1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/file.c
4  *
5  *  Copyright (C) 1998-1999, Stephen Tweedie and Bill Hawes
6  *
7  *  Manage the dynamic fd arrays in the process files_struct.
8  */
9 
10 #include <linux/syscalls.h>
11 #include <linux/export.h>
12 #include <linux/fs.h>
13 #include <linux/kernel.h>
14 #include <linux/mm.h>
15 #include <linux/sched/signal.h>
16 #include <linux/slab.h>
17 #include <linux/file.h>
18 #include <linux/fdtable.h>
19 #include <linux/bitops.h>
20 #include <linux/spinlock.h>
21 #include <linux/rcupdate.h>
22 #include <linux/close_range.h>
23 #include <net/sock.h>
24 #include <linux/init_task.h>
25 
26 #include "internal.h"
27 
28 unsigned int sysctl_nr_open __read_mostly = 1024*1024;
29 unsigned int sysctl_nr_open_min = BITS_PER_LONG;
30 /* our min() is unusable in constant expressions ;-/ */
31 #define __const_min(x, y) ((x) < (y) ? (x) : (y))
32 unsigned int sysctl_nr_open_max =
33 	__const_min(INT_MAX, ~(size_t)0/sizeof(void *)) & -BITS_PER_LONG;
34 
__free_fdtable(struct fdtable * fdt)35 static void __free_fdtable(struct fdtable *fdt)
36 {
37 	kvfree(fdt->fd);
38 	kvfree(fdt->open_fds);
39 	kfree(fdt);
40 }
41 
free_fdtable_rcu(struct rcu_head * rcu)42 static void free_fdtable_rcu(struct rcu_head *rcu)
43 {
44 	__free_fdtable(container_of(rcu, struct fdtable, rcu));
45 }
46 
47 #define BITBIT_NR(nr)	BITS_TO_LONGS(BITS_TO_LONGS(nr))
48 #define BITBIT_SIZE(nr)	(BITBIT_NR(nr) * sizeof(long))
49 
50 #define fdt_words(fdt) ((fdt)->max_fds / BITS_PER_LONG) // words in ->open_fds
51 /*
52  * Copy 'count' fd bits from the old table to the new table and clear the extra
53  * space if any.  This does not copy the file pointers.  Called with the files
54  * spinlock held for write.
55  */
copy_fd_bitmaps(struct fdtable * nfdt,struct fdtable * ofdt,unsigned int copy_words)56 static inline void copy_fd_bitmaps(struct fdtable *nfdt, struct fdtable *ofdt,
57 			    unsigned int copy_words)
58 {
59 	unsigned int nwords = fdt_words(nfdt);
60 
61 	bitmap_copy_and_extend(nfdt->open_fds, ofdt->open_fds,
62 			copy_words * BITS_PER_LONG, nwords * BITS_PER_LONG);
63 	bitmap_copy_and_extend(nfdt->close_on_exec, ofdt->close_on_exec,
64 			copy_words * BITS_PER_LONG, nwords * BITS_PER_LONG);
65 	bitmap_copy_and_extend(nfdt->full_fds_bits, ofdt->full_fds_bits,
66 			copy_words, nwords);
67 }
68 
69 /*
70  * Copy all file descriptors from the old table to the new, expanded table and
71  * clear the extra space.  Called with the files spinlock held for write.
72  */
copy_fdtable(struct fdtable * nfdt,struct fdtable * ofdt)73 static void copy_fdtable(struct fdtable *nfdt, struct fdtable *ofdt)
74 {
75 	size_t cpy, set;
76 
77 	BUG_ON(nfdt->max_fds < ofdt->max_fds);
78 
79 	cpy = ofdt->max_fds * sizeof(struct file *);
80 	set = (nfdt->max_fds - ofdt->max_fds) * sizeof(struct file *);
81 	memcpy(nfdt->fd, ofdt->fd, cpy);
82 	memset((char *)nfdt->fd + cpy, 0, set);
83 
84 	copy_fd_bitmaps(nfdt, ofdt, fdt_words(ofdt));
85 }
86 
87 /*
88  * Note how the fdtable bitmap allocations very much have to be a multiple of
89  * BITS_PER_LONG. This is not only because we walk those things in chunks of
90  * 'unsigned long' in some places, but simply because that is how the Linux
91  * kernel bitmaps are defined to work: they are not "bits in an array of bytes",
92  * they are very much "bits in an array of unsigned long".
93  */
alloc_fdtable(unsigned int slots_wanted)94 static struct fdtable *alloc_fdtable(unsigned int slots_wanted)
95 {
96 	struct fdtable *fdt;
97 	unsigned int nr;
98 	void *data;
99 
100 	/*
101 	 * Figure out how many fds we actually want to support in this fdtable.
102 	 * Allocation steps are keyed to the size of the fdarray, since it
103 	 * grows far faster than any of the other dynamic data. We try to fit
104 	 * the fdarray into comfortable page-tuned chunks: starting at 1024B
105 	 * and growing in powers of two from there on.  Since we called only
106 	 * with slots_wanted > BITS_PER_LONG (embedded instance in files->fdtab
107 	 * already gives BITS_PER_LONG slots), the above boils down to
108 	 * 1.  use the smallest power of two large enough to give us that many
109 	 * slots.
110 	 * 2.  on 32bit skip 64 and 128 - the minimal capacity we want there is
111 	 * 256 slots (i.e. 1Kb fd array).
112 	 * 3.  on 64bit don't skip anything, 1Kb fd array means 128 slots there
113 	 * and we are never going to be asked for 64 or less.
114 	 */
115 	if (IS_ENABLED(CONFIG_32BIT) && slots_wanted < 256)
116 		nr = 256;
117 	else
118 		nr = roundup_pow_of_two(slots_wanted);
119 	/*
120 	 * Note that this can drive nr *below* what we had passed if sysctl_nr_open
121 	 * had been set lower between the check in expand_files() and here.
122 	 *
123 	 * We make sure that nr remains a multiple of BITS_PER_LONG - otherwise
124 	 * bitmaps handling below becomes unpleasant, to put it mildly...
125 	 */
126 	if (unlikely(nr > sysctl_nr_open)) {
127 		nr = round_down(sysctl_nr_open, BITS_PER_LONG);
128 		if (nr < slots_wanted)
129 			return ERR_PTR(-EMFILE);
130 	}
131 
132 	/*
133 	 * Check if the allocation size would exceed INT_MAX. kvmalloc_array()
134 	 * and kvmalloc() will warn if the allocation size is greater than
135 	 * INT_MAX, as filp_cachep objects are not __GFP_NOWARN.
136 	 *
137 	 * This can happen when sysctl_nr_open is set to a very high value and
138 	 * a process tries to use a file descriptor near that limit. For example,
139 	 * if sysctl_nr_open is set to 1073741816 (0x3ffffff8) - which is what
140 	 * systemd typically sets it to - then trying to use a file descriptor
141 	 * close to that value will require allocating a file descriptor table
142 	 * that exceeds 8GB in size.
143 	 */
144 	if (unlikely(nr > INT_MAX / sizeof(struct file *)))
145 		return ERR_PTR(-EMFILE);
146 
147 	fdt = kmalloc(sizeof(struct fdtable), GFP_KERNEL_ACCOUNT);
148 	if (!fdt)
149 		goto out;
150 	fdt->max_fds = nr;
151 	data = kvmalloc_array(nr, sizeof(struct file *), GFP_KERNEL_ACCOUNT);
152 	if (!data)
153 		goto out_fdt;
154 	fdt->fd = data;
155 
156 	data = kvmalloc(max_t(size_t,
157 				 2 * nr / BITS_PER_BYTE + BITBIT_SIZE(nr), L1_CACHE_BYTES),
158 				 GFP_KERNEL_ACCOUNT);
159 	if (!data)
160 		goto out_arr;
161 	fdt->open_fds = data;
162 	data += nr / BITS_PER_BYTE;
163 	fdt->close_on_exec = data;
164 	data += nr / BITS_PER_BYTE;
165 	fdt->full_fds_bits = data;
166 
167 	return fdt;
168 
169 out_arr:
170 	kvfree(fdt->fd);
171 out_fdt:
172 	kfree(fdt);
173 out:
174 	return ERR_PTR(-ENOMEM);
175 }
176 
177 /*
178  * Expand the file descriptor table.
179  * This function will allocate a new fdtable and both fd array and fdset, of
180  * the given size.
181  * Return <0 error code on error; 1 on successful completion.
182  * The files->file_lock should be held on entry, and will be held on exit.
183  */
expand_fdtable(struct files_struct * files,unsigned int nr)184 static int expand_fdtable(struct files_struct *files, unsigned int nr)
185 	__releases(files->file_lock)
186 	__acquires(files->file_lock)
187 {
188 	struct fdtable *new_fdt, *cur_fdt;
189 
190 	spin_unlock(&files->file_lock);
191 	new_fdt = alloc_fdtable(nr + 1);
192 
193 	/* make sure all fd_install() have seen resize_in_progress
194 	 * or have finished their rcu_read_lock_sched() section.
195 	 */
196 	if (atomic_read(&files->count) > 1)
197 		synchronize_rcu();
198 
199 	spin_lock(&files->file_lock);
200 	if (IS_ERR(new_fdt))
201 		return PTR_ERR(new_fdt);
202 	cur_fdt = files_fdtable(files);
203 	BUG_ON(nr < cur_fdt->max_fds);
204 	copy_fdtable(new_fdt, cur_fdt);
205 	rcu_assign_pointer(files->fdt, new_fdt);
206 	if (cur_fdt != &files->fdtab)
207 		call_rcu(&cur_fdt->rcu, free_fdtable_rcu);
208 	/* coupled with smp_rmb() in fd_install() */
209 	smp_wmb();
210 	return 1;
211 }
212 
213 /*
214  * Expand files.
215  * This function will expand the file structures, if the requested size exceeds
216  * the current capacity and there is room for expansion.
217  * Return <0 error code on error; 0 when nothing done; 1 when files were
218  * expanded and execution may have blocked.
219  * The files->file_lock should be held on entry, and will be held on exit.
220  */
expand_files(struct files_struct * files,unsigned int nr)221 static int expand_files(struct files_struct *files, unsigned int nr)
222 	__releases(files->file_lock)
223 	__acquires(files->file_lock)
224 {
225 	struct fdtable *fdt;
226 	int expanded = 0;
227 
228 repeat:
229 	fdt = files_fdtable(files);
230 
231 	/* Do we need to expand? */
232 	if (nr < fdt->max_fds)
233 		return expanded;
234 
235 	/* Can we expand? */
236 	if (nr >= sysctl_nr_open)
237 		return -EMFILE;
238 
239 	if (unlikely(files->resize_in_progress)) {
240 		spin_unlock(&files->file_lock);
241 		expanded = 1;
242 		wait_event(files->resize_wait, !files->resize_in_progress);
243 		spin_lock(&files->file_lock);
244 		goto repeat;
245 	}
246 
247 	/* All good, so we try */
248 	files->resize_in_progress = true;
249 	expanded = expand_fdtable(files, nr);
250 	files->resize_in_progress = false;
251 
252 	wake_up_all(&files->resize_wait);
253 	return expanded;
254 }
255 
__set_close_on_exec(unsigned int fd,struct fdtable * fdt)256 static inline void __set_close_on_exec(unsigned int fd, struct fdtable *fdt)
257 {
258 	__set_bit(fd, fdt->close_on_exec);
259 }
260 
__clear_close_on_exec(unsigned int fd,struct fdtable * fdt)261 static inline void __clear_close_on_exec(unsigned int fd, struct fdtable *fdt)
262 {
263 	if (test_bit(fd, fdt->close_on_exec))
264 		__clear_bit(fd, fdt->close_on_exec);
265 }
266 
__set_open_fd(unsigned int fd,struct fdtable * fdt)267 static inline void __set_open_fd(unsigned int fd, struct fdtable *fdt)
268 {
269 	__set_bit(fd, fdt->open_fds);
270 	fd /= BITS_PER_LONG;
271 	if (!~fdt->open_fds[fd])
272 		__set_bit(fd, fdt->full_fds_bits);
273 }
274 
__clear_open_fd(unsigned int fd,struct fdtable * fdt)275 static inline void __clear_open_fd(unsigned int fd, struct fdtable *fdt)
276 {
277 	__clear_bit(fd, fdt->open_fds);
278 	__clear_bit(fd / BITS_PER_LONG, fdt->full_fds_bits);
279 }
280 
fd_is_open(unsigned int fd,const struct fdtable * fdt)281 static inline bool fd_is_open(unsigned int fd, const struct fdtable *fdt)
282 {
283 	return test_bit(fd, fdt->open_fds);
284 }
285 
286 /*
287  * Note that a sane fdtable size always has to be a multiple of
288  * BITS_PER_LONG, since we have bitmaps that are sized by this.
289  *
290  * punch_hole is optional - when close_range() is asked to unshare
291  * and close, we don't need to copy descriptors in that range, so
292  * a smaller cloned descriptor table might suffice if the last
293  * currently opened descriptor falls into that range.
294  */
sane_fdtable_size(struct fdtable * fdt,struct fd_range * punch_hole)295 static unsigned int sane_fdtable_size(struct fdtable *fdt, struct fd_range *punch_hole)
296 {
297 	unsigned int last = find_last_bit(fdt->open_fds, fdt->max_fds);
298 
299 	if (last == fdt->max_fds)
300 		return NR_OPEN_DEFAULT;
301 	if (punch_hole && punch_hole->to >= last && punch_hole->from <= last) {
302 		last = find_last_bit(fdt->open_fds, punch_hole->from);
303 		if (last == punch_hole->from)
304 			return NR_OPEN_DEFAULT;
305 	}
306 	return ALIGN(last + 1, BITS_PER_LONG);
307 }
308 
309 /*
310  * Allocate a new descriptor table and copy contents from the passed in
311  * instance.  Returns a pointer to cloned table on success, ERR_PTR()
312  * on failure.  For 'punch_hole' see sane_fdtable_size().
313  */
dup_fd(struct files_struct * oldf,struct fd_range * punch_hole)314 struct files_struct *dup_fd(struct files_struct *oldf, struct fd_range *punch_hole)
315 {
316 	struct files_struct *newf;
317 	struct file **old_fds, **new_fds;
318 	unsigned int open_files, i;
319 	struct fdtable *old_fdt, *new_fdt;
320 
321 	newf = kmem_cache_alloc(files_cachep, GFP_KERNEL);
322 	if (!newf)
323 		return ERR_PTR(-ENOMEM);
324 
325 	atomic_set(&newf->count, 1);
326 
327 	spin_lock_init(&newf->file_lock);
328 	newf->resize_in_progress = false;
329 	init_waitqueue_head(&newf->resize_wait);
330 	newf->next_fd = 0;
331 	new_fdt = &newf->fdtab;
332 	new_fdt->max_fds = NR_OPEN_DEFAULT;
333 	new_fdt->close_on_exec = newf->close_on_exec_init;
334 	new_fdt->open_fds = newf->open_fds_init;
335 	new_fdt->full_fds_bits = newf->full_fds_bits_init;
336 	new_fdt->fd = &newf->fd_array[0];
337 
338 	spin_lock(&oldf->file_lock);
339 	old_fdt = files_fdtable(oldf);
340 	open_files = sane_fdtable_size(old_fdt, punch_hole);
341 
342 	/*
343 	 * Check whether we need to allocate a larger fd array and fd set.
344 	 */
345 	while (unlikely(open_files > new_fdt->max_fds)) {
346 		spin_unlock(&oldf->file_lock);
347 
348 		if (new_fdt != &newf->fdtab)
349 			__free_fdtable(new_fdt);
350 
351 		new_fdt = alloc_fdtable(open_files);
352 		if (IS_ERR(new_fdt)) {
353 			kmem_cache_free(files_cachep, newf);
354 			return ERR_CAST(new_fdt);
355 		}
356 
357 		/*
358 		 * Reacquire the oldf lock and a pointer to its fd table
359 		 * who knows it may have a new bigger fd table. We need
360 		 * the latest pointer.
361 		 */
362 		spin_lock(&oldf->file_lock);
363 		old_fdt = files_fdtable(oldf);
364 		open_files = sane_fdtable_size(old_fdt, punch_hole);
365 	}
366 
367 	copy_fd_bitmaps(new_fdt, old_fdt, open_files / BITS_PER_LONG);
368 
369 	old_fds = old_fdt->fd;
370 	new_fds = new_fdt->fd;
371 
372 	/*
373 	 * We may be racing against fd allocation from other threads using this
374 	 * files_struct, despite holding ->file_lock.
375 	 *
376 	 * alloc_fd() might have already claimed a slot, while fd_install()
377 	 * did not populate it yet. Note the latter operates locklessly, so
378 	 * the file can show up as we are walking the array below.
379 	 *
380 	 * At the same time we know no files will disappear as all other
381 	 * operations take the lock.
382 	 *
383 	 * Instead of trying to placate userspace racing with itself, we
384 	 * ref the file if we see it and mark the fd slot as unused otherwise.
385 	 */
386 	for (i = open_files; i != 0; i--) {
387 		struct file *f = rcu_dereference_raw(*old_fds++);
388 		if (f) {
389 			get_file(f);
390 		} else {
391 			__clear_open_fd(open_files - i, new_fdt);
392 		}
393 		rcu_assign_pointer(*new_fds++, f);
394 	}
395 	spin_unlock(&oldf->file_lock);
396 
397 	/* clear the remainder */
398 	memset(new_fds, 0, (new_fdt->max_fds - open_files) * sizeof(struct file *));
399 
400 	rcu_assign_pointer(newf->fdt, new_fdt);
401 
402 	return newf;
403 }
404 
close_files(struct files_struct * files)405 static struct fdtable *close_files(struct files_struct * files)
406 {
407 	/*
408 	 * It is safe to dereference the fd table without RCU or
409 	 * ->file_lock because this is the last reference to the
410 	 * files structure.
411 	 */
412 	struct fdtable *fdt = rcu_dereference_raw(files->fdt);
413 	unsigned int i, j = 0;
414 
415 	for (;;) {
416 		unsigned long set;
417 		i = j * BITS_PER_LONG;
418 		if (i >= fdt->max_fds)
419 			break;
420 		set = fdt->open_fds[j++];
421 		while (set) {
422 			if (set & 1) {
423 				struct file * file = xchg(&fdt->fd[i], NULL);
424 				if (file) {
425 					filp_close(file, files);
426 					cond_resched();
427 				}
428 			}
429 			i++;
430 			set >>= 1;
431 		}
432 	}
433 
434 	return fdt;
435 }
436 
put_files_struct(struct files_struct * files)437 void put_files_struct(struct files_struct *files)
438 {
439 	if (atomic_dec_and_test(&files->count)) {
440 		struct fdtable *fdt = close_files(files);
441 
442 		/* free the arrays if they are not embedded */
443 		if (fdt != &files->fdtab)
444 			__free_fdtable(fdt);
445 		kmem_cache_free(files_cachep, files);
446 	}
447 }
448 
exit_files(struct task_struct * tsk)449 void exit_files(struct task_struct *tsk)
450 {
451 	struct files_struct * files = tsk->files;
452 
453 	if (files) {
454 		task_lock(tsk);
455 		tsk->files = NULL;
456 		task_unlock(tsk);
457 		put_files_struct(files);
458 	}
459 }
460 
461 struct files_struct init_files = {
462 	.count		= ATOMIC_INIT(1),
463 	.fdt		= &init_files.fdtab,
464 	.fdtab		= {
465 		.max_fds	= NR_OPEN_DEFAULT,
466 		.fd		= &init_files.fd_array[0],
467 		.close_on_exec	= init_files.close_on_exec_init,
468 		.open_fds	= init_files.open_fds_init,
469 		.full_fds_bits	= init_files.full_fds_bits_init,
470 	},
471 	.file_lock	= __SPIN_LOCK_UNLOCKED(init_files.file_lock),
472 	.resize_wait	= __WAIT_QUEUE_HEAD_INITIALIZER(init_files.resize_wait),
473 };
474 
find_next_fd(struct fdtable * fdt,unsigned int start)475 static unsigned int find_next_fd(struct fdtable *fdt, unsigned int start)
476 {
477 	unsigned int maxfd = fdt->max_fds; /* always multiple of BITS_PER_LONG */
478 	unsigned int maxbit = maxfd / BITS_PER_LONG;
479 	unsigned int bitbit = start / BITS_PER_LONG;
480 
481 	bitbit = find_next_zero_bit(fdt->full_fds_bits, maxbit, bitbit) * BITS_PER_LONG;
482 	if (bitbit >= maxfd)
483 		return maxfd;
484 	if (bitbit > start)
485 		start = bitbit;
486 	return find_next_zero_bit(fdt->open_fds, maxfd, start);
487 }
488 
489 /*
490  * allocate a file descriptor, mark it busy.
491  */
alloc_fd(unsigned start,unsigned end,unsigned flags)492 static int alloc_fd(unsigned start, unsigned end, unsigned flags)
493 {
494 	struct files_struct *files = current->files;
495 	unsigned int fd;
496 	int error;
497 	struct fdtable *fdt;
498 
499 	spin_lock(&files->file_lock);
500 repeat:
501 	fdt = files_fdtable(files);
502 	fd = start;
503 	if (fd < files->next_fd)
504 		fd = files->next_fd;
505 
506 	if (fd < fdt->max_fds)
507 		fd = find_next_fd(fdt, fd);
508 
509 	/*
510 	 * N.B. For clone tasks sharing a files structure, this test
511 	 * will limit the total number of files that can be opened.
512 	 */
513 	error = -EMFILE;
514 	if (fd >= end)
515 		goto out;
516 
517 	error = expand_files(files, fd);
518 	if (error < 0)
519 		goto out;
520 
521 	/*
522 	 * If we needed to expand the fs array we
523 	 * might have blocked - try again.
524 	 */
525 	if (error)
526 		goto repeat;
527 
528 	if (start <= files->next_fd)
529 		files->next_fd = fd + 1;
530 
531 	__set_open_fd(fd, fdt);
532 	if (flags & O_CLOEXEC)
533 		__set_close_on_exec(fd, fdt);
534 	else
535 		__clear_close_on_exec(fd, fdt);
536 	error = fd;
537 #if 1
538 	/* Sanity check */
539 	if (rcu_access_pointer(fdt->fd[fd]) != NULL) {
540 		printk(KERN_WARNING "alloc_fd: slot %d not NULL!\n", fd);
541 		rcu_assign_pointer(fdt->fd[fd], NULL);
542 	}
543 #endif
544 
545 out:
546 	spin_unlock(&files->file_lock);
547 	return error;
548 }
549 
__get_unused_fd_flags(unsigned flags,unsigned long nofile)550 int __get_unused_fd_flags(unsigned flags, unsigned long nofile)
551 {
552 	return alloc_fd(0, nofile, flags);
553 }
554 
get_unused_fd_flags(unsigned flags)555 int get_unused_fd_flags(unsigned flags)
556 {
557 	return __get_unused_fd_flags(flags, rlimit(RLIMIT_NOFILE));
558 }
559 EXPORT_SYMBOL(get_unused_fd_flags);
560 
__put_unused_fd(struct files_struct * files,unsigned int fd)561 static void __put_unused_fd(struct files_struct *files, unsigned int fd)
562 {
563 	struct fdtable *fdt = files_fdtable(files);
564 	__clear_open_fd(fd, fdt);
565 	if (fd < files->next_fd)
566 		files->next_fd = fd;
567 }
568 
put_unused_fd(unsigned int fd)569 void put_unused_fd(unsigned int fd)
570 {
571 	struct files_struct *files = current->files;
572 	spin_lock(&files->file_lock);
573 	__put_unused_fd(files, fd);
574 	spin_unlock(&files->file_lock);
575 }
576 
577 EXPORT_SYMBOL(put_unused_fd);
578 
579 /*
580  * Install a file pointer in the fd array.
581  *
582  * The VFS is full of places where we drop the files lock between
583  * setting the open_fds bitmap and installing the file in the file
584  * array.  At any such point, we are vulnerable to a dup2() race
585  * installing a file in the array before us.  We need to detect this and
586  * fput() the struct file we are about to overwrite in this case.
587  *
588  * It should never happen - if we allow dup2() do it, _really_ bad things
589  * will follow.
590  *
591  * This consumes the "file" refcount, so callers should treat it
592  * as if they had called fput(file).
593  */
594 
fd_install(unsigned int fd,struct file * file)595 void fd_install(unsigned int fd, struct file *file)
596 {
597 	struct files_struct *files = current->files;
598 	struct fdtable *fdt;
599 
600 	if (WARN_ON_ONCE(unlikely(file->f_mode & FMODE_BACKING)))
601 		return;
602 
603 	rcu_read_lock_sched();
604 
605 	if (unlikely(files->resize_in_progress)) {
606 		rcu_read_unlock_sched();
607 		spin_lock(&files->file_lock);
608 		fdt = files_fdtable(files);
609 		BUG_ON(fdt->fd[fd] != NULL);
610 		rcu_assign_pointer(fdt->fd[fd], file);
611 		spin_unlock(&files->file_lock);
612 		return;
613 	}
614 	/* coupled with smp_wmb() in expand_fdtable() */
615 	smp_rmb();
616 	fdt = rcu_dereference_sched(files->fdt);
617 	BUG_ON(fdt->fd[fd] != NULL);
618 	rcu_assign_pointer(fdt->fd[fd], file);
619 	rcu_read_unlock_sched();
620 }
621 
622 EXPORT_SYMBOL(fd_install);
623 
624 /**
625  * file_close_fd_locked - return file associated with fd
626  * @files: file struct to retrieve file from
627  * @fd: file descriptor to retrieve file for
628  *
629  * Doesn't take a separate reference count.
630  *
631  * Context: files_lock must be held.
632  *
633  * Returns: The file associated with @fd (NULL if @fd is not open)
634  */
file_close_fd_locked(struct files_struct * files,unsigned fd)635 struct file *file_close_fd_locked(struct files_struct *files, unsigned fd)
636 {
637 	struct fdtable *fdt = files_fdtable(files);
638 	struct file *file;
639 
640 	lockdep_assert_held(&files->file_lock);
641 
642 	if (fd >= fdt->max_fds)
643 		return NULL;
644 
645 	fd = array_index_nospec(fd, fdt->max_fds);
646 	file = rcu_dereference_raw(fdt->fd[fd]);
647 	if (file) {
648 		rcu_assign_pointer(fdt->fd[fd], NULL);
649 		__put_unused_fd(files, fd);
650 	}
651 	return file;
652 }
653 
close_fd(unsigned fd)654 int close_fd(unsigned fd)
655 {
656 	struct files_struct *files = current->files;
657 	struct file *file;
658 
659 	spin_lock(&files->file_lock);
660 	file = file_close_fd_locked(files, fd);
661 	spin_unlock(&files->file_lock);
662 	if (!file)
663 		return -EBADF;
664 
665 	return filp_close(file, files);
666 }
667 EXPORT_SYMBOL(close_fd);
668 
669 /**
670  * last_fd - return last valid index into fd table
671  * @fdt: File descriptor table.
672  *
673  * Context: Either rcu read lock or files_lock must be held.
674  *
675  * Returns: Last valid index into fdtable.
676  */
last_fd(struct fdtable * fdt)677 static inline unsigned last_fd(struct fdtable *fdt)
678 {
679 	return fdt->max_fds - 1;
680 }
681 
__range_cloexec(struct files_struct * cur_fds,unsigned int fd,unsigned int max_fd)682 static inline void __range_cloexec(struct files_struct *cur_fds,
683 				   unsigned int fd, unsigned int max_fd)
684 {
685 	struct fdtable *fdt;
686 
687 	/* make sure we're using the correct maximum value */
688 	spin_lock(&cur_fds->file_lock);
689 	fdt = files_fdtable(cur_fds);
690 	max_fd = min(last_fd(fdt), max_fd);
691 	if (fd <= max_fd)
692 		bitmap_set(fdt->close_on_exec, fd, max_fd - fd + 1);
693 	spin_unlock(&cur_fds->file_lock);
694 }
695 
__range_close(struct files_struct * files,unsigned int fd,unsigned int max_fd)696 static inline void __range_close(struct files_struct *files, unsigned int fd,
697 				 unsigned int max_fd)
698 {
699 	struct file *file;
700 	unsigned n;
701 
702 	spin_lock(&files->file_lock);
703 	n = last_fd(files_fdtable(files));
704 	max_fd = min(max_fd, n);
705 
706 	for (; fd <= max_fd; fd++) {
707 		file = file_close_fd_locked(files, fd);
708 		if (file) {
709 			spin_unlock(&files->file_lock);
710 			filp_close(file, files);
711 			cond_resched();
712 			spin_lock(&files->file_lock);
713 		} else if (need_resched()) {
714 			spin_unlock(&files->file_lock);
715 			cond_resched();
716 			spin_lock(&files->file_lock);
717 		}
718 	}
719 	spin_unlock(&files->file_lock);
720 }
721 
722 /**
723  * __close_range() - Close all file descriptors in a given range.
724  *
725  * @fd:     starting file descriptor to close
726  * @max_fd: last file descriptor to close
727  * @flags:  CLOSE_RANGE flags.
728  *
729  * This closes a range of file descriptors. All file descriptors
730  * from @fd up to and including @max_fd are closed.
731  */
__close_range(unsigned fd,unsigned max_fd,unsigned int flags)732 int __close_range(unsigned fd, unsigned max_fd, unsigned int flags)
733 {
734 	struct task_struct *me = current;
735 	struct files_struct *cur_fds = me->files, *fds = NULL;
736 
737 	if (flags & ~(CLOSE_RANGE_UNSHARE | CLOSE_RANGE_CLOEXEC))
738 		return -EINVAL;
739 
740 	if (fd > max_fd)
741 		return -EINVAL;
742 
743 	if ((flags & CLOSE_RANGE_UNSHARE) && atomic_read(&cur_fds->count) > 1) {
744 		struct fd_range range = {fd, max_fd}, *punch_hole = ⦥
745 
746 		/*
747 		 * If the caller requested all fds to be made cloexec we always
748 		 * copy all of the file descriptors since they still want to
749 		 * use them.
750 		 */
751 		if (flags & CLOSE_RANGE_CLOEXEC)
752 			punch_hole = NULL;
753 
754 		fds = dup_fd(cur_fds, punch_hole);
755 		if (IS_ERR(fds))
756 			return PTR_ERR(fds);
757 		/*
758 		 * We used to share our file descriptor table, and have now
759 		 * created a private one, make sure we're using it below.
760 		 */
761 		swap(cur_fds, fds);
762 	}
763 
764 	if (flags & CLOSE_RANGE_CLOEXEC)
765 		__range_cloexec(cur_fds, fd, max_fd);
766 	else
767 		__range_close(cur_fds, fd, max_fd);
768 
769 	if (fds) {
770 		/*
771 		 * We're done closing the files we were supposed to. Time to install
772 		 * the new file descriptor table and drop the old one.
773 		 */
774 		task_lock(me);
775 		me->files = cur_fds;
776 		task_unlock(me);
777 		put_files_struct(fds);
778 	}
779 
780 	return 0;
781 }
782 
783 /**
784  * file_close_fd - return file associated with fd
785  * @fd: file descriptor to retrieve file for
786  *
787  * Doesn't take a separate reference count.
788  *
789  * Returns: The file associated with @fd (NULL if @fd is not open)
790  */
file_close_fd(unsigned int fd)791 struct file *file_close_fd(unsigned int fd)
792 {
793 	struct files_struct *files = current->files;
794 	struct file *file;
795 
796 	spin_lock(&files->file_lock);
797 	file = file_close_fd_locked(files, fd);
798 	spin_unlock(&files->file_lock);
799 
800 	return file;
801 }
802 EXPORT_SYMBOL_GPL(file_close_fd);
803 
do_close_on_exec(struct files_struct * files)804 void do_close_on_exec(struct files_struct *files)
805 {
806 	unsigned i;
807 	struct fdtable *fdt;
808 
809 	/* exec unshares first */
810 	spin_lock(&files->file_lock);
811 	for (i = 0; ; i++) {
812 		unsigned long set;
813 		unsigned fd = i * BITS_PER_LONG;
814 		fdt = files_fdtable(files);
815 		if (fd >= fdt->max_fds)
816 			break;
817 		set = fdt->close_on_exec[i];
818 		if (!set)
819 			continue;
820 		fdt->close_on_exec[i] = 0;
821 		for ( ; set ; fd++, set >>= 1) {
822 			struct file *file;
823 			if (!(set & 1))
824 				continue;
825 			file = fdt->fd[fd];
826 			if (!file)
827 				continue;
828 			rcu_assign_pointer(fdt->fd[fd], NULL);
829 			__put_unused_fd(files, fd);
830 			spin_unlock(&files->file_lock);
831 			filp_close(file, files);
832 			cond_resched();
833 			spin_lock(&files->file_lock);
834 		}
835 
836 	}
837 	spin_unlock(&files->file_lock);
838 }
839 
__get_file_rcu(struct file __rcu ** f)840 static struct file *__get_file_rcu(struct file __rcu **f)
841 {
842 	struct file __rcu *file;
843 	struct file __rcu *file_reloaded;
844 	struct file __rcu *file_reloaded_cmp;
845 
846 	file = rcu_dereference_raw(*f);
847 	if (!file)
848 		return NULL;
849 
850 	if (unlikely(!atomic_long_inc_not_zero(&file->f_count)))
851 		return ERR_PTR(-EAGAIN);
852 
853 	file_reloaded = rcu_dereference_raw(*f);
854 
855 	/*
856 	 * Ensure that all accesses have a dependency on the load from
857 	 * rcu_dereference_raw() above so we get correct ordering
858 	 * between reuse/allocation and the pointer check below.
859 	 */
860 	file_reloaded_cmp = file_reloaded;
861 	OPTIMIZER_HIDE_VAR(file_reloaded_cmp);
862 
863 	/*
864 	 * atomic_long_inc_not_zero() above provided a full memory
865 	 * barrier when we acquired a reference.
866 	 *
867 	 * This is paired with the write barrier from assigning to the
868 	 * __rcu protected file pointer so that if that pointer still
869 	 * matches the current file, we know we have successfully
870 	 * acquired a reference to the right file.
871 	 *
872 	 * If the pointers don't match the file has been reallocated by
873 	 * SLAB_TYPESAFE_BY_RCU.
874 	 */
875 	if (file == file_reloaded_cmp)
876 		return file_reloaded;
877 
878 	fput(file);
879 	return ERR_PTR(-EAGAIN);
880 }
881 
882 /**
883  * get_file_rcu - try go get a reference to a file under rcu
884  * @f: the file to get a reference on
885  *
886  * This function tries to get a reference on @f carefully verifying that
887  * @f hasn't been reused.
888  *
889  * This function should rarely have to be used and only by users who
890  * understand the implications of SLAB_TYPESAFE_BY_RCU. Try to avoid it.
891  *
892  * Return: Returns @f with the reference count increased or NULL.
893  */
get_file_rcu(struct file __rcu ** f)894 struct file *get_file_rcu(struct file __rcu **f)
895 {
896 	for (;;) {
897 		struct file __rcu *file;
898 
899 		file = __get_file_rcu(f);
900 		if (!IS_ERR(file))
901 			return file;
902 	}
903 }
904 EXPORT_SYMBOL_GPL(get_file_rcu);
905 
906 /**
907  * get_file_active - try go get a reference to a file
908  * @f: the file to get a reference on
909  *
910  * In contast to get_file_rcu() the pointer itself isn't part of the
911  * reference counting.
912  *
913  * This function should rarely have to be used and only by users who
914  * understand the implications of SLAB_TYPESAFE_BY_RCU. Try to avoid it.
915  *
916  * Return: Returns @f with the reference count increased or NULL.
917  */
get_file_active(struct file ** f)918 struct file *get_file_active(struct file **f)
919 {
920 	struct file __rcu *file;
921 
922 	rcu_read_lock();
923 	file = __get_file_rcu(f);
924 	rcu_read_unlock();
925 	if (IS_ERR(file))
926 		file = NULL;
927 	return file;
928 }
929 EXPORT_SYMBOL_GPL(get_file_active);
930 
__fget_files_rcu(struct files_struct * files,unsigned int fd,fmode_t mask)931 static inline struct file *__fget_files_rcu(struct files_struct *files,
932        unsigned int fd, fmode_t mask)
933 {
934 	for (;;) {
935 		struct file *file;
936 		struct fdtable *fdt = rcu_dereference_raw(files->fdt);
937 		struct file __rcu **fdentry;
938 		unsigned long nospec_mask;
939 
940 		/* Mask is a 0 for invalid fd's, ~0 for valid ones */
941 		nospec_mask = array_index_mask_nospec(fd, fdt->max_fds);
942 
943 		/*
944 		 * fdentry points to the 'fd' offset, or fdt->fd[0].
945 		 * Loading from fdt->fd[0] is always safe, because the
946 		 * array always exists.
947 		 */
948 		fdentry = fdt->fd + (fd & nospec_mask);
949 
950 		/* Do the load, then mask any invalid result */
951 		file = rcu_dereference_raw(*fdentry);
952 		file = (void *)(nospec_mask & (unsigned long)file);
953 		if (unlikely(!file))
954 			return NULL;
955 
956 		/*
957 		 * Ok, we have a file pointer that was valid at
958 		 * some point, but it might have become stale since.
959 		 *
960 		 * We need to confirm it by incrementing the refcount
961 		 * and then check the lookup again.
962 		 *
963 		 * atomic_long_inc_not_zero() gives us a full memory
964 		 * barrier. We only really need an 'acquire' one to
965 		 * protect the loads below, but we don't have that.
966 		 */
967 		if (unlikely(!atomic_long_inc_not_zero(&file->f_count)))
968 			continue;
969 
970 		/*
971 		 * Such a race can take two forms:
972 		 *
973 		 *  (a) the file ref already went down to zero and the
974 		 *      file hasn't been reused yet or the file count
975 		 *      isn't zero but the file has already been reused.
976 		 *
977 		 *  (b) the file table entry has changed under us.
978 		 *       Note that we don't need to re-check the 'fdt->fd'
979 		 *       pointer having changed, because it always goes
980 		 *       hand-in-hand with 'fdt'.
981 		 *
982 		 * If so, we need to put our ref and try again.
983 		 */
984 		if (unlikely(file != rcu_dereference_raw(*fdentry)) ||
985 		    unlikely(rcu_dereference_raw(files->fdt) != fdt)) {
986 			fput(file);
987 			continue;
988 		}
989 
990 		/*
991 		 * This isn't the file we're looking for or we're not
992 		 * allowed to get a reference to it.
993 		 */
994 		if (unlikely(file->f_mode & mask)) {
995 			fput(file);
996 			return NULL;
997 		}
998 
999 		/*
1000 		 * Ok, we have a ref to the file, and checked that it
1001 		 * still exists.
1002 		 */
1003 		return file;
1004 	}
1005 }
1006 
__fget_files(struct files_struct * files,unsigned int fd,fmode_t mask)1007 static struct file *__fget_files(struct files_struct *files, unsigned int fd,
1008 				 fmode_t mask)
1009 {
1010 	struct file *file;
1011 
1012 	rcu_read_lock();
1013 	file = __fget_files_rcu(files, fd, mask);
1014 	rcu_read_unlock();
1015 
1016 	return file;
1017 }
1018 
__fget(unsigned int fd,fmode_t mask)1019 static inline struct file *__fget(unsigned int fd, fmode_t mask)
1020 {
1021 	return __fget_files(current->files, fd, mask);
1022 }
1023 
fget(unsigned int fd)1024 struct file *fget(unsigned int fd)
1025 {
1026 	return __fget(fd, FMODE_PATH);
1027 }
1028 EXPORT_SYMBOL(fget);
1029 
fget_raw(unsigned int fd)1030 struct file *fget_raw(unsigned int fd)
1031 {
1032 	return __fget(fd, 0);
1033 }
1034 EXPORT_SYMBOL(fget_raw);
1035 
fget_task(struct task_struct * task,unsigned int fd)1036 struct file *fget_task(struct task_struct *task, unsigned int fd)
1037 {
1038 	struct file *file = NULL;
1039 
1040 	task_lock(task);
1041 	if (task->files)
1042 		file = __fget_files(task->files, fd, 0);
1043 	task_unlock(task);
1044 
1045 	return file;
1046 }
1047 
lookup_fdget_rcu(unsigned int fd)1048 struct file *lookup_fdget_rcu(unsigned int fd)
1049 {
1050 	return __fget_files_rcu(current->files, fd, 0);
1051 
1052 }
1053 EXPORT_SYMBOL_GPL(lookup_fdget_rcu);
1054 
task_lookup_fdget_rcu(struct task_struct * task,unsigned int fd)1055 struct file *task_lookup_fdget_rcu(struct task_struct *task, unsigned int fd)
1056 {
1057 	/* Must be called with rcu_read_lock held */
1058 	struct files_struct *files;
1059 	struct file *file = NULL;
1060 
1061 	task_lock(task);
1062 	files = task->files;
1063 	if (files)
1064 		file = __fget_files_rcu(files, fd, 0);
1065 	task_unlock(task);
1066 
1067 	return file;
1068 }
1069 
task_lookup_next_fdget_rcu(struct task_struct * task,unsigned int * ret_fd)1070 struct file *task_lookup_next_fdget_rcu(struct task_struct *task, unsigned int *ret_fd)
1071 {
1072 	/* Must be called with rcu_read_lock held */
1073 	struct files_struct *files;
1074 	unsigned int fd = *ret_fd;
1075 	struct file *file = NULL;
1076 
1077 	task_lock(task);
1078 	files = task->files;
1079 	if (files) {
1080 		for (; fd < files_fdtable(files)->max_fds; fd++) {
1081 			file = __fget_files_rcu(files, fd, 0);
1082 			if (file)
1083 				break;
1084 		}
1085 	}
1086 	task_unlock(task);
1087 	*ret_fd = fd;
1088 	return file;
1089 }
1090 EXPORT_SYMBOL(task_lookup_next_fdget_rcu);
1091 
1092 /*
1093  * Lightweight file lookup - no refcnt increment if fd table isn't shared.
1094  *
1095  * You can use this instead of fget if you satisfy all of the following
1096  * conditions:
1097  * 1) You must call fput_light before exiting the syscall and returning control
1098  *    to userspace (i.e. you cannot remember the returned struct file * after
1099  *    returning to userspace).
1100  * 2) You must not call filp_close on the returned struct file * in between
1101  *    calls to fget_light and fput_light.
1102  * 3) You must not clone the current task in between the calls to fget_light
1103  *    and fput_light.
1104  *
1105  * The fput_needed flag returned by fget_light should be passed to the
1106  * corresponding fput_light.
1107  *
1108  * (As an exception to rule 2, you can call filp_close between fget_light and
1109  * fput_light provided that you capture a real refcount with get_file before
1110  * the call to filp_close, and ensure that this real refcount is fput *after*
1111  * the fput_light call.)
1112  *
1113  * See also the documentation in rust/kernel/file.rs.
1114  */
__fget_light(unsigned int fd,fmode_t mask)1115 static inline struct fd __fget_light(unsigned int fd, fmode_t mask)
1116 {
1117 	struct files_struct *files = current->files;
1118 	struct file *file;
1119 
1120 	/*
1121 	 * If another thread is concurrently calling close_fd() followed
1122 	 * by put_files_struct(), we must not observe the old table
1123 	 * entry combined with the new refcount - otherwise we could
1124 	 * return a file that is concurrently being freed.
1125 	 *
1126 	 * atomic_read_acquire() pairs with atomic_dec_and_test() in
1127 	 * put_files_struct().
1128 	 */
1129 	if (likely(atomic_read_acquire(&files->count) == 1)) {
1130 		file = files_lookup_fd_raw(files, fd);
1131 		if (!file || unlikely(file->f_mode & mask))
1132 			return EMPTY_FD;
1133 		return BORROWED_FD(file);
1134 	} else {
1135 		file = __fget_files(files, fd, mask);
1136 		if (!file)
1137 			return EMPTY_FD;
1138 		return CLONED_FD(file);
1139 	}
1140 }
fdget(unsigned int fd)1141 struct fd fdget(unsigned int fd)
1142 {
1143 	return __fget_light(fd, FMODE_PATH);
1144 }
1145 EXPORT_SYMBOL(fdget);
1146 
fdget_raw(unsigned int fd)1147 struct fd fdget_raw(unsigned int fd)
1148 {
1149 	return __fget_light(fd, 0);
1150 }
1151 
1152 /*
1153  * Try to avoid f_pos locking. We only need it if the
1154  * file is marked for FMODE_ATOMIC_POS, and it can be
1155  * accessed multiple ways.
1156  *
1157  * Always do it for directories, because pidfd_getfd()
1158  * can make a file accessible even if it otherwise would
1159  * not be, and for directories this is a correctness
1160  * issue, not a "POSIX requirement".
1161  */
file_needs_f_pos_lock(struct file * file)1162 static inline bool file_needs_f_pos_lock(struct file *file)
1163 {
1164 	return (file->f_mode & FMODE_ATOMIC_POS) &&
1165 		(file_count(file) > 1 || file->f_op->iterate_shared);
1166 }
1167 
fdget_pos(unsigned int fd)1168 struct fd fdget_pos(unsigned int fd)
1169 {
1170 	struct fd f = fdget(fd);
1171 	struct file *file = fd_file(f);
1172 
1173 	if (file && file_needs_f_pos_lock(file)) {
1174 		f.word |= FDPUT_POS_UNLOCK;
1175 		mutex_lock(&file->f_pos_lock);
1176 	}
1177 	return f;
1178 }
1179 
__f_unlock_pos(struct file * f)1180 void __f_unlock_pos(struct file *f)
1181 {
1182 	mutex_unlock(&f->f_pos_lock);
1183 }
1184 
1185 /*
1186  * We only lock f_pos if we have threads or if the file might be
1187  * shared with another process. In both cases we'll have an elevated
1188  * file count (done either by fdget() or by fork()).
1189  */
1190 
set_close_on_exec(unsigned int fd,int flag)1191 void set_close_on_exec(unsigned int fd, int flag)
1192 {
1193 	struct files_struct *files = current->files;
1194 	struct fdtable *fdt;
1195 	spin_lock(&files->file_lock);
1196 	fdt = files_fdtable(files);
1197 	if (flag)
1198 		__set_close_on_exec(fd, fdt);
1199 	else
1200 		__clear_close_on_exec(fd, fdt);
1201 	spin_unlock(&files->file_lock);
1202 }
1203 
get_close_on_exec(unsigned int fd)1204 bool get_close_on_exec(unsigned int fd)
1205 {
1206 	bool res;
1207 	rcu_read_lock();
1208 	res = close_on_exec(fd, current->files);
1209 	rcu_read_unlock();
1210 	return res;
1211 }
1212 
do_dup2(struct files_struct * files,struct file * file,unsigned fd,unsigned flags)1213 static int do_dup2(struct files_struct *files,
1214 	struct file *file, unsigned fd, unsigned flags)
1215 __releases(&files->file_lock)
1216 {
1217 	struct file *tofree;
1218 	struct fdtable *fdt;
1219 
1220 	/*
1221 	 * We need to detect attempts to do dup2() over allocated but still
1222 	 * not finished descriptor.  NB: OpenBSD avoids that at the price of
1223 	 * extra work in their equivalent of fget() - they insert struct
1224 	 * file immediately after grabbing descriptor, mark it larval if
1225 	 * more work (e.g. actual opening) is needed and make sure that
1226 	 * fget() treats larval files as absent.  Potentially interesting,
1227 	 * but while extra work in fget() is trivial, locking implications
1228 	 * and amount of surgery on open()-related paths in VFS are not.
1229 	 * FreeBSD fails with -EBADF in the same situation, NetBSD "solution"
1230 	 * deadlocks in rather amusing ways, AFAICS.  All of that is out of
1231 	 * scope of POSIX or SUS, since neither considers shared descriptor
1232 	 * tables and this condition does not arise without those.
1233 	 */
1234 	fdt = files_fdtable(files);
1235 	fd = array_index_nospec(fd, fdt->max_fds);
1236 	tofree = rcu_dereference_raw(fdt->fd[fd]);
1237 	if (!tofree && fd_is_open(fd, fdt))
1238 		goto Ebusy;
1239 	get_file(file);
1240 	rcu_assign_pointer(fdt->fd[fd], file);
1241 	__set_open_fd(fd, fdt);
1242 	if (flags & O_CLOEXEC)
1243 		__set_close_on_exec(fd, fdt);
1244 	else
1245 		__clear_close_on_exec(fd, fdt);
1246 	spin_unlock(&files->file_lock);
1247 
1248 	if (tofree)
1249 		filp_close(tofree, files);
1250 
1251 	return fd;
1252 
1253 Ebusy:
1254 	spin_unlock(&files->file_lock);
1255 	return -EBUSY;
1256 }
1257 
replace_fd(unsigned fd,struct file * file,unsigned flags)1258 int replace_fd(unsigned fd, struct file *file, unsigned flags)
1259 {
1260 	int err;
1261 	struct files_struct *files = current->files;
1262 
1263 	if (!file)
1264 		return close_fd(fd);
1265 
1266 	if (fd >= rlimit(RLIMIT_NOFILE))
1267 		return -EBADF;
1268 
1269 	spin_lock(&files->file_lock);
1270 	err = expand_files(files, fd);
1271 	if (unlikely(err < 0))
1272 		goto out_unlock;
1273 	return do_dup2(files, file, fd, flags);
1274 
1275 out_unlock:
1276 	spin_unlock(&files->file_lock);
1277 	return err;
1278 }
1279 
1280 /**
1281  * receive_fd() - Install received file into file descriptor table
1282  * @file: struct file that was received from another process
1283  * @ufd: __user pointer to write new fd number to
1284  * @o_flags: the O_* flags to apply to the new fd entry
1285  *
1286  * Installs a received file into the file descriptor table, with appropriate
1287  * checks and count updates. Optionally writes the fd number to userspace, if
1288  * @ufd is non-NULL.
1289  *
1290  * This helper handles its own reference counting of the incoming
1291  * struct file.
1292  *
1293  * Returns newly install fd or -ve on error.
1294  */
receive_fd(struct file * file,int __user * ufd,unsigned int o_flags)1295 int receive_fd(struct file *file, int __user *ufd, unsigned int o_flags)
1296 {
1297 	int new_fd;
1298 	int error;
1299 
1300 	error = security_file_receive(file);
1301 	if (error)
1302 		return error;
1303 
1304 	new_fd = get_unused_fd_flags(o_flags);
1305 	if (new_fd < 0)
1306 		return new_fd;
1307 
1308 	if (ufd) {
1309 		error = put_user(new_fd, ufd);
1310 		if (error) {
1311 			put_unused_fd(new_fd);
1312 			return error;
1313 		}
1314 	}
1315 
1316 	fd_install(new_fd, get_file(file));
1317 	__receive_sock(file);
1318 	return new_fd;
1319 }
1320 EXPORT_SYMBOL_GPL(receive_fd);
1321 
receive_fd_replace(int new_fd,struct file * file,unsigned int o_flags)1322 int receive_fd_replace(int new_fd, struct file *file, unsigned int o_flags)
1323 {
1324 	int error;
1325 
1326 	error = security_file_receive(file);
1327 	if (error)
1328 		return error;
1329 	error = replace_fd(new_fd, file, o_flags);
1330 	if (error)
1331 		return error;
1332 	__receive_sock(file);
1333 	return new_fd;
1334 }
1335 
ksys_dup3(unsigned int oldfd,unsigned int newfd,int flags)1336 static int ksys_dup3(unsigned int oldfd, unsigned int newfd, int flags)
1337 {
1338 	int err = -EBADF;
1339 	struct file *file;
1340 	struct files_struct *files = current->files;
1341 
1342 	if ((flags & ~O_CLOEXEC) != 0)
1343 		return -EINVAL;
1344 
1345 	if (unlikely(oldfd == newfd))
1346 		return -EINVAL;
1347 
1348 	if (newfd >= rlimit(RLIMIT_NOFILE))
1349 		return -EBADF;
1350 
1351 	spin_lock(&files->file_lock);
1352 	err = expand_files(files, newfd);
1353 	file = files_lookup_fd_locked(files, oldfd);
1354 	if (unlikely(!file))
1355 		goto Ebadf;
1356 	if (unlikely(err < 0)) {
1357 		if (err == -EMFILE)
1358 			goto Ebadf;
1359 		goto out_unlock;
1360 	}
1361 	return do_dup2(files, file, newfd, flags);
1362 
1363 Ebadf:
1364 	err = -EBADF;
1365 out_unlock:
1366 	spin_unlock(&files->file_lock);
1367 	return err;
1368 }
1369 
SYSCALL_DEFINE3(dup3,unsigned int,oldfd,unsigned int,newfd,int,flags)1370 SYSCALL_DEFINE3(dup3, unsigned int, oldfd, unsigned int, newfd, int, flags)
1371 {
1372 	return ksys_dup3(oldfd, newfd, flags);
1373 }
1374 
SYSCALL_DEFINE2(dup2,unsigned int,oldfd,unsigned int,newfd)1375 SYSCALL_DEFINE2(dup2, unsigned int, oldfd, unsigned int, newfd)
1376 {
1377 	if (unlikely(newfd == oldfd)) { /* corner case */
1378 		struct files_struct *files = current->files;
1379 		struct file *f;
1380 		int retval = oldfd;
1381 
1382 		rcu_read_lock();
1383 		f = __fget_files_rcu(files, oldfd, 0);
1384 		if (!f)
1385 			retval = -EBADF;
1386 		rcu_read_unlock();
1387 		if (f)
1388 			fput(f);
1389 		return retval;
1390 	}
1391 	return ksys_dup3(oldfd, newfd, 0);
1392 }
1393 
SYSCALL_DEFINE1(dup,unsigned int,fildes)1394 SYSCALL_DEFINE1(dup, unsigned int, fildes)
1395 {
1396 	int ret = -EBADF;
1397 	struct file *file = fget_raw(fildes);
1398 
1399 	if (file) {
1400 		ret = get_unused_fd_flags(0);
1401 		if (ret >= 0)
1402 			fd_install(ret, file);
1403 		else
1404 			fput(file);
1405 	}
1406 	return ret;
1407 }
1408 
f_dupfd(unsigned int from,struct file * file,unsigned flags)1409 int f_dupfd(unsigned int from, struct file *file, unsigned flags)
1410 {
1411 	unsigned long nofile = rlimit(RLIMIT_NOFILE);
1412 	int err;
1413 	if (from >= nofile)
1414 		return -EINVAL;
1415 	err = alloc_fd(from, nofile, flags);
1416 	if (err >= 0) {
1417 		get_file(file);
1418 		fd_install(err, file);
1419 	}
1420 	return err;
1421 }
1422 
iterate_fd(struct files_struct * files,unsigned n,int (* f)(const void *,struct file *,unsigned),const void * p)1423 int iterate_fd(struct files_struct *files, unsigned n,
1424 		int (*f)(const void *, struct file *, unsigned),
1425 		const void *p)
1426 {
1427 	struct fdtable *fdt;
1428 	int res = 0;
1429 	if (!files)
1430 		return 0;
1431 	spin_lock(&files->file_lock);
1432 	for (fdt = files_fdtable(files); n < fdt->max_fds; n++) {
1433 		struct file *file;
1434 		file = rcu_dereference_check_fdtable(files, fdt->fd[n]);
1435 		if (!file)
1436 			continue;
1437 		res = f(p, file, n);
1438 		if (res)
1439 			break;
1440 	}
1441 	spin_unlock(&files->file_lock);
1442 	return res;
1443 }
1444 EXPORT_SYMBOL(iterate_fd);
1445