1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2018-2020 Christoph Hellwig.
4  *
5  * DMA operations that map physical memory directly without using an IOMMU.
6  */
7 #include <linux/memblock.h> /* for max_pfn */
8 #include <linux/export.h>
9 #include <linux/mm.h>
10 #include <linux/dma-map-ops.h>
11 #include <linux/scatterlist.h>
12 #include <linux/pfn.h>
13 #include <linux/vmalloc.h>
14 #include <linux/set_memory.h>
15 #include <linux/slab.h>
16 #include <linux/pci-p2pdma.h>
17 #include "direct.h"
18 
19 /*
20  * Most architectures use ZONE_DMA for the first 16 Megabytes, but some use
21  * it for entirely different regions. In that case the arch code needs to
22  * override the variable below for dma-direct to work properly.
23  */
24 u64 zone_dma_limit __ro_after_init = DMA_BIT_MASK(24);
25 
phys_to_dma_direct(struct device * dev,phys_addr_t phys)26 static inline dma_addr_t phys_to_dma_direct(struct device *dev,
27 		phys_addr_t phys)
28 {
29 	if (force_dma_unencrypted(dev))
30 		return phys_to_dma_unencrypted(dev, phys);
31 	return phys_to_dma(dev, phys);
32 }
33 
dma_direct_to_page(struct device * dev,dma_addr_t dma_addr)34 static inline struct page *dma_direct_to_page(struct device *dev,
35 		dma_addr_t dma_addr)
36 {
37 	return pfn_to_page(PHYS_PFN(dma_to_phys(dev, dma_addr)));
38 }
39 
dma_direct_get_required_mask(struct device * dev)40 u64 dma_direct_get_required_mask(struct device *dev)
41 {
42 	phys_addr_t phys = (phys_addr_t)(max_pfn - 1) << PAGE_SHIFT;
43 	u64 max_dma = phys_to_dma_direct(dev, phys);
44 
45 	return (1ULL << (fls64(max_dma) - 1)) * 2 - 1;
46 }
47 
dma_direct_optimal_gfp_mask(struct device * dev,u64 * phys_limit)48 static gfp_t dma_direct_optimal_gfp_mask(struct device *dev, u64 *phys_limit)
49 {
50 	u64 dma_limit = min_not_zero(
51 		dev->coherent_dma_mask,
52 		dev->bus_dma_limit);
53 
54 	/*
55 	 * Optimistically try the zone that the physical address mask falls
56 	 * into first.  If that returns memory that isn't actually addressable
57 	 * we will fallback to the next lower zone and try again.
58 	 *
59 	 * Note that GFP_DMA32 and GFP_DMA are no ops without the corresponding
60 	 * zones.
61 	 */
62 	*phys_limit = dma_to_phys(dev, dma_limit);
63 	if (*phys_limit <= zone_dma_limit)
64 		return GFP_DMA;
65 	if (*phys_limit <= DMA_BIT_MASK(32) &&
66 		!zone_dma32_are_empty())
67 		return GFP_DMA32;
68 	return 0;
69 }
70 
dma_coherent_ok(struct device * dev,phys_addr_t phys,size_t size)71 bool dma_coherent_ok(struct device *dev, phys_addr_t phys, size_t size)
72 {
73 	dma_addr_t dma_addr = phys_to_dma_direct(dev, phys);
74 
75 	if (dma_addr == DMA_MAPPING_ERROR)
76 		return false;
77 	return dma_addr + size - 1 <=
78 		min_not_zero(dev->coherent_dma_mask, dev->bus_dma_limit);
79 }
80 
dma_set_decrypted(struct device * dev,void * vaddr,size_t size)81 static int dma_set_decrypted(struct device *dev, void *vaddr, size_t size)
82 {
83 	if (!force_dma_unencrypted(dev))
84 		return 0;
85 	return set_memory_decrypted((unsigned long)vaddr, PFN_UP(size));
86 }
87 
dma_set_encrypted(struct device * dev,void * vaddr,size_t size)88 static int dma_set_encrypted(struct device *dev, void *vaddr, size_t size)
89 {
90 	int ret;
91 
92 	if (!force_dma_unencrypted(dev))
93 		return 0;
94 	ret = set_memory_encrypted((unsigned long)vaddr, PFN_UP(size));
95 	if (ret)
96 		pr_warn_ratelimited("leaking DMA memory that can't be re-encrypted\n");
97 	return ret;
98 }
99 
__dma_direct_free_pages(struct device * dev,struct page * page,size_t size)100 static void __dma_direct_free_pages(struct device *dev, struct page *page,
101 				    size_t size)
102 {
103 	if (swiotlb_free(dev, page, size))
104 		return;
105 	dma_free_contiguous(dev, page, size);
106 }
107 
dma_direct_alloc_swiotlb(struct device * dev,size_t size)108 static struct page *dma_direct_alloc_swiotlb(struct device *dev, size_t size)
109 {
110 	struct page *page = swiotlb_alloc(dev, size);
111 
112 	if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
113 		swiotlb_free(dev, page, size);
114 		return NULL;
115 	}
116 
117 	return page;
118 }
119 
__dma_direct_alloc_pages(struct device * dev,size_t size,gfp_t gfp,bool allow_highmem)120 static struct page *__dma_direct_alloc_pages(struct device *dev, size_t size,
121 		gfp_t gfp, bool allow_highmem)
122 {
123 	int node = dev_to_node(dev);
124 	struct page *page = NULL;
125 	u64 phys_limit;
126 
127 	WARN_ON_ONCE(!PAGE_ALIGNED(size));
128 
129 	if (is_swiotlb_for_alloc(dev))
130 		return dma_direct_alloc_swiotlb(dev, size);
131 
132 	gfp |= dma_direct_optimal_gfp_mask(dev, &phys_limit);
133 	page = dma_alloc_contiguous(dev, size, gfp);
134 	if (page) {
135 		if (!dma_coherent_ok(dev, page_to_phys(page), size) ||
136 		    (!allow_highmem && PageHighMem(page))) {
137 			dma_free_contiguous(dev, page, size);
138 			page = NULL;
139 		}
140 	}
141 again:
142 	if (!page)
143 		page = alloc_pages_node(node, gfp, get_order(size));
144 	if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
145 		__free_pages(page, get_order(size));
146 		page = NULL;
147 
148 		if (IS_ENABLED(CONFIG_ZONE_DMA32) &&
149 		    phys_limit < DMA_BIT_MASK(64) &&
150 		    !(gfp & (GFP_DMA32 | GFP_DMA)) &&
151 		    !zone_dma32_are_empty()) {
152 			gfp |= GFP_DMA32;
153 			goto again;
154 		}
155 
156 		if (IS_ENABLED(CONFIG_ZONE_DMA) && !(gfp & GFP_DMA)) {
157 			gfp = (gfp & ~GFP_DMA32) | GFP_DMA;
158 			goto again;
159 		}
160 	}
161 
162 	return page;
163 }
164 
165 /*
166  * Check if a potentially blocking operations needs to dip into the atomic
167  * pools for the given device/gfp.
168  */
dma_direct_use_pool(struct device * dev,gfp_t gfp)169 static bool dma_direct_use_pool(struct device *dev, gfp_t gfp)
170 {
171 	return !gfpflags_allow_blocking(gfp) && !is_swiotlb_for_alloc(dev);
172 }
173 
dma_direct_alloc_from_pool(struct device * dev,size_t size,dma_addr_t * dma_handle,gfp_t gfp)174 static void *dma_direct_alloc_from_pool(struct device *dev, size_t size,
175 		dma_addr_t *dma_handle, gfp_t gfp)
176 {
177 	struct page *page;
178 	u64 phys_limit;
179 	void *ret;
180 
181 	if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_DMA_COHERENT_POOL)))
182 		return NULL;
183 
184 	gfp |= dma_direct_optimal_gfp_mask(dev, &phys_limit);
185 	page = dma_alloc_from_pool(dev, size, &ret, gfp, dma_coherent_ok);
186 	if (!page)
187 		return NULL;
188 	*dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
189 	return ret;
190 }
191 
dma_direct_alloc_no_mapping(struct device * dev,size_t size,dma_addr_t * dma_handle,gfp_t gfp)192 static void *dma_direct_alloc_no_mapping(struct device *dev, size_t size,
193 		dma_addr_t *dma_handle, gfp_t gfp)
194 {
195 	struct page *page;
196 
197 	page = __dma_direct_alloc_pages(dev, size, gfp & ~__GFP_ZERO, true);
198 	if (!page)
199 		return NULL;
200 
201 	/* remove any dirty cache lines on the kernel alias */
202 	if (!PageHighMem(page))
203 		arch_dma_prep_coherent(page, size);
204 
205 	/* return the page pointer as the opaque cookie */
206 	*dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
207 	return page;
208 }
209 
dma_direct_alloc(struct device * dev,size_t size,dma_addr_t * dma_handle,gfp_t gfp,unsigned long attrs)210 void *dma_direct_alloc(struct device *dev, size_t size,
211 		dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
212 {
213 	bool remap = false, set_uncached = false;
214 	struct page *page;
215 	void *ret;
216 
217 	size = PAGE_ALIGN(size);
218 	if (attrs & DMA_ATTR_NO_WARN)
219 		gfp |= __GFP_NOWARN;
220 
221 	if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
222 	    !force_dma_unencrypted(dev) && !is_swiotlb_for_alloc(dev))
223 		return dma_direct_alloc_no_mapping(dev, size, dma_handle, gfp);
224 
225 	if (!dev_is_dma_coherent(dev)) {
226 		if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_ALLOC) &&
227 		    !is_swiotlb_for_alloc(dev))
228 			return arch_dma_alloc(dev, size, dma_handle, gfp,
229 					      attrs);
230 
231 		/*
232 		 * If there is a global pool, always allocate from it for
233 		 * non-coherent devices.
234 		 */
235 		if (IS_ENABLED(CONFIG_DMA_GLOBAL_POOL))
236 			return dma_alloc_from_global_coherent(dev, size,
237 					dma_handle);
238 
239 		/*
240 		 * Otherwise we require the architecture to either be able to
241 		 * mark arbitrary parts of the kernel direct mapping uncached,
242 		 * or remapped it uncached.
243 		 */
244 		set_uncached = IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED);
245 		remap = IS_ENABLED(CONFIG_DMA_DIRECT_REMAP);
246 		if (!set_uncached && !remap) {
247 			pr_warn_once("coherent DMA allocations not supported on this platform.\n");
248 			return NULL;
249 		}
250 	}
251 
252 	/*
253 	 * Remapping or decrypting memory may block, allocate the memory from
254 	 * the atomic pools instead if we aren't allowed block.
255 	 */
256 	if ((remap || force_dma_unencrypted(dev)) &&
257 	    dma_direct_use_pool(dev, gfp))
258 		return dma_direct_alloc_from_pool(dev, size, dma_handle, gfp);
259 
260 	/* we always manually zero the memory once we are done */
261 	page = __dma_direct_alloc_pages(dev, size, gfp & ~__GFP_ZERO, true);
262 	if (!page)
263 		return NULL;
264 
265 	/*
266 	 * dma_alloc_contiguous can return highmem pages depending on a
267 	 * combination the cma= arguments and per-arch setup.  These need to be
268 	 * remapped to return a kernel virtual address.
269 	 */
270 	if (PageHighMem(page)) {
271 		remap = true;
272 		set_uncached = false;
273 	}
274 
275 	if (remap) {
276 		pgprot_t prot = dma_pgprot(dev, PAGE_KERNEL, attrs);
277 
278 		if (force_dma_unencrypted(dev))
279 			prot = pgprot_decrypted(prot);
280 
281 		/* remove any dirty cache lines on the kernel alias */
282 		arch_dma_prep_coherent(page, size);
283 
284 		/* create a coherent mapping */
285 		ret = dma_common_contiguous_remap(page, size, prot,
286 				__builtin_return_address(0));
287 		if (!ret)
288 			goto out_free_pages;
289 	} else {
290 		ret = page_address(page);
291 		if (dma_set_decrypted(dev, ret, size))
292 			goto out_leak_pages;
293 	}
294 
295 	memset(ret, 0, size);
296 
297 	if (set_uncached) {
298 		arch_dma_prep_coherent(page, size);
299 		ret = arch_dma_set_uncached(ret, size);
300 		if (IS_ERR(ret))
301 			goto out_encrypt_pages;
302 	}
303 
304 	*dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
305 	return ret;
306 
307 out_encrypt_pages:
308 	if (dma_set_encrypted(dev, page_address(page), size))
309 		return NULL;
310 out_free_pages:
311 	__dma_direct_free_pages(dev, page, size);
312 	return NULL;
313 out_leak_pages:
314 	return NULL;
315 }
316 EXPORT_SYMBOL_GPL(dma_direct_alloc);
317 
dma_direct_free(struct device * dev,size_t size,void * cpu_addr,dma_addr_t dma_addr,unsigned long attrs)318 void dma_direct_free(struct device *dev, size_t size,
319 		void *cpu_addr, dma_addr_t dma_addr, unsigned long attrs)
320 {
321 	unsigned int page_order = get_order(size);
322 
323 	if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
324 	    !force_dma_unencrypted(dev) && !is_swiotlb_for_alloc(dev)) {
325 		/* cpu_addr is a struct page cookie, not a kernel address */
326 		dma_free_contiguous(dev, cpu_addr, size);
327 		return;
328 	}
329 
330 	if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_ALLOC) &&
331 	    !dev_is_dma_coherent(dev) &&
332 	    !is_swiotlb_for_alloc(dev)) {
333 		arch_dma_free(dev, size, cpu_addr, dma_addr, attrs);
334 		return;
335 	}
336 
337 	if (IS_ENABLED(CONFIG_DMA_GLOBAL_POOL) &&
338 	    !dev_is_dma_coherent(dev)) {
339 		if (!dma_release_from_global_coherent(page_order, cpu_addr))
340 			WARN_ON_ONCE(1);
341 		return;
342 	}
343 
344 	/* If cpu_addr is not from an atomic pool, dma_free_from_pool() fails */
345 	if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
346 	    dma_free_from_pool(dev, cpu_addr, PAGE_ALIGN(size)))
347 		return;
348 
349 	if (is_vmalloc_addr(cpu_addr)) {
350 		vunmap(cpu_addr);
351 	} else {
352 		if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_CLEAR_UNCACHED))
353 			arch_dma_clear_uncached(cpu_addr, size);
354 		if (dma_set_encrypted(dev, cpu_addr, size))
355 			return;
356 	}
357 
358 	__dma_direct_free_pages(dev, dma_direct_to_page(dev, dma_addr), size);
359 }
360 EXPORT_SYMBOL_GPL(dma_direct_free);
361 
dma_direct_alloc_pages(struct device * dev,size_t size,dma_addr_t * dma_handle,enum dma_data_direction dir,gfp_t gfp)362 struct page *dma_direct_alloc_pages(struct device *dev, size_t size,
363 		dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp)
364 {
365 	struct page *page;
366 	void *ret;
367 
368 	if (force_dma_unencrypted(dev) && dma_direct_use_pool(dev, gfp))
369 		return dma_direct_alloc_from_pool(dev, size, dma_handle, gfp);
370 
371 	page = __dma_direct_alloc_pages(dev, size, gfp, false);
372 	if (!page)
373 		return NULL;
374 
375 	ret = page_address(page);
376 	if (dma_set_decrypted(dev, ret, size))
377 		goto out_leak_pages;
378 	memset(ret, 0, size);
379 	*dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
380 	return page;
381 out_leak_pages:
382 	return NULL;
383 }
384 
dma_direct_free_pages(struct device * dev,size_t size,struct page * page,dma_addr_t dma_addr,enum dma_data_direction dir)385 void dma_direct_free_pages(struct device *dev, size_t size,
386 		struct page *page, dma_addr_t dma_addr,
387 		enum dma_data_direction dir)
388 {
389 	void *vaddr = page_address(page);
390 
391 	/* If cpu_addr is not from an atomic pool, dma_free_from_pool() fails */
392 	if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
393 	    dma_free_from_pool(dev, vaddr, size))
394 		return;
395 
396 	if (dma_set_encrypted(dev, vaddr, size))
397 		return;
398 	__dma_direct_free_pages(dev, page, size);
399 }
400 
401 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
402     defined(CONFIG_SWIOTLB)
dma_direct_sync_sg_for_device(struct device * dev,struct scatterlist * sgl,int nents,enum dma_data_direction dir)403 void dma_direct_sync_sg_for_device(struct device *dev,
404 		struct scatterlist *sgl, int nents, enum dma_data_direction dir)
405 {
406 	struct scatterlist *sg;
407 	int i;
408 
409 	for_each_sg(sgl, sg, nents, i) {
410 		phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
411 
412 		swiotlb_sync_single_for_device(dev, paddr, sg->length, dir);
413 
414 		if (!dev_is_dma_coherent(dev))
415 			arch_sync_dma_for_device(paddr, sg->length,
416 					dir);
417 	}
418 }
419 #endif
420 
421 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
422     defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) || \
423     defined(CONFIG_SWIOTLB)
dma_direct_sync_sg_for_cpu(struct device * dev,struct scatterlist * sgl,int nents,enum dma_data_direction dir)424 void dma_direct_sync_sg_for_cpu(struct device *dev,
425 		struct scatterlist *sgl, int nents, enum dma_data_direction dir)
426 {
427 	struct scatterlist *sg;
428 	int i;
429 
430 	for_each_sg(sgl, sg, nents, i) {
431 		phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
432 
433 		if (!dev_is_dma_coherent(dev))
434 			arch_sync_dma_for_cpu(paddr, sg->length, dir);
435 
436 		swiotlb_sync_single_for_cpu(dev, paddr, sg->length, dir);
437 
438 		if (dir == DMA_FROM_DEVICE)
439 			arch_dma_mark_clean(paddr, sg->length);
440 	}
441 
442 	if (!dev_is_dma_coherent(dev))
443 		arch_sync_dma_for_cpu_all();
444 }
445 
446 /*
447  * Unmaps segments, except for ones marked as pci_p2pdma which do not
448  * require any further action as they contain a bus address.
449  */
dma_direct_unmap_sg(struct device * dev,struct scatterlist * sgl,int nents,enum dma_data_direction dir,unsigned long attrs)450 void dma_direct_unmap_sg(struct device *dev, struct scatterlist *sgl,
451 		int nents, enum dma_data_direction dir, unsigned long attrs)
452 {
453 	struct scatterlist *sg;
454 	int i;
455 
456 	for_each_sg(sgl,  sg, nents, i) {
457 		if (sg_dma_is_bus_address(sg))
458 			sg_dma_unmark_bus_address(sg);
459 		else
460 			dma_direct_unmap_page(dev, sg->dma_address,
461 					      sg_dma_len(sg), dir, attrs);
462 	}
463 }
464 #endif
465 
dma_direct_map_sg(struct device * dev,struct scatterlist * sgl,int nents,enum dma_data_direction dir,unsigned long attrs)466 int dma_direct_map_sg(struct device *dev, struct scatterlist *sgl, int nents,
467 		enum dma_data_direction dir, unsigned long attrs)
468 {
469 	struct pci_p2pdma_map_state p2pdma_state = {};
470 	struct scatterlist *sg;
471 	int i, ret;
472 
473 	for_each_sg(sgl, sg, nents, i) {
474 		switch (pci_p2pdma_state(&p2pdma_state, dev, sg_page(sg))) {
475 		case PCI_P2PDMA_MAP_THRU_HOST_BRIDGE:
476 			/*
477 			 * Any P2P mapping that traverses the PCI host bridge
478 			 * must be mapped with CPU physical address and not PCI
479 			 * bus addresses.
480 			 */
481 			break;
482 		case PCI_P2PDMA_MAP_NONE:
483 			sg->dma_address = dma_direct_map_page(dev, sg_page(sg),
484 					sg->offset, sg->length, dir, attrs);
485 			if (sg->dma_address == DMA_MAPPING_ERROR) {
486 				ret = -EIO;
487 				goto out_unmap;
488 			}
489 			break;
490 		case PCI_P2PDMA_MAP_BUS_ADDR:
491 			sg->dma_address = pci_p2pdma_bus_addr_map(&p2pdma_state,
492 					sg_phys(sg));
493 			sg_dma_mark_bus_address(sg);
494 			continue;
495 		default:
496 			ret = -EREMOTEIO;
497 			goto out_unmap;
498 		}
499 		sg_dma_len(sg) = sg->length;
500 	}
501 
502 	return nents;
503 
504 out_unmap:
505 	dma_direct_unmap_sg(dev, sgl, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
506 	return ret;
507 }
508 
dma_direct_map_resource(struct device * dev,phys_addr_t paddr,size_t size,enum dma_data_direction dir,unsigned long attrs)509 dma_addr_t dma_direct_map_resource(struct device *dev, phys_addr_t paddr,
510 		size_t size, enum dma_data_direction dir, unsigned long attrs)
511 {
512 	dma_addr_t dma_addr = paddr;
513 
514 	if (unlikely(!dma_capable(dev, dma_addr, size, false))) {
515 		dev_err_once(dev,
516 			     "DMA addr %pad+%zu overflow (mask %llx, bus limit %llx).\n",
517 			     &dma_addr, size, *dev->dma_mask, dev->bus_dma_limit);
518 		WARN_ON_ONCE(1);
519 		return DMA_MAPPING_ERROR;
520 	}
521 
522 	return dma_addr;
523 }
524 
dma_direct_get_sgtable(struct device * dev,struct sg_table * sgt,void * cpu_addr,dma_addr_t dma_addr,size_t size,unsigned long attrs)525 int dma_direct_get_sgtable(struct device *dev, struct sg_table *sgt,
526 		void *cpu_addr, dma_addr_t dma_addr, size_t size,
527 		unsigned long attrs)
528 {
529 	struct page *page = dma_direct_to_page(dev, dma_addr);
530 	int ret;
531 
532 	ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
533 	if (!ret)
534 		sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
535 	return ret;
536 }
537 
dma_direct_can_mmap(struct device * dev)538 bool dma_direct_can_mmap(struct device *dev)
539 {
540 	return dev_is_dma_coherent(dev) ||
541 		IS_ENABLED(CONFIG_DMA_NONCOHERENT_MMAP);
542 }
543 
dma_direct_mmap(struct device * dev,struct vm_area_struct * vma,void * cpu_addr,dma_addr_t dma_addr,size_t size,unsigned long attrs)544 int dma_direct_mmap(struct device *dev, struct vm_area_struct *vma,
545 		void *cpu_addr, dma_addr_t dma_addr, size_t size,
546 		unsigned long attrs)
547 {
548 	unsigned long user_count = vma_pages(vma);
549 	unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
550 	unsigned long pfn = PHYS_PFN(dma_to_phys(dev, dma_addr));
551 	int ret = -ENXIO;
552 
553 	vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs);
554 	if (force_dma_unencrypted(dev))
555 		vma->vm_page_prot = pgprot_decrypted(vma->vm_page_prot);
556 
557 	if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
558 		return ret;
559 	if (dma_mmap_from_global_coherent(vma, cpu_addr, size, &ret))
560 		return ret;
561 
562 	if (vma->vm_pgoff >= count || user_count > count - vma->vm_pgoff)
563 		return -ENXIO;
564 	return remap_pfn_range(vma, vma->vm_start, pfn + vma->vm_pgoff,
565 			user_count << PAGE_SHIFT, vma->vm_page_prot);
566 }
567 
dma_direct_supported(struct device * dev,u64 mask)568 int dma_direct_supported(struct device *dev, u64 mask)
569 {
570 	u64 min_mask = (max_pfn - 1) << PAGE_SHIFT;
571 
572 	/*
573 	 * Because 32-bit DMA masks are so common we expect every architecture
574 	 * to be able to satisfy them - either by not supporting more physical
575 	 * memory, or by providing a ZONE_DMA32.  If neither is the case, the
576 	 * architecture needs to use an IOMMU instead of the direct mapping.
577 	 */
578 	if (mask >= DMA_BIT_MASK(32))
579 		return 1;
580 
581 	/*
582 	 * This check needs to be against the actual bit mask value, so use
583 	 * phys_to_dma_unencrypted() here so that the SME encryption mask isn't
584 	 * part of the check.
585 	 */
586 	if (IS_ENABLED(CONFIG_ZONE_DMA))
587 		min_mask = min_t(u64, min_mask, zone_dma_limit);
588 	return mask >= phys_to_dma_unencrypted(dev, min_mask);
589 }
590 
dma_find_range(struct device * dev,unsigned long start_pfn)591 static const struct bus_dma_region *dma_find_range(struct device *dev,
592 						   unsigned long start_pfn)
593 {
594 	const struct bus_dma_region *m;
595 
596 	for (m = dev->dma_range_map; PFN_DOWN(m->size); m++) {
597 		unsigned long cpu_start_pfn = PFN_DOWN(m->cpu_start);
598 
599 		if (start_pfn >= cpu_start_pfn &&
600 		    start_pfn - cpu_start_pfn < PFN_DOWN(m->size))
601 			return m;
602 	}
603 
604 	return NULL;
605 }
606 
607 /*
608  * To check whether all ram resource ranges are covered by dma range map
609  * Returns 0 when further check is needed
610  * Returns 1 if there is some RAM range can't be covered by dma_range_map
611  */
check_ram_in_range_map(unsigned long start_pfn,unsigned long nr_pages,void * data)612 static int check_ram_in_range_map(unsigned long start_pfn,
613 				  unsigned long nr_pages, void *data)
614 {
615 	unsigned long end_pfn = start_pfn + nr_pages;
616 	struct device *dev = data;
617 
618 	while (start_pfn < end_pfn) {
619 		const struct bus_dma_region *bdr;
620 
621 		bdr = dma_find_range(dev, start_pfn);
622 		if (!bdr)
623 			return 1;
624 
625 		start_pfn = PFN_DOWN(bdr->cpu_start) + PFN_DOWN(bdr->size);
626 	}
627 
628 	return 0;
629 }
630 
dma_direct_all_ram_mapped(struct device * dev)631 bool dma_direct_all_ram_mapped(struct device *dev)
632 {
633 	if (!dev->dma_range_map)
634 		return true;
635 	return !walk_system_ram_range(0, PFN_DOWN(ULONG_MAX) + 1, dev,
636 				      check_ram_in_range_map);
637 }
638 
dma_direct_max_mapping_size(struct device * dev)639 size_t dma_direct_max_mapping_size(struct device *dev)
640 {
641 	/* If SWIOTLB is active, use its maximum mapping size */
642 	if (is_swiotlb_active(dev) &&
643 	    (dma_addressing_limited(dev) || is_swiotlb_force_bounce(dev)))
644 		return swiotlb_max_mapping_size(dev);
645 	return SIZE_MAX;
646 }
647 
dma_direct_need_sync(struct device * dev,dma_addr_t dma_addr)648 bool dma_direct_need_sync(struct device *dev, dma_addr_t dma_addr)
649 {
650 	return !dev_is_dma_coherent(dev) ||
651 	       swiotlb_find_pool(dev, dma_to_phys(dev, dma_addr));
652 }
653 
654 /**
655  * dma_direct_set_offset - Assign scalar offset for a single DMA range.
656  * @dev:	device pointer; needed to "own" the alloced memory.
657  * @cpu_start:  beginning of memory region covered by this offset.
658  * @dma_start:  beginning of DMA/PCI region covered by this offset.
659  * @size:	size of the region.
660  *
661  * This is for the simple case of a uniform offset which cannot
662  * be discovered by "dma-ranges".
663  *
664  * It returns -ENOMEM if out of memory, -EINVAL if a map
665  * already exists, 0 otherwise.
666  *
667  * Note: any call to this from a driver is a bug.  The mapping needs
668  * to be described by the device tree or other firmware interfaces.
669  */
dma_direct_set_offset(struct device * dev,phys_addr_t cpu_start,dma_addr_t dma_start,u64 size)670 int dma_direct_set_offset(struct device *dev, phys_addr_t cpu_start,
671 			 dma_addr_t dma_start, u64 size)
672 {
673 	struct bus_dma_region *map;
674 	u64 offset = (u64)cpu_start - (u64)dma_start;
675 
676 	if (dev->dma_range_map) {
677 		dev_err(dev, "attempt to add DMA range to existing map\n");
678 		return -EINVAL;
679 	}
680 
681 	if (!offset)
682 		return 0;
683 
684 	map = kcalloc(2, sizeof(*map), GFP_KERNEL);
685 	if (!map)
686 		return -ENOMEM;
687 	map[0].cpu_start = cpu_start;
688 	map[0].dma_start = dma_start;
689 	map[0].size = size;
690 	dev->dma_range_map = map;
691 	return 0;
692 }
693