 0;
917 }
918 #endif /* CONFIG_MODULE_UNLOAD */
919 
module_flags_taint(unsigned long taints,char * buf)920 size_t module_flags_taint(unsigned long taints, char *buf)
921 {
922 	size_t l = 0;
923 	int i;
924 
925 	for (i = 0; i < TAINT_FLAGS_COUNT; i++) {
926 		if (taint_flags[i].module && test_bit(i, &taints))
927 			buf[l++] = taint_flags[i].c_true;
928 	}
929 
930 	return l;
931 }
932 
show_initstate(struct module_attribute * mattr,struct module_kobject * mk,char * buffer)933 static ssize_t show_initstate(struct module_attribute *mattr,
934 			      struct module_kobject *mk, char *buffer)
935 {
936 	const char *state = "unknown";
937 
938 	switch (mk->mod->state) {
939 	case MODULE_STATE_LIVE:
940 		state = "live";
941 		break;
942 	case MODULE_STATE_COMING:
943 		state = "coming";
944 		break;
945 	case MODULE_STATE_GOING:
946 		state = "going";
947 		break;
948 	default:
949 		BUG();
950 	}
951 	return sprintf(buffer, "%s\n", state);
952 }
953 
954 static struct module_attribute modinfo_initstate =
955 	__ATTR(initstate, 0444, show_initstate, NULL);
956 
store_uevent(struct module_attribute * mattr,struct module_kobject * mk,const char * buffer,size_t count)957 static ssize_t store_uevent(struct module_attribute *mattr,
958 			    struct module_kobject *mk,
959 			    const char *buffer, size_t count)
960 {
961 	int rc;
962 
963 	rc = kobject_synth_uevent(&mk->kobj, buffer, count);
964 	return rc ? rc : count;
965 }
966 
967 struct module_attribute module_uevent =
968 	__ATTR(uevent, 0200, NULL, store_uevent);
969 
show_coresize(struct module_attribute * mattr,struct module_kobject * mk,char * buffer)970 static ssize_t show_coresize(struct module_attribute *mattr,
971 			     struct module_kobject *mk, char *buffer)
972 {
973 	unsigned int size = mk->mod->mem[MOD_TEXT].size;
974 
975 	if (!IS_ENABLED(CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC)) {
976 		for_class_mod_mem_type(type, core_data)
977 			size += mk->mod->mem[type].size;
978 	}
979 	return sprintf(buffer, "%u\n", size);
980 }
981 
982 static struct module_attribute modinfo_coresize =
983 	__ATTR(coresize, 0444, show_coresize, NULL);
984 
985 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
show_datasize(struct module_attribute * mattr,struct module_kobject * mk,char * buffer)986 static ssize_t show_datasize(struct module_attribute *mattr,
987 			     struct module_kobject *mk, char *buffer)
988 {
989 	unsigned int size = 0;
990 
991 	for_class_mod_mem_type(type, core_data)
992 		size += mk->mod->mem[type].size;
993 	return sprintf(buffer, "%u\n", size);
994 }
995 
996 static struct module_attribute modinfo_datasize =
997 	__ATTR(datasize, 0444, show_datasize, NULL);
998 #endif
999 
show_initsize(struct module_attribute * mattr,struct module_kobject * mk,char * buffer)1000 static ssize_t show_initsize(struct module_attribute *mattr,
1001 			     struct module_kobject *mk, char *buffer)
1002 {
1003 	unsigned int size = 0;
1004 
1005 	for_class_mod_mem_type(type, init)
1006 		size += mk->mod->mem[type].size;
1007 	return sprintf(buffer, "%u\n", size);
1008 }
1009 
1010 static struct module_attribute modinfo_initsize =
1011 	__ATTR(initsize, 0444, show_initsize, NULL);
1012 
show_taint(struct module_attribute * mattr,struct module_kobject * mk,char * buffer)1013 static ssize_t show_taint(struct module_attribute *mattr,
1014 			  struct module_kobject *mk, char *buffer)
1015 {
1016 	size_t l;
1017 
1018 	l = module_flags_taint(mk->mod->taints, buffer);
1019 	buffer[l++] = '\n';
1020 	return l;
1021 }
1022 
1023 static struct module_attribute modinfo_taint =
1024 	__ATTR(taint, 0444, show_taint, NULL);
1025 
1026 struct module_attribute *modinfo_attrs[] = {
1027 	&module_uevent,
1028 	&modinfo_version,
1029 	&modinfo_srcversion,
1030 	&modinfo_scmversion,
1031 	&modinfo_initstate,
1032 	&modinfo_coresize,
1033 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
1034 	&modinfo_datasize,
1035 #endif
1036 	&modinfo_initsize,
1037 	&modinfo_taint,
1038 #ifdef CONFIG_MODULE_UNLOAD
1039 	&modinfo_refcnt,
1040 #endif
1041 	NULL,
1042 };
1043 
1044 size_t modinfo_attrs_count = ARRAY_SIZE(modinfo_attrs);
1045 
1046 static const char vermagic[] = VERMAGIC_STRING;
1047 
try_to_force_load(struct module * mod,const char * reason)1048 int try_to_force_load(struct module *mod, const char *reason)
1049 {
1050 #ifdef CONFIG_MODULE_FORCE_LOAD
1051 	if (!test_taint(TAINT_FORCED_MODULE))
1052 		pr_warn("%s: %s: kernel tainted.\n", mod->name, reason);
1053 	add_taint_module(mod, TAINT_FORCED_MODULE, LOCKDEP_NOW_UNRELIABLE);
1054 	return 0;
1055 #else
1056 	return -ENOEXEC;
1057 #endif
1058 }
1059 
1060 /* Parse tag=value strings from .modinfo section */
module_next_tag_pair(char * string,unsigned long * secsize)1061 char *module_next_tag_pair(char *string, unsigned long *secsize)
1062 {
1063 	/* Skip non-zero chars */
1064 	while (string[0]) {
1065 		string++;
1066 		if ((*secsize)-- <= 1)
1067 			return NULL;
1068 	}
1069 
1070 	/* Skip any zero padding. */
1071 	while (!string[0]) {
1072 		string++;
1073 		if ((*secsize)-- <= 1)
1074 			return NULL;
1075 	}
1076 	return string;
1077 }
1078 
get_next_modinfo(const struct load_info * info,const char * tag,char * prev)1079 static char *get_next_modinfo(const struct load_info *info, const char *tag,
1080 			      char *prev)
1081 {
1082 	char *p;
1083 	unsigned int taglen = strlen(tag);
1084 	Elf_Shdr *infosec = &info->sechdrs[info->index.info];
1085 	unsigned long size = infosec->sh_size;
1086 
1087 	/*
1088 	 * get_modinfo() calls made before rewrite_section_headers()
1089 	 * must use sh_offset, as sh_addr isn't set!
1090 	 */
1091 	char *modinfo = (char *)info->hdr + infosec->sh_offset;
1092 
1093 	if (prev) {
1094 		size -= prev - modinfo;
1095 		modinfo = module_next_tag_pair(prev, &size);
1096 	}
1097 
1098 	for (p = modinfo; p; p = module_next_tag_pair(p, &size)) {
1099 		if (strncmp(p, tag, taglen) == 0 && p[taglen] == '=')
1100 			return p + taglen + 1;
1101 	}
1102 	return NULL;
1103 }
1104 
get_modinfo(const struct load_info * info,const char * tag)1105 static char *get_modinfo(const struct load_info *info, const char *tag)
1106 {
1107 	return get_next_modinfo(info, tag, NULL);
1108 }
1109 
verify_namespace_is_imported(const struct load_info * info,const struct kernel_symbol * sym,struct module * mod)1110 static int verify_namespace_is_imported(const struct load_info *info,
1111 					const struct kernel_symbol *sym,
1112 					struct module *mod)
1113 {
1114 	const char *namespace;
1115 	char *imported_namespace;
1116 
1117 	namespace = kernel_symbol_namespace(sym);
1118 	if (namespace && namespace[0]) {
1119 		for_each_modinfo_entry(imported_namespace, info, "import_ns") {
1120 			if (strcmp(namespace, imported_namespace) == 0)
1121 				return 0;
1122 		}
1123 #ifdef CONFIG_MODULE_ALLOW_MISSING_NAMESPACE_IMPORTS
1124 		pr_warn(
1125 #else
1126 		pr_err(
1127 #endif
1128 			"%s: module uses symbol (%s) from namespace %s, but does not import it.\n",
1129 			mod->name, kernel_symbol_name(sym), namespace);
1130 #ifndef CONFIG_MODULE_ALLOW_MISSING_NAMESPACE_IMPORTS
1131 		return -EINVAL;
1132 #endif
1133 	}
1134 	return 0;
1135 }
1136 
inherit_taint(struct module * mod,struct module * owner,const char * name)1137 static bool inherit_taint(struct module *mod, struct module *owner, const char *name)
1138 {
1139 	if (!owner || !test_bit(TAINT_PROPRIETARY_MODULE, &owner->taints))
1140 		return true;
1141 
1142 	if (mod->using_gplonly_symbols) {
1143 		pr_err("%s: module using GPL-only symbols uses symbols %s from proprietary module %s.\n",
1144 			mod->name, name, owner->name);
1145 		return false;
1146 	}
1147 
1148 	if (!test_bit(TAINT_PROPRIETARY_MODULE, &mod->taints)) {
1149 		pr_warn("%s: module uses symbols %s from proprietary module %s, inheriting taint.\n",
1150 			mod->name, name, owner->name);
1151 		set_bit(TAINT_PROPRIETARY_MODULE, &mod->taints);
1152 	}
1153 	return true;
1154 }
1155 
1156 #ifdef CONFIG_TRIM_UNUSED_KSYMS
is_permitted_symbol_import(const char * name)1157 static bool is_permitted_symbol_import(const char *name)
1158 {
1159 	return bsearch(name, permitted_symbol_imports,
1160 		       permitted_symbol_imports_count,
1161 		       sizeof(const char *), cmp_string) != NULL;
1162 }
1163 #endif
1164 
1165 /* Resolve a symbol for this module.  I.e. if we find one, record usage. */
resolve_symbol(struct module * mod,const struct load_info * info,const char * name,char ownername[])1166 static const struct kernel_symbol *resolve_symbol(struct module *mod,
1167 						  const struct load_info *info,
1168 						  const char *name,
1169 						  char ownername[])
1170 {
1171 #ifdef CONFIG_TRIM_UNUSED_KSYMS
1172 	bool is_vendor_module;
1173 	bool is_vendor_exported_symbol;
1174 #endif
1175 	struct find_symbol_arg fsa = {
1176 		.name	= name,
1177 		.gplok	= !(mod->taints & (1 << TAINT_PROPRIETARY_MODULE)),
1178 		.warn	= true,
1179 	};
1180 	int err;
1181 
1182 	/*
1183 	 * The module_mutex should not be a heavily contended lock;
1184 	 * if we get the occasional sleep here, we'll go an extra iteration
1185 	 * in the wait_event_interruptible(), which is harmless.
1186 	 */
1187 	sched_annotate_sleep();
1188 	mutex_lock(&module_mutex);
1189 	if (!find_symbol(&fsa))
1190 		goto unlock;
1191 
1192 	if (fsa.license == GPL_ONLY)
1193 		mod->using_gplonly_symbols = true;
1194 
1195 	if (!inherit_taint(mod, fsa.owner, name)) {
1196 		fsa.sym = NULL;
1197 		goto getname;
1198 	}
1199 
1200 	if (!check_version(info, name, mod, fsa.crc)) {
1201 		fsa.sym = ERR_PTR(-EINVAL);
1202 		goto getname;
1203 	}
1204 
1205 	err = verify_namespace_is_imported(info, fsa.sym, mod);
1206 	if (err) {
1207 		fsa.sym = ERR_PTR(err);
1208 		goto getname;
1209 	}
1210 
1211 	/*
1212 	 * ANDROID GKI
1213 	 *
1214 	 * Vendor (i.e., unsigned) modules are only permitted to use:
1215 	 *
1216 	 * 1. symbols exported by other vendor (unsigned) modules
1217 	 * 2. symbols which are permitted explicitly
1218 	 */
1219 #ifdef CONFIG_TRIM_UNUSED_KSYMS
1220 	is_vendor_module = !mod->sig_ok;
1221 	is_vendor_exported_symbol = fsa.owner && !fsa.owner->sig_ok;
1222 
1223 	if (is_vendor_module &&
1224 	    !is_vendor_exported_symbol &&
1225 	    !is_permitted_symbol_import(name)) {
1226 		fsa.sym = ERR_PTR(-EACCES);
1227 		goto getname;
1228 	}
1229 #endif
1230 
1231 	err = ref_module(mod, fsa.owner);
1232 	if (err) {
1233 		fsa.sym = ERR_PTR(err);
1234 		goto getname;
1235 	}
1236 
1237 getname:
1238 	/* We must make copy under the lock if we failed to get ref. */
1239 	strncpy(ownername, module_name(fsa.owner), MODULE_NAME_LEN);
1240 unlock:
1241 	mutex_unlock(&module_mutex);
1242 	return fsa.sym;
1243 }
1244 
1245 static const struct kernel_symbol *
resolve_symbol_wait(struct module * mod,const struct load_info * info,const char * name)1246 resolve_symbol_wait(struct module *mod,
1247 		    const struct load_info *info,
1248 		    const char *name)
1249 {
1250 	const struct kernel_symbol *ksym;
1251 	char owner[MODULE_NAME_LEN];
1252 
1253 	if (wait_event_interruptible_timeout(module_wq,
1254 			!IS_ERR(ksym = resolve_symbol(mod, info, name, owner))
1255 			|| PTR_ERR(ksym) != -EBUSY,
1256 					     30 * HZ) <= 0) {
1257 		pr_warn("%s: gave up waiting for init of module %s.\n",
1258 			mod->name, owner);
1259 	}
1260 	return ksym;
1261 }
1262 
module_arch_cleanup(struct module * mod)1263 void __weak module_arch_cleanup(struct module *mod)
1264 {
1265 }
1266 
module_arch_freeing_init(struct module * mod)1267 void __weak module_arch_freeing_init(struct module *mod)
1268 {
1269 }
1270 
module_memory_alloc(struct module * mod,enum mod_mem_type type)1271 static int module_memory_alloc(struct module *mod, enum mod_mem_type type)
1272 {
1273 	unsigned int size = PAGE_ALIGN(mod->mem[type].size);
1274 	enum execmem_type execmem_type;
1275 	void *ptr;
1276 
1277 	mod->mem[type].size = size;
1278 
1279 	if (mod_mem_type_is_data(type))
1280 		execmem_type = EXECMEM_MODULE_DATA;
1281 	else
1282 		execmem_type = EXECMEM_MODULE_TEXT;
1283 
1284 	ptr = execmem_alloc(execmem_type, size);
1285 	if (!ptr)
1286 		return -ENOMEM;
1287 
1288 	/*
1289 	 * The pointer to these blocks of memory are stored on the module
1290 	 * structure and we keep that around so long as the module is
1291 	 * around. We only free that memory when we unload the module.
1292 	 * Just mark them as not being a leak then. The .init* ELF
1293 	 * sections *do* get freed after boot so we *could* treat them
1294 	 * slightly differently with kmemleak_ignore() and only grey
1295 	 * them out as they work as typical memory allocations which
1296 	 * *do* eventually get freed, but let's just keep things simple
1297 	 * and avoid *any* false positives.
1298 	 */
1299 	kmemleak_not_leak(ptr);
1300 
1301 	memset(ptr, 0, size);
1302 	mod->mem[type].base = ptr;
1303 
1304 	return 0;
1305 }
1306 
module_memory_free(struct module * mod,enum mod_mem_type type)1307 static void module_memory_free(struct module *mod, enum mod_mem_type type)
1308 {
1309 	execmem_free(mod->mem[type].base);
1310 }
1311 
free_mod_mem(struct module * mod)1312 static void free_mod_mem(struct module *mod)
1313 {
1314 	trace_android_vh_free_mod_mem(mod);
1315 	for_each_mod_mem_type(type) {
1316 		struct module_memory *mod_mem = &mod->mem[type];
1317 
1318 		if (type == MOD_DATA)
1319 			continue;
1320 
1321 		/* Free lock-classes; relies on the preceding sync_rcu(). */
1322 		lockdep_free_key_range(mod_mem->base, mod_mem->size);
1323 		if (mod_mem->size)
1324 			module_memory_free(mod, type);
1325 	}
1326 
1327 	/* MOD_DATA hosts mod, so free it at last */
1328 	lockdep_free_key_range(mod->mem[MOD_DATA].base, mod->mem[MOD_DATA].size);
1329 	module_memory_free(mod, MOD_DATA);
1330 }
1331 
1332 /* Free a module, remove from lists, etc. */
free_module(struct module * mod)1333 static void free_module(struct module *mod)
1334 {
1335 	trace_module_free(mod);
1336 
1337 	codetag_unload_module(mod);
1338 
1339 	mod_sysfs_teardown(mod);
1340 
1341 	/*
1342 	 * We leave it in list to prevent duplicate loads, but make sure
1343 	 * that noone uses it while it's being deconstructed.
1344 	 */
1345 	mutex_lock(&module_mutex);
1346 	mod->state = MODULE_STATE_UNFORMED;
1347 	mutex_unlock(&module_mutex);
1348 
1349 	/* Arch-specific cleanup. */
1350 	module_arch_cleanup(mod);
1351 
1352 	/* Module unload stuff */
1353 	module_unload_free(mod);
1354 
1355 	/* Free any allocated parameters. */
1356 	destroy_params(mod->kp, mod->num_kp);
1357 
1358 	if (is_livepatch_module(mod))
1359 		free_module_elf(mod);
1360 
1361 	/* Now we can delete it from the lists */
1362 	mutex_lock(&module_mutex);
1363 	/* Unlink carefully: kallsyms could be walking list. */
1364 	list_del_rcu(&mod->list);
1365 	mod_tree_remove(mod);
1366 	/* Remove this module from bug list, this uses list_del_rcu */
1367 	module_bug_cleanup(mod);
1368 	/* Wait for RCU-sched synchronizing before releasing mod->list and buglist. */
1369 	synchronize_rcu();
1370 	if (try_add_tainted_module(mod))
1371 		pr_err("%s: adding tainted module to the unloaded tainted modules list failed.\n",
1372 		       mod->name);
1373 	mutex_unlock(&module_mutex);
1374 
1375 	/* This may be empty, but that's OK */
1376 	module_arch_freeing_init(mod);
1377 	kfree(mod->args);
1378 	percpu_modfree(mod);
1379 
1380 	free_mod_mem(mod);
1381 }
1382 
__symbol_get(const char * symbol)1383 void *__symbol_get(const char *symbol)
1384 {
1385 	struct find_symbol_arg fsa = {
1386 		.name	= symbol,
1387 		.gplok	= true,
1388 		.warn	= true,
1389 	};
1390 
1391 	preempt_disable();
1392 	if (!find_symbol(&fsa))
1393 		goto fail;
1394 	if (fsa.license != GPL_ONLY) {
1395 		pr_warn("failing symbol_get of non-GPLONLY symbol %s.\n",
1396 			symbol);
1397 		goto fail;
1398 	}
1399 	if (strong_try_module_get(fsa.owner))
1400 		goto fail;
1401 	preempt_enable();
1402 	return (void *)kernel_symbol_value(fsa.sym);
1403 fail:
1404 	preempt_enable();
1405 	return NULL;
1406 }
1407 EXPORT_SYMBOL_GPL(__symbol_get);
1408 
1409 #ifdef CONFIG_MODULE_SIG_PROTECT
is_protected_symbol_export(const char * name)1410 static bool is_protected_symbol_export(const char *name)
1411 {
1412 	return bsearch(name, protected_symbol_exports,
1413 		       protected_symbol_exports_count,
1414 		       sizeof(const char *), cmp_string) != NULL;
1415 }
1416 #endif
1417 
1418 /*
1419  * Ensure that an exported symbol [global namespace] does not already exist
1420  * in the kernel or in some other module's exported symbol table.
1421  *
1422  * You must hold the module_mutex.
1423  */
verify_exported_symbols(struct module * mod)1424 static int verify_exported_symbols(struct module *mod)
1425 {
1426 	unsigned int i;
1427 	const struct kernel_symbol *s;
1428 	struct {
1429 		const struct kernel_symbol *sym;
1430 		unsigned int num;
1431 	} arr[] = {
1432 		{ mod->syms, mod->num_syms },
1433 		{ mod->gpl_syms, mod->num_gpl_syms },
1434 	};
1435 
1436 	for (i = 0; i < ARRAY_SIZE(arr); i++) {
1437 		for (s = arr[i].sym; s < arr[i].sym + arr[i].num; s++) {
1438 			struct find_symbol_arg fsa = {
1439 				.name	= kernel_symbol_name(s),
1440 				.gplok	= true,
1441 			};
1442 			if (find_symbol(&fsa)) {
1443 				pr_err("%s: exports duplicate symbol %s"
1444 				       " (owned by %s)\n",
1445 				       mod->name, kernel_symbol_name(s),
1446 				       module_name(fsa.owner));
1447 				return -ENOEXEC;
1448 			}
1449 #ifdef CONFIG_MODULE_SIG_PROTECT
1450 			if (!mod->sig_ok && is_protected_symbol_export(kernel_symbol_name(s))) {
1451 				pr_err("%s: exports protected symbol %s\n",
1452 				       mod->name, kernel_symbol_name(s));
1453 				return -EACCES;
1454 			}
1455 #endif
1456 		}
1457 	}
1458 	return 0;
1459 }
1460 
ignore_undef_symbol(Elf_Half emachine,const char * name)1461 static bool ignore_undef_symbol(Elf_Half emachine, const char *name)
1462 {
1463 	/*
1464 	 * On x86, PIC code and Clang non-PIC code may have call foo@PLT. GNU as
1465 	 * before 2.37 produces an unreferenced _GLOBAL_OFFSET_TABLE_ on x86-64.
1466 	 * i386 has a similar problem but may not deserve a fix.
1467 	 *
1468 	 * If we ever have to ignore many symbols, consider refactoring the code to
1469 	 * only warn if referenced by a relocation.
1470 	 */
1471 	if (emachine == EM_386 || emachine == EM_X86_64)
1472 		return !strcmp(name, "_GLOBAL_OFFSET_TABLE_");
1473 	return false;
1474 }
1475 
1476 /* Change all symbols so that st_value encodes the pointer directly. */
simplify_symbols(struct module * mod,const struct load_info * info)1477 static int simplify_symbols(struct module *mod, const struct load_info *info)
1478 {
1479 	Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
1480 	Elf_Sym *sym = (void *)symsec->sh_addr;
1481 	unsigned long secbase;
1482 	unsigned int i;
1483 	int ret = 0;
1484 	const struct kernel_symbol *ksym;
1485 
1486 	for (i = 1; i < symsec->sh_size / sizeof(Elf_Sym); i++) {
1487 		const char *name = info->strtab + sym[i].st_name;
1488 
1489 		switch (sym[i].st_shndx) {
1490 		case SHN_COMMON:
1491 			/* Ignore common symbols */
1492 			if (!strncmp(name, "__gnu_lto", 9))
1493 				break;
1494 
1495 			/*
1496 			 * We compiled with -fno-common.  These are not
1497 			 * supposed to happen.
1498 			 */
1499 			pr_debug("Common symbol: %s\n", name);
1500 			pr_warn("%s: please compile with -fno-common\n",
1501 			       mod->name);
1502 			ret = -ENOEXEC;
1503 			break;
1504 
1505 		case SHN_ABS:
1506 			/* Don't need to do anything */
1507 			pr_debug("Absolute symbol: 0x%08lx %s\n",
1508 				 (long)sym[i].st_value, name);
1509 			break;
1510 
1511 		case SHN_LIVEPATCH:
1512 			/* Livepatch symbols are resolved by livepatch */
1513 			break;
1514 
1515 		case SHN_UNDEF:
1516 			ksym = resolve_symbol_wait(mod, info, name);
1517 			/* Ok if resolved.  */
1518 			if (ksym && !IS_ERR(ksym)) {
1519 				sym[i].st_value = kernel_symbol_value(ksym);
1520 				break;
1521 			}
1522 
1523 			/* Ok if weak or ignored.  */
1524 			if (!ksym &&
1525 			    (ELF_ST_BIND(sym[i].st_info) == STB_WEAK ||
1526 			     ignore_undef_symbol(info->hdr->e_machine, name)))
1527 				break;
1528 
1529 			if (PTR_ERR(ksym) == -EACCES) {
1530 				ret = -EACCES;
1531 				pr_warn("%s: Protected symbol: %s (err %d)\n",
1532 					mod->name, name, ret);
1533 			} else {
1534 				ret = PTR_ERR(ksym) ?: -ENOENT;
1535 				pr_warn("%s: Unknown symbol %s (err %d)\n",
1536 					mod->name, name, ret);
1537 			}
1538 			break;
1539 
1540 		default:
1541 			/* Divert to percpu allocation if a percpu var. */
1542 			if (sym[i].st_shndx == info->index.pcpu)
1543 				secbase = (unsigned long)mod_percpu(mod);
1544 			else
1545 				secbase = info->sechdrs[sym[i].st_shndx].sh_addr;
1546 			sym[i].st_value += secbase;
1547 			break;
1548 		}
1549 	}
1550 
1551 	return ret;
1552 }
1553 
apply_relocations(struct module * mod,const struct load_info * info)1554 static int apply_relocations(struct module *mod, const struct load_info *info)
1555 {
1556 	unsigned int i;
1557 	int err = 0;
1558 
1559 	/* Now do relocations. */
1560 	for (i = 1; i < info->hdr->e_shnum; i++) {
1561 		unsigned int infosec = info->sechdrs[i].sh_info;
1562 
1563 		/* Not a valid relocation section? */
1564 		if (infosec >= info->hdr->e_shnum)
1565 			continue;
1566 
1567 		/* Don't bother with non-allocated sections */
1568 		if (!(info->sechdrs[infosec].sh_flags & SHF_ALLOC))
1569 			continue;
1570 
1571 		if (info->sechdrs[i].sh_flags & SHF_RELA_LIVEPATCH)
1572 			err = klp_apply_section_relocs(mod, info->sechdrs,
1573 						       info->secstrings,
1574 						       info->strtab,
1575 						       info->index.sym, i,
1576 						       NULL);
1577 		else if (info->sechdrs[i].sh_type == SHT_REL)
1578 			err = apply_relocate(info->sechdrs, info->strtab,
1579 					     info->index.sym, i, mod);
1580 		else if (info->sechdrs[i].sh_type == SHT_RELA)
1581 			err = apply_relocate_add(info->sechdrs, info->strtab,
1582 						 info->index.sym, i, mod);
1583 		if (err < 0)
1584 			break;
1585 	}
1586 	return err;
1587 }
1588 
1589 /* Additional bytes needed by arch in front of individual sections */
arch_mod_section_prepend(struct module * mod,unsigned int section)1590 unsigned int __weak arch_mod_section_prepend(struct module *mod,
1591 					     unsigned int section)
1592 {
1593 	/* default implementation just returns zero */
1594 	return 0;
1595 }
1596 
module_get_offset_and_type(struct module * mod,enum mod_mem_type type,Elf_Shdr * sechdr,unsigned int section)1597 long module_get_offset_and_type(struct module *mod, enum mod_mem_type type,
1598 				Elf_Shdr *sechdr, unsigned int section)
1599 {
1600 	long offset;
1601 	long mask = ((unsigned long)(type) & SH_ENTSIZE_TYPE_MASK) << SH_ENTSIZE_TYPE_SHIFT;
1602 
1603 	mod->mem[type].size += arch_mod_section_prepend(mod, section);
1604 	offset = ALIGN(mod->mem[type].size, sechdr->sh_addralign ?: 1);
1605 	mod->mem[type].size = offset + sechdr->sh_size;
1606 
1607 	WARN_ON_ONCE(offset & mask);
1608 	return offset | mask;
1609 }
1610 
module_init_layout_section(const char * sname)1611 bool module_init_layout_section(const char *sname)
1612 {
1613 #ifndef CONFIG_MODULE_UNLOAD
1614 	if (module_exit_section(sname))
1615 		return true;
1616 #endif
1617 	return module_init_section(sname);
1618 }
1619 
__layout_sections(struct module * mod,struct load_info * info,bool is_init)1620 static void __layout_sections(struct module *mod, struct load_info *info, bool is_init)
1621 {
1622 	unsigned int m, i;
1623 
1624 	static const unsigned long masks[][2] = {
1625 		/*
1626 		 * NOTE: all executable code must be the first section
1627 		 * in this array; otherwise modify the text_size
1628 		 * finder in the two loops below
1629 		 */
1630 		{ SHF_EXECINSTR | SHF_ALLOC, ARCH_SHF_SMALL },
1631 		{ SHF_ALLOC, SHF_WRITE | ARCH_SHF_SMALL },
1632 		{ SHF_RO_AFTER_INIT | SHF_ALLOC, ARCH_SHF_SMALL },
1633 		{ SHF_WRITE | SHF_ALLOC, ARCH_SHF_SMALL },
1634 		{ ARCH_SHF_SMALL | SHF_ALLOC, 0 }
1635 	};
1636 	static const int core_m_to_mem_type[] = {
1637 		MOD_TEXT,
1638 		MOD_RODATA,
1639 		MOD_RO_AFTER_INIT,
1640 		MOD_DATA,
1641 		MOD_DATA,
1642 	};
1643 	static const int init_m_to_mem_type[] = {
1644 		MOD_INIT_TEXT,
1645 		MOD_INIT_RODATA,
1646 		MOD_INVALID,
1647 		MOD_INIT_DATA,
1648 		MOD_INIT_DATA,
1649 	};
1650 
1651 	for (m = 0; m < ARRAY_SIZE(masks); ++m) {
1652 		enum mod_mem_type type = is_init ? init_m_to_mem_type[m] : core_m_to_mem_type[m];
1653 
1654 		for (i = 0; i < info->hdr->e_shnum; ++i) {
1655 			Elf_Shdr *s = &info->sechdrs[i];
1656 			const char *sname = info->secstrings + s->sh_name;
1657 
1658 			if ((s->sh_flags & masks[m][0]) != masks[m][0]
1659 			    || (s->sh_flags & masks[m][1])
1660 			    || s->sh_entsize != ~0UL
1661 			    || is_init != module_init_layout_section(sname))
1662 				continue;
1663 
1664 			if (WARN_ON_ONCE(type == MOD_INVALID))
1665 				continue;
1666 
1667 			/*
1668 			 * Do not allocate codetag memory as we load it into
1669 			 * preallocated contiguous memory.
1670 			 */
1671 			if (codetag_needs_module_section(mod, sname, s->sh_size)) {
1672 				/*
1673 				 * s->sh_entsize won't be used but populate the
1674 				 * type field to avoid confusion.
1675 				 */
1676 				s->sh_entsize = ((unsigned long)(type) & SH_ENTSIZE_TYPE_MASK)
1677 						<< SH_ENTSIZE_TYPE_SHIFT;
1678 				continue;
1679 			}
1680 
1681 			s->sh_entsize = module_get_offset_and_type(mod, type, s, i);
1682 			pr_debug("\t%s\n", sname);
1683 		}
1684 	}
1685 }
1686 
1687 /*
1688  * Lay out the SHF_ALLOC sections in a way not dissimilar to how ld
1689  * might -- code, read-only data, read-write data, small data.  Tally
1690  * sizes, and place the offsets into sh_entsize fields: high bit means it
1691  * belongs in init.
1692  */
layout_sections(struct module * mod,struct load_info * info)1693 static void layout_sections(struct module *mod, struct load_info *info)
1694 {
1695 	unsigned int i;
1696 
1697 	for (i = 0; i < info->hdr->e_shnum; i++)
1698 		info->sechdrs[i].sh_entsize = ~0UL;
1699 
1700 	pr_debug("Core section allocation order for %s:\n", mod->name);
1701 	__layout_sections(mod, info, false);
1702 
1703 	pr_debug("Init section allocation order for %s:\n", mod->name);
1704 	__layout_sections(mod, info, true);
1705 }
1706 
module_license_taint_check(struct module * mod,const char * license)1707 static void module_license_taint_check(struct module *mod, const char *license)
1708 {
1709 	if (!license)
1710 		license = "unspecified";
1711 
1712 	if (!license_is_gpl_compatible(license)) {
1713 		if (!test_taint(TAINT_PROPRIETARY_MODULE))
1714 			pr_warn("%s: module license '%s' taints kernel.\n",
1715 				mod->name, license);
1716 		add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
1717 				 LOCKDEP_NOW_UNRELIABLE);
1718 	}
1719 }
1720 
setup_modinfo(struct module * mod,struct load_info * info)1721 static void setup_modinfo(struct module *mod, struct load_info *info)
1722 {
1723 	struct module_attribute *attr;
1724 	int i;
1725 
1726 	for (i = 0; (attr = modinfo_attrs[i]); i++) {
1727 		if (attr->setup)
1728 			attr->setup(mod, get_modinfo(info, attr->attr.name));
1729 	}
1730 }
1731 
free_modinfo(struct module * mod)1732 static void free_modinfo(struct module *mod)
1733 {
1734 	struct module_attribute *attr;
1735 	int i;
1736 
1737 	for (i = 0; (attr = modinfo_attrs[i]); i++) {
1738 		if (attr->free)
1739 			attr->free(mod);
1740 	}
1741 }
1742 
module_init_section(const char * name)1743 bool __weak module_init_section(const char *name)
1744 {
1745 	return strstarts(name, ".init");
1746 }
1747 
module_exit_section(const char * name)1748 bool __weak module_exit_section(const char *name)
1749 {
1750 	return strstarts(name, ".exit");
1751 }
1752 
validate_section_offset(const struct load_info * info,Elf_Shdr * shdr)1753 static int validate_section_offset(const struct load_info *info, Elf_Shdr *shdr)
1754 {
1755 #if defined(CONFIG_64BIT)
1756 	unsigned long long secend;
1757 #else
1758 	unsigned long secend;
1759 #endif
1760 
1761 	/*
1762 	 * Check for both overflow and offset/size being
1763 	 * too large.
1764 	 */
1765 	secend = shdr->sh_offset + shdr->sh_size;
1766 	if (secend < shdr->sh_offset || secend > info->len)
1767 		return -ENOEXEC;
1768 
1769 	return 0;
1770 }
1771 
1772 /**
1773  * elf_validity_ehdr() - Checks an ELF header for module validity
1774  * @info: Load info containing the ELF header to check
1775  *
1776  * Checks whether an ELF header could belong to a valid module. Checks:
1777  *
1778  * * ELF header is within the data the user provided
1779  * * ELF magic is present
1780  * * It is relocatable (not final linked, not core file, etc.)
1781  * * The header's machine type matches what the architecture expects.
1782  * * Optional arch-specific hook for other properties
1783  *   - module_elf_check_arch() is currently only used by PPC to check
1784  *   ELF ABI version, but may be used by others in the future.
1785  *
1786  * Return: %0 if valid, %-ENOEXEC on failure.
1787  */
elf_validity_ehdr(const struct load_info * info)1788 static int elf_validity_ehdr(const struct load_info *info)
1789 {
1790 	if (info->len < sizeof(*(info->hdr))) {
1791 		pr_err("Invalid ELF header len %lu\n", info->len);
1792 		return -ENOEXEC;
1793 	}
1794 	if (memcmp(info->hdr->e_ident, ELFMAG, SELFMAG) != 0) {
1795 		pr_err("Invalid ELF header magic: != %s\n", ELFMAG);
1796 		return -ENOEXEC;
1797 	}
1798 	if (info->hdr->e_type != ET_REL) {
1799 		pr_err("Invalid ELF header type: %u != %u\n",
1800 		       info->hdr->e_type, ET_REL);
1801 		return -ENOEXEC;
1802 	}
1803 	if (!elf_check_arch(info->hdr)) {
1804 		pr_err("Invalid architecture in ELF header: %u\n",
1805 		       info->hdr->e_machine);
1806 		return -ENOEXEC;
1807 	}
1808 	if (!module_elf_check_arch(info->hdr)) {
1809 		pr_err("Invalid module architecture in ELF header: %u\n",
1810 		       info->hdr->e_machine);
1811 		return -ENOEXEC;
1812 	}
1813 	return 0;
1814 }
1815 
1816 /**
1817  * elf_validity_cache_sechdrs() - Cache section headers if valid
1818  * @info: Load info to compute section headers from
1819  *
1820  * Checks:
1821  *
1822  * * ELF header is valid (see elf_validity_ehdr())
1823  * * Section headers are the size we expect
1824  * * Section array fits in the user provided data
1825  * * Section index 0 is NULL
1826  * * Section contents are inbounds
1827  *
1828  * Then updates @info with a &load_info->sechdrs pointer if valid.
1829  *
1830  * Return: %0 if valid, negative error code if validation failed.
1831  */
elf_validity_cache_sechdrs(struct load_info * info)1832 static int elf_validity_cache_sechdrs(struct load_info *info)
1833 {
1834 	Elf_Shdr *sechdrs;
1835 	Elf_Shdr *shdr;
1836 	int i;
1837 	int err;
1838 
1839 	err = elf_validity_ehdr(info);
1840 	if (err < 0)
1841 		return err;
1842 
1843 	if (info->hdr->e_shentsize != sizeof(Elf_Shdr)) {
1844 		pr_err("Invalid ELF section header size\n");
1845 		return -ENOEXEC;
1846 	}
1847 
1848 	/*
1849 	 * e_shnum is 16 bits, and sizeof(Elf_Shdr) is
1850 	 * known and small. So e_shnum * sizeof(Elf_Shdr)
1851 	 * will not overflow unsigned long on any platform.
1852 	 */
1853 	if (info->hdr->e_shoff >= info->len
1854 	    || (info->hdr->e_shnum * sizeof(Elf_Shdr) >
1855 		info->len - info->hdr->e_shoff)) {
1856 		pr_err("Invalid ELF section header overflow\n");
1857 		return -ENOEXEC;
1858 	}
1859 
1860 	sechdrs = (void *)info->hdr + info->hdr->e_shoff;
1861 
1862 	/*
1863 	 * The code assumes that section 0 has a length of zero and
1864 	 * an addr of zero, so check for it.
1865 	 */
1866 	if (sechdrs[0].sh_type != SHT_NULL
1867 	    || sechdrs[0].sh_size != 0
1868 	    || sechdrs[0].sh_addr != 0) {
1869 		pr_err("ELF Spec violation: section 0 type(%d)!=SH_NULL or non-zero len or addr\n",
1870 		       sechdrs[0].sh_type);
1871 		return -ENOEXEC;
1872 	}
1873 
1874 	/* Validate contents are inbounds */
1875 	for (i = 1; i < info->hdr->e_shnum; i++) {
1876 		shdr = &sechdrs[i];
1877 		switch (shdr->sh_type) {
1878 		case SHT_NULL:
1879 		case SHT_NOBITS:
1880 			/* No contents, offset/size don't mean anything */
1881 			continue;
1882 		default:
1883 			err = validate_section_offset(info, shdr);
1884 			if (err < 0) {
1885 				pr_err("Invalid ELF section in module (section %u type %u)\n",
1886 				       i, shdr->sh_type);
1887 				return err;
1888 			}
1889 		}
1890 	}
1891 
1892 	info->sechdrs = sechdrs;
1893 
1894 	return 0;
1895 }
1896 
1897 /**
1898  * elf_validity_cache_secstrings() - Caches section names if valid
1899  * @info: Load info to cache section names from. Must have valid sechdrs.
1900  *
1901  * Specifically checks:
1902  *
1903  * * Section name table index is inbounds of section headers
1904  * * Section name table is not empty
1905  * * Section name table is NUL terminated
1906  * * All section name offsets are inbounds of the section
1907  *
1908  * Then updates @info with a &load_info->secstrings pointer if valid.
1909  *
1910  * Return: %0 if valid, negative error code if validation failed.
1911  */
elf_validity_cache_secstrings(struct load_info * info)1912 static int elf_validity_cache_secstrings(struct load_info *info)
1913 {
1914 	Elf_Shdr *strhdr, *shdr;
1915 	char *secstrings;
1916 	int i;
1917 
1918 	/*
1919 	 * Verify if the section name table index is valid.
1920 	 */
1921 	if (info->hdr->e_shstrndx == SHN_UNDEF
1922 	    || info->hdr->e_shstrndx >= info->hdr->e_shnum) {
1923 		pr_err("Invalid ELF section name index: %d || e_shstrndx (%d) >= e_shnum (%d)\n",
1924 		       info->hdr->e_shstrndx, info->hdr->e_shstrndx,
1925 		       info->hdr->e_shnum);
1926 		return -ENOEXEC;
1927 	}
1928 
1929 	strhdr = &info->sechdrs[info->hdr->e_shstrndx];
1930 
1931 	/*
1932 	 * The section name table must be NUL-terminated, as required
1933 	 * by the spec. This makes strcmp and pr_* calls that access
1934 	 * strings in the section safe.
1935 	 */
1936 	secstrings = (void *)info->hdr + strhdr->sh_offset;
1937 	if (strhdr->sh_size == 0) {
1938 		pr_err("empty section name table\n");
1939 		return -ENOEXEC;
1940 	}
1941 	if (secstrings[strhdr->sh_size - 1] != '\0') {
1942 		pr_err("ELF Spec violation: section name table isn't null terminated\n");
1943 		return -ENOEXEC;
1944 	}
1945 
1946 	for (i = 0; i < info->hdr->e_shnum; i++) {
1947 		shdr = &info->sechdrs[i];
1948 		/* SHT_NULL means sh_name has an undefined value */
1949 		if (shdr->sh_type == SHT_NULL)
1950 			continue;
1951 		if (shdr->sh_name >= strhdr->sh_size) {
1952 			pr_err("Invalid ELF section name in module (section %u type %u)\n",
1953 			       i, shdr->sh_type);
1954 			return -ENOEXEC;
1955 		}
1956 	}
1957 
1958 	info->secstrings = secstrings;
1959 	return 0;
1960 }
1961 
1962 /**
1963  * elf_validity_cache_index_info() - Validate and cache modinfo section
1964  * @info: Load info to populate the modinfo index on.
1965  *        Must have &load_info->sechdrs and &load_info->secstrings populated
1966  *
1967  * Checks that if there is a .modinfo section, it is unique.
1968  * Then, it caches its index in &load_info->index.info.
1969  * Finally, it tries to populate the name to improve error messages.
1970  *
1971  * Return: %0 if valid, %-ENOEXEC if multiple modinfo sections were found.
1972  */
elf_validity_cache_index_info(struct load_info * info)1973 static int elf_validity_cache_index_info(struct load_info *info)
1974 {
1975 	int info_idx;
1976 
1977 	info_idx = find_any_unique_sec(info, ".modinfo");
1978 
1979 	if (info_idx == 0)
1980 		/* Early return, no .modinfo */
1981 		return 0;
1982 
1983 	if (info_idx < 0) {
1984 		pr_err("Only one .modinfo section must exist.\n");
1985 		return -ENOEXEC;
1986 	}
1987 
1988 	info->index.info = info_idx;
1989 	/* Try to find a name early so we can log errors with a module name */
1990 	info->name = get_modinfo(info, "name");
1991 
1992 	return 0;
1993 }
1994 
1995 /**
1996  * elf_validity_cache_index_mod() - Validates and caches this_module section
1997  * @info: Load info to cache this_module on.
1998  *        Must have &load_info->sechdrs and &load_info->secstrings populated
1999  *
2000  * The ".gnu.linkonce.this_module" ELF section is special. It is what modpost
2001  * uses to refer to __this_module and let's use rely on THIS_MODULE to point
2002  * to &__this_module properly. The kernel's modpost declares it on each
2003  * modules's *.mod.c file. If the struct module of the kernel changes a full
2004  * kernel rebuild is required.
2005  *
2006  * We have a few expectations for this special section, this function
2007  * validates all this for us:
2008  *
2009  * * The section has contents
2010  * * The section is unique
2011  * * We expect the kernel to always have to allocate it: SHF_ALLOC
2012  * * The section size must match the kernel's run time's struct module
2013  *   size
2014  *
2015  * If all checks pass, the index will be cached in &load_info->index.mod
2016  *
2017  * Return: %0 on validation success, %-ENOEXEC on failure
2018  */
elf_validity_cache_index_mod(struct load_info * info)2019 static int elf_validity_cache_index_mod(struct load_info *info)
2020 {
2021 	Elf_Shdr *shdr;
2022 	int mod_idx;
2023 
2024 	mod_idx = find_any_unique_sec(info, ".gnu.linkonce.this_module");
2025 	if (mod_idx <= 0) {
2026 		pr_err("module %s: Exactly one .gnu.linkonce.this_module section must exist.\n",
2027 		       info->name ?: "(missing .modinfo section or name field)");
2028 		return -ENOEXEC;
2029 	}
2030 
2031 	shdr = &info->sechdrs[mod_idx];
2032 
2033 	if (shdr->sh_type == SHT_NOBITS) {
2034 		pr_err("module %s: .gnu.linkonce.this_module section must have a size set\n",
2035 		       info->name ?: "(missing .modinfo section or name field)");
2036 		return -ENOEXEC;
2037 	}
2038 
2039 	if (!(shdr->sh_flags & SHF_ALLOC)) {
2040 		pr_err("module %s: .gnu.linkonce.this_module must occupy memory during process execution\n",
2041 		       info->name ?: "(missing .modinfo section or name field)");
2042 		return -ENOEXEC;
2043 	}
2044 
2045 	if (shdr->sh_size != sizeof(struct module)) {
2046 		pr_err("module %s: .gnu.linkonce.this_module section size must match the kernel's built struct module size at run time\n",
2047 		       info->name ?: "(missing .modinfo section or name field)");
2048 		return -ENOEXEC;
2049 	}
2050 
2051 	info->index.mod = mod_idx;
2052 
2053 	return 0;
2054 }
2055 
2056 /**
2057  * elf_validity_cache_index_sym() - Validate and cache symtab index
2058  * @info: Load info to cache symtab index in.
2059  *        Must have &load_info->sechdrs and &load_info->secstrings populated.
2060  *
2061  * Checks that there is exactly one symbol table, then caches its index in
2062  * &load_info->index.sym.
2063  *
2064  * Return: %0 if valid, %-ENOEXEC on failure.
2065  */
elf_validity_cache_index_sym(struct load_info * info)2066 static int elf_validity_cache_index_sym(struct load_info *info)
2067 {
2068 	unsigned int sym_idx;
2069 	unsigned int num_sym_secs = 0;
2070 	int i;
2071 
2072 	for (i = 1; i < info->hdr->e_shnum; i++) {
2073 		if (info->sechdrs[i].sh_type == SHT_SYMTAB) {
2074 			num_sym_secs++;
2075 			sym_idx = i;
2076 		}
2077 	}
2078 
2079 	if (num_sym_secs != 1) {
2080 		pr_warn("%s: module has no symbols (stripped?)\n",
2081 			info->name ?: "(missing .modinfo section or name field)");
2082 		return -ENOEXEC;
2083 	}
2084 
2085 	info->index.sym = sym_idx;
2086 
2087 	return 0;
2088 }
2089 
2090 /**
2091  * elf_validity_cache_index_str() - Validate and cache strtab index
2092  * @info: Load info to cache strtab index in.
2093  *        Must have &load_info->sechdrs and &load_info->secstrings populated.
2094  *        Must have &load_info->index.sym populated.
2095  *
2096  * Looks at the symbol table's associated string table, makes sure it is
2097  * in-bounds, and caches it.
2098  *
2099  * Return: %0 if valid, %-ENOEXEC on failure.
2100  */
elf_validity_cache_index_str(struct load_info * info)2101 static int elf_validity_cache_index_str(struct load_info *info)
2102 {
2103 	unsigned int str_idx = info->sechdrs[info->index.sym].sh_link;
2104 
2105 	if (str_idx == SHN_UNDEF || str_idx >= info->hdr->e_shnum) {
2106 		pr_err("Invalid ELF sh_link!=SHN_UNDEF(%d) or (sh_link(%d) >= hdr->e_shnum(%d)\n",
2107 		       str_idx, str_idx, info->hdr->e_shnum);
2108 		return -ENOEXEC;
2109 	}
2110 
2111 	info->index.str = str_idx;
2112 	return 0;
2113 }
2114 
2115 /**
2116  * elf_validity_cache_index_versions() - Validate and cache version indices
2117  * @info:  Load info to cache version indices in.
2118  *         Must have &load_info->sechdrs and &load_info->secstrings populated.
2119  * @flags: Load flags, relevant to suppress version loading, see
2120  *         uapi/linux/module.h
2121  *
2122  * If we're ignoring modversions based on @flags, zero all version indices
2123  * and return validity. Othewrise check:
2124  *
2125  * * If "__version_ext_crcs" is present, "__version_ext_names" is present
2126  * * There is a name present for every crc
2127  *
2128  * Then populate:
2129  *
2130  * * &load_info->index.vers
2131  * * &load_info->index.vers_ext_crc
2132  * * &load_info->index.vers_ext_names
2133  *
2134  * if present.
2135  *
2136  * Return: %0 if valid, %-ENOEXEC on failure.
2137  */
elf_validity_cache_index_versions(struct load_info * info,int flags)2138 static int elf_validity_cache_index_versions(struct load_info *info, int flags)
2139 {
2140 	unsigned int vers_ext_crc;
2141 	unsigned int vers_ext_name;
2142 	size_t crc_count;
2143 	size_t remaining_len;
2144 	size_t name_size;
2145 	char *name;
2146 
2147 	/* If modversions were suppressed, pretend we didn't find any */
2148 	if (flags & MODULE_INIT_IGNORE_MODVERSIONS) {
2149 		info->index.vers = 0;
2150 		info->index.vers_ext_crc = 0;
2151 		info->index.vers_ext_name = 0;
2152 		return 0;
2153 	}
2154 
2155 	vers_ext_crc = find_sec(info, "__version_ext_crcs");
2156 	vers_ext_name = find_sec(info, "__version_ext_names");
2157 
2158 	/* If we have one field, we must have the other */
2159 	if (!!vers_ext_crc != !!vers_ext_name) {
2160 		pr_err("extended version crc+name presence does not match");
2161 		return -ENOEXEC;
2162 	}
2163 
2164 	/*
2165 	 * If we have extended version information, we should have the same
2166 	 * number of entries in every section.
2167 	 */
2168 	if (vers_ext_crc) {
2169 		crc_count = info->sechdrs[vers_ext_crc].sh_size / sizeof(u32);
2170 		name = (void *)info->hdr +
2171 			info->sechdrs[vers_ext_name].sh_offset;
2172 		remaining_len = info->sechdrs[vers_ext_name].sh_size;
2173 
2174 		while (crc_count--) {
2175 			name_size = strnlen(name, remaining_len) + 1;
2176 			if (name_size > remaining_len) {
2177 				pr_err("more extended version crcs than names");
2178 				return -ENOEXEC;
2179 			}
2180 			remaining_len -= name_size;
2181 			name += name_size;
2182 		}
2183 	}
2184 
2185 	info->index.vers = find_sec(info, "__versions");
2186 	info->index.vers_ext_crc = vers_ext_crc;
2187 	info->index.vers_ext_name = vers_ext_name;
2188 	return 0;
2189 }
2190 
2191 /**
2192  * elf_validity_cache_index() - Resolve, validate, cache section indices
2193  * @info:  Load info to read from and update.
2194  *         &load_info->sechdrs and &load_info->secstrings must be populated.
2195  * @flags: Load flags, relevant to suppress version loading, see
2196  *         uapi/linux/module.h
2197  *
2198  * Populates &load_info->index, validating as it goes.
2199  * See child functions for per-field validation:
2200  *
2201  * * elf_validity_cache_index_info()
2202  * * elf_validity_cache_index_mod()
2203  * * elf_validity_cache_index_sym()
2204  * * elf_validity_cache_index_str()
2205  * * elf_validity_cache_index_versions()
2206  *
2207  * If CONFIG_SMP is enabled, load the percpu section by name with no
2208  * validation.
2209  *
2210  * Return: 0 on success, negative error code if an index failed validation.
2211  */
elf_validity_cache_index(struct load_info * info,int flags)2212 static int elf_validity_cache_index(struct load_info *info, int flags)
2213 {
2214 	int err;
2215 
2216 	err = elf_validity_cache_index_info(info);
2217 	if (err < 0)
2218 		return err;
2219 	err = elf_validity_cache_index_mod(info);
2220 	if (err < 0)
2221 		return err;
2222 	err = elf_validity_cache_index_sym(info);
2223 	if (err < 0)
2224 		return err;
2225 	err = elf_validity_cache_index_str(info);
2226 	if (err < 0)
2227 		return err;
2228 	err = elf_validity_cache_index_versions(info, flags);
2229 	if (err < 0)
2230 		return err;
2231 
2232 	info->index.pcpu = find_pcpusec(info);
2233 
2234 	return 0;
2235 }
2236 
2237 /**
2238  * elf_validity_cache_strtab() - Validate and cache symbol string table
2239  * @info: Load info to read from and update.
2240  *        Must have &load_info->sechdrs and &load_info->secstrings populated.
2241  *        Must have &load_info->index populated.
2242  *
2243  * Checks:
2244  *
2245  * * The string table is not empty.
2246  * * The string table starts and ends with NUL (required by ELF spec).
2247  * * Every &Elf_Sym->st_name offset in the symbol table is inbounds of the
2248  *   string table.
2249  *
2250  * And caches the pointer as &load_info->strtab in @info.
2251  *
2252  * Return: 0 on success, negative error code if a check failed.
2253  */
elf_validity_cache_strtab(struct load_info * info)2254 static int elf_validity_cache_strtab(struct load_info *info)
2255 {
2256 	Elf_Shdr *str_shdr = &info->sechdrs[info->index.str];
2257 	Elf_Shdr *sym_shdr = &info->sechdrs[info->index.sym];
2258 	char *strtab = (char *)info->hdr + str_shdr->sh_offset;
2259 	Elf_Sym *syms = (void *)info->hdr + sym_shdr->sh_offset;
2260 	int i;
2261 
2262 	if (str_shdr->sh_size == 0) {
2263 		pr_err("empty symbol string table\n");
2264 		return -ENOEXEC;
2265 	}
2266 	if (strtab[0] != '\0') {
2267 		pr_err("symbol string table missing leading NUL\n");
2268 		return -ENOEXEC;
2269 	}
2270 	if (strtab[str_shdr->sh_size - 1] != '\0') {
2271 		pr_err("symbol string table isn't NUL terminated\n");
2272 		return -ENOEXEC;
2273 	}
2274 
2275 	/*
2276 	 * Now that we know strtab is correctly structured, check symbol
2277 	 * starts are inbounds before they're used later.
2278 	 */
2279 	for (i = 0; i < sym_shdr->sh_size / sizeof(*syms); i++) {
2280 		if (syms[i].st_name >= str_shdr->sh_size) {
2281 			pr_err("symbol name out of bounds in string table");
2282 			return -ENOEXEC;
2283 		}
2284 	}
2285 
2286 	info->strtab = strtab;
2287 	return 0;
2288 }
2289 
2290 /*
2291  * Check userspace passed ELF module against our expectations, and cache
2292  * useful variables for further processing as we go.
2293  *
2294  * This does basic validity checks against section offsets and sizes, the
2295  * section name string table, and the indices used for it (sh_name).
2296  *
2297  * As a last step, since we're already checking the ELF sections we cache
2298  * useful variables which will be used later for our convenience:
2299  *
2300  * 	o pointers to section headers
2301  * 	o cache the modinfo symbol section
2302  * 	o cache the string symbol section
2303  * 	o cache the module section
2304  *
2305  * As a last step we set info->mod to the temporary copy of the module in
2306  * info->hdr. The final one will be allocated in move_module(). Any
2307  * modifications we make to our copy of the module will be carried over
2308  * to the final minted module.
2309  */
elf_validity_cache_copy(struct load_info * info,int flags)2310 static int elf_validity_cache_copy(struct load_info *info, int flags)
2311 {
2312 	int err;
2313 
2314 	err = elf_validity_cache_sechdrs(info);
2315 	if (err < 0)
2316 		return err;
2317 	err = elf_validity_cache_secstrings(info);
2318 	if (err < 0)
2319 		return err;
2320 	err = elf_validity_cache_index(info, flags);
2321 	if (err < 0)
2322 		return err;
2323 	err = elf_validity_cache_strtab(info);
2324 	if (err < 0)
2325 		return err;
2326 
2327 	/* This is temporary: point mod into copy of data. */
2328 	info->mod = (void *)info->hdr + info->sechdrs[info->index.mod].sh_offset;
2329 
2330 	/*
2331 	 * If we didn't load the .modinfo 'name' field earlier, fall back to
2332 	 * on-disk struct mod 'name' field.
2333 	 */
2334 	if (!info->name)
2335 		info->name = info->mod->name;
2336 
2337 	return 0;
2338 }
2339 
2340 #define COPY_CHUNK_SIZE (16*PAGE_SIZE)
2341 
copy_chunked_from_user(void * dst,const void __user * usrc,unsigned long len)2342 static int copy_chunked_from_user(void *dst, const void __user *usrc, unsigned long len)
2343 {
2344 	do {
2345 		unsigned long n = min(len, COPY_CHUNK_SIZE);
2346 
2347 		if (copy_from_user(dst, usrc, n) != 0)
2348 			return -EFAULT;
2349 		cond_resched();
2350 		dst += n;
2351 		usrc += n;
2352 		len -= n;
2353 	} while (len);
2354 	return 0;
2355 }
2356 
check_modinfo_livepatch(struct module * mod,struct load_info * info)2357 static int check_modinfo_livepatch(struct module *mod, struct load_info *info)
2358 {
2359 	if (!get_modinfo(info, "livepatch"))
2360 		/* Nothing more to do */
2361 		return 0;
2362 
2363 	if (set_livepatch_module(mod))
2364 		return 0;
2365 
2366 	pr_err("%s: module is marked as livepatch module, but livepatch support is disabled",
2367 	       mod->name);
2368 	return -ENOEXEC;
2369 }
2370 
check_modinfo_retpoline(struct module * mod,struct load_info * info)2371 static void check_modinfo_retpoline(struct module *mod, struct load_info *info)
2372 {
2373 	if (retpoline_module_ok(get_modinfo(info, "retpoline")))
2374 		return;
2375 
2376 	pr_warn("%s: loading module not compiled with retpoline compiler.\n",
2377 		mod->name);
2378 }
2379 
2380 /* Sets info->hdr and info->len. */
copy_module_from_user(const void __user * umod,unsigned long len,struct load_info * info)2381 static int copy_module_from_user(const void __user *umod, unsigned long len,
2382 				  struct load_info *info)
2383 {
2384 	int err;
2385 
2386 	info->len = len;
2387 	if (info->len < sizeof(*(info->hdr)))
2388 		return -ENOEXEC;
2389 
2390 	err = security_kernel_load_data(LOADING_MODULE, true);
2391 	if (err)
2392 		return err;
2393 
2394 	/* Suck in entire file: we'll want most of it. */
2395 	info->hdr = __vmalloc(info->len, GFP_KERNEL | __GFP_NOWARN);
2396 	if (!info->hdr)
2397 		return -ENOMEM;
2398 
2399 	if (copy_chunked_from_user(info->hdr, umod, info->len) != 0) {
2400 		err = -EFAULT;
2401 		goto out;
2402 	}
2403 
2404 	err = security_kernel_post_load_data((char *)info->hdr, info->len,
2405 					     LOADING_MODULE, "init_module");
2406 out:
2407 	if (err)
2408 		vfree(info->hdr);
2409 
2410 	return err;
2411 }
2412 
free_copy(struct load_info * info,int flags)2413 static void free_copy(struct load_info *info, int flags)
2414 {
2415 	if (flags & MODULE_INIT_COMPRESSED_FILE)
2416 		module_decompress_cleanup(info);
2417 	else
2418 		vfree(info->hdr);
2419 }
2420 
rewrite_section_headers(struct load_info * info,int flags)2421 static int rewrite_section_headers(struct load_info *info, int flags)
2422 {
2423 	unsigned int i;
2424 
2425 	/* This should always be true, but let's be sure. */
2426 	info->sechdrs[0].sh_addr = 0;
2427 
2428 	for (i = 1; i < info->hdr->e_shnum; i++) {
2429 		Elf_Shdr *shdr = &info->sechdrs[i];
2430 
2431 		/*
2432 		 * Mark all sections sh_addr with their address in the
2433 		 * temporary image.
2434 		 */
2435 		shdr->sh_addr = (size_t)info->hdr + shdr->sh_offset;
2436 
2437 	}
2438 
2439 	/* Track but don't keep modinfo and version sections. */
2440 	info->sechdrs[info->index.vers].sh_flags &= ~(unsigned long)SHF_ALLOC;
2441 	info->sechdrs[info->index.vers_ext_crc].sh_flags &=
2442 		~(unsigned long)SHF_ALLOC;
2443 	info->sechdrs[info->index.vers_ext_name].sh_flags &=
2444 		~(unsigned long)SHF_ALLOC;
2445 	info->sechdrs[info->index.info].sh_flags &= ~(unsigned long)SHF_ALLOC;
2446 
2447 	return 0;
2448 }
2449 
2450 /*
2451  * These calls taint the kernel depending certain module circumstances */
module_augment_kernel_taints(struct module * mod,struct load_info * info)2452 static void module_augment_kernel_taints(struct module *mod, struct load_info *info)
2453 {
2454 	int prev_taint = test_taint(TAINT_PROPRIETARY_MODULE);
2455 
2456 	if (!get_modinfo(info, "intree")) {
2457 		if (!test_taint(TAINT_OOT_MODULE))
2458 			pr_warn("%s: loading out-of-tree module taints kernel.\n",
2459 				mod->name);
2460 		add_taint_module(mod, TAINT_OOT_MODULE, LOCKDEP_STILL_OK);
2461 	}
2462 
2463 	check_modinfo_retpoline(mod, info);
2464 
2465 	if (get_modinfo(info, "staging")) {
2466 		add_taint_module(mod, TAINT_CRAP, LOCKDEP_STILL_OK);
2467 		pr_warn("%s: module is from the staging directory, the quality "
2468 			"is unknown, you have been warned.\n", mod->name);
2469 	}
2470 
2471 	if (is_livepatch_module(mod)) {
2472 		add_taint_module(mod, TAINT_LIVEPATCH, LOCKDEP_STILL_OK);
2473 		pr_notice_once("%s: tainting kernel with TAINT_LIVEPATCH\n",
2474 				mod->name);
2475 	}
2476 
2477 	module_license_taint_check(mod, get_modinfo(info, "license"));
2478 
2479 	if (get_modinfo(info, "test")) {
2480 		if (!test_taint(TAINT_TEST))
2481 			pr_warn("%s: loading test module taints kernel.\n",
2482 				mod->name);
2483 		add_taint_module(mod, TAINT_TEST, LOCKDEP_STILL_OK);
2484 	}
2485 #ifdef CONFIG_MODULE_SIG
2486 	mod->sig_ok = info->sig_ok;
2487 #ifndef CONFIG_MODULE_SIG_PROTECT
2488 	if (!mod->sig_ok) {
2489 		pr_notice_once("%s: module verification failed: signature "
2490 			       "and/or required key missing - tainting "
2491 			       "kernel\n", mod->name);
2492 		add_taint_module(mod, TAINT_UNSIGNED_MODULE, LOCKDEP_STILL_OK);
2493 	}
2494 #endif
2495 #else
2496 	mod->sig_ok = 0;
2497 #endif
2498 
2499 	/*
2500 	 * ndiswrapper is under GPL by itself, but loads proprietary modules.
2501 	 * Don't use add_taint_module(), as it would prevent ndiswrapper from
2502 	 * using GPL-only symbols it needs.
2503 	 */
2504 	if (strcmp(mod->name, "ndiswrapper") == 0)
2505 		add_taint(TAINT_PROPRIETARY_MODULE, LOCKDEP_NOW_UNRELIABLE);
2506 
2507 	/* driverloader was caught wrongly pretending to be under GPL */
2508 	if (strcmp(mod->name, "driverloader") == 0)
2509 		add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
2510 				 LOCKDEP_NOW_UNRELIABLE);
2511 
2512 	/* lve claims to be GPL but upstream won't provide source */
2513 	if (strcmp(mod->name, "lve") == 0)
2514 		add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
2515 				 LOCKDEP_NOW_UNRELIABLE);
2516 
2517 	if (!prev_taint && test_taint(TAINT_PROPRIETARY_MODULE))
2518 		pr_warn("%s: module license taints kernel.\n", mod->name);
2519 
2520 }
2521 
check_modinfo(struct module * mod,struct load_info * info,int flags)2522 static int check_modinfo(struct module *mod, struct load_info *info, int flags)
2523 {
2524 	const char *modmagic = get_modinfo(info, "vermagic");
2525 	int err;
2526 
2527 	if (flags & MODULE_INIT_IGNORE_VERMAGIC)
2528 		modmagic = NULL;
2529 
2530 	/* This is allowed: modprobe --force will invalidate it. */
2531 	if (!modmagic) {
2532 		err = try_to_force_load(mod, "bad vermagic");
2533 		if (err)
2534 			return err;
2535 	} else if (!same_magic(modmagic, vermagic, info->index.vers)) {
2536 		pr_err("%s: version magic '%s' should be '%s'\n",
2537 		       info->name, modmagic, vermagic);
2538 		return -ENOEXEC;
2539 	}
2540 
2541 	err = check_modinfo_livepatch(mod, info);
2542 	if (err)
2543 		return err;
2544 
2545 	return 0;
2546 }
2547 
find_module_sections(struct module * mod,struct load_info * info)2548 static int find_module_sections(struct module *mod, struct load_info *info)
2549 {
2550 	mod->kp = section_objs(info, "__param",
2551 			       sizeof(*mod->kp), &mod->num_kp);
2552 	mod->syms = section_objs(info, "__ksymtab",
2553 				 sizeof(*mod->syms), &mod->num_syms);
2554 	mod->crcs = section_addr(info, "__kcrctab");
2555 	mod->gpl_syms = section_objs(info, "__ksymtab_gpl",
2556 				     sizeof(*mod->gpl_syms),
2557 				     &mod->num_gpl_syms);
2558 	mod->gpl_crcs = section_addr(info, "__kcrctab_gpl");
2559 
2560 #ifdef CONFIG_CONSTRUCTORS
2561 	mod->ctors = section_objs(info, ".ctors",
2562 				  sizeof(*mod->ctors), &mod->num_ctors);
2563 	if (!mod->ctors)
2564 		mod->ctors = section_objs(info, ".init_array",
2565 				sizeof(*mod->ctors), &mod->num_ctors);
2566 	else if (find_sec(info, ".init_array")) {
2567 		/*
2568 		 * This shouldn't happen with same compiler and binutils
2569 		 * building all parts of the module.
2570 		 */
2571 		pr_warn("%s: has both .ctors and .init_array.\n",
2572 		       mod->name);
2573 		return -EINVAL;
2574 	}
2575 #endif
2576 
2577 	mod->noinstr_text_start = section_objs(info, ".noinstr.text", 1,
2578 						&mod->noinstr_text_size);
2579 
2580 #ifdef CONFIG_TRACEPOINTS
2581 	mod->tracepoints_ptrs = section_objs(info, "__tracepoints_ptrs",
2582 					     sizeof(*mod->tracepoints_ptrs),
2583 					     &mod->num_tracepoints);
2584 #endif
2585 #ifdef CONFIG_TREE_SRCU
2586 	mod->srcu_struct_ptrs = section_objs(info, "___srcu_struct_ptrs",
2587 					     sizeof(*mod->srcu_struct_ptrs),
2588 					     &mod->num_srcu_structs);
2589 #endif
2590 #ifdef CONFIG_BPF_EVENTS
2591 	mod->bpf_raw_events = section_objs(info, "__bpf_raw_tp_map",
2592 					   sizeof(*mod->bpf_raw_events),
2593 					   &mod->num_bpf_raw_events);
2594 #endif
2595 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
2596 	mod->btf_data = any_section_objs(info, ".BTF", 1, &mod->btf_data_size);
2597 	mod->btf_base_data = any_section_objs(info, ".BTF.base", 1,
2598 					      &mod->btf_base_data_size);
2599 #endif
2600 #ifdef CONFIG_JUMP_LABEL
2601 	mod->jump_entries = section_objs(info, "__jump_table",
2602 					sizeof(*mod->jump_entries),
2603 					&mod->num_jump_entries);
2604 #endif
2605 #ifdef CONFIG_EVENT_TRACING
2606 	mod->trace_events = section_objs(info, "_ftrace_events",
2607 					 sizeof(*mod->trace_events),
2608 					 &mod->num_trace_events);
2609 	mod->trace_evals = section_objs(info, "_ftrace_eval_map",
2610 					sizeof(*mod->trace_evals),
2611 					&mod->num_trace_evals);
2612 #endif
2613 #ifdef CONFIG_TRACING
2614 	mod->trace_bprintk_fmt_start = section_objs(info, "__trace_printk_fmt",
2615 					 sizeof(*mod->trace_bprintk_fmt_start),
2616 					 &mod->num_trace_bprintk_fmt);
2617 #endif
2618 #ifdef CONFIG_FTRACE_MCOUNT_RECORD
2619 	/* sechdrs[0].sh_size is always zero */
2620 	mod->ftrace_callsites = section_objs(info, FTRACE_CALLSITE_SECTION,
2621 					     sizeof(*mod->ftrace_callsites),
2622 					     &mod->num_ftrace_callsites);
2623 #endif
2624 #ifdef CONFIG_FUNCTION_ERROR_INJECTION
2625 	mod->ei_funcs = section_objs(info, "_error_injection_whitelist",
2626 					    sizeof(*mod->ei_funcs),
2627 					    &mod->num_ei_funcs);
2628 #endif
2629 #ifdef CONFIG_KPROBES
2630 	mod->kprobes_text_start = section_objs(info, ".kprobes.text", 1,
2631 						&mod->kprobes_text_size);
2632 	mod->kprobe_blacklist = section_objs(info, "_kprobe_blacklist",
2633 						sizeof(unsigned long),
2634 						&mod->num_kprobe_blacklist);
2635 #endif
2636 #ifdef CONFIG_PRINTK_INDEX
2637 	mod->printk_index_start = section_objs(info, ".printk_index",
2638 					       sizeof(*mod->printk_index_start),
2639 					       &mod->printk_index_size);
2640 #endif
2641 #ifdef CONFIG_HAVE_STATIC_CALL_INLINE
2642 	mod->static_call_sites = section_objs(info, ".static_call_sites",
2643 					      sizeof(*mod->static_call_sites),
2644 					      &mod->num_static_call_sites);
2645 #endif
2646 #if IS_ENABLED(CONFIG_KUNIT)
2647 	mod->kunit_suites = section_objs(info, ".kunit_test_suites",
2648 					      sizeof(*mod->kunit_suites),
2649 					      &mod->num_kunit_suites);
2650 	mod->kunit_init_suites = section_objs(info, ".kunit_init_test_suites",
2651 					      sizeof(*mod->kunit_init_suites),
2652 					      &mod->num_kunit_init_suites);
2653 #endif
2654 
2655 	mod->extable = section_objs(info, "__ex_table",
2656 				    sizeof(*mod->extable), &mod->num_exentries);
2657 
2658 	if (section_addr(info, "__obsparm"))
2659 		pr_warn("%s: Ignoring obsolete parameters\n", mod->name);
2660 
2661 #ifdef CONFIG_DYNAMIC_DEBUG_CORE
2662 	mod->dyndbg_info.descs = section_objs(info, "__dyndbg",
2663 					      sizeof(*mod->dyndbg_info.descs),
2664 					      &mod->dyndbg_info.num_descs);
2665 	mod->dyndbg_info.classes = section_objs(info, "__dyndbg_classes",
2666 						sizeof(*mod->dyndbg_info.classes),
2667 						&mod->dyndbg_info.num_classes);
2668 #endif
2669 
2670 	return 0;
2671 }
2672 
move_module(struct module * mod,struct load_info * info)2673 static int move_module(struct module *mod, struct load_info *info)
2674 {
2675 	int i;
2676 	enum mod_mem_type t = 0;
2677 	int ret = -ENOMEM;
2678 	bool codetag_section_found = false;
2679 
2680 	for_each_mod_mem_type(type) {
2681 		if (!mod->mem[type].size) {
2682 			mod->mem[type].base = NULL;
2683 			continue;
2684 		}
2685 
2686 		ret = module_memory_alloc(mod, type);
2687 		if (ret) {
2688 			t = type;
2689 			goto out_err;
2690 		}
2691 	}
2692 
2693 	/* Transfer each section which specifies SHF_ALLOC */
2694 	pr_debug("Final section addresses for %s:\n", mod->name);
2695 	for (i = 0; i < info->hdr->e_shnum; i++) {
2696 		void *dest;
2697 		Elf_Shdr *shdr = &info->sechdrs[i];
2698 		const char *sname;
2699 
2700 		if (!(shdr->sh_flags & SHF_ALLOC))
2701 			continue;
2702 
2703 		sname = info->secstrings + shdr->sh_name;
2704 		/*
2705 		 * Load codetag sections separately as they might still be used
2706 		 * after module unload.
2707 		 */
2708 		if (codetag_needs_module_section(mod, sname, shdr->sh_size)) {
2709 			dest = codetag_alloc_module_section(mod, sname, shdr->sh_size,
2710 					arch_mod_section_prepend(mod, i), shdr->sh_addralign);
2711 			if (WARN_ON(!dest)) {
2712 				ret = -EINVAL;
2713 				goto out_err;
2714 			}
2715 			if (IS_ERR(dest)) {
2716 				ret = PTR_ERR(dest);
2717 				goto out_err;
2718 			}
2719 			codetag_section_found = true;
2720 		} else {
2721 			enum mod_mem_type type = shdr->sh_entsize >> SH_ENTSIZE_TYPE_SHIFT;
2722 
2723 			dest = mod->mem[type].base + (shdr->sh_entsize & SH_ENTSIZE_OFFSET_MASK);
2724 		}
2725 
2726 		if (shdr->sh_type != SHT_NOBITS) {
2727 			/*
2728 			 * Our ELF checker already validated this, but let's
2729 			 * be pedantic and make the goal clearer. We actually
2730 			 * end up copying over all modifications made to the
2731 			 * userspace copy of the entire struct module.
2732 			 */
2733 			if (i == info->index.mod &&
2734 			   (WARN_ON_ONCE(shdr->sh_size != sizeof(struct module)))) {
2735 				ret = -ENOEXEC;
2736 				goto out_err;
2737 			}
2738 			memcpy(dest, (void *)shdr->sh_addr, shdr->sh_size);
2739 		}
2740 		/*
2741 		 * Update the userspace copy's ELF section address to point to
2742 		 * our newly allocated memory as a pure convenience so that
2743 		 * users of info can keep taking advantage and using the newly
2744 		 * minted official memory area.
2745 		 */
2746 		shdr->sh_addr = (unsigned long)dest;
2747 		pr_debug("\t0x%lx 0x%.8lx %s\n", (long)shdr->sh_addr,
2748 			 (long)shdr->sh_size, info->secstrings + shdr->sh_name);
2749 	}
2750 
2751 	return 0;
2752 out_err:
2753 	for (t--; t >= 0; t--)
2754 		module_memory_free(mod, t);
2755 	if (codetag_section_found)
2756 		codetag_free_module_sections(mod);
2757 
2758 	return ret;
2759 }
2760 
check_export_symbol_versions(struct module * mod)2761 static int check_export_symbol_versions(struct module *mod)
2762 {
2763 #ifdef CONFIG_MODVERSIONS
2764 	if ((mod->num_syms && !mod->crcs) ||
2765 	    (mod->num_gpl_syms && !mod->gpl_crcs)) {
2766 		return try_to_force_load(mod,
2767 					 "no versions for exported symbols");
2768 	}
2769 #endif
2770 	return 0;
2771 }
2772 
flush_module_icache(const struct module * mod)2773 static void flush_module_icache(const struct module *mod)
2774 {
2775 	/*
2776 	 * Flush the instruction cache, since we've played with text.
2777 	 * Do it before processing of module parameters, so the module
2778 	 * can provide parameter accessor functions of its own.
2779 	 */
2780 	for_each_mod_mem_type(type) {
2781 		const struct module_memory *mod_mem = &mod->mem[type];
2782 
2783 		if (mod_mem->size) {
2784 			flush_icache_range((unsigned long)mod_mem->base,
2785 					   (unsigned long)mod_mem->base + mod_mem->size);
2786 		}
2787 	}
2788 }
2789 
module_elf_check_arch(Elf_Ehdr * hdr)2790 bool __weak module_elf_check_arch(Elf_Ehdr *hdr)
2791 {
2792 	return true;
2793 }
2794 
module_frob_arch_sections(Elf_Ehdr * hdr,Elf_Shdr * sechdrs,char * secstrings,struct module * mod)2795 int __weak module_frob_arch_sections(Elf_Ehdr *hdr,
2796 				     Elf_Shdr *sechdrs,
2797 				     char *secstrings,
2798 				     struct module *mod)
2799 {
2800 	return 0;
2801 }
2802 
2803 /* module_blacklist is a comma-separated list of module names */
2804 static char *module_blacklist;
blacklisted(const char * module_name)2805 static bool blacklisted(const char *module_name)
2806 {
2807 	const char *p;
2808 	size_t len;
2809 
2810 	if (!module_blacklist)
2811 		return false;
2812 
2813 	for (p = module_blacklist; *p; p += len) {
2814 		len = strcspn(p, ",");
2815 		if (strlen(module_name) == len && !memcmp(module_name, p, len))
2816 			return true;
2817 		if (p[len] == ',')
2818 			len++;
2819 	}
2820 	return false;
2821 }
2822 core_param(module_blacklist, module_blacklist, charp, 0400);
2823 
layout_and_allocate(struct load_info * info,int flags)2824 static struct module *layout_and_allocate(struct load_info *info, int flags)
2825 {
2826 	struct module *mod;
2827 	unsigned int ndx;
2828 	int err;
2829 
2830 	/* Allow arches to frob section contents and sizes.  */
2831 	err = module_frob_arch_sections(info->hdr, info->sechdrs,
2832 					info->secstrings, info->mod);
2833 	if (err < 0)
2834 		return ERR_PTR(err);
2835 
2836 	err = module_enforce_rwx_sections(info->hdr, info->sechdrs,
2837 					  info->secstrings, info->mod);
2838 	if (err < 0)
2839 		return ERR_PTR(err);
2840 
2841 	/* We will do a special allocation for per-cpu sections later. */
2842 	info->sechdrs[info->index.pcpu].sh_flags &= ~(unsigned long)SHF_ALLOC;
2843 
2844 	/*
2845 	 * Mark ro_after_init section with SHF_RO_AFTER_INIT so that
2846 	 * layout_sections() can put it in the right place.
2847 	 * Note: ro_after_init sections also have SHF_{WRITE,ALLOC} set.
2848 	 */
2849 	ndx = find_sec(info, ".data..ro_after_init");
2850 	if (ndx)
2851 		info->sechdrs[ndx].sh_flags |= SHF_RO_AFTER_INIT;
2852 	/*
2853 	 * Mark the __jump_table section as ro_after_init as well: these data
2854 	 * structures are never modified, with the exception of entries that
2855 	 * refer to code in the __init section, which are annotated as such
2856 	 * at module load time.
2857 	 */
2858 	ndx = find_sec(info, "__jump_table");
2859 	if (ndx)
2860 		info->sechdrs[ndx].sh_flags |= SHF_RO_AFTER_INIT;
2861 
2862 	/*
2863 	 * Determine total sizes, and put offsets in sh_entsize.  For now
2864 	 * this is done generically; there doesn't appear to be any
2865 	 * special cases for the architectures.
2866 	 */
2867 	layout_sections(info->mod, info);
2868 	layout_symtab(info->mod, info);
2869 
2870 	/* Allocate and move to the final place */
2871 	err = move_module(info->mod, info);
2872 	if (err)
2873 		return ERR_PTR(err);
2874 
2875 	/* Module has been copied to its final place now: return it. */
2876 	mod = (void *)info->sechdrs[info->index.mod].sh_addr;
2877 	kmemleak_load_module(mod, info);
2878 	codetag_module_replaced(info->mod, mod);
2879 
2880 	return mod;
2881 }
2882 
2883 /* mod is no longer valid after this! */
module_deallocate(struct module * mod,struct load_info * info)2884 static void module_deallocate(struct module *mod, struct load_info *info)
2885 {
2886 	percpu_modfree(mod);
2887 	module_arch_freeing_init(mod);
2888 
2889 	free_mod_mem(mod);
2890 }
2891 
module_finalize(const Elf_Ehdr * hdr,const Elf_Shdr * sechdrs,struct module * me)2892 int __weak module_finalize(const Elf_Ehdr *hdr,
2893 			   const Elf_Shdr *sechdrs,
2894 			   struct module *me)
2895 {
2896 	return 0;
2897 }
2898 
post_relocation(struct module * mod,const struct load_info * info)2899 static int post_relocation(struct module *mod, const struct load_info *info)
2900 {
2901 	/* Sort exception table now relocations are done. */
2902 	sort_extable(mod->extable, mod->extable + mod->num_exentries);
2903 
2904 	/* Copy relocated percpu area over. */
2905 	percpu_modcopy(mod, (void *)info->sechdrs[info->index.pcpu].sh_addr,
2906 		       info->sechdrs[info->index.pcpu].sh_size);
2907 
2908 	/* Setup kallsyms-specific fields. */
2909 	add_kallsyms(mod, info);
2910 
2911 	/* Arch-specific module finalizing. */
2912 	return module_finalize(info->hdr, info->sechdrs, mod);
2913 }
2914 
2915 /* Call module constructors. */
do_mod_ctors(struct module * mod)2916 static void do_mod_ctors(struct module *mod)
2917 {
2918 #ifdef CONFIG_CONSTRUCTORS
2919 	unsigned long i;
2920 
2921 	for (i = 0; i < mod->num_ctors; i++)
2922 		mod->ctors[i]();
2923 #endif
2924 }
2925 
2926 /* For freeing module_init on success, in case kallsyms traversing */
2927 struct mod_initfree {
2928 	struct llist_node node;
2929 	void *init_text;
2930 	void *init_data;
2931 	void *init_rodata;
2932 };
2933 
do_free_init(struct work_struct * w)2934 static void do_free_init(struct work_struct *w)
2935 {
2936 	struct llist_node *pos, *n, *list;
2937 	struct mod_initfree *initfree;
2938 
2939 	list = llist_del_all(&init_free_list);
2940 
2941 	synchronize_rcu();
2942 
2943 	llist_for_each_safe(pos, n, list) {
2944 		initfree = container_of(pos, struct mod_initfree, node);
2945 		execmem_free(initfree->init_text);
2946 		execmem_free(initfree->init_data);
2947 		execmem_free(initfree->init_rodata);
2948 		kfree(initfree);
2949 	}
2950 }
2951 
flush_module_init_free_work(void)2952 void flush_module_init_free_work(void)
2953 {
2954 	flush_work(&init_free_wq);
2955 }
2956 
2957 #undef MODULE_PARAM_PREFIX
2958 #define MODULE_PARAM_PREFIX "module."
2959 /* Default value for module->async_probe_requested */
2960 static bool async_probe;
2961 module_param(async_probe, bool, 0644);
2962 
2963 /*
2964  * This is where the real work happens.
2965  *
2966  * Keep it uninlined to provide a reliable breakpoint target, e.g. for the gdb
2967  * helper command 'lx-symbols'.
2968  */
do_init_module(struct module * mod)2969 static noinline int do_init_module(struct module *mod)
2970 {
2971 	int ret = 0;
2972 	struct mod_initfree *freeinit;
2973 #if defined(CONFIG_MODULE_STATS)
2974 	unsigned int text_size = 0, total_size = 0;
2975 
2976 	for_each_mod_mem_type(type) {
2977 		const struct module_memory *mod_mem = &mod->mem[type];
2978 		if (mod_mem->size) {
2979 			total_size += mod_mem->size;
2980 			if (type == MOD_TEXT || type == MOD_INIT_TEXT)
2981 				text_size += mod_mem->size;
2982 		}
2983 	}
2984 #endif
2985 
2986 	freeinit = kmalloc(sizeof(*freeinit), GFP_KERNEL);
2987 	if (!freeinit) {
2988 		ret = -ENOMEM;
2989 		goto fail;
2990 	}
2991 	freeinit->init_text = mod->mem[MOD_INIT_TEXT].base;
2992 	freeinit->init_data = mod->mem[MOD_INIT_DATA].base;
2993 	freeinit->init_rodata = mod->mem[MOD_INIT_RODATA].base;
2994 
2995 	do_mod_ctors(mod);
2996 	/* Start the module */
2997 	if (mod->init != NULL)
2998 		ret = do_one_initcall(mod->init);
2999 	if (ret < 0) {
3000 		goto fail_free_freeinit;
3001 	}
3002 	if (ret > 0) {
3003 		pr_warn("%s: '%s'->init suspiciously returned %d, it should "
3004 			"follow 0/-E convention\n"
3005 			"%s: loading module anyway...\n",
3006 			__func__, mod->name, ret, __func__);
3007 		dump_stack();
3008 	}
3009 
3010 	/* Now it's a first class citizen! */
3011 	mod->state = MODULE_STATE_LIVE;
3012 	blocking_notifier_call_chain(&module_notify_list,
3013 				     MODULE_STATE_LIVE, mod);
3014 
3015 	/* Delay uevent until module has finished its init routine */
3016 	kobject_uevent(&mod->mkobj.kobj, KOBJ_ADD);
3017 
3018 	/*
3019 	 * We need to finish all async code before the module init sequence
3020 	 * is done. This has potential to deadlock if synchronous module
3021 	 * loading is requested from async (which is not allowed!).
3022 	 *
3023 	 * See commit 0fdff3ec6d87 ("async, kmod: warn on synchronous
3024 	 * request_module() from async workers") for more details.
3025 	 */
3026 	if (!mod->async_probe_requested)
3027 		async_synchronize_full();
3028 
3029 	ftrace_free_mem(mod, mod->mem[MOD_INIT_TEXT].base,
3030 			mod->mem[MOD_INIT_TEXT].base + mod->mem[MOD_INIT_TEXT].size);
3031 	mutex_lock(&module_mutex);
3032 	/* Drop initial reference. */
3033 	module_put(mod);
3034 	trim_init_extable(mod);
3035 #ifdef CONFIG_KALLSYMS
3036 	/* Switch to core kallsyms now init is done: kallsyms may be walking! */
3037 	rcu_assign_pointer(mod->kallsyms, &mod->core_kallsyms);
3038 #endif
3039 	ret = module_enable_rodata_ro(mod, true);
3040 	if (ret)
3041 		pr_warn("%s: module_enable_rodata_ro_after_init() returned %d, "
3042 			"ro_after_init data might still be writable\n",
3043 			mod->name, ret);
3044 	trace_android_vh_set_mod_perm_after_init(mod);
3045 
3046 	mod_tree_remove_init(mod);
3047 	module_arch_freeing_init(mod);
3048 	for_class_mod_mem_type(type, init) {
3049 		mod->mem[type].base = NULL;
3050 		mod->mem[type].size = 0;
3051 	}
3052 
3053 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
3054 	/* .BTF is not SHF_ALLOC and will get removed, so sanitize pointers */
3055 	mod->btf_data = NULL;
3056 	mod->btf_base_data = NULL;
3057 #endif
3058 	/*
3059 	 * We want to free module_init, but be aware that kallsyms may be
3060 	 * walking this with preempt disabled.  In all the failure paths, we
3061 	 * call synchronize_rcu(), but we don't want to slow down the success
3062 	 * path. execmem_free() cannot be called in an interrupt, so do the
3063 	 * work and call synchronize_rcu() in a work queue.
3064 	 *
3065 	 * Note that execmem_alloc() on most architectures creates W+X page
3066 	 * mappings which won't be cleaned up until do_free_init() runs.  Any
3067 	 * code such as mark_rodata_ro() which depends on those mappings to
3068 	 * be cleaned up needs to sync with the queued work by invoking
3069 	 * flush_module_init_free_work().
3070 	 */
3071 	if (llist_add(&freeinit->node, &init_free_list))
3072 		schedule_work(&init_free_wq);
3073 
3074 	mutex_unlock(&module_mutex);
3075 	wake_up_all(&module_wq);
3076 
3077 	mod_stat_add_long(text_size, &total_text_size);
3078 	mod_stat_add_long(total_size, &total_mod_size);
3079 
3080 	mod_stat_inc(&modcount);
3081 
3082 	return 0;
3083 
3084 fail_free_freeinit:
3085 	kfree(freeinit);
3086 fail:
3087 	/* Try to protect us from buggy refcounters. */
3088 	mod->state = MODULE_STATE_GOING;
3089 	synchronize_rcu();
3090 	module_put(mod);
3091 	blocking_notifier_call_chain(&module_notify_list,
3092 				     MODULE_STATE_GOING, mod);
3093 	klp_module_going(mod);
3094 	ftrace_release_mod(mod);
3095 	free_module(mod);
3096 	wake_up_all(&module_wq);
3097 
3098 	return ret;
3099 }
3100 
may_init_module(void)3101 static int may_init_module(void)
3102 {
3103 	if (!capable(CAP_SYS_MODULE) || modules_disabled)
3104 		return -EPERM;
3105 
3106 	return 0;
3107 }
3108 
3109 /* Is this module of this name done loading?  No locks held. */
finished_loading(const char * name)3110 static bool finished_loading(const char *name)
3111 {
3112 	struct module *mod;
3113 	bool ret;
3114 
3115 	/*
3116 	 * The module_mutex should not be a heavily contended lock;
3117 	 * if we get the occasional sleep here, we'll go an extra iteration
3118 	 * in the wait_event_interruptible(), which is harmless.
3119 	 */
3120 	sched_annotate_sleep();
3121 	mutex_lock(&module_mutex);
3122 	mod = find_module_all(name, strlen(name), true);
3123 	ret = !mod || mod->state == MODULE_STATE_LIVE
3124 		|| mod->state == MODULE_STATE_GOING;
3125 	mutex_unlock(&module_mutex);
3126 
3127 	return ret;
3128 }
3129 
3130 /* Must be called with module_mutex held */
module_patient_check_exists(const char * name,enum fail_dup_mod_reason reason)3131 static int module_patient_check_exists(const char *name,
3132 				       enum fail_dup_mod_reason reason)
3133 {
3134 	struct module *old;
3135 	int err = 0;
3136 
3137 	old = find_module_all(name, strlen(name), true);
3138 	if (old == NULL)
3139 		return 0;
3140 
3141 	if (old->state == MODULE_STATE_COMING ||
3142 	    old->state == MODULE_STATE_UNFORMED) {
3143 		/* Wait in case it fails to load. */
3144 		mutex_unlock(&module_mutex);
3145 		err = wait_event_interruptible(module_wq,
3146 				       finished_loading(name));
3147 		mutex_lock(&module_mutex);
3148 		if (err)
3149 			return err;
3150 
3151 		/* The module might have gone in the meantime. */
3152 		old = find_module_all(name, strlen(name), true);
3153 	}
3154 
3155 	if (try_add_failed_module(name, reason))
3156 		pr_warn("Could not add fail-tracking for module: %s\n", name);
3157 
3158 	/*
3159 	 * We are here only when the same module was being loaded. Do
3160 	 * not try to load it again right now. It prevents long delays
3161 	 * caused by serialized module load failures. It might happen
3162 	 * when more devices of the same type trigger load of
3163 	 * a particular module.
3164 	 */
3165 	if (old && old->state == MODULE_STATE_LIVE)
3166 		return -EEXIST;
3167 	return -EBUSY;
3168 }
3169 
3170 /*
3171  * We try to place it in the list now to make sure it's unique before
3172  * we dedicate too many resources.  In particular, temporary percpu
3173  * memory exhaustion.
3174  */
add_unformed_module(struct module * mod)3175 static int add_unformed_module(struct module *mod)
3176 {
3177 	int err;
3178 
3179 	mod->state = MODULE_STATE_UNFORMED;
3180 
3181 	mutex_lock(&module_mutex);
3182 	err = module_patient_check_exists(mod->name, FAIL_DUP_MOD_LOAD);
3183 	if (err)
3184 		goto out;
3185 
3186 	mod_update_bounds(mod);
3187 	list_add_rcu(&mod->list, &modules);
3188 	mod_tree_insert(mod);
3189 	err = 0;
3190 
3191 out:
3192 	mutex_unlock(&module_mutex);
3193 	return err;
3194 }
3195 
complete_formation(struct module * mod,struct load_info * info)3196 static int complete_formation(struct module *mod, struct load_info *info)
3197 {
3198 	int err;
3199 
3200 	mutex_lock(&module_mutex);
3201 
3202 	/* Find duplicate symbols (must be called under lock). */
3203 	err = verify_exported_symbols(mod);
3204 	if (err < 0)
3205 		goto out;
3206 
3207 	/* These rely on module_mutex for list integrity. */
3208 	module_bug_finalize(info->hdr, info->sechdrs, mod);
3209 	module_cfi_finalize(info->hdr, info->sechdrs, mod);
3210 
3211 	err = module_enable_rodata_ro(mod, false);
3212 	if (err)
3213 		goto out_strict_rwx;
3214 	err = module_enable_data_nx(mod);
3215 	if (err)
3216 		goto out_strict_rwx;
3217 	err = module_enable_text_rox(mod);
3218 	if (err)
3219 		goto out_strict_rwx;
3220 	trace_android_vh_set_mod_perm_before_init(mod);
3221 
3222 	/*
3223 	 * Mark state as coming so strong_try_module_get() ignores us,
3224 	 * but kallsyms etc. can see us.
3225 	 */
3226 	mod->state = MODULE_STATE_COMING;
3227 	mutex_unlock(&module_mutex);
3228 
3229 	return 0;
3230 
3231 out_strict_rwx:
3232 	module_bug_cleanup(mod);
3233 out:
3234 	mutex_unlock(&module_mutex);
3235 	return err;
3236 }
3237 
prepare_coming_module(struct module * mod)3238 static int prepare_coming_module(struct module *mod)
3239 {
3240 	int err;
3241 
3242 	ftrace_module_enable(mod);
3243 	err = klp_module_coming(mod);
3244 	if (err)
3245 		return err;
3246 
3247 	err = blocking_notifier_call_chain_robust(&module_notify_list,
3248 			MODULE_STATE_COMING, MODULE_STATE_GOING, mod);
3249 	err = notifier_to_errno(err);
3250 	if (err)
3251 		klp_module_going(mod);
3252 
3253 	return err;
3254 }
3255 
unknown_module_param_cb(char * param,char * val,const char * modname,void * arg)3256 static int unknown_module_param_cb(char *param, char *val, const char *modname,
3257 				   void *arg)
3258 {
3259 	struct module *mod = arg;
3260 	int ret;
3261 
3262 	if (strcmp(param, "async_probe") == 0) {
3263 		if (kstrtobool(val, &mod->async_probe_requested))
3264 			mod->async_probe_requested = true;
3265 		return 0;
3266 	}
3267 
3268 	/* Check for magic 'dyndbg' arg */
3269 	ret = ddebug_dyndbg_module_param_cb(param, val, modname);
3270 	if (ret != 0)
3271 		pr_warn("%s: unknown parameter '%s' ignored\n", modname, param);
3272 	return 0;
3273 }
3274 
3275 /* Module within temporary copy, this doesn't do any allocation  */
early_mod_check(struct load_info * info,int flags)3276 static int early_mod_check(struct load_info *info, int flags)
3277 {
3278 	int err;
3279 
3280 	/*
3281 	 * Now that we know we have the correct module name, check
3282 	 * if it's blacklisted.
3283 	 */
3284 	if (blacklisted(info->name)) {
3285 		pr_err("Module %s is blacklisted\n", info->name);
3286 		return -EPERM;
3287 	}
3288 
3289 	err = rewrite_section_headers(info, flags);
3290 	if (err)
3291 		return err;
3292 
3293 	/* Check module struct version now, before we try to use module. */
3294 	if (!check_modstruct_version(info, info->mod))
3295 		return -ENOEXEC;
3296 
3297 	err = check_modinfo(info->mod, info, flags);
3298 	if (err)
3299 		return err;
3300 
3301 	mutex_lock(&module_mutex);
3302 	err = module_patient_check_exists(info->mod->name, FAIL_DUP_MOD_BECOMING);
3303 	mutex_unlock(&module_mutex);
3304 
3305 	return err;
3306 }
3307 
3308 /*
3309  * Allocate and load the module: note that size of section 0 is always
3310  * zero, and we rely on this for optional sections.
3311  */
load_module(struct load_info * info,const char __user * uargs,int flags)3312 static int load_module(struct load_info *info, const char __user *uargs,
3313 		       int flags)
3314 {
3315 	struct module *mod;
3316 	bool module_allocated = false;
3317 	long err = 0;
3318 	char *after_dashes;
3319 
3320 	/*
3321 	 * Do the signature check (if any) first. All that
3322 	 * the signature check needs is info->len, it does
3323 	 * not need any of the section info. That can be
3324 	 * set up later. This will minimize the chances
3325 	 * of a corrupt module causing problems before
3326 	 * we even get to the signature check.
3327 	 *
3328 	 * The check will also adjust info->len by stripping
3329 	 * off the sig length at the end of the module, making
3330 	 * checks against info->len more correct.
3331 	 */
3332 	err = module_sig_check(info, flags);
3333 	if (err)
3334 		goto free_copy;
3335 
3336 	/*
3337 	 * Do basic sanity checks against the ELF header and
3338 	 * sections. Cache useful sections and set the
3339 	 * info->mod to the userspace passed struct module.
3340 	 */
3341 	err = elf_validity_cache_copy(info, flags);
3342 	if (err)
3343 		goto free_copy;
3344 
3345 	err = early_mod_check(info, flags);
3346 	if (err)
3347 		goto free_copy;
3348 
3349 	/* Figure out module layout, and allocate all the memory. */
3350 	mod = layout_and_allocate(info, flags);
3351 	if (IS_ERR(mod)) {
3352 		err = PTR_ERR(mod);
3353 		goto free_copy;
3354 	}
3355 
3356 	module_allocated = true;
3357 
3358 	audit_log_kern_module(mod->name);
3359 
3360 	/* Reserve our place in the list. */
3361 	err = add_unformed_module(mod);
3362 	if (err)
3363 		goto free_module;
3364 
3365 	/*
3366 	 * We are tainting your kernel if your module gets into
3367 	 * the modules linked list somehow.
3368 	 */
3369 	module_augment_kernel_taints(mod, info);
3370 
3371 	/* To avoid stressing percpu allocator, do this once we're unique. */
3372 	err = percpu_modalloc(mod, info);
3373 	if (err)
3374 		goto unlink_mod;
3375 
3376 	/* Now module is in final location, initialize linked lists, etc. */
3377 	err = module_unload_init(mod);
3378 	if (err)
3379 		goto unlink_mod;
3380 
3381 	init_param_lock(mod);
3382 
3383 	/*
3384 	 * Now we've got everything in the final locations, we can
3385 	 * find optional sections.
3386 	 */
3387 	err = find_module_sections(mod, info);
3388 	if (err)
3389 		goto free_unload;
3390 
3391 	err = check_export_symbol_versions(mod);
3392 	if (err)
3393 		goto free_unload;
3394 
3395 	/* Set up MODINFO_ATTR fields */
3396 	setup_modinfo(mod, info);
3397 
3398 	/* Fix up syms, so that st_value is a pointer to location. */
3399 	err = simplify_symbols(mod, info);
3400 	if (err < 0)
3401 		goto free_modinfo;
3402 
3403 	err = apply_relocations(mod, info);
3404 	if (err < 0)
3405 		goto free_modinfo;
3406 
3407 	err = post_relocation(mod, info);
3408 	if (err < 0)
3409 		goto free_modinfo;
3410 
3411 	flush_module_icache(mod);
3412 
3413 	/* Now copy in args */
3414 	mod->args = strndup_user(uargs, ~0UL >> 1);
3415 	if (IS_ERR(mod->args)) {
3416 		err = PTR_ERR(mod->args);
3417 		goto free_arch_cleanup;
3418 	}
3419 
3420 	init_build_id(mod, info);
3421 
3422 	/* Ftrace init must be called in the MODULE_STATE_UNFORMED state */
3423 	ftrace_module_init(mod);
3424 
3425 	/* Finally it's fully formed, ready to start executing. */
3426 	err = complete_formation(mod, info);
3427 	if (err)
3428 		goto ddebug_cleanup;
3429 
3430 	err = prepare_coming_module(mod);
3431 	if (err)
3432 		goto bug_cleanup;
3433 
3434 	mod->async_probe_requested = async_probe;
3435 
3436 	/* Module is ready to execute: parsing args may do that. */
3437 	after_dashes = parse_args(mod->name, mod->args, mod->kp, mod->num_kp,
3438 				  -32768, 32767, mod,
3439 				  unknown_module_param_cb);
3440 	if (IS_ERR(after_dashes)) {
3441 		err = PTR_ERR(after_dashes);
3442 		goto coming_cleanup;
3443 	} else if (after_dashes) {
3444 		pr_warn("%s: parameters '%s' after `--' ignored\n",
3445 		       mod->name, after_dashes);
3446 	}
3447 
3448 	/* Link in to sysfs. */
3449 	err = mod_sysfs_setup(mod, info, mod->kp, mod->num_kp);
3450 	if (err < 0)
3451 		goto coming_cleanup;
3452 
3453 	if (is_livepatch_module(mod)) {
3454 		err = copy_module_elf(mod, info);
3455 		if (err < 0)
3456 			goto sysfs_cleanup;
3457 	}
3458 
3459 	/* Get rid of temporary copy. */
3460 	free_copy(info, flags);
3461 
3462 	codetag_load_module(mod);
3463 
3464 	/* Done! */
3465 	trace_module_load(mod);
3466 
3467 	return do_init_module(mod);
3468 
3469  sysfs_cleanup:
3470 	mod_sysfs_teardown(mod);
3471  coming_cleanup:
3472 	mod->state = MODULE_STATE_GOING;
3473 	destroy_params(mod->kp, mod->num_kp);
3474 	blocking_notifier_call_chain(&module_notify_list,
3475 				     MODULE_STATE_GOING, mod);
3476 	klp_module_going(mod);
3477  bug_cleanup:
3478 	mod->state = MODULE_STATE_GOING;
3479 	/* module_bug_cleanup needs module_mutex protection */
3480 	mutex_lock(&module_mutex);
3481 	module_bug_cleanup(mod);
3482 	mutex_unlock(&module_mutex);
3483 
3484  ddebug_cleanup:
3485 	ftrace_release_mod(mod);
3486 	synchronize_rcu();
3487 	kfree(mod->args);
3488  free_arch_cleanup:
3489 	module_arch_cleanup(mod);
3490  free_modinfo:
3491 	free_modinfo(mod);
3492  free_unload:
3493 	module_unload_free(mod);
3494  unlink_mod:
3495 	mutex_lock(&module_mutex);
3496 	/* Unlink carefully: kallsyms could be walking list. */
3497 	list_del_rcu(&mod->list);
3498 	mod_tree_remove(mod);
3499 	wake_up_all(&module_wq);
3500 	/* Wait for RCU-sched synchronizing before releasing mod->list. */
3501 	synchronize_rcu();
3502 	mutex_unlock(&module_mutex);
3503  free_module:
3504 	mod_stat_bump_invalid(info, flags);
3505 	/* Free lock-classes; relies on the preceding sync_rcu() */
3506 	for_class_mod_mem_type(type, core_data) {
3507 		lockdep_free_key_range(mod->mem[type].base,
3508 				       mod->mem[type].size);
3509 	}
3510 
3511 	module_deallocate(mod, info);
3512  free_copy:
3513 	/*
3514 	 * The info->len is always set. We distinguish between
3515 	 * failures once the proper module was allocated and
3516 	 * before that.
3517 	 */
3518 	if (!module_allocated)
3519 		mod_stat_bump_becoming(info, flags);
3520 	free_copy(info, flags);
3521 	return err;
3522 }
3523 
SYSCALL_DEFINE3(init_module,void __user *,umod,unsigned long,len,const char __user *,uargs)3524 SYSCALL_DEFINE3(init_module, void __user *, umod,
3525 		unsigned long, len, const char __user *, uargs)
3526 {
3527 	int err;
3528 	struct load_info info = { };
3529 
3530 	err = may_init_module();
3531 	if (err)
3532 		return err;
3533 
3534 	pr_debug("init_module: umod=%p, len=%lu, uargs=%p\n",
3535 	       umod, len, uargs);
3536 
3537 	err = copy_module_from_user(umod, len, &info);
3538 	if (err) {
3539 		mod_stat_inc(&failed_kreads);
3540 		mod_stat_add_long(len, &invalid_kread_bytes);
3541 		return err;
3542 	}
3543 
3544 	return load_module(&info, uargs, 0);
3545 }
3546 
3547 struct idempotent {
3548 	const void *cookie;
3549 	struct hlist_node entry;
3550 	struct completion complete;
3551 	int ret;
3552 };
3553 
3554 #define IDEM_HASH_BITS 8
3555 static struct hlist_head idem_hash[1 << IDEM_HASH_BITS];
3556 static DEFINE_SPINLOCK(idem_lock);
3557 
idempotent(struct idempotent * u,const void * cookie)3558 static bool idempotent(struct idempotent *u, const void *cookie)
3559 {
3560 	int hash = hash_ptr(cookie, IDEM_HASH_BITS);
3561 	struct hlist_head *head = idem_hash + hash;
3562 	struct idempotent *existing;
3563 	bool first;
3564 
3565 	u->ret = -EINTR;
3566 	u->cookie = cookie;
3567 	init_completion(&u->complete);
3568 
3569 	spin_lock(&idem_lock);
3570 	first = true;
3571 	hlist_for_each_entry(existing, head, entry) {
3572 		if (existing->cookie != cookie)
3573 			continue;
3574 		first = false;
3575 		break;
3576 	}
3577 	hlist_add_head(&u->entry, idem_hash + hash);
3578 	spin_unlock(&idem_lock);
3579 
3580 	return !first;
3581 }
3582 
3583 /*
3584  * We were the first one with 'cookie' on the list, and we ended
3585  * up completing the operation. We now need to walk the list,
3586  * remove everybody - which includes ourselves - fill in the return
3587  * value, and then complete the operation.
3588  */
idempotent_complete(struct idempotent * u,int ret)3589 static int idempotent_complete(struct idempotent *u, int ret)
3590 {
3591 	const void *cookie = u->cookie;
3592 	int hash = hash_ptr(cookie, IDEM_HASH_BITS);
3593 	struct hlist_head *head = idem_hash + hash;
3594 	struct hlist_node *next;
3595 	struct idempotent *pos;
3596 
3597 	spin_lock(&idem_lock);
3598 	hlist_for_each_entry_safe(pos, next, head, entry) {
3599 		if (pos->cookie != cookie)
3600 			continue;
3601 		hlist_del_init(&pos->entry);
3602 		pos->ret = ret;
3603 		complete(&pos->complete);
3604 	}
3605 	spin_unlock(&idem_lock);
3606 	return ret;
3607 }
3608 
3609 /*
3610  * Wait for the idempotent worker.
3611  *
3612  * If we get interrupted, we need to remove ourselves from the
3613  * the idempotent list, and the completion may still come in.
3614  *
3615  * The 'idem_lock' protects against the race, and 'idem.ret' was
3616  * initialized to -EINTR and is thus always the right return
3617  * value even if the idempotent work then completes between
3618  * the wait_for_completion and the cleanup.
3619  */
idempotent_wait_for_completion(struct idempotent * u)3620 static int idempotent_wait_for_completion(struct idempotent *u)
3621 {
3622 	if (wait_for_completion_interruptible(&u->complete)) {
3623 		spin_lock(&idem_lock);
3624 		if (!hlist_unhashed(&u->entry))
3625 			hlist_del(&u->entry);
3626 		spin_unlock(&idem_lock);
3627 	}
3628 	return u->ret;
3629 }
3630 
init_module_from_file(struct file * f,const char __user * uargs,int flags)3631 static int init_module_from_file(struct file *f, const char __user * uargs, int flags)
3632 {
3633 	struct load_info info = { };
3634 	void *buf = NULL;
3635 	int len;
3636 
3637 	len = kernel_read_file(f, 0, &buf, INT_MAX, NULL, READING_MODULE);
3638 	if (len < 0) {
3639 		mod_stat_inc(&failed_kreads);
3640 		return len;
3641 	}
3642 
3643 	if (flags & MODULE_INIT_COMPRESSED_FILE) {
3644 		int err = module_decompress(&info, buf, len);
3645 		vfree(buf); /* compressed data is no longer needed */
3646 		if (err) {
3647 			mod_stat_inc(&failed_decompress);
3648 			mod_stat_add_long(len, &invalid_decompress_bytes);
3649 			return err;
3650 		}
3651 	} else {
3652 		info.hdr = buf;
3653 		info.len = len;
3654 	}
3655 
3656 	return load_module(&info, uargs, flags);
3657 }
3658 
idempotent_init_module(struct file * f,const char __user * uargs,int flags)3659 static int idempotent_init_module(struct file *f, const char __user * uargs, int flags)
3660 {
3661 	struct idempotent idem;
3662 
3663 	if (!f || !(f->f_mode & FMODE_READ))
3664 		return -EBADF;
3665 
3666 	/* Are we the winners of the race and get to do this? */
3667 	if (!idempotent(&idem, file_inode(f))) {
3668 		int ret = init_module_from_file(f, uargs, flags);
3669 		return idempotent_complete(&idem, ret);
3670 	}
3671 
3672 	/*
3673 	 * Somebody else won the race and is loading the module.
3674 	 */
3675 	return idempotent_wait_for_completion(&idem);
3676 }
3677 
SYSCALL_DEFINE3(finit_module,int,fd,const char __user *,uargs,int,flags)3678 SYSCALL_DEFINE3(finit_module, int, fd, const char __user *, uargs, int, flags)
3679 {
3680 	int err;
3681 	struct fd f;
3682 
3683 	err = may_init_module();
3684 	if (err)
3685 		return err;
3686 
3687 	pr_debug("finit_module: fd=%d, uargs=%p, flags=%i\n", fd, uargs, flags);
3688 
3689 	if (flags & ~(MODULE_INIT_IGNORE_MODVERSIONS
3690 		      |MODULE_INIT_IGNORE_VERMAGIC
3691 		      |MODULE_INIT_COMPRESSED_FILE))
3692 		return -EINVAL;
3693 
3694 	f = fdget(fd);
3695 	err = idempotent_init_module(fd_file(f), uargs, flags);
3696 	fdput(f);
3697 	return err;
3698 }
3699 
3700 /* Keep in sync with MODULE_FLAGS_BUF_SIZE !!! */
module_flags(struct module * mod,char * buf,bool show_state)3701 char *module_flags(struct module *mod, char *buf, bool show_state)
3702 {
3703 	int bx = 0;
3704 
3705 	BUG_ON(mod->state == MODULE_STATE_UNFORMED);
3706 	if (!mod->taints && !show_state)
3707 		goto out;
3708 	if (mod->taints ||
3709 	    mod->state == MODULE_STATE_GOING ||
3710 	    mod->state == MODULE_STATE_COMING) {
3711 		buf[bx++] = '(';
3712 		bx += module_flags_taint(mod->taints, buf + bx);
3713 		/* Show a - for module-is-being-unloaded */
3714 		if (mod->state == MODULE_STATE_GOING && show_state)
3715 			buf[bx++] = '-';
3716 		/* Show a + for module-is-being-loaded */
3717 		if (mod->state == MODULE_STATE_COMING && show_state)
3718 			buf[bx++] = '+';
3719 		buf[bx++] = ')';
3720 	}
3721 out:
3722 	buf[bx] = '\0';
3723 
3724 	return buf;
3725 }
3726 
3727 /* Given an address, look for it in the module exception tables. */
search_module_extables(unsigned long addr)3728 const struct exception_table_entry *search_module_extables(unsigned long addr)
3729 {
3730 	const struct exception_table_entry *e = NULL;
3731 	struct module *mod;
3732 
3733 	preempt_disable();
3734 	mod = __module_address(addr);
3735 	if (!mod)
3736 		goto out;
3737 
3738 	if (!mod->num_exentries)
3739 		goto out;
3740 
3741 	e = search_extable(mod->extable,
3742 			   mod->num_exentries,
3743 			   addr);
3744 out:
3745 	preempt_enable();
3746 
3747 	/*
3748 	 * Now, if we found one, we are running inside it now, hence
3749 	 * we cannot unload the module, hence no refcnt needed.
3750 	 */
3751 	return e;
3752 }
3753 
3754 /**
3755  * is_module_address() - is this address inside a module?
3756  * @addr: the address to check.
3757  *
3758  * See is_module_text_address() if you simply want to see if the address
3759  * is code (not data).
3760  */
is_module_address(unsigned long addr)3761 bool is_module_address(unsigned long addr)
3762 {
3763 	bool ret;
3764 
3765 	preempt_disable();
3766 	ret = __module_address(addr) != NULL;
3767 	preempt_enable();
3768 
3769 	return ret;
3770 }
3771 
3772 /**
3773  * __module_address() - get the module which contains an address.
3774  * @addr: the address.
3775  *
3776  * Must be called with preempt disabled or module mutex held so that
3777  * module doesn't get freed during this.
3778  */
__module_address(unsigned long addr)3779 struct module *__module_address(unsigned long addr)
3780 {
3781 	struct module *mod;
3782 
3783 	if (addr >= mod_tree.addr_min && addr <= mod_tree.addr_max)
3784 		goto lookup;
3785 
3786 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
3787 	if (addr >= mod_tree.data_addr_min && addr <= mod_tree.data_addr_max)
3788 		goto lookup;
3789 #endif
3790 
3791 	return NULL;
3792 
3793 lookup:
3794 	module_assert_mutex_or_preempt();
3795 
3796 	mod = mod_find(addr, &mod_tree);
3797 	if (mod) {
3798 		BUG_ON(!within_module(addr, mod));
3799 		if (mod->state == MODULE_STATE_UNFORMED)
3800 			mod = NULL;
3801 	}
3802 	return mod;
3803 }
3804 
3805 /**
3806  * is_module_text_address() - is this address inside module code?
3807  * @addr: the address to check.
3808  *
3809  * See is_module_address() if you simply want to see if the address is
3810  * anywhere in a module.  See kernel_text_address() for testing if an
3811  * address corresponds to kernel or module code.
3812  */
is_module_text_address(unsigned long addr)3813 bool is_module_text_address(unsigned long addr)
3814 {
3815 	bool ret;
3816 
3817 	preempt_disable();
3818 	ret = __module_text_address(addr) != NULL;
3819 	preempt_enable();
3820 
3821 	return ret;
3822 }
3823 
3824 /**
3825  * __module_text_address() - get the module whose code contains an address.
3826  * @addr: the address.
3827  *
3828  * Must be called with preempt disabled or module mutex held so that
3829  * module doesn't get freed during this.
3830  */
__module_text_address(unsigned long addr)3831 struct module *__module_text_address(unsigned long addr)
3832 {
3833 	struct module *mod = __module_address(addr);
3834 	if (mod) {
3835 		/* Make sure it's within the text section. */
3836 		if (!within_module_mem_type(addr, mod, MOD_TEXT) &&
3837 		    !within_module_mem_type(addr, mod, MOD_INIT_TEXT))
3838 			mod = NULL;
3839 	}
3840 	return mod;
3841 }
3842 
3843 /* Don't grab lock, we're oopsing. */
print_modules(void)3844 void print_modules(void)
3845 {
3846 	struct module *mod;
3847 	char buf[MODULE_FLAGS_BUF_SIZE];
3848 
3849 	printk(KERN_DEFAULT "Modules linked in:");
3850 	/* Most callers should already have preempt disabled, but make sure */
3851 	preempt_disable();
3852 	list_for_each_entry_rcu(mod, &modules, list) {
3853 		if (mod->state == MODULE_STATE_UNFORMED)
3854 			continue;
3855 		pr_cont(" %s%s", mod->name, module_flags(mod, buf, true));
3856 	}
3857 
3858 	print_unloaded_tainted_modules();
3859 	preempt_enable();
3860 	if (last_unloaded_module.name[0])
3861 		pr_cont(" [last unloaded: %s%s]", last_unloaded_module.name,
3862 			last_unloaded_module.taints);
3863 	pr_cont("\n");
3864 }
3865 
3866 #ifdef CONFIG_MODULE_DEBUGFS
3867 struct dentry *mod_debugfs_root;
3868 
module_debugfs_init(void)3869 static int module_debugfs_init(void)
3870 {
3871 	mod_debugfs_root = debugfs_create_dir("modules", NULL);
3872 	return 0;
3873 }
3874 module_init(module_debugfs_init);
3875 #endif
3876