1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * User-space Probes (UProbes)
4 *
5 * Copyright (C) IBM Corporation, 2008-2012
6 * Authors:
7 * Srikar Dronamraju
8 * Jim Keniston
9 * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra
10 */
11
12 #include <linux/kernel.h>
13 #include <linux/highmem.h>
14 #include <linux/pagemap.h> /* read_mapping_page */
15 #include <linux/slab.h>
16 #include <linux/sched.h>
17 #include <linux/sched/mm.h>
18 #include <linux/sched/coredump.h>
19 #include <linux/export.h>
20 #include <linux/rmap.h> /* anon_vma_prepare */
21 #include <linux/mmu_notifier.h>
22 #include <linux/swap.h> /* folio_free_swap */
23 #include <linux/ptrace.h> /* user_enable_single_step */
24 #include <linux/kdebug.h> /* notifier mechanism */
25 #include <linux/percpu-rwsem.h>
26 #include <linux/task_work.h>
27 #include <linux/shmem_fs.h>
28 #include <linux/khugepaged.h>
29
30 #include <linux/uprobes.h>
31
32 #undef CREATE_TRACE_POINTS
33 #include <trace/hooks/mm.h>
34
35 #define UINSNS_PER_PAGE (PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
36 #define MAX_UPROBE_XOL_SLOTS UINSNS_PER_PAGE
37
38 static struct rb_root uprobes_tree = RB_ROOT;
39 /*
40 * allows us to skip the uprobe_mmap if there are no uprobe events active
41 * at this time. Probably a fine grained per inode count is better?
42 */
43 #define no_uprobe_events() RB_EMPTY_ROOT(&uprobes_tree)
44
45 static DEFINE_RWLOCK(uprobes_treelock); /* serialize rbtree access */
46 static seqcount_rwlock_t uprobes_seqcount = SEQCNT_RWLOCK_ZERO(uprobes_seqcount, &uprobes_treelock);
47
48 DEFINE_STATIC_SRCU(uprobes_srcu);
49
50 #define UPROBES_HASH_SZ 13
51 /* serialize uprobe->pending_list */
52 static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
53 #define uprobes_mmap_hash(v) (&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
54
55 DEFINE_STATIC_PERCPU_RWSEM(dup_mmap_sem);
56
57 /* Have a copy of original instruction */
58 #define UPROBE_COPY_INSN 0
59
60 struct uprobe {
61 struct rb_node rb_node; /* node in the rb tree */
62 refcount_t ref;
63 struct rw_semaphore register_rwsem;
64 struct rw_semaphore consumer_rwsem;
65 struct list_head pending_list;
66 struct list_head consumers;
67 struct inode *inode; /* Also hold a ref to inode */
68 struct rcu_head rcu;
69 loff_t offset;
70 loff_t ref_ctr_offset;
71 unsigned long flags;
72
73 /*
74 * The generic code assumes that it has two members of unknown type
75 * owned by the arch-specific code:
76 *
77 * insn - copy_insn() saves the original instruction here for
78 * arch_uprobe_analyze_insn().
79 *
80 * ixol - potentially modified instruction to execute out of
81 * line, copied to xol_area by xol_get_insn_slot().
82 */
83 struct arch_uprobe arch;
84 };
85
86 struct delayed_uprobe {
87 struct list_head list;
88 struct uprobe *uprobe;
89 struct mm_struct *mm;
90 };
91
92 static DEFINE_MUTEX(delayed_uprobe_lock);
93 static LIST_HEAD(delayed_uprobe_list);
94
95 /*
96 * Execute out of line area: anonymous executable mapping installed
97 * by the probed task to execute the copy of the original instruction
98 * mangled by set_swbp().
99 *
100 * On a breakpoint hit, thread contests for a slot. It frees the
101 * slot after singlestep. Currently a fixed number of slots are
102 * allocated.
103 */
104 struct xol_area {
105 wait_queue_head_t wq; /* if all slots are busy */
106 atomic_t slot_count; /* number of in-use slots */
107 unsigned long *bitmap; /* 0 = free slot */
108
109 struct page *page;
110 /*
111 * We keep the vma's vm_start rather than a pointer to the vma
112 * itself. The probed process or a naughty kernel module could make
113 * the vma go away, and we must handle that reasonably gracefully.
114 */
115 unsigned long vaddr; /* Page(s) of instruction slots */
116 };
117
uprobe_warn(struct task_struct * t,const char * msg)118 static void uprobe_warn(struct task_struct *t, const char *msg)
119 {
120 pr_warn("uprobe: %s:%d failed to %s\n", current->comm, current->pid, msg);
121 }
122
123 /*
124 * valid_vma: Verify if the specified vma is an executable vma
125 * Relax restrictions while unregistering: vm_flags might have
126 * changed after breakpoint was inserted.
127 * - is_register: indicates if we are in register context.
128 * - Return 1 if the specified virtual address is in an
129 * executable vma.
130 */
valid_vma(struct vm_area_struct * vma,bool is_register)131 static bool valid_vma(struct vm_area_struct *vma, bool is_register)
132 {
133 vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_MAYSHARE;
134
135 if (is_register)
136 flags |= VM_WRITE;
137
138 return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC;
139 }
140
offset_to_vaddr(struct vm_area_struct * vma,loff_t offset)141 static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset)
142 {
143 return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
144 }
145
vaddr_to_offset(struct vm_area_struct * vma,unsigned long vaddr)146 static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr)
147 {
148 return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start);
149 }
150
151 /**
152 * __replace_page - replace page in vma by new page.
153 * based on replace_page in mm/ksm.c
154 *
155 * @vma: vma that holds the pte pointing to page
156 * @addr: address the old @page is mapped at
157 * @old_page: the page we are replacing by new_page
158 * @new_page: the modified page we replace page by
159 *
160 * If @new_page is NULL, only unmap @old_page.
161 *
162 * Returns 0 on success, negative error code otherwise.
163 */
__replace_page(struct vm_area_struct * vma,unsigned long addr,struct page * old_page,struct page * new_page)164 static int __replace_page(struct vm_area_struct *vma, unsigned long addr,
165 struct page *old_page, struct page *new_page)
166 {
167 struct folio *old_folio = page_folio(old_page);
168 struct folio *new_folio;
169 struct mm_struct *mm = vma->vm_mm;
170 DEFINE_FOLIO_VMA_WALK(pvmw, old_folio, vma, addr, 0);
171 int err;
172 struct mmu_notifier_range range;
173 pte_t pte;
174
175 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, addr,
176 addr + PAGE_SIZE);
177
178 if (new_page) {
179 new_folio = page_folio(new_page);
180 err = mem_cgroup_charge(new_folio, vma->vm_mm, GFP_KERNEL);
181 if (err)
182 return err;
183 }
184
185 /* For folio_free_swap() below */
186 folio_lock(old_folio);
187
188 mmu_notifier_invalidate_range_start(&range);
189 err = -EAGAIN;
190 if (!page_vma_mapped_walk(&pvmw))
191 goto unlock;
192 VM_BUG_ON_PAGE(addr != pvmw.address, old_page);
193 pte = ptep_get(pvmw.pte);
194
195 /*
196 * Handle PFN swap PTES, such as device-exclusive ones, that actually
197 * map pages: simply trigger GUP again to fix it up.
198 */
199 if (unlikely(!pte_present(pte))) {
200 page_vma_mapped_walk_done(&pvmw);
201 goto unlock;
202 }
203
204 if (new_page) {
205 folio_get(new_folio);
206 folio_add_new_anon_rmap(new_folio, vma, addr, RMAP_EXCLUSIVE);
207 folio_add_lru_vma(new_folio, vma);
208 trace_android_vh_uprobes_replace_page(new_folio, old_folio);
209 } else
210 /* no new page, just dec_mm_counter for old_page */
211 dec_mm_counter(mm, MM_ANONPAGES);
212
213 if (!folio_test_anon(old_folio)) {
214 dec_mm_counter(mm, mm_counter_file(old_folio));
215 inc_mm_counter(mm, MM_ANONPAGES);
216 }
217
218 flush_cache_page(vma, addr, pte_pfn(pte));
219 ptep_clear_flush(vma, addr, pvmw.pte);
220 if (new_page)
221 set_pte_at(mm, addr, pvmw.pte,
222 mk_pte(new_page, vma->vm_page_prot));
223
224 folio_remove_rmap_pte(old_folio, old_page, vma);
225 if (!folio_mapped(old_folio))
226 folio_free_swap(old_folio);
227 page_vma_mapped_walk_done(&pvmw);
228 folio_put(old_folio);
229
230 err = 0;
231 unlock:
232 mmu_notifier_invalidate_range_end(&range);
233 folio_unlock(old_folio);
234 return err;
235 }
236
237 /**
238 * is_swbp_insn - check if instruction is breakpoint instruction.
239 * @insn: instruction to be checked.
240 * Default implementation of is_swbp_insn
241 * Returns true if @insn is a breakpoint instruction.
242 */
is_swbp_insn(uprobe_opcode_t * insn)243 bool __weak is_swbp_insn(uprobe_opcode_t *insn)
244 {
245 return *insn == UPROBE_SWBP_INSN;
246 }
247
248 /**
249 * is_trap_insn - check if instruction is breakpoint instruction.
250 * @insn: instruction to be checked.
251 * Default implementation of is_trap_insn
252 * Returns true if @insn is a breakpoint instruction.
253 *
254 * This function is needed for the case where an architecture has multiple
255 * trap instructions (like powerpc).
256 */
is_trap_insn(uprobe_opcode_t * insn)257 bool __weak is_trap_insn(uprobe_opcode_t *insn)
258 {
259 return is_swbp_insn(insn);
260 }
261
copy_from_page(struct page * page,unsigned long vaddr,void * dst,int len)262 static void copy_from_page(struct page *page, unsigned long vaddr, void *dst, int len)
263 {
264 void *kaddr = kmap_atomic(page);
265 memcpy(dst, kaddr + (vaddr & ~PAGE_MASK), len);
266 kunmap_atomic(kaddr);
267 }
268
copy_to_page(struct page * page,unsigned long vaddr,const void * src,int len)269 static void copy_to_page(struct page *page, unsigned long vaddr, const void *src, int len)
270 {
271 void *kaddr = kmap_atomic(page);
272 memcpy(kaddr + (vaddr & ~PAGE_MASK), src, len);
273 kunmap_atomic(kaddr);
274 }
275
verify_opcode(struct page * page,unsigned long vaddr,uprobe_opcode_t * new_opcode)276 static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *new_opcode)
277 {
278 uprobe_opcode_t old_opcode;
279 bool is_swbp;
280
281 /*
282 * Note: We only check if the old_opcode is UPROBE_SWBP_INSN here.
283 * We do not check if it is any other 'trap variant' which could
284 * be conditional trap instruction such as the one powerpc supports.
285 *
286 * The logic is that we do not care if the underlying instruction
287 * is a trap variant; uprobes always wins over any other (gdb)
288 * breakpoint.
289 */
290 copy_from_page(page, vaddr, &old_opcode, UPROBE_SWBP_INSN_SIZE);
291 is_swbp = is_swbp_insn(&old_opcode);
292
293 if (is_swbp_insn(new_opcode)) {
294 if (is_swbp) /* register: already installed? */
295 return 0;
296 } else {
297 if (!is_swbp) /* unregister: was it changed by us? */
298 return 0;
299 }
300
301 return 1;
302 }
303
304 static struct delayed_uprobe *
delayed_uprobe_check(struct uprobe * uprobe,struct mm_struct * mm)305 delayed_uprobe_check(struct uprobe *uprobe, struct mm_struct *mm)
306 {
307 struct delayed_uprobe *du;
308
309 list_for_each_entry(du, &delayed_uprobe_list, list)
310 if (du->uprobe == uprobe && du->mm == mm)
311 return du;
312 return NULL;
313 }
314
delayed_uprobe_add(struct uprobe * uprobe,struct mm_struct * mm)315 static int delayed_uprobe_add(struct uprobe *uprobe, struct mm_struct *mm)
316 {
317 struct delayed_uprobe *du;
318
319 if (delayed_uprobe_check(uprobe, mm))
320 return 0;
321
322 du = kzalloc(sizeof(*du), GFP_KERNEL);
323 if (!du)
324 return -ENOMEM;
325
326 du->uprobe = uprobe;
327 du->mm = mm;
328 list_add(&du->list, &delayed_uprobe_list);
329 return 0;
330 }
331
delayed_uprobe_delete(struct delayed_uprobe * du)332 static void delayed_uprobe_delete(struct delayed_uprobe *du)
333 {
334 if (WARN_ON(!du))
335 return;
336 list_del(&du->list);
337 kfree(du);
338 }
339
delayed_uprobe_remove(struct uprobe * uprobe,struct mm_struct * mm)340 static void delayed_uprobe_remove(struct uprobe *uprobe, struct mm_struct *mm)
341 {
342 struct list_head *pos, *q;
343 struct delayed_uprobe *du;
344
345 if (!uprobe && !mm)
346 return;
347
348 list_for_each_safe(pos, q, &delayed_uprobe_list) {
349 du = list_entry(pos, struct delayed_uprobe, list);
350
351 if (uprobe && du->uprobe != uprobe)
352 continue;
353 if (mm && du->mm != mm)
354 continue;
355
356 delayed_uprobe_delete(du);
357 }
358 }
359
valid_ref_ctr_vma(struct uprobe * uprobe,struct vm_area_struct * vma)360 static bool valid_ref_ctr_vma(struct uprobe *uprobe,
361 struct vm_area_struct *vma)
362 {
363 unsigned long vaddr = offset_to_vaddr(vma, uprobe->ref_ctr_offset);
364
365 return uprobe->ref_ctr_offset &&
366 vma->vm_file &&
367 file_inode(vma->vm_file) == uprobe->inode &&
368 (vma->vm_flags & (VM_WRITE|VM_SHARED)) == VM_WRITE &&
369 vma->vm_start <= vaddr &&
370 vma->vm_end > vaddr;
371 }
372
373 static struct vm_area_struct *
find_ref_ctr_vma(struct uprobe * uprobe,struct mm_struct * mm)374 find_ref_ctr_vma(struct uprobe *uprobe, struct mm_struct *mm)
375 {
376 VMA_ITERATOR(vmi, mm, 0);
377 struct vm_area_struct *tmp;
378
379 for_each_vma(vmi, tmp)
380 if (valid_ref_ctr_vma(uprobe, tmp))
381 return tmp;
382
383 return NULL;
384 }
385
386 static int
__update_ref_ctr(struct mm_struct * mm,unsigned long vaddr,short d)387 __update_ref_ctr(struct mm_struct *mm, unsigned long vaddr, short d)
388 {
389 void *kaddr;
390 struct page *page;
391 int ret;
392 short *ptr;
393
394 if (!vaddr || !d)
395 return -EINVAL;
396
397 ret = get_user_pages_remote(mm, vaddr, 1,
398 FOLL_WRITE, &page, NULL);
399 if (unlikely(ret <= 0)) {
400 /*
401 * We are asking for 1 page. If get_user_pages_remote() fails,
402 * it may return 0, in that case we have to return error.
403 */
404 return ret == 0 ? -EBUSY : ret;
405 }
406
407 kaddr = kmap_atomic(page);
408 ptr = kaddr + (vaddr & ~PAGE_MASK);
409
410 if (unlikely(*ptr + d < 0)) {
411 pr_warn("ref_ctr going negative. vaddr: 0x%lx, "
412 "curr val: %d, delta: %d\n", vaddr, *ptr, d);
413 ret = -EINVAL;
414 goto out;
415 }
416
417 *ptr += d;
418 ret = 0;
419 out:
420 kunmap_atomic(kaddr);
421 put_page(page);
422 return ret;
423 }
424
update_ref_ctr_warn(struct uprobe * uprobe,struct mm_struct * mm,short d)425 static void update_ref_ctr_warn(struct uprobe *uprobe,
426 struct mm_struct *mm, short d)
427 {
428 pr_warn("ref_ctr %s failed for inode: 0x%lx offset: "
429 "0x%llx ref_ctr_offset: 0x%llx of mm: 0x%pK\n",
430 d > 0 ? "increment" : "decrement", uprobe->inode->i_ino,
431 (unsigned long long) uprobe->offset,
432 (unsigned long long) uprobe->ref_ctr_offset, mm);
433 }
434
update_ref_ctr(struct uprobe * uprobe,struct mm_struct * mm,short d)435 static int update_ref_ctr(struct uprobe *uprobe, struct mm_struct *mm,
436 short d)
437 {
438 struct vm_area_struct *rc_vma;
439 unsigned long rc_vaddr;
440 int ret = 0;
441
442 rc_vma = find_ref_ctr_vma(uprobe, mm);
443
444 if (rc_vma) {
445 rc_vaddr = offset_to_vaddr(rc_vma, uprobe->ref_ctr_offset);
446 ret = __update_ref_ctr(mm, rc_vaddr, d);
447 if (ret)
448 update_ref_ctr_warn(uprobe, mm, d);
449
450 if (d > 0)
451 return ret;
452 }
453
454 mutex_lock(&delayed_uprobe_lock);
455 if (d > 0)
456 ret = delayed_uprobe_add(uprobe, mm);
457 else
458 delayed_uprobe_remove(uprobe, mm);
459 mutex_unlock(&delayed_uprobe_lock);
460
461 return ret;
462 }
463
464 /*
465 * NOTE:
466 * Expect the breakpoint instruction to be the smallest size instruction for
467 * the architecture. If an arch has variable length instruction and the
468 * breakpoint instruction is not of the smallest length instruction
469 * supported by that architecture then we need to modify is_trap_at_addr and
470 * uprobe_write_opcode accordingly. This would never be a problem for archs
471 * that have fixed length instructions.
472 *
473 * uprobe_write_opcode - write the opcode at a given virtual address.
474 * @auprobe: arch specific probepoint information.
475 * @mm: the probed process address space.
476 * @vaddr: the virtual address to store the opcode.
477 * @opcode: opcode to be written at @vaddr.
478 *
479 * Called with mm->mmap_lock held for read or write.
480 * Return 0 (success) or a negative errno.
481 */
uprobe_write_opcode(struct arch_uprobe * auprobe,struct mm_struct * mm,unsigned long vaddr,uprobe_opcode_t opcode)482 int uprobe_write_opcode(struct arch_uprobe *auprobe, struct mm_struct *mm,
483 unsigned long vaddr, uprobe_opcode_t opcode)
484 {
485 struct uprobe *uprobe;
486 struct page *old_page, *new_page;
487 struct vm_area_struct *vma;
488 int ret, is_register, ref_ctr_updated = 0;
489 bool orig_page_huge = false;
490 unsigned int gup_flags = FOLL_FORCE;
491
492 is_register = is_swbp_insn(&opcode);
493 uprobe = container_of(auprobe, struct uprobe, arch);
494
495 retry:
496 if (is_register)
497 gup_flags |= FOLL_SPLIT_PMD;
498 /* Read the page with vaddr into memory */
499 old_page = get_user_page_vma_remote(mm, vaddr, gup_flags, &vma);
500 if (IS_ERR(old_page))
501 return PTR_ERR(old_page);
502
503 ret = verify_opcode(old_page, vaddr, &opcode);
504 if (ret <= 0)
505 goto put_old;
506
507 if (is_zero_page(old_page)) {
508 ret = -EINVAL;
509 goto put_old;
510 }
511
512 if (WARN(!is_register && PageCompound(old_page),
513 "uprobe unregister should never work on compound page\n")) {
514 ret = -EINVAL;
515 goto put_old;
516 }
517
518 /* We are going to replace instruction, update ref_ctr. */
519 if (!ref_ctr_updated && uprobe->ref_ctr_offset) {
520 ret = update_ref_ctr(uprobe, mm, is_register ? 1 : -1);
521 if (ret)
522 goto put_old;
523
524 ref_ctr_updated = 1;
525 }
526
527 ret = 0;
528 if (!is_register && !PageAnon(old_page))
529 goto put_old;
530
531 ret = anon_vma_prepare(vma);
532 if (ret)
533 goto put_old;
534
535 ret = -ENOMEM;
536 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
537 if (!new_page)
538 goto put_old;
539
540 __SetPageUptodate(new_page);
541 copy_highpage(new_page, old_page);
542 copy_to_page(new_page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
543
544 if (!is_register) {
545 struct page *orig_page;
546 pgoff_t index;
547
548 VM_BUG_ON_PAGE(!PageAnon(old_page), old_page);
549
550 index = vaddr_to_offset(vma, vaddr & PAGE_MASK) >> PAGE_SHIFT;
551 orig_page = find_get_page(vma->vm_file->f_inode->i_mapping,
552 index);
553
554 if (orig_page) {
555 if (PageUptodate(orig_page) &&
556 pages_identical(new_page, orig_page)) {
557 /* let go new_page */
558 put_page(new_page);
559 new_page = NULL;
560
561 if (PageCompound(orig_page))
562 orig_page_huge = true;
563 }
564 put_page(orig_page);
565 }
566 }
567
568 ret = __replace_page(vma, vaddr & PAGE_MASK, old_page, new_page);
569 if (new_page)
570 put_page(new_page);
571 put_old:
572 put_page(old_page);
573
574 if (unlikely(ret == -EAGAIN))
575 goto retry;
576
577 /* Revert back reference counter if instruction update failed. */
578 if (ret && is_register && ref_ctr_updated)
579 update_ref_ctr(uprobe, mm, -1);
580
581 /* try collapse pmd for compound page */
582 if (!ret && orig_page_huge)
583 collapse_pte_mapped_thp(mm, vaddr, false);
584
585 return ret;
586 }
587
588 /**
589 * set_swbp - store breakpoint at a given address.
590 * @auprobe: arch specific probepoint information.
591 * @mm: the probed process address space.
592 * @vaddr: the virtual address to insert the opcode.
593 *
594 * For mm @mm, store the breakpoint instruction at @vaddr.
595 * Return 0 (success) or a negative errno.
596 */
set_swbp(struct arch_uprobe * auprobe,struct mm_struct * mm,unsigned long vaddr)597 int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
598 {
599 return uprobe_write_opcode(auprobe, mm, vaddr, UPROBE_SWBP_INSN);
600 }
601
602 /**
603 * set_orig_insn - Restore the original instruction.
604 * @mm: the probed process address space.
605 * @auprobe: arch specific probepoint information.
606 * @vaddr: the virtual address to insert the opcode.
607 *
608 * For mm @mm, restore the original opcode (opcode) at @vaddr.
609 * Return 0 (success) or a negative errno.
610 */
611 int __weak
set_orig_insn(struct arch_uprobe * auprobe,struct mm_struct * mm,unsigned long vaddr)612 set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
613 {
614 return uprobe_write_opcode(auprobe, mm, vaddr,
615 *(uprobe_opcode_t *)&auprobe->insn);
616 }
617
618 /* uprobe should have guaranteed positive refcount */
get_uprobe(struct uprobe * uprobe)619 static struct uprobe *get_uprobe(struct uprobe *uprobe)
620 {
621 refcount_inc(&uprobe->ref);
622 return uprobe;
623 }
624
625 /*
626 * uprobe should have guaranteed lifetime, which can be either of:
627 * - caller already has refcount taken (and wants an extra one);
628 * - uprobe is RCU protected and won't be freed until after grace period;
629 * - we are holding uprobes_treelock (for read or write, doesn't matter).
630 */
try_get_uprobe(struct uprobe * uprobe)631 static struct uprobe *try_get_uprobe(struct uprobe *uprobe)
632 {
633 if (refcount_inc_not_zero(&uprobe->ref))
634 return uprobe;
635 return NULL;
636 }
637
uprobe_is_active(struct uprobe * uprobe)638 static inline bool uprobe_is_active(struct uprobe *uprobe)
639 {
640 return !RB_EMPTY_NODE(&uprobe->rb_node);
641 }
642
uprobe_free_rcu(struct rcu_head * rcu)643 static void uprobe_free_rcu(struct rcu_head *rcu)
644 {
645 struct uprobe *uprobe = container_of(rcu, struct uprobe, rcu);
646
647 kfree(uprobe);
648 }
649
put_uprobe(struct uprobe * uprobe)650 static void put_uprobe(struct uprobe *uprobe)
651 {
652 if (!refcount_dec_and_test(&uprobe->ref))
653 return;
654
655 write_lock(&uprobes_treelock);
656
657 if (uprobe_is_active(uprobe)) {
658 write_seqcount_begin(&uprobes_seqcount);
659 rb_erase(&uprobe->rb_node, &uprobes_tree);
660 write_seqcount_end(&uprobes_seqcount);
661 }
662
663 write_unlock(&uprobes_treelock);
664
665 /*
666 * If application munmap(exec_vma) before uprobe_unregister()
667 * gets called, we don't get a chance to remove uprobe from
668 * delayed_uprobe_list from remove_breakpoint(). Do it here.
669 */
670 mutex_lock(&delayed_uprobe_lock);
671 delayed_uprobe_remove(uprobe, NULL);
672 mutex_unlock(&delayed_uprobe_lock);
673
674 call_srcu(&uprobes_srcu, &uprobe->rcu, uprobe_free_rcu);
675 }
676
677 static __always_inline
uprobe_cmp(const struct inode * l_inode,const loff_t l_offset,const struct uprobe * r)678 int uprobe_cmp(const struct inode *l_inode, const loff_t l_offset,
679 const struct uprobe *r)
680 {
681 if (l_inode < r->inode)
682 return -1;
683
684 if (l_inode > r->inode)
685 return 1;
686
687 if (l_offset < r->offset)
688 return -1;
689
690 if (l_offset > r->offset)
691 return 1;
692
693 return 0;
694 }
695
696 #define __node_2_uprobe(node) \
697 rb_entry((node), struct uprobe, rb_node)
698
699 struct __uprobe_key {
700 struct inode *inode;
701 loff_t offset;
702 };
703
__uprobe_cmp_key(const void * key,const struct rb_node * b)704 static inline int __uprobe_cmp_key(const void *key, const struct rb_node *b)
705 {
706 const struct __uprobe_key *a = key;
707 return uprobe_cmp(a->inode, a->offset, __node_2_uprobe(b));
708 }
709
__uprobe_cmp(struct rb_node * a,const struct rb_node * b)710 static inline int __uprobe_cmp(struct rb_node *a, const struct rb_node *b)
711 {
712 struct uprobe *u = __node_2_uprobe(a);
713 return uprobe_cmp(u->inode, u->offset, __node_2_uprobe(b));
714 }
715
716 /*
717 * Assumes being inside RCU protected region.
718 * No refcount is taken on returned uprobe.
719 */
find_uprobe_rcu(struct inode * inode,loff_t offset)720 static struct uprobe *find_uprobe_rcu(struct inode *inode, loff_t offset)
721 {
722 struct __uprobe_key key = {
723 .inode = inode,
724 .offset = offset,
725 };
726 struct rb_node *node;
727 unsigned int seq;
728
729 lockdep_assert(srcu_read_lock_held(&uprobes_srcu));
730
731 do {
732 seq = read_seqcount_begin(&uprobes_seqcount);
733 node = rb_find_rcu(&key, &uprobes_tree, __uprobe_cmp_key);
734 /*
735 * Lockless RB-tree lookups can result only in false negatives.
736 * If the element is found, it is correct and can be returned
737 * under RCU protection. If we find nothing, we need to
738 * validate that seqcount didn't change. If it did, we have to
739 * try again as we might have missed the element (false
740 * negative). If seqcount is unchanged, search truly failed.
741 */
742 if (node)
743 return __node_2_uprobe(node);
744 } while (read_seqcount_retry(&uprobes_seqcount, seq));
745
746 return NULL;
747 }
748
749 /*
750 * Attempt to insert a new uprobe into uprobes_tree.
751 *
752 * If uprobe already exists (for given inode+offset), we just increment
753 * refcount of previously existing uprobe.
754 *
755 * If not, a provided new instance of uprobe is inserted into the tree (with
756 * assumed initial refcount == 1).
757 *
758 * In any case, we return a uprobe instance that ends up being in uprobes_tree.
759 * Caller has to clean up new uprobe instance, if it ended up not being
760 * inserted into the tree.
761 *
762 * We assume that uprobes_treelock is held for writing.
763 */
__insert_uprobe(struct uprobe * uprobe)764 static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
765 {
766 struct rb_node *node;
767 again:
768 node = rb_find_add_rcu(&uprobe->rb_node, &uprobes_tree, __uprobe_cmp);
769 if (node) {
770 struct uprobe *u = __node_2_uprobe(node);
771
772 if (!try_get_uprobe(u)) {
773 rb_erase(node, &uprobes_tree);
774 RB_CLEAR_NODE(&u->rb_node);
775 goto again;
776 }
777
778 return u;
779 }
780
781 return uprobe;
782 }
783
784 /*
785 * Acquire uprobes_treelock and insert uprobe into uprobes_tree
786 * (or reuse existing one, see __insert_uprobe() comments above).
787 */
insert_uprobe(struct uprobe * uprobe)788 static struct uprobe *insert_uprobe(struct uprobe *uprobe)
789 {
790 struct uprobe *u;
791
792 write_lock(&uprobes_treelock);
793 write_seqcount_begin(&uprobes_seqcount);
794 u = __insert_uprobe(uprobe);
795 write_seqcount_end(&uprobes_seqcount);
796 write_unlock(&uprobes_treelock);
797
798 return u;
799 }
800
801 static void
ref_ctr_mismatch_warn(struct uprobe * cur_uprobe,struct uprobe * uprobe)802 ref_ctr_mismatch_warn(struct uprobe *cur_uprobe, struct uprobe *uprobe)
803 {
804 pr_warn("ref_ctr_offset mismatch. inode: 0x%lx offset: 0x%llx "
805 "ref_ctr_offset(old): 0x%llx ref_ctr_offset(new): 0x%llx\n",
806 uprobe->inode->i_ino, (unsigned long long) uprobe->offset,
807 (unsigned long long) cur_uprobe->ref_ctr_offset,
808 (unsigned long long) uprobe->ref_ctr_offset);
809 }
810
alloc_uprobe(struct inode * inode,loff_t offset,loff_t ref_ctr_offset)811 static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset,
812 loff_t ref_ctr_offset)
813 {
814 struct uprobe *uprobe, *cur_uprobe;
815
816 uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
817 if (!uprobe)
818 return ERR_PTR(-ENOMEM);
819
820 uprobe->inode = inode;
821 uprobe->offset = offset;
822 uprobe->ref_ctr_offset = ref_ctr_offset;
823 INIT_LIST_HEAD(&uprobe->consumers);
824 init_rwsem(&uprobe->register_rwsem);
825 init_rwsem(&uprobe->consumer_rwsem);
826 RB_CLEAR_NODE(&uprobe->rb_node);
827 refcount_set(&uprobe->ref, 1);
828
829 /* add to uprobes_tree, sorted on inode:offset */
830 cur_uprobe = insert_uprobe(uprobe);
831 /* a uprobe exists for this inode:offset combination */
832 if (cur_uprobe != uprobe) {
833 if (cur_uprobe->ref_ctr_offset != uprobe->ref_ctr_offset) {
834 ref_ctr_mismatch_warn(cur_uprobe, uprobe);
835 put_uprobe(cur_uprobe);
836 kfree(uprobe);
837 return ERR_PTR(-EINVAL);
838 }
839 kfree(uprobe);
840 uprobe = cur_uprobe;
841 }
842
843 return uprobe;
844 }
845
consumer_add(struct uprobe * uprobe,struct uprobe_consumer * uc)846 static void consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
847 {
848 down_write(&uprobe->consumer_rwsem);
849 list_add_rcu(&uc->cons_node, &uprobe->consumers);
850 up_write(&uprobe->consumer_rwsem);
851 }
852
853 /*
854 * For uprobe @uprobe, delete the consumer @uc.
855 * Should never be called with consumer that's not part of @uprobe->consumers.
856 */
consumer_del(struct uprobe * uprobe,struct uprobe_consumer * uc)857 static void consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
858 {
859 down_write(&uprobe->consumer_rwsem);
860 list_del_rcu(&uc->cons_node);
861 up_write(&uprobe->consumer_rwsem);
862 }
863
__copy_insn(struct address_space * mapping,struct file * filp,void * insn,int nbytes,loff_t offset)864 static int __copy_insn(struct address_space *mapping, struct file *filp,
865 void *insn, int nbytes, loff_t offset)
866 {
867 struct page *page;
868 /*
869 * Ensure that the page that has the original instruction is populated
870 * and in page-cache. If ->read_folio == NULL it must be shmem_mapping(),
871 * see uprobe_register().
872 */
873 if (mapping->a_ops->read_folio)
874 page = read_mapping_page(mapping, offset >> PAGE_SHIFT, filp);
875 else
876 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
877 if (IS_ERR(page))
878 return PTR_ERR(page);
879
880 copy_from_page(page, offset, insn, nbytes);
881 put_page(page);
882
883 return 0;
884 }
885
copy_insn(struct uprobe * uprobe,struct file * filp)886 static int copy_insn(struct uprobe *uprobe, struct file *filp)
887 {
888 struct address_space *mapping = uprobe->inode->i_mapping;
889 loff_t offs = uprobe->offset;
890 void *insn = &uprobe->arch.insn;
891 int size = sizeof(uprobe->arch.insn);
892 int len, err = -EIO;
893
894 /* Copy only available bytes, -EIO if nothing was read */
895 do {
896 if (offs >= i_size_read(uprobe->inode))
897 break;
898
899 len = min_t(int, size, PAGE_SIZE - (offs & ~PAGE_MASK));
900 err = __copy_insn(mapping, filp, insn, len, offs);
901 if (err)
902 break;
903
904 insn += len;
905 offs += len;
906 size -= len;
907 } while (size);
908
909 return err;
910 }
911
prepare_uprobe(struct uprobe * uprobe,struct file * file,struct mm_struct * mm,unsigned long vaddr)912 static int prepare_uprobe(struct uprobe *uprobe, struct file *file,
913 struct mm_struct *mm, unsigned long vaddr)
914 {
915 int ret = 0;
916
917 if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
918 return ret;
919
920 /* TODO: move this into _register, until then we abuse this sem. */
921 down_write(&uprobe->consumer_rwsem);
922 if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
923 goto out;
924
925 ret = copy_insn(uprobe, file);
926 if (ret)
927 goto out;
928
929 ret = -ENOTSUPP;
930 if (is_trap_insn((uprobe_opcode_t *)&uprobe->arch.insn))
931 goto out;
932
933 ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr);
934 if (ret)
935 goto out;
936
937 smp_wmb(); /* pairs with the smp_rmb() in handle_swbp() */
938 set_bit(UPROBE_COPY_INSN, &uprobe->flags);
939
940 out:
941 up_write(&uprobe->consumer_rwsem);
942
943 return ret;
944 }
945
consumer_filter(struct uprobe_consumer * uc,struct mm_struct * mm)946 static inline bool consumer_filter(struct uprobe_consumer *uc, struct mm_struct *mm)
947 {
948 return !uc->filter || uc->filter(uc, mm);
949 }
950
filter_chain(struct uprobe * uprobe,struct mm_struct * mm)951 static bool filter_chain(struct uprobe *uprobe, struct mm_struct *mm)
952 {
953 struct uprobe_consumer *uc;
954 bool ret = false;
955
956 down_read(&uprobe->consumer_rwsem);
957 list_for_each_entry_srcu(uc, &uprobe->consumers, cons_node,
958 srcu_read_lock_held(&uprobes_srcu)) {
959 ret = consumer_filter(uc, mm);
960 if (ret)
961 break;
962 }
963 up_read(&uprobe->consumer_rwsem);
964
965 return ret;
966 }
967
968 static int
install_breakpoint(struct uprobe * uprobe,struct mm_struct * mm,struct vm_area_struct * vma,unsigned long vaddr)969 install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
970 struct vm_area_struct *vma, unsigned long vaddr)
971 {
972 bool first_uprobe;
973 int ret;
974
975 ret = prepare_uprobe(uprobe, vma->vm_file, mm, vaddr);
976 if (ret)
977 return ret;
978
979 /*
980 * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(),
981 * the task can hit this breakpoint right after __replace_page().
982 */
983 first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags);
984 if (first_uprobe)
985 set_bit(MMF_HAS_UPROBES, &mm->flags);
986
987 ret = set_swbp(&uprobe->arch, mm, vaddr);
988 if (!ret)
989 clear_bit(MMF_RECALC_UPROBES, &mm->flags);
990 else if (first_uprobe)
991 clear_bit(MMF_HAS_UPROBES, &mm->flags);
992
993 return ret;
994 }
995
996 static int
remove_breakpoint(struct uprobe * uprobe,struct mm_struct * mm,unsigned long vaddr)997 remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr)
998 {
999 set_bit(MMF_RECALC_UPROBES, &mm->flags);
1000 return set_orig_insn(&uprobe->arch, mm, vaddr);
1001 }
1002
1003 struct map_info {
1004 struct map_info *next;
1005 struct mm_struct *mm;
1006 unsigned long vaddr;
1007 };
1008
free_map_info(struct map_info * info)1009 static inline struct map_info *free_map_info(struct map_info *info)
1010 {
1011 struct map_info *next = info->next;
1012 kfree(info);
1013 return next;
1014 }
1015
1016 static struct map_info *
build_map_info(struct address_space * mapping,loff_t offset,bool is_register)1017 build_map_info(struct address_space *mapping, loff_t offset, bool is_register)
1018 {
1019 unsigned long pgoff = offset >> PAGE_SHIFT;
1020 struct vm_area_struct *vma;
1021 struct map_info *curr = NULL;
1022 struct map_info *prev = NULL;
1023 struct map_info *info;
1024 int more = 0;
1025
1026 again:
1027 i_mmap_lock_read(mapping);
1028 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1029 if (!valid_vma(vma, is_register))
1030 continue;
1031
1032 if (!prev && !more) {
1033 /*
1034 * Needs GFP_NOWAIT to avoid i_mmap_rwsem recursion through
1035 * reclaim. This is optimistic, no harm done if it fails.
1036 */
1037 prev = kmalloc(sizeof(struct map_info),
1038 GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
1039 if (prev)
1040 prev->next = NULL;
1041 }
1042 if (!prev) {
1043 more++;
1044 continue;
1045 }
1046
1047 if (!mmget_not_zero(vma->vm_mm))
1048 continue;
1049
1050 info = prev;
1051 prev = prev->next;
1052 info->next = curr;
1053 curr = info;
1054
1055 info->mm = vma->vm_mm;
1056 info->vaddr = offset_to_vaddr(vma, offset);
1057 }
1058 i_mmap_unlock_read(mapping);
1059
1060 if (!more)
1061 goto out;
1062
1063 prev = curr;
1064 while (curr) {
1065 mmput(curr->mm);
1066 curr = curr->next;
1067 }
1068
1069 do {
1070 info = kmalloc(sizeof(struct map_info), GFP_KERNEL);
1071 if (!info) {
1072 curr = ERR_PTR(-ENOMEM);
1073 goto out;
1074 }
1075 info->next = prev;
1076 prev = info;
1077 } while (--more);
1078
1079 goto again;
1080 out:
1081 while (prev)
1082 prev = free_map_info(prev);
1083 return curr;
1084 }
1085
1086 static int
register_for_each_vma(struct uprobe * uprobe,struct uprobe_consumer * new)1087 register_for_each_vma(struct uprobe *uprobe, struct uprobe_consumer *new)
1088 {
1089 bool is_register = !!new;
1090 struct map_info *info;
1091 int err = 0;
1092
1093 percpu_down_write(&dup_mmap_sem);
1094 info = build_map_info(uprobe->inode->i_mapping,
1095 uprobe->offset, is_register);
1096 if (IS_ERR(info)) {
1097 err = PTR_ERR(info);
1098 goto out;
1099 }
1100
1101 while (info) {
1102 struct mm_struct *mm = info->mm;
1103 struct vm_area_struct *vma;
1104
1105 if (err && is_register)
1106 goto free;
1107 /*
1108 * We take mmap_lock for writing to avoid the race with
1109 * find_active_uprobe_rcu() which takes mmap_lock for reading.
1110 * Thus this install_breakpoint() can not make
1111 * is_trap_at_addr() true right after find_uprobe_rcu()
1112 * returns NULL in find_active_uprobe_rcu().
1113 */
1114 mmap_write_lock(mm);
1115 vma = find_vma(mm, info->vaddr);
1116 if (!vma || !valid_vma(vma, is_register) ||
1117 file_inode(vma->vm_file) != uprobe->inode)
1118 goto unlock;
1119
1120 if (vma->vm_start > info->vaddr ||
1121 vaddr_to_offset(vma, info->vaddr) != uprobe->offset)
1122 goto unlock;
1123
1124 if (is_register) {
1125 /* consult only the "caller", new consumer. */
1126 if (consumer_filter(new, mm))
1127 err = install_breakpoint(uprobe, mm, vma, info->vaddr);
1128 } else if (test_bit(MMF_HAS_UPROBES, &mm->flags)) {
1129 if (!filter_chain(uprobe, mm))
1130 err |= remove_breakpoint(uprobe, mm, info->vaddr);
1131 }
1132
1133 unlock:
1134 mmap_write_unlock(mm);
1135 free:
1136 mmput(mm);
1137 info = free_map_info(info);
1138 }
1139 out:
1140 percpu_up_write(&dup_mmap_sem);
1141 return err;
1142 }
1143
1144 /**
1145 * uprobe_unregister_nosync - unregister an already registered probe.
1146 * @uprobe: uprobe to remove
1147 * @uc: identify which probe if multiple probes are colocated.
1148 */
uprobe_unregister_nosync(struct uprobe * uprobe,struct uprobe_consumer * uc)1149 void uprobe_unregister_nosync(struct uprobe *uprobe, struct uprobe_consumer *uc)
1150 {
1151 int err;
1152
1153 down_write(&uprobe->register_rwsem);
1154 consumer_del(uprobe, uc);
1155 err = register_for_each_vma(uprobe, NULL);
1156 up_write(&uprobe->register_rwsem);
1157
1158 /* TODO : cant unregister? schedule a worker thread */
1159 if (unlikely(err)) {
1160 uprobe_warn(current, "unregister, leaking uprobe");
1161 return;
1162 }
1163
1164 put_uprobe(uprobe);
1165 }
1166 EXPORT_SYMBOL_GPL(uprobe_unregister_nosync);
1167
uprobe_unregister_sync(void)1168 void uprobe_unregister_sync(void)
1169 {
1170 /*
1171 * Now that handler_chain() and handle_uretprobe_chain() iterate over
1172 * uprobe->consumers list under RCU protection without holding
1173 * uprobe->register_rwsem, we need to wait for RCU grace period to
1174 * make sure that we can't call into just unregistered
1175 * uprobe_consumer's callbacks anymore. If we don't do that, fast and
1176 * unlucky enough caller can free consumer's memory and cause
1177 * handler_chain() or handle_uretprobe_chain() to do an use-after-free.
1178 */
1179 synchronize_srcu(&uprobes_srcu);
1180 }
1181 EXPORT_SYMBOL_GPL(uprobe_unregister_sync);
1182
1183 /**
1184 * uprobe_register - register a probe
1185 * @inode: the file in which the probe has to be placed.
1186 * @offset: offset from the start of the file.
1187 * @ref_ctr_offset: offset of SDT marker / reference counter
1188 * @uc: information on howto handle the probe..
1189 *
1190 * Apart from the access refcount, uprobe_register() takes a creation
1191 * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
1192 * inserted into the rbtree (i.e first consumer for a @inode:@offset
1193 * tuple). Creation refcount stops uprobe_unregister from freeing the
1194 * @uprobe even before the register operation is complete. Creation
1195 * refcount is released when the last @uc for the @uprobe
1196 * unregisters. Caller of uprobe_register() is required to keep @inode
1197 * (and the containing mount) referenced.
1198 *
1199 * Return: pointer to the new uprobe on success or an ERR_PTR on failure.
1200 */
uprobe_register(struct inode * inode,loff_t offset,loff_t ref_ctr_offset,struct uprobe_consumer * uc)1201 struct uprobe *uprobe_register(struct inode *inode,
1202 loff_t offset, loff_t ref_ctr_offset,
1203 struct uprobe_consumer *uc)
1204 {
1205 struct uprobe *uprobe;
1206 int ret;
1207
1208 /* Uprobe must have at least one set consumer */
1209 if (!uc->handler && !uc->ret_handler)
1210 return ERR_PTR(-EINVAL);
1211
1212 /* copy_insn() uses read_mapping_page() or shmem_read_mapping_page() */
1213 if (!inode->i_mapping->a_ops->read_folio &&
1214 !shmem_mapping(inode->i_mapping))
1215 return ERR_PTR(-EIO);
1216 /* Racy, just to catch the obvious mistakes */
1217 if (offset > i_size_read(inode))
1218 return ERR_PTR(-EINVAL);
1219
1220 /*
1221 * This ensures that copy_from_page(), copy_to_page() and
1222 * __update_ref_ctr() can't cross page boundary.
1223 */
1224 if (!IS_ALIGNED(offset, UPROBE_SWBP_INSN_SIZE))
1225 return ERR_PTR(-EINVAL);
1226 if (!IS_ALIGNED(ref_ctr_offset, sizeof(short)))
1227 return ERR_PTR(-EINVAL);
1228
1229 uprobe = alloc_uprobe(inode, offset, ref_ctr_offset);
1230 if (IS_ERR(uprobe))
1231 return uprobe;
1232
1233 down_write(&uprobe->register_rwsem);
1234 consumer_add(uprobe, uc);
1235 ret = register_for_each_vma(uprobe, uc);
1236 up_write(&uprobe->register_rwsem);
1237
1238 if (ret) {
1239 uprobe_unregister_nosync(uprobe, uc);
1240 /*
1241 * Registration might have partially succeeded, so we can have
1242 * this consumer being called right at this time. We need to
1243 * sync here. It's ok, it's unlikely slow path.
1244 */
1245 uprobe_unregister_sync();
1246 return ERR_PTR(ret);
1247 }
1248
1249 return uprobe;
1250 }
1251 EXPORT_SYMBOL_GPL(uprobe_register);
1252
1253 /**
1254 * uprobe_apply - add or remove the breakpoints according to @uc->filter
1255 * @uprobe: uprobe which "owns" the breakpoint
1256 * @uc: consumer which wants to add more or remove some breakpoints
1257 * @add: add or remove the breakpoints
1258 * Return: 0 on success or negative error code.
1259 */
uprobe_apply(struct uprobe * uprobe,struct uprobe_consumer * uc,bool add)1260 int uprobe_apply(struct uprobe *uprobe, struct uprobe_consumer *uc, bool add)
1261 {
1262 struct uprobe_consumer *con;
1263 int ret = -ENOENT, srcu_idx;
1264
1265 down_write(&uprobe->register_rwsem);
1266
1267 srcu_idx = srcu_read_lock(&uprobes_srcu);
1268 list_for_each_entry_srcu(con, &uprobe->consumers, cons_node,
1269 srcu_read_lock_held(&uprobes_srcu)) {
1270 if (con == uc) {
1271 ret = register_for_each_vma(uprobe, add ? uc : NULL);
1272 break;
1273 }
1274 }
1275 srcu_read_unlock(&uprobes_srcu, srcu_idx);
1276
1277 up_write(&uprobe->register_rwsem);
1278
1279 return ret;
1280 }
1281
unapply_uprobe(struct uprobe * uprobe,struct mm_struct * mm)1282 static int unapply_uprobe(struct uprobe *uprobe, struct mm_struct *mm)
1283 {
1284 VMA_ITERATOR(vmi, mm, 0);
1285 struct vm_area_struct *vma;
1286 int err = 0;
1287
1288 mmap_read_lock(mm);
1289 for_each_vma(vmi, vma) {
1290 unsigned long vaddr;
1291 loff_t offset;
1292
1293 if (!valid_vma(vma, false) ||
1294 file_inode(vma->vm_file) != uprobe->inode)
1295 continue;
1296
1297 offset = (loff_t)vma->vm_pgoff << PAGE_SHIFT;
1298 if (uprobe->offset < offset ||
1299 uprobe->offset >= offset + vma->vm_end - vma->vm_start)
1300 continue;
1301
1302 vaddr = offset_to_vaddr(vma, uprobe->offset);
1303 err |= remove_breakpoint(uprobe, mm, vaddr);
1304 }
1305 mmap_read_unlock(mm);
1306
1307 return err;
1308 }
1309
1310 static struct rb_node *
find_node_in_range(struct inode * inode,loff_t min,loff_t max)1311 find_node_in_range(struct inode *inode, loff_t min, loff_t max)
1312 {
1313 struct rb_node *n = uprobes_tree.rb_node;
1314
1315 while (n) {
1316 struct uprobe *u = rb_entry(n, struct uprobe, rb_node);
1317
1318 if (inode < u->inode) {
1319 n = n->rb_left;
1320 } else if (inode > u->inode) {
1321 n = n->rb_right;
1322 } else {
1323 if (max < u->offset)
1324 n = n->rb_left;
1325 else if (min > u->offset)
1326 n = n->rb_right;
1327 else
1328 break;
1329 }
1330 }
1331
1332 return n;
1333 }
1334
1335 /*
1336 * For a given range in vma, build a list of probes that need to be inserted.
1337 */
build_probe_list(struct inode * inode,struct vm_area_struct * vma,unsigned long start,unsigned long end,struct list_head * head)1338 static void build_probe_list(struct inode *inode,
1339 struct vm_area_struct *vma,
1340 unsigned long start, unsigned long end,
1341 struct list_head *head)
1342 {
1343 loff_t min, max;
1344 struct rb_node *n, *t;
1345 struct uprobe *u;
1346
1347 INIT_LIST_HEAD(head);
1348 min = vaddr_to_offset(vma, start);
1349 max = min + (end - start) - 1;
1350
1351 read_lock(&uprobes_treelock);
1352 n = find_node_in_range(inode, min, max);
1353 if (n) {
1354 for (t = n; t; t = rb_prev(t)) {
1355 u = rb_entry(t, struct uprobe, rb_node);
1356 if (u->inode != inode || u->offset < min)
1357 break;
1358 /* if uprobe went away, it's safe to ignore it */
1359 if (try_get_uprobe(u))
1360 list_add(&u->pending_list, head);
1361 }
1362 for (t = n; (t = rb_next(t)); ) {
1363 u = rb_entry(t, struct uprobe, rb_node);
1364 if (u->inode != inode || u->offset > max)
1365 break;
1366 /* if uprobe went away, it's safe to ignore it */
1367 if (try_get_uprobe(u))
1368 list_add(&u->pending_list, head);
1369 }
1370 }
1371 read_unlock(&uprobes_treelock);
1372 }
1373
1374 /* @vma contains reference counter, not the probed instruction. */
delayed_ref_ctr_inc(struct vm_area_struct * vma)1375 static int delayed_ref_ctr_inc(struct vm_area_struct *vma)
1376 {
1377 struct list_head *pos, *q;
1378 struct delayed_uprobe *du;
1379 unsigned long vaddr;
1380 int ret = 0, err = 0;
1381
1382 mutex_lock(&delayed_uprobe_lock);
1383 list_for_each_safe(pos, q, &delayed_uprobe_list) {
1384 du = list_entry(pos, struct delayed_uprobe, list);
1385
1386 if (du->mm != vma->vm_mm ||
1387 !valid_ref_ctr_vma(du->uprobe, vma))
1388 continue;
1389
1390 vaddr = offset_to_vaddr(vma, du->uprobe->ref_ctr_offset);
1391 ret = __update_ref_ctr(vma->vm_mm, vaddr, 1);
1392 if (ret) {
1393 update_ref_ctr_warn(du->uprobe, vma->vm_mm, 1);
1394 if (!err)
1395 err = ret;
1396 }
1397 delayed_uprobe_delete(du);
1398 }
1399 mutex_unlock(&delayed_uprobe_lock);
1400 return err;
1401 }
1402
1403 /*
1404 * Called from mmap_region/vma_merge with mm->mmap_lock acquired.
1405 *
1406 * Currently we ignore all errors and always return 0, the callers
1407 * can't handle the failure anyway.
1408 */
uprobe_mmap(struct vm_area_struct * vma)1409 int uprobe_mmap(struct vm_area_struct *vma)
1410 {
1411 struct list_head tmp_list;
1412 struct uprobe *uprobe, *u;
1413 struct inode *inode;
1414
1415 if (no_uprobe_events())
1416 return 0;
1417
1418 if (vma->vm_file &&
1419 (vma->vm_flags & (VM_WRITE|VM_SHARED)) == VM_WRITE &&
1420 test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags))
1421 delayed_ref_ctr_inc(vma);
1422
1423 if (!valid_vma(vma, true))
1424 return 0;
1425
1426 inode = file_inode(vma->vm_file);
1427 if (!inode)
1428 return 0;
1429
1430 mutex_lock(uprobes_mmap_hash(inode));
1431 build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list);
1432 /*
1433 * We can race with uprobe_unregister(), this uprobe can be already
1434 * removed. But in this case filter_chain() must return false, all
1435 * consumers have gone away.
1436 */
1437 list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
1438 if (!fatal_signal_pending(current) &&
1439 filter_chain(uprobe, vma->vm_mm)) {
1440 unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset);
1441 install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);
1442 }
1443 put_uprobe(uprobe);
1444 }
1445 mutex_unlock(uprobes_mmap_hash(inode));
1446
1447 return 0;
1448 }
1449
1450 static bool
vma_has_uprobes(struct vm_area_struct * vma,unsigned long start,unsigned long end)1451 vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1452 {
1453 loff_t min, max;
1454 struct inode *inode;
1455 struct rb_node *n;
1456
1457 inode = file_inode(vma->vm_file);
1458
1459 min = vaddr_to_offset(vma, start);
1460 max = min + (end - start) - 1;
1461
1462 read_lock(&uprobes_treelock);
1463 n = find_node_in_range(inode, min, max);
1464 read_unlock(&uprobes_treelock);
1465
1466 return !!n;
1467 }
1468
1469 /*
1470 * Called in context of a munmap of a vma.
1471 */
uprobe_munmap(struct vm_area_struct * vma,unsigned long start,unsigned long end)1472 void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1473 {
1474 if (no_uprobe_events() || !valid_vma(vma, false))
1475 return;
1476
1477 if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */
1478 return;
1479
1480 if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) ||
1481 test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags))
1482 return;
1483
1484 if (vma_has_uprobes(vma, start, end))
1485 set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags);
1486 }
1487
xol_fault(const struct vm_special_mapping * sm,struct vm_area_struct * vma,struct vm_fault * vmf)1488 static vm_fault_t xol_fault(const struct vm_special_mapping *sm,
1489 struct vm_area_struct *vma, struct vm_fault *vmf)
1490 {
1491 struct xol_area *area = vma->vm_mm->uprobes_state.xol_area;
1492
1493 vmf->page = area->page;
1494 get_page(vmf->page);
1495 return 0;
1496 }
1497
1498 static const struct vm_special_mapping xol_mapping = {
1499 .name = "[uprobes]",
1500 .fault = xol_fault,
1501 };
1502
1503 /* Slot allocation for XOL */
xol_add_vma(struct mm_struct * mm,struct xol_area * area)1504 static int xol_add_vma(struct mm_struct *mm, struct xol_area *area)
1505 {
1506 struct vm_area_struct *vma;
1507 int ret;
1508
1509 if (mmap_write_lock_killable(mm))
1510 return -EINTR;
1511
1512 if (mm->uprobes_state.xol_area) {
1513 ret = -EALREADY;
1514 goto fail;
1515 }
1516
1517 if (!area->vaddr) {
1518 /* Try to map as high as possible, this is only a hint. */
1519 area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE,
1520 PAGE_SIZE, 0, 0);
1521 if (IS_ERR_VALUE(area->vaddr)) {
1522 ret = area->vaddr;
1523 goto fail;
1524 }
1525 }
1526
1527 vma = _install_special_mapping(mm, area->vaddr, PAGE_SIZE,
1528 VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO,
1529 &xol_mapping);
1530 if (IS_ERR(vma)) {
1531 ret = PTR_ERR(vma);
1532 goto fail;
1533 }
1534
1535 ret = 0;
1536 /* pairs with get_xol_area() */
1537 smp_store_release(&mm->uprobes_state.xol_area, area); /* ^^^ */
1538 fail:
1539 mmap_write_unlock(mm);
1540
1541 return ret;
1542 }
1543
arch_uprobe_trampoline(unsigned long * psize)1544 void * __weak arch_uprobe_trampoline(unsigned long *psize)
1545 {
1546 static uprobe_opcode_t insn = UPROBE_SWBP_INSN;
1547
1548 *psize = UPROBE_SWBP_INSN_SIZE;
1549 return &insn;
1550 }
1551
__create_xol_area(unsigned long vaddr)1552 static struct xol_area *__create_xol_area(unsigned long vaddr)
1553 {
1554 struct mm_struct *mm = current->mm;
1555 unsigned long insns_size;
1556 struct xol_area *area;
1557 void *insns;
1558
1559 area = kzalloc(sizeof(*area), GFP_KERNEL);
1560 if (unlikely(!area))
1561 goto out;
1562
1563 area->bitmap = kcalloc(BITS_TO_LONGS(UINSNS_PER_PAGE), sizeof(long),
1564 GFP_KERNEL);
1565 if (!area->bitmap)
1566 goto free_area;
1567
1568 area->page = alloc_page(GFP_HIGHUSER | __GFP_ZERO);
1569 if (!area->page)
1570 goto free_bitmap;
1571
1572 area->vaddr = vaddr;
1573 init_waitqueue_head(&area->wq);
1574 /* Reserve the 1st slot for get_trampoline_vaddr() */
1575 set_bit(0, area->bitmap);
1576 atomic_set(&area->slot_count, 1);
1577 insns = arch_uprobe_trampoline(&insns_size);
1578 arch_uprobe_copy_ixol(area->page, 0, insns, insns_size);
1579
1580 if (!xol_add_vma(mm, area))
1581 return area;
1582
1583 __free_page(area->page);
1584 free_bitmap:
1585 kfree(area->bitmap);
1586 free_area:
1587 kfree(area);
1588 out:
1589 return NULL;
1590 }
1591
1592 /*
1593 * get_xol_area - Allocate process's xol_area if necessary.
1594 * This area will be used for storing instructions for execution out of line.
1595 *
1596 * Returns the allocated area or NULL.
1597 */
get_xol_area(void)1598 static struct xol_area *get_xol_area(void)
1599 {
1600 struct mm_struct *mm = current->mm;
1601 struct xol_area *area;
1602
1603 if (!mm->uprobes_state.xol_area)
1604 __create_xol_area(0);
1605
1606 /* Pairs with xol_add_vma() smp_store_release() */
1607 area = READ_ONCE(mm->uprobes_state.xol_area); /* ^^^ */
1608 return area;
1609 }
1610
1611 /*
1612 * uprobe_clear_state - Free the area allocated for slots.
1613 */
uprobe_clear_state(struct mm_struct * mm)1614 void uprobe_clear_state(struct mm_struct *mm)
1615 {
1616 struct xol_area *area = mm->uprobes_state.xol_area;
1617
1618 mutex_lock(&delayed_uprobe_lock);
1619 delayed_uprobe_remove(NULL, mm);
1620 mutex_unlock(&delayed_uprobe_lock);
1621
1622 if (!area)
1623 return;
1624
1625 put_page(area->page);
1626 kfree(area->bitmap);
1627 kfree(area);
1628 }
1629
uprobe_start_dup_mmap(void)1630 void uprobe_start_dup_mmap(void)
1631 {
1632 percpu_down_read(&dup_mmap_sem);
1633 }
1634
uprobe_end_dup_mmap(void)1635 void uprobe_end_dup_mmap(void)
1636 {
1637 percpu_up_read(&dup_mmap_sem);
1638 }
1639
uprobe_dup_mmap(struct mm_struct * oldmm,struct mm_struct * newmm)1640 void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm)
1641 {
1642 if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) {
1643 set_bit(MMF_HAS_UPROBES, &newmm->flags);
1644 /* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */
1645 set_bit(MMF_RECALC_UPROBES, &newmm->flags);
1646 }
1647 }
1648
1649 /*
1650 * - search for a free slot.
1651 */
xol_take_insn_slot(struct xol_area * area)1652 static unsigned long xol_take_insn_slot(struct xol_area *area)
1653 {
1654 unsigned long slot_addr;
1655 int slot_nr;
1656
1657 do {
1658 slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
1659 if (slot_nr < UINSNS_PER_PAGE) {
1660 if (!test_and_set_bit(slot_nr, area->bitmap))
1661 break;
1662
1663 slot_nr = UINSNS_PER_PAGE;
1664 continue;
1665 }
1666 wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE));
1667 } while (slot_nr >= UINSNS_PER_PAGE);
1668
1669 slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES);
1670 atomic_inc(&area->slot_count);
1671
1672 return slot_addr;
1673 }
1674
1675 /*
1676 * xol_get_insn_slot - allocate a slot for xol.
1677 * Returns the allocated slot address or 0.
1678 */
xol_get_insn_slot(struct uprobe * uprobe)1679 static unsigned long xol_get_insn_slot(struct uprobe *uprobe)
1680 {
1681 struct xol_area *area;
1682 unsigned long xol_vaddr;
1683
1684 area = get_xol_area();
1685 if (!area)
1686 return 0;
1687
1688 xol_vaddr = xol_take_insn_slot(area);
1689 if (unlikely(!xol_vaddr))
1690 return 0;
1691
1692 arch_uprobe_copy_ixol(area->page, xol_vaddr,
1693 &uprobe->arch.ixol, sizeof(uprobe->arch.ixol));
1694
1695 return xol_vaddr;
1696 }
1697
1698 /*
1699 * xol_free_insn_slot - If slot was earlier allocated by
1700 * @xol_get_insn_slot(), make the slot available for
1701 * subsequent requests.
1702 */
xol_free_insn_slot(struct task_struct * tsk)1703 static void xol_free_insn_slot(struct task_struct *tsk)
1704 {
1705 struct xol_area *area;
1706 unsigned long vma_end;
1707 unsigned long slot_addr;
1708
1709 if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask)
1710 return;
1711
1712 slot_addr = tsk->utask->xol_vaddr;
1713 if (unlikely(!slot_addr))
1714 return;
1715
1716 area = tsk->mm->uprobes_state.xol_area;
1717 vma_end = area->vaddr + PAGE_SIZE;
1718 if (area->vaddr <= slot_addr && slot_addr < vma_end) {
1719 unsigned long offset;
1720 int slot_nr;
1721
1722 offset = slot_addr - area->vaddr;
1723 slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
1724 if (slot_nr >= UINSNS_PER_PAGE)
1725 return;
1726
1727 clear_bit(slot_nr, area->bitmap);
1728 atomic_dec(&area->slot_count);
1729 smp_mb__after_atomic(); /* pairs with prepare_to_wait() */
1730 if (waitqueue_active(&area->wq))
1731 wake_up(&area->wq);
1732
1733 tsk->utask->xol_vaddr = 0;
1734 }
1735 }
1736
arch_uprobe_copy_ixol(struct page * page,unsigned long vaddr,void * src,unsigned long len)1737 void __weak arch_uprobe_copy_ixol(struct page *page, unsigned long vaddr,
1738 void *src, unsigned long len)
1739 {
1740 /* Initialize the slot */
1741 copy_to_page(page, vaddr, src, len);
1742
1743 /*
1744 * We probably need flush_icache_user_page() but it needs vma.
1745 * This should work on most of architectures by default. If
1746 * architecture needs to do something different it can define
1747 * its own version of the function.
1748 */
1749 flush_dcache_page(page);
1750 }
1751
1752 /**
1753 * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
1754 * @regs: Reflects the saved state of the task after it has hit a breakpoint
1755 * instruction.
1756 * Return the address of the breakpoint instruction.
1757 */
uprobe_get_swbp_addr(struct pt_regs * regs)1758 unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
1759 {
1760 return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
1761 }
1762
uprobe_get_trap_addr(struct pt_regs * regs)1763 unsigned long uprobe_get_trap_addr(struct pt_regs *regs)
1764 {
1765 struct uprobe_task *utask = current->utask;
1766
1767 if (unlikely(utask && utask->active_uprobe))
1768 return utask->vaddr;
1769
1770 return instruction_pointer(regs);
1771 }
1772
free_ret_instance(struct return_instance * ri)1773 static struct return_instance *free_ret_instance(struct return_instance *ri)
1774 {
1775 struct return_instance *next = ri->next;
1776 put_uprobe(ri->uprobe);
1777 kfree(ri);
1778 return next;
1779 }
1780
1781 /*
1782 * Called with no locks held.
1783 * Called in context of an exiting or an exec-ing thread.
1784 */
uprobe_free_utask(struct task_struct * t)1785 void uprobe_free_utask(struct task_struct *t)
1786 {
1787 struct uprobe_task *utask = t->utask;
1788 struct return_instance *ri;
1789
1790 if (!utask)
1791 return;
1792
1793 t->utask = NULL;
1794 if (utask->active_uprobe)
1795 put_uprobe(utask->active_uprobe);
1796
1797 ri = utask->return_instances;
1798 while (ri)
1799 ri = free_ret_instance(ri);
1800
1801 xol_free_insn_slot(t);
1802 kfree(utask);
1803 }
1804
1805 /*
1806 * Allocate a uprobe_task object for the task if necessary.
1807 * Called when the thread hits a breakpoint.
1808 *
1809 * Returns:
1810 * - pointer to new uprobe_task on success
1811 * - NULL otherwise
1812 */
get_utask(void)1813 static struct uprobe_task *get_utask(void)
1814 {
1815 if (!current->utask)
1816 current->utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1817 return current->utask;
1818 }
1819
dup_utask(struct task_struct * t,struct uprobe_task * o_utask)1820 static int dup_utask(struct task_struct *t, struct uprobe_task *o_utask)
1821 {
1822 struct uprobe_task *n_utask;
1823 struct return_instance **p, *o, *n;
1824
1825 n_utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1826 if (!n_utask)
1827 return -ENOMEM;
1828 t->utask = n_utask;
1829
1830 p = &n_utask->return_instances;
1831 for (o = o_utask->return_instances; o; o = o->next) {
1832 n = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1833 if (!n)
1834 return -ENOMEM;
1835
1836 *n = *o;
1837 /*
1838 * uprobe's refcnt has to be positive at this point, kept by
1839 * utask->return_instances items; return_instances can't be
1840 * removed right now, as task is blocked due to duping; so
1841 * get_uprobe() is safe to use here.
1842 */
1843 get_uprobe(n->uprobe);
1844 n->next = NULL;
1845
1846 *p = n;
1847 p = &n->next;
1848 n_utask->depth++;
1849 }
1850
1851 return 0;
1852 }
1853
dup_xol_work(struct callback_head * work)1854 static void dup_xol_work(struct callback_head *work)
1855 {
1856 if (current->flags & PF_EXITING)
1857 return;
1858
1859 if (!__create_xol_area(current->utask->dup_xol_addr) &&
1860 !fatal_signal_pending(current))
1861 uprobe_warn(current, "dup xol area");
1862 }
1863
1864 /*
1865 * Called in context of a new clone/fork from copy_process.
1866 */
uprobe_copy_process(struct task_struct * t,unsigned long flags)1867 void uprobe_copy_process(struct task_struct *t, unsigned long flags)
1868 {
1869 struct uprobe_task *utask = current->utask;
1870 struct mm_struct *mm = current->mm;
1871 struct xol_area *area;
1872
1873 t->utask = NULL;
1874
1875 if (!utask || !utask->return_instances)
1876 return;
1877
1878 if (mm == t->mm && !(flags & CLONE_VFORK))
1879 return;
1880
1881 if (dup_utask(t, utask))
1882 return uprobe_warn(t, "dup ret instances");
1883
1884 /* The task can fork() after dup_xol_work() fails */
1885 area = mm->uprobes_state.xol_area;
1886 if (!area)
1887 return uprobe_warn(t, "dup xol area");
1888
1889 if (mm == t->mm)
1890 return;
1891
1892 t->utask->dup_xol_addr = area->vaddr;
1893 init_task_work(&t->utask->dup_xol_work, dup_xol_work);
1894 task_work_add(t, &t->utask->dup_xol_work, TWA_RESUME);
1895 }
1896
1897 /*
1898 * Current area->vaddr notion assume the trampoline address is always
1899 * equal area->vaddr.
1900 *
1901 * Returns -1 in case the xol_area is not allocated.
1902 */
uprobe_get_trampoline_vaddr(void)1903 unsigned long uprobe_get_trampoline_vaddr(void)
1904 {
1905 unsigned long trampoline_vaddr = UPROBE_NO_TRAMPOLINE_VADDR;
1906 struct xol_area *area;
1907
1908 /* Pairs with xol_add_vma() smp_store_release() */
1909 area = READ_ONCE(current->mm->uprobes_state.xol_area); /* ^^^ */
1910 if (area)
1911 trampoline_vaddr = area->vaddr;
1912
1913 return trampoline_vaddr;
1914 }
1915
cleanup_return_instances(struct uprobe_task * utask,bool chained,struct pt_regs * regs)1916 static void cleanup_return_instances(struct uprobe_task *utask, bool chained,
1917 struct pt_regs *regs)
1918 {
1919 struct return_instance *ri = utask->return_instances;
1920 enum rp_check ctx = chained ? RP_CHECK_CHAIN_CALL : RP_CHECK_CALL;
1921
1922 while (ri && !arch_uretprobe_is_alive(ri, ctx, regs)) {
1923 ri = free_ret_instance(ri);
1924 utask->depth--;
1925 }
1926 utask->return_instances = ri;
1927 }
1928
prepare_uretprobe(struct uprobe * uprobe,struct pt_regs * regs)1929 static void prepare_uretprobe(struct uprobe *uprobe, struct pt_regs *regs)
1930 {
1931 struct return_instance *ri;
1932 struct uprobe_task *utask;
1933 unsigned long orig_ret_vaddr, trampoline_vaddr;
1934 bool chained;
1935
1936 if (!get_xol_area())
1937 return;
1938
1939 utask = get_utask();
1940 if (!utask)
1941 return;
1942
1943 if (utask->depth >= MAX_URETPROBE_DEPTH) {
1944 printk_ratelimited(KERN_INFO "uprobe: omit uretprobe due to"
1945 " nestedness limit pid/tgid=%d/%d\n",
1946 current->pid, current->tgid);
1947 return;
1948 }
1949
1950 /* we need to bump refcount to store uprobe in utask */
1951 if (!try_get_uprobe(uprobe))
1952 return;
1953
1954 ri = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1955 if (!ri)
1956 goto fail;
1957
1958 trampoline_vaddr = uprobe_get_trampoline_vaddr();
1959 orig_ret_vaddr = arch_uretprobe_hijack_return_addr(trampoline_vaddr, regs);
1960 if (orig_ret_vaddr == -1)
1961 goto fail;
1962
1963 /* drop the entries invalidated by longjmp() */
1964 chained = (orig_ret_vaddr == trampoline_vaddr);
1965 cleanup_return_instances(utask, chained, regs);
1966
1967 /*
1968 * We don't want to keep trampoline address in stack, rather keep the
1969 * original return address of first caller thru all the consequent
1970 * instances. This also makes breakpoint unwrapping easier.
1971 */
1972 if (chained) {
1973 if (!utask->return_instances) {
1974 /*
1975 * This situation is not possible. Likely we have an
1976 * attack from user-space.
1977 */
1978 uprobe_warn(current, "handle tail call");
1979 goto fail;
1980 }
1981 orig_ret_vaddr = utask->return_instances->orig_ret_vaddr;
1982 }
1983 ri->uprobe = uprobe;
1984 ri->func = instruction_pointer(regs);
1985 ri->stack = user_stack_pointer(regs);
1986 ri->orig_ret_vaddr = orig_ret_vaddr;
1987 ri->chained = chained;
1988
1989 utask->depth++;
1990 ri->next = utask->return_instances;
1991 utask->return_instances = ri;
1992
1993 return;
1994 fail:
1995 kfree(ri);
1996 put_uprobe(uprobe);
1997 }
1998
1999 /* Prepare to single-step probed instruction out of line. */
2000 static int
pre_ssout(struct uprobe * uprobe,struct pt_regs * regs,unsigned long bp_vaddr)2001 pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long bp_vaddr)
2002 {
2003 struct uprobe_task *utask;
2004 unsigned long xol_vaddr;
2005 int err;
2006
2007 utask = get_utask();
2008 if (!utask)
2009 return -ENOMEM;
2010
2011 if (!try_get_uprobe(uprobe))
2012 return -EINVAL;
2013
2014 xol_vaddr = xol_get_insn_slot(uprobe);
2015 if (!xol_vaddr) {
2016 err = -ENOMEM;
2017 goto err_out;
2018 }
2019
2020 utask->xol_vaddr = xol_vaddr;
2021 utask->vaddr = bp_vaddr;
2022
2023 err = arch_uprobe_pre_xol(&uprobe->arch, regs);
2024 if (unlikely(err)) {
2025 xol_free_insn_slot(current);
2026 goto err_out;
2027 }
2028
2029 utask->active_uprobe = uprobe;
2030 utask->state = UTASK_SSTEP;
2031 return 0;
2032 err_out:
2033 put_uprobe(uprobe);
2034 return err;
2035 }
2036
2037 /*
2038 * If we are singlestepping, then ensure this thread is not connected to
2039 * non-fatal signals until completion of singlestep. When xol insn itself
2040 * triggers the signal, restart the original insn even if the task is
2041 * already SIGKILL'ed (since coredump should report the correct ip). This
2042 * is even more important if the task has a handler for SIGSEGV/etc, The
2043 * _same_ instruction should be repeated again after return from the signal
2044 * handler, and SSTEP can never finish in this case.
2045 */
uprobe_deny_signal(void)2046 bool uprobe_deny_signal(void)
2047 {
2048 struct task_struct *t = current;
2049 struct uprobe_task *utask = t->utask;
2050
2051 if (likely(!utask || !utask->active_uprobe))
2052 return false;
2053
2054 WARN_ON_ONCE(utask->state != UTASK_SSTEP);
2055
2056 if (task_sigpending(t)) {
2057 spin_lock_irq(&t->sighand->siglock);
2058 clear_tsk_thread_flag(t, TIF_SIGPENDING);
2059 spin_unlock_irq(&t->sighand->siglock);
2060
2061 if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
2062 utask->state = UTASK_SSTEP_TRAPPED;
2063 set_tsk_thread_flag(t, TIF_UPROBE);
2064 }
2065 }
2066
2067 return true;
2068 }
2069
mmf_recalc_uprobes(struct mm_struct * mm)2070 static void mmf_recalc_uprobes(struct mm_struct *mm)
2071 {
2072 VMA_ITERATOR(vmi, mm, 0);
2073 struct vm_area_struct *vma;
2074
2075 for_each_vma(vmi, vma) {
2076 if (!valid_vma(vma, false))
2077 continue;
2078 /*
2079 * This is not strictly accurate, we can race with
2080 * uprobe_unregister() and see the already removed
2081 * uprobe if delete_uprobe() was not yet called.
2082 * Or this uprobe can be filtered out.
2083 */
2084 if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end))
2085 return;
2086 }
2087
2088 clear_bit(MMF_HAS_UPROBES, &mm->flags);
2089 }
2090
is_trap_at_addr(struct mm_struct * mm,unsigned long vaddr)2091 static int is_trap_at_addr(struct mm_struct *mm, unsigned long vaddr)
2092 {
2093 struct page *page;
2094 uprobe_opcode_t opcode;
2095 int result;
2096
2097 if (WARN_ON_ONCE(!IS_ALIGNED(vaddr, UPROBE_SWBP_INSN_SIZE)))
2098 return -EINVAL;
2099
2100 pagefault_disable();
2101 result = __get_user(opcode, (uprobe_opcode_t __user *)vaddr);
2102 pagefault_enable();
2103
2104 if (likely(result == 0))
2105 goto out;
2106
2107 result = get_user_pages(vaddr, 1, FOLL_FORCE, &page);
2108 if (result < 0)
2109 return result;
2110
2111 copy_from_page(page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
2112 put_page(page);
2113 out:
2114 /* This needs to return true for any variant of the trap insn */
2115 return is_trap_insn(&opcode);
2116 }
2117
2118 /* assumes being inside RCU protected region */
find_active_uprobe_rcu(unsigned long bp_vaddr,int * is_swbp)2119 static struct uprobe *find_active_uprobe_rcu(unsigned long bp_vaddr, int *is_swbp)
2120 {
2121 struct mm_struct *mm = current->mm;
2122 struct uprobe *uprobe = NULL;
2123 struct vm_area_struct *vma;
2124
2125 mmap_read_lock(mm);
2126 vma = vma_lookup(mm, bp_vaddr);
2127 if (vma) {
2128 if (valid_vma(vma, false)) {
2129 struct inode *inode = file_inode(vma->vm_file);
2130 loff_t offset = vaddr_to_offset(vma, bp_vaddr);
2131
2132 uprobe = find_uprobe_rcu(inode, offset);
2133 }
2134
2135 if (!uprobe)
2136 *is_swbp = is_trap_at_addr(mm, bp_vaddr);
2137 } else {
2138 *is_swbp = -EFAULT;
2139 }
2140
2141 if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags))
2142 mmf_recalc_uprobes(mm);
2143 mmap_read_unlock(mm);
2144
2145 return uprobe;
2146 }
2147
handler_chain(struct uprobe * uprobe,struct pt_regs * regs)2148 static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
2149 {
2150 struct uprobe_consumer *uc;
2151 int remove = UPROBE_HANDLER_REMOVE;
2152 bool need_prep = false; /* prepare return uprobe, when needed */
2153 bool has_consumers = false;
2154
2155 current->utask->auprobe = &uprobe->arch;
2156
2157 list_for_each_entry_srcu(uc, &uprobe->consumers, cons_node,
2158 srcu_read_lock_held(&uprobes_srcu)) {
2159 int rc = 0;
2160
2161 if (uc->handler) {
2162 rc = uc->handler(uc, regs);
2163 WARN(rc & ~UPROBE_HANDLER_MASK,
2164 "bad rc=0x%x from %ps()\n", rc, uc->handler);
2165 }
2166
2167 if (uc->ret_handler)
2168 need_prep = true;
2169
2170 remove &= rc;
2171 has_consumers = true;
2172 }
2173 current->utask->auprobe = NULL;
2174
2175 if (need_prep && !remove)
2176 prepare_uretprobe(uprobe, regs); /* put bp at return */
2177
2178 if (remove && has_consumers) {
2179 down_read(&uprobe->register_rwsem);
2180
2181 /* re-check that removal is still required, this time under lock */
2182 if (!filter_chain(uprobe, current->mm)) {
2183 WARN_ON(!uprobe_is_active(uprobe));
2184 unapply_uprobe(uprobe, current->mm);
2185 }
2186
2187 up_read(&uprobe->register_rwsem);
2188 }
2189 }
2190
2191 static void
handle_uretprobe_chain(struct return_instance * ri,struct pt_regs * regs)2192 handle_uretprobe_chain(struct return_instance *ri, struct pt_regs *regs)
2193 {
2194 struct uprobe *uprobe = ri->uprobe;
2195 struct uprobe_consumer *uc;
2196 int srcu_idx;
2197
2198 srcu_idx = srcu_read_lock(&uprobes_srcu);
2199 list_for_each_entry_srcu(uc, &uprobe->consumers, cons_node,
2200 srcu_read_lock_held(&uprobes_srcu)) {
2201 if (uc->ret_handler)
2202 uc->ret_handler(uc, ri->func, regs);
2203 }
2204 srcu_read_unlock(&uprobes_srcu, srcu_idx);
2205 }
2206
find_next_ret_chain(struct return_instance * ri)2207 static struct return_instance *find_next_ret_chain(struct return_instance *ri)
2208 {
2209 bool chained;
2210
2211 do {
2212 chained = ri->chained;
2213 ri = ri->next; /* can't be NULL if chained */
2214 } while (chained);
2215
2216 return ri;
2217 }
2218
uprobe_handle_trampoline(struct pt_regs * regs)2219 void uprobe_handle_trampoline(struct pt_regs *regs)
2220 {
2221 struct uprobe_task *utask;
2222 struct return_instance *ri, *next;
2223 bool valid;
2224
2225 utask = current->utask;
2226 if (!utask)
2227 goto sigill;
2228
2229 ri = utask->return_instances;
2230 if (!ri)
2231 goto sigill;
2232
2233 do {
2234 /*
2235 * We should throw out the frames invalidated by longjmp().
2236 * If this chain is valid, then the next one should be alive
2237 * or NULL; the latter case means that nobody but ri->func
2238 * could hit this trampoline on return. TODO: sigaltstack().
2239 */
2240 next = find_next_ret_chain(ri);
2241 valid = !next || arch_uretprobe_is_alive(next, RP_CHECK_RET, regs);
2242
2243 instruction_pointer_set(regs, ri->orig_ret_vaddr);
2244 do {
2245 /* pop current instance from the stack of pending return instances,
2246 * as it's not pending anymore: we just fixed up original
2247 * instruction pointer in regs and are about to call handlers;
2248 * this allows fixup_uretprobe_trampoline_entries() to properly fix up
2249 * captured stack traces from uretprobe handlers, in which pending
2250 * trampoline addresses on the stack are replaced with correct
2251 * original return addresses
2252 */
2253 utask->return_instances = ri->next;
2254 if (valid)
2255 handle_uretprobe_chain(ri, regs);
2256 ri = free_ret_instance(ri);
2257 utask->depth--;
2258 } while (ri != next);
2259 } while (!valid);
2260
2261 utask->return_instances = ri;
2262 return;
2263
2264 sigill:
2265 uprobe_warn(current, "handle uretprobe, sending SIGILL.");
2266 force_sig(SIGILL);
2267
2268 }
2269
arch_uprobe_ignore(struct arch_uprobe * aup,struct pt_regs * regs)2270 bool __weak arch_uprobe_ignore(struct arch_uprobe *aup, struct pt_regs *regs)
2271 {
2272 return false;
2273 }
2274
arch_uretprobe_is_alive(struct return_instance * ret,enum rp_check ctx,struct pt_regs * regs)2275 bool __weak arch_uretprobe_is_alive(struct return_instance *ret, enum rp_check ctx,
2276 struct pt_regs *regs)
2277 {
2278 return true;
2279 }
2280
2281 /*
2282 * Run handler and ask thread to singlestep.
2283 * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
2284 */
handle_swbp(struct pt_regs * regs)2285 static void handle_swbp(struct pt_regs *regs)
2286 {
2287 struct uprobe *uprobe;
2288 unsigned long bp_vaddr;
2289 int is_swbp, srcu_idx;
2290
2291 bp_vaddr = uprobe_get_swbp_addr(regs);
2292 if (bp_vaddr == uprobe_get_trampoline_vaddr())
2293 return uprobe_handle_trampoline(regs);
2294
2295 srcu_idx = srcu_read_lock(&uprobes_srcu);
2296
2297 uprobe = find_active_uprobe_rcu(bp_vaddr, &is_swbp);
2298 if (!uprobe) {
2299 if (is_swbp > 0) {
2300 /* No matching uprobe; signal SIGTRAP. */
2301 force_sig(SIGTRAP);
2302 } else {
2303 /*
2304 * Either we raced with uprobe_unregister() or we can't
2305 * access this memory. The latter is only possible if
2306 * another thread plays with our ->mm. In both cases
2307 * we can simply restart. If this vma was unmapped we
2308 * can pretend this insn was not executed yet and get
2309 * the (correct) SIGSEGV after restart.
2310 */
2311 instruction_pointer_set(regs, bp_vaddr);
2312 }
2313 goto out;
2314 }
2315
2316 /* change it in advance for ->handler() and restart */
2317 instruction_pointer_set(regs, bp_vaddr);
2318
2319 /*
2320 * TODO: move copy_insn/etc into _register and remove this hack.
2321 * After we hit the bp, _unregister + _register can install the
2322 * new and not-yet-analyzed uprobe at the same address, restart.
2323 */
2324 if (unlikely(!test_bit(UPROBE_COPY_INSN, &uprobe->flags)))
2325 goto out;
2326
2327 /*
2328 * Pairs with the smp_wmb() in prepare_uprobe().
2329 *
2330 * Guarantees that if we see the UPROBE_COPY_INSN bit set, then
2331 * we must also see the stores to &uprobe->arch performed by the
2332 * prepare_uprobe() call.
2333 */
2334 smp_rmb();
2335
2336 /* Tracing handlers use ->utask to communicate with fetch methods */
2337 if (!get_utask())
2338 goto out;
2339
2340 if (arch_uprobe_ignore(&uprobe->arch, regs))
2341 goto out;
2342
2343 handler_chain(uprobe, regs);
2344
2345 if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
2346 goto out;
2347
2348 if (pre_ssout(uprobe, regs, bp_vaddr))
2349 goto out;
2350
2351 out:
2352 /* arch_uprobe_skip_sstep() succeeded, or restart if can't singlestep */
2353 srcu_read_unlock(&uprobes_srcu, srcu_idx);
2354 }
2355
2356 /*
2357 * Perform required fix-ups and disable singlestep.
2358 * Allow pending signals to take effect.
2359 */
handle_singlestep(struct uprobe_task * utask,struct pt_regs * regs)2360 static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
2361 {
2362 struct uprobe *uprobe;
2363 int err = 0;
2364
2365 uprobe = utask->active_uprobe;
2366 if (utask->state == UTASK_SSTEP_ACK)
2367 err = arch_uprobe_post_xol(&uprobe->arch, regs);
2368 else if (utask->state == UTASK_SSTEP_TRAPPED)
2369 arch_uprobe_abort_xol(&uprobe->arch, regs);
2370 else
2371 WARN_ON_ONCE(1);
2372
2373 put_uprobe(uprobe);
2374 utask->active_uprobe = NULL;
2375 utask->state = UTASK_RUNNING;
2376 xol_free_insn_slot(current);
2377
2378 spin_lock_irq(¤t->sighand->siglock);
2379 recalc_sigpending(); /* see uprobe_deny_signal() */
2380 spin_unlock_irq(¤t->sighand->siglock);
2381
2382 if (unlikely(err)) {
2383 uprobe_warn(current, "execute the probed insn, sending SIGILL.");
2384 force_sig(SIGILL);
2385 }
2386 }
2387
2388 /*
2389 * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and
2390 * allows the thread to return from interrupt. After that handle_swbp()
2391 * sets utask->active_uprobe.
2392 *
2393 * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag
2394 * and allows the thread to return from interrupt.
2395 *
2396 * While returning to userspace, thread notices the TIF_UPROBE flag and calls
2397 * uprobe_notify_resume().
2398 */
uprobe_notify_resume(struct pt_regs * regs)2399 void uprobe_notify_resume(struct pt_regs *regs)
2400 {
2401 struct uprobe_task *utask;
2402
2403 clear_thread_flag(TIF_UPROBE);
2404
2405 utask = current->utask;
2406 if (utask && utask->active_uprobe)
2407 handle_singlestep(utask, regs);
2408 else
2409 handle_swbp(regs);
2410 }
2411
2412 /*
2413 * uprobe_pre_sstep_notifier gets called from interrupt context as part of
2414 * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
2415 */
uprobe_pre_sstep_notifier(struct pt_regs * regs)2416 int uprobe_pre_sstep_notifier(struct pt_regs *regs)
2417 {
2418 if (!current->mm)
2419 return 0;
2420
2421 if (!test_bit(MMF_HAS_UPROBES, ¤t->mm->flags) &&
2422 (!current->utask || !current->utask->return_instances))
2423 return 0;
2424
2425 set_thread_flag(TIF_UPROBE);
2426 return 1;
2427 }
2428
2429 /*
2430 * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
2431 * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
2432 */
uprobe_post_sstep_notifier(struct pt_regs * regs)2433 int uprobe_post_sstep_notifier(struct pt_regs *regs)
2434 {
2435 struct uprobe_task *utask = current->utask;
2436
2437 if (!current->mm || !utask || !utask->active_uprobe)
2438 /* task is currently not uprobed */
2439 return 0;
2440
2441 utask->state = UTASK_SSTEP_ACK;
2442 set_thread_flag(TIF_UPROBE);
2443 return 1;
2444 }
2445
2446 static struct notifier_block uprobe_exception_nb = {
2447 .notifier_call = arch_uprobe_exception_notify,
2448 .priority = INT_MAX-1, /* notified after kprobes, kgdb */
2449 };
2450
uprobes_init(void)2451 void __init uprobes_init(void)
2452 {
2453 int i;
2454
2455 for (i = 0; i < UPROBES_HASH_SZ; i++)
2456 mutex_init(&uprobes_mmap_mutex[i]);
2457
2458 BUG_ON(register_die_notifier(&uprobe_exception_nb));
2459 }
2460