1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/mm/swap_state.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie
7 *
8 * Rewritten to use page cache, (C) 1998 Stephen Tweedie
9 */
10 #include <linux/mm.h>
11 #include <linux/gfp.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/mempolicy.h>
14 #include <linux/swap.h>
15 #include <linux/swapops.h>
16 #include <linux/init.h>
17 #include <linux/pagemap.h>
18 #include <linux/pagevec.h>
19 #include <linux/backing-dev.h>
20 #include <linux/blkdev.h>
21 #include <linux/migrate.h>
22 #include <linux/vmalloc.h>
23 #include <linux/swap_slots.h>
24 #include <linux/huge_mm.h>
25 #include <linux/shmem_fs.h>
26 #include "internal.h"
27 #include "swap.h"
28
29 /*
30 * swapper_space is a fiction, retained to simplify the path through
31 * vmscan's shrink_folio_list.
32 */
33 static const struct address_space_operations swap_aops = {
34 .writepage = swap_writepage,
35 .dirty_folio = noop_dirty_folio,
36 #ifdef CONFIG_MIGRATION
37 .migrate_folio = migrate_folio,
38 #endif
39 };
40
41 struct address_space *swapper_spaces[MAX_SWAPFILES] __read_mostly;
42 EXPORT_SYMBOL_GPL(swapper_spaces);
43 static unsigned int nr_swapper_spaces[MAX_SWAPFILES] __read_mostly;
44 static bool enable_vma_readahead __read_mostly = true;
45
46 #define SWAP_RA_ORDER_CEILING 5
47
48 #define SWAP_RA_WIN_SHIFT (PAGE_SHIFT / 2)
49 #define SWAP_RA_HITS_MASK ((1UL << SWAP_RA_WIN_SHIFT) - 1)
50 #define SWAP_RA_HITS_MAX SWAP_RA_HITS_MASK
51 #define SWAP_RA_WIN_MASK (~PAGE_MASK & ~SWAP_RA_HITS_MASK)
52
53 #define SWAP_RA_HITS(v) ((v) & SWAP_RA_HITS_MASK)
54 #define SWAP_RA_WIN(v) (((v) & SWAP_RA_WIN_MASK) >> SWAP_RA_WIN_SHIFT)
55 #define SWAP_RA_ADDR(v) ((v) & PAGE_MASK)
56
57 #define SWAP_RA_VAL(addr, win, hits) \
58 (((addr) & PAGE_MASK) | \
59 (((win) << SWAP_RA_WIN_SHIFT) & SWAP_RA_WIN_MASK) | \
60 ((hits) & SWAP_RA_HITS_MASK))
61
62 /* Initial readahead hits is 4 to start up with a small window */
63 #define GET_SWAP_RA_VAL(vma) \
64 (atomic_long_read(&(vma)->swap_readahead_info) ? : 4)
65
66 static atomic_t swapin_readahead_hits = ATOMIC_INIT(4);
67
show_swap_cache_info(void)68 void show_swap_cache_info(void)
69 {
70 printk("%lu pages in swap cache\n", total_swapcache_pages());
71 printk("Free swap = %ldkB\n", K(get_nr_swap_pages()));
72 printk("Total swap = %lukB\n", K(total_swap_pages));
73 }
74
get_shadow_from_swap_cache(swp_entry_t entry)75 void *get_shadow_from_swap_cache(swp_entry_t entry)
76 {
77 struct address_space *address_space = swap_address_space(entry);
78 pgoff_t idx = swap_cache_index(entry);
79 void *shadow;
80
81 shadow = xa_load(&address_space->i_pages, idx);
82 if (xa_is_value(shadow))
83 return shadow;
84 return NULL;
85 }
86
87 /*
88 * add_to_swap_cache resembles filemap_add_folio on swapper_space,
89 * but sets SwapCache flag and private instead of mapping and index.
90 */
add_to_swap_cache(struct folio * folio,swp_entry_t entry,gfp_t gfp,void ** shadowp)91 int add_to_swap_cache(struct folio *folio, swp_entry_t entry,
92 gfp_t gfp, void **shadowp)
93 {
94 struct address_space *address_space = swap_address_space(entry);
95 pgoff_t idx = swap_cache_index(entry);
96 XA_STATE_ORDER(xas, &address_space->i_pages, idx, folio_order(folio));
97 unsigned long i, nr = folio_nr_pages(folio);
98 void *old;
99
100 xas_set_update(&xas, workingset_update_node);
101
102 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
103 VM_BUG_ON_FOLIO(folio_test_swapcache(folio), folio);
104 VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio);
105
106 folio_ref_add(folio, nr);
107 folio_set_swapcache(folio);
108 folio->swap = entry;
109
110 do {
111 xas_lock_irq(&xas);
112 xas_create_range(&xas);
113 if (xas_error(&xas))
114 goto unlock;
115 for (i = 0; i < nr; i++) {
116 VM_BUG_ON_FOLIO(xas.xa_index != idx + i, folio);
117 if (shadowp) {
118 old = xas_load(&xas);
119 if (xa_is_value(old))
120 *shadowp = old;
121 }
122 xas_store(&xas, folio);
123 xas_next(&xas);
124 }
125 address_space->nrpages += nr;
126 __node_stat_mod_folio(folio, NR_FILE_PAGES, nr);
127 __lruvec_stat_mod_folio(folio, NR_SWAPCACHE, nr);
128 unlock:
129 xas_unlock_irq(&xas);
130 } while (xas_nomem(&xas, gfp));
131
132 if (!xas_error(&xas))
133 return 0;
134
135 folio_clear_swapcache(folio);
136 folio_ref_sub(folio, nr);
137 return xas_error(&xas);
138 }
139
140 /*
141 * This must be called only on folios that have
142 * been verified to be in the swap cache.
143 */
__delete_from_swap_cache(struct folio * folio,swp_entry_t entry,void * shadow)144 void __delete_from_swap_cache(struct folio *folio,
145 swp_entry_t entry, void *shadow)
146 {
147 struct address_space *address_space = swap_address_space(entry);
148 int i;
149 long nr = folio_nr_pages(folio);
150 pgoff_t idx = swap_cache_index(entry);
151 XA_STATE(xas, &address_space->i_pages, idx);
152
153 xas_set_update(&xas, workingset_update_node);
154
155 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
156 VM_BUG_ON_FOLIO(!folio_test_swapcache(folio), folio);
157 VM_BUG_ON_FOLIO(folio_test_writeback(folio), folio);
158
159 for (i = 0; i < nr; i++) {
160 void *entry = xas_store(&xas, shadow);
161 VM_BUG_ON_PAGE(entry != folio, entry);
162 xas_next(&xas);
163 }
164 folio->swap.val = 0;
165 folio_clear_swapcache(folio);
166 address_space->nrpages -= nr;
167 __node_stat_mod_folio(folio, NR_FILE_PAGES, -nr);
168 __lruvec_stat_mod_folio(folio, NR_SWAPCACHE, -nr);
169 }
170
171 /**
172 * add_to_swap - allocate swap space for a folio
173 * @folio: folio we want to move to swap
174 *
175 * Allocate swap space for the folio and add the folio to the
176 * swap cache.
177 *
178 * Context: Caller needs to hold the folio lock.
179 * Return: Whether the folio was added to the swap cache.
180 */
add_to_swap(struct folio * folio)181 bool add_to_swap(struct folio *folio)
182 {
183 swp_entry_t entry;
184 int err;
185
186 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
187 VM_BUG_ON_FOLIO(!folio_test_uptodate(folio), folio);
188
189 entry = folio_alloc_swap(folio);
190 if (!entry.val)
191 return false;
192
193 /*
194 * XArray node allocations from PF_MEMALLOC contexts could
195 * completely exhaust the page allocator. __GFP_NOMEMALLOC
196 * stops emergency reserves from being allocated.
197 *
198 * TODO: this could cause a theoretical memory reclaim
199 * deadlock in the swap out path.
200 */
201 /*
202 * Add it to the swap cache.
203 */
204 err = add_to_swap_cache(folio, entry,
205 __GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN, NULL);
206 if (err)
207 /*
208 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
209 * clear SWAP_HAS_CACHE flag.
210 */
211 goto fail;
212 /*
213 * Normally the folio will be dirtied in unmap because its
214 * pte should be dirty. A special case is MADV_FREE page. The
215 * page's pte could have dirty bit cleared but the folio's
216 * SwapBacked flag is still set because clearing the dirty bit
217 * and SwapBacked flag has no lock protected. For such folio,
218 * unmap will not set dirty bit for it, so folio reclaim will
219 * not write the folio out. This can cause data corruption when
220 * the folio is swapped in later. Always setting the dirty flag
221 * for the folio solves the problem.
222 */
223 folio_mark_dirty(folio);
224
225 return true;
226
227 fail:
228 put_swap_folio(folio, entry);
229 return false;
230 }
231
232 /*
233 * This must be called only on folios that have
234 * been verified to be in the swap cache and locked.
235 * It will never put the folio into the free list,
236 * the caller has a reference on the folio.
237 */
delete_from_swap_cache(struct folio * folio)238 void delete_from_swap_cache(struct folio *folio)
239 {
240 swp_entry_t entry = folio->swap;
241 struct address_space *address_space = swap_address_space(entry);
242
243 xa_lock_irq(&address_space->i_pages);
244 __delete_from_swap_cache(folio, entry, NULL);
245 xa_unlock_irq(&address_space->i_pages);
246
247 put_swap_folio(folio, entry);
248 folio_ref_sub(folio, folio_nr_pages(folio));
249 }
250 EXPORT_SYMBOL_GPL(delete_from_swap_cache);
251
clear_shadow_from_swap_cache(int type,unsigned long begin,unsigned long end)252 void clear_shadow_from_swap_cache(int type, unsigned long begin,
253 unsigned long end)
254 {
255 unsigned long curr = begin;
256 void *old;
257
258 for (;;) {
259 swp_entry_t entry = swp_entry(type, curr);
260 unsigned long index = curr & SWAP_ADDRESS_SPACE_MASK;
261 struct address_space *address_space = swap_address_space(entry);
262 XA_STATE(xas, &address_space->i_pages, index);
263
264 xas_set_update(&xas, workingset_update_node);
265
266 xa_lock_irq(&address_space->i_pages);
267 xas_for_each(&xas, old, min(index + (end - curr), SWAP_ADDRESS_SPACE_PAGES)) {
268 if (!xa_is_value(old))
269 continue;
270 xas_store(&xas, NULL);
271 }
272 xa_unlock_irq(&address_space->i_pages);
273
274 /* search the next swapcache until we meet end */
275 curr >>= SWAP_ADDRESS_SPACE_SHIFT;
276 curr++;
277 curr <<= SWAP_ADDRESS_SPACE_SHIFT;
278 if (curr > end)
279 break;
280 }
281 }
282
283 /*
284 * If we are the only user, then try to free up the swap cache.
285 *
286 * Its ok to check the swapcache flag without the folio lock
287 * here because we are going to recheck again inside
288 * folio_free_swap() _with_ the lock.
289 * - Marcelo
290 */
free_swap_cache(struct folio * folio)291 void free_swap_cache(struct folio *folio)
292 {
293 if (folio_test_swapcache(folio) && !folio_mapped(folio) &&
294 folio_trylock(folio)) {
295 folio_free_swap(folio);
296 folio_unlock(folio);
297 }
298 }
299
300 /*
301 * Perform a free_page(), also freeing any swap cache associated with
302 * this page if it is the last user of the page.
303 */
free_page_and_swap_cache(struct page * page)304 void free_page_and_swap_cache(struct page *page)
305 {
306 struct folio *folio = page_folio(page);
307
308 free_swap_cache(folio);
309 if (!is_huge_zero_folio(folio))
310 folio_put(folio);
311 }
312
313 /*
314 * Passed an array of pages, drop them all from swapcache and then release
315 * them. They are removed from the LRU and freed if this is their last use.
316 */
free_pages_and_swap_cache(struct encoded_page ** pages,int nr)317 void free_pages_and_swap_cache(struct encoded_page **pages, int nr)
318 {
319 struct folio_batch folios;
320 unsigned int refs[PAGEVEC_SIZE];
321
322 lru_add_drain();
323 folio_batch_init(&folios);
324 for (int i = 0; i < nr; i++) {
325 struct folio *folio = page_folio(encoded_page_ptr(pages[i]));
326
327 free_swap_cache(folio);
328 refs[folios.nr] = 1;
329 if (unlikely(encoded_page_flags(pages[i]) &
330 ENCODED_PAGE_BIT_NR_PAGES_NEXT))
331 refs[folios.nr] = encoded_nr_pages(pages[++i]);
332
333 if (folio_batch_add(&folios, folio) == 0)
334 folios_put_refs(&folios, refs);
335 }
336 if (folios.nr)
337 folios_put_refs(&folios, refs);
338 }
339
swap_use_vma_readahead(void)340 static inline bool swap_use_vma_readahead(void)
341 {
342 return READ_ONCE(enable_vma_readahead) && !atomic_read(&nr_rotate_swap);
343 }
344
345 /*
346 * Lookup a swap entry in the swap cache. A found folio will be returned
347 * unlocked and with its refcount incremented - we rely on the kernel
348 * lock getting page table operations atomic even if we drop the folio
349 * lock before returning.
350 *
351 * Caller must lock the swap device or hold a reference to keep it valid.
352 */
swap_cache_get_folio(swp_entry_t entry,struct vm_area_struct * vma,unsigned long addr)353 struct folio *swap_cache_get_folio(swp_entry_t entry,
354 struct vm_area_struct *vma, unsigned long addr)
355 {
356 struct folio *folio;
357
358 folio = filemap_get_folio(swap_address_space(entry), swap_cache_index(entry));
359 if (!IS_ERR(folio)) {
360 bool vma_ra = swap_use_vma_readahead();
361 bool readahead;
362
363 /*
364 * At the moment, we don't support PG_readahead for anon THP
365 * so let's bail out rather than confusing the readahead stat.
366 */
367 if (unlikely(folio_test_large(folio)))
368 return folio;
369
370 readahead = folio_test_clear_readahead(folio);
371 if (vma && vma_ra) {
372 unsigned long ra_val;
373 int win, hits;
374
375 ra_val = GET_SWAP_RA_VAL(vma);
376 win = SWAP_RA_WIN(ra_val);
377 hits = SWAP_RA_HITS(ra_val);
378 if (readahead)
379 hits = min_t(int, hits + 1, SWAP_RA_HITS_MAX);
380 atomic_long_set(&vma->swap_readahead_info,
381 SWAP_RA_VAL(addr, win, hits));
382 }
383
384 if (readahead) {
385 count_vm_event(SWAP_RA_HIT);
386 if (!vma || !vma_ra)
387 atomic_inc(&swapin_readahead_hits);
388 }
389 } else {
390 folio = NULL;
391 }
392
393 return folio;
394 }
395
396 /**
397 * filemap_get_incore_folio - Find and get a folio from the page or swap caches.
398 * @mapping: The address_space to search.
399 * @index: The page cache index.
400 *
401 * This differs from filemap_get_folio() in that it will also look for the
402 * folio in the swap cache.
403 *
404 * Return: The found folio or %NULL.
405 */
filemap_get_incore_folio(struct address_space * mapping,pgoff_t index)406 struct folio *filemap_get_incore_folio(struct address_space *mapping,
407 pgoff_t index)
408 {
409 swp_entry_t swp;
410 struct swap_info_struct *si;
411 struct folio *folio = filemap_get_entry(mapping, index);
412
413 if (!folio)
414 return ERR_PTR(-ENOENT);
415 if (!xa_is_value(folio))
416 return folio;
417 if (!shmem_mapping(mapping))
418 return ERR_PTR(-ENOENT);
419
420 swp = radix_to_swp_entry(folio);
421 /* There might be swapin error entries in shmem mapping. */
422 if (non_swap_entry(swp))
423 return ERR_PTR(-ENOENT);
424 /* Prevent swapoff from happening to us */
425 si = get_swap_device(swp);
426 if (!si)
427 return ERR_PTR(-ENOENT);
428 index = swap_cache_index(swp);
429 folio = filemap_get_folio(swap_address_space(swp), index);
430 put_swap_device(si);
431 return folio;
432 }
433
__read_swap_cache_async(swp_entry_t entry,gfp_t gfp_mask,struct mempolicy * mpol,pgoff_t ilx,bool * new_page_allocated,bool skip_if_exists)434 struct folio *__read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
435 struct mempolicy *mpol, pgoff_t ilx, bool *new_page_allocated,
436 bool skip_if_exists)
437 {
438 struct swap_info_struct *si;
439 struct folio *folio;
440 struct folio *new_folio = NULL;
441 struct folio *result = NULL;
442 void *shadow = NULL;
443
444 *new_page_allocated = false;
445 si = get_swap_device(entry);
446 if (!si)
447 return NULL;
448
449 for (;;) {
450 int err;
451 /*
452 * First check the swap cache. Since this is normally
453 * called after swap_cache_get_folio() failed, re-calling
454 * that would confuse statistics.
455 */
456 folio = filemap_get_folio(swap_address_space(entry),
457 swap_cache_index(entry));
458 if (!IS_ERR(folio))
459 goto got_folio;
460
461 /*
462 * Just skip read ahead for unused swap slot.
463 * During swap_off when swap_slot_cache is disabled,
464 * we have to handle the race between putting
465 * swap entry in swap cache and marking swap slot
466 * as SWAP_HAS_CACHE. That's done in later part of code or
467 * else swap_off will be aborted if we return NULL.
468 */
469 if (!swap_swapcount(si, entry) && swap_slot_cache_enabled)
470 goto put_and_return;
471
472 /*
473 * Get a new folio to read into from swap. Allocate it now if
474 * new_folio not exist, before marking swap_map SWAP_HAS_CACHE,
475 * when -EEXIST will cause any racers to loop around until we
476 * add it to cache.
477 */
478 if (!new_folio) {
479 new_folio = folio_alloc_mpol(gfp_mask, 0, mpol, ilx, numa_node_id());
480 if (!new_folio)
481 goto put_and_return;
482 }
483
484 /*
485 * Swap entry may have been freed since our caller observed it.
486 */
487 err = swapcache_prepare(entry, 1);
488 if (!err)
489 break;
490 else if (err != -EEXIST)
491 goto put_and_return;
492
493 /*
494 * Protect against a recursive call to __read_swap_cache_async()
495 * on the same entry waiting forever here because SWAP_HAS_CACHE
496 * is set but the folio is not the swap cache yet. This can
497 * happen today if mem_cgroup_swapin_charge_folio() below
498 * triggers reclaim through zswap, which may call
499 * __read_swap_cache_async() in the writeback path.
500 */
501 if (skip_if_exists)
502 goto put_and_return;
503
504 /*
505 * We might race against __delete_from_swap_cache(), and
506 * stumble across a swap_map entry whose SWAP_HAS_CACHE
507 * has not yet been cleared. Or race against another
508 * __read_swap_cache_async(), which has set SWAP_HAS_CACHE
509 * in swap_map, but not yet added its folio to swap cache.
510 */
511 schedule_timeout_uninterruptible(1);
512 }
513
514 /*
515 * The swap entry is ours to swap in. Prepare the new folio.
516 */
517 __folio_set_locked(new_folio);
518 __folio_set_swapbacked(new_folio);
519
520 if (mem_cgroup_swapin_charge_folio(new_folio, NULL, gfp_mask, entry))
521 goto fail_unlock;
522
523 /* May fail (-ENOMEM) if XArray node allocation failed. */
524 if (add_to_swap_cache(new_folio, entry, gfp_mask & GFP_RECLAIM_MASK, &shadow))
525 goto fail_unlock;
526
527 mem_cgroup_swapin_uncharge_swap(entry, 1);
528
529 if (shadow)
530 workingset_refault(new_folio, shadow);
531
532 /* Caller will initiate read into locked new_folio */
533 folio_add_lru(new_folio);
534 *new_page_allocated = true;
535 folio = new_folio;
536 got_folio:
537 result = folio;
538 goto put_and_return;
539
540 fail_unlock:
541 put_swap_folio(new_folio, entry);
542 folio_unlock(new_folio);
543 put_and_return:
544 put_swap_device(si);
545 if (!(*new_page_allocated) && new_folio)
546 folio_put(new_folio);
547 return result;
548 }
549
550 /*
551 * Locate a page of swap in physical memory, reserving swap cache space
552 * and reading the disk if it is not already cached.
553 * A failure return means that either the page allocation failed or that
554 * the swap entry is no longer in use.
555 *
556 * get/put_swap_device() aren't needed to call this function, because
557 * __read_swap_cache_async() call them and swap_read_folio() holds the
558 * swap cache folio lock.
559 */
read_swap_cache_async(swp_entry_t entry,gfp_t gfp_mask,struct vm_area_struct * vma,unsigned long addr,struct swap_iocb ** plug)560 struct folio *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
561 struct vm_area_struct *vma, unsigned long addr,
562 struct swap_iocb **plug)
563 {
564 bool page_allocated;
565 struct mempolicy *mpol;
566 pgoff_t ilx;
567 struct folio *folio;
568
569 mpol = get_vma_policy(vma, addr, 0, &ilx);
570 folio = __read_swap_cache_async(entry, gfp_mask, mpol, ilx,
571 &page_allocated, false);
572 mpol_cond_put(mpol);
573
574 if (page_allocated)
575 swap_read_folio(folio, plug);
576 return folio;
577 }
578
579 EXPORT_SYMBOL_GPL(read_swap_cache_async);
580
__swapin_nr_pages(unsigned long prev_offset,unsigned long offset,int hits,int max_pages,int prev_win)581 static unsigned int __swapin_nr_pages(unsigned long prev_offset,
582 unsigned long offset,
583 int hits,
584 int max_pages,
585 int prev_win)
586 {
587 unsigned int pages, last_ra;
588
589 /*
590 * This heuristic has been found to work well on both sequential and
591 * random loads, swapping to hard disk or to SSD: please don't ask
592 * what the "+ 2" means, it just happens to work well, that's all.
593 */
594 pages = hits + 2;
595 if (pages == 2) {
596 /*
597 * We can have no readahead hits to judge by: but must not get
598 * stuck here forever, so check for an adjacent offset instead
599 * (and don't even bother to check whether swap type is same).
600 */
601 if (offset != prev_offset + 1 && offset != prev_offset - 1)
602 pages = 1;
603 } else {
604 unsigned int roundup = 4;
605 while (roundup < pages)
606 roundup <<= 1;
607 pages = roundup;
608 }
609
610 if (pages > max_pages)
611 pages = max_pages;
612
613 /* Don't shrink readahead too fast */
614 last_ra = prev_win / 2;
615 if (pages < last_ra)
616 pages = last_ra;
617
618 return pages;
619 }
620
swapin_nr_pages(unsigned long offset)621 static unsigned long swapin_nr_pages(unsigned long offset)
622 {
623 static unsigned long prev_offset;
624 unsigned int hits, pages, max_pages;
625 static atomic_t last_readahead_pages;
626
627 max_pages = 1 << READ_ONCE(page_cluster);
628 if (max_pages <= 1)
629 return 1;
630
631 hits = atomic_xchg(&swapin_readahead_hits, 0);
632 pages = __swapin_nr_pages(READ_ONCE(prev_offset), offset, hits,
633 max_pages,
634 atomic_read(&last_readahead_pages));
635 if (!hits)
636 WRITE_ONCE(prev_offset, offset);
637 atomic_set(&last_readahead_pages, pages);
638
639 return pages;
640 }
641
642 /**
643 * swap_cluster_readahead - swap in pages in hope we need them soon
644 * @entry: swap entry of this memory
645 * @gfp_mask: memory allocation flags
646 * @mpol: NUMA memory allocation policy to be applied
647 * @ilx: NUMA interleave index, for use only when MPOL_INTERLEAVE
648 *
649 * Returns the struct folio for entry and addr, after queueing swapin.
650 *
651 * Primitive swap readahead code. We simply read an aligned block of
652 * (1 << page_cluster) entries in the swap area. This method is chosen
653 * because it doesn't cost us any seek time. We also make sure to queue
654 * the 'original' request together with the readahead ones...
655 *
656 * Note: it is intentional that the same NUMA policy and interleave index
657 * are used for every page of the readahead: neighbouring pages on swap
658 * are fairly likely to have been swapped out from the same node.
659 */
swap_cluster_readahead(swp_entry_t entry,gfp_t gfp_mask,struct mempolicy * mpol,pgoff_t ilx)660 struct folio *swap_cluster_readahead(swp_entry_t entry, gfp_t gfp_mask,
661 struct mempolicy *mpol, pgoff_t ilx)
662 {
663 struct folio *folio;
664 unsigned long entry_offset = swp_offset(entry);
665 unsigned long offset = entry_offset;
666 unsigned long start_offset, end_offset;
667 unsigned long mask;
668 struct swap_info_struct *si = swp_swap_info(entry);
669 struct blk_plug plug;
670 struct swap_iocb *splug = NULL;
671 bool page_allocated;
672
673 mask = swapin_nr_pages(offset) - 1;
674 if (!mask)
675 goto skip;
676
677 /* Read a page_cluster sized and aligned cluster around offset. */
678 start_offset = offset & ~mask;
679 end_offset = offset | mask;
680 if (!start_offset) /* First page is swap header. */
681 start_offset++;
682 if (end_offset >= si->max)
683 end_offset = si->max - 1;
684
685 blk_start_plug(&plug);
686 for (offset = start_offset; offset <= end_offset ; offset++) {
687 /* Ok, do the async read-ahead now */
688 folio = __read_swap_cache_async(
689 swp_entry(swp_type(entry), offset),
690 gfp_mask, mpol, ilx, &page_allocated, false);
691 if (!folio)
692 continue;
693 if (page_allocated) {
694 swap_read_folio(folio, &splug);
695 if (offset != entry_offset) {
696 folio_set_readahead(folio);
697 count_vm_event(SWAP_RA);
698 }
699 }
700 folio_put(folio);
701 }
702 blk_finish_plug(&plug);
703 swap_read_unplug(splug);
704 lru_add_drain(); /* Push any new pages onto the LRU now */
705 skip:
706 /* The page was likely read above, so no need for plugging here */
707 folio = __read_swap_cache_async(entry, gfp_mask, mpol, ilx,
708 &page_allocated, false);
709 if (unlikely(page_allocated))
710 swap_read_folio(folio, NULL);
711 return folio;
712 }
713
init_swap_address_space(unsigned int type,unsigned long nr_pages)714 int init_swap_address_space(unsigned int type, unsigned long nr_pages)
715 {
716 struct address_space *spaces, *space;
717 unsigned int i, nr;
718
719 nr = DIV_ROUND_UP(nr_pages, SWAP_ADDRESS_SPACE_PAGES);
720 spaces = kvcalloc(nr, sizeof(struct address_space), GFP_KERNEL);
721 if (!spaces)
722 return -ENOMEM;
723 for (i = 0; i < nr; i++) {
724 space = spaces + i;
725 xa_init_flags(&space->i_pages, XA_FLAGS_LOCK_IRQ);
726 atomic_set(&space->i_mmap_writable, 0);
727 space->a_ops = &swap_aops;
728 /* swap cache doesn't use writeback related tags */
729 mapping_set_no_writeback_tags(space);
730 }
731 nr_swapper_spaces[type] = nr;
732 swapper_spaces[type] = spaces;
733
734 return 0;
735 }
736
exit_swap_address_space(unsigned int type)737 void exit_swap_address_space(unsigned int type)
738 {
739 int i;
740 struct address_space *spaces = swapper_spaces[type];
741
742 for (i = 0; i < nr_swapper_spaces[type]; i++)
743 VM_WARN_ON_ONCE(!mapping_empty(&spaces[i]));
744 kvfree(spaces);
745 nr_swapper_spaces[type] = 0;
746 swapper_spaces[type] = NULL;
747 }
748
swap_vma_ra_win(struct vm_fault * vmf,unsigned long * start,unsigned long * end)749 static int swap_vma_ra_win(struct vm_fault *vmf, unsigned long *start,
750 unsigned long *end)
751 {
752 struct vm_area_struct *vma = vmf->vma;
753 unsigned long ra_val;
754 unsigned long faddr, prev_faddr, left, right;
755 unsigned int max_win, hits, prev_win, win;
756
757 max_win = 1 << min(READ_ONCE(page_cluster), SWAP_RA_ORDER_CEILING);
758 if (max_win == 1)
759 return 1;
760
761 faddr = vmf->address;
762 ra_val = GET_SWAP_RA_VAL(vma);
763 prev_faddr = SWAP_RA_ADDR(ra_val);
764 prev_win = SWAP_RA_WIN(ra_val);
765 hits = SWAP_RA_HITS(ra_val);
766 win = __swapin_nr_pages(PFN_DOWN(prev_faddr), PFN_DOWN(faddr), hits,
767 max_win, prev_win);
768 atomic_long_set(&vma->swap_readahead_info, SWAP_RA_VAL(faddr, win, 0));
769 if (win == 1)
770 return 1;
771
772 if (faddr == prev_faddr + PAGE_SIZE)
773 left = faddr;
774 else if (prev_faddr == faddr + PAGE_SIZE)
775 left = faddr - (win << PAGE_SHIFT) + PAGE_SIZE;
776 else
777 left = faddr - (((win - 1) / 2) << PAGE_SHIFT);
778 right = left + (win << PAGE_SHIFT);
779 if ((long)left < 0)
780 left = 0;
781 *start = max3(left, vma->vm_start, faddr & PMD_MASK);
782 *end = min3(right, vma->vm_end, (faddr & PMD_MASK) + PMD_SIZE);
783
784 return win;
785 }
786
787 /**
788 * swap_vma_readahead - swap in pages in hope we need them soon
789 * @targ_entry: swap entry of the targeted memory
790 * @gfp_mask: memory allocation flags
791 * @mpol: NUMA memory allocation policy to be applied
792 * @targ_ilx: NUMA interleave index, for use only when MPOL_INTERLEAVE
793 * @vmf: fault information
794 *
795 * Returns the struct folio for entry and addr, after queueing swapin.
796 *
797 * Primitive swap readahead code. We simply read in a few pages whose
798 * virtual addresses are around the fault address in the same vma.
799 *
800 * Caller must hold read mmap_lock if vmf->vma is not NULL.
801 *
802 */
swap_vma_readahead(swp_entry_t targ_entry,gfp_t gfp_mask,struct mempolicy * mpol,pgoff_t targ_ilx,struct vm_fault * vmf)803 static struct folio *swap_vma_readahead(swp_entry_t targ_entry, gfp_t gfp_mask,
804 struct mempolicy *mpol, pgoff_t targ_ilx, struct vm_fault *vmf)
805 {
806 struct blk_plug plug;
807 struct swap_iocb *splug = NULL;
808 struct folio *folio;
809 pte_t *pte = NULL, pentry;
810 int win;
811 unsigned long start, end, addr;
812 swp_entry_t entry;
813 pgoff_t ilx;
814 bool page_allocated;
815
816 win = swap_vma_ra_win(vmf, &start, &end);
817 if (win == 1)
818 goto skip;
819
820 ilx = targ_ilx - PFN_DOWN(vmf->address - start);
821
822 blk_start_plug(&plug);
823 for (addr = start; addr < end; ilx++, addr += PAGE_SIZE) {
824 if (!pte++) {
825 pte = pte_offset_map(vmf->pmd, addr);
826 if (!pte)
827 break;
828 }
829 pentry = ptep_get_lockless(pte);
830 if (!is_swap_pte(pentry))
831 continue;
832 entry = pte_to_swp_entry(pentry);
833 if (unlikely(non_swap_entry(entry)))
834 continue;
835 pte_unmap(pte);
836 pte = NULL;
837 folio = __read_swap_cache_async(entry, gfp_mask, mpol, ilx,
838 &page_allocated, false);
839 if (!folio)
840 continue;
841 if (page_allocated) {
842 swap_read_folio(folio, &splug);
843 if (addr != vmf->address) {
844 folio_set_readahead(folio);
845 count_vm_event(SWAP_RA);
846 }
847 }
848 folio_put(folio);
849 }
850 if (pte)
851 pte_unmap(pte);
852 blk_finish_plug(&plug);
853 swap_read_unplug(splug);
854 lru_add_drain();
855 skip:
856 /* The folio was likely read above, so no need for plugging here */
857 folio = __read_swap_cache_async(targ_entry, gfp_mask, mpol, targ_ilx,
858 &page_allocated, false);
859 if (unlikely(page_allocated))
860 swap_read_folio(folio, NULL);
861 return folio;
862 }
863
864 /**
865 * swapin_readahead - swap in pages in hope we need them soon
866 * @entry: swap entry of this memory
867 * @gfp_mask: memory allocation flags
868 * @vmf: fault information
869 *
870 * Returns the struct folio for entry and addr, after queueing swapin.
871 *
872 * It's a main entry function for swap readahead. By the configuration,
873 * it will read ahead blocks by cluster-based(ie, physical disk based)
874 * or vma-based(ie, virtual address based on faulty address) readahead.
875 */
swapin_readahead(swp_entry_t entry,gfp_t gfp_mask,struct vm_fault * vmf)876 struct folio *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask,
877 struct vm_fault *vmf)
878 {
879 struct mempolicy *mpol;
880 pgoff_t ilx;
881 struct folio *folio;
882
883 mpol = get_vma_policy(vmf->vma, vmf->address, 0, &ilx);
884 folio = swap_use_vma_readahead() ?
885 swap_vma_readahead(entry, gfp_mask, mpol, ilx, vmf) :
886 swap_cluster_readahead(entry, gfp_mask, mpol, ilx);
887 mpol_cond_put(mpol);
888
889 return folio;
890 }
891
892 #ifdef CONFIG_SYSFS
vma_ra_enabled_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)893 static ssize_t vma_ra_enabled_show(struct kobject *kobj,
894 struct kobj_attribute *attr, char *buf)
895 {
896 return sysfs_emit(buf, "%s\n",
897 enable_vma_readahead ? "true" : "false");
898 }
vma_ra_enabled_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)899 static ssize_t vma_ra_enabled_store(struct kobject *kobj,
900 struct kobj_attribute *attr,
901 const char *buf, size_t count)
902 {
903 ssize_t ret;
904
905 ret = kstrtobool(buf, &enable_vma_readahead);
906 if (ret)
907 return ret;
908
909 return count;
910 }
911 static struct kobj_attribute vma_ra_enabled_attr = __ATTR_RW(vma_ra_enabled);
912
913 static struct attribute *swap_attrs[] = {
914 &vma_ra_enabled_attr.attr,
915 NULL,
916 };
917
918 static const struct attribute_group swap_attr_group = {
919 .attrs = swap_attrs,
920 };
921
swap_init_sysfs(void)922 static int __init swap_init_sysfs(void)
923 {
924 int err;
925 struct kobject *swap_kobj;
926
927 swap_kobj = kobject_create_and_add("swap", mm_kobj);
928 if (!swap_kobj) {
929 pr_err("failed to create swap kobject\n");
930 return -ENOMEM;
931 }
932 err = sysfs_create_group(swap_kobj, &swap_attr_group);
933 if (err) {
934 pr_err("failed to register swap group\n");
935 goto delete_obj;
936 }
937 return 0;
938
939 delete_obj:
940 kobject_put(swap_kobj);
941 return err;
942 }
943 subsys_initcall(swap_init_sysfs);
944 #endif
945