1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/vmstat.c
4  *
5  *  Manages VM statistics
6  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
7  *
8  *  zoned VM statistics
9  *  Copyright (C) 2006 Silicon Graphics, Inc.,
10  *		Christoph Lameter <christoph@lameter.com>
11  *  Copyright (C) 2008-2014 Christoph Lameter
12  */
13 #include <linux/fs.h>
14 #include <linux/mm.h>
15 #include <linux/err.h>
16 #include <linux/module.h>
17 #include <linux/slab.h>
18 #include <linux/cpu.h>
19 #include <linux/cpumask.h>
20 #include <linux/vmstat.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/debugfs.h>
24 #include <linux/sched.h>
25 #include <linux/math64.h>
26 #include <linux/writeback.h>
27 #include <linux/compaction.h>
28 #include <linux/mm_inline.h>
29 #include <linux/page_owner.h>
30 #include <linux/sched/isolation.h>
31 
32 #include <trace/hooks/mm.h>
33 #include "internal.h"
34 
35 #ifdef CONFIG_NUMA
36 int sysctl_vm_numa_stat = ENABLE_NUMA_STAT;
37 
38 /* zero numa counters within a zone */
zero_zone_numa_counters(struct zone * zone)39 static void zero_zone_numa_counters(struct zone *zone)
40 {
41 	int item, cpu;
42 
43 	for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++) {
44 		atomic_long_set(&zone->vm_numa_event[item], 0);
45 		for_each_online_cpu(cpu) {
46 			per_cpu_ptr(zone->per_cpu_zonestats, cpu)->vm_numa_event[item]
47 						= 0;
48 		}
49 	}
50 }
51 
52 /* zero numa counters of all the populated zones */
zero_zones_numa_counters(void)53 static void zero_zones_numa_counters(void)
54 {
55 	struct zone *zone;
56 
57 	for_each_populated_zone(zone)
58 		zero_zone_numa_counters(zone);
59 }
60 
61 /* zero global numa counters */
zero_global_numa_counters(void)62 static void zero_global_numa_counters(void)
63 {
64 	int item;
65 
66 	for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++)
67 		atomic_long_set(&vm_numa_event[item], 0);
68 }
69 
invalid_numa_statistics(void)70 static void invalid_numa_statistics(void)
71 {
72 	zero_zones_numa_counters();
73 	zero_global_numa_counters();
74 }
75 
76 static DEFINE_MUTEX(vm_numa_stat_lock);
77 
sysctl_vm_numa_stat_handler(const struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)78 int sysctl_vm_numa_stat_handler(const struct ctl_table *table, int write,
79 		void *buffer, size_t *length, loff_t *ppos)
80 {
81 	int ret, oldval;
82 
83 	mutex_lock(&vm_numa_stat_lock);
84 	if (write)
85 		oldval = sysctl_vm_numa_stat;
86 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
87 	if (ret || !write)
88 		goto out;
89 
90 	if (oldval == sysctl_vm_numa_stat)
91 		goto out;
92 	else if (sysctl_vm_numa_stat == ENABLE_NUMA_STAT) {
93 		static_branch_enable(&vm_numa_stat_key);
94 		pr_info("enable numa statistics\n");
95 	} else {
96 		static_branch_disable(&vm_numa_stat_key);
97 		invalid_numa_statistics();
98 		pr_info("disable numa statistics, and clear numa counters\n");
99 	}
100 
101 out:
102 	mutex_unlock(&vm_numa_stat_lock);
103 	return ret;
104 }
105 #endif
106 
107 #ifdef CONFIG_VM_EVENT_COUNTERS
108 DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
109 EXPORT_PER_CPU_SYMBOL(vm_event_states);
110 
sum_vm_events(unsigned long * ret)111 static void sum_vm_events(unsigned long *ret)
112 {
113 	int cpu;
114 	int i;
115 
116 	memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
117 
118 	for_each_online_cpu(cpu) {
119 		struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
120 
121 		for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
122 			ret[i] += this->event[i];
123 	}
124 }
125 
126 /*
127  * Accumulate the vm event counters across all CPUs.
128  * The result is unavoidably approximate - it can change
129  * during and after execution of this function.
130 */
all_vm_events(unsigned long * ret)131 void all_vm_events(unsigned long *ret)
132 {
133 	cpus_read_lock();
134 	sum_vm_events(ret);
135 	cpus_read_unlock();
136 }
137 EXPORT_SYMBOL_GPL(all_vm_events);
138 
139 /*
140  * Fold the foreign cpu events into our own.
141  *
142  * This is adding to the events on one processor
143  * but keeps the global counts constant.
144  */
vm_events_fold_cpu(int cpu)145 void vm_events_fold_cpu(int cpu)
146 {
147 	struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
148 	int i;
149 
150 	for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
151 		count_vm_events(i, fold_state->event[i]);
152 		fold_state->event[i] = 0;
153 	}
154 }
155 
156 #endif /* CONFIG_VM_EVENT_COUNTERS */
157 
158 /*
159  * Manage combined zone based / global counters
160  *
161  * vm_stat contains the global counters
162  */
163 atomic_long_t vm_zone_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp;
164 atomic_long_t vm_node_stat[NR_VM_NODE_STAT_ITEMS] __cacheline_aligned_in_smp;
165 atomic_long_t vm_numa_event[NR_VM_NUMA_EVENT_ITEMS] __cacheline_aligned_in_smp;
166 EXPORT_SYMBOL(vm_zone_stat);
167 EXPORT_SYMBOL(vm_node_stat);
168 
169 #ifdef CONFIG_NUMA
fold_vm_zone_numa_events(struct zone * zone)170 static void fold_vm_zone_numa_events(struct zone *zone)
171 {
172 	unsigned long zone_numa_events[NR_VM_NUMA_EVENT_ITEMS] = { 0, };
173 	int cpu;
174 	enum numa_stat_item item;
175 
176 	for_each_online_cpu(cpu) {
177 		struct per_cpu_zonestat *pzstats;
178 
179 		pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
180 		for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++)
181 			zone_numa_events[item] += xchg(&pzstats->vm_numa_event[item], 0);
182 	}
183 
184 	for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++)
185 		zone_numa_event_add(zone_numa_events[item], zone, item);
186 }
187 
fold_vm_numa_events(void)188 void fold_vm_numa_events(void)
189 {
190 	struct zone *zone;
191 
192 	for_each_populated_zone(zone)
193 		fold_vm_zone_numa_events(zone);
194 }
195 #endif
196 
197 #ifdef CONFIG_SMP
198 
calculate_pressure_threshold(struct zone * zone)199 int calculate_pressure_threshold(struct zone *zone)
200 {
201 	int threshold;
202 	int watermark_distance;
203 
204 	/*
205 	 * As vmstats are not up to date, there is drift between the estimated
206 	 * and real values. For high thresholds and a high number of CPUs, it
207 	 * is possible for the min watermark to be breached while the estimated
208 	 * value looks fine. The pressure threshold is a reduced value such
209 	 * that even the maximum amount of drift will not accidentally breach
210 	 * the min watermark
211 	 */
212 	watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone);
213 	threshold = max(1, (int)(watermark_distance / num_online_cpus()));
214 
215 	/*
216 	 * Maximum threshold is 125
217 	 */
218 	threshold = min(125, threshold);
219 
220 	return threshold;
221 }
222 
calculate_normal_threshold(struct zone * zone)223 int calculate_normal_threshold(struct zone *zone)
224 {
225 	int threshold;
226 	int mem;	/* memory in 128 MB units */
227 
228 	/*
229 	 * The threshold scales with the number of processors and the amount
230 	 * of memory per zone. More memory means that we can defer updates for
231 	 * longer, more processors could lead to more contention.
232  	 * fls() is used to have a cheap way of logarithmic scaling.
233 	 *
234 	 * Some sample thresholds:
235 	 *
236 	 * Threshold	Processors	(fls)	Zonesize	fls(mem)+1
237 	 * ------------------------------------------------------------------
238 	 * 8		1		1	0.9-1 GB	4
239 	 * 16		2		2	0.9-1 GB	4
240 	 * 20 		2		2	1-2 GB		5
241 	 * 24		2		2	2-4 GB		6
242 	 * 28		2		2	4-8 GB		7
243 	 * 32		2		2	8-16 GB		8
244 	 * 4		2		2	<128M		1
245 	 * 30		4		3	2-4 GB		5
246 	 * 48		4		3	8-16 GB		8
247 	 * 32		8		4	1-2 GB		4
248 	 * 32		8		4	0.9-1GB		4
249 	 * 10		16		5	<128M		1
250 	 * 40		16		5	900M		4
251 	 * 70		64		7	2-4 GB		5
252 	 * 84		64		7	4-8 GB		6
253 	 * 108		512		9	4-8 GB		6
254 	 * 125		1024		10	8-16 GB		8
255 	 * 125		1024		10	16-32 GB	9
256 	 */
257 
258 	mem = zone_managed_pages(zone) >> (27 - PAGE_SHIFT);
259 
260 	threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
261 
262 	/*
263 	 * Maximum threshold is 125
264 	 */
265 	threshold = min(125, threshold);
266 
267 	return threshold;
268 }
269 
270 /*
271  * Refresh the thresholds for each zone.
272  */
refresh_zone_stat_thresholds(void)273 void refresh_zone_stat_thresholds(void)
274 {
275 	struct pglist_data *pgdat;
276 	struct zone *zone;
277 	int cpu;
278 	int threshold;
279 
280 	/* Zero current pgdat thresholds */
281 	for_each_online_pgdat(pgdat) {
282 		for_each_online_cpu(cpu) {
283 			per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold = 0;
284 		}
285 	}
286 
287 	for_each_populated_zone(zone) {
288 		struct pglist_data *pgdat = zone->zone_pgdat;
289 		unsigned long max_drift, tolerate_drift;
290 
291 		threshold = calculate_normal_threshold(zone);
292 
293 		for_each_online_cpu(cpu) {
294 			int pgdat_threshold;
295 
296 			per_cpu_ptr(zone->per_cpu_zonestats, cpu)->stat_threshold
297 							= threshold;
298 
299 			/* Base nodestat threshold on the largest populated zone. */
300 			pgdat_threshold = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold;
301 			per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold
302 				= max(threshold, pgdat_threshold);
303 		}
304 
305 		/*
306 		 * Only set percpu_drift_mark if there is a danger that
307 		 * NR_FREE_PAGES reports the low watermark is ok when in fact
308 		 * the min watermark could be breached by an allocation
309 		 */
310 		tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone);
311 		max_drift = num_online_cpus() * threshold;
312 		if (max_drift > tolerate_drift)
313 			zone->percpu_drift_mark = high_wmark_pages(zone) +
314 					max_drift;
315 	}
316 }
317 
set_pgdat_percpu_threshold(pg_data_t * pgdat,int (* calculate_pressure)(struct zone *))318 void set_pgdat_percpu_threshold(pg_data_t *pgdat,
319 				int (*calculate_pressure)(struct zone *))
320 {
321 	struct zone *zone;
322 	int cpu;
323 	int threshold;
324 	int i;
325 
326 	for (i = 0; i < pgdat->nr_zones; i++) {
327 		zone = &pgdat->node_zones[i];
328 		if (!zone->percpu_drift_mark)
329 			continue;
330 
331 		threshold = (*calculate_pressure)(zone);
332 		for_each_online_cpu(cpu)
333 			per_cpu_ptr(zone->per_cpu_zonestats, cpu)->stat_threshold
334 							= threshold;
335 	}
336 }
337 
338 /*
339  * For use when we know that interrupts are disabled,
340  * or when we know that preemption is disabled and that
341  * particular counter cannot be updated from interrupt context.
342  */
__mod_zone_page_state(struct zone * zone,enum zone_stat_item item,long delta)343 void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
344 			   long delta)
345 {
346 	struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
347 	s8 __percpu *p = pcp->vm_stat_diff + item;
348 	long x;
349 	long t;
350 
351 	/*
352 	 * Accurate vmstat updates require a RMW. On !PREEMPT_RT kernels,
353 	 * atomicity is provided by IRQs being disabled -- either explicitly
354 	 * or via local_lock_irq. On PREEMPT_RT, local_lock_irq only disables
355 	 * CPU migrations and preemption potentially corrupts a counter so
356 	 * disable preemption.
357 	 */
358 	preempt_disable_nested();
359 
360 	x = delta + __this_cpu_read(*p);
361 
362 	t = __this_cpu_read(pcp->stat_threshold);
363 
364 	if (unlikely(abs(x) > t)) {
365 		zone_page_state_add(x, zone, item);
366 		x = 0;
367 	}
368 	__this_cpu_write(*p, x);
369 
370 	preempt_enable_nested();
371 }
372 EXPORT_SYMBOL(__mod_zone_page_state);
373 
__mod_node_page_state(struct pglist_data * pgdat,enum node_stat_item item,long delta)374 void __mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
375 				long delta)
376 {
377 	struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
378 	s8 __percpu *p = pcp->vm_node_stat_diff + item;
379 	long x;
380 	long t;
381 
382 	if (vmstat_item_in_bytes(item)) {
383 		/*
384 		 * Only cgroups use subpage accounting right now; at
385 		 * the global level, these items still change in
386 		 * multiples of whole pages. Store them as pages
387 		 * internally to keep the per-cpu counters compact.
388 		 */
389 		VM_WARN_ON_ONCE(delta & (PAGE_SIZE - 1));
390 		delta >>= PAGE_SHIFT;
391 	}
392 
393 	/* See __mod_node_page_state */
394 	preempt_disable_nested();
395 
396 	x = delta + __this_cpu_read(*p);
397 
398 	t = __this_cpu_read(pcp->stat_threshold);
399 
400 	if (unlikely(abs(x) > t)) {
401 		node_page_state_add(x, pgdat, item);
402 		x = 0;
403 	}
404 	__this_cpu_write(*p, x);
405 
406 	preempt_enable_nested();
407 }
408 EXPORT_SYMBOL(__mod_node_page_state);
409 
410 /*
411  * Optimized increment and decrement functions.
412  *
413  * These are only for a single page and therefore can take a struct page *
414  * argument instead of struct zone *. This allows the inclusion of the code
415  * generated for page_zone(page) into the optimized functions.
416  *
417  * No overflow check is necessary and therefore the differential can be
418  * incremented or decremented in place which may allow the compilers to
419  * generate better code.
420  * The increment or decrement is known and therefore one boundary check can
421  * be omitted.
422  *
423  * NOTE: These functions are very performance sensitive. Change only
424  * with care.
425  *
426  * Some processors have inc/dec instructions that are atomic vs an interrupt.
427  * However, the code must first determine the differential location in a zone
428  * based on the processor number and then inc/dec the counter. There is no
429  * guarantee without disabling preemption that the processor will not change
430  * in between and therefore the atomicity vs. interrupt cannot be exploited
431  * in a useful way here.
432  */
__inc_zone_state(struct zone * zone,enum zone_stat_item item)433 void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
434 {
435 	struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
436 	s8 __percpu *p = pcp->vm_stat_diff + item;
437 	s8 v, t;
438 
439 	/* See __mod_node_page_state */
440 	preempt_disable_nested();
441 
442 	v = __this_cpu_inc_return(*p);
443 	t = __this_cpu_read(pcp->stat_threshold);
444 	if (unlikely(v > t)) {
445 		s8 overstep = t >> 1;
446 
447 		zone_page_state_add(v + overstep, zone, item);
448 		__this_cpu_write(*p, -overstep);
449 	}
450 
451 	preempt_enable_nested();
452 }
453 
__inc_node_state(struct pglist_data * pgdat,enum node_stat_item item)454 void __inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
455 {
456 	struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
457 	s8 __percpu *p = pcp->vm_node_stat_diff + item;
458 	s8 v, t;
459 
460 	VM_WARN_ON_ONCE(vmstat_item_in_bytes(item));
461 
462 	/* See __mod_node_page_state */
463 	preempt_disable_nested();
464 
465 	v = __this_cpu_inc_return(*p);
466 	t = __this_cpu_read(pcp->stat_threshold);
467 	if (unlikely(v > t)) {
468 		s8 overstep = t >> 1;
469 
470 		node_page_state_add(v + overstep, pgdat, item);
471 		__this_cpu_write(*p, -overstep);
472 	}
473 
474 	preempt_enable_nested();
475 }
476 
__inc_zone_page_state(struct page * page,enum zone_stat_item item)477 void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
478 {
479 	__inc_zone_state(page_zone(page), item);
480 }
481 EXPORT_SYMBOL(__inc_zone_page_state);
482 
__inc_node_page_state(struct page * page,enum node_stat_item item)483 void __inc_node_page_state(struct page *page, enum node_stat_item item)
484 {
485 	__inc_node_state(page_pgdat(page), item);
486 }
487 EXPORT_SYMBOL(__inc_node_page_state);
488 
__dec_zone_state(struct zone * zone,enum zone_stat_item item)489 void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
490 {
491 	struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
492 	s8 __percpu *p = pcp->vm_stat_diff + item;
493 	s8 v, t;
494 
495 	/* See __mod_node_page_state */
496 	preempt_disable_nested();
497 
498 	v = __this_cpu_dec_return(*p);
499 	t = __this_cpu_read(pcp->stat_threshold);
500 	if (unlikely(v < - t)) {
501 		s8 overstep = t >> 1;
502 
503 		zone_page_state_add(v - overstep, zone, item);
504 		__this_cpu_write(*p, overstep);
505 	}
506 
507 	preempt_enable_nested();
508 }
509 
__dec_node_state(struct pglist_data * pgdat,enum node_stat_item item)510 void __dec_node_state(struct pglist_data *pgdat, enum node_stat_item item)
511 {
512 	struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
513 	s8 __percpu *p = pcp->vm_node_stat_diff + item;
514 	s8 v, t;
515 
516 	VM_WARN_ON_ONCE(vmstat_item_in_bytes(item));
517 
518 	/* See __mod_node_page_state */
519 	preempt_disable_nested();
520 
521 	v = __this_cpu_dec_return(*p);
522 	t = __this_cpu_read(pcp->stat_threshold);
523 	if (unlikely(v < - t)) {
524 		s8 overstep = t >> 1;
525 
526 		node_page_state_add(v - overstep, pgdat, item);
527 		__this_cpu_write(*p, overstep);
528 	}
529 
530 	preempt_enable_nested();
531 }
532 
__dec_zone_page_state(struct page * page,enum zone_stat_item item)533 void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
534 {
535 	__dec_zone_state(page_zone(page), item);
536 }
537 EXPORT_SYMBOL(__dec_zone_page_state);
538 
__dec_node_page_state(struct page * page,enum node_stat_item item)539 void __dec_node_page_state(struct page *page, enum node_stat_item item)
540 {
541 	__dec_node_state(page_pgdat(page), item);
542 }
543 EXPORT_SYMBOL(__dec_node_page_state);
544 
545 #ifdef CONFIG_HAVE_CMPXCHG_LOCAL
546 /*
547  * If we have cmpxchg_local support then we do not need to incur the overhead
548  * that comes with local_irq_save/restore if we use this_cpu_cmpxchg.
549  *
550  * mod_state() modifies the zone counter state through atomic per cpu
551  * operations.
552  *
553  * Overstep mode specifies how overstep should handled:
554  *     0       No overstepping
555  *     1       Overstepping half of threshold
556  *     -1      Overstepping minus half of threshold
557 */
mod_zone_state(struct zone * zone,enum zone_stat_item item,long delta,int overstep_mode)558 static inline void mod_zone_state(struct zone *zone,
559        enum zone_stat_item item, long delta, int overstep_mode)
560 {
561 	struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
562 	s8 __percpu *p = pcp->vm_stat_diff + item;
563 	long n, t, z;
564 	s8 o;
565 
566 	o = this_cpu_read(*p);
567 	do {
568 		z = 0;  /* overflow to zone counters */
569 
570 		/*
571 		 * The fetching of the stat_threshold is racy. We may apply
572 		 * a counter threshold to the wrong the cpu if we get
573 		 * rescheduled while executing here. However, the next
574 		 * counter update will apply the threshold again and
575 		 * therefore bring the counter under the threshold again.
576 		 *
577 		 * Most of the time the thresholds are the same anyways
578 		 * for all cpus in a zone.
579 		 */
580 		t = this_cpu_read(pcp->stat_threshold);
581 
582 		n = delta + (long)o;
583 
584 		if (abs(n) > t) {
585 			int os = overstep_mode * (t >> 1) ;
586 
587 			/* Overflow must be added to zone counters */
588 			z = n + os;
589 			n = -os;
590 		}
591 	} while (!this_cpu_try_cmpxchg(*p, &o, n));
592 
593 	if (z)
594 		zone_page_state_add(z, zone, item);
595 }
596 
mod_zone_page_state(struct zone * zone,enum zone_stat_item item,long delta)597 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
598 			 long delta)
599 {
600 	mod_zone_state(zone, item, delta, 0);
601 }
602 EXPORT_SYMBOL(mod_zone_page_state);
603 
inc_zone_page_state(struct page * page,enum zone_stat_item item)604 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
605 {
606 	mod_zone_state(page_zone(page), item, 1, 1);
607 }
608 EXPORT_SYMBOL(inc_zone_page_state);
609 
dec_zone_page_state(struct page * page,enum zone_stat_item item)610 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
611 {
612 	mod_zone_state(page_zone(page), item, -1, -1);
613 }
614 EXPORT_SYMBOL(dec_zone_page_state);
615 
mod_node_state(struct pglist_data * pgdat,enum node_stat_item item,int delta,int overstep_mode)616 static inline void mod_node_state(struct pglist_data *pgdat,
617        enum node_stat_item item, int delta, int overstep_mode)
618 {
619 	struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
620 	s8 __percpu *p = pcp->vm_node_stat_diff + item;
621 	long n, t, z;
622 	s8 o;
623 
624 	if (vmstat_item_in_bytes(item)) {
625 		/*
626 		 * Only cgroups use subpage accounting right now; at
627 		 * the global level, these items still change in
628 		 * multiples of whole pages. Store them as pages
629 		 * internally to keep the per-cpu counters compact.
630 		 */
631 		VM_WARN_ON_ONCE(delta & (PAGE_SIZE - 1));
632 		delta >>= PAGE_SHIFT;
633 	}
634 
635 	o = this_cpu_read(*p);
636 	do {
637 		z = 0;  /* overflow to node counters */
638 
639 		/*
640 		 * The fetching of the stat_threshold is racy. We may apply
641 		 * a counter threshold to the wrong the cpu if we get
642 		 * rescheduled while executing here. However, the next
643 		 * counter update will apply the threshold again and
644 		 * therefore bring the counter under the threshold again.
645 		 *
646 		 * Most of the time the thresholds are the same anyways
647 		 * for all cpus in a node.
648 		 */
649 		t = this_cpu_read(pcp->stat_threshold);
650 
651 		n = delta + (long)o;
652 
653 		if (abs(n) > t) {
654 			int os = overstep_mode * (t >> 1) ;
655 
656 			/* Overflow must be added to node counters */
657 			z = n + os;
658 			n = -os;
659 		}
660 	} while (!this_cpu_try_cmpxchg(*p, &o, n));
661 
662 	if (z)
663 		node_page_state_add(z, pgdat, item);
664 }
665 
mod_node_page_state(struct pglist_data * pgdat,enum node_stat_item item,long delta)666 void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
667 					long delta)
668 {
669 	mod_node_state(pgdat, item, delta, 0);
670 }
671 EXPORT_SYMBOL(mod_node_page_state);
672 
inc_node_state(struct pglist_data * pgdat,enum node_stat_item item)673 void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
674 {
675 	mod_node_state(pgdat, item, 1, 1);
676 }
677 
inc_node_page_state(struct page * page,enum node_stat_item item)678 void inc_node_page_state(struct page *page, enum node_stat_item item)
679 {
680 	mod_node_state(page_pgdat(page), item, 1, 1);
681 }
682 EXPORT_SYMBOL(inc_node_page_state);
683 
dec_node_page_state(struct page * page,enum node_stat_item item)684 void dec_node_page_state(struct page *page, enum node_stat_item item)
685 {
686 	mod_node_state(page_pgdat(page), item, -1, -1);
687 }
688 EXPORT_SYMBOL(dec_node_page_state);
689 #else
690 /*
691  * Use interrupt disable to serialize counter updates
692  */
mod_zone_page_state(struct zone * zone,enum zone_stat_item item,long delta)693 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
694 			 long delta)
695 {
696 	unsigned long flags;
697 
698 	local_irq_save(flags);
699 	__mod_zone_page_state(zone, item, delta);
700 	local_irq_restore(flags);
701 }
702 EXPORT_SYMBOL(mod_zone_page_state);
703 
inc_zone_page_state(struct page * page,enum zone_stat_item item)704 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
705 {
706 	unsigned long flags;
707 	struct zone *zone;
708 
709 	zone = page_zone(page);
710 	local_irq_save(flags);
711 	__inc_zone_state(zone, item);
712 	local_irq_restore(flags);
713 }
714 EXPORT_SYMBOL(inc_zone_page_state);
715 
dec_zone_page_state(struct page * page,enum zone_stat_item item)716 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
717 {
718 	unsigned long flags;
719 
720 	local_irq_save(flags);
721 	__dec_zone_page_state(page, item);
722 	local_irq_restore(flags);
723 }
724 EXPORT_SYMBOL(dec_zone_page_state);
725 
inc_node_state(struct pglist_data * pgdat,enum node_stat_item item)726 void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
727 {
728 	unsigned long flags;
729 
730 	local_irq_save(flags);
731 	__inc_node_state(pgdat, item);
732 	local_irq_restore(flags);
733 }
734 EXPORT_SYMBOL(inc_node_state);
735 
mod_node_page_state(struct pglist_data * pgdat,enum node_stat_item item,long delta)736 void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
737 					long delta)
738 {
739 	unsigned long flags;
740 
741 	local_irq_save(flags);
742 	__mod_node_page_state(pgdat, item, delta);
743 	local_irq_restore(flags);
744 }
745 EXPORT_SYMBOL(mod_node_page_state);
746 
inc_node_page_state(struct page * page,enum node_stat_item item)747 void inc_node_page_state(struct page *page, enum node_stat_item item)
748 {
749 	unsigned long flags;
750 	struct pglist_data *pgdat;
751 
752 	pgdat = page_pgdat(page);
753 	local_irq_save(flags);
754 	__inc_node_state(pgdat, item);
755 	local_irq_restore(flags);
756 }
757 EXPORT_SYMBOL(inc_node_page_state);
758 
dec_node_page_state(struct page * page,enum node_stat_item item)759 void dec_node_page_state(struct page *page, enum node_stat_item item)
760 {
761 	unsigned long flags;
762 
763 	local_irq_save(flags);
764 	__dec_node_page_state(page, item);
765 	local_irq_restore(flags);
766 }
767 EXPORT_SYMBOL(dec_node_page_state);
768 #endif
769 
770 /*
771  * Fold a differential into the global counters.
772  * Returns the number of counters updated.
773  */
fold_diff(int * zone_diff,int * node_diff)774 static int fold_diff(int *zone_diff, int *node_diff)
775 {
776 	int i;
777 	int changes = 0;
778 
779 	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
780 		if (zone_diff[i]) {
781 			atomic_long_add(zone_diff[i], &vm_zone_stat[i]);
782 			changes++;
783 	}
784 
785 	for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
786 		if (node_diff[i]) {
787 			atomic_long_add(node_diff[i], &vm_node_stat[i]);
788 			changes++;
789 	}
790 	return changes;
791 }
792 
793 /*
794  * Update the zone counters for the current cpu.
795  *
796  * Note that refresh_cpu_vm_stats strives to only access
797  * node local memory. The per cpu pagesets on remote zones are placed
798  * in the memory local to the processor using that pageset. So the
799  * loop over all zones will access a series of cachelines local to
800  * the processor.
801  *
802  * The call to zone_page_state_add updates the cachelines with the
803  * statistics in the remote zone struct as well as the global cachelines
804  * with the global counters. These could cause remote node cache line
805  * bouncing and will have to be only done when necessary.
806  *
807  * The function returns the number of global counters updated.
808  */
refresh_cpu_vm_stats(bool do_pagesets)809 static int refresh_cpu_vm_stats(bool do_pagesets)
810 {
811 	struct pglist_data *pgdat;
812 	struct zone *zone;
813 	int i;
814 	int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
815 	int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, };
816 	int changes = 0;
817 
818 	for_each_populated_zone(zone) {
819 		struct per_cpu_zonestat __percpu *pzstats = zone->per_cpu_zonestats;
820 		struct per_cpu_pages __percpu *pcp = zone->per_cpu_pageset;
821 
822 		for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
823 			int v;
824 
825 			v = this_cpu_xchg(pzstats->vm_stat_diff[i], 0);
826 			if (v) {
827 
828 				atomic_long_add(v, &zone->vm_stat[i]);
829 				global_zone_diff[i] += v;
830 #ifdef CONFIG_NUMA
831 				/* 3 seconds idle till flush */
832 				__this_cpu_write(pcp->expire, 3);
833 #endif
834 			}
835 		}
836 
837 		if (do_pagesets) {
838 			cond_resched();
839 
840 			changes += decay_pcp_high(zone, this_cpu_ptr(pcp));
841 #ifdef CONFIG_NUMA
842 			/*
843 			 * Deal with draining the remote pageset of this
844 			 * processor
845 			 *
846 			 * Check if there are pages remaining in this pageset
847 			 * if not then there is nothing to expire.
848 			 */
849 			if (!__this_cpu_read(pcp->expire) ||
850 			       !__this_cpu_read(pcp->count))
851 				continue;
852 
853 			/*
854 			 * We never drain zones local to this processor.
855 			 */
856 			if (zone_to_nid(zone) == numa_node_id()) {
857 				__this_cpu_write(pcp->expire, 0);
858 				continue;
859 			}
860 
861 			if (__this_cpu_dec_return(pcp->expire)) {
862 				changes++;
863 				continue;
864 			}
865 
866 			if (__this_cpu_read(pcp->count)) {
867 				drain_zone_pages(zone, this_cpu_ptr(pcp));
868 				changes++;
869 			}
870 #endif
871 		}
872 	}
873 
874 	for_each_online_pgdat(pgdat) {
875 		struct per_cpu_nodestat __percpu *p = pgdat->per_cpu_nodestats;
876 
877 		for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
878 			int v;
879 
880 			v = this_cpu_xchg(p->vm_node_stat_diff[i], 0);
881 			if (v) {
882 				atomic_long_add(v, &pgdat->vm_stat[i]);
883 				global_node_diff[i] += v;
884 			}
885 		}
886 	}
887 
888 	changes += fold_diff(global_zone_diff, global_node_diff);
889 	return changes;
890 }
891 
892 /*
893  * Fold the data for an offline cpu into the global array.
894  * There cannot be any access by the offline cpu and therefore
895  * synchronization is simplified.
896  */
cpu_vm_stats_fold(int cpu)897 void cpu_vm_stats_fold(int cpu)
898 {
899 	struct pglist_data *pgdat;
900 	struct zone *zone;
901 	int i;
902 	int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
903 	int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, };
904 
905 	for_each_populated_zone(zone) {
906 		struct per_cpu_zonestat *pzstats;
907 
908 		pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
909 
910 		for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
911 			if (pzstats->vm_stat_diff[i]) {
912 				int v;
913 
914 				v = pzstats->vm_stat_diff[i];
915 				pzstats->vm_stat_diff[i] = 0;
916 				atomic_long_add(v, &zone->vm_stat[i]);
917 				global_zone_diff[i] += v;
918 			}
919 		}
920 #ifdef CONFIG_NUMA
921 		for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++) {
922 			if (pzstats->vm_numa_event[i]) {
923 				unsigned long v;
924 
925 				v = pzstats->vm_numa_event[i];
926 				pzstats->vm_numa_event[i] = 0;
927 				zone_numa_event_add(v, zone, i);
928 			}
929 		}
930 #endif
931 	}
932 
933 	for_each_online_pgdat(pgdat) {
934 		struct per_cpu_nodestat *p;
935 
936 		p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
937 
938 		for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
939 			if (p->vm_node_stat_diff[i]) {
940 				int v;
941 
942 				v = p->vm_node_stat_diff[i];
943 				p->vm_node_stat_diff[i] = 0;
944 				atomic_long_add(v, &pgdat->vm_stat[i]);
945 				global_node_diff[i] += v;
946 			}
947 	}
948 
949 	fold_diff(global_zone_diff, global_node_diff);
950 }
951 
952 /*
953  * this is only called if !populated_zone(zone), which implies no other users of
954  * pset->vm_stat_diff[] exist.
955  */
drain_zonestat(struct zone * zone,struct per_cpu_zonestat * pzstats)956 void drain_zonestat(struct zone *zone, struct per_cpu_zonestat *pzstats)
957 {
958 	unsigned long v;
959 	int i;
960 
961 	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
962 		if (pzstats->vm_stat_diff[i]) {
963 			v = pzstats->vm_stat_diff[i];
964 			pzstats->vm_stat_diff[i] = 0;
965 			zone_page_state_add(v, zone, i);
966 		}
967 	}
968 
969 #ifdef CONFIG_NUMA
970 	for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++) {
971 		if (pzstats->vm_numa_event[i]) {
972 			v = pzstats->vm_numa_event[i];
973 			pzstats->vm_numa_event[i] = 0;
974 			zone_numa_event_add(v, zone, i);
975 		}
976 	}
977 #endif
978 }
979 #endif
980 
981 #ifdef CONFIG_NUMA
982 /*
983  * Determine the per node value of a stat item. This function
984  * is called frequently in a NUMA machine, so try to be as
985  * frugal as possible.
986  */
sum_zone_node_page_state(int node,enum zone_stat_item item)987 unsigned long sum_zone_node_page_state(int node,
988 				 enum zone_stat_item item)
989 {
990 	struct zone *zones = NODE_DATA(node)->node_zones;
991 	int i;
992 	unsigned long count = 0;
993 
994 	for (i = 0; i < MAX_NR_ZONES; i++)
995 		count += zone_page_state(zones + i, item);
996 
997 	return count;
998 }
999 
1000 /* Determine the per node value of a numa stat item. */
sum_zone_numa_event_state(int node,enum numa_stat_item item)1001 unsigned long sum_zone_numa_event_state(int node,
1002 				 enum numa_stat_item item)
1003 {
1004 	struct zone *zones = NODE_DATA(node)->node_zones;
1005 	unsigned long count = 0;
1006 	int i;
1007 
1008 	for (i = 0; i < MAX_NR_ZONES; i++)
1009 		count += zone_numa_event_state(zones + i, item);
1010 
1011 	return count;
1012 }
1013 
1014 /*
1015  * Determine the per node value of a stat item.
1016  */
node_page_state_pages(struct pglist_data * pgdat,enum node_stat_item item)1017 unsigned long node_page_state_pages(struct pglist_data *pgdat,
1018 				    enum node_stat_item item)
1019 {
1020 	long x = atomic_long_read(&pgdat->vm_stat[item]);
1021 #ifdef CONFIG_SMP
1022 	if (x < 0)
1023 		x = 0;
1024 #endif
1025 	return x;
1026 }
1027 
node_page_state(struct pglist_data * pgdat,enum node_stat_item item)1028 unsigned long node_page_state(struct pglist_data *pgdat,
1029 			      enum node_stat_item item)
1030 {
1031 	VM_WARN_ON_ONCE(vmstat_item_in_bytes(item));
1032 
1033 	return node_page_state_pages(pgdat, item);
1034 }
1035 #endif
1036 
1037 /*
1038  * Count number of pages "struct page" and "struct page_ext" consume.
1039  * nr_memmap_boot_pages: # of pages allocated by boot allocator
1040  * nr_memmap_pages: # of pages that were allocated by buddy allocator
1041  */
1042 static atomic_long_t nr_memmap_boot_pages = ATOMIC_LONG_INIT(0);
1043 static atomic_long_t nr_memmap_pages = ATOMIC_LONG_INIT(0);
1044 
memmap_boot_pages_add(long delta)1045 void memmap_boot_pages_add(long delta)
1046 {
1047 	atomic_long_add(delta, &nr_memmap_boot_pages);
1048 }
1049 
memmap_pages_add(long delta)1050 void memmap_pages_add(long delta)
1051 {
1052 	atomic_long_add(delta, &nr_memmap_pages);
1053 }
1054 
1055 #ifdef CONFIG_COMPACTION
1056 
1057 struct contig_page_info {
1058 	unsigned long free_pages;
1059 	unsigned long free_blocks_total;
1060 	unsigned long free_blocks_suitable;
1061 };
1062 
1063 /*
1064  * Calculate the number of free pages in a zone, how many contiguous
1065  * pages are free and how many are large enough to satisfy an allocation of
1066  * the target size. Note that this function makes no attempt to estimate
1067  * how many suitable free blocks there *might* be if MOVABLE pages were
1068  * migrated. Calculating that is possible, but expensive and can be
1069  * figured out from userspace
1070  */
fill_contig_page_info(struct zone * zone,unsigned int suitable_order,struct contig_page_info * info)1071 static void fill_contig_page_info(struct zone *zone,
1072 				unsigned int suitable_order,
1073 				struct contig_page_info *info)
1074 {
1075 	unsigned int order;
1076 
1077 	info->free_pages = 0;
1078 	info->free_blocks_total = 0;
1079 	info->free_blocks_suitable = 0;
1080 
1081 	for (order = 0; order < NR_PAGE_ORDERS; order++) {
1082 		unsigned long blocks;
1083 
1084 		/*
1085 		 * Count number of free blocks.
1086 		 *
1087 		 * Access to nr_free is lockless as nr_free is used only for
1088 		 * diagnostic purposes. Use data_race to avoid KCSAN warning.
1089 		 */
1090 		blocks = data_race(zone->free_area[order].nr_free);
1091 		info->free_blocks_total += blocks;
1092 
1093 		/* Count free base pages */
1094 		info->free_pages += blocks << order;
1095 
1096 		/* Count the suitable free blocks */
1097 		if (order >= suitable_order)
1098 			info->free_blocks_suitable += blocks <<
1099 						(order - suitable_order);
1100 	}
1101 }
1102 
1103 /*
1104  * A fragmentation index only makes sense if an allocation of a requested
1105  * size would fail. If that is true, the fragmentation index indicates
1106  * whether external fragmentation or a lack of memory was the problem.
1107  * The value can be used to determine if page reclaim or compaction
1108  * should be used
1109  */
__fragmentation_index(unsigned int order,struct contig_page_info * info)1110 static int __fragmentation_index(unsigned int order, struct contig_page_info *info)
1111 {
1112 	unsigned long requested = 1UL << order;
1113 
1114 	if (WARN_ON_ONCE(order > MAX_PAGE_ORDER))
1115 		return 0;
1116 
1117 	if (!info->free_blocks_total)
1118 		return 0;
1119 
1120 	/* Fragmentation index only makes sense when a request would fail */
1121 	if (info->free_blocks_suitable)
1122 		return -1000;
1123 
1124 	/*
1125 	 * Index is between 0 and 1 so return within 3 decimal places
1126 	 *
1127 	 * 0 => allocation would fail due to lack of memory
1128 	 * 1 => allocation would fail due to fragmentation
1129 	 */
1130 	return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total);
1131 }
1132 
1133 /*
1134  * Calculates external fragmentation within a zone wrt the given order.
1135  * It is defined as the percentage of pages found in blocks of size
1136  * less than 1 << order. It returns values in range [0, 100].
1137  */
extfrag_for_order(struct zone * zone,unsigned int order)1138 unsigned int extfrag_for_order(struct zone *zone, unsigned int order)
1139 {
1140 	struct contig_page_info info;
1141 
1142 	fill_contig_page_info(zone, order, &info);
1143 	if (info.free_pages == 0)
1144 		return 0;
1145 
1146 	return div_u64((info.free_pages -
1147 			(info.free_blocks_suitable << order)) * 100,
1148 			info.free_pages);
1149 }
1150 
1151 /* Same as __fragmentation index but allocs contig_page_info on stack */
fragmentation_index(struct zone * zone,unsigned int order)1152 int fragmentation_index(struct zone *zone, unsigned int order)
1153 {
1154 	struct contig_page_info info;
1155 
1156 	fill_contig_page_info(zone, order, &info);
1157 	return __fragmentation_index(order, &info);
1158 }
1159 #endif
1160 
1161 #if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || \
1162     defined(CONFIG_NUMA) || defined(CONFIG_MEMCG)
1163 #ifdef CONFIG_ZONE_DMA
1164 #define TEXT_FOR_DMA(xx) xx "_dma",
1165 #else
1166 #define TEXT_FOR_DMA(xx)
1167 #endif
1168 
1169 #ifdef CONFIG_ZONE_DMA32
1170 #define TEXT_FOR_DMA32(xx) xx "_dma32",
1171 #else
1172 #define TEXT_FOR_DMA32(xx)
1173 #endif
1174 
1175 #ifdef CONFIG_HIGHMEM
1176 #define TEXT_FOR_HIGHMEM(xx) xx "_high",
1177 #else
1178 #define TEXT_FOR_HIGHMEM(xx)
1179 #endif
1180 
1181 #ifdef CONFIG_ZONE_DEVICE
1182 #define TEXT_FOR_DEVICE(xx) xx "_device",
1183 #else
1184 #define TEXT_FOR_DEVICE(xx)
1185 #endif
1186 
1187 #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
1188 					TEXT_FOR_HIGHMEM(xx) xx "_movable", \
1189 					TEXT_FOR_DEVICE(xx)
1190 
1191 const char * const vmstat_text[] = {
1192 	/* enum zone_stat_item counters */
1193 	"nr_free_pages",
1194 	"nr_zone_inactive_anon",
1195 	"nr_zone_active_anon",
1196 	"nr_zone_inactive_file",
1197 	"nr_zone_active_file",
1198 	"nr_zone_unevictable",
1199 	"nr_zone_write_pending",
1200 	"nr_mlock",
1201 	"nr_bounce",
1202 	"nr_zspages",
1203 	"nr_free_cma",
1204 #ifdef CONFIG_UNACCEPTED_MEMORY
1205 	"nr_unaccepted",
1206 #endif
1207 
1208 	/* enum numa_stat_item counters */
1209 #ifdef CONFIG_NUMA
1210 	"numa_hit",
1211 	"numa_miss",
1212 	"numa_foreign",
1213 	"numa_interleave",
1214 	"numa_local",
1215 	"numa_other",
1216 #endif
1217 
1218 	/* enum node_stat_item counters */
1219 	"nr_inactive_anon",
1220 	"nr_active_anon",
1221 	"nr_inactive_file",
1222 	"nr_active_file",
1223 	"nr_unevictable",
1224 	"nr_slab_reclaimable",
1225 	"nr_slab_unreclaimable",
1226 	"nr_isolated_anon",
1227 	"nr_isolated_file",
1228 	"workingset_nodes",
1229 	"workingset_refault_anon",
1230 	"workingset_refault_file",
1231 	"workingset_activate_anon",
1232 	"workingset_activate_file",
1233 	"workingset_restore_anon",
1234 	"workingset_restore_file",
1235 	"workingset_nodereclaim",
1236 	"nr_anon_pages",
1237 	"nr_mapped",
1238 	"nr_file_pages",
1239 	"nr_dirty",
1240 	"nr_writeback",
1241 	"nr_writeback_temp",
1242 	"nr_shmem",
1243 	"nr_shmem_hugepages",
1244 	"nr_shmem_pmdmapped",
1245 	"nr_file_hugepages",
1246 	"nr_file_pmdmapped",
1247 	"nr_anon_transparent_hugepages",
1248 	"nr_vmscan_write",
1249 	"nr_vmscan_immediate_reclaim",
1250 	"nr_dirtied",
1251 	"nr_written",
1252 	"nr_throttled_written",
1253 	"nr_kernel_misc_reclaimable",
1254 	"nr_foll_pin_acquired",
1255 	"nr_foll_pin_released",
1256 	"nr_kernel_stack",
1257 #if IS_ENABLED(CONFIG_SHADOW_CALL_STACK)
1258 	"nr_shadow_call_stack",
1259 #endif
1260 	"nr_page_table_pages",
1261 	"nr_sec_page_table_pages",
1262 #ifdef CONFIG_IOMMU_SUPPORT
1263 	"nr_iommu_pages",
1264 #endif
1265 #ifdef CONFIG_SWAP
1266 	"nr_swapcached",
1267 #endif
1268 #ifdef CONFIG_NUMA_BALANCING
1269 	"pgpromote_success",
1270 	"pgpromote_candidate",
1271 #endif
1272 	"pgdemote_kswapd",
1273 	"pgdemote_direct",
1274 	"pgdemote_khugepaged",
1275 	/* system-wide enum vm_stat_item counters */
1276 	"nr_dirty_threshold",
1277 	"nr_dirty_background_threshold",
1278 	"nr_memmap_pages",
1279 	"nr_memmap_boot_pages",
1280 
1281 #if defined(CONFIG_VM_EVENT_COUNTERS) || defined(CONFIG_MEMCG)
1282 	/* enum vm_event_item counters */
1283 	"pgpgin",
1284 	"pgpgout",
1285 	"pswpin",
1286 	"pswpout",
1287 
1288 	TEXTS_FOR_ZONES("pgalloc")
1289 	TEXTS_FOR_ZONES("allocstall")
1290 	TEXTS_FOR_ZONES("pgskip")
1291 
1292 	"pgfree",
1293 	"pgactivate",
1294 	"pgdeactivate",
1295 	"pglazyfree",
1296 
1297 	"pgfault",
1298 	"pgmajfault",
1299 	"pglazyfreed",
1300 
1301 	"pgrefill",
1302 	"pgreuse",
1303 	"pgsteal_kswapd",
1304 	"pgsteal_direct",
1305 	"pgsteal_khugepaged",
1306 	"pgscan_kswapd",
1307 	"pgscan_direct",
1308 	"pgscan_khugepaged",
1309 	"pgscan_direct_throttle",
1310 	"pgscan_anon",
1311 	"pgscan_file",
1312 	"pgsteal_anon",
1313 	"pgsteal_file",
1314 
1315 #ifdef CONFIG_NUMA
1316 	"zone_reclaim_success",
1317 	"zone_reclaim_failed",
1318 #endif
1319 	"pginodesteal",
1320 	"slabs_scanned",
1321 	"kswapd_inodesteal",
1322 	"kswapd_low_wmark_hit_quickly",
1323 	"kswapd_high_wmark_hit_quickly",
1324 	"pageoutrun",
1325 
1326 	"pgrotated",
1327 
1328 	"drop_pagecache",
1329 	"drop_slab",
1330 	"oom_kill",
1331 
1332 #ifdef CONFIG_NUMA_BALANCING
1333 	"numa_pte_updates",
1334 	"numa_huge_pte_updates",
1335 	"numa_hint_faults",
1336 	"numa_hint_faults_local",
1337 	"numa_pages_migrated",
1338 #endif
1339 #ifdef CONFIG_MIGRATION
1340 	"pgmigrate_success",
1341 	"pgmigrate_fail",
1342 	"thp_migration_success",
1343 	"thp_migration_fail",
1344 	"thp_migration_split",
1345 #endif
1346 #ifdef CONFIG_COMPACTION
1347 	"compact_migrate_scanned",
1348 	"compact_free_scanned",
1349 	"compact_isolated",
1350 	"compact_stall",
1351 	"compact_fail",
1352 	"compact_success",
1353 	"compact_daemon_wake",
1354 	"compact_daemon_migrate_scanned",
1355 	"compact_daemon_free_scanned",
1356 #endif
1357 
1358 #ifdef CONFIG_HUGETLB_PAGE
1359 	"htlb_buddy_alloc_success",
1360 	"htlb_buddy_alloc_fail",
1361 #endif
1362 #ifdef CONFIG_CMA
1363 	"cma_alloc_success",
1364 	"cma_alloc_fail",
1365 #endif
1366 	"unevictable_pgs_culled",
1367 	"unevictable_pgs_scanned",
1368 	"unevictable_pgs_rescued",
1369 	"unevictable_pgs_mlocked",
1370 	"unevictable_pgs_munlocked",
1371 	"unevictable_pgs_cleared",
1372 	"unevictable_pgs_stranded",
1373 
1374 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1375 	"thp_fault_alloc",
1376 	"thp_fault_fallback",
1377 	"thp_fault_fallback_charge",
1378 	"thp_collapse_alloc",
1379 	"thp_collapse_alloc_failed",
1380 	"thp_file_alloc",
1381 	"thp_file_fallback",
1382 	"thp_file_fallback_charge",
1383 	"thp_file_mapped",
1384 	"thp_split_page",
1385 	"thp_split_page_failed",
1386 	"thp_deferred_split_page",
1387 	"thp_underused_split_page",
1388 	"thp_split_pmd",
1389 	"thp_scan_exceed_none_pte",
1390 	"thp_scan_exceed_swap_pte",
1391 	"thp_scan_exceed_share_pte",
1392 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1393 	"thp_split_pud",
1394 #endif
1395 	"thp_zero_page_alloc",
1396 	"thp_zero_page_alloc_failed",
1397 	"thp_swpout",
1398 	"thp_swpout_fallback",
1399 #endif
1400 #ifdef CONFIG_MEMORY_BALLOON
1401 	"balloon_inflate",
1402 	"balloon_deflate",
1403 #ifdef CONFIG_BALLOON_COMPACTION
1404 	"balloon_migrate",
1405 #endif
1406 #endif /* CONFIG_MEMORY_BALLOON */
1407 #ifdef CONFIG_DEBUG_TLBFLUSH
1408 	"nr_tlb_remote_flush",
1409 	"nr_tlb_remote_flush_received",
1410 	"nr_tlb_local_flush_all",
1411 	"nr_tlb_local_flush_one",
1412 #endif /* CONFIG_DEBUG_TLBFLUSH */
1413 
1414 #ifdef CONFIG_SWAP
1415 	"swap_ra",
1416 	"swap_ra_hit",
1417 	"swpin_zero",
1418 	"swpout_zero",
1419 #ifdef CONFIG_KSM
1420 	"ksm_swpin_copy",
1421 #endif
1422 #endif
1423 #ifdef CONFIG_KSM
1424 	"cow_ksm",
1425 #endif
1426 #ifdef CONFIG_ZSWAP
1427 	"zswpin",
1428 	"zswpout",
1429 	"zswpwb",
1430 #endif
1431 #ifdef CONFIG_X86
1432 	"direct_map_level2_splits",
1433 	"direct_map_level3_splits",
1434 #endif
1435 #ifdef CONFIG_PER_VMA_LOCK_STATS
1436 	"vma_lock_success",
1437 	"vma_lock_abort",
1438 	"vma_lock_retry",
1439 	"vma_lock_miss",
1440 #endif
1441 #ifdef CONFIG_DEBUG_STACK_USAGE
1442 	"kstack_1k",
1443 #if THREAD_SIZE > 1024
1444 	"kstack_2k",
1445 #endif
1446 #if THREAD_SIZE > 2048
1447 	"kstack_4k",
1448 #endif
1449 #if THREAD_SIZE > 4096
1450 	"kstack_8k",
1451 #endif
1452 #if THREAD_SIZE > 8192
1453 	"kstack_16k",
1454 #endif
1455 #if THREAD_SIZE > 16384
1456 	"kstack_32k",
1457 #endif
1458 #if THREAD_SIZE > 32768
1459 	"kstack_64k",
1460 #endif
1461 #if THREAD_SIZE > 65536
1462 	"kstack_rest",
1463 #endif
1464 #endif
1465 #endif /* CONFIG_VM_EVENT_COUNTERS || CONFIG_MEMCG */
1466 };
1467 #endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA || CONFIG_MEMCG */
1468 
1469 #if (defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)) || \
1470      defined(CONFIG_PROC_FS)
frag_start(struct seq_file * m,loff_t * pos)1471 static void *frag_start(struct seq_file *m, loff_t *pos)
1472 {
1473 	pg_data_t *pgdat;
1474 	loff_t node = *pos;
1475 
1476 	for (pgdat = first_online_pgdat();
1477 	     pgdat && node;
1478 	     pgdat = next_online_pgdat(pgdat))
1479 		--node;
1480 
1481 	return pgdat;
1482 }
1483 
frag_next(struct seq_file * m,void * arg,loff_t * pos)1484 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
1485 {
1486 	pg_data_t *pgdat = (pg_data_t *)arg;
1487 
1488 	(*pos)++;
1489 	return next_online_pgdat(pgdat);
1490 }
1491 
frag_stop(struct seq_file * m,void * arg)1492 static void frag_stop(struct seq_file *m, void *arg)
1493 {
1494 }
1495 
1496 /*
1497  * Walk zones in a node and print using a callback.
1498  * If @assert_populated is true, only use callback for zones that are populated.
1499  */
walk_zones_in_node(struct seq_file * m,pg_data_t * pgdat,bool assert_populated,bool nolock,void (* print)(struct seq_file * m,pg_data_t *,struct zone *))1500 static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
1501 		bool assert_populated, bool nolock,
1502 		void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
1503 {
1504 	struct zone *zone;
1505 	struct zone *node_zones = pgdat->node_zones;
1506 	unsigned long flags;
1507 
1508 	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
1509 		if (assert_populated && !populated_zone(zone))
1510 			continue;
1511 
1512 		if (!nolock)
1513 			spin_lock_irqsave(&zone->lock, flags);
1514 		print(m, pgdat, zone);
1515 		if (!nolock)
1516 			spin_unlock_irqrestore(&zone->lock, flags);
1517 	}
1518 }
1519 #endif
1520 
1521 #ifdef CONFIG_PROC_FS
frag_show_print(struct seq_file * m,pg_data_t * pgdat,struct zone * zone)1522 static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
1523 						struct zone *zone)
1524 {
1525 	int order;
1526 
1527 	seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1528 	for (order = 0; order < NR_PAGE_ORDERS; ++order)
1529 		/*
1530 		 * Access to nr_free is lockless as nr_free is used only for
1531 		 * printing purposes. Use data_race to avoid KCSAN warning.
1532 		 */
1533 		seq_printf(m, "%6lu ", data_race(zone->free_area[order].nr_free));
1534 	seq_putc(m, '\n');
1535 }
1536 
1537 /*
1538  * This walks the free areas for each zone.
1539  */
frag_show(struct seq_file * m,void * arg)1540 static int frag_show(struct seq_file *m, void *arg)
1541 {
1542 	pg_data_t *pgdat = (pg_data_t *)arg;
1543 	walk_zones_in_node(m, pgdat, true, false, frag_show_print);
1544 	return 0;
1545 }
1546 
pagetypeinfo_showfree_print(struct seq_file * m,pg_data_t * pgdat,struct zone * zone)1547 static void pagetypeinfo_showfree_print(struct seq_file *m,
1548 					pg_data_t *pgdat, struct zone *zone)
1549 {
1550 	int order, mtype;
1551 
1552 	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
1553 		seq_printf(m, "Node %4d, zone %8s, type %12s ",
1554 					pgdat->node_id,
1555 					zone->name,
1556 					migratetype_names[mtype]);
1557 		for (order = 0; order < NR_PAGE_ORDERS; ++order) {
1558 			unsigned long freecount = 0;
1559 			struct free_area *area;
1560 			struct list_head *curr;
1561 			bool overflow = false;
1562 
1563 			area = &(zone->free_area[order]);
1564 
1565 			list_for_each(curr, &area->free_list[mtype]) {
1566 				/*
1567 				 * Cap the free_list iteration because it might
1568 				 * be really large and we are under a spinlock
1569 				 * so a long time spent here could trigger a
1570 				 * hard lockup detector. Anyway this is a
1571 				 * debugging tool so knowing there is a handful
1572 				 * of pages of this order should be more than
1573 				 * sufficient.
1574 				 */
1575 				if (++freecount >= 100000) {
1576 					overflow = true;
1577 					break;
1578 				}
1579 			}
1580 			seq_printf(m, "%s%6lu ", overflow ? ">" : "", freecount);
1581 			spin_unlock_irq(&zone->lock);
1582 			cond_resched();
1583 			spin_lock_irq(&zone->lock);
1584 		}
1585 		seq_putc(m, '\n');
1586 	}
1587 }
1588 
1589 /* Print out the free pages at each order for each migatetype */
pagetypeinfo_showfree(struct seq_file * m,void * arg)1590 static void pagetypeinfo_showfree(struct seq_file *m, void *arg)
1591 {
1592 	int order;
1593 	pg_data_t *pgdat = (pg_data_t *)arg;
1594 
1595 	/* Print header */
1596 	seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
1597 	for (order = 0; order < NR_PAGE_ORDERS; ++order)
1598 		seq_printf(m, "%6d ", order);
1599 	seq_putc(m, '\n');
1600 
1601 	walk_zones_in_node(m, pgdat, true, false, pagetypeinfo_showfree_print);
1602 }
1603 
pagetypeinfo_showblockcount_print(struct seq_file * m,pg_data_t * pgdat,struct zone * zone)1604 static void pagetypeinfo_showblockcount_print(struct seq_file *m,
1605 					pg_data_t *pgdat, struct zone *zone)
1606 {
1607 	int mtype;
1608 	unsigned long pfn;
1609 	unsigned long start_pfn = zone->zone_start_pfn;
1610 	unsigned long end_pfn = zone_end_pfn(zone);
1611 	unsigned long count[MIGRATE_TYPES] = { 0, };
1612 
1613 	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
1614 		struct page *page;
1615 
1616 		page = pfn_to_online_page(pfn);
1617 		if (!page)
1618 			continue;
1619 
1620 		if (page_zone(page) != zone)
1621 			continue;
1622 
1623 		mtype = get_pageblock_migratetype(page);
1624 
1625 		if (mtype < MIGRATE_TYPES)
1626 			count[mtype]++;
1627 	}
1628 
1629 	/* Print counts */
1630 	seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1631 	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1632 		seq_printf(m, "%12lu ", count[mtype]);
1633 	seq_putc(m, '\n');
1634 }
1635 
1636 /* Print out the number of pageblocks for each migratetype */
pagetypeinfo_showblockcount(struct seq_file * m,void * arg)1637 static void pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
1638 {
1639 	int mtype;
1640 	pg_data_t *pgdat = (pg_data_t *)arg;
1641 
1642 	seq_printf(m, "\n%-23s", "Number of blocks type ");
1643 	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1644 		seq_printf(m, "%12s ", migratetype_names[mtype]);
1645 	seq_putc(m, '\n');
1646 	walk_zones_in_node(m, pgdat, true, false,
1647 		pagetypeinfo_showblockcount_print);
1648 }
1649 
1650 /*
1651  * Print out the number of pageblocks for each migratetype that contain pages
1652  * of other types. This gives an indication of how well fallbacks are being
1653  * contained by rmqueue_fallback(). It requires information from PAGE_OWNER
1654  * to determine what is going on
1655  */
pagetypeinfo_showmixedcount(struct seq_file * m,pg_data_t * pgdat)1656 static void pagetypeinfo_showmixedcount(struct seq_file *m, pg_data_t *pgdat)
1657 {
1658 #ifdef CONFIG_PAGE_OWNER
1659 	int mtype;
1660 
1661 	if (!static_branch_unlikely(&page_owner_inited))
1662 		return;
1663 
1664 	drain_all_pages(NULL);
1665 
1666 	seq_printf(m, "\n%-23s", "Number of mixed blocks ");
1667 	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1668 		seq_printf(m, "%12s ", migratetype_names[mtype]);
1669 	seq_putc(m, '\n');
1670 
1671 	walk_zones_in_node(m, pgdat, true, true,
1672 		pagetypeinfo_showmixedcount_print);
1673 #endif /* CONFIG_PAGE_OWNER */
1674 }
1675 
1676 /*
1677  * This prints out statistics in relation to grouping pages by mobility.
1678  * It is expensive to collect so do not constantly read the file.
1679  */
pagetypeinfo_show(struct seq_file * m,void * arg)1680 static int pagetypeinfo_show(struct seq_file *m, void *arg)
1681 {
1682 	pg_data_t *pgdat = (pg_data_t *)arg;
1683 
1684 	/* check memoryless node */
1685 	if (!node_state(pgdat->node_id, N_MEMORY))
1686 		return 0;
1687 
1688 	seq_printf(m, "Page block order: %d\n", pageblock_order);
1689 	seq_printf(m, "Pages per block:  %lu\n", pageblock_nr_pages);
1690 	seq_putc(m, '\n');
1691 	pagetypeinfo_showfree(m, pgdat);
1692 	pagetypeinfo_showblockcount(m, pgdat);
1693 	pagetypeinfo_showmixedcount(m, pgdat);
1694 	trace_android_vh_pagetypeinfo_show(m);
1695 
1696 	return 0;
1697 }
1698 
1699 static const struct seq_operations fragmentation_op = {
1700 	.start	= frag_start,
1701 	.next	= frag_next,
1702 	.stop	= frag_stop,
1703 	.show	= frag_show,
1704 };
1705 
1706 static const struct seq_operations pagetypeinfo_op = {
1707 	.start	= frag_start,
1708 	.next	= frag_next,
1709 	.stop	= frag_stop,
1710 	.show	= pagetypeinfo_show,
1711 };
1712 
is_zone_first_populated(pg_data_t * pgdat,struct zone * zone)1713 static bool is_zone_first_populated(pg_data_t *pgdat, struct zone *zone)
1714 {
1715 	int zid;
1716 
1717 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1718 		struct zone *compare = &pgdat->node_zones[zid];
1719 
1720 		if (populated_zone(compare))
1721 			return zone == compare;
1722 	}
1723 
1724 	return false;
1725 }
1726 
zoneinfo_show_print(struct seq_file * m,pg_data_t * pgdat,struct zone * zone)1727 static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
1728 							struct zone *zone)
1729 {
1730 	int i;
1731 	seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
1732 	if (is_zone_first_populated(pgdat, zone)) {
1733 		seq_printf(m, "\n  per-node stats");
1734 		for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
1735 			unsigned long pages = node_page_state_pages(pgdat, i);
1736 
1737 			if (vmstat_item_print_in_thp(i))
1738 				pages /= HPAGE_PMD_NR;
1739 			seq_printf(m, "\n      %-12s %lu", node_stat_name(i),
1740 				   pages);
1741 		}
1742 	}
1743 	seq_printf(m,
1744 		   "\n  pages free     %lu"
1745 		   "\n        boost    %lu"
1746 		   "\n        min      %lu"
1747 		   "\n        low      %lu"
1748 		   "\n        high     %lu"
1749 		   "\n        promo    %lu"
1750 		   "\n        spanned  %lu"
1751 		   "\n        present  %lu"
1752 		   "\n        managed  %lu"
1753 		   "\n        cma      %lu",
1754 		   zone_page_state(zone, NR_FREE_PAGES),
1755 		   zone->watermark_boost,
1756 		   min_wmark_pages(zone),
1757 		   low_wmark_pages(zone),
1758 		   high_wmark_pages(zone),
1759 		   promo_wmark_pages(zone),
1760 		   zone->spanned_pages,
1761 		   zone->present_pages,
1762 		   zone_managed_pages(zone),
1763 		   zone_cma_pages(zone));
1764 
1765 	seq_printf(m,
1766 		   "\n        protection: (%ld",
1767 		   zone->lowmem_reserve[0]);
1768 	for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
1769 		seq_printf(m, ", %ld", zone->lowmem_reserve[i]);
1770 	seq_putc(m, ')');
1771 
1772 	/* If unpopulated, no other information is useful */
1773 	if (!populated_zone(zone)) {
1774 		seq_putc(m, '\n');
1775 		return;
1776 	}
1777 
1778 	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1779 		seq_printf(m, "\n      %-12s %lu", zone_stat_name(i),
1780 			   zone_page_state(zone, i));
1781 
1782 #ifdef CONFIG_NUMA
1783 	fold_vm_zone_numa_events(zone);
1784 	for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++)
1785 		seq_printf(m, "\n      %-12s %lu", numa_stat_name(i),
1786 			   zone_numa_event_state(zone, i));
1787 #endif
1788 
1789 	seq_printf(m, "\n  pagesets");
1790 	for_each_online_cpu(i) {
1791 		struct per_cpu_pages *pcp;
1792 		struct per_cpu_zonestat __maybe_unused *pzstats;
1793 
1794 		pcp = per_cpu_ptr(zone->per_cpu_pageset, i);
1795 		seq_printf(m,
1796 			   "\n    cpu: %i"
1797 			   "\n              count: %i"
1798 			   "\n              high:  %i"
1799 			   "\n              batch: %i",
1800 			   i,
1801 			   pcp->count,
1802 			   pcp->high,
1803 			   pcp->batch);
1804 #ifdef CONFIG_SMP
1805 		pzstats = per_cpu_ptr(zone->per_cpu_zonestats, i);
1806 		seq_printf(m, "\n  vm stats threshold: %d",
1807 				pzstats->stat_threshold);
1808 #endif
1809 	}
1810 	seq_printf(m,
1811 		   "\n  node_unreclaimable:  %u"
1812 		   "\n  start_pfn:           %lu",
1813 		   pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES,
1814 		   zone->zone_start_pfn);
1815 	seq_putc(m, '\n');
1816 }
1817 
1818 /*
1819  * Output information about zones in @pgdat.  All zones are printed regardless
1820  * of whether they are populated or not: lowmem_reserve_ratio operates on the
1821  * set of all zones and userspace would not be aware of such zones if they are
1822  * suppressed here (zoneinfo displays the effect of lowmem_reserve_ratio).
1823  */
zoneinfo_show(struct seq_file * m,void * arg)1824 static int zoneinfo_show(struct seq_file *m, void *arg)
1825 {
1826 	pg_data_t *pgdat = (pg_data_t *)arg;
1827 	walk_zones_in_node(m, pgdat, false, false, zoneinfo_show_print);
1828 	return 0;
1829 }
1830 
1831 static const struct seq_operations zoneinfo_op = {
1832 	.start	= frag_start, /* iterate over all zones. The same as in
1833 			       * fragmentation. */
1834 	.next	= frag_next,
1835 	.stop	= frag_stop,
1836 	.show	= zoneinfo_show,
1837 };
1838 
1839 #define NR_VMSTAT_ITEMS (NR_VM_ZONE_STAT_ITEMS + \
1840 			 NR_VM_NUMA_EVENT_ITEMS + \
1841 			 NR_VM_NODE_STAT_ITEMS + \
1842 			 NR_VM_STAT_ITEMS + \
1843 			 (IS_ENABLED(CONFIG_VM_EVENT_COUNTERS) ? \
1844 			  NR_VM_EVENT_ITEMS : 0))
1845 
vmstat_start(struct seq_file * m,loff_t * pos)1846 static void *vmstat_start(struct seq_file *m, loff_t *pos)
1847 {
1848 	unsigned long *v;
1849 	int i;
1850 
1851 	if (*pos >= NR_VMSTAT_ITEMS)
1852 		return NULL;
1853 
1854 	BUILD_BUG_ON(ARRAY_SIZE(vmstat_text) < NR_VMSTAT_ITEMS);
1855 	fold_vm_numa_events();
1856 	v = kmalloc_array(NR_VMSTAT_ITEMS, sizeof(unsigned long), GFP_KERNEL);
1857 	m->private = v;
1858 	if (!v)
1859 		return ERR_PTR(-ENOMEM);
1860 	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1861 		v[i] = global_zone_page_state(i);
1862 	v += NR_VM_ZONE_STAT_ITEMS;
1863 
1864 #ifdef CONFIG_NUMA
1865 	for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++)
1866 		v[i] = global_numa_event_state(i);
1867 	v += NR_VM_NUMA_EVENT_ITEMS;
1868 #endif
1869 
1870 	for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
1871 		v[i] = global_node_page_state_pages(i);
1872 		if (vmstat_item_print_in_thp(i))
1873 			v[i] /= HPAGE_PMD_NR;
1874 	}
1875 	v += NR_VM_NODE_STAT_ITEMS;
1876 
1877 	global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD,
1878 			    v + NR_DIRTY_THRESHOLD);
1879 	v[NR_MEMMAP_PAGES] = atomic_long_read(&nr_memmap_pages);
1880 	v[NR_MEMMAP_BOOT_PAGES] = atomic_long_read(&nr_memmap_boot_pages);
1881 	v += NR_VM_STAT_ITEMS;
1882 
1883 #ifdef CONFIG_VM_EVENT_COUNTERS
1884 	all_vm_events(v);
1885 	v[PGPGIN] /= 2;		/* sectors -> kbytes */
1886 	v[PGPGOUT] /= 2;
1887 #endif
1888 	return (unsigned long *)m->private + *pos;
1889 }
1890 
vmstat_next(struct seq_file * m,void * arg,loff_t * pos)1891 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
1892 {
1893 	(*pos)++;
1894 	if (*pos >= NR_VMSTAT_ITEMS)
1895 		return NULL;
1896 	return (unsigned long *)m->private + *pos;
1897 }
1898 
vmstat_show(struct seq_file * m,void * arg)1899 static int vmstat_show(struct seq_file *m, void *arg)
1900 {
1901 	unsigned long *l = arg;
1902 	unsigned long off = l - (unsigned long *)m->private;
1903 
1904 	seq_puts(m, vmstat_text[off]);
1905 	seq_put_decimal_ull(m, " ", *l);
1906 	seq_putc(m, '\n');
1907 
1908 	if (off == NR_VMSTAT_ITEMS - 1) {
1909 		/*
1910 		 * We've come to the end - add any deprecated counters to avoid
1911 		 * breaking userspace which might depend on them being present.
1912 		 */
1913 		seq_puts(m, "nr_unstable 0\n");
1914 	}
1915 	return 0;
1916 }
1917 
vmstat_stop(struct seq_file * m,void * arg)1918 static void vmstat_stop(struct seq_file *m, void *arg)
1919 {
1920 	kfree(m->private);
1921 	m->private = NULL;
1922 }
1923 
1924 static const struct seq_operations vmstat_op = {
1925 	.start	= vmstat_start,
1926 	.next	= vmstat_next,
1927 	.stop	= vmstat_stop,
1928 	.show	= vmstat_show,
1929 };
1930 #endif /* CONFIG_PROC_FS */
1931 
1932 #ifdef CONFIG_SMP
1933 static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
1934 int sysctl_stat_interval __read_mostly = HZ;
1935 
1936 #ifdef CONFIG_PROC_FS
refresh_vm_stats(struct work_struct * work)1937 static void refresh_vm_stats(struct work_struct *work)
1938 {
1939 	refresh_cpu_vm_stats(true);
1940 }
1941 
vmstat_refresh(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)1942 int vmstat_refresh(const struct ctl_table *table, int write,
1943 		   void *buffer, size_t *lenp, loff_t *ppos)
1944 {
1945 	long val;
1946 	int err;
1947 	int i;
1948 
1949 	/*
1950 	 * The regular update, every sysctl_stat_interval, may come later
1951 	 * than expected: leaving a significant amount in per_cpu buckets.
1952 	 * This is particularly misleading when checking a quantity of HUGE
1953 	 * pages, immediately after running a test.  /proc/sys/vm/stat_refresh,
1954 	 * which can equally be echo'ed to or cat'ted from (by root),
1955 	 * can be used to update the stats just before reading them.
1956 	 *
1957 	 * Oh, and since global_zone_page_state() etc. are so careful to hide
1958 	 * transiently negative values, report an error here if any of
1959 	 * the stats is negative, so we know to go looking for imbalance.
1960 	 */
1961 	err = schedule_on_each_cpu(refresh_vm_stats);
1962 	if (err)
1963 		return err;
1964 	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
1965 		/*
1966 		 * Skip checking stats known to go negative occasionally.
1967 		 */
1968 		switch (i) {
1969 		case NR_ZONE_WRITE_PENDING:
1970 		case NR_FREE_CMA_PAGES:
1971 			continue;
1972 		}
1973 		val = atomic_long_read(&vm_zone_stat[i]);
1974 		if (val < 0) {
1975 			pr_warn("%s: %s %ld\n",
1976 				__func__, zone_stat_name(i), val);
1977 		}
1978 	}
1979 	for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
1980 		/*
1981 		 * Skip checking stats known to go negative occasionally.
1982 		 */
1983 		switch (i) {
1984 		case NR_WRITEBACK:
1985 			continue;
1986 		}
1987 		val = atomic_long_read(&vm_node_stat[i]);
1988 		if (val < 0) {
1989 			pr_warn("%s: %s %ld\n",
1990 				__func__, node_stat_name(i), val);
1991 		}
1992 	}
1993 	if (write)
1994 		*ppos += *lenp;
1995 	else
1996 		*lenp = 0;
1997 	return 0;
1998 }
1999 #endif /* CONFIG_PROC_FS */
2000 
vmstat_update(struct work_struct * w)2001 static void vmstat_update(struct work_struct *w)
2002 {
2003 	if (refresh_cpu_vm_stats(true)) {
2004 		/*
2005 		 * Counters were updated so we expect more updates
2006 		 * to occur in the future. Keep on running the
2007 		 * update worker thread.
2008 		 */
2009 		queue_delayed_work_on(smp_processor_id(), mm_percpu_wq,
2010 				this_cpu_ptr(&vmstat_work),
2011 				round_jiffies_relative(sysctl_stat_interval));
2012 	}
2013 }
2014 
2015 /*
2016  * Check if the diffs for a certain cpu indicate that
2017  * an update is needed.
2018  */
need_update(int cpu)2019 static bool need_update(int cpu)
2020 {
2021 	pg_data_t *last_pgdat = NULL;
2022 	struct zone *zone;
2023 
2024 	for_each_populated_zone(zone) {
2025 		struct per_cpu_zonestat *pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
2026 		struct per_cpu_nodestat *n;
2027 
2028 		/*
2029 		 * The fast way of checking if there are any vmstat diffs.
2030 		 */
2031 		if (memchr_inv(pzstats->vm_stat_diff, 0, sizeof(pzstats->vm_stat_diff)))
2032 			return true;
2033 
2034 		if (last_pgdat == zone->zone_pgdat)
2035 			continue;
2036 		last_pgdat = zone->zone_pgdat;
2037 		n = per_cpu_ptr(zone->zone_pgdat->per_cpu_nodestats, cpu);
2038 		if (memchr_inv(n->vm_node_stat_diff, 0, sizeof(n->vm_node_stat_diff)))
2039 			return true;
2040 	}
2041 	return false;
2042 }
2043 
2044 /*
2045  * Switch off vmstat processing and then fold all the remaining differentials
2046  * until the diffs stay at zero. The function is used by NOHZ and can only be
2047  * invoked when tick processing is not active.
2048  */
quiet_vmstat(void)2049 void quiet_vmstat(void)
2050 {
2051 	if (system_state != SYSTEM_RUNNING)
2052 		return;
2053 
2054 	if (!delayed_work_pending(this_cpu_ptr(&vmstat_work)))
2055 		return;
2056 
2057 	if (!need_update(smp_processor_id()))
2058 		return;
2059 
2060 	/*
2061 	 * Just refresh counters and do not care about the pending delayed
2062 	 * vmstat_update. It doesn't fire that often to matter and canceling
2063 	 * it would be too expensive from this path.
2064 	 * vmstat_shepherd will take care about that for us.
2065 	 */
2066 	refresh_cpu_vm_stats(false);
2067 }
2068 
2069 /*
2070  * Shepherd worker thread that checks the
2071  * differentials of processors that have their worker
2072  * threads for vm statistics updates disabled because of
2073  * inactivity.
2074  */
2075 static void vmstat_shepherd(struct work_struct *w);
2076 
2077 static DECLARE_DEFERRABLE_WORK(shepherd, vmstat_shepherd);
2078 
vmstat_shepherd(struct work_struct * w)2079 static void vmstat_shepherd(struct work_struct *w)
2080 {
2081 	int cpu;
2082 
2083 	cpus_read_lock();
2084 	/* Check processors whose vmstat worker threads have been disabled */
2085 	for_each_online_cpu(cpu) {
2086 		struct delayed_work *dw = &per_cpu(vmstat_work, cpu);
2087 
2088 		/*
2089 		 * In kernel users of vmstat counters either require the precise value and
2090 		 * they are using zone_page_state_snapshot interface or they can live with
2091 		 * an imprecision as the regular flushing can happen at arbitrary time and
2092 		 * cumulative error can grow (see calculate_normal_threshold).
2093 		 *
2094 		 * From that POV the regular flushing can be postponed for CPUs that have
2095 		 * been isolated from the kernel interference without critical
2096 		 * infrastructure ever noticing. Skip regular flushing from vmstat_shepherd
2097 		 * for all isolated CPUs to avoid interference with the isolated workload.
2098 		 */
2099 		if (cpu_is_isolated(cpu))
2100 			continue;
2101 
2102 		if (!delayed_work_pending(dw) && need_update(cpu))
2103 			queue_delayed_work_on(cpu, mm_percpu_wq, dw, 0);
2104 
2105 		cond_resched();
2106 	}
2107 	cpus_read_unlock();
2108 
2109 	schedule_delayed_work(&shepherd,
2110 		round_jiffies_relative(sysctl_stat_interval));
2111 }
2112 
start_shepherd_timer(void)2113 static void __init start_shepherd_timer(void)
2114 {
2115 	int cpu;
2116 
2117 	for_each_possible_cpu(cpu)
2118 		INIT_DEFERRABLE_WORK(per_cpu_ptr(&vmstat_work, cpu),
2119 			vmstat_update);
2120 
2121 	schedule_delayed_work(&shepherd,
2122 		round_jiffies_relative(sysctl_stat_interval));
2123 }
2124 
init_cpu_node_state(void)2125 static void __init init_cpu_node_state(void)
2126 {
2127 	int node;
2128 
2129 	for_each_online_node(node) {
2130 		if (!cpumask_empty(cpumask_of_node(node)))
2131 			node_set_state(node, N_CPU);
2132 	}
2133 }
2134 
vmstat_cpu_online(unsigned int cpu)2135 static int vmstat_cpu_online(unsigned int cpu)
2136 {
2137 	refresh_zone_stat_thresholds();
2138 
2139 	if (!node_state(cpu_to_node(cpu), N_CPU)) {
2140 		node_set_state(cpu_to_node(cpu), N_CPU);
2141 	}
2142 
2143 	return 0;
2144 }
2145 
vmstat_cpu_down_prep(unsigned int cpu)2146 static int vmstat_cpu_down_prep(unsigned int cpu)
2147 {
2148 	cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu));
2149 	return 0;
2150 }
2151 
vmstat_cpu_dead(unsigned int cpu)2152 static int vmstat_cpu_dead(unsigned int cpu)
2153 {
2154 	const struct cpumask *node_cpus;
2155 	int node;
2156 
2157 	node = cpu_to_node(cpu);
2158 
2159 	refresh_zone_stat_thresholds();
2160 	node_cpus = cpumask_of_node(node);
2161 	if (!cpumask_empty(node_cpus))
2162 		return 0;
2163 
2164 	node_clear_state(node, N_CPU);
2165 
2166 	return 0;
2167 }
2168 
2169 #endif
2170 
2171 struct workqueue_struct *mm_percpu_wq;
2172 
init_mm_internals(void)2173 void __init init_mm_internals(void)
2174 {
2175 	int ret __maybe_unused;
2176 
2177 	mm_percpu_wq = alloc_workqueue("mm_percpu_wq", WQ_MEM_RECLAIM, 0);
2178 
2179 #ifdef CONFIG_SMP
2180 	ret = cpuhp_setup_state_nocalls(CPUHP_MM_VMSTAT_DEAD, "mm/vmstat:dead",
2181 					NULL, vmstat_cpu_dead);
2182 	if (ret < 0)
2183 		pr_err("vmstat: failed to register 'dead' hotplug state\n");
2184 
2185 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "mm/vmstat:online",
2186 					vmstat_cpu_online,
2187 					vmstat_cpu_down_prep);
2188 	if (ret < 0)
2189 		pr_err("vmstat: failed to register 'online' hotplug state\n");
2190 
2191 	cpus_read_lock();
2192 	init_cpu_node_state();
2193 	cpus_read_unlock();
2194 
2195 	start_shepherd_timer();
2196 #endif
2197 #ifdef CONFIG_PROC_FS
2198 	proc_create_seq("buddyinfo", 0444, NULL, &fragmentation_op);
2199 	proc_create_seq("pagetypeinfo", 0400, NULL, &pagetypeinfo_op);
2200 	proc_create_seq("vmstat", 0444, NULL, &vmstat_op);
2201 	proc_create_seq("zoneinfo", 0444, NULL, &zoneinfo_op);
2202 #endif
2203 }
2204 
2205 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
2206 
2207 /*
2208  * Return an index indicating how much of the available free memory is
2209  * unusable for an allocation of the requested size.
2210  */
unusable_free_index(unsigned int order,struct contig_page_info * info)2211 static int unusable_free_index(unsigned int order,
2212 				struct contig_page_info *info)
2213 {
2214 	/* No free memory is interpreted as all free memory is unusable */
2215 	if (info->free_pages == 0)
2216 		return 1000;
2217 
2218 	/*
2219 	 * Index should be a value between 0 and 1. Return a value to 3
2220 	 * decimal places.
2221 	 *
2222 	 * 0 => no fragmentation
2223 	 * 1 => high fragmentation
2224 	 */
2225 	return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages);
2226 
2227 }
2228 
unusable_show_print(struct seq_file * m,pg_data_t * pgdat,struct zone * zone)2229 static void unusable_show_print(struct seq_file *m,
2230 					pg_data_t *pgdat, struct zone *zone)
2231 {
2232 	unsigned int order;
2233 	int index;
2234 	struct contig_page_info info;
2235 
2236 	seq_printf(m, "Node %d, zone %8s ",
2237 				pgdat->node_id,
2238 				zone->name);
2239 	for (order = 0; order < NR_PAGE_ORDERS; ++order) {
2240 		fill_contig_page_info(zone, order, &info);
2241 		index = unusable_free_index(order, &info);
2242 		seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
2243 	}
2244 
2245 	seq_putc(m, '\n');
2246 }
2247 
2248 /*
2249  * Display unusable free space index
2250  *
2251  * The unusable free space index measures how much of the available free
2252  * memory cannot be used to satisfy an allocation of a given size and is a
2253  * value between 0 and 1. The higher the value, the more of free memory is
2254  * unusable and by implication, the worse the external fragmentation is. This
2255  * can be expressed as a percentage by multiplying by 100.
2256  */
unusable_show(struct seq_file * m,void * arg)2257 static int unusable_show(struct seq_file *m, void *arg)
2258 {
2259 	pg_data_t *pgdat = (pg_data_t *)arg;
2260 
2261 	/* check memoryless node */
2262 	if (!node_state(pgdat->node_id, N_MEMORY))
2263 		return 0;
2264 
2265 	walk_zones_in_node(m, pgdat, true, false, unusable_show_print);
2266 
2267 	return 0;
2268 }
2269 
2270 static const struct seq_operations unusable_sops = {
2271 	.start	= frag_start,
2272 	.next	= frag_next,
2273 	.stop	= frag_stop,
2274 	.show	= unusable_show,
2275 };
2276 
2277 DEFINE_SEQ_ATTRIBUTE(unusable);
2278 
extfrag_show_print(struct seq_file * m,pg_data_t * pgdat,struct zone * zone)2279 static void extfrag_show_print(struct seq_file *m,
2280 					pg_data_t *pgdat, struct zone *zone)
2281 {
2282 	unsigned int order;
2283 	int index;
2284 
2285 	/* Alloc on stack as interrupts are disabled for zone walk */
2286 	struct contig_page_info info;
2287 
2288 	seq_printf(m, "Node %d, zone %8s ",
2289 				pgdat->node_id,
2290 				zone->name);
2291 	for (order = 0; order < NR_PAGE_ORDERS; ++order) {
2292 		fill_contig_page_info(zone, order, &info);
2293 		index = __fragmentation_index(order, &info);
2294 		seq_printf(m, "%2d.%03d ", index / 1000, index % 1000);
2295 	}
2296 
2297 	seq_putc(m, '\n');
2298 }
2299 
2300 /*
2301  * Display fragmentation index for orders that allocations would fail for
2302  */
extfrag_show(struct seq_file * m,void * arg)2303 static int extfrag_show(struct seq_file *m, void *arg)
2304 {
2305 	pg_data_t *pgdat = (pg_data_t *)arg;
2306 
2307 	walk_zones_in_node(m, pgdat, true, false, extfrag_show_print);
2308 
2309 	return 0;
2310 }
2311 
2312 static const struct seq_operations extfrag_sops = {
2313 	.start	= frag_start,
2314 	.next	= frag_next,
2315 	.stop	= frag_stop,
2316 	.show	= extfrag_show,
2317 };
2318 
2319 DEFINE_SEQ_ATTRIBUTE(extfrag);
2320 
extfrag_debug_init(void)2321 static int __init extfrag_debug_init(void)
2322 {
2323 	struct dentry *extfrag_debug_root;
2324 
2325 	extfrag_debug_root = debugfs_create_dir("extfrag", NULL);
2326 
2327 	debugfs_create_file("unusable_index", 0444, extfrag_debug_root, NULL,
2328 			    &unusable_fops);
2329 
2330 	debugfs_create_file("extfrag_index", 0444, extfrag_debug_root, NULL,
2331 			    &extfrag_fops);
2332 
2333 	return 0;
2334 }
2335 
2336 module_init(extfrag_debug_init);
2337 
2338 #endif
2339