• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Generic ring buffer
4  *
5  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
6  */
7 #include <linux/trace_recursion.h>
8 #include <linux/trace_events.h>
9 #include <linux/ring_buffer.h>
10 #include <linux/trace_clock.h>
11 #include <linux/sched/clock.h>
12 #include <linux/cacheflush.h>
13 #include <linux/trace_seq.h>
14 #include <linux/spinlock.h>
15 #include <linux/irq_work.h>
16 #include <linux/security.h>
17 #include <linux/uaccess.h>
18 #include <linux/hardirq.h>
19 #include <linux/kthread.h>	/* for self test */
20 #include <linux/module.h>
21 #include <linux/percpu.h>
22 #include <linux/mutex.h>
23 #include <linux/delay.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/hash.h>
27 #include <linux/list.h>
28 #include <linux/cpu.h>
29 #include <linux/oom.h>
30 #include <linux/mm.h>
31 
32 #include <asm/local64.h>
33 #include <asm/local.h>
34 
35 #include "trace.h"
36 
37 /*
38  * The "absolute" timestamp in the buffer is only 59 bits.
39  * If a clock has the 5 MSBs set, it needs to be saved and
40  * reinserted.
41  */
42 #define TS_MSB		(0xf8ULL << 56)
43 #define ABS_TS_MASK	(~TS_MSB)
44 
45 static void update_pages_handler(struct work_struct *work);
46 
47 #define RING_BUFFER_META_MAGIC	0xBADFEED
48 
49 struct ring_buffer_meta {
50 	int		magic;
51 	int		struct_size;
52 	unsigned long	text_addr;
53 	unsigned long	data_addr;
54 	unsigned long	first_buffer;
55 	unsigned long	head_buffer;
56 	unsigned long	commit_buffer;
57 	__u32		subbuf_size;
58 	__u32		nr_subbufs;
59 	int		buffers[];
60 };
61 
62 /*
63  * The ring buffer header is special. We must manually up keep it.
64  */
ring_buffer_print_entry_header(struct trace_seq * s)65 int ring_buffer_print_entry_header(struct trace_seq *s)
66 {
67 	trace_seq_puts(s, "# compressed entry header\n");
68 	trace_seq_puts(s, "\ttype_len    :    5 bits\n");
69 	trace_seq_puts(s, "\ttime_delta  :   27 bits\n");
70 	trace_seq_puts(s, "\tarray       :   32 bits\n");
71 	trace_seq_putc(s, '\n');
72 	trace_seq_printf(s, "\tpadding     : type == %d\n",
73 			 RINGBUF_TYPE_PADDING);
74 	trace_seq_printf(s, "\ttime_extend : type == %d\n",
75 			 RINGBUF_TYPE_TIME_EXTEND);
76 	trace_seq_printf(s, "\ttime_stamp : type == %d\n",
77 			 RINGBUF_TYPE_TIME_STAMP);
78 	trace_seq_printf(s, "\tdata max type_len  == %d\n",
79 			 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
80 
81 	return !trace_seq_has_overflowed(s);
82 }
83 
84 /*
85  * The ring buffer is made up of a list of pages. A separate list of pages is
86  * allocated for each CPU. A writer may only write to a buffer that is
87  * associated with the CPU it is currently executing on.  A reader may read
88  * from any per cpu buffer.
89  *
90  * The reader is special. For each per cpu buffer, the reader has its own
91  * reader page. When a reader has read the entire reader page, this reader
92  * page is swapped with another page in the ring buffer.
93  *
94  * Now, as long as the writer is off the reader page, the reader can do what
95  * ever it wants with that page. The writer will never write to that page
96  * again (as long as it is out of the ring buffer).
97  *
98  * Here's some silly ASCII art.
99  *
100  *   +------+
101  *   |reader|          RING BUFFER
102  *   |page  |
103  *   +------+        +---+   +---+   +---+
104  *                   |   |-->|   |-->|   |
105  *                   +---+   +---+   +---+
106  *                     ^               |
107  *                     |               |
108  *                     +---------------+
109  *
110  *
111  *   +------+
112  *   |reader|          RING BUFFER
113  *   |page  |------------------v
114  *   +------+        +---+   +---+   +---+
115  *                   |   |-->|   |-->|   |
116  *                   +---+   +---+   +---+
117  *                     ^               |
118  *                     |               |
119  *                     +---------------+
120  *
121  *
122  *   +------+
123  *   |reader|          RING BUFFER
124  *   |page  |------------------v
125  *   +------+        +---+   +---+   +---+
126  *      ^            |   |-->|   |-->|   |
127  *      |            +---+   +---+   +---+
128  *      |                              |
129  *      |                              |
130  *      +------------------------------+
131  *
132  *
133  *   +------+
134  *   |buffer|          RING BUFFER
135  *   |page  |------------------v
136  *   +------+        +---+   +---+   +---+
137  *      ^            |   |   |   |-->|   |
138  *      |   New      +---+   +---+   +---+
139  *      |  Reader------^               |
140  *      |   page                       |
141  *      +------------------------------+
142  *
143  *
144  * After we make this swap, the reader can hand this page off to the splice
145  * code and be done with it. It can even allocate a new page if it needs to
146  * and swap that into the ring buffer.
147  *
148  * We will be using cmpxchg soon to make all this lockless.
149  *
150  */
151 
152 /* Used for individual buffers (after the counter) */
153 #define RB_BUFFER_OFF		(1 << 20)
154 
155 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
156 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
157 
158 enum {
159 	RB_LEN_TIME_EXTEND = 8,
160 	RB_LEN_TIME_STAMP =  8,
161 };
162 
163 #define skip_time_extend(event) \
164 	((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
165 
166 #define extended_time(event) \
167 	(event->type_len >= RINGBUF_TYPE_TIME_EXTEND)
168 
rb_null_event(struct ring_buffer_event * event)169 static inline bool rb_null_event(struct ring_buffer_event *event)
170 {
171 	return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
172 }
173 
rb_event_set_padding(struct ring_buffer_event * event)174 static void rb_event_set_padding(struct ring_buffer_event *event)
175 {
176 	/* padding has a NULL time_delta */
177 	event->type_len = RINGBUF_TYPE_PADDING;
178 	event->time_delta = 0;
179 }
180 
181 static unsigned
rb_event_data_length(struct ring_buffer_event * event)182 rb_event_data_length(struct ring_buffer_event *event)
183 {
184 	unsigned length;
185 
186 	if (event->type_len)
187 		length = event->type_len * RB_ALIGNMENT;
188 	else
189 		length = event->array[0];
190 	return length + RB_EVNT_HDR_SIZE;
191 }
192 
193 /*
194  * Return the length of the given event. Will return
195  * the length of the time extend if the event is a
196  * time extend.
197  */
198 static inline unsigned
rb_event_length(struct ring_buffer_event * event)199 rb_event_length(struct ring_buffer_event *event)
200 {
201 	switch (event->type_len) {
202 	case RINGBUF_TYPE_PADDING:
203 		if (rb_null_event(event))
204 			/* undefined */
205 			return -1;
206 		return  event->array[0] + RB_EVNT_HDR_SIZE;
207 
208 	case RINGBUF_TYPE_TIME_EXTEND:
209 		return RB_LEN_TIME_EXTEND;
210 
211 	case RINGBUF_TYPE_TIME_STAMP:
212 		return RB_LEN_TIME_STAMP;
213 
214 	case RINGBUF_TYPE_DATA:
215 		return rb_event_data_length(event);
216 	default:
217 		WARN_ON_ONCE(1);
218 	}
219 	/* not hit */
220 	return 0;
221 }
222 
223 /*
224  * Return total length of time extend and data,
225  *   or just the event length for all other events.
226  */
227 static inline unsigned
rb_event_ts_length(struct ring_buffer_event * event)228 rb_event_ts_length(struct ring_buffer_event *event)
229 {
230 	unsigned len = 0;
231 
232 	if (extended_time(event)) {
233 		/* time extends include the data event after it */
234 		len = RB_LEN_TIME_EXTEND;
235 		event = skip_time_extend(event);
236 	}
237 	return len + rb_event_length(event);
238 }
239 
240 /**
241  * ring_buffer_event_length - return the length of the event
242  * @event: the event to get the length of
243  *
244  * Returns the size of the data load of a data event.
245  * If the event is something other than a data event, it
246  * returns the size of the event itself. With the exception
247  * of a TIME EXTEND, where it still returns the size of the
248  * data load of the data event after it.
249  */
ring_buffer_event_length(struct ring_buffer_event * event)250 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
251 {
252 	unsigned length;
253 
254 	if (extended_time(event))
255 		event = skip_time_extend(event);
256 
257 	length = rb_event_length(event);
258 	if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
259 		return length;
260 	length -= RB_EVNT_HDR_SIZE;
261 	if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
262                 length -= sizeof(event->array[0]);
263 	return length;
264 }
265 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
266 
267 /* inline for ring buffer fast paths */
268 static __always_inline void *
rb_event_data(struct ring_buffer_event * event)269 rb_event_data(struct ring_buffer_event *event)
270 {
271 	if (extended_time(event))
272 		event = skip_time_extend(event);
273 	WARN_ON_ONCE(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
274 	/* If length is in len field, then array[0] has the data */
275 	if (event->type_len)
276 		return (void *)&event->array[0];
277 	/* Otherwise length is in array[0] and array[1] has the data */
278 	return (void *)&event->array[1];
279 }
280 
281 /**
282  * ring_buffer_event_data - return the data of the event
283  * @event: the event to get the data from
284  */
ring_buffer_event_data(struct ring_buffer_event * event)285 void *ring_buffer_event_data(struct ring_buffer_event *event)
286 {
287 	return rb_event_data(event);
288 }
289 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
290 
291 #define for_each_buffer_cpu(buffer, cpu)		\
292 	for_each_cpu(cpu, buffer->cpumask)
293 
294 #define for_each_online_buffer_cpu(buffer, cpu)		\
295 	for_each_cpu_and(cpu, buffer->cpumask, cpu_online_mask)
296 
rb_event_time_stamp(struct ring_buffer_event * event)297 static u64 rb_event_time_stamp(struct ring_buffer_event *event)
298 {
299 	u64 ts;
300 
301 	ts = event->array[0];
302 	ts <<= TS_SHIFT;
303 	ts += event->time_delta;
304 
305 	return ts;
306 }
307 
308 /* Flag when events were overwritten */
309 #define RB_MISSED_EVENTS	(1 << 31)
310 /* Missed count stored at end */
311 #define RB_MISSED_STORED	(1 << 30)
312 
313 #define RB_MISSED_MASK		(3 << 30)
314 
315 struct buffer_data_read_page {
316 	unsigned		order;	/* order of the page */
317 	struct buffer_data_page	*data;	/* actual data, stored in this page */
318 };
319 
320 /*
321  * Note, the buffer_page list must be first. The buffer pages
322  * are allocated in cache lines, which means that each buffer
323  * page will be at the beginning of a cache line, and thus
324  * the least significant bits will be zero. We use this to
325  * add flags in the list struct pointers, to make the ring buffer
326  * lockless.
327  */
328 struct buffer_page {
329 	struct list_head list;		/* list of buffer pages */
330 	local_t		 write;		/* index for next write */
331 	unsigned	 read;		/* index for next read */
332 	local_t		 entries;	/* entries on this page */
333 	unsigned long	 real_end;	/* real end of data */
334 	unsigned	 order;		/* order of the page */
335 	u32		 id:30;		/* ID for external mapping */
336 	u32		 range:1;	/* Mapped via a range */
337 	struct buffer_data_page *page;	/* Actual data page */
338 };
339 
340 /*
341  * The buffer page counters, write and entries, must be reset
342  * atomically when crossing page boundaries. To synchronize this
343  * update, two counters are inserted into the number. One is
344  * the actual counter for the write position or count on the page.
345  *
346  * The other is a counter of updaters. Before an update happens
347  * the update partition of the counter is incremented. This will
348  * allow the updater to update the counter atomically.
349  *
350  * The counter is 20 bits, and the state data is 12.
351  */
352 #define RB_WRITE_MASK		0xfffff
353 #define RB_WRITE_INTCNT		(1 << 20)
354 
rb_init_page(struct buffer_data_page * bpage)355 static void rb_init_page(struct buffer_data_page *bpage)
356 {
357 	local_set(&bpage->commit, 0);
358 }
359 
rb_page_commit(struct buffer_page * bpage)360 static __always_inline unsigned int rb_page_commit(struct buffer_page *bpage)
361 {
362 	return local_read(&bpage->page->commit);
363 }
364 
free_buffer_page(struct buffer_page * bpage)365 static void free_buffer_page(struct buffer_page *bpage)
366 {
367 	/* Range pages are not to be freed */
368 	if (!bpage->range)
369 		free_pages((unsigned long)bpage->page, bpage->order);
370 	kfree(bpage);
371 }
372 
373 struct rb_irq_work {
374 	struct irq_work			work;
375 	wait_queue_head_t		waiters;
376 	wait_queue_head_t		full_waiters;
377 	atomic_t			seq;
378 	bool				waiters_pending;
379 	bool				full_waiters_pending;
380 	bool				wakeup_full;
381 };
382 
383 /*
384  * Structure to hold event state and handle nested events.
385  */
386 struct rb_event_info {
387 	u64			ts;
388 	u64			delta;
389 	u64			before;
390 	u64			after;
391 	unsigned long		length;
392 	struct buffer_page	*tail_page;
393 	int			add_timestamp;
394 };
395 
396 /*
397  * Used for the add_timestamp
398  *  NONE
399  *  EXTEND - wants a time extend
400  *  ABSOLUTE - the buffer requests all events to have absolute time stamps
401  *  FORCE - force a full time stamp.
402  */
403 enum {
404 	RB_ADD_STAMP_NONE		= 0,
405 	RB_ADD_STAMP_EXTEND		= BIT(1),
406 	RB_ADD_STAMP_ABSOLUTE		= BIT(2),
407 	RB_ADD_STAMP_FORCE		= BIT(3)
408 };
409 /*
410  * Used for which event context the event is in.
411  *  TRANSITION = 0
412  *  NMI     = 1
413  *  IRQ     = 2
414  *  SOFTIRQ = 3
415  *  NORMAL  = 4
416  *
417  * See trace_recursive_lock() comment below for more details.
418  */
419 enum {
420 	RB_CTX_TRANSITION,
421 	RB_CTX_NMI,
422 	RB_CTX_IRQ,
423 	RB_CTX_SOFTIRQ,
424 	RB_CTX_NORMAL,
425 	RB_CTX_MAX
426 };
427 
428 struct rb_time_struct {
429 	local64_t	time;
430 };
431 typedef struct rb_time_struct rb_time_t;
432 
433 #define MAX_NEST	5
434 
435 /*
436  * head_page == tail_page && head == tail then buffer is empty.
437  */
438 struct ring_buffer_per_cpu {
439 	int				cpu;
440 	atomic_t			record_disabled;
441 	atomic_t			resize_disabled;
442 	struct trace_buffer	*buffer;
443 	raw_spinlock_t			reader_lock;	/* serialize readers */
444 	arch_spinlock_t			lock;
445 	struct lock_class_key		lock_key;
446 	struct buffer_data_page		*free_page;
447 	unsigned long			nr_pages;
448 	unsigned int			current_context;
449 	struct list_head		*pages;
450 	/* pages generation counter, incremented when the list changes */
451 	unsigned long			cnt;
452 	struct buffer_page		*head_page;	/* read from head */
453 	struct buffer_page		*tail_page;	/* write to tail */
454 	struct buffer_page		*commit_page;	/* committed pages */
455 	struct buffer_page		*reader_page;
456 	unsigned long			lost_events;
457 	unsigned long			last_overrun;
458 	unsigned long			nest;
459 	local_t				entries_bytes;
460 	local_t				entries;
461 	local_t				overrun;
462 	local_t				commit_overrun;
463 	local_t				dropped_events;
464 	local_t				committing;
465 	local_t				commits;
466 	local_t				pages_touched;
467 	local_t				pages_lost;
468 	local_t				pages_read;
469 	long				last_pages_touch;
470 	size_t				shortest_full;
471 	unsigned long			read;
472 	unsigned long			read_bytes;
473 	rb_time_t			write_stamp;
474 	rb_time_t			before_stamp;
475 	u64				event_stamp[MAX_NEST];
476 	u64				read_stamp;
477 	/* pages removed since last reset */
478 	unsigned long			pages_removed;
479 
480 	unsigned int			mapped;
481 	unsigned int			user_mapped;	/* user space mapping */
482 	struct mutex			mapping_lock;
483 	unsigned long			*subbuf_ids;	/* ID to subbuf VA */
484 	struct trace_buffer_meta	*meta_page;
485 	struct ring_buffer_meta		*ring_meta;
486 
487 	struct ring_buffer_writer	*writer;
488 
489 	/* ring buffer pages to update, > 0 to add, < 0 to remove */
490 	long				nr_pages_to_update;
491 	struct list_head		new_pages; /* new pages to add */
492 	struct work_struct		update_pages_work;
493 	struct completion		update_done;
494 
495 	struct rb_irq_work		irq_work;
496 };
497 
498 struct trace_buffer {
499 	unsigned			flags;
500 	int				cpus;
501 	atomic_t			record_disabled;
502 	atomic_t			resizing;
503 	cpumask_var_t			cpumask;
504 
505 	struct lock_class_key		*reader_lock_key;
506 
507 	struct mutex			mutex;
508 
509 	struct ring_buffer_per_cpu	**buffers;
510 
511 	struct ring_buffer_writer	*writer;
512 
513 	struct hlist_node		node;
514 	u64				(*clock)(void);
515 
516 	struct rb_irq_work		irq_work;
517 	bool				time_stamp_abs;
518 
519 	unsigned long			range_addr_start;
520 	unsigned long			range_addr_end;
521 
522 	long				last_text_delta;
523 	long				last_data_delta;
524 
525 	unsigned int			subbuf_size;
526 	unsigned int			subbuf_order;
527 	unsigned int			max_data_size;
528 };
529 
530 struct ring_buffer_iter {
531 	struct ring_buffer_per_cpu	*cpu_buffer;
532 	unsigned long			head;
533 	unsigned long			next_event;
534 	struct buffer_page		*head_page;
535 	struct buffer_page		*cache_reader_page;
536 	unsigned long			cache_read;
537 	unsigned long			cache_pages_removed;
538 	u64				read_stamp;
539 	u64				page_stamp;
540 	struct ring_buffer_event	*event;
541 	size_t				event_size;
542 	int				missed_events;
543 };
544 
ring_buffer_print_page_header(struct trace_buffer * buffer,struct trace_seq * s)545 int ring_buffer_print_page_header(struct trace_buffer *buffer, struct trace_seq *s)
546 {
547 	struct buffer_data_page field;
548 
549 	trace_seq_printf(s, "\tfield: u64 timestamp;\t"
550 			 "offset:0;\tsize:%u;\tsigned:%u;\n",
551 			 (unsigned int)sizeof(field.time_stamp),
552 			 (unsigned int)is_signed_type(u64));
553 
554 	trace_seq_printf(s, "\tfield: local_t commit;\t"
555 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
556 			 (unsigned int)offsetof(typeof(field), commit),
557 			 (unsigned int)sizeof(field.commit),
558 			 (unsigned int)is_signed_type(long));
559 
560 	trace_seq_printf(s, "\tfield: int overwrite;\t"
561 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
562 			 (unsigned int)offsetof(typeof(field), commit),
563 			 1,
564 			 (unsigned int)is_signed_type(long));
565 
566 	trace_seq_printf(s, "\tfield: char data;\t"
567 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
568 			 (unsigned int)offsetof(typeof(field), data),
569 			 (unsigned int)buffer->subbuf_size,
570 			 (unsigned int)is_signed_type(char));
571 
572 	return !trace_seq_has_overflowed(s);
573 }
574 
rb_time_read(rb_time_t * t,u64 * ret)575 static inline void rb_time_read(rb_time_t *t, u64 *ret)
576 {
577 	*ret = local64_read(&t->time);
578 }
rb_time_set(rb_time_t * t,u64 val)579 static void rb_time_set(rb_time_t *t, u64 val)
580 {
581 	local64_set(&t->time, val);
582 }
583 
584 /*
585  * Enable this to make sure that the event passed to
586  * ring_buffer_event_time_stamp() is not committed and also
587  * is on the buffer that it passed in.
588  */
589 //#define RB_VERIFY_EVENT
590 #ifdef RB_VERIFY_EVENT
591 static struct list_head *rb_list_head(struct list_head *list);
verify_event(struct ring_buffer_per_cpu * cpu_buffer,void * event)592 static void verify_event(struct ring_buffer_per_cpu *cpu_buffer,
593 			 void *event)
594 {
595 	struct buffer_page *page = cpu_buffer->commit_page;
596 	struct buffer_page *tail_page = READ_ONCE(cpu_buffer->tail_page);
597 	struct list_head *next;
598 	long commit, write;
599 	unsigned long addr = (unsigned long)event;
600 	bool done = false;
601 	int stop = 0;
602 
603 	/* Make sure the event exists and is not committed yet */
604 	do {
605 		if (page == tail_page || WARN_ON_ONCE(stop++ > 100))
606 			done = true;
607 		commit = local_read(&page->page->commit);
608 		write = local_read(&page->write);
609 		if (addr >= (unsigned long)&page->page->data[commit] &&
610 		    addr < (unsigned long)&page->page->data[write])
611 			return;
612 
613 		next = rb_list_head(page->list.next);
614 		page = list_entry(next, struct buffer_page, list);
615 	} while (!done);
616 	WARN_ON_ONCE(1);
617 }
618 #else
verify_event(struct ring_buffer_per_cpu * cpu_buffer,void * event)619 static inline void verify_event(struct ring_buffer_per_cpu *cpu_buffer,
620 			 void *event)
621 {
622 }
623 #endif
624 
625 /*
626  * The absolute time stamp drops the 5 MSBs and some clocks may
627  * require them. The rb_fix_abs_ts() will take a previous full
628  * time stamp, and add the 5 MSB of that time stamp on to the
629  * saved absolute time stamp. Then they are compared in case of
630  * the unlikely event that the latest time stamp incremented
631  * the 5 MSB.
632  */
rb_fix_abs_ts(u64 abs,u64 save_ts)633 static inline u64 rb_fix_abs_ts(u64 abs, u64 save_ts)
634 {
635 	if (save_ts & TS_MSB) {
636 		abs |= save_ts & TS_MSB;
637 		/* Check for overflow */
638 		if (unlikely(abs < save_ts))
639 			abs += 1ULL << 59;
640 	}
641 	return abs;
642 }
643 
644 static inline u64 rb_time_stamp(struct trace_buffer *buffer);
645 
646 /**
647  * ring_buffer_event_time_stamp - return the event's current time stamp
648  * @buffer: The buffer that the event is on
649  * @event: the event to get the time stamp of
650  *
651  * Note, this must be called after @event is reserved, and before it is
652  * committed to the ring buffer. And must be called from the same
653  * context where the event was reserved (normal, softirq, irq, etc).
654  *
655  * Returns the time stamp associated with the current event.
656  * If the event has an extended time stamp, then that is used as
657  * the time stamp to return.
658  * In the highly unlikely case that the event was nested more than
659  * the max nesting, then the write_stamp of the buffer is returned,
660  * otherwise  current time is returned, but that really neither of
661  * the last two cases should ever happen.
662  */
ring_buffer_event_time_stamp(struct trace_buffer * buffer,struct ring_buffer_event * event)663 u64 ring_buffer_event_time_stamp(struct trace_buffer *buffer,
664 				 struct ring_buffer_event *event)
665 {
666 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[smp_processor_id()];
667 	unsigned int nest;
668 	u64 ts;
669 
670 	/* If the event includes an absolute time, then just use that */
671 	if (event->type_len == RINGBUF_TYPE_TIME_STAMP) {
672 		ts = rb_event_time_stamp(event);
673 		return rb_fix_abs_ts(ts, cpu_buffer->tail_page->page->time_stamp);
674 	}
675 
676 	nest = local_read(&cpu_buffer->committing);
677 	verify_event(cpu_buffer, event);
678 	if (WARN_ON_ONCE(!nest))
679 		goto fail;
680 
681 	/* Read the current saved nesting level time stamp */
682 	if (likely(--nest < MAX_NEST))
683 		return cpu_buffer->event_stamp[nest];
684 
685 	/* Shouldn't happen, warn if it does */
686 	WARN_ONCE(1, "nest (%d) greater than max", nest);
687 
688  fail:
689 	rb_time_read(&cpu_buffer->write_stamp, &ts);
690 
691 	return ts;
692 }
693 
694 /**
695  * ring_buffer_nr_dirty_pages - get the number of used pages in the ring buffer
696  * @buffer: The ring_buffer to get the number of pages from
697  * @cpu: The cpu of the ring_buffer to get the number of pages from
698  *
699  * Returns the number of pages that have content in the ring buffer.
700  */
ring_buffer_nr_dirty_pages(struct trace_buffer * buffer,int cpu)701 size_t ring_buffer_nr_dirty_pages(struct trace_buffer *buffer, int cpu)
702 {
703 	size_t read;
704 	size_t lost;
705 	size_t cnt;
706 
707 	read = local_read(&buffer->buffers[cpu]->pages_read);
708 	lost = local_read(&buffer->buffers[cpu]->pages_lost);
709 	cnt = local_read(&buffer->buffers[cpu]->pages_touched);
710 
711 	if (WARN_ON_ONCE(cnt < lost))
712 		return 0;
713 
714 	cnt -= lost;
715 
716 	/* The reader can read an empty page, but not more than that */
717 	if (cnt < read) {
718 		WARN_ON_ONCE(read > cnt + 1);
719 		return 0;
720 	}
721 
722 	return cnt - read;
723 }
724 
full_hit(struct trace_buffer * buffer,int cpu,int full)725 static __always_inline bool full_hit(struct trace_buffer *buffer, int cpu, int full)
726 {
727 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
728 	size_t nr_pages;
729 	size_t dirty;
730 
731 	nr_pages = cpu_buffer->nr_pages;
732 	if (!nr_pages || !full)
733 		return true;
734 
735 	/*
736 	 * Add one as dirty will never equal nr_pages, as the sub-buffer
737 	 * that the writer is on is not counted as dirty.
738 	 * This is needed if "buffer_percent" is set to 100.
739 	 */
740 	dirty = ring_buffer_nr_dirty_pages(buffer, cpu) + 1;
741 
742 	return (dirty * 100) >= (full * nr_pages);
743 }
744 
745 /*
746  * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
747  *
748  * Schedules a delayed work to wake up any task that is blocked on the
749  * ring buffer waiters queue.
750  */
rb_wake_up_waiters(struct irq_work * work)751 static void rb_wake_up_waiters(struct irq_work *work)
752 {
753 	struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
754 
755 	/* For waiters waiting for the first wake up */
756 	(void)atomic_fetch_inc_release(&rbwork->seq);
757 
758 	wake_up_all(&rbwork->waiters);
759 	if (rbwork->full_waiters_pending || rbwork->wakeup_full) {
760 		/* Only cpu_buffer sets the above flags */
761 		struct ring_buffer_per_cpu *cpu_buffer =
762 			container_of(rbwork, struct ring_buffer_per_cpu, irq_work);
763 
764 		/* Called from interrupt context */
765 		raw_spin_lock(&cpu_buffer->reader_lock);
766 		rbwork->wakeup_full = false;
767 		rbwork->full_waiters_pending = false;
768 
769 		/* Waking up all waiters, they will reset the shortest full */
770 		cpu_buffer->shortest_full = 0;
771 		raw_spin_unlock(&cpu_buffer->reader_lock);
772 
773 		wake_up_all(&rbwork->full_waiters);
774 	}
775 }
776 
777 /**
778  * ring_buffer_wake_waiters - wake up any waiters on this ring buffer
779  * @buffer: The ring buffer to wake waiters on
780  * @cpu: The CPU buffer to wake waiters on
781  *
782  * In the case of a file that represents a ring buffer is closing,
783  * it is prudent to wake up any waiters that are on this.
784  */
ring_buffer_wake_waiters(struct trace_buffer * buffer,int cpu)785 void ring_buffer_wake_waiters(struct trace_buffer *buffer, int cpu)
786 {
787 	struct ring_buffer_per_cpu *cpu_buffer;
788 	struct rb_irq_work *rbwork;
789 
790 	if (!buffer)
791 		return;
792 
793 	if (cpu == RING_BUFFER_ALL_CPUS) {
794 
795 		/* Wake up individual ones too. One level recursion */
796 		for_each_buffer_cpu(buffer, cpu)
797 			ring_buffer_wake_waiters(buffer, cpu);
798 
799 		rbwork = &buffer->irq_work;
800 	} else {
801 		if (WARN_ON_ONCE(!buffer->buffers))
802 			return;
803 		if (WARN_ON_ONCE(cpu >= nr_cpu_ids))
804 			return;
805 
806 		cpu_buffer = buffer->buffers[cpu];
807 		/* The CPU buffer may not have been initialized yet */
808 		if (!cpu_buffer)
809 			return;
810 		rbwork = &cpu_buffer->irq_work;
811 	}
812 
813 	/* This can be called in any context */
814 	irq_work_queue(&rbwork->work);
815 }
816 
rb_watermark_hit(struct trace_buffer * buffer,int cpu,int full)817 static bool rb_watermark_hit(struct trace_buffer *buffer, int cpu, int full)
818 {
819 	struct ring_buffer_per_cpu *cpu_buffer;
820 	bool ret = false;
821 
822 	/* Reads of all CPUs always waits for any data */
823 	if (cpu == RING_BUFFER_ALL_CPUS)
824 		return !ring_buffer_empty(buffer);
825 
826 	cpu_buffer = buffer->buffers[cpu];
827 
828 	if (!ring_buffer_empty_cpu(buffer, cpu)) {
829 		unsigned long flags;
830 		bool pagebusy;
831 
832 		if (!full)
833 			return true;
834 
835 		raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
836 		pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
837 		ret = !pagebusy && full_hit(buffer, cpu, full);
838 
839 		if (!ret && (!cpu_buffer->shortest_full ||
840 			     cpu_buffer->shortest_full > full)) {
841 		    cpu_buffer->shortest_full = full;
842 		}
843 		raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
844 	}
845 	return ret;
846 }
847 
848 static inline bool
rb_wait_cond(struct rb_irq_work * rbwork,struct trace_buffer * buffer,int cpu,int full,ring_buffer_cond_fn cond,void * data)849 rb_wait_cond(struct rb_irq_work *rbwork, struct trace_buffer *buffer,
850 	     int cpu, int full, ring_buffer_cond_fn cond, void *data)
851 {
852 	if (rb_watermark_hit(buffer, cpu, full))
853 		return true;
854 
855 	if (cond(data))
856 		return true;
857 
858 	/*
859 	 * The events can happen in critical sections where
860 	 * checking a work queue can cause deadlocks.
861 	 * After adding a task to the queue, this flag is set
862 	 * only to notify events to try to wake up the queue
863 	 * using irq_work.
864 	 *
865 	 * We don't clear it even if the buffer is no longer
866 	 * empty. The flag only causes the next event to run
867 	 * irq_work to do the work queue wake up. The worse
868 	 * that can happen if we race with !trace_empty() is that
869 	 * an event will cause an irq_work to try to wake up
870 	 * an empty queue.
871 	 *
872 	 * There's no reason to protect this flag either, as
873 	 * the work queue and irq_work logic will do the necessary
874 	 * synchronization for the wake ups. The only thing
875 	 * that is necessary is that the wake up happens after
876 	 * a task has been queued. It's OK for spurious wake ups.
877 	 */
878 	if (full)
879 		rbwork->full_waiters_pending = true;
880 	else
881 		rbwork->waiters_pending = true;
882 
883 	return false;
884 }
885 
886 struct rb_wait_data {
887 	struct rb_irq_work		*irq_work;
888 	int				seq;
889 };
890 
891 /*
892  * The default wait condition for ring_buffer_wait() is to just to exit the
893  * wait loop the first time it is woken up.
894  */
rb_wait_once(void * data)895 static bool rb_wait_once(void *data)
896 {
897 	struct rb_wait_data *rdata = data;
898 	struct rb_irq_work *rbwork = rdata->irq_work;
899 
900 	return atomic_read_acquire(&rbwork->seq) != rdata->seq;
901 }
902 
903 /**
904  * ring_buffer_wait - wait for input to the ring buffer
905  * @buffer: buffer to wait on
906  * @cpu: the cpu buffer to wait on
907  * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS
908  * @cond: condition function to break out of wait (NULL to run once)
909  * @data: the data to pass to @cond.
910  *
911  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
912  * as data is added to any of the @buffer's cpu buffers. Otherwise
913  * it will wait for data to be added to a specific cpu buffer.
914  */
ring_buffer_wait(struct trace_buffer * buffer,int cpu,int full,ring_buffer_cond_fn cond,void * data)915 int ring_buffer_wait(struct trace_buffer *buffer, int cpu, int full,
916 		     ring_buffer_cond_fn cond, void *data)
917 {
918 	struct ring_buffer_per_cpu *cpu_buffer;
919 	struct wait_queue_head *waitq;
920 	struct rb_irq_work *rbwork;
921 	struct rb_wait_data rdata;
922 	int ret = 0;
923 
924 	/*
925 	 * Depending on what the caller is waiting for, either any
926 	 * data in any cpu buffer, or a specific buffer, put the
927 	 * caller on the appropriate wait queue.
928 	 */
929 	if (cpu == RING_BUFFER_ALL_CPUS) {
930 		rbwork = &buffer->irq_work;
931 		/* Full only makes sense on per cpu reads */
932 		full = 0;
933 	} else {
934 		if (!cpumask_test_cpu(cpu, buffer->cpumask))
935 			return -ENODEV;
936 		cpu_buffer = buffer->buffers[cpu];
937 		rbwork = &cpu_buffer->irq_work;
938 	}
939 
940 	if (full)
941 		waitq = &rbwork->full_waiters;
942 	else
943 		waitq = &rbwork->waiters;
944 
945 	/* Set up to exit loop as soon as it is woken */
946 	if (!cond) {
947 		cond = rb_wait_once;
948 		rdata.irq_work = rbwork;
949 		rdata.seq = atomic_read_acquire(&rbwork->seq);
950 		data = &rdata;
951 	}
952 
953 	ret = wait_event_interruptible((*waitq),
954 				rb_wait_cond(rbwork, buffer, cpu, full, cond, data));
955 
956 	return ret;
957 }
958 
959 /**
960  * ring_buffer_poll_wait - poll on buffer input
961  * @buffer: buffer to wait on
962  * @cpu: the cpu buffer to wait on
963  * @filp: the file descriptor
964  * @poll_table: The poll descriptor
965  * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS
966  *
967  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
968  * as data is added to any of the @buffer's cpu buffers. Otherwise
969  * it will wait for data to be added to a specific cpu buffer.
970  *
971  * Returns EPOLLIN | EPOLLRDNORM if data exists in the buffers,
972  * zero otherwise.
973  */
ring_buffer_poll_wait(struct trace_buffer * buffer,int cpu,struct file * filp,poll_table * poll_table,int full)974 __poll_t ring_buffer_poll_wait(struct trace_buffer *buffer, int cpu,
975 			  struct file *filp, poll_table *poll_table, int full)
976 {
977 	struct ring_buffer_per_cpu *cpu_buffer;
978 	struct rb_irq_work *rbwork;
979 
980 	if (cpu == RING_BUFFER_ALL_CPUS) {
981 		rbwork = &buffer->irq_work;
982 		full = 0;
983 	} else {
984 		if (!cpumask_test_cpu(cpu, buffer->cpumask))
985 			return EPOLLERR;
986 
987 		cpu_buffer = buffer->buffers[cpu];
988 		rbwork = &cpu_buffer->irq_work;
989 	}
990 
991 	if (full) {
992 		poll_wait(filp, &rbwork->full_waiters, poll_table);
993 
994 		if (rb_watermark_hit(buffer, cpu, full))
995 			return EPOLLIN | EPOLLRDNORM;
996 		/*
997 		 * Only allow full_waiters_pending update to be seen after
998 		 * the shortest_full is set (in rb_watermark_hit). If the
999 		 * writer sees the full_waiters_pending flag set, it will
1000 		 * compare the amount in the ring buffer to shortest_full.
1001 		 * If the amount in the ring buffer is greater than the
1002 		 * shortest_full percent, it will call the irq_work handler
1003 		 * to wake up this list. The irq_handler will reset shortest_full
1004 		 * back to zero. That's done under the reader_lock, but
1005 		 * the below smp_mb() makes sure that the update to
1006 		 * full_waiters_pending doesn't leak up into the above.
1007 		 */
1008 		smp_mb();
1009 		rbwork->full_waiters_pending = true;
1010 		return 0;
1011 	}
1012 
1013 	poll_wait(filp, &rbwork->waiters, poll_table);
1014 	rbwork->waiters_pending = true;
1015 
1016 	/*
1017 	 * There's a tight race between setting the waiters_pending and
1018 	 * checking if the ring buffer is empty.  Once the waiters_pending bit
1019 	 * is set, the next event will wake the task up, but we can get stuck
1020 	 * if there's only a single event in.
1021 	 *
1022 	 * FIXME: Ideally, we need a memory barrier on the writer side as well,
1023 	 * but adding a memory barrier to all events will cause too much of a
1024 	 * performance hit in the fast path.  We only need a memory barrier when
1025 	 * the buffer goes from empty to having content.  But as this race is
1026 	 * extremely small, and it's not a problem if another event comes in, we
1027 	 * will fix it later.
1028 	 */
1029 	smp_mb();
1030 
1031 	if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
1032 	    (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
1033 		return EPOLLIN | EPOLLRDNORM;
1034 	return 0;
1035 }
1036 
1037 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
1038 #define RB_WARN_ON(b, cond)						\
1039 	({								\
1040 		int _____ret = unlikely(cond);				\
1041 		if (_____ret) {						\
1042 			if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
1043 				struct ring_buffer_per_cpu *__b =	\
1044 					(void *)b;			\
1045 				atomic_inc(&__b->buffer->record_disabled); \
1046 			} else						\
1047 				atomic_inc(&b->record_disabled);	\
1048 			WARN_ON(1);					\
1049 		}							\
1050 		_____ret;						\
1051 	})
1052 
1053 /* Up this if you want to test the TIME_EXTENTS and normalization */
1054 #define DEBUG_SHIFT 0
1055 
rb_time_stamp(struct trace_buffer * buffer)1056 static inline u64 rb_time_stamp(struct trace_buffer *buffer)
1057 {
1058 	u64 ts;
1059 
1060 	/* Skip retpolines :-( */
1061 	if (IS_ENABLED(CONFIG_MITIGATION_RETPOLINE) && likely(buffer->clock == trace_clock_local))
1062 		ts = trace_clock_local();
1063 	else
1064 		ts = buffer->clock();
1065 
1066 	/* shift to debug/test normalization and TIME_EXTENTS */
1067 	return ts << DEBUG_SHIFT;
1068 }
1069 
ring_buffer_time_stamp(struct trace_buffer * buffer)1070 u64 ring_buffer_time_stamp(struct trace_buffer *buffer)
1071 {
1072 	u64 time;
1073 
1074 	preempt_disable_notrace();
1075 	time = rb_time_stamp(buffer);
1076 	preempt_enable_notrace();
1077 
1078 	return time;
1079 }
1080 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
1081 
ring_buffer_normalize_time_stamp(struct trace_buffer * buffer,int cpu,u64 * ts)1082 void ring_buffer_normalize_time_stamp(struct trace_buffer *buffer,
1083 				      int cpu, u64 *ts)
1084 {
1085 	/* Just stupid testing the normalize function and deltas */
1086 	*ts >>= DEBUG_SHIFT;
1087 }
1088 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
1089 
1090 /*
1091  * Making the ring buffer lockless makes things tricky.
1092  * Although writes only happen on the CPU that they are on,
1093  * and they only need to worry about interrupts. Reads can
1094  * happen on any CPU.
1095  *
1096  * The reader page is always off the ring buffer, but when the
1097  * reader finishes with a page, it needs to swap its page with
1098  * a new one from the buffer. The reader needs to take from
1099  * the head (writes go to the tail). But if a writer is in overwrite
1100  * mode and wraps, it must push the head page forward.
1101  *
1102  * Here lies the problem.
1103  *
1104  * The reader must be careful to replace only the head page, and
1105  * not another one. As described at the top of the file in the
1106  * ASCII art, the reader sets its old page to point to the next
1107  * page after head. It then sets the page after head to point to
1108  * the old reader page. But if the writer moves the head page
1109  * during this operation, the reader could end up with the tail.
1110  *
1111  * We use cmpxchg to help prevent this race. We also do something
1112  * special with the page before head. We set the LSB to 1.
1113  *
1114  * When the writer must push the page forward, it will clear the
1115  * bit that points to the head page, move the head, and then set
1116  * the bit that points to the new head page.
1117  *
1118  * We also don't want an interrupt coming in and moving the head
1119  * page on another writer. Thus we use the second LSB to catch
1120  * that too. Thus:
1121  *
1122  * head->list->prev->next        bit 1          bit 0
1123  *                              -------        -------
1124  * Normal page                     0              0
1125  * Points to head page             0              1
1126  * New head page                   1              0
1127  *
1128  * Note we can not trust the prev pointer of the head page, because:
1129  *
1130  * +----+       +-----+        +-----+
1131  * |    |------>|  T  |---X--->|  N  |
1132  * |    |<------|     |        |     |
1133  * +----+       +-----+        +-----+
1134  *   ^                           ^ |
1135  *   |          +-----+          | |
1136  *   +----------|  R  |----------+ |
1137  *              |     |<-----------+
1138  *              +-----+
1139  *
1140  * Key:  ---X-->  HEAD flag set in pointer
1141  *         T      Tail page
1142  *         R      Reader page
1143  *         N      Next page
1144  *
1145  * (see __rb_reserve_next() to see where this happens)
1146  *
1147  *  What the above shows is that the reader just swapped out
1148  *  the reader page with a page in the buffer, but before it
1149  *  could make the new header point back to the new page added
1150  *  it was preempted by a writer. The writer moved forward onto
1151  *  the new page added by the reader and is about to move forward
1152  *  again.
1153  *
1154  *  You can see, it is legitimate for the previous pointer of
1155  *  the head (or any page) not to point back to itself. But only
1156  *  temporarily.
1157  */
1158 
1159 #define RB_PAGE_NORMAL		0UL
1160 #define RB_PAGE_HEAD		1UL
1161 #define RB_PAGE_UPDATE		2UL
1162 
1163 
1164 #define RB_FLAG_MASK		3UL
1165 
1166 /* PAGE_MOVED is not part of the mask */
1167 #define RB_PAGE_MOVED		4UL
1168 
1169 /*
1170  * rb_list_head - remove any bit
1171  */
rb_list_head(struct list_head * list)1172 static struct list_head *rb_list_head(struct list_head *list)
1173 {
1174 	unsigned long val = (unsigned long)list;
1175 
1176 	return (struct list_head *)(val & ~RB_FLAG_MASK);
1177 }
1178 
1179 /*
1180  * rb_is_head_page - test if the given page is the head page
1181  *
1182  * Because the reader may move the head_page pointer, we can
1183  * not trust what the head page is (it may be pointing to
1184  * the reader page). But if the next page is a header page,
1185  * its flags will be non zero.
1186  */
1187 static inline int
rb_is_head_page(struct buffer_page * page,struct list_head * list)1188 rb_is_head_page(struct buffer_page *page, struct list_head *list)
1189 {
1190 	unsigned long val;
1191 
1192 	val = (unsigned long)list->next;
1193 
1194 	if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
1195 		return RB_PAGE_MOVED;
1196 
1197 	return val & RB_FLAG_MASK;
1198 }
1199 
1200 /*
1201  * rb_is_reader_page
1202  *
1203  * The unique thing about the reader page, is that, if the
1204  * writer is ever on it, the previous pointer never points
1205  * back to the reader page.
1206  */
rb_is_reader_page(struct buffer_page * page)1207 static bool rb_is_reader_page(struct buffer_page *page)
1208 {
1209 	struct list_head *list = page->list.prev;
1210 
1211 	return rb_list_head(list->next) != &page->list;
1212 }
1213 
1214 /*
1215  * rb_set_list_to_head - set a list_head to be pointing to head.
1216  */
rb_set_list_to_head(struct list_head * list)1217 static void rb_set_list_to_head(struct list_head *list)
1218 {
1219 	unsigned long *ptr;
1220 
1221 	ptr = (unsigned long *)&list->next;
1222 	*ptr |= RB_PAGE_HEAD;
1223 	*ptr &= ~RB_PAGE_UPDATE;
1224 }
1225 
1226 /*
1227  * rb_head_page_activate - sets up head page
1228  */
rb_head_page_activate(struct ring_buffer_per_cpu * cpu_buffer)1229 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
1230 {
1231 	struct buffer_page *head;
1232 
1233 	head = cpu_buffer->head_page;
1234 	if (!head)
1235 		return;
1236 
1237 	/*
1238 	 * Set the previous list pointer to have the HEAD flag.
1239 	 */
1240 	rb_set_list_to_head(head->list.prev);
1241 
1242 	if (cpu_buffer->ring_meta) {
1243 		struct ring_buffer_meta *meta = cpu_buffer->ring_meta;
1244 		meta->head_buffer = (unsigned long)head->page;
1245 	}
1246 }
1247 
rb_list_head_clear(struct list_head * list)1248 static void rb_list_head_clear(struct list_head *list)
1249 {
1250 	unsigned long *ptr = (unsigned long *)&list->next;
1251 
1252 	*ptr &= ~RB_FLAG_MASK;
1253 }
1254 
1255 /*
1256  * rb_head_page_deactivate - clears head page ptr (for free list)
1257  */
1258 static void
rb_head_page_deactivate(struct ring_buffer_per_cpu * cpu_buffer)1259 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
1260 {
1261 	struct list_head *hd;
1262 
1263 	/* Go through the whole list and clear any pointers found. */
1264 	rb_list_head_clear(cpu_buffer->pages);
1265 
1266 	list_for_each(hd, cpu_buffer->pages)
1267 		rb_list_head_clear(hd);
1268 }
1269 
rb_head_page_set(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * head,struct buffer_page * prev,int old_flag,int new_flag)1270 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
1271 			    struct buffer_page *head,
1272 			    struct buffer_page *prev,
1273 			    int old_flag, int new_flag)
1274 {
1275 	struct list_head *list;
1276 	unsigned long val = (unsigned long)&head->list;
1277 	unsigned long ret;
1278 
1279 	list = &prev->list;
1280 
1281 	val &= ~RB_FLAG_MASK;
1282 
1283 	ret = cmpxchg((unsigned long *)&list->next,
1284 		      val | old_flag, val | new_flag);
1285 
1286 	/* check if the reader took the page */
1287 	if ((ret & ~RB_FLAG_MASK) != val)
1288 		return RB_PAGE_MOVED;
1289 
1290 	return ret & RB_FLAG_MASK;
1291 }
1292 
rb_head_page_set_update(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * head,struct buffer_page * prev,int old_flag)1293 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
1294 				   struct buffer_page *head,
1295 				   struct buffer_page *prev,
1296 				   int old_flag)
1297 {
1298 	return rb_head_page_set(cpu_buffer, head, prev,
1299 				old_flag, RB_PAGE_UPDATE);
1300 }
1301 
rb_head_page_set_head(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * head,struct buffer_page * prev,int old_flag)1302 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
1303 				 struct buffer_page *head,
1304 				 struct buffer_page *prev,
1305 				 int old_flag)
1306 {
1307 	return rb_head_page_set(cpu_buffer, head, prev,
1308 				old_flag, RB_PAGE_HEAD);
1309 }
1310 
rb_head_page_set_normal(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * head,struct buffer_page * prev,int old_flag)1311 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
1312 				   struct buffer_page *head,
1313 				   struct buffer_page *prev,
1314 				   int old_flag)
1315 {
1316 	return rb_head_page_set(cpu_buffer, head, prev,
1317 				old_flag, RB_PAGE_NORMAL);
1318 }
1319 
rb_inc_page(struct buffer_page ** bpage)1320 static inline void rb_inc_page(struct buffer_page **bpage)
1321 {
1322 	struct list_head *p = rb_list_head((*bpage)->list.next);
1323 
1324 	*bpage = list_entry(p, struct buffer_page, list);
1325 }
1326 
1327 static struct buffer_page *
rb_set_head_page(struct ring_buffer_per_cpu * cpu_buffer)1328 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
1329 {
1330 	struct buffer_page *head;
1331 	struct buffer_page *page;
1332 	struct list_head *list;
1333 	int i;
1334 
1335 	if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
1336 		return NULL;
1337 
1338 	/* sanity check */
1339 	list = cpu_buffer->pages;
1340 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
1341 		return NULL;
1342 
1343 	page = head = cpu_buffer->head_page;
1344 	/*
1345 	 * It is possible that the writer moves the header behind
1346 	 * where we started, and we miss in one loop.
1347 	 * A second loop should grab the header, but we'll do
1348 	 * three loops just because I'm paranoid.
1349 	 */
1350 	for (i = 0; i < 3; i++) {
1351 		do {
1352 			if (rb_is_head_page(page, page->list.prev)) {
1353 				cpu_buffer->head_page = page;
1354 				return page;
1355 			}
1356 			rb_inc_page(&page);
1357 		} while (page != head);
1358 	}
1359 
1360 	RB_WARN_ON(cpu_buffer, 1);
1361 
1362 	return NULL;
1363 }
1364 
rb_head_page_replace(struct buffer_page * old,struct buffer_page * new)1365 static bool rb_head_page_replace(struct buffer_page *old,
1366 				struct buffer_page *new)
1367 {
1368 	unsigned long *ptr = (unsigned long *)&old->list.prev->next;
1369 	unsigned long val;
1370 
1371 	val = *ptr & ~RB_FLAG_MASK;
1372 	val |= RB_PAGE_HEAD;
1373 
1374 	return try_cmpxchg(ptr, &val, (unsigned long)&new->list);
1375 }
1376 
1377 /*
1378  * rb_tail_page_update - move the tail page forward
1379  */
rb_tail_page_update(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * tail_page,struct buffer_page * next_page)1380 static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1381 			       struct buffer_page *tail_page,
1382 			       struct buffer_page *next_page)
1383 {
1384 	unsigned long old_entries;
1385 	unsigned long old_write;
1386 
1387 	/*
1388 	 * The tail page now needs to be moved forward.
1389 	 *
1390 	 * We need to reset the tail page, but without messing
1391 	 * with possible erasing of data brought in by interrupts
1392 	 * that have moved the tail page and are currently on it.
1393 	 *
1394 	 * We add a counter to the write field to denote this.
1395 	 */
1396 	old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1397 	old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1398 
1399 	/*
1400 	 * Just make sure we have seen our old_write and synchronize
1401 	 * with any interrupts that come in.
1402 	 */
1403 	barrier();
1404 
1405 	/*
1406 	 * If the tail page is still the same as what we think
1407 	 * it is, then it is up to us to update the tail
1408 	 * pointer.
1409 	 */
1410 	if (tail_page == READ_ONCE(cpu_buffer->tail_page)) {
1411 		/* Zero the write counter */
1412 		unsigned long val = old_write & ~RB_WRITE_MASK;
1413 		unsigned long eval = old_entries & ~RB_WRITE_MASK;
1414 
1415 		/*
1416 		 * This will only succeed if an interrupt did
1417 		 * not come in and change it. In which case, we
1418 		 * do not want to modify it.
1419 		 *
1420 		 * We add (void) to let the compiler know that we do not care
1421 		 * about the return value of these functions. We use the
1422 		 * cmpxchg to only update if an interrupt did not already
1423 		 * do it for us. If the cmpxchg fails, we don't care.
1424 		 */
1425 		(void)local_cmpxchg(&next_page->write, old_write, val);
1426 		(void)local_cmpxchg(&next_page->entries, old_entries, eval);
1427 
1428 		/*
1429 		 * No need to worry about races with clearing out the commit.
1430 		 * it only can increment when a commit takes place. But that
1431 		 * only happens in the outer most nested commit.
1432 		 */
1433 		local_set(&next_page->page->commit, 0);
1434 
1435 		/* Either we update tail_page or an interrupt does */
1436 		if (try_cmpxchg(&cpu_buffer->tail_page, &tail_page, next_page))
1437 			local_inc(&cpu_buffer->pages_touched);
1438 	}
1439 }
1440 
rb_check_bpage(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * bpage)1441 static void rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1442 			  struct buffer_page *bpage)
1443 {
1444 	unsigned long val = (unsigned long)bpage;
1445 
1446 	RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK);
1447 }
1448 
rb_check_links(struct ring_buffer_per_cpu * cpu_buffer,struct list_head * list)1449 static bool rb_check_links(struct ring_buffer_per_cpu *cpu_buffer,
1450 			   struct list_head *list)
1451 {
1452 	if (RB_WARN_ON(cpu_buffer,
1453 		       rb_list_head(rb_list_head(list->next)->prev) != list))
1454 		return false;
1455 
1456 	if (RB_WARN_ON(cpu_buffer,
1457 		       rb_list_head(rb_list_head(list->prev)->next) != list))
1458 		return false;
1459 
1460 	return true;
1461 }
1462 
1463 /**
1464  * rb_check_pages - integrity check of buffer pages
1465  * @cpu_buffer: CPU buffer with pages to test
1466  *
1467  * As a safety measure we check to make sure the data pages have not
1468  * been corrupted.
1469  */
rb_check_pages(struct ring_buffer_per_cpu * cpu_buffer)1470 static void rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1471 {
1472 	struct list_head *head, *tmp;
1473 	unsigned long buffer_cnt;
1474 	unsigned long flags;
1475 	int nr_loops = 0;
1476 
1477 	/*
1478 	 * Walk the linked list underpinning the ring buffer and validate all
1479 	 * its next and prev links.
1480 	 *
1481 	 * The check acquires the reader_lock to avoid concurrent processing
1482 	 * with code that could be modifying the list. However, the lock cannot
1483 	 * be held for the entire duration of the walk, as this would make the
1484 	 * time when interrupts are disabled non-deterministic, dependent on the
1485 	 * ring buffer size. Therefore, the code releases and re-acquires the
1486 	 * lock after checking each page. The ring_buffer_per_cpu.cnt variable
1487 	 * is then used to detect if the list was modified while the lock was
1488 	 * not held, in which case the check needs to be restarted.
1489 	 *
1490 	 * The code attempts to perform the check at most three times before
1491 	 * giving up. This is acceptable because this is only a self-validation
1492 	 * to detect problems early on. In practice, the list modification
1493 	 * operations are fairly spaced, and so this check typically succeeds at
1494 	 * most on the second try.
1495 	 */
1496 again:
1497 	if (++nr_loops > 3)
1498 		return;
1499 
1500 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
1501 	head = rb_list_head(cpu_buffer->pages);
1502 	if (!rb_check_links(cpu_buffer, head))
1503 		goto out_locked;
1504 	buffer_cnt = cpu_buffer->cnt;
1505 	tmp = head;
1506 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1507 
1508 	while (true) {
1509 		raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
1510 
1511 		if (buffer_cnt != cpu_buffer->cnt) {
1512 			/* The list was updated, try again. */
1513 			raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1514 			goto again;
1515 		}
1516 
1517 		tmp = rb_list_head(tmp->next);
1518 		if (tmp == head)
1519 			/* The iteration circled back, all is done. */
1520 			goto out_locked;
1521 
1522 		if (!rb_check_links(cpu_buffer, tmp))
1523 			goto out_locked;
1524 
1525 		raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1526 	}
1527 
1528 out_locked:
1529 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1530 }
1531 
1532 /*
1533  * Take an address, add the meta data size as well as the array of
1534  * array subbuffer indexes, then align it to a subbuffer size.
1535  *
1536  * This is used to help find the next per cpu subbuffer within a mapped range.
1537  */
1538 static unsigned long
rb_range_align_subbuf(unsigned long addr,int subbuf_size,int nr_subbufs)1539 rb_range_align_subbuf(unsigned long addr, int subbuf_size, int nr_subbufs)
1540 {
1541 	addr += sizeof(struct ring_buffer_meta) +
1542 		sizeof(int) * nr_subbufs;
1543 	return ALIGN(addr, subbuf_size);
1544 }
1545 
1546 /*
1547  * Return the ring_buffer_meta for a given @cpu.
1548  */
rb_range_meta(struct trace_buffer * buffer,int nr_pages,int cpu)1549 static void *rb_range_meta(struct trace_buffer *buffer, int nr_pages, int cpu)
1550 {
1551 	int subbuf_size = buffer->subbuf_size + BUF_PAGE_HDR_SIZE;
1552 	unsigned long ptr = buffer->range_addr_start;
1553 	struct ring_buffer_meta *meta;
1554 	int nr_subbufs;
1555 
1556 	if (!ptr)
1557 		return NULL;
1558 
1559 	/* When nr_pages passed in is zero, the first meta has already been initialized */
1560 	if (!nr_pages) {
1561 		meta = (struct ring_buffer_meta *)ptr;
1562 		nr_subbufs = meta->nr_subbufs;
1563 	} else {
1564 		meta = NULL;
1565 		/* Include the reader page */
1566 		nr_subbufs = nr_pages + 1;
1567 	}
1568 
1569 	/*
1570 	 * The first chunk may not be subbuffer aligned, where as
1571 	 * the rest of the chunks are.
1572 	 */
1573 	if (cpu) {
1574 		ptr = rb_range_align_subbuf(ptr, subbuf_size, nr_subbufs);
1575 		ptr += subbuf_size * nr_subbufs;
1576 
1577 		/* We can use multiplication to find chunks greater than 1 */
1578 		if (cpu > 1) {
1579 			unsigned long size;
1580 			unsigned long p;
1581 
1582 			/* Save the beginning of this CPU chunk */
1583 			p = ptr;
1584 			ptr = rb_range_align_subbuf(ptr, subbuf_size, nr_subbufs);
1585 			ptr += subbuf_size * nr_subbufs;
1586 
1587 			/* Now all chunks after this are the same size */
1588 			size = ptr - p;
1589 			ptr += size * (cpu - 2);
1590 		}
1591 	}
1592 	return (void *)ptr;
1593 }
1594 
1595 /* Return the start of subbufs given the meta pointer */
rb_subbufs_from_meta(struct ring_buffer_meta * meta)1596 static void *rb_subbufs_from_meta(struct ring_buffer_meta *meta)
1597 {
1598 	int subbuf_size = meta->subbuf_size;
1599 	unsigned long ptr;
1600 
1601 	ptr = (unsigned long)meta;
1602 	ptr = rb_range_align_subbuf(ptr, subbuf_size, meta->nr_subbufs);
1603 
1604 	return (void *)ptr;
1605 }
1606 
1607 /*
1608  * Return a specific sub-buffer for a given @cpu defined by @idx.
1609  */
rb_range_buffer(struct ring_buffer_per_cpu * cpu_buffer,int idx)1610 static void *rb_range_buffer(struct ring_buffer_per_cpu *cpu_buffer, int idx)
1611 {
1612 	struct ring_buffer_meta *meta;
1613 	unsigned long ptr;
1614 	int subbuf_size;
1615 
1616 	meta = rb_range_meta(cpu_buffer->buffer, 0, cpu_buffer->cpu);
1617 	if (!meta)
1618 		return NULL;
1619 
1620 	if (WARN_ON_ONCE(idx >= meta->nr_subbufs))
1621 		return NULL;
1622 
1623 	subbuf_size = meta->subbuf_size;
1624 
1625 	/* Map this buffer to the order that's in meta->buffers[] */
1626 	idx = meta->buffers[idx];
1627 
1628 	ptr = (unsigned long)rb_subbufs_from_meta(meta);
1629 
1630 	ptr += subbuf_size * idx;
1631 	if (ptr + subbuf_size > cpu_buffer->buffer->range_addr_end)
1632 		return NULL;
1633 
1634 	return (void *)ptr;
1635 }
1636 
1637 /*
1638  * See if the existing memory contains valid ring buffer data.
1639  * As the previous kernel must be the same as this kernel, all
1640  * the calculations (size of buffers and number of buffers)
1641  * must be the same.
1642  */
rb_meta_valid(struct ring_buffer_meta * meta,int cpu,struct trace_buffer * buffer,int nr_pages,unsigned long * subbuf_mask)1643 static bool rb_meta_valid(struct ring_buffer_meta *meta, int cpu,
1644 			  struct trace_buffer *buffer, int nr_pages,
1645 			  unsigned long *subbuf_mask)
1646 {
1647 	int subbuf_size = PAGE_SIZE;
1648 	struct buffer_data_page *subbuf;
1649 	unsigned long buffers_start;
1650 	unsigned long buffers_end;
1651 	int i;
1652 
1653 	if (!subbuf_mask)
1654 		return false;
1655 
1656 	/* Check the meta magic and meta struct size */
1657 	if (meta->magic != RING_BUFFER_META_MAGIC ||
1658 	    meta->struct_size != sizeof(*meta)) {
1659 		pr_info("Ring buffer boot meta[%d] mismatch of magic or struct size\n", cpu);
1660 		return false;
1661 	}
1662 
1663 	/* The subbuffer's size and number of subbuffers must match */
1664 	if (meta->subbuf_size != subbuf_size ||
1665 	    meta->nr_subbufs != nr_pages + 1) {
1666 		pr_info("Ring buffer boot meta [%d] mismatch of subbuf_size/nr_pages\n", cpu);
1667 		return false;
1668 	}
1669 
1670 	buffers_start = meta->first_buffer;
1671 	buffers_end = meta->first_buffer + (subbuf_size * meta->nr_subbufs);
1672 
1673 	/* Is the head and commit buffers within the range of buffers? */
1674 	if (meta->head_buffer < buffers_start ||
1675 	    meta->head_buffer >= buffers_end) {
1676 		pr_info("Ring buffer boot meta [%d] head buffer out of range\n", cpu);
1677 		return false;
1678 	}
1679 
1680 	if (meta->commit_buffer < buffers_start ||
1681 	    meta->commit_buffer >= buffers_end) {
1682 		pr_info("Ring buffer boot meta [%d] commit buffer out of range\n", cpu);
1683 		return false;
1684 	}
1685 
1686 	subbuf = rb_subbufs_from_meta(meta);
1687 
1688 	bitmap_clear(subbuf_mask, 0, meta->nr_subbufs);
1689 
1690 	/* Is the meta buffers and the subbufs themselves have correct data? */
1691 	for (i = 0; i < meta->nr_subbufs; i++) {
1692 		if (meta->buffers[i] < 0 ||
1693 		    meta->buffers[i] >= meta->nr_subbufs) {
1694 			pr_info("Ring buffer boot meta [%d] array out of range\n", cpu);
1695 			return false;
1696 		}
1697 
1698 		if ((unsigned)local_read(&subbuf->commit) > subbuf_size) {
1699 			pr_info("Ring buffer boot meta [%d] buffer invalid commit\n", cpu);
1700 			return false;
1701 		}
1702 
1703 		if (test_bit(meta->buffers[i], subbuf_mask)) {
1704 			pr_info("Ring buffer boot meta [%d] array has duplicates\n", cpu);
1705 			return false;
1706 		}
1707 
1708 		set_bit(meta->buffers[i], subbuf_mask);
1709 		subbuf = (void *)subbuf + subbuf_size;
1710 	}
1711 
1712 	return true;
1713 }
1714 
1715 static int rb_meta_subbuf_idx(struct ring_buffer_meta *meta, void *subbuf);
1716 
rb_read_data_buffer(struct buffer_data_page * dpage,int tail,int cpu,unsigned long long * timestamp,u64 * delta_ptr)1717 static int rb_read_data_buffer(struct buffer_data_page *dpage, int tail, int cpu,
1718 			       unsigned long long *timestamp, u64 *delta_ptr)
1719 {
1720 	struct ring_buffer_event *event;
1721 	u64 ts, delta;
1722 	int events = 0;
1723 	int e;
1724 
1725 	*delta_ptr = 0;
1726 	*timestamp = 0;
1727 
1728 	ts = dpage->time_stamp;
1729 
1730 	for (e = 0; e < tail; e += rb_event_length(event)) {
1731 
1732 		event = (struct ring_buffer_event *)(dpage->data + e);
1733 
1734 		switch (event->type_len) {
1735 
1736 		case RINGBUF_TYPE_TIME_EXTEND:
1737 			delta = rb_event_time_stamp(event);
1738 			ts += delta;
1739 			break;
1740 
1741 		case RINGBUF_TYPE_TIME_STAMP:
1742 			delta = rb_event_time_stamp(event);
1743 			delta = rb_fix_abs_ts(delta, ts);
1744 			if (delta < ts) {
1745 				*delta_ptr = delta;
1746 				*timestamp = ts;
1747 				return -1;
1748 			}
1749 			ts = delta;
1750 			break;
1751 
1752 		case RINGBUF_TYPE_PADDING:
1753 			if (event->time_delta == 1)
1754 				break;
1755 			fallthrough;
1756 		case RINGBUF_TYPE_DATA:
1757 			events++;
1758 			ts += event->time_delta;
1759 			break;
1760 
1761 		default:
1762 			return -1;
1763 		}
1764 	}
1765 	*timestamp = ts;
1766 	return events;
1767 }
1768 
rb_validate_buffer(struct buffer_data_page * dpage,int cpu)1769 static int rb_validate_buffer(struct buffer_data_page *dpage, int cpu)
1770 {
1771 	unsigned long long ts;
1772 	u64 delta;
1773 	int tail;
1774 
1775 	tail = local_read(&dpage->commit);
1776 	return rb_read_data_buffer(dpage, tail, cpu, &ts, &delta);
1777 }
1778 
1779 /* If the meta data has been validated, now validate the events */
rb_meta_validate_events(struct ring_buffer_per_cpu * cpu_buffer)1780 static void rb_meta_validate_events(struct ring_buffer_per_cpu *cpu_buffer)
1781 {
1782 	struct ring_buffer_meta *meta = cpu_buffer->ring_meta;
1783 	struct buffer_page *head_page;
1784 	unsigned long entry_bytes = 0;
1785 	unsigned long entries = 0;
1786 	int ret;
1787 	int i;
1788 
1789 	if (!meta || !meta->head_buffer)
1790 		return;
1791 
1792 	/* Do the reader page first */
1793 	ret = rb_validate_buffer(cpu_buffer->reader_page->page, cpu_buffer->cpu);
1794 	if (ret < 0) {
1795 		pr_info("Ring buffer reader page is invalid\n");
1796 		goto invalid;
1797 	}
1798 	entries += ret;
1799 	entry_bytes += local_read(&cpu_buffer->reader_page->page->commit);
1800 	local_set(&cpu_buffer->reader_page->entries, ret);
1801 
1802 	head_page = cpu_buffer->head_page;
1803 
1804 	/* If the commit_buffer is the reader page, update the commit page */
1805 	if (meta->commit_buffer == (unsigned long)cpu_buffer->reader_page->page) {
1806 		cpu_buffer->commit_page = cpu_buffer->reader_page;
1807 		/* Nothing more to do, the only page is the reader page */
1808 		goto done;
1809 	}
1810 
1811 	/* Iterate until finding the commit page */
1812 	for (i = 0; i < meta->nr_subbufs + 1; i++, rb_inc_page(&head_page)) {
1813 
1814 		/* Reader page has already been done */
1815 		if (head_page == cpu_buffer->reader_page)
1816 			continue;
1817 
1818 		ret = rb_validate_buffer(head_page->page, cpu_buffer->cpu);
1819 		if (ret < 0) {
1820 			pr_info("Ring buffer meta [%d] invalid buffer page\n",
1821 				cpu_buffer->cpu);
1822 			goto invalid;
1823 		}
1824 
1825 		/* If the buffer has content, update pages_touched */
1826 		if (ret)
1827 			local_inc(&cpu_buffer->pages_touched);
1828 
1829 		entries += ret;
1830 		entry_bytes += local_read(&head_page->page->commit);
1831 		local_set(&cpu_buffer->head_page->entries, ret);
1832 
1833 		if (head_page == cpu_buffer->commit_page)
1834 			break;
1835 	}
1836 
1837 	if (head_page != cpu_buffer->commit_page) {
1838 		pr_info("Ring buffer meta [%d] commit page not found\n",
1839 			cpu_buffer->cpu);
1840 		goto invalid;
1841 	}
1842  done:
1843 	local_set(&cpu_buffer->entries, entries);
1844 	local_set(&cpu_buffer->entries_bytes, entry_bytes);
1845 
1846 	pr_info("Ring buffer meta [%d] is from previous boot!\n", cpu_buffer->cpu);
1847 	return;
1848 
1849  invalid:
1850 	/* The content of the buffers are invalid, reset the meta data */
1851 	meta->head_buffer = 0;
1852 	meta->commit_buffer = 0;
1853 
1854 	/* Reset the reader page */
1855 	local_set(&cpu_buffer->reader_page->entries, 0);
1856 	local_set(&cpu_buffer->reader_page->page->commit, 0);
1857 
1858 	/* Reset all the subbuffers */
1859 	for (i = 0; i < meta->nr_subbufs - 1; i++, rb_inc_page(&head_page)) {
1860 		local_set(&head_page->entries, 0);
1861 		local_set(&head_page->page->commit, 0);
1862 	}
1863 }
1864 
1865 /* Used to calculate data delta */
1866 static char rb_data_ptr[] = "";
1867 
1868 #define THIS_TEXT_PTR		((unsigned long)rb_meta_init_text_addr)
1869 #define THIS_DATA_PTR		((unsigned long)rb_data_ptr)
1870 
rb_meta_init_text_addr(struct ring_buffer_meta * meta)1871 static void rb_meta_init_text_addr(struct ring_buffer_meta *meta)
1872 {
1873 	meta->text_addr = THIS_TEXT_PTR;
1874 	meta->data_addr = THIS_DATA_PTR;
1875 }
1876 
rb_range_meta_init(struct trace_buffer * buffer,int nr_pages)1877 static void rb_range_meta_init(struct trace_buffer *buffer, int nr_pages)
1878 {
1879 	struct ring_buffer_meta *meta;
1880 	unsigned long *subbuf_mask;
1881 	unsigned long delta;
1882 	void *subbuf;
1883 	int cpu;
1884 	int i;
1885 
1886 	/* Create a mask to test the subbuf array */
1887 	subbuf_mask = bitmap_alloc(nr_pages + 1, GFP_KERNEL);
1888 	/* If subbuf_mask fails to allocate, then rb_meta_valid() will return false */
1889 
1890 	for (cpu = 0; cpu < nr_cpu_ids; cpu++) {
1891 		void *next_meta;
1892 
1893 		meta = rb_range_meta(buffer, nr_pages, cpu);
1894 
1895 		if (rb_meta_valid(meta, cpu, buffer, nr_pages, subbuf_mask)) {
1896 			/* Make the mappings match the current address */
1897 			subbuf = rb_subbufs_from_meta(meta);
1898 			delta = (unsigned long)subbuf - meta->first_buffer;
1899 			meta->first_buffer += delta;
1900 			meta->head_buffer += delta;
1901 			meta->commit_buffer += delta;
1902 			buffer->last_text_delta = THIS_TEXT_PTR - meta->text_addr;
1903 			buffer->last_data_delta = THIS_DATA_PTR - meta->data_addr;
1904 			continue;
1905 		}
1906 
1907 		if (cpu < nr_cpu_ids - 1)
1908 			next_meta = rb_range_meta(buffer, nr_pages, cpu + 1);
1909 		else
1910 			next_meta = (void *)buffer->range_addr_end;
1911 
1912 		memset(meta, 0, next_meta - (void *)meta);
1913 
1914 		meta->magic = RING_BUFFER_META_MAGIC;
1915 		meta->struct_size = sizeof(*meta);
1916 
1917 		meta->nr_subbufs = nr_pages + 1;
1918 		meta->subbuf_size = PAGE_SIZE;
1919 
1920 		subbuf = rb_subbufs_from_meta(meta);
1921 
1922 		meta->first_buffer = (unsigned long)subbuf;
1923 		rb_meta_init_text_addr(meta);
1924 
1925 		/*
1926 		 * The buffers[] array holds the order of the sub-buffers
1927 		 * that are after the meta data. The sub-buffers may
1928 		 * be swapped out when read and inserted into a different
1929 		 * location of the ring buffer. Although their addresses
1930 		 * remain the same, the buffers[] array contains the
1931 		 * index into the sub-buffers holding their actual order.
1932 		 */
1933 		for (i = 0; i < meta->nr_subbufs; i++) {
1934 			meta->buffers[i] = i;
1935 			rb_init_page(subbuf);
1936 			subbuf += meta->subbuf_size;
1937 		}
1938 	}
1939 	bitmap_free(subbuf_mask);
1940 }
1941 
rbm_start(struct seq_file * m,loff_t * pos)1942 static void *rbm_start(struct seq_file *m, loff_t *pos)
1943 {
1944 	struct ring_buffer_per_cpu *cpu_buffer = m->private;
1945 	struct ring_buffer_meta *meta = cpu_buffer->ring_meta;
1946 	unsigned long val;
1947 
1948 	if (!meta)
1949 		return NULL;
1950 
1951 	if (*pos > meta->nr_subbufs)
1952 		return NULL;
1953 
1954 	val = *pos;
1955 	val++;
1956 
1957 	return (void *)val;
1958 }
1959 
rbm_next(struct seq_file * m,void * v,loff_t * pos)1960 static void *rbm_next(struct seq_file *m, void *v, loff_t *pos)
1961 {
1962 	(*pos)++;
1963 
1964 	return rbm_start(m, pos);
1965 }
1966 
rbm_show(struct seq_file * m,void * v)1967 static int rbm_show(struct seq_file *m, void *v)
1968 {
1969 	struct ring_buffer_per_cpu *cpu_buffer = m->private;
1970 	struct ring_buffer_meta *meta = cpu_buffer->ring_meta;
1971 	unsigned long val = (unsigned long)v;
1972 
1973 	if (val == 1) {
1974 		seq_printf(m, "head_buffer:   %d\n",
1975 			   rb_meta_subbuf_idx(meta, (void *)meta->head_buffer));
1976 		seq_printf(m, "commit_buffer: %d\n",
1977 			   rb_meta_subbuf_idx(meta, (void *)meta->commit_buffer));
1978 		seq_printf(m, "subbuf_size:   %d\n", meta->subbuf_size);
1979 		seq_printf(m, "nr_subbufs:    %d\n", meta->nr_subbufs);
1980 		return 0;
1981 	}
1982 
1983 	val -= 2;
1984 	seq_printf(m, "buffer[%ld]:    %d\n", val, meta->buffers[val]);
1985 
1986 	return 0;
1987 }
1988 
rbm_stop(struct seq_file * m,void * p)1989 static void rbm_stop(struct seq_file *m, void *p)
1990 {
1991 }
1992 
1993 static const struct seq_operations rb_meta_seq_ops = {
1994 	.start		= rbm_start,
1995 	.next		= rbm_next,
1996 	.show		= rbm_show,
1997 	.stop		= rbm_stop,
1998 };
1999 
ring_buffer_meta_seq_init(struct file * file,struct trace_buffer * buffer,int cpu)2000 int ring_buffer_meta_seq_init(struct file *file, struct trace_buffer *buffer, int cpu)
2001 {
2002 	struct seq_file *m;
2003 	int ret;
2004 
2005 	ret = seq_open(file, &rb_meta_seq_ops);
2006 	if (ret)
2007 		return ret;
2008 
2009 	m = file->private_data;
2010 	m->private = buffer->buffers[cpu];
2011 
2012 	return 0;
2013 }
2014 
2015 /* Map the buffer_pages to the previous head and commit pages */
rb_meta_buffer_update(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * bpage)2016 static void rb_meta_buffer_update(struct ring_buffer_per_cpu *cpu_buffer,
2017 				  struct buffer_page *bpage)
2018 {
2019 	struct ring_buffer_meta *meta = cpu_buffer->ring_meta;
2020 
2021 	if (meta->head_buffer == (unsigned long)bpage->page)
2022 		cpu_buffer->head_page = bpage;
2023 
2024 	if (meta->commit_buffer == (unsigned long)bpage->page) {
2025 		cpu_buffer->commit_page = bpage;
2026 		cpu_buffer->tail_page = bpage;
2027 	}
2028 }
2029 
__rb_allocate_pages(struct ring_buffer_per_cpu * cpu_buffer,long nr_pages,struct list_head * pages)2030 static int __rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
2031 		long nr_pages, struct list_head *pages)
2032 {
2033 	struct trace_buffer *buffer = cpu_buffer->buffer;
2034 	struct ring_buffer_meta *meta = NULL;
2035 	struct buffer_page *bpage, *tmp;
2036 	bool user_thread = current->mm != NULL;
2037 	gfp_t mflags;
2038 	long i;
2039 
2040 	/*
2041 	 * Check if the available memory is there first.
2042 	 * Note, si_mem_available() only gives us a rough estimate of available
2043 	 * memory. It may not be accurate. But we don't care, we just want
2044 	 * to prevent doing any allocation when it is obvious that it is
2045 	 * not going to succeed.
2046 	 */
2047 	i = si_mem_available();
2048 	if (i < nr_pages)
2049 		return -ENOMEM;
2050 
2051 	/*
2052 	 * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails
2053 	 * gracefully without invoking oom-killer and the system is not
2054 	 * destabilized.
2055 	 */
2056 	mflags = GFP_KERNEL | __GFP_RETRY_MAYFAIL;
2057 
2058 	/*
2059 	 * If a user thread allocates too much, and si_mem_available()
2060 	 * reports there's enough memory, even though there is not.
2061 	 * Make sure the OOM killer kills this thread. This can happen
2062 	 * even with RETRY_MAYFAIL because another task may be doing
2063 	 * an allocation after this task has taken all memory.
2064 	 * This is the task the OOM killer needs to take out during this
2065 	 * loop, even if it was triggered by an allocation somewhere else.
2066 	 */
2067 	if (user_thread)
2068 		set_current_oom_origin();
2069 
2070 	if (buffer->range_addr_start)
2071 		meta = rb_range_meta(buffer, nr_pages, cpu_buffer->cpu);
2072 
2073 	for (i = 0; i < nr_pages; i++) {
2074 		struct page *page;
2075 
2076 		bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
2077 				    mflags, cpu_to_node(cpu_buffer->cpu));
2078 		if (!bpage)
2079 			goto free_pages;
2080 
2081 		rb_check_bpage(cpu_buffer, bpage);
2082 
2083 		/*
2084 		 * Append the pages as for mapped buffers we want to keep
2085 		 * the order
2086 		 */
2087 		list_add_tail(&bpage->list, pages);
2088 
2089 		if (meta) {
2090 			/* A range was given. Use that for the buffer page */
2091 			bpage->page = rb_range_buffer(cpu_buffer, i + 1);
2092 			if (!bpage->page)
2093 				goto free_pages;
2094 			/* If this is valid from a previous boot */
2095 			if (meta->head_buffer)
2096 				rb_meta_buffer_update(cpu_buffer, bpage);
2097 			bpage->range = 1;
2098 			bpage->id = i + 1;
2099 		} else {
2100 			page = alloc_pages_node(cpu_to_node(cpu_buffer->cpu),
2101 						mflags | __GFP_COMP | __GFP_ZERO,
2102 						cpu_buffer->buffer->subbuf_order);
2103 			if (!page)
2104 				goto free_pages;
2105 			bpage->page = page_address(page);
2106 			rb_init_page(bpage->page);
2107 		}
2108 		bpage->order = cpu_buffer->buffer->subbuf_order;
2109 
2110 		if (user_thread && fatal_signal_pending(current))
2111 			goto free_pages;
2112 	}
2113 	if (user_thread)
2114 		clear_current_oom_origin();
2115 
2116 	return 0;
2117 
2118 free_pages:
2119 	list_for_each_entry_safe(bpage, tmp, pages, list) {
2120 		list_del_init(&bpage->list);
2121 		free_buffer_page(bpage);
2122 	}
2123 	if (user_thread)
2124 		clear_current_oom_origin();
2125 
2126 	return -ENOMEM;
2127 }
2128 
rb_page_desc(struct trace_page_desc * trace_pdesc,int cpu)2129 static struct rb_page_desc *rb_page_desc(struct trace_page_desc *trace_pdesc,
2130 					 int cpu)
2131 {
2132 	struct rb_page_desc *pdesc;
2133 	int i;
2134 
2135 	if (!trace_pdesc)
2136 		return NULL;
2137 
2138 	if (cpu >= trace_pdesc->nr_cpus)
2139 		return NULL;
2140 
2141 	for_each_rb_page_desc(pdesc, i, trace_pdesc) {
2142 		if (pdesc->cpu == cpu)
2143 			return pdesc;
2144 	}
2145 
2146 	return NULL;
2147 }
2148 
rb_page_desc_page(struct rb_page_desc * pdesc,int page_id)2149 static void *rb_page_desc_page(struct rb_page_desc *pdesc, int page_id)
2150 {
2151 	return page_id > pdesc->nr_page_va ? NULL : (void *)pdesc->page_va[page_id];
2152 }
2153 
2154 
rb_allocate_pages(struct ring_buffer_per_cpu * cpu_buffer,unsigned long nr_pages)2155 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
2156 			     unsigned long nr_pages)
2157 {
2158 	LIST_HEAD(pages);
2159 
2160 	WARN_ON(!nr_pages);
2161 
2162 	if (__rb_allocate_pages(cpu_buffer, nr_pages, &pages))
2163 		return -ENOMEM;
2164 
2165 	/*
2166 	 * The ring buffer page list is a circular list that does not
2167 	 * start and end with a list head. All page list items point to
2168 	 * other pages.
2169 	 */
2170 	cpu_buffer->pages = pages.next;
2171 	list_del(&pages);
2172 
2173 	cpu_buffer->nr_pages = nr_pages;
2174 
2175 	rb_check_pages(cpu_buffer);
2176 
2177 	return 0;
2178 }
2179 
2180 static struct ring_buffer_per_cpu *
rb_allocate_cpu_buffer(struct trace_buffer * buffer,long nr_pages,int cpu)2181 rb_allocate_cpu_buffer(struct trace_buffer *buffer, long nr_pages, int cpu)
2182 {
2183 	struct ring_buffer_per_cpu *cpu_buffer;
2184 	struct ring_buffer_meta *meta;
2185 	struct buffer_page *bpage;
2186 	struct page *page;
2187 	int ret;
2188 
2189 	cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
2190 				  GFP_KERNEL, cpu_to_node(cpu));
2191 	if (!cpu_buffer)
2192 		return NULL;
2193 
2194 	cpu_buffer->cpu = cpu;
2195 	cpu_buffer->buffer = buffer;
2196 	raw_spin_lock_init(&cpu_buffer->reader_lock);
2197 	lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
2198 	cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
2199 	INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
2200 	init_completion(&cpu_buffer->update_done);
2201 	init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
2202 	init_waitqueue_head(&cpu_buffer->irq_work.waiters);
2203 	init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
2204 	mutex_init(&cpu_buffer->mapping_lock);
2205 
2206 	bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
2207 			    GFP_KERNEL, cpu_to_node(cpu));
2208 	if (!bpage)
2209 		goto fail_free_buffer;
2210 
2211 	rb_check_bpage(cpu_buffer, bpage);
2212 
2213 	cpu_buffer->reader_page = bpage;
2214 
2215 	if (buffer->writer) {
2216 		struct rb_page_desc *pdesc = rb_page_desc(buffer->writer->pdesc, cpu);
2217 
2218 		if (!pdesc)
2219 			goto fail_free_reader;
2220 
2221 		cpu_buffer->writer = buffer->writer;
2222 		cpu_buffer->meta_page = (struct trace_buffer_meta *)(void *)pdesc->meta_va;
2223 		cpu_buffer->subbuf_ids = pdesc->page_va;
2224 		cpu_buffer->nr_pages = pdesc->nr_page_va - 1;
2225 		atomic_inc(&cpu_buffer->record_disabled);
2226 		atomic_inc(&cpu_buffer->resize_disabled);
2227 
2228 		bpage->page = rb_page_desc_page(pdesc,
2229 						cpu_buffer->meta_page->reader.id);
2230 		if (!bpage->page)
2231 			goto fail_free_reader;
2232 		/*
2233 		 * The meta-page can only describe which of the ring-buffer page
2234 		 * is the reader. There is no need to init the rest of the
2235 		 * ring-buffer.
2236 		 */
2237 		return cpu_buffer;
2238 	}
2239 
2240 	if (buffer->range_addr_start) {
2241 		/*
2242 		 * Range mapped buffers have the same restrictions as memory
2243 		 * mapped ones do.
2244 		 */
2245 		cpu_buffer->mapped = 1;
2246 		cpu_buffer->ring_meta = rb_range_meta(buffer, nr_pages, cpu);
2247 		bpage->page = rb_range_buffer(cpu_buffer, 0);
2248 		if (!bpage->page)
2249 			goto fail_free_reader;
2250 		if (cpu_buffer->ring_meta->head_buffer)
2251 			rb_meta_buffer_update(cpu_buffer, bpage);
2252 		bpage->range = 1;
2253 	} else {
2254 		page = alloc_pages_node(cpu_to_node(cpu),
2255 					GFP_KERNEL | __GFP_COMP | __GFP_ZERO,
2256 					cpu_buffer->buffer->subbuf_order);
2257 		if (!page)
2258 			goto fail_free_reader;
2259 		bpage->page = page_address(page);
2260 		rb_init_page(bpage->page);
2261 	}
2262 
2263 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
2264 	INIT_LIST_HEAD(&cpu_buffer->new_pages);
2265 
2266 	ret = rb_allocate_pages(cpu_buffer, nr_pages);
2267 	if (ret < 0)
2268 		goto fail_free_reader;
2269 
2270 	rb_meta_validate_events(cpu_buffer);
2271 
2272 	/* If the boot meta was valid then this has already been updated */
2273 	meta = cpu_buffer->ring_meta;
2274 	if (!meta || !meta->head_buffer ||
2275 	    !cpu_buffer->head_page || !cpu_buffer->commit_page || !cpu_buffer->tail_page) {
2276 		if (meta && meta->head_buffer &&
2277 		    (cpu_buffer->head_page || cpu_buffer->commit_page || cpu_buffer->tail_page)) {
2278 			pr_warn("Ring buffer meta buffers not all mapped\n");
2279 			if (!cpu_buffer->head_page)
2280 				pr_warn("   Missing head_page\n");
2281 			if (!cpu_buffer->commit_page)
2282 				pr_warn("   Missing commit_page\n");
2283 			if (!cpu_buffer->tail_page)
2284 				pr_warn("   Missing tail_page\n");
2285 		}
2286 
2287 		cpu_buffer->head_page
2288 			= list_entry(cpu_buffer->pages, struct buffer_page, list);
2289 		cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
2290 
2291 		rb_head_page_activate(cpu_buffer);
2292 
2293 		if (cpu_buffer->ring_meta)
2294 			meta->commit_buffer = meta->head_buffer;
2295 	} else {
2296 		/* The valid meta buffer still needs to activate the head page */
2297 		rb_head_page_activate(cpu_buffer);
2298 	}
2299 
2300 	return cpu_buffer;
2301 
2302  fail_free_reader:
2303 	free_buffer_page(cpu_buffer->reader_page);
2304 
2305  fail_free_buffer:
2306 	kfree(cpu_buffer);
2307 	return NULL;
2308 }
2309 
rb_free_cpu_buffer(struct ring_buffer_per_cpu * cpu_buffer)2310 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
2311 {
2312 	struct list_head *head = cpu_buffer->pages;
2313 	struct buffer_page *bpage, *tmp;
2314 
2315 	irq_work_sync(&cpu_buffer->irq_work.work);
2316 
2317 	/* ring_buffers with writer set do not own the data pages */
2318 	if (cpu_buffer->writer)
2319 		cpu_buffer->reader_page->page = NULL;
2320 
2321 	free_buffer_page(cpu_buffer->reader_page);
2322 
2323 	if (head) {
2324 		rb_head_page_deactivate(cpu_buffer);
2325 
2326 		list_for_each_entry_safe(bpage, tmp, head, list) {
2327 			list_del_init(&bpage->list);
2328 			free_buffer_page(bpage);
2329 		}
2330 		bpage = list_entry(head, struct buffer_page, list);
2331 		free_buffer_page(bpage);
2332 	}
2333 
2334 	free_page((unsigned long)cpu_buffer->free_page);
2335 
2336 	kfree(cpu_buffer);
2337 }
2338 
alloc_buffer(unsigned long size,unsigned flags,int order,unsigned long start,unsigned long end,struct lock_class_key * key,struct ring_buffer_writer * writer)2339 static struct trace_buffer *alloc_buffer(unsigned long size, unsigned flags,
2340 					 int order, unsigned long start,
2341 					 unsigned long end,
2342 					 struct lock_class_key *key,
2343 					 struct ring_buffer_writer *writer)
2344 {
2345 	struct trace_buffer *buffer;
2346 	long nr_pages;
2347 	int subbuf_size;
2348 	int bsize;
2349 	int cpu;
2350 	int ret;
2351 
2352 	/* keep it in its own cache line */
2353 	buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
2354 			 GFP_KERNEL);
2355 	if (!buffer)
2356 		return NULL;
2357 
2358 	if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
2359 		goto fail_free_buffer;
2360 
2361 	buffer->subbuf_order = order;
2362 	subbuf_size = (PAGE_SIZE << order);
2363 	buffer->subbuf_size = subbuf_size - BUF_PAGE_HDR_SIZE;
2364 
2365 	/* Max payload is buffer page size - header (8bytes) */
2366 	buffer->max_data_size = buffer->subbuf_size - (sizeof(u32) * 2);
2367 
2368 	buffer->flags = flags;
2369 	buffer->clock = trace_clock_local;
2370 	buffer->reader_lock_key = key;
2371 	if (writer) {
2372 		buffer->writer = writer;
2373 		/* The writer is external and never done by the kernel */
2374 		atomic_inc(&buffer->record_disabled);
2375 	}
2376 
2377 	init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
2378 	init_waitqueue_head(&buffer->irq_work.waiters);
2379 
2380 	buffer->cpus = nr_cpu_ids;
2381 
2382 	bsize = sizeof(void *) * nr_cpu_ids;
2383 	buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
2384 				  GFP_KERNEL);
2385 	if (!buffer->buffers)
2386 		goto fail_free_cpumask;
2387 
2388 	/* If start/end are specified, then that overrides size */
2389 	if (start && end) {
2390 		unsigned long ptr;
2391 		int n;
2392 
2393 		size = end - start;
2394 		size = size / nr_cpu_ids;
2395 
2396 		/*
2397 		 * The number of sub-buffers (nr_pages) is determined by the
2398 		 * total size allocated minus the meta data size.
2399 		 * Then that is divided by the number of per CPU buffers
2400 		 * needed, plus account for the integer array index that
2401 		 * will be appended to the meta data.
2402 		 */
2403 		nr_pages = (size - sizeof(struct ring_buffer_meta)) /
2404 			(subbuf_size + sizeof(int));
2405 		/* Need at least two pages plus the reader page */
2406 		if (nr_pages < 3)
2407 			goto fail_free_buffers;
2408 
2409  again:
2410 		/* Make sure that the size fits aligned */
2411 		for (n = 0, ptr = start; n < nr_cpu_ids; n++) {
2412 			ptr += sizeof(struct ring_buffer_meta) +
2413 				sizeof(int) * nr_pages;
2414 			ptr = ALIGN(ptr, subbuf_size);
2415 			ptr += subbuf_size * nr_pages;
2416 		}
2417 		if (ptr > end) {
2418 			if (nr_pages <= 3)
2419 				goto fail_free_buffers;
2420 			nr_pages--;
2421 			goto again;
2422 		}
2423 
2424 		/* nr_pages should not count the reader page */
2425 		nr_pages--;
2426 		buffer->range_addr_start = start;
2427 		buffer->range_addr_end = end;
2428 
2429 		rb_range_meta_init(buffer, nr_pages);
2430 	} else {
2431 
2432 		/* need at least two pages */
2433 		nr_pages = DIV_ROUND_UP(size, buffer->subbuf_size);
2434 		if (nr_pages < 2)
2435 			nr_pages = 2;
2436 	}
2437 
2438 	cpu = raw_smp_processor_id();
2439 	cpumask_set_cpu(cpu, buffer->cpumask);
2440 	buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
2441 	if (!buffer->buffers[cpu])
2442 		goto fail_free_buffers;
2443 
2444 	ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
2445 	if (ret < 0)
2446 		goto fail_free_buffers;
2447 
2448 	mutex_init(&buffer->mutex);
2449 
2450 	return buffer;
2451 
2452  fail_free_buffers:
2453 	for_each_buffer_cpu(buffer, cpu) {
2454 		if (buffer->buffers[cpu])
2455 			rb_free_cpu_buffer(buffer->buffers[cpu]);
2456 	}
2457 	kfree(buffer->buffers);
2458 
2459  fail_free_cpumask:
2460 	free_cpumask_var(buffer->cpumask);
2461 
2462  fail_free_buffer:
2463 	kfree(buffer);
2464 	return NULL;
2465 }
2466 
2467 /**
2468  * __ring_buffer_alloc - allocate a new ring_buffer
2469  * @size: the size in bytes per cpu that is needed.
2470  * @flags: attributes to set for the ring buffer.
2471  * @key: ring buffer reader_lock_key.
2472  *
2473  * Currently the only flag that is available is the RB_FL_OVERWRITE
2474  * flag. This flag means that the buffer will overwrite old data
2475  * when the buffer wraps. If this flag is not set, the buffer will
2476  * drop data when the tail hits the head.
2477  */
__ring_buffer_alloc(unsigned long size,unsigned flags,struct lock_class_key * key,struct ring_buffer_writer * writer)2478 struct trace_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
2479 					 struct lock_class_key *key,
2480 					 struct ring_buffer_writer *writer)
2481 {
2482 	/* Default buffer page size - one system page */
2483 	return alloc_buffer(size, flags, 0, 0, 0, key, writer);
2484 
2485 }
2486 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
2487 
2488 /**
2489  * __ring_buffer_alloc_range - allocate a new ring_buffer from existing memory
2490  * @size: the size in bytes per cpu that is needed.
2491  * @flags: attributes to set for the ring buffer.
2492  * @start: start of allocated range
2493  * @range_size: size of allocated range
2494  * @order: sub-buffer order
2495  * @key: ring buffer reader_lock_key.
2496  *
2497  * Currently the only flag that is available is the RB_FL_OVERWRITE
2498  * flag. This flag means that the buffer will overwrite old data
2499  * when the buffer wraps. If this flag is not set, the buffer will
2500  * drop data when the tail hits the head.
2501  */
__ring_buffer_alloc_range(unsigned long size,unsigned flags,int order,unsigned long start,unsigned long range_size,struct lock_class_key * key)2502 struct trace_buffer *__ring_buffer_alloc_range(unsigned long size, unsigned flags,
2503 					       int order, unsigned long start,
2504 					       unsigned long range_size,
2505 					       struct lock_class_key *key)
2506 {
2507 	return alloc_buffer(size, flags, order, start, start + range_size, key, NULL);
2508 }
2509 
2510 /**
2511  * ring_buffer_last_boot_delta - return the delta offset from last boot
2512  * @buffer: The buffer to return the delta from
2513  * @text: Return text delta
2514  * @data: Return data delta
2515  *
2516  * Returns: The true if the delta is non zero
2517  */
ring_buffer_last_boot_delta(struct trace_buffer * buffer,long * text,long * data)2518 bool ring_buffer_last_boot_delta(struct trace_buffer *buffer, long *text,
2519 				 long *data)
2520 {
2521 	if (!buffer)
2522 		return false;
2523 
2524 	if (!buffer->last_text_delta)
2525 		return false;
2526 
2527 	*text = buffer->last_text_delta;
2528 	*data = buffer->last_data_delta;
2529 
2530 	return true;
2531 }
2532 
2533 /**
2534  * ring_buffer_free - free a ring buffer.
2535  * @buffer: the buffer to free.
2536  */
2537 void
ring_buffer_free(struct trace_buffer * buffer)2538 ring_buffer_free(struct trace_buffer *buffer)
2539 {
2540 	int cpu;
2541 
2542 	cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
2543 
2544 	irq_work_sync(&buffer->irq_work.work);
2545 
2546 	for_each_buffer_cpu(buffer, cpu)
2547 		rb_free_cpu_buffer(buffer->buffers[cpu]);
2548 
2549 	kfree(buffer->buffers);
2550 	free_cpumask_var(buffer->cpumask);
2551 
2552 	kfree(buffer);
2553 }
2554 EXPORT_SYMBOL_GPL(ring_buffer_free);
2555 
ring_buffer_set_clock(struct trace_buffer * buffer,u64 (* clock)(void))2556 void ring_buffer_set_clock(struct trace_buffer *buffer,
2557 			   u64 (*clock)(void))
2558 {
2559 	buffer->clock = clock;
2560 }
2561 
ring_buffer_set_time_stamp_abs(struct trace_buffer * buffer,bool abs)2562 void ring_buffer_set_time_stamp_abs(struct trace_buffer *buffer, bool abs)
2563 {
2564 	buffer->time_stamp_abs = abs;
2565 }
2566 
ring_buffer_time_stamp_abs(struct trace_buffer * buffer)2567 bool ring_buffer_time_stamp_abs(struct trace_buffer *buffer)
2568 {
2569 	return buffer->time_stamp_abs;
2570 }
2571 
rb_page_entries(struct buffer_page * bpage)2572 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
2573 {
2574 	return local_read(&bpage->entries) & RB_WRITE_MASK;
2575 }
2576 
rb_page_write(struct buffer_page * bpage)2577 static inline unsigned long rb_page_write(struct buffer_page *bpage)
2578 {
2579 	return local_read(&bpage->write) & RB_WRITE_MASK;
2580 }
2581 
2582 static bool
rb_remove_pages(struct ring_buffer_per_cpu * cpu_buffer,unsigned long nr_pages)2583 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages)
2584 {
2585 	struct list_head *tail_page, *to_remove, *next_page;
2586 	struct buffer_page *to_remove_page, *tmp_iter_page;
2587 	struct buffer_page *last_page, *first_page;
2588 	unsigned long nr_removed;
2589 	unsigned long head_bit;
2590 	int page_entries;
2591 
2592 	head_bit = 0;
2593 
2594 	raw_spin_lock_irq(&cpu_buffer->reader_lock);
2595 	atomic_inc(&cpu_buffer->record_disabled);
2596 	/*
2597 	 * We don't race with the readers since we have acquired the reader
2598 	 * lock. We also don't race with writers after disabling recording.
2599 	 * This makes it easy to figure out the first and the last page to be
2600 	 * removed from the list. We unlink all the pages in between including
2601 	 * the first and last pages. This is done in a busy loop so that we
2602 	 * lose the least number of traces.
2603 	 * The pages are freed after we restart recording and unlock readers.
2604 	 */
2605 	tail_page = &cpu_buffer->tail_page->list;
2606 
2607 	/*
2608 	 * tail page might be on reader page, we remove the next page
2609 	 * from the ring buffer
2610 	 */
2611 	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
2612 		tail_page = rb_list_head(tail_page->next);
2613 	to_remove = tail_page;
2614 
2615 	/* start of pages to remove */
2616 	first_page = list_entry(rb_list_head(to_remove->next),
2617 				struct buffer_page, list);
2618 
2619 	for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
2620 		to_remove = rb_list_head(to_remove)->next;
2621 		head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
2622 	}
2623 	/* Read iterators need to reset themselves when some pages removed */
2624 	cpu_buffer->pages_removed += nr_removed;
2625 
2626 	next_page = rb_list_head(to_remove)->next;
2627 
2628 	/*
2629 	 * Now we remove all pages between tail_page and next_page.
2630 	 * Make sure that we have head_bit value preserved for the
2631 	 * next page
2632 	 */
2633 	tail_page->next = (struct list_head *)((unsigned long)next_page |
2634 						head_bit);
2635 	next_page = rb_list_head(next_page);
2636 	next_page->prev = tail_page;
2637 
2638 	/* make sure pages points to a valid page in the ring buffer */
2639 	cpu_buffer->pages = next_page;
2640 	cpu_buffer->cnt++;
2641 
2642 	/* update head page */
2643 	if (head_bit)
2644 		cpu_buffer->head_page = list_entry(next_page,
2645 						struct buffer_page, list);
2646 
2647 	/* pages are removed, resume tracing and then free the pages */
2648 	atomic_dec(&cpu_buffer->record_disabled);
2649 	raw_spin_unlock_irq(&cpu_buffer->reader_lock);
2650 
2651 	RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
2652 
2653 	/* last buffer page to remove */
2654 	last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
2655 				list);
2656 	tmp_iter_page = first_page;
2657 
2658 	do {
2659 		cond_resched();
2660 
2661 		to_remove_page = tmp_iter_page;
2662 		rb_inc_page(&tmp_iter_page);
2663 
2664 		/* update the counters */
2665 		page_entries = rb_page_entries(to_remove_page);
2666 		if (page_entries) {
2667 			/*
2668 			 * If something was added to this page, it was full
2669 			 * since it is not the tail page. So we deduct the
2670 			 * bytes consumed in ring buffer from here.
2671 			 * Increment overrun to account for the lost events.
2672 			 */
2673 			local_add(page_entries, &cpu_buffer->overrun);
2674 			local_sub(rb_page_commit(to_remove_page), &cpu_buffer->entries_bytes);
2675 			local_inc(&cpu_buffer->pages_lost);
2676 		}
2677 
2678 		/*
2679 		 * We have already removed references to this list item, just
2680 		 * free up the buffer_page and its page
2681 		 */
2682 		free_buffer_page(to_remove_page);
2683 		nr_removed--;
2684 
2685 	} while (to_remove_page != last_page);
2686 
2687 	RB_WARN_ON(cpu_buffer, nr_removed);
2688 
2689 	return nr_removed == 0;
2690 }
2691 
2692 static bool
rb_insert_pages(struct ring_buffer_per_cpu * cpu_buffer)2693 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
2694 {
2695 	struct list_head *pages = &cpu_buffer->new_pages;
2696 	unsigned long flags;
2697 	bool success;
2698 	int retries;
2699 
2700 	/* Can be called at early boot up, where interrupts must not been enabled */
2701 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2702 	/*
2703 	 * We are holding the reader lock, so the reader page won't be swapped
2704 	 * in the ring buffer. Now we are racing with the writer trying to
2705 	 * move head page and the tail page.
2706 	 * We are going to adapt the reader page update process where:
2707 	 * 1. We first splice the start and end of list of new pages between
2708 	 *    the head page and its previous page.
2709 	 * 2. We cmpxchg the prev_page->next to point from head page to the
2710 	 *    start of new pages list.
2711 	 * 3. Finally, we update the head->prev to the end of new list.
2712 	 *
2713 	 * We will try this process 10 times, to make sure that we don't keep
2714 	 * spinning.
2715 	 */
2716 	retries = 10;
2717 	success = false;
2718 	while (retries--) {
2719 		struct list_head *head_page, *prev_page;
2720 		struct list_head *last_page, *first_page;
2721 		struct list_head *head_page_with_bit;
2722 		struct buffer_page *hpage = rb_set_head_page(cpu_buffer);
2723 
2724 		if (!hpage)
2725 			break;
2726 		head_page = &hpage->list;
2727 		prev_page = head_page->prev;
2728 
2729 		first_page = pages->next;
2730 		last_page  = pages->prev;
2731 
2732 		head_page_with_bit = (struct list_head *)
2733 				     ((unsigned long)head_page | RB_PAGE_HEAD);
2734 
2735 		last_page->next = head_page_with_bit;
2736 		first_page->prev = prev_page;
2737 
2738 		/* caution: head_page_with_bit gets updated on cmpxchg failure */
2739 		if (try_cmpxchg(&prev_page->next,
2740 				&head_page_with_bit, first_page)) {
2741 			/*
2742 			 * yay, we replaced the page pointer to our new list,
2743 			 * now, we just have to update to head page's prev
2744 			 * pointer to point to end of list
2745 			 */
2746 			head_page->prev = last_page;
2747 			cpu_buffer->cnt++;
2748 			success = true;
2749 			break;
2750 		}
2751 	}
2752 
2753 	if (success)
2754 		INIT_LIST_HEAD(pages);
2755 	/*
2756 	 * If we weren't successful in adding in new pages, warn and stop
2757 	 * tracing
2758 	 */
2759 	RB_WARN_ON(cpu_buffer, !success);
2760 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2761 
2762 	/* free pages if they weren't inserted */
2763 	if (!success) {
2764 		struct buffer_page *bpage, *tmp;
2765 		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
2766 					 list) {
2767 			list_del_init(&bpage->list);
2768 			free_buffer_page(bpage);
2769 		}
2770 	}
2771 	return success;
2772 }
2773 
rb_update_pages(struct ring_buffer_per_cpu * cpu_buffer)2774 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
2775 {
2776 	bool success;
2777 
2778 	if (cpu_buffer->nr_pages_to_update > 0)
2779 		success = rb_insert_pages(cpu_buffer);
2780 	else
2781 		success = rb_remove_pages(cpu_buffer,
2782 					-cpu_buffer->nr_pages_to_update);
2783 
2784 	if (success)
2785 		cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
2786 }
2787 
update_pages_handler(struct work_struct * work)2788 static void update_pages_handler(struct work_struct *work)
2789 {
2790 	struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
2791 			struct ring_buffer_per_cpu, update_pages_work);
2792 	rb_update_pages(cpu_buffer);
2793 	complete(&cpu_buffer->update_done);
2794 }
2795 
2796 /**
2797  * ring_buffer_resize - resize the ring buffer
2798  * @buffer: the buffer to resize.
2799  * @size: the new size.
2800  * @cpu_id: the cpu buffer to resize
2801  *
2802  * Minimum size is 2 * buffer->subbuf_size.
2803  *
2804  * Returns 0 on success and < 0 on failure.
2805  */
ring_buffer_resize(struct trace_buffer * buffer,unsigned long size,int cpu_id)2806 int ring_buffer_resize(struct trace_buffer *buffer, unsigned long size,
2807 			int cpu_id)
2808 {
2809 	struct ring_buffer_per_cpu *cpu_buffer;
2810 	unsigned long nr_pages;
2811 	int cpu, err;
2812 
2813 	/*
2814 	 * Always succeed at resizing a non-existent buffer:
2815 	 */
2816 	if (!buffer)
2817 		return 0;
2818 
2819 	/* Make sure the requested buffer exists */
2820 	if (cpu_id != RING_BUFFER_ALL_CPUS &&
2821 	    !cpumask_test_cpu(cpu_id, buffer->cpumask))
2822 		return 0;
2823 
2824 	nr_pages = DIV_ROUND_UP(size, buffer->subbuf_size);
2825 
2826 	/* we need a minimum of two pages */
2827 	if (nr_pages < 2)
2828 		nr_pages = 2;
2829 
2830 	/*
2831 	 * Keep CPUs from coming online while resizing to synchronize
2832 	 * with new per CPU buffers being created.
2833 	 */
2834 	guard(cpus_read_lock)();
2835 
2836 	/* prevent another thread from changing buffer sizes */
2837 	mutex_lock(&buffer->mutex);
2838 	atomic_inc(&buffer->resizing);
2839 
2840 	if (cpu_id == RING_BUFFER_ALL_CPUS) {
2841 		/*
2842 		 * Don't succeed if resizing is disabled, as a reader might be
2843 		 * manipulating the ring buffer and is expecting a sane state while
2844 		 * this is true.
2845 		 */
2846 		for_each_buffer_cpu(buffer, cpu) {
2847 			cpu_buffer = buffer->buffers[cpu];
2848 			if (atomic_read(&cpu_buffer->resize_disabled)) {
2849 				err = -EBUSY;
2850 				goto out_err_unlock;
2851 			}
2852 		}
2853 
2854 		/* calculate the pages to update */
2855 		for_each_buffer_cpu(buffer, cpu) {
2856 			cpu_buffer = buffer->buffers[cpu];
2857 
2858 			cpu_buffer->nr_pages_to_update = nr_pages -
2859 							cpu_buffer->nr_pages;
2860 			/*
2861 			 * nothing more to do for removing pages or no update
2862 			 */
2863 			if (cpu_buffer->nr_pages_to_update <= 0)
2864 				continue;
2865 			/*
2866 			 * to add pages, make sure all new pages can be
2867 			 * allocated without receiving ENOMEM
2868 			 */
2869 			INIT_LIST_HEAD(&cpu_buffer->new_pages);
2870 			if (__rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update,
2871 						&cpu_buffer->new_pages)) {
2872 				/* not enough memory for new pages */
2873 				err = -ENOMEM;
2874 				goto out_err;
2875 			}
2876 
2877 			cond_resched();
2878 		}
2879 
2880 		/*
2881 		 * Fire off all the required work handlers
2882 		 * We can't schedule on offline CPUs, but it's not necessary
2883 		 * since we can change their buffer sizes without any race.
2884 		 */
2885 		for_each_buffer_cpu(buffer, cpu) {
2886 			cpu_buffer = buffer->buffers[cpu];
2887 			if (!cpu_buffer->nr_pages_to_update)
2888 				continue;
2889 
2890 			/* Can't run something on an offline CPU. */
2891 			if (!cpu_online(cpu)) {
2892 				rb_update_pages(cpu_buffer);
2893 				cpu_buffer->nr_pages_to_update = 0;
2894 			} else {
2895 				/* Run directly if possible. */
2896 				migrate_disable();
2897 				if (cpu != smp_processor_id()) {
2898 					migrate_enable();
2899 					schedule_work_on(cpu,
2900 							 &cpu_buffer->update_pages_work);
2901 				} else {
2902 					update_pages_handler(&cpu_buffer->update_pages_work);
2903 					migrate_enable();
2904 				}
2905 			}
2906 		}
2907 
2908 		/* wait for all the updates to complete */
2909 		for_each_buffer_cpu(buffer, cpu) {
2910 			cpu_buffer = buffer->buffers[cpu];
2911 			if (!cpu_buffer->nr_pages_to_update)
2912 				continue;
2913 
2914 			if (cpu_online(cpu))
2915 				wait_for_completion(&cpu_buffer->update_done);
2916 			cpu_buffer->nr_pages_to_update = 0;
2917 		}
2918 
2919 	} else {
2920 		cpu_buffer = buffer->buffers[cpu_id];
2921 
2922 		if (nr_pages == cpu_buffer->nr_pages)
2923 			goto out;
2924 
2925 		/*
2926 		 * Don't succeed if resizing is disabled, as a reader might be
2927 		 * manipulating the ring buffer and is expecting a sane state while
2928 		 * this is true.
2929 		 */
2930 		if (atomic_read(&cpu_buffer->resize_disabled)) {
2931 			err = -EBUSY;
2932 			goto out_err_unlock;
2933 		}
2934 
2935 		cpu_buffer->nr_pages_to_update = nr_pages -
2936 						cpu_buffer->nr_pages;
2937 
2938 		INIT_LIST_HEAD(&cpu_buffer->new_pages);
2939 		if (cpu_buffer->nr_pages_to_update > 0 &&
2940 			__rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update,
2941 					    &cpu_buffer->new_pages)) {
2942 			err = -ENOMEM;
2943 			goto out_err;
2944 		}
2945 
2946 		/* Can't run something on an offline CPU. */
2947 		if (!cpu_online(cpu_id))
2948 			rb_update_pages(cpu_buffer);
2949 		else {
2950 			/* Run directly if possible. */
2951 			migrate_disable();
2952 			if (cpu_id == smp_processor_id()) {
2953 				rb_update_pages(cpu_buffer);
2954 				migrate_enable();
2955 			} else {
2956 				migrate_enable();
2957 				schedule_work_on(cpu_id,
2958 						 &cpu_buffer->update_pages_work);
2959 				wait_for_completion(&cpu_buffer->update_done);
2960 			}
2961 		}
2962 
2963 		cpu_buffer->nr_pages_to_update = 0;
2964 	}
2965 
2966  out:
2967 	/*
2968 	 * The ring buffer resize can happen with the ring buffer
2969 	 * enabled, so that the update disturbs the tracing as little
2970 	 * as possible. But if the buffer is disabled, we do not need
2971 	 * to worry about that, and we can take the time to verify
2972 	 * that the buffer is not corrupt.
2973 	 */
2974 	if (atomic_read(&buffer->record_disabled)) {
2975 		atomic_inc(&buffer->record_disabled);
2976 		/*
2977 		 * Even though the buffer was disabled, we must make sure
2978 		 * that it is truly disabled before calling rb_check_pages.
2979 		 * There could have been a race between checking
2980 		 * record_disable and incrementing it.
2981 		 */
2982 		synchronize_rcu();
2983 		for_each_buffer_cpu(buffer, cpu) {
2984 			cpu_buffer = buffer->buffers[cpu];
2985 			rb_check_pages(cpu_buffer);
2986 		}
2987 		atomic_dec(&buffer->record_disabled);
2988 	}
2989 
2990 	atomic_dec(&buffer->resizing);
2991 	mutex_unlock(&buffer->mutex);
2992 	return 0;
2993 
2994  out_err:
2995 	for_each_buffer_cpu(buffer, cpu) {
2996 		struct buffer_page *bpage, *tmp;
2997 
2998 		cpu_buffer = buffer->buffers[cpu];
2999 		cpu_buffer->nr_pages_to_update = 0;
3000 
3001 		if (list_empty(&cpu_buffer->new_pages))
3002 			continue;
3003 
3004 		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
3005 					list) {
3006 			list_del_init(&bpage->list);
3007 			free_buffer_page(bpage);
3008 		}
3009 	}
3010  out_err_unlock:
3011 	atomic_dec(&buffer->resizing);
3012 	mutex_unlock(&buffer->mutex);
3013 	return err;
3014 }
3015 EXPORT_SYMBOL_GPL(ring_buffer_resize);
3016 
ring_buffer_change_overwrite(struct trace_buffer * buffer,int val)3017 void ring_buffer_change_overwrite(struct trace_buffer *buffer, int val)
3018 {
3019 	mutex_lock(&buffer->mutex);
3020 	if (val)
3021 		buffer->flags |= RB_FL_OVERWRITE;
3022 	else
3023 		buffer->flags &= ~RB_FL_OVERWRITE;
3024 	mutex_unlock(&buffer->mutex);
3025 }
3026 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
3027 
__rb_page_index(struct buffer_page * bpage,unsigned index)3028 static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
3029 {
3030 	return bpage->page->data + index;
3031 }
3032 
3033 static __always_inline struct ring_buffer_event *
rb_reader_event(struct ring_buffer_per_cpu * cpu_buffer)3034 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
3035 {
3036 	return __rb_page_index(cpu_buffer->reader_page,
3037 			       cpu_buffer->reader_page->read);
3038 }
3039 
3040 static struct ring_buffer_event *
rb_iter_head_event(struct ring_buffer_iter * iter)3041 rb_iter_head_event(struct ring_buffer_iter *iter)
3042 {
3043 	struct ring_buffer_event *event;
3044 	struct buffer_page *iter_head_page = iter->head_page;
3045 	unsigned long commit;
3046 	unsigned length;
3047 
3048 	if (iter->head != iter->next_event)
3049 		return iter->event;
3050 
3051 	/*
3052 	 * When the writer goes across pages, it issues a cmpxchg which
3053 	 * is a mb(), which will synchronize with the rmb here.
3054 	 * (see rb_tail_page_update() and __rb_reserve_next())
3055 	 */
3056 	commit = rb_page_commit(iter_head_page);
3057 	smp_rmb();
3058 
3059 	/* An event needs to be at least 8 bytes in size */
3060 	if (iter->head > commit - 8)
3061 		goto reset;
3062 
3063 	event = __rb_page_index(iter_head_page, iter->head);
3064 	length = rb_event_length(event);
3065 
3066 	/*
3067 	 * READ_ONCE() doesn't work on functions and we don't want the
3068 	 * compiler doing any crazy optimizations with length.
3069 	 */
3070 	barrier();
3071 
3072 	if ((iter->head + length) > commit || length > iter->event_size)
3073 		/* Writer corrupted the read? */
3074 		goto reset;
3075 
3076 	memcpy(iter->event, event, length);
3077 	/*
3078 	 * If the page stamp is still the same after this rmb() then the
3079 	 * event was safely copied without the writer entering the page.
3080 	 */
3081 	smp_rmb();
3082 
3083 	/* Make sure the page didn't change since we read this */
3084 	if (iter->page_stamp != iter_head_page->page->time_stamp ||
3085 	    commit > rb_page_commit(iter_head_page))
3086 		goto reset;
3087 
3088 	iter->next_event = iter->head + length;
3089 	return iter->event;
3090  reset:
3091 	/* Reset to the beginning */
3092 	iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
3093 	iter->head = 0;
3094 	iter->next_event = 0;
3095 	iter->missed_events = 1;
3096 	return NULL;
3097 }
3098 
3099 /* Size is determined by what has been committed */
rb_page_size(struct buffer_page * bpage)3100 static __always_inline unsigned rb_page_size(struct buffer_page *bpage)
3101 {
3102 	return rb_page_commit(bpage) & ~RB_MISSED_MASK;
3103 }
3104 
3105 static __always_inline unsigned
rb_commit_index(struct ring_buffer_per_cpu * cpu_buffer)3106 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
3107 {
3108 	return rb_page_commit(cpu_buffer->commit_page);
3109 }
3110 
3111 static __always_inline unsigned
rb_event_index(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event)3112 rb_event_index(struct ring_buffer_per_cpu *cpu_buffer, struct ring_buffer_event *event)
3113 {
3114 	unsigned long addr = (unsigned long)event;
3115 
3116 	addr &= (PAGE_SIZE << cpu_buffer->buffer->subbuf_order) - 1;
3117 
3118 	return addr - BUF_PAGE_HDR_SIZE;
3119 }
3120 
rb_inc_iter(struct ring_buffer_iter * iter)3121 static void rb_inc_iter(struct ring_buffer_iter *iter)
3122 {
3123 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3124 
3125 	/*
3126 	 * The iterator could be on the reader page (it starts there).
3127 	 * But the head could have moved, since the reader was
3128 	 * found. Check for this case and assign the iterator
3129 	 * to the head page instead of next.
3130 	 */
3131 	if (iter->head_page == cpu_buffer->reader_page)
3132 		iter->head_page = rb_set_head_page(cpu_buffer);
3133 	else
3134 		rb_inc_page(&iter->head_page);
3135 
3136 	iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
3137 	iter->head = 0;
3138 	iter->next_event = 0;
3139 }
3140 
3141 /* Return the index into the sub-buffers for a given sub-buffer */
rb_meta_subbuf_idx(struct ring_buffer_meta * meta,void * subbuf)3142 static int rb_meta_subbuf_idx(struct ring_buffer_meta *meta, void *subbuf)
3143 {
3144 	void *subbuf_array;
3145 
3146 	subbuf_array = (void *)meta + sizeof(int) * meta->nr_subbufs;
3147 	subbuf_array = (void *)ALIGN((unsigned long)subbuf_array, meta->subbuf_size);
3148 	return (subbuf - subbuf_array) / meta->subbuf_size;
3149 }
3150 
rb_update_meta_head(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * next_page)3151 static void rb_update_meta_head(struct ring_buffer_per_cpu *cpu_buffer,
3152 				struct buffer_page *next_page)
3153 {
3154 	struct ring_buffer_meta *meta = cpu_buffer->ring_meta;
3155 	unsigned long old_head = (unsigned long)next_page->page;
3156 	unsigned long new_head;
3157 
3158 	rb_inc_page(&next_page);
3159 	new_head = (unsigned long)next_page->page;
3160 
3161 	/*
3162 	 * Only move it forward once, if something else came in and
3163 	 * moved it forward, then we don't want to touch it.
3164 	 */
3165 	(void)cmpxchg(&meta->head_buffer, old_head, new_head);
3166 }
3167 
rb_update_meta_reader(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * reader)3168 static void rb_update_meta_reader(struct ring_buffer_per_cpu *cpu_buffer,
3169 				  struct buffer_page *reader)
3170 {
3171 	struct ring_buffer_meta *meta = cpu_buffer->ring_meta;
3172 	void *old_reader = cpu_buffer->reader_page->page;
3173 	void *new_reader = reader->page;
3174 	int id;
3175 
3176 	id = reader->id;
3177 	cpu_buffer->reader_page->id = id;
3178 	reader->id = 0;
3179 
3180 	meta->buffers[0] = rb_meta_subbuf_idx(meta, new_reader);
3181 	meta->buffers[id] = rb_meta_subbuf_idx(meta, old_reader);
3182 
3183 	/* The head pointer is the one after the reader */
3184 	rb_update_meta_head(cpu_buffer, reader);
3185 }
3186 
3187 /*
3188  * rb_handle_head_page - writer hit the head page
3189  *
3190  * Returns: +1 to retry page
3191  *           0 to continue
3192  *          -1 on error
3193  */
3194 static int
rb_handle_head_page(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * tail_page,struct buffer_page * next_page)3195 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
3196 		    struct buffer_page *tail_page,
3197 		    struct buffer_page *next_page)
3198 {
3199 	struct buffer_page *new_head;
3200 	int entries;
3201 	int type;
3202 	int ret;
3203 
3204 	entries = rb_page_entries(next_page);
3205 
3206 	/*
3207 	 * The hard part is here. We need to move the head
3208 	 * forward, and protect against both readers on
3209 	 * other CPUs and writers coming in via interrupts.
3210 	 */
3211 	type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
3212 				       RB_PAGE_HEAD);
3213 
3214 	/*
3215 	 * type can be one of four:
3216 	 *  NORMAL - an interrupt already moved it for us
3217 	 *  HEAD   - we are the first to get here.
3218 	 *  UPDATE - we are the interrupt interrupting
3219 	 *           a current move.
3220 	 *  MOVED  - a reader on another CPU moved the next
3221 	 *           pointer to its reader page. Give up
3222 	 *           and try again.
3223 	 */
3224 
3225 	switch (type) {
3226 	case RB_PAGE_HEAD:
3227 		/*
3228 		 * We changed the head to UPDATE, thus
3229 		 * it is our responsibility to update
3230 		 * the counters.
3231 		 */
3232 		local_add(entries, &cpu_buffer->overrun);
3233 		local_sub(rb_page_commit(next_page), &cpu_buffer->entries_bytes);
3234 		local_inc(&cpu_buffer->pages_lost);
3235 
3236 		if (cpu_buffer->ring_meta)
3237 			rb_update_meta_head(cpu_buffer, next_page);
3238 		/*
3239 		 * The entries will be zeroed out when we move the
3240 		 * tail page.
3241 		 */
3242 
3243 		/* still more to do */
3244 		break;
3245 
3246 	case RB_PAGE_UPDATE:
3247 		/*
3248 		 * This is an interrupt that interrupt the
3249 		 * previous update. Still more to do.
3250 		 */
3251 		break;
3252 	case RB_PAGE_NORMAL:
3253 		/*
3254 		 * An interrupt came in before the update
3255 		 * and processed this for us.
3256 		 * Nothing left to do.
3257 		 */
3258 		return 1;
3259 	case RB_PAGE_MOVED:
3260 		/*
3261 		 * The reader is on another CPU and just did
3262 		 * a swap with our next_page.
3263 		 * Try again.
3264 		 */
3265 		return 1;
3266 	default:
3267 		RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
3268 		return -1;
3269 	}
3270 
3271 	/*
3272 	 * Now that we are here, the old head pointer is
3273 	 * set to UPDATE. This will keep the reader from
3274 	 * swapping the head page with the reader page.
3275 	 * The reader (on another CPU) will spin till
3276 	 * we are finished.
3277 	 *
3278 	 * We just need to protect against interrupts
3279 	 * doing the job. We will set the next pointer
3280 	 * to HEAD. After that, we set the old pointer
3281 	 * to NORMAL, but only if it was HEAD before.
3282 	 * otherwise we are an interrupt, and only
3283 	 * want the outer most commit to reset it.
3284 	 */
3285 	new_head = next_page;
3286 	rb_inc_page(&new_head);
3287 
3288 	ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
3289 				    RB_PAGE_NORMAL);
3290 
3291 	/*
3292 	 * Valid returns are:
3293 	 *  HEAD   - an interrupt came in and already set it.
3294 	 *  NORMAL - One of two things:
3295 	 *            1) We really set it.
3296 	 *            2) A bunch of interrupts came in and moved
3297 	 *               the page forward again.
3298 	 */
3299 	switch (ret) {
3300 	case RB_PAGE_HEAD:
3301 	case RB_PAGE_NORMAL:
3302 		/* OK */
3303 		break;
3304 	default:
3305 		RB_WARN_ON(cpu_buffer, 1);
3306 		return -1;
3307 	}
3308 
3309 	/*
3310 	 * It is possible that an interrupt came in,
3311 	 * set the head up, then more interrupts came in
3312 	 * and moved it again. When we get back here,
3313 	 * the page would have been set to NORMAL but we
3314 	 * just set it back to HEAD.
3315 	 *
3316 	 * How do you detect this? Well, if that happened
3317 	 * the tail page would have moved.
3318 	 */
3319 	if (ret == RB_PAGE_NORMAL) {
3320 		struct buffer_page *buffer_tail_page;
3321 
3322 		buffer_tail_page = READ_ONCE(cpu_buffer->tail_page);
3323 		/*
3324 		 * If the tail had moved passed next, then we need
3325 		 * to reset the pointer.
3326 		 */
3327 		if (buffer_tail_page != tail_page &&
3328 		    buffer_tail_page != next_page)
3329 			rb_head_page_set_normal(cpu_buffer, new_head,
3330 						next_page,
3331 						RB_PAGE_HEAD);
3332 	}
3333 
3334 	/*
3335 	 * If this was the outer most commit (the one that
3336 	 * changed the original pointer from HEAD to UPDATE),
3337 	 * then it is up to us to reset it to NORMAL.
3338 	 */
3339 	if (type == RB_PAGE_HEAD) {
3340 		ret = rb_head_page_set_normal(cpu_buffer, next_page,
3341 					      tail_page,
3342 					      RB_PAGE_UPDATE);
3343 		if (RB_WARN_ON(cpu_buffer,
3344 			       ret != RB_PAGE_UPDATE))
3345 			return -1;
3346 	}
3347 
3348 	return 0;
3349 }
3350 
3351 static inline void
rb_reset_tail(struct ring_buffer_per_cpu * cpu_buffer,unsigned long tail,struct rb_event_info * info)3352 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
3353 	      unsigned long tail, struct rb_event_info *info)
3354 {
3355 	unsigned long bsize = READ_ONCE(cpu_buffer->buffer->subbuf_size);
3356 	struct buffer_page *tail_page = info->tail_page;
3357 	struct ring_buffer_event *event;
3358 	unsigned long length = info->length;
3359 
3360 	/*
3361 	 * Only the event that crossed the page boundary
3362 	 * must fill the old tail_page with padding.
3363 	 */
3364 	if (tail >= bsize) {
3365 		/*
3366 		 * If the page was filled, then we still need
3367 		 * to update the real_end. Reset it to zero
3368 		 * and the reader will ignore it.
3369 		 */
3370 		if (tail == bsize)
3371 			tail_page->real_end = 0;
3372 
3373 		local_sub(length, &tail_page->write);
3374 		return;
3375 	}
3376 
3377 	event = __rb_page_index(tail_page, tail);
3378 
3379 	/*
3380 	 * Save the original length to the meta data.
3381 	 * This will be used by the reader to add lost event
3382 	 * counter.
3383 	 */
3384 	tail_page->real_end = tail;
3385 
3386 	/*
3387 	 * If this event is bigger than the minimum size, then
3388 	 * we need to be careful that we don't subtract the
3389 	 * write counter enough to allow another writer to slip
3390 	 * in on this page.
3391 	 * We put in a discarded commit instead, to make sure
3392 	 * that this space is not used again, and this space will
3393 	 * not be accounted into 'entries_bytes'.
3394 	 *
3395 	 * If we are less than the minimum size, we don't need to
3396 	 * worry about it.
3397 	 */
3398 	if (tail > (bsize - RB_EVNT_MIN_SIZE)) {
3399 		/* No room for any events */
3400 
3401 		/* Mark the rest of the page with padding */
3402 		rb_event_set_padding(event);
3403 
3404 		/* Make sure the padding is visible before the write update */
3405 		smp_wmb();
3406 
3407 		/* Set the write back to the previous setting */
3408 		local_sub(length, &tail_page->write);
3409 		return;
3410 	}
3411 
3412 	/* Put in a discarded event */
3413 	event->array[0] = (bsize - tail) - RB_EVNT_HDR_SIZE;
3414 	event->type_len = RINGBUF_TYPE_PADDING;
3415 	/* time delta must be non zero */
3416 	event->time_delta = 1;
3417 
3418 	/* account for padding bytes */
3419 	local_add(bsize - tail, &cpu_buffer->entries_bytes);
3420 
3421 	/* Make sure the padding is visible before the tail_page->write update */
3422 	smp_wmb();
3423 
3424 	/* Set write to end of buffer */
3425 	length = (tail + length) - bsize;
3426 	local_sub(length, &tail_page->write);
3427 }
3428 
3429 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer);
3430 
3431 /*
3432  * This is the slow path, force gcc not to inline it.
3433  */
3434 static noinline struct ring_buffer_event *
rb_move_tail(struct ring_buffer_per_cpu * cpu_buffer,unsigned long tail,struct rb_event_info * info)3435 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
3436 	     unsigned long tail, struct rb_event_info *info)
3437 {
3438 	struct buffer_page *tail_page = info->tail_page;
3439 	struct buffer_page *commit_page = cpu_buffer->commit_page;
3440 	struct trace_buffer *buffer = cpu_buffer->buffer;
3441 	struct buffer_page *next_page;
3442 	int ret;
3443 
3444 	next_page = tail_page;
3445 
3446 	rb_inc_page(&next_page);
3447 
3448 	/*
3449 	 * If for some reason, we had an interrupt storm that made
3450 	 * it all the way around the buffer, bail, and warn
3451 	 * about it.
3452 	 */
3453 	if (unlikely(next_page == commit_page)) {
3454 		local_inc(&cpu_buffer->commit_overrun);
3455 		goto out_reset;
3456 	}
3457 
3458 	/*
3459 	 * This is where the fun begins!
3460 	 *
3461 	 * We are fighting against races between a reader that
3462 	 * could be on another CPU trying to swap its reader
3463 	 * page with the buffer head.
3464 	 *
3465 	 * We are also fighting against interrupts coming in and
3466 	 * moving the head or tail on us as well.
3467 	 *
3468 	 * If the next page is the head page then we have filled
3469 	 * the buffer, unless the commit page is still on the
3470 	 * reader page.
3471 	 */
3472 	if (rb_is_head_page(next_page, &tail_page->list)) {
3473 
3474 		/*
3475 		 * If the commit is not on the reader page, then
3476 		 * move the header page.
3477 		 */
3478 		if (!rb_is_reader_page(cpu_buffer->commit_page)) {
3479 			/*
3480 			 * If we are not in overwrite mode,
3481 			 * this is easy, just stop here.
3482 			 */
3483 			if (!(buffer->flags & RB_FL_OVERWRITE)) {
3484 				local_inc(&cpu_buffer->dropped_events);
3485 				goto out_reset;
3486 			}
3487 
3488 			ret = rb_handle_head_page(cpu_buffer,
3489 						  tail_page,
3490 						  next_page);
3491 			if (ret < 0)
3492 				goto out_reset;
3493 			if (ret)
3494 				goto out_again;
3495 		} else {
3496 			/*
3497 			 * We need to be careful here too. The
3498 			 * commit page could still be on the reader
3499 			 * page. We could have a small buffer, and
3500 			 * have filled up the buffer with events
3501 			 * from interrupts and such, and wrapped.
3502 			 *
3503 			 * Note, if the tail page is also on the
3504 			 * reader_page, we let it move out.
3505 			 */
3506 			if (unlikely((cpu_buffer->commit_page !=
3507 				      cpu_buffer->tail_page) &&
3508 				     (cpu_buffer->commit_page ==
3509 				      cpu_buffer->reader_page))) {
3510 				local_inc(&cpu_buffer->commit_overrun);
3511 				goto out_reset;
3512 			}
3513 		}
3514 	}
3515 
3516 	rb_tail_page_update(cpu_buffer, tail_page, next_page);
3517 
3518  out_again:
3519 
3520 	rb_reset_tail(cpu_buffer, tail, info);
3521 
3522 	/* Commit what we have for now. */
3523 	rb_end_commit(cpu_buffer);
3524 	/* rb_end_commit() decs committing */
3525 	local_inc(&cpu_buffer->committing);
3526 
3527 	/* fail and let the caller try again */
3528 	return ERR_PTR(-EAGAIN);
3529 
3530  out_reset:
3531 	/* reset write */
3532 	rb_reset_tail(cpu_buffer, tail, info);
3533 
3534 	return NULL;
3535 }
3536 
3537 /* Slow path */
3538 static struct ring_buffer_event *
rb_add_time_stamp(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event,u64 delta,bool abs)3539 rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3540 		  struct ring_buffer_event *event, u64 delta, bool abs)
3541 {
3542 	if (abs)
3543 		event->type_len = RINGBUF_TYPE_TIME_STAMP;
3544 	else
3545 		event->type_len = RINGBUF_TYPE_TIME_EXTEND;
3546 
3547 	/* Not the first event on the page, or not delta? */
3548 	if (abs || rb_event_index(cpu_buffer, event)) {
3549 		event->time_delta = delta & TS_MASK;
3550 		event->array[0] = delta >> TS_SHIFT;
3551 	} else {
3552 		/* nope, just zero it */
3553 		event->time_delta = 0;
3554 		event->array[0] = 0;
3555 	}
3556 
3557 	return skip_time_extend(event);
3558 }
3559 
3560 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
sched_clock_stable(void)3561 static inline bool sched_clock_stable(void)
3562 {
3563 	return true;
3564 }
3565 #endif
3566 
3567 static void
rb_check_timestamp(struct ring_buffer_per_cpu * cpu_buffer,struct rb_event_info * info)3568 rb_check_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
3569 		   struct rb_event_info *info)
3570 {
3571 	u64 write_stamp;
3572 
3573 	WARN_ONCE(1, "Delta way too big! %llu ts=%llu before=%llu after=%llu write stamp=%llu\n%s",
3574 		  (unsigned long long)info->delta,
3575 		  (unsigned long long)info->ts,
3576 		  (unsigned long long)info->before,
3577 		  (unsigned long long)info->after,
3578 		  (unsigned long long)({rb_time_read(&cpu_buffer->write_stamp, &write_stamp); write_stamp;}),
3579 		  sched_clock_stable() ? "" :
3580 		  "If you just came from a suspend/resume,\n"
3581 		  "please switch to the trace global clock:\n"
3582 		  "  echo global > /sys/kernel/tracing/trace_clock\n"
3583 		  "or add trace_clock=global to the kernel command line\n");
3584 }
3585 
rb_add_timestamp(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event ** event,struct rb_event_info * info,u64 * delta,unsigned int * length)3586 static void rb_add_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
3587 				      struct ring_buffer_event **event,
3588 				      struct rb_event_info *info,
3589 				      u64 *delta,
3590 				      unsigned int *length)
3591 {
3592 	bool abs = info->add_timestamp &
3593 		(RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE);
3594 
3595 	if (unlikely(info->delta > (1ULL << 59))) {
3596 		/*
3597 		 * Some timers can use more than 59 bits, and when a timestamp
3598 		 * is added to the buffer, it will lose those bits.
3599 		 */
3600 		if (abs && (info->ts & TS_MSB)) {
3601 			info->delta &= ABS_TS_MASK;
3602 
3603 		/* did the clock go backwards */
3604 		} else if (info->before == info->after && info->before > info->ts) {
3605 			/* not interrupted */
3606 			static int once;
3607 
3608 			/*
3609 			 * This is possible with a recalibrating of the TSC.
3610 			 * Do not produce a call stack, but just report it.
3611 			 */
3612 			if (!once) {
3613 				once++;
3614 				pr_warn("Ring buffer clock went backwards: %llu -> %llu\n",
3615 					info->before, info->ts);
3616 			}
3617 		} else
3618 			rb_check_timestamp(cpu_buffer, info);
3619 		if (!abs)
3620 			info->delta = 0;
3621 	}
3622 	*event = rb_add_time_stamp(cpu_buffer, *event, info->delta, abs);
3623 	*length -= RB_LEN_TIME_EXTEND;
3624 	*delta = 0;
3625 }
3626 
3627 /**
3628  * rb_update_event - update event type and data
3629  * @cpu_buffer: The per cpu buffer of the @event
3630  * @event: the event to update
3631  * @info: The info to update the @event with (contains length and delta)
3632  *
3633  * Update the type and data fields of the @event. The length
3634  * is the actual size that is written to the ring buffer,
3635  * and with this, we can determine what to place into the
3636  * data field.
3637  */
3638 static void
rb_update_event(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event,struct rb_event_info * info)3639 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
3640 		struct ring_buffer_event *event,
3641 		struct rb_event_info *info)
3642 {
3643 	unsigned length = info->length;
3644 	u64 delta = info->delta;
3645 	unsigned int nest = local_read(&cpu_buffer->committing) - 1;
3646 
3647 	if (!WARN_ON_ONCE(nest >= MAX_NEST))
3648 		cpu_buffer->event_stamp[nest] = info->ts;
3649 
3650 	/*
3651 	 * If we need to add a timestamp, then we
3652 	 * add it to the start of the reserved space.
3653 	 */
3654 	if (unlikely(info->add_timestamp))
3655 		rb_add_timestamp(cpu_buffer, &event, info, &delta, &length);
3656 
3657 	event->time_delta = delta;
3658 	length -= RB_EVNT_HDR_SIZE;
3659 	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
3660 		event->type_len = 0;
3661 		event->array[0] = length;
3662 	} else
3663 		event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
3664 }
3665 
rb_calculate_event_length(unsigned length)3666 static unsigned rb_calculate_event_length(unsigned length)
3667 {
3668 	struct ring_buffer_event event; /* Used only for sizeof array */
3669 
3670 	/* zero length can cause confusions */
3671 	if (!length)
3672 		length++;
3673 
3674 	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
3675 		length += sizeof(event.array[0]);
3676 
3677 	length += RB_EVNT_HDR_SIZE;
3678 	length = ALIGN(length, RB_ARCH_ALIGNMENT);
3679 
3680 	/*
3681 	 * In case the time delta is larger than the 27 bits for it
3682 	 * in the header, we need to add a timestamp. If another
3683 	 * event comes in when trying to discard this one to increase
3684 	 * the length, then the timestamp will be added in the allocated
3685 	 * space of this event. If length is bigger than the size needed
3686 	 * for the TIME_EXTEND, then padding has to be used. The events
3687 	 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
3688 	 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
3689 	 * As length is a multiple of 4, we only need to worry if it
3690 	 * is 12 (RB_LEN_TIME_EXTEND + 4).
3691 	 */
3692 	if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
3693 		length += RB_ALIGNMENT;
3694 
3695 	return length;
3696 }
3697 
3698 static inline bool
rb_try_to_discard(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event)3699 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
3700 		  struct ring_buffer_event *event)
3701 {
3702 	unsigned long new_index, old_index;
3703 	struct buffer_page *bpage;
3704 	unsigned long addr;
3705 
3706 	new_index = rb_event_index(cpu_buffer, event);
3707 	old_index = new_index + rb_event_ts_length(event);
3708 	addr = (unsigned long)event;
3709 	addr &= ~((PAGE_SIZE << cpu_buffer->buffer->subbuf_order) - 1);
3710 
3711 	bpage = READ_ONCE(cpu_buffer->tail_page);
3712 
3713 	/*
3714 	 * Make sure the tail_page is still the same and
3715 	 * the next write location is the end of this event
3716 	 */
3717 	if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
3718 		unsigned long write_mask =
3719 			local_read(&bpage->write) & ~RB_WRITE_MASK;
3720 		unsigned long event_length = rb_event_length(event);
3721 
3722 		/*
3723 		 * For the before_stamp to be different than the write_stamp
3724 		 * to make sure that the next event adds an absolute
3725 		 * value and does not rely on the saved write stamp, which
3726 		 * is now going to be bogus.
3727 		 *
3728 		 * By setting the before_stamp to zero, the next event
3729 		 * is not going to use the write_stamp and will instead
3730 		 * create an absolute timestamp. This means there's no
3731 		 * reason to update the wirte_stamp!
3732 		 */
3733 		rb_time_set(&cpu_buffer->before_stamp, 0);
3734 
3735 		/*
3736 		 * If an event were to come in now, it would see that the
3737 		 * write_stamp and the before_stamp are different, and assume
3738 		 * that this event just added itself before updating
3739 		 * the write stamp. The interrupting event will fix the
3740 		 * write stamp for us, and use an absolute timestamp.
3741 		 */
3742 
3743 		/*
3744 		 * This is on the tail page. It is possible that
3745 		 * a write could come in and move the tail page
3746 		 * and write to the next page. That is fine
3747 		 * because we just shorten what is on this page.
3748 		 */
3749 		old_index += write_mask;
3750 		new_index += write_mask;
3751 
3752 		/* caution: old_index gets updated on cmpxchg failure */
3753 		if (local_try_cmpxchg(&bpage->write, &old_index, new_index)) {
3754 			/* update counters */
3755 			local_sub(event_length, &cpu_buffer->entries_bytes);
3756 			return true;
3757 		}
3758 	}
3759 
3760 	/* could not discard */
3761 	return false;
3762 }
3763 
rb_start_commit(struct ring_buffer_per_cpu * cpu_buffer)3764 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
3765 {
3766 	local_inc(&cpu_buffer->committing);
3767 	local_inc(&cpu_buffer->commits);
3768 }
3769 
3770 static __always_inline void
rb_set_commit_to_write(struct ring_buffer_per_cpu * cpu_buffer)3771 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
3772 {
3773 	unsigned long max_count;
3774 
3775 	/*
3776 	 * We only race with interrupts and NMIs on this CPU.
3777 	 * If we own the commit event, then we can commit
3778 	 * all others that interrupted us, since the interruptions
3779 	 * are in stack format (they finish before they come
3780 	 * back to us). This allows us to do a simple loop to
3781 	 * assign the commit to the tail.
3782 	 */
3783  again:
3784 	max_count = cpu_buffer->nr_pages * 100;
3785 
3786 	while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) {
3787 		if (RB_WARN_ON(cpu_buffer, !(--max_count)))
3788 			return;
3789 		if (RB_WARN_ON(cpu_buffer,
3790 			       rb_is_reader_page(cpu_buffer->tail_page)))
3791 			return;
3792 		/*
3793 		 * No need for a memory barrier here, as the update
3794 		 * of the tail_page did it for this page.
3795 		 */
3796 		local_set(&cpu_buffer->commit_page->page->commit,
3797 			  rb_page_write(cpu_buffer->commit_page));
3798 		rb_inc_page(&cpu_buffer->commit_page);
3799 		if (cpu_buffer->ring_meta) {
3800 			struct ring_buffer_meta *meta = cpu_buffer->ring_meta;
3801 			meta->commit_buffer = (unsigned long)cpu_buffer->commit_page->page;
3802 		}
3803 		/* add barrier to keep gcc from optimizing too much */
3804 		barrier();
3805 	}
3806 	while (rb_commit_index(cpu_buffer) !=
3807 	       rb_page_write(cpu_buffer->commit_page)) {
3808 
3809 		/* Make sure the readers see the content of what is committed. */
3810 		smp_wmb();
3811 		local_set(&cpu_buffer->commit_page->page->commit,
3812 			  rb_page_write(cpu_buffer->commit_page));
3813 		RB_WARN_ON(cpu_buffer,
3814 			   local_read(&cpu_buffer->commit_page->page->commit) &
3815 			   ~RB_WRITE_MASK);
3816 		barrier();
3817 	}
3818 
3819 	/* again, keep gcc from optimizing */
3820 	barrier();
3821 
3822 	/*
3823 	 * If an interrupt came in just after the first while loop
3824 	 * and pushed the tail page forward, we will be left with
3825 	 * a dangling commit that will never go forward.
3826 	 */
3827 	if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)))
3828 		goto again;
3829 }
3830 
rb_end_commit(struct ring_buffer_per_cpu * cpu_buffer)3831 static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
3832 {
3833 	unsigned long commits;
3834 
3835 	if (RB_WARN_ON(cpu_buffer,
3836 		       !local_read(&cpu_buffer->committing)))
3837 		return;
3838 
3839  again:
3840 	commits = local_read(&cpu_buffer->commits);
3841 	/* synchronize with interrupts */
3842 	barrier();
3843 	if (local_read(&cpu_buffer->committing) == 1)
3844 		rb_set_commit_to_write(cpu_buffer);
3845 
3846 	local_dec(&cpu_buffer->committing);
3847 
3848 	/* synchronize with interrupts */
3849 	barrier();
3850 
3851 	/*
3852 	 * Need to account for interrupts coming in between the
3853 	 * updating of the commit page and the clearing of the
3854 	 * committing counter.
3855 	 */
3856 	if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
3857 	    !local_read(&cpu_buffer->committing)) {
3858 		local_inc(&cpu_buffer->committing);
3859 		goto again;
3860 	}
3861 }
3862 
rb_event_discard(struct ring_buffer_event * event)3863 static inline void rb_event_discard(struct ring_buffer_event *event)
3864 {
3865 	if (extended_time(event))
3866 		event = skip_time_extend(event);
3867 
3868 	/* array[0] holds the actual length for the discarded event */
3869 	event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
3870 	event->type_len = RINGBUF_TYPE_PADDING;
3871 	/* time delta must be non zero */
3872 	if (!event->time_delta)
3873 		event->time_delta = 1;
3874 }
3875 
rb_commit(struct ring_buffer_per_cpu * cpu_buffer)3876 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer)
3877 {
3878 	local_inc(&cpu_buffer->entries);
3879 	rb_end_commit(cpu_buffer);
3880 }
3881 
3882 static __always_inline void
rb_wakeups(struct trace_buffer * buffer,struct ring_buffer_per_cpu * cpu_buffer)3883 rb_wakeups(struct trace_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
3884 {
3885 	if (buffer->irq_work.waiters_pending) {
3886 		buffer->irq_work.waiters_pending = false;
3887 		/* irq_work_queue() supplies it's own memory barriers */
3888 		irq_work_queue(&buffer->irq_work.work);
3889 	}
3890 
3891 	if (cpu_buffer->irq_work.waiters_pending) {
3892 		cpu_buffer->irq_work.waiters_pending = false;
3893 		/* irq_work_queue() supplies it's own memory barriers */
3894 		irq_work_queue(&cpu_buffer->irq_work.work);
3895 	}
3896 
3897 	if (cpu_buffer->last_pages_touch == local_read(&cpu_buffer->pages_touched))
3898 		return;
3899 
3900 	if (cpu_buffer->reader_page == cpu_buffer->commit_page)
3901 		return;
3902 
3903 	if (!cpu_buffer->irq_work.full_waiters_pending)
3904 		return;
3905 
3906 	cpu_buffer->last_pages_touch = local_read(&cpu_buffer->pages_touched);
3907 
3908 	if (!full_hit(buffer, cpu_buffer->cpu, cpu_buffer->shortest_full))
3909 		return;
3910 
3911 	cpu_buffer->irq_work.wakeup_full = true;
3912 	cpu_buffer->irq_work.full_waiters_pending = false;
3913 	/* irq_work_queue() supplies it's own memory barriers */
3914 	irq_work_queue(&cpu_buffer->irq_work.work);
3915 }
3916 
3917 #ifdef CONFIG_RING_BUFFER_RECORD_RECURSION
3918 # define do_ring_buffer_record_recursion()	\
3919 	do_ftrace_record_recursion(_THIS_IP_, _RET_IP_)
3920 #else
3921 # define do_ring_buffer_record_recursion() do { } while (0)
3922 #endif
3923 
3924 /*
3925  * The lock and unlock are done within a preempt disable section.
3926  * The current_context per_cpu variable can only be modified
3927  * by the current task between lock and unlock. But it can
3928  * be modified more than once via an interrupt. To pass this
3929  * information from the lock to the unlock without having to
3930  * access the 'in_interrupt()' functions again (which do show
3931  * a bit of overhead in something as critical as function tracing,
3932  * we use a bitmask trick.
3933  *
3934  *  bit 1 =  NMI context
3935  *  bit 2 =  IRQ context
3936  *  bit 3 =  SoftIRQ context
3937  *  bit 4 =  normal context.
3938  *
3939  * This works because this is the order of contexts that can
3940  * preempt other contexts. A SoftIRQ never preempts an IRQ
3941  * context.
3942  *
3943  * When the context is determined, the corresponding bit is
3944  * checked and set (if it was set, then a recursion of that context
3945  * happened).
3946  *
3947  * On unlock, we need to clear this bit. To do so, just subtract
3948  * 1 from the current_context and AND it to itself.
3949  *
3950  * (binary)
3951  *  101 - 1 = 100
3952  *  101 & 100 = 100 (clearing bit zero)
3953  *
3954  *  1010 - 1 = 1001
3955  *  1010 & 1001 = 1000 (clearing bit 1)
3956  *
3957  * The least significant bit can be cleared this way, and it
3958  * just so happens that it is the same bit corresponding to
3959  * the current context.
3960  *
3961  * Now the TRANSITION bit breaks the above slightly. The TRANSITION bit
3962  * is set when a recursion is detected at the current context, and if
3963  * the TRANSITION bit is already set, it will fail the recursion.
3964  * This is needed because there's a lag between the changing of
3965  * interrupt context and updating the preempt count. In this case,
3966  * a false positive will be found. To handle this, one extra recursion
3967  * is allowed, and this is done by the TRANSITION bit. If the TRANSITION
3968  * bit is already set, then it is considered a recursion and the function
3969  * ends. Otherwise, the TRANSITION bit is set, and that bit is returned.
3970  *
3971  * On the trace_recursive_unlock(), the TRANSITION bit will be the first
3972  * to be cleared. Even if it wasn't the context that set it. That is,
3973  * if an interrupt comes in while NORMAL bit is set and the ring buffer
3974  * is called before preempt_count() is updated, since the check will
3975  * be on the NORMAL bit, the TRANSITION bit will then be set. If an
3976  * NMI then comes in, it will set the NMI bit, but when the NMI code
3977  * does the trace_recursive_unlock() it will clear the TRANSITION bit
3978  * and leave the NMI bit set. But this is fine, because the interrupt
3979  * code that set the TRANSITION bit will then clear the NMI bit when it
3980  * calls trace_recursive_unlock(). If another NMI comes in, it will
3981  * set the TRANSITION bit and continue.
3982  *
3983  * Note: The TRANSITION bit only handles a single transition between context.
3984  */
3985 
3986 static __always_inline bool
trace_recursive_lock(struct ring_buffer_per_cpu * cpu_buffer)3987 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
3988 {
3989 	unsigned int val = cpu_buffer->current_context;
3990 	int bit = interrupt_context_level();
3991 
3992 	bit = RB_CTX_NORMAL - bit;
3993 
3994 	if (unlikely(val & (1 << (bit + cpu_buffer->nest)))) {
3995 		/*
3996 		 * It is possible that this was called by transitioning
3997 		 * between interrupt context, and preempt_count() has not
3998 		 * been updated yet. In this case, use the TRANSITION bit.
3999 		 */
4000 		bit = RB_CTX_TRANSITION;
4001 		if (val & (1 << (bit + cpu_buffer->nest))) {
4002 			do_ring_buffer_record_recursion();
4003 			return true;
4004 		}
4005 	}
4006 
4007 	val |= (1 << (bit + cpu_buffer->nest));
4008 	cpu_buffer->current_context = val;
4009 
4010 	return false;
4011 }
4012 
4013 static __always_inline void
trace_recursive_unlock(struct ring_buffer_per_cpu * cpu_buffer)4014 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
4015 {
4016 	cpu_buffer->current_context &=
4017 		cpu_buffer->current_context - (1 << cpu_buffer->nest);
4018 }
4019 
4020 /* The recursive locking above uses 5 bits */
4021 #define NESTED_BITS 5
4022 
4023 /**
4024  * ring_buffer_nest_start - Allow to trace while nested
4025  * @buffer: The ring buffer to modify
4026  *
4027  * The ring buffer has a safety mechanism to prevent recursion.
4028  * But there may be a case where a trace needs to be done while
4029  * tracing something else. In this case, calling this function
4030  * will allow this function to nest within a currently active
4031  * ring_buffer_lock_reserve().
4032  *
4033  * Call this function before calling another ring_buffer_lock_reserve() and
4034  * call ring_buffer_nest_end() after the nested ring_buffer_unlock_commit().
4035  */
ring_buffer_nest_start(struct trace_buffer * buffer)4036 void ring_buffer_nest_start(struct trace_buffer *buffer)
4037 {
4038 	struct ring_buffer_per_cpu *cpu_buffer;
4039 	int cpu;
4040 
4041 	/* Enabled by ring_buffer_nest_end() */
4042 	preempt_disable_notrace();
4043 	cpu = raw_smp_processor_id();
4044 	cpu_buffer = buffer->buffers[cpu];
4045 	/* This is the shift value for the above recursive locking */
4046 	cpu_buffer->nest += NESTED_BITS;
4047 }
4048 
4049 /**
4050  * ring_buffer_nest_end - Allow to trace while nested
4051  * @buffer: The ring buffer to modify
4052  *
4053  * Must be called after ring_buffer_nest_start() and after the
4054  * ring_buffer_unlock_commit().
4055  */
ring_buffer_nest_end(struct trace_buffer * buffer)4056 void ring_buffer_nest_end(struct trace_buffer *buffer)
4057 {
4058 	struct ring_buffer_per_cpu *cpu_buffer;
4059 	int cpu;
4060 
4061 	/* disabled by ring_buffer_nest_start() */
4062 	cpu = raw_smp_processor_id();
4063 	cpu_buffer = buffer->buffers[cpu];
4064 	/* This is the shift value for the above recursive locking */
4065 	cpu_buffer->nest -= NESTED_BITS;
4066 	preempt_enable_notrace();
4067 }
4068 
4069 /**
4070  * ring_buffer_unlock_commit - commit a reserved
4071  * @buffer: The buffer to commit to
4072  *
4073  * This commits the data to the ring buffer, and releases any locks held.
4074  *
4075  * Must be paired with ring_buffer_lock_reserve.
4076  */
ring_buffer_unlock_commit(struct trace_buffer * buffer)4077 int ring_buffer_unlock_commit(struct trace_buffer *buffer)
4078 {
4079 	struct ring_buffer_per_cpu *cpu_buffer;
4080 	int cpu = raw_smp_processor_id();
4081 
4082 	cpu_buffer = buffer->buffers[cpu];
4083 
4084 	rb_commit(cpu_buffer);
4085 
4086 	rb_wakeups(buffer, cpu_buffer);
4087 
4088 	trace_recursive_unlock(cpu_buffer);
4089 
4090 	preempt_enable_notrace();
4091 
4092 	return 0;
4093 }
4094 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
4095 
4096 /* Special value to validate all deltas on a page. */
4097 #define CHECK_FULL_PAGE		1L
4098 
4099 #ifdef CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS
4100 
show_irq_str(int bits)4101 static const char *show_irq_str(int bits)
4102 {
4103 	const char *type[] = {
4104 		".",	// 0
4105 		"s",	// 1
4106 		"h",	// 2
4107 		"Hs",	// 3
4108 		"n",	// 4
4109 		"Ns",	// 5
4110 		"Nh",	// 6
4111 		"NHs",	// 7
4112 	};
4113 
4114 	return type[bits];
4115 }
4116 
4117 /* Assume this is an trace event */
show_flags(struct ring_buffer_event * event)4118 static const char *show_flags(struct ring_buffer_event *event)
4119 {
4120 	struct trace_entry *entry;
4121 	int bits = 0;
4122 
4123 	if (rb_event_data_length(event) - RB_EVNT_HDR_SIZE < sizeof(*entry))
4124 		return "X";
4125 
4126 	entry = ring_buffer_event_data(event);
4127 
4128 	if (entry->flags & TRACE_FLAG_SOFTIRQ)
4129 		bits |= 1;
4130 
4131 	if (entry->flags & TRACE_FLAG_HARDIRQ)
4132 		bits |= 2;
4133 
4134 	if (entry->flags & TRACE_FLAG_NMI)
4135 		bits |= 4;
4136 
4137 	return show_irq_str(bits);
4138 }
4139 
show_irq(struct ring_buffer_event * event)4140 static const char *show_irq(struct ring_buffer_event *event)
4141 {
4142 	struct trace_entry *entry;
4143 
4144 	if (rb_event_data_length(event) - RB_EVNT_HDR_SIZE < sizeof(*entry))
4145 		return "";
4146 
4147 	entry = ring_buffer_event_data(event);
4148 	if (entry->flags & TRACE_FLAG_IRQS_OFF)
4149 		return "d";
4150 	return "";
4151 }
4152 
show_interrupt_level(void)4153 static const char *show_interrupt_level(void)
4154 {
4155 	unsigned long pc = preempt_count();
4156 	unsigned char level = 0;
4157 
4158 	if (pc & SOFTIRQ_OFFSET)
4159 		level |= 1;
4160 
4161 	if (pc & HARDIRQ_MASK)
4162 		level |= 2;
4163 
4164 	if (pc & NMI_MASK)
4165 		level |= 4;
4166 
4167 	return show_irq_str(level);
4168 }
4169 
dump_buffer_page(struct buffer_data_page * bpage,struct rb_event_info * info,unsigned long tail)4170 static void dump_buffer_page(struct buffer_data_page *bpage,
4171 			     struct rb_event_info *info,
4172 			     unsigned long tail)
4173 {
4174 	struct ring_buffer_event *event;
4175 	u64 ts, delta;
4176 	int e;
4177 
4178 	ts = bpage->time_stamp;
4179 	pr_warn("  [%lld] PAGE TIME STAMP\n", ts);
4180 
4181 	for (e = 0; e < tail; e += rb_event_length(event)) {
4182 
4183 		event = (struct ring_buffer_event *)(bpage->data + e);
4184 
4185 		switch (event->type_len) {
4186 
4187 		case RINGBUF_TYPE_TIME_EXTEND:
4188 			delta = rb_event_time_stamp(event);
4189 			ts += delta;
4190 			pr_warn(" 0x%x: [%lld] delta:%lld TIME EXTEND\n",
4191 				e, ts, delta);
4192 			break;
4193 
4194 		case RINGBUF_TYPE_TIME_STAMP:
4195 			delta = rb_event_time_stamp(event);
4196 			ts = rb_fix_abs_ts(delta, ts);
4197 			pr_warn(" 0x%x:  [%lld] absolute:%lld TIME STAMP\n",
4198 				e, ts, delta);
4199 			break;
4200 
4201 		case RINGBUF_TYPE_PADDING:
4202 			ts += event->time_delta;
4203 			pr_warn(" 0x%x:  [%lld] delta:%d PADDING\n",
4204 				e, ts, event->time_delta);
4205 			break;
4206 
4207 		case RINGBUF_TYPE_DATA:
4208 			ts += event->time_delta;
4209 			pr_warn(" 0x%x:  [%lld] delta:%d %s%s\n",
4210 				e, ts, event->time_delta,
4211 				show_flags(event), show_irq(event));
4212 			break;
4213 
4214 		default:
4215 			break;
4216 		}
4217 	}
4218 	pr_warn("expected end:0x%lx last event actually ended at:0x%x\n", tail, e);
4219 }
4220 
4221 static DEFINE_PER_CPU(atomic_t, checking);
4222 static atomic_t ts_dump;
4223 
4224 #define buffer_warn_return(fmt, ...)					\
4225 	do {								\
4226 		/* If another report is happening, ignore this one */	\
4227 		if (atomic_inc_return(&ts_dump) != 1) {			\
4228 			atomic_dec(&ts_dump);				\
4229 			goto out;					\
4230 		}							\
4231 		atomic_inc(&cpu_buffer->record_disabled);		\
4232 		pr_warn(fmt, ##__VA_ARGS__);				\
4233 		dump_buffer_page(bpage, info, tail);			\
4234 		atomic_dec(&ts_dump);					\
4235 		/* There's some cases in boot up that this can happen */ \
4236 		if (WARN_ON_ONCE(system_state != SYSTEM_BOOTING))	\
4237 			/* Do not re-enable checking */			\
4238 			return;						\
4239 	} while (0)
4240 
4241 /*
4242  * Check if the current event time stamp matches the deltas on
4243  * the buffer page.
4244  */
check_buffer(struct ring_buffer_per_cpu * cpu_buffer,struct rb_event_info * info,unsigned long tail)4245 static void check_buffer(struct ring_buffer_per_cpu *cpu_buffer,
4246 			 struct rb_event_info *info,
4247 			 unsigned long tail)
4248 {
4249 	struct buffer_data_page *bpage;
4250 	u64 ts, delta;
4251 	bool full = false;
4252 	int ret;
4253 
4254 	bpage = info->tail_page->page;
4255 
4256 	if (tail == CHECK_FULL_PAGE) {
4257 		full = true;
4258 		tail = local_read(&bpage->commit);
4259 	} else if (info->add_timestamp &
4260 		   (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE)) {
4261 		/* Ignore events with absolute time stamps */
4262 		return;
4263 	}
4264 
4265 	/*
4266 	 * Do not check the first event (skip possible extends too).
4267 	 * Also do not check if previous events have not been committed.
4268 	 */
4269 	if (tail <= 8 || tail > local_read(&bpage->commit))
4270 		return;
4271 
4272 	/*
4273 	 * If this interrupted another event,
4274 	 */
4275 	if (atomic_inc_return(this_cpu_ptr(&checking)) != 1)
4276 		goto out;
4277 
4278 	ret = rb_read_data_buffer(bpage, tail, cpu_buffer->cpu, &ts, &delta);
4279 	if (ret < 0) {
4280 		if (delta < ts) {
4281 			buffer_warn_return("[CPU: %d]ABSOLUTE TIME WENT BACKWARDS: last ts: %lld absolute ts: %lld\n",
4282 					   cpu_buffer->cpu, ts, delta);
4283 			goto out;
4284 		}
4285 	}
4286 	if ((full && ts > info->ts) ||
4287 	    (!full && ts + info->delta != info->ts)) {
4288 		buffer_warn_return("[CPU: %d]TIME DOES NOT MATCH expected:%lld actual:%lld delta:%lld before:%lld after:%lld%s context:%s\n",
4289 				   cpu_buffer->cpu,
4290 				   ts + info->delta, info->ts, info->delta,
4291 				   info->before, info->after,
4292 				   full ? " (full)" : "", show_interrupt_level());
4293 	}
4294 out:
4295 	atomic_dec(this_cpu_ptr(&checking));
4296 }
4297 #else
check_buffer(struct ring_buffer_per_cpu * cpu_buffer,struct rb_event_info * info,unsigned long tail)4298 static inline void check_buffer(struct ring_buffer_per_cpu *cpu_buffer,
4299 			 struct rb_event_info *info,
4300 			 unsigned long tail)
4301 {
4302 }
4303 #endif /* CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS */
4304 
4305 static struct ring_buffer_event *
__rb_reserve_next(struct ring_buffer_per_cpu * cpu_buffer,struct rb_event_info * info)4306 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
4307 		  struct rb_event_info *info)
4308 {
4309 	struct ring_buffer_event *event;
4310 	struct buffer_page *tail_page;
4311 	unsigned long tail, write, w;
4312 
4313 	/* Don't let the compiler play games with cpu_buffer->tail_page */
4314 	tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page);
4315 
4316  /*A*/	w = local_read(&tail_page->write) & RB_WRITE_MASK;
4317 	barrier();
4318 	rb_time_read(&cpu_buffer->before_stamp, &info->before);
4319 	rb_time_read(&cpu_buffer->write_stamp, &info->after);
4320 	barrier();
4321 	info->ts = rb_time_stamp(cpu_buffer->buffer);
4322 
4323 	if ((info->add_timestamp & RB_ADD_STAMP_ABSOLUTE)) {
4324 		info->delta = info->ts;
4325 	} else {
4326 		/*
4327 		 * If interrupting an event time update, we may need an
4328 		 * absolute timestamp.
4329 		 * Don't bother if this is the start of a new page (w == 0).
4330 		 */
4331 		if (!w) {
4332 			/* Use the sub-buffer timestamp */
4333 			info->delta = 0;
4334 		} else if (unlikely(info->before != info->after)) {
4335 			info->add_timestamp |= RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND;
4336 			info->length += RB_LEN_TIME_EXTEND;
4337 		} else {
4338 			info->delta = info->ts - info->after;
4339 			if (unlikely(test_time_stamp(info->delta))) {
4340 				info->add_timestamp |= RB_ADD_STAMP_EXTEND;
4341 				info->length += RB_LEN_TIME_EXTEND;
4342 			}
4343 		}
4344 	}
4345 
4346  /*B*/	rb_time_set(&cpu_buffer->before_stamp, info->ts);
4347 
4348  /*C*/	write = local_add_return(info->length, &tail_page->write);
4349 
4350 	/* set write to only the index of the write */
4351 	write &= RB_WRITE_MASK;
4352 
4353 	tail = write - info->length;
4354 
4355 	/* See if we shot pass the end of this buffer page */
4356 	if (unlikely(write > cpu_buffer->buffer->subbuf_size)) {
4357 		check_buffer(cpu_buffer, info, CHECK_FULL_PAGE);
4358 		return rb_move_tail(cpu_buffer, tail, info);
4359 	}
4360 
4361 	if (likely(tail == w)) {
4362 		/* Nothing interrupted us between A and C */
4363  /*D*/		rb_time_set(&cpu_buffer->write_stamp, info->ts);
4364 		/*
4365 		 * If something came in between C and D, the write stamp
4366 		 * may now not be in sync. But that's fine as the before_stamp
4367 		 * will be different and then next event will just be forced
4368 		 * to use an absolute timestamp.
4369 		 */
4370 		if (likely(!(info->add_timestamp &
4371 			     (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
4372 			/* This did not interrupt any time update */
4373 			info->delta = info->ts - info->after;
4374 		else
4375 			/* Just use full timestamp for interrupting event */
4376 			info->delta = info->ts;
4377 		check_buffer(cpu_buffer, info, tail);
4378 	} else {
4379 		u64 ts;
4380 		/* SLOW PATH - Interrupted between A and C */
4381 
4382 		/* Save the old before_stamp */
4383 		rb_time_read(&cpu_buffer->before_stamp, &info->before);
4384 
4385 		/*
4386 		 * Read a new timestamp and update the before_stamp to make
4387 		 * the next event after this one force using an absolute
4388 		 * timestamp. This is in case an interrupt were to come in
4389 		 * between E and F.
4390 		 */
4391 		ts = rb_time_stamp(cpu_buffer->buffer);
4392 		rb_time_set(&cpu_buffer->before_stamp, ts);
4393 
4394 		barrier();
4395  /*E*/		rb_time_read(&cpu_buffer->write_stamp, &info->after);
4396 		barrier();
4397  /*F*/		if (write == (local_read(&tail_page->write) & RB_WRITE_MASK) &&
4398 		    info->after == info->before && info->after < ts) {
4399 			/*
4400 			 * Nothing came after this event between C and F, it is
4401 			 * safe to use info->after for the delta as it
4402 			 * matched info->before and is still valid.
4403 			 */
4404 			info->delta = ts - info->after;
4405 		} else {
4406 			/*
4407 			 * Interrupted between C and F:
4408 			 * Lost the previous events time stamp. Just set the
4409 			 * delta to zero, and this will be the same time as
4410 			 * the event this event interrupted. And the events that
4411 			 * came after this will still be correct (as they would
4412 			 * have built their delta on the previous event.
4413 			 */
4414 			info->delta = 0;
4415 		}
4416 		info->ts = ts;
4417 		info->add_timestamp &= ~RB_ADD_STAMP_FORCE;
4418 	}
4419 
4420 	/*
4421 	 * If this is the first commit on the page, then it has the same
4422 	 * timestamp as the page itself.
4423 	 */
4424 	if (unlikely(!tail && !(info->add_timestamp &
4425 				(RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
4426 		info->delta = 0;
4427 
4428 	/* We reserved something on the buffer */
4429 
4430 	event = __rb_page_index(tail_page, tail);
4431 	rb_update_event(cpu_buffer, event, info);
4432 
4433 	local_inc(&tail_page->entries);
4434 
4435 	/*
4436 	 * If this is the first commit on the page, then update
4437 	 * its timestamp.
4438 	 */
4439 	if (unlikely(!tail))
4440 		tail_page->page->time_stamp = info->ts;
4441 
4442 	/* account for these added bytes */
4443 	local_add(info->length, &cpu_buffer->entries_bytes);
4444 
4445 	return event;
4446 }
4447 
4448 static __always_inline struct ring_buffer_event *
rb_reserve_next_event(struct trace_buffer * buffer,struct ring_buffer_per_cpu * cpu_buffer,unsigned long length)4449 rb_reserve_next_event(struct trace_buffer *buffer,
4450 		      struct ring_buffer_per_cpu *cpu_buffer,
4451 		      unsigned long length)
4452 {
4453 	struct ring_buffer_event *event;
4454 	struct rb_event_info info;
4455 	int nr_loops = 0;
4456 	int add_ts_default;
4457 
4458 	/*
4459 	 * ring buffer does cmpxchg as well as atomic64 operations
4460 	 * (which some archs use locking for atomic64), make sure this
4461 	 * is safe in NMI context
4462 	 */
4463 	if ((!IS_ENABLED(CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG) ||
4464 	     IS_ENABLED(CONFIG_GENERIC_ATOMIC64)) &&
4465 	    (unlikely(in_nmi()))) {
4466 		return NULL;
4467 	}
4468 
4469 	rb_start_commit(cpu_buffer);
4470 	/* The commit page can not change after this */
4471 
4472 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4473 	/*
4474 	 * Due to the ability to swap a cpu buffer from a buffer
4475 	 * it is possible it was swapped before we committed.
4476 	 * (committing stops a swap). We check for it here and
4477 	 * if it happened, we have to fail the write.
4478 	 */
4479 	barrier();
4480 	if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) {
4481 		local_dec(&cpu_buffer->committing);
4482 		local_dec(&cpu_buffer->commits);
4483 		return NULL;
4484 	}
4485 #endif
4486 
4487 	info.length = rb_calculate_event_length(length);
4488 
4489 	if (ring_buffer_time_stamp_abs(cpu_buffer->buffer)) {
4490 		add_ts_default = RB_ADD_STAMP_ABSOLUTE;
4491 		info.length += RB_LEN_TIME_EXTEND;
4492 		if (info.length > cpu_buffer->buffer->max_data_size)
4493 			goto out_fail;
4494 	} else {
4495 		add_ts_default = RB_ADD_STAMP_NONE;
4496 	}
4497 
4498  again:
4499 	info.add_timestamp = add_ts_default;
4500 	info.delta = 0;
4501 
4502 	/*
4503 	 * We allow for interrupts to reenter here and do a trace.
4504 	 * If one does, it will cause this original code to loop
4505 	 * back here. Even with heavy interrupts happening, this
4506 	 * should only happen a few times in a row. If this happens
4507 	 * 1000 times in a row, there must be either an interrupt
4508 	 * storm or we have something buggy.
4509 	 * Bail!
4510 	 */
4511 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
4512 		goto out_fail;
4513 
4514 	event = __rb_reserve_next(cpu_buffer, &info);
4515 
4516 	if (unlikely(PTR_ERR(event) == -EAGAIN)) {
4517 		if (info.add_timestamp & (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND))
4518 			info.length -= RB_LEN_TIME_EXTEND;
4519 		goto again;
4520 	}
4521 
4522 	if (likely(event))
4523 		return event;
4524  out_fail:
4525 	rb_end_commit(cpu_buffer);
4526 	return NULL;
4527 }
4528 
4529 /**
4530  * ring_buffer_lock_reserve - reserve a part of the buffer
4531  * @buffer: the ring buffer to reserve from
4532  * @length: the length of the data to reserve (excluding event header)
4533  *
4534  * Returns a reserved event on the ring buffer to copy directly to.
4535  * The user of this interface will need to get the body to write into
4536  * and can use the ring_buffer_event_data() interface.
4537  *
4538  * The length is the length of the data needed, not the event length
4539  * which also includes the event header.
4540  *
4541  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
4542  * If NULL is returned, then nothing has been allocated or locked.
4543  */
4544 struct ring_buffer_event *
ring_buffer_lock_reserve(struct trace_buffer * buffer,unsigned long length)4545 ring_buffer_lock_reserve(struct trace_buffer *buffer, unsigned long length)
4546 {
4547 	struct ring_buffer_per_cpu *cpu_buffer;
4548 	struct ring_buffer_event *event;
4549 	int cpu;
4550 
4551 	/* If we are tracing schedule, we don't want to recurse */
4552 	preempt_disable_notrace();
4553 
4554 	if (unlikely(atomic_read(&buffer->record_disabled)))
4555 		goto out;
4556 
4557 	cpu = raw_smp_processor_id();
4558 
4559 	if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
4560 		goto out;
4561 
4562 	cpu_buffer = buffer->buffers[cpu];
4563 
4564 	if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
4565 		goto out;
4566 
4567 	if (unlikely(length > buffer->max_data_size))
4568 		goto out;
4569 
4570 	if (unlikely(trace_recursive_lock(cpu_buffer)))
4571 		goto out;
4572 
4573 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
4574 	if (!event)
4575 		goto out_unlock;
4576 
4577 	return event;
4578 
4579  out_unlock:
4580 	trace_recursive_unlock(cpu_buffer);
4581  out:
4582 	preempt_enable_notrace();
4583 	return NULL;
4584 }
4585 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
4586 
4587 /*
4588  * Decrement the entries to the page that an event is on.
4589  * The event does not even need to exist, only the pointer
4590  * to the page it is on. This may only be called before the commit
4591  * takes place.
4592  */
4593 static inline void
rb_decrement_entry(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event)4594 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
4595 		   struct ring_buffer_event *event)
4596 {
4597 	unsigned long addr = (unsigned long)event;
4598 	struct buffer_page *bpage = cpu_buffer->commit_page;
4599 	struct buffer_page *start;
4600 
4601 	addr &= ~((PAGE_SIZE << cpu_buffer->buffer->subbuf_order) - 1);
4602 
4603 	/* Do the likely case first */
4604 	if (likely(bpage->page == (void *)addr)) {
4605 		local_dec(&bpage->entries);
4606 		return;
4607 	}
4608 
4609 	/*
4610 	 * Because the commit page may be on the reader page we
4611 	 * start with the next page and check the end loop there.
4612 	 */
4613 	rb_inc_page(&bpage);
4614 	start = bpage;
4615 	do {
4616 		if (bpage->page == (void *)addr) {
4617 			local_dec(&bpage->entries);
4618 			return;
4619 		}
4620 		rb_inc_page(&bpage);
4621 	} while (bpage != start);
4622 
4623 	/* commit not part of this buffer?? */
4624 	RB_WARN_ON(cpu_buffer, 1);
4625 }
4626 
4627 /**
4628  * ring_buffer_discard_commit - discard an event that has not been committed
4629  * @buffer: the ring buffer
4630  * @event: non committed event to discard
4631  *
4632  * Sometimes an event that is in the ring buffer needs to be ignored.
4633  * This function lets the user discard an event in the ring buffer
4634  * and then that event will not be read later.
4635  *
4636  * This function only works if it is called before the item has been
4637  * committed. It will try to free the event from the ring buffer
4638  * if another event has not been added behind it.
4639  *
4640  * If another event has been added behind it, it will set the event
4641  * up as discarded, and perform the commit.
4642  *
4643  * If this function is called, do not call ring_buffer_unlock_commit on
4644  * the event.
4645  */
ring_buffer_discard_commit(struct trace_buffer * buffer,struct ring_buffer_event * event)4646 void ring_buffer_discard_commit(struct trace_buffer *buffer,
4647 				struct ring_buffer_event *event)
4648 {
4649 	struct ring_buffer_per_cpu *cpu_buffer;
4650 	int cpu;
4651 
4652 	/* The event is discarded regardless */
4653 	rb_event_discard(event);
4654 
4655 	cpu = smp_processor_id();
4656 	cpu_buffer = buffer->buffers[cpu];
4657 
4658 	/*
4659 	 * This must only be called if the event has not been
4660 	 * committed yet. Thus we can assume that preemption
4661 	 * is still disabled.
4662 	 */
4663 	RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
4664 
4665 	rb_decrement_entry(cpu_buffer, event);
4666 	if (rb_try_to_discard(cpu_buffer, event))
4667 		goto out;
4668 
4669  out:
4670 	rb_end_commit(cpu_buffer);
4671 
4672 	trace_recursive_unlock(cpu_buffer);
4673 
4674 	preempt_enable_notrace();
4675 
4676 }
4677 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
4678 
4679 /**
4680  * ring_buffer_write - write data to the buffer without reserving
4681  * @buffer: The ring buffer to write to.
4682  * @length: The length of the data being written (excluding the event header)
4683  * @data: The data to write to the buffer.
4684  *
4685  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
4686  * one function. If you already have the data to write to the buffer, it
4687  * may be easier to simply call this function.
4688  *
4689  * Note, like ring_buffer_lock_reserve, the length is the length of the data
4690  * and not the length of the event which would hold the header.
4691  */
ring_buffer_write(struct trace_buffer * buffer,unsigned long length,void * data)4692 int ring_buffer_write(struct trace_buffer *buffer,
4693 		      unsigned long length,
4694 		      void *data)
4695 {
4696 	struct ring_buffer_per_cpu *cpu_buffer;
4697 	struct ring_buffer_event *event;
4698 	void *body;
4699 	int ret = -EBUSY;
4700 	int cpu;
4701 
4702 	preempt_disable_notrace();
4703 
4704 	if (atomic_read(&buffer->record_disabled))
4705 		goto out;
4706 
4707 	cpu = raw_smp_processor_id();
4708 
4709 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4710 		goto out;
4711 
4712 	cpu_buffer = buffer->buffers[cpu];
4713 
4714 	if (atomic_read(&cpu_buffer->record_disabled))
4715 		goto out;
4716 
4717 	if (length > buffer->max_data_size)
4718 		goto out;
4719 
4720 	if (unlikely(trace_recursive_lock(cpu_buffer)))
4721 		goto out;
4722 
4723 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
4724 	if (!event)
4725 		goto out_unlock;
4726 
4727 	body = rb_event_data(event);
4728 
4729 	memcpy(body, data, length);
4730 
4731 	rb_commit(cpu_buffer);
4732 
4733 	rb_wakeups(buffer, cpu_buffer);
4734 
4735 	ret = 0;
4736 
4737  out_unlock:
4738 	trace_recursive_unlock(cpu_buffer);
4739 
4740  out:
4741 	preempt_enable_notrace();
4742 
4743 	return ret;
4744 }
4745 EXPORT_SYMBOL_GPL(ring_buffer_write);
4746 
4747 /*
4748  * The total entries in the ring buffer is the running counter
4749  * of entries entered into the ring buffer, minus the sum of
4750  * the entries read from the ring buffer and the number of
4751  * entries that were overwritten.
4752  */
4753 static inline unsigned long
rb_num_of_entries(struct ring_buffer_per_cpu * cpu_buffer)4754 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
4755 {
4756 	return local_read(&cpu_buffer->entries) -
4757 		(local_read(&cpu_buffer->overrun) + cpu_buffer->read);
4758 }
4759 
rb_per_cpu_empty(struct ring_buffer_per_cpu * cpu_buffer)4760 static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
4761 {
4762 	return !rb_num_of_entries(cpu_buffer);
4763 }
4764 
4765 /**
4766  * ring_buffer_record_disable - stop all writes into the buffer
4767  * @buffer: The ring buffer to stop writes to.
4768  *
4769  * This prevents all writes to the buffer. Any attempt to write
4770  * to the buffer after this will fail and return NULL.
4771  *
4772  * The caller should call synchronize_rcu() after this.
4773  */
ring_buffer_record_disable(struct trace_buffer * buffer)4774 void ring_buffer_record_disable(struct trace_buffer *buffer)
4775 {
4776 	atomic_inc(&buffer->record_disabled);
4777 }
4778 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
4779 
4780 /**
4781  * ring_buffer_record_enable - enable writes to the buffer
4782  * @buffer: The ring buffer to enable writes
4783  *
4784  * Note, multiple disables will need the same number of enables
4785  * to truly enable the writing (much like preempt_disable).
4786  */
ring_buffer_record_enable(struct trace_buffer * buffer)4787 void ring_buffer_record_enable(struct trace_buffer *buffer)
4788 {
4789 	atomic_dec(&buffer->record_disabled);
4790 }
4791 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
4792 
4793 /**
4794  * ring_buffer_record_off - stop all writes into the buffer
4795  * @buffer: The ring buffer to stop writes to.
4796  *
4797  * This prevents all writes to the buffer. Any attempt to write
4798  * to the buffer after this will fail and return NULL.
4799  *
4800  * This is different than ring_buffer_record_disable() as
4801  * it works like an on/off switch, where as the disable() version
4802  * must be paired with a enable().
4803  */
ring_buffer_record_off(struct trace_buffer * buffer)4804 void ring_buffer_record_off(struct trace_buffer *buffer)
4805 {
4806 	unsigned int rd;
4807 	unsigned int new_rd;
4808 
4809 	rd = atomic_read(&buffer->record_disabled);
4810 	do {
4811 		new_rd = rd | RB_BUFFER_OFF;
4812 	} while (!atomic_try_cmpxchg(&buffer->record_disabled, &rd, new_rd));
4813 }
4814 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
4815 
4816 /**
4817  * ring_buffer_record_on - restart writes into the buffer
4818  * @buffer: The ring buffer to start writes to.
4819  *
4820  * This enables all writes to the buffer that was disabled by
4821  * ring_buffer_record_off().
4822  *
4823  * This is different than ring_buffer_record_enable() as
4824  * it works like an on/off switch, where as the enable() version
4825  * must be paired with a disable().
4826  */
ring_buffer_record_on(struct trace_buffer * buffer)4827 void ring_buffer_record_on(struct trace_buffer *buffer)
4828 {
4829 	unsigned int rd;
4830 	unsigned int new_rd;
4831 
4832 	rd = atomic_read(&buffer->record_disabled);
4833 	do {
4834 		new_rd = rd & ~RB_BUFFER_OFF;
4835 	} while (!atomic_try_cmpxchg(&buffer->record_disabled, &rd, new_rd));
4836 }
4837 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
4838 
4839 /**
4840  * ring_buffer_record_is_on - return true if the ring buffer can write
4841  * @buffer: The ring buffer to see if write is enabled
4842  *
4843  * Returns true if the ring buffer is in a state that it accepts writes.
4844  */
ring_buffer_record_is_on(struct trace_buffer * buffer)4845 bool ring_buffer_record_is_on(struct trace_buffer *buffer)
4846 {
4847 	return !atomic_read(&buffer->record_disabled);
4848 }
4849 
4850 /**
4851  * ring_buffer_record_is_set_on - return true if the ring buffer is set writable
4852  * @buffer: The ring buffer to see if write is set enabled
4853  *
4854  * Returns true if the ring buffer is set writable by ring_buffer_record_on().
4855  * Note that this does NOT mean it is in a writable state.
4856  *
4857  * It may return true when the ring buffer has been disabled by
4858  * ring_buffer_record_disable(), as that is a temporary disabling of
4859  * the ring buffer.
4860  */
ring_buffer_record_is_set_on(struct trace_buffer * buffer)4861 bool ring_buffer_record_is_set_on(struct trace_buffer *buffer)
4862 {
4863 	return !(atomic_read(&buffer->record_disabled) & RB_BUFFER_OFF);
4864 }
4865 
4866 /**
4867  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
4868  * @buffer: The ring buffer to stop writes to.
4869  * @cpu: The CPU buffer to stop
4870  *
4871  * This prevents all writes to the buffer. Any attempt to write
4872  * to the buffer after this will fail and return NULL.
4873  *
4874  * The caller should call synchronize_rcu() after this.
4875  */
ring_buffer_record_disable_cpu(struct trace_buffer * buffer,int cpu)4876 void ring_buffer_record_disable_cpu(struct trace_buffer *buffer, int cpu)
4877 {
4878 	struct ring_buffer_per_cpu *cpu_buffer;
4879 
4880 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4881 		return;
4882 
4883 	cpu_buffer = buffer->buffers[cpu];
4884 	atomic_inc(&cpu_buffer->record_disabled);
4885 }
4886 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
4887 
4888 /**
4889  * ring_buffer_record_enable_cpu - enable writes to the buffer
4890  * @buffer: The ring buffer to enable writes
4891  * @cpu: The CPU to enable.
4892  *
4893  * Note, multiple disables will need the same number of enables
4894  * to truly enable the writing (much like preempt_disable).
4895  */
ring_buffer_record_enable_cpu(struct trace_buffer * buffer,int cpu)4896 void ring_buffer_record_enable_cpu(struct trace_buffer *buffer, int cpu)
4897 {
4898 	struct ring_buffer_per_cpu *cpu_buffer;
4899 
4900 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4901 		return;
4902 
4903 	cpu_buffer = buffer->buffers[cpu];
4904 	atomic_dec(&cpu_buffer->record_disabled);
4905 }
4906 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
4907 
4908 /**
4909  * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
4910  * @buffer: The ring buffer
4911  * @cpu: The per CPU buffer to read from.
4912  */
ring_buffer_oldest_event_ts(struct trace_buffer * buffer,int cpu)4913 u64 ring_buffer_oldest_event_ts(struct trace_buffer *buffer, int cpu)
4914 {
4915 	unsigned long flags;
4916 	struct ring_buffer_per_cpu *cpu_buffer;
4917 	struct buffer_page *bpage;
4918 	u64 ret = 0;
4919 
4920 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4921 		return 0;
4922 
4923 	cpu_buffer = buffer->buffers[cpu];
4924 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4925 	/*
4926 	 * if the tail is on reader_page, oldest time stamp is on the reader
4927 	 * page
4928 	 */
4929 	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
4930 		bpage = cpu_buffer->reader_page;
4931 	else
4932 		bpage = rb_set_head_page(cpu_buffer);
4933 	if (bpage)
4934 		ret = bpage->page->time_stamp;
4935 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4936 
4937 	return ret;
4938 }
4939 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
4940 
4941 /**
4942  * ring_buffer_bytes_cpu - get the number of bytes unconsumed in a cpu buffer
4943  * @buffer: The ring buffer
4944  * @cpu: The per CPU buffer to read from.
4945  */
ring_buffer_bytes_cpu(struct trace_buffer * buffer,int cpu)4946 unsigned long ring_buffer_bytes_cpu(struct trace_buffer *buffer, int cpu)
4947 {
4948 	struct ring_buffer_per_cpu *cpu_buffer;
4949 	unsigned long ret;
4950 
4951 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4952 		return 0;
4953 
4954 	cpu_buffer = buffer->buffers[cpu];
4955 	ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
4956 
4957 	return ret;
4958 }
4959 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
4960 
4961 /**
4962  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
4963  * @buffer: The ring buffer
4964  * @cpu: The per CPU buffer to get the entries from.
4965  */
ring_buffer_entries_cpu(struct trace_buffer * buffer,int cpu)4966 unsigned long ring_buffer_entries_cpu(struct trace_buffer *buffer, int cpu)
4967 {
4968 	struct ring_buffer_per_cpu *cpu_buffer;
4969 
4970 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4971 		return 0;
4972 
4973 	cpu_buffer = buffer->buffers[cpu];
4974 
4975 	return rb_num_of_entries(cpu_buffer);
4976 }
4977 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
4978 
4979 /**
4980  * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
4981  * buffer wrapping around (only if RB_FL_OVERWRITE is on).
4982  * @buffer: The ring buffer
4983  * @cpu: The per CPU buffer to get the number of overruns from
4984  */
ring_buffer_overrun_cpu(struct trace_buffer * buffer,int cpu)4985 unsigned long ring_buffer_overrun_cpu(struct trace_buffer *buffer, int cpu)
4986 {
4987 	struct ring_buffer_per_cpu *cpu_buffer;
4988 	unsigned long ret;
4989 
4990 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4991 		return 0;
4992 
4993 	cpu_buffer = buffer->buffers[cpu];
4994 	ret = local_read(&cpu_buffer->overrun);
4995 
4996 	return ret;
4997 }
4998 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
4999 
5000 /**
5001  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
5002  * commits failing due to the buffer wrapping around while there are uncommitted
5003  * events, such as during an interrupt storm.
5004  * @buffer: The ring buffer
5005  * @cpu: The per CPU buffer to get the number of overruns from
5006  */
5007 unsigned long
ring_buffer_commit_overrun_cpu(struct trace_buffer * buffer,int cpu)5008 ring_buffer_commit_overrun_cpu(struct trace_buffer *buffer, int cpu)
5009 {
5010 	struct ring_buffer_per_cpu *cpu_buffer;
5011 	unsigned long ret;
5012 
5013 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5014 		return 0;
5015 
5016 	cpu_buffer = buffer->buffers[cpu];
5017 	ret = local_read(&cpu_buffer->commit_overrun);
5018 
5019 	return ret;
5020 }
5021 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
5022 
5023 /**
5024  * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
5025  * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
5026  * @buffer: The ring buffer
5027  * @cpu: The per CPU buffer to get the number of overruns from
5028  */
5029 unsigned long
ring_buffer_dropped_events_cpu(struct trace_buffer * buffer,int cpu)5030 ring_buffer_dropped_events_cpu(struct trace_buffer *buffer, int cpu)
5031 {
5032 	struct ring_buffer_per_cpu *cpu_buffer;
5033 	unsigned long ret;
5034 
5035 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5036 		return 0;
5037 
5038 	cpu_buffer = buffer->buffers[cpu];
5039 	ret = local_read(&cpu_buffer->dropped_events);
5040 
5041 	return ret;
5042 }
5043 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
5044 
5045 /**
5046  * ring_buffer_read_events_cpu - get the number of events successfully read
5047  * @buffer: The ring buffer
5048  * @cpu: The per CPU buffer to get the number of events read
5049  */
5050 unsigned long
ring_buffer_read_events_cpu(struct trace_buffer * buffer,int cpu)5051 ring_buffer_read_events_cpu(struct trace_buffer *buffer, int cpu)
5052 {
5053 	struct ring_buffer_per_cpu *cpu_buffer;
5054 
5055 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5056 		return 0;
5057 
5058 	cpu_buffer = buffer->buffers[cpu];
5059 	return cpu_buffer->read;
5060 }
5061 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
5062 
5063 /**
5064  * ring_buffer_entries - get the number of entries in a buffer
5065  * @buffer: The ring buffer
5066  *
5067  * Returns the total number of entries in the ring buffer
5068  * (all CPU entries)
5069  */
ring_buffer_entries(struct trace_buffer * buffer)5070 unsigned long ring_buffer_entries(struct trace_buffer *buffer)
5071 {
5072 	struct ring_buffer_per_cpu *cpu_buffer;
5073 	unsigned long entries = 0;
5074 	int cpu;
5075 
5076 	/* if you care about this being correct, lock the buffer */
5077 	for_each_buffer_cpu(buffer, cpu) {
5078 		cpu_buffer = buffer->buffers[cpu];
5079 		entries += rb_num_of_entries(cpu_buffer);
5080 	}
5081 
5082 	return entries;
5083 }
5084 EXPORT_SYMBOL_GPL(ring_buffer_entries);
5085 
5086 /**
5087  * ring_buffer_overruns - get the number of overruns in buffer
5088  * @buffer: The ring buffer
5089  *
5090  * Returns the total number of overruns in the ring buffer
5091  * (all CPU entries)
5092  */
ring_buffer_overruns(struct trace_buffer * buffer)5093 unsigned long ring_buffer_overruns(struct trace_buffer *buffer)
5094 {
5095 	struct ring_buffer_per_cpu *cpu_buffer;
5096 	unsigned long overruns = 0;
5097 	int cpu;
5098 
5099 	/* if you care about this being correct, lock the buffer */
5100 	for_each_buffer_cpu(buffer, cpu) {
5101 		cpu_buffer = buffer->buffers[cpu];
5102 		overruns += local_read(&cpu_buffer->overrun);
5103 	}
5104 
5105 	return overruns;
5106 }
5107 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
5108 
rb_iter_reset(struct ring_buffer_iter * iter)5109 static void rb_iter_reset(struct ring_buffer_iter *iter)
5110 {
5111 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5112 
5113 	/* Iterator usage is expected to have record disabled */
5114 	iter->head_page = cpu_buffer->reader_page;
5115 	iter->head = cpu_buffer->reader_page->read;
5116 	iter->next_event = iter->head;
5117 
5118 	iter->cache_reader_page = iter->head_page;
5119 	iter->cache_read = cpu_buffer->read;
5120 	iter->cache_pages_removed = cpu_buffer->pages_removed;
5121 
5122 	if (iter->head) {
5123 		iter->read_stamp = cpu_buffer->read_stamp;
5124 		iter->page_stamp = cpu_buffer->reader_page->page->time_stamp;
5125 	} else {
5126 		iter->read_stamp = iter->head_page->page->time_stamp;
5127 		iter->page_stamp = iter->read_stamp;
5128 	}
5129 }
5130 
5131 /**
5132  * ring_buffer_iter_reset - reset an iterator
5133  * @iter: The iterator to reset
5134  *
5135  * Resets the iterator, so that it will start from the beginning
5136  * again.
5137  */
ring_buffer_iter_reset(struct ring_buffer_iter * iter)5138 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
5139 {
5140 	struct ring_buffer_per_cpu *cpu_buffer;
5141 	unsigned long flags;
5142 
5143 	if (!iter)
5144 		return;
5145 
5146 	cpu_buffer = iter->cpu_buffer;
5147 
5148 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5149 	rb_iter_reset(iter);
5150 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5151 }
5152 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
5153 
5154 /**
5155  * ring_buffer_iter_empty - check if an iterator has no more to read
5156  * @iter: The iterator to check
5157  */
ring_buffer_iter_empty(struct ring_buffer_iter * iter)5158 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
5159 {
5160 	struct ring_buffer_per_cpu *cpu_buffer;
5161 	struct buffer_page *reader;
5162 	struct buffer_page *head_page;
5163 	struct buffer_page *commit_page;
5164 	struct buffer_page *curr_commit_page;
5165 	unsigned commit;
5166 	u64 curr_commit_ts;
5167 	u64 commit_ts;
5168 
5169 	cpu_buffer = iter->cpu_buffer;
5170 	reader = cpu_buffer->reader_page;
5171 	head_page = cpu_buffer->head_page;
5172 	commit_page = READ_ONCE(cpu_buffer->commit_page);
5173 	commit_ts = commit_page->page->time_stamp;
5174 
5175 	/*
5176 	 * When the writer goes across pages, it issues a cmpxchg which
5177 	 * is a mb(), which will synchronize with the rmb here.
5178 	 * (see rb_tail_page_update())
5179 	 */
5180 	smp_rmb();
5181 	commit = rb_page_commit(commit_page);
5182 	/* We want to make sure that the commit page doesn't change */
5183 	smp_rmb();
5184 
5185 	/* Make sure commit page didn't change */
5186 	curr_commit_page = READ_ONCE(cpu_buffer->commit_page);
5187 	curr_commit_ts = READ_ONCE(curr_commit_page->page->time_stamp);
5188 
5189 	/* If the commit page changed, then there's more data */
5190 	if (curr_commit_page != commit_page ||
5191 	    curr_commit_ts != commit_ts)
5192 		return 0;
5193 
5194 	/* Still racy, as it may return a false positive, but that's OK */
5195 	return ((iter->head_page == commit_page && iter->head >= commit) ||
5196 		(iter->head_page == reader && commit_page == head_page &&
5197 		 head_page->read == commit &&
5198 		 iter->head == rb_page_size(cpu_buffer->reader_page)));
5199 }
5200 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
5201 
5202 static void
rb_update_read_stamp(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event)5203 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
5204 		     struct ring_buffer_event *event)
5205 {
5206 	u64 delta;
5207 
5208 	switch (event->type_len) {
5209 	case RINGBUF_TYPE_PADDING:
5210 		return;
5211 
5212 	case RINGBUF_TYPE_TIME_EXTEND:
5213 		delta = rb_event_time_stamp(event);
5214 		cpu_buffer->read_stamp += delta;
5215 		return;
5216 
5217 	case RINGBUF_TYPE_TIME_STAMP:
5218 		delta = rb_event_time_stamp(event);
5219 		delta = rb_fix_abs_ts(delta, cpu_buffer->read_stamp);
5220 		cpu_buffer->read_stamp = delta;
5221 		return;
5222 
5223 	case RINGBUF_TYPE_DATA:
5224 		cpu_buffer->read_stamp += event->time_delta;
5225 		return;
5226 
5227 	default:
5228 		RB_WARN_ON(cpu_buffer, 1);
5229 	}
5230 }
5231 
5232 static void
rb_update_iter_read_stamp(struct ring_buffer_iter * iter,struct ring_buffer_event * event)5233 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
5234 			  struct ring_buffer_event *event)
5235 {
5236 	u64 delta;
5237 
5238 	switch (event->type_len) {
5239 	case RINGBUF_TYPE_PADDING:
5240 		return;
5241 
5242 	case RINGBUF_TYPE_TIME_EXTEND:
5243 		delta = rb_event_time_stamp(event);
5244 		iter->read_stamp += delta;
5245 		return;
5246 
5247 	case RINGBUF_TYPE_TIME_STAMP:
5248 		delta = rb_event_time_stamp(event);
5249 		delta = rb_fix_abs_ts(delta, iter->read_stamp);
5250 		iter->read_stamp = delta;
5251 		return;
5252 
5253 	case RINGBUF_TYPE_DATA:
5254 		iter->read_stamp += event->time_delta;
5255 		return;
5256 
5257 	default:
5258 		RB_WARN_ON(iter->cpu_buffer, 1);
5259 	}
5260 }
5261 
rb_read_writer_meta_page(struct ring_buffer_per_cpu * cpu_buffer)5262 static bool rb_read_writer_meta_page(struct ring_buffer_per_cpu *cpu_buffer)
5263 {
5264 	local_set(&cpu_buffer->entries, READ_ONCE(cpu_buffer->meta_page->entries));
5265 	local_set(&cpu_buffer->overrun, READ_ONCE(cpu_buffer->meta_page->overrun));
5266 	local_set(&cpu_buffer->pages_touched, READ_ONCE(meta_pages_touched(cpu_buffer->meta_page)));
5267 	local_set(&cpu_buffer->pages_lost, READ_ONCE(meta_pages_lost(cpu_buffer->meta_page)));
5268 	/*
5269 	 * No need to get the "read" field, it can be tracked here as any
5270 	 * reader will have to go through a rign_buffer_per_cpu.
5271 	 */
5272 
5273 	return rb_num_of_entries(cpu_buffer);
5274 }
5275 
5276 static struct buffer_page *
__rb_get_reader_page_from_writer(struct ring_buffer_per_cpu * cpu_buffer)5277 __rb_get_reader_page_from_writer(struct ring_buffer_per_cpu *cpu_buffer)
5278 {
5279 	u32 prev_reader;
5280 
5281 	if (!rb_read_writer_meta_page(cpu_buffer))
5282 		return NULL;
5283 
5284 	/* More to read on the reader page */
5285 	if (cpu_buffer->reader_page->read < rb_page_size(cpu_buffer->reader_page)) {
5286 		if (cpu_buffer->reader_page->read == 0)
5287 			cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
5288 		return cpu_buffer->reader_page;
5289 	}
5290 
5291 	prev_reader = cpu_buffer->meta_page->reader.id;
5292 	if (cpu_buffer->meta_page->reader.id == cpu_buffer->reader_page->id)
5293 		WARN_ON(cpu_buffer->writer->get_reader_page(cpu_buffer->cpu));
5294 
5295 	/* nr_pages doesn't include the reader page */
5296 	if (cpu_buffer->meta_page->reader.id > cpu_buffer->nr_pages) {
5297 		WARN_ON(1);
5298 		return NULL;
5299 	}
5300 
5301 	cpu_buffer->reader_page->page =
5302 		(void *)cpu_buffer->subbuf_ids[cpu_buffer->meta_page->reader.id];
5303 	cpu_buffer->reader_page->id = cpu_buffer->meta_page->reader.id;
5304 	cpu_buffer->reader_page->read = 0;
5305 	cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
5306 	cpu_buffer->lost_events = cpu_buffer->meta_page->reader.lost_events;
5307 
5308 	WARN_ON(!IS_ENABLED(CONFIG_PKVM_DUMP_TRACE_ON_PANIC) &&
5309 		prev_reader == cpu_buffer->meta_page->reader.id);
5310 
5311 	if (!rb_page_size(cpu_buffer->reader_page))
5312 		return NULL;
5313 
5314 	return cpu_buffer->reader_page;
5315 }
5316 
5317 static struct buffer_page *
__rb_get_reader_page(struct ring_buffer_per_cpu * cpu_buffer)5318 __rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
5319 {
5320 	struct buffer_page *reader = NULL;
5321 	unsigned long bsize = READ_ONCE(cpu_buffer->buffer->subbuf_size);
5322 	unsigned long overwrite;
5323 	unsigned long flags;
5324 	int nr_loops = 0;
5325 	bool ret;
5326 
5327 	local_irq_save(flags);
5328 	arch_spin_lock(&cpu_buffer->lock);
5329 
5330  again:
5331 	/*
5332 	 * This should normally only loop twice. But because the
5333 	 * start of the reader inserts an empty page, it causes
5334 	 * a case where we will loop three times. There should be no
5335 	 * reason to loop four times (that I know of).
5336 	 */
5337 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
5338 		reader = NULL;
5339 		goto out;
5340 	}
5341 
5342 	reader = cpu_buffer->reader_page;
5343 
5344 	/* If there's more to read, return this page */
5345 	if (cpu_buffer->reader_page->read < rb_page_size(reader))
5346 		goto out;
5347 
5348 	/* Never should we have an index greater than the size */
5349 	if (RB_WARN_ON(cpu_buffer,
5350 		       cpu_buffer->reader_page->read > rb_page_size(reader)))
5351 		goto out;
5352 
5353 	/* check if we caught up to the tail */
5354 	reader = NULL;
5355 	if (cpu_buffer->commit_page == cpu_buffer->reader_page)
5356 		goto out;
5357 
5358 	/* Don't bother swapping if the ring buffer is empty */
5359 	if (rb_num_of_entries(cpu_buffer) == 0)
5360 		goto out;
5361 
5362 	/*
5363 	 * Reset the reader page to size zero.
5364 	 */
5365 	local_set(&cpu_buffer->reader_page->write, 0);
5366 	local_set(&cpu_buffer->reader_page->entries, 0);
5367 	local_set(&cpu_buffer->reader_page->page->commit, 0);
5368 	cpu_buffer->reader_page->real_end = 0;
5369 
5370  spin:
5371 	/*
5372 	 * Splice the empty reader page into the list around the head.
5373 	 */
5374 	reader = rb_set_head_page(cpu_buffer);
5375 	if (!reader)
5376 		goto out;
5377 	cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
5378 	cpu_buffer->reader_page->list.prev = reader->list.prev;
5379 
5380 	/*
5381 	 * cpu_buffer->pages just needs to point to the buffer, it
5382 	 *  has no specific buffer page to point to. Lets move it out
5383 	 *  of our way so we don't accidentally swap it.
5384 	 */
5385 	cpu_buffer->pages = reader->list.prev;
5386 
5387 	/* The reader page will be pointing to the new head */
5388 	rb_set_list_to_head(&cpu_buffer->reader_page->list);
5389 
5390 	/*
5391 	 * We want to make sure we read the overruns after we set up our
5392 	 * pointers to the next object. The writer side does a
5393 	 * cmpxchg to cross pages which acts as the mb on the writer
5394 	 * side. Note, the reader will constantly fail the swap
5395 	 * while the writer is updating the pointers, so this
5396 	 * guarantees that the overwrite recorded here is the one we
5397 	 * want to compare with the last_overrun.
5398 	 */
5399 	smp_mb();
5400 	overwrite = local_read(&(cpu_buffer->overrun));
5401 
5402 	/*
5403 	 * Here's the tricky part.
5404 	 *
5405 	 * We need to move the pointer past the header page.
5406 	 * But we can only do that if a writer is not currently
5407 	 * moving it. The page before the header page has the
5408 	 * flag bit '1' set if it is pointing to the page we want.
5409 	 * but if the writer is in the process of moving it
5410 	 * than it will be '2' or already moved '0'.
5411 	 */
5412 
5413 	ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
5414 
5415 	/*
5416 	 * If we did not convert it, then we must try again.
5417 	 */
5418 	if (!ret)
5419 		goto spin;
5420 
5421 	if (cpu_buffer->ring_meta)
5422 		rb_update_meta_reader(cpu_buffer, reader);
5423 
5424 	/*
5425 	 * Yay! We succeeded in replacing the page.
5426 	 *
5427 	 * Now make the new head point back to the reader page.
5428 	 */
5429 	rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
5430 	rb_inc_page(&cpu_buffer->head_page);
5431 
5432 	cpu_buffer->cnt++;
5433 	local_inc(&cpu_buffer->pages_read);
5434 
5435 	/* Finally update the reader page to the new head */
5436 	cpu_buffer->reader_page = reader;
5437 	cpu_buffer->reader_page->read = 0;
5438 
5439 	if (overwrite != cpu_buffer->last_overrun) {
5440 		cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
5441 		cpu_buffer->last_overrun = overwrite;
5442 	}
5443 
5444 	goto again;
5445 
5446  out:
5447 	/* Update the read_stamp on the first event */
5448 	if (reader && reader->read == 0)
5449 		cpu_buffer->read_stamp = reader->page->time_stamp;
5450 
5451 	arch_spin_unlock(&cpu_buffer->lock);
5452 	local_irq_restore(flags);
5453 
5454 	/*
5455 	 * The writer has preempt disable, wait for it. But not forever
5456 	 * Although, 1 second is pretty much "forever"
5457 	 */
5458 #define USECS_WAIT	1000000
5459         for (nr_loops = 0; nr_loops < USECS_WAIT; nr_loops++) {
5460 		/* If the write is past the end of page, a writer is still updating it */
5461 		if (likely(!reader || rb_page_write(reader) <= bsize))
5462 			break;
5463 
5464 		udelay(1);
5465 
5466 		/* Get the latest version of the reader write value */
5467 		smp_rmb();
5468 	}
5469 
5470 	/* The writer is not moving forward? Something is wrong */
5471 	if (RB_WARN_ON(cpu_buffer, nr_loops == USECS_WAIT))
5472 		reader = NULL;
5473 
5474 	/*
5475 	 * Make sure we see any padding after the write update
5476 	 * (see rb_reset_tail()).
5477 	 *
5478 	 * In addition, a writer may be writing on the reader page
5479 	 * if the page has not been fully filled, so the read barrier
5480 	 * is also needed to make sure we see the content of what is
5481 	 * committed by the writer (see rb_set_commit_to_write()).
5482 	 */
5483 	smp_rmb();
5484 
5485 
5486 	return reader;
5487 }
5488 
5489 static struct buffer_page *
rb_get_reader_page(struct ring_buffer_per_cpu * cpu_buffer)5490 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
5491 {
5492 	return cpu_buffer->writer ? __rb_get_reader_page_from_writer(cpu_buffer) :
5493 				    __rb_get_reader_page(cpu_buffer);
5494 }
5495 
rb_advance_reader(struct ring_buffer_per_cpu * cpu_buffer)5496 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
5497 {
5498 	struct ring_buffer_event *event;
5499 	struct buffer_page *reader;
5500 	unsigned length;
5501 
5502 	reader = rb_get_reader_page(cpu_buffer);
5503 
5504 	/* This function should not be called when buffer is empty */
5505 	if (RB_WARN_ON(cpu_buffer, !reader))
5506 		return;
5507 
5508 	event = rb_reader_event(cpu_buffer);
5509 
5510 	if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
5511 		cpu_buffer->read++;
5512 
5513 	rb_update_read_stamp(cpu_buffer, event);
5514 
5515 	length = rb_event_length(event);
5516 	cpu_buffer->reader_page->read += length;
5517 	cpu_buffer->read_bytes += length;
5518 }
5519 
rb_advance_iter(struct ring_buffer_iter * iter)5520 static void rb_advance_iter(struct ring_buffer_iter *iter)
5521 {
5522 	struct ring_buffer_per_cpu *cpu_buffer;
5523 
5524 	cpu_buffer = iter->cpu_buffer;
5525 
5526 	/* If head == next_event then we need to jump to the next event */
5527 	if (iter->head == iter->next_event) {
5528 		/* If the event gets overwritten again, there's nothing to do */
5529 		if (rb_iter_head_event(iter) == NULL)
5530 			return;
5531 	}
5532 
5533 	iter->head = iter->next_event;
5534 
5535 	/*
5536 	 * Check if we are at the end of the buffer.
5537 	 */
5538 	if (iter->next_event >= rb_page_size(iter->head_page)) {
5539 		/* discarded commits can make the page empty */
5540 		if (iter->head_page == cpu_buffer->commit_page)
5541 			return;
5542 		rb_inc_iter(iter);
5543 		return;
5544 	}
5545 
5546 	rb_update_iter_read_stamp(iter, iter->event);
5547 }
5548 
rb_lost_events(struct ring_buffer_per_cpu * cpu_buffer)5549 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
5550 {
5551 	return cpu_buffer->lost_events;
5552 }
5553 
5554 static struct ring_buffer_event *
rb_buffer_peek(struct ring_buffer_per_cpu * cpu_buffer,u64 * ts,unsigned long * lost_events)5555 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
5556 	       unsigned long *lost_events)
5557 {
5558 	struct ring_buffer_event *event;
5559 	struct buffer_page *reader;
5560 	int nr_loops = 0;
5561 
5562 	if (ts)
5563 		*ts = 0;
5564  again:
5565 	/*
5566 	 * We repeat when a time extend is encountered.
5567 	 * Since the time extend is always attached to a data event,
5568 	 * we should never loop more than once.
5569 	 * (We never hit the following condition more than twice).
5570 	 */
5571 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
5572 		return NULL;
5573 
5574 	reader = rb_get_reader_page(cpu_buffer);
5575 	if (!reader)
5576 		return NULL;
5577 
5578 	event = rb_reader_event(cpu_buffer);
5579 
5580 	switch (event->type_len) {
5581 	case RINGBUF_TYPE_PADDING:
5582 		if (rb_null_event(event))
5583 			RB_WARN_ON(cpu_buffer, 1);
5584 		/*
5585 		 * Because the writer could be discarding every
5586 		 * event it creates (which would probably be bad)
5587 		 * if we were to go back to "again" then we may never
5588 		 * catch up, and will trigger the warn on, or lock
5589 		 * the box. Return the padding, and we will release
5590 		 * the current locks, and try again.
5591 		 */
5592 		return event;
5593 
5594 	case RINGBUF_TYPE_TIME_EXTEND:
5595 		/* Internal data, OK to advance */
5596 		rb_advance_reader(cpu_buffer);
5597 		goto again;
5598 
5599 	case RINGBUF_TYPE_TIME_STAMP:
5600 		if (ts) {
5601 			*ts = rb_event_time_stamp(event);
5602 			*ts = rb_fix_abs_ts(*ts, reader->page->time_stamp);
5603 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
5604 							 cpu_buffer->cpu, ts);
5605 		}
5606 		/* Internal data, OK to advance */
5607 		rb_advance_reader(cpu_buffer);
5608 		goto again;
5609 
5610 	case RINGBUF_TYPE_DATA:
5611 		if (ts && !(*ts)) {
5612 			*ts = cpu_buffer->read_stamp + event->time_delta;
5613 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
5614 							 cpu_buffer->cpu, ts);
5615 		}
5616 		if (lost_events)
5617 			*lost_events = rb_lost_events(cpu_buffer);
5618 		return event;
5619 
5620 	default:
5621 		RB_WARN_ON(cpu_buffer, 1);
5622 	}
5623 
5624 	return NULL;
5625 }
5626 EXPORT_SYMBOL_GPL(ring_buffer_peek);
5627 
5628 static struct ring_buffer_event *
rb_iter_peek(struct ring_buffer_iter * iter,u64 * ts)5629 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
5630 {
5631 	struct trace_buffer *buffer;
5632 	struct ring_buffer_per_cpu *cpu_buffer;
5633 	struct ring_buffer_event *event;
5634 	int nr_loops = 0;
5635 
5636 	if (ts)
5637 		*ts = 0;
5638 
5639 	cpu_buffer = iter->cpu_buffer;
5640 	buffer = cpu_buffer->buffer;
5641 
5642 	/*
5643 	 * Check if someone performed a consuming read to the buffer
5644 	 * or removed some pages from the buffer. In these cases,
5645 	 * iterator was invalidated and we need to reset it.
5646 	 */
5647 	if (unlikely(iter->cache_read != cpu_buffer->read ||
5648 		     iter->cache_reader_page != cpu_buffer->reader_page ||
5649 		     iter->cache_pages_removed != cpu_buffer->pages_removed))
5650 		rb_iter_reset(iter);
5651 
5652  again:
5653 	if (ring_buffer_iter_empty(iter))
5654 		return NULL;
5655 
5656 	/*
5657 	 * As the writer can mess with what the iterator is trying
5658 	 * to read, just give up if we fail to get an event after
5659 	 * three tries. The iterator is not as reliable when reading
5660 	 * the ring buffer with an active write as the consumer is.
5661 	 * Do not warn if the three failures is reached.
5662 	 */
5663 	if (++nr_loops > 3)
5664 		return NULL;
5665 
5666 	if (rb_per_cpu_empty(cpu_buffer))
5667 		return NULL;
5668 
5669 	if (iter->head >= rb_page_size(iter->head_page)) {
5670 		rb_inc_iter(iter);
5671 		goto again;
5672 	}
5673 
5674 	event = rb_iter_head_event(iter);
5675 	if (!event)
5676 		goto again;
5677 
5678 	switch (event->type_len) {
5679 	case RINGBUF_TYPE_PADDING:
5680 		if (rb_null_event(event)) {
5681 			rb_inc_iter(iter);
5682 			goto again;
5683 		}
5684 		rb_advance_iter(iter);
5685 		return event;
5686 
5687 	case RINGBUF_TYPE_TIME_EXTEND:
5688 		/* Internal data, OK to advance */
5689 		rb_advance_iter(iter);
5690 		goto again;
5691 
5692 	case RINGBUF_TYPE_TIME_STAMP:
5693 		if (ts) {
5694 			*ts = rb_event_time_stamp(event);
5695 			*ts = rb_fix_abs_ts(*ts, iter->head_page->page->time_stamp);
5696 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
5697 							 cpu_buffer->cpu, ts);
5698 		}
5699 		/* Internal data, OK to advance */
5700 		rb_advance_iter(iter);
5701 		goto again;
5702 
5703 	case RINGBUF_TYPE_DATA:
5704 		if (ts && !(*ts)) {
5705 			*ts = iter->read_stamp + event->time_delta;
5706 			ring_buffer_normalize_time_stamp(buffer,
5707 							 cpu_buffer->cpu, ts);
5708 		}
5709 		return event;
5710 
5711 	default:
5712 		RB_WARN_ON(cpu_buffer, 1);
5713 	}
5714 
5715 	return NULL;
5716 }
5717 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
5718 
rb_reader_lock(struct ring_buffer_per_cpu * cpu_buffer)5719 static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
5720 {
5721 	if (likely(!in_nmi())) {
5722 		raw_spin_lock(&cpu_buffer->reader_lock);
5723 		return true;
5724 	}
5725 
5726 	/*
5727 	 * If an NMI die dumps out the content of the ring buffer
5728 	 * trylock must be used to prevent a deadlock if the NMI
5729 	 * preempted a task that holds the ring buffer locks. If
5730 	 * we get the lock then all is fine, if not, then continue
5731 	 * to do the read, but this can corrupt the ring buffer,
5732 	 * so it must be permanently disabled from future writes.
5733 	 * Reading from NMI is a oneshot deal.
5734 	 */
5735 	if (raw_spin_trylock(&cpu_buffer->reader_lock))
5736 		return true;
5737 
5738 	/* Continue without locking, but disable the ring buffer */
5739 	atomic_inc(&cpu_buffer->record_disabled);
5740 	return false;
5741 }
5742 
5743 static inline void
rb_reader_unlock(struct ring_buffer_per_cpu * cpu_buffer,bool locked)5744 rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
5745 {
5746 	if (likely(locked))
5747 		raw_spin_unlock(&cpu_buffer->reader_lock);
5748 }
5749 
5750 /**
5751  * ring_buffer_peek - peek at the next event to be read
5752  * @buffer: The ring buffer to read
5753  * @cpu: The cpu to peak at
5754  * @ts: The timestamp counter of this event.
5755  * @lost_events: a variable to store if events were lost (may be NULL)
5756  *
5757  * This will return the event that will be read next, but does
5758  * not consume the data.
5759  */
5760 struct ring_buffer_event *
ring_buffer_peek(struct trace_buffer * buffer,int cpu,u64 * ts,unsigned long * lost_events)5761 ring_buffer_peek(struct trace_buffer *buffer, int cpu, u64 *ts,
5762 		 unsigned long *lost_events)
5763 {
5764 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
5765 	struct ring_buffer_event *event;
5766 	unsigned long flags;
5767 	bool dolock;
5768 
5769 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5770 		return NULL;
5771 
5772  again:
5773 	local_irq_save(flags);
5774 	dolock = rb_reader_lock(cpu_buffer);
5775 	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
5776 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
5777 		rb_advance_reader(cpu_buffer);
5778 	rb_reader_unlock(cpu_buffer, dolock);
5779 	local_irq_restore(flags);
5780 
5781 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
5782 		goto again;
5783 
5784 	return event;
5785 }
5786 
5787 /** ring_buffer_iter_dropped - report if there are dropped events
5788  * @iter: The ring buffer iterator
5789  *
5790  * Returns true if there was dropped events since the last peek.
5791  */
ring_buffer_iter_dropped(struct ring_buffer_iter * iter)5792 bool ring_buffer_iter_dropped(struct ring_buffer_iter *iter)
5793 {
5794 	bool ret = iter->missed_events != 0;
5795 
5796 	iter->missed_events = 0;
5797 	return ret;
5798 }
5799 EXPORT_SYMBOL_GPL(ring_buffer_iter_dropped);
5800 
5801 /**
5802  * ring_buffer_iter_peek - peek at the next event to be read
5803  * @iter: The ring buffer iterator
5804  * @ts: The timestamp counter of this event.
5805  *
5806  * This will return the event that will be read next, but does
5807  * not increment the iterator.
5808  */
5809 struct ring_buffer_event *
ring_buffer_iter_peek(struct ring_buffer_iter * iter,u64 * ts)5810 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
5811 {
5812 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5813 	struct ring_buffer_event *event;
5814 	unsigned long flags;
5815 
5816  again:
5817 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5818 	event = rb_iter_peek(iter, ts);
5819 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5820 
5821 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
5822 		goto again;
5823 
5824 	return event;
5825 }
5826 
5827 /**
5828  * ring_buffer_consume - return an event and consume it
5829  * @buffer: The ring buffer to get the next event from
5830  * @cpu: the cpu to read the buffer from
5831  * @ts: a variable to store the timestamp (may be NULL)
5832  * @lost_events: a variable to store if events were lost (may be NULL)
5833  *
5834  * Returns the next event in the ring buffer, and that event is consumed.
5835  * Meaning, that sequential reads will keep returning a different event,
5836  * and eventually empty the ring buffer if the producer is slower.
5837  */
5838 struct ring_buffer_event *
ring_buffer_consume(struct trace_buffer * buffer,int cpu,u64 * ts,unsigned long * lost_events)5839 ring_buffer_consume(struct trace_buffer *buffer, int cpu, u64 *ts,
5840 		    unsigned long *lost_events)
5841 {
5842 	struct ring_buffer_per_cpu *cpu_buffer;
5843 	struct ring_buffer_event *event = NULL;
5844 	unsigned long flags;
5845 	bool dolock;
5846 
5847  again:
5848 	/* might be called in atomic */
5849 	preempt_disable();
5850 
5851 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5852 		goto out;
5853 
5854 	cpu_buffer = buffer->buffers[cpu];
5855 	local_irq_save(flags);
5856 	dolock = rb_reader_lock(cpu_buffer);
5857 
5858 	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
5859 	if (event) {
5860 		cpu_buffer->lost_events = 0;
5861 		rb_advance_reader(cpu_buffer);
5862 	}
5863 
5864 	rb_reader_unlock(cpu_buffer, dolock);
5865 	local_irq_restore(flags);
5866 
5867  out:
5868 	preempt_enable();
5869 
5870 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
5871 		goto again;
5872 
5873 	return event;
5874 }
5875 EXPORT_SYMBOL_GPL(ring_buffer_consume);
5876 
5877 /**
5878  * ring_buffer_read_start - start a non consuming read of the buffer
5879  * @buffer: The ring buffer to read from
5880  * @cpu: The cpu buffer to iterate over
5881  * @flags: gfp flags to use for memory allocation
5882  *
5883  * This creates an iterator to allow non-consuming iteration through
5884  * the buffer. If the buffer is disabled for writing, it will produce
5885  * the same information each time, but if the buffer is still writing
5886  * then the first hit of a write will cause the iteration to stop.
5887  *
5888  * Must be paired with ring_buffer_read_finish.
5889  */
5890 struct ring_buffer_iter *
ring_buffer_read_start(struct trace_buffer * buffer,int cpu,gfp_t flags)5891 ring_buffer_read_start(struct trace_buffer *buffer, int cpu, gfp_t flags)
5892 {
5893 	struct ring_buffer_per_cpu *cpu_buffer;
5894 	struct ring_buffer_iter *iter;
5895 
5896 	if (!cpumask_test_cpu(cpu, buffer->cpumask) || buffer->writer)
5897 		return NULL;
5898 
5899 	iter = kzalloc(sizeof(*iter), flags);
5900 	if (!iter)
5901 		return NULL;
5902 
5903 	/* Holds the entire event: data and meta data */
5904 	iter->event_size = buffer->subbuf_size;
5905 	iter->event = kmalloc(iter->event_size, flags);
5906 	if (!iter->event) {
5907 		kfree(iter);
5908 		return NULL;
5909 	}
5910 
5911 	cpu_buffer = buffer->buffers[cpu];
5912 
5913 	iter->cpu_buffer = cpu_buffer;
5914 
5915 	atomic_inc(&cpu_buffer->resize_disabled);
5916 
5917 	guard(raw_spinlock_irqsave)(&cpu_buffer->reader_lock);
5918 	arch_spin_lock(&cpu_buffer->lock);
5919 	rb_iter_reset(iter);
5920 	arch_spin_unlock(&cpu_buffer->lock);
5921 
5922 	return iter;
5923 }
5924 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
5925 
5926 /**
5927  * ring_buffer_read_finish - finish reading the iterator of the buffer
5928  * @iter: The iterator retrieved by ring_buffer_start
5929  *
5930  * This re-enables resizing of the buffer, and frees the iterator.
5931  */
5932 void
ring_buffer_read_finish(struct ring_buffer_iter * iter)5933 ring_buffer_read_finish(struct ring_buffer_iter *iter)
5934 {
5935 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5936 
5937 	/* Use this opportunity to check the integrity of the ring buffer. */
5938 	rb_check_pages(cpu_buffer);
5939 
5940 	atomic_dec(&cpu_buffer->resize_disabled);
5941 	kfree(iter->event);
5942 	kfree(iter);
5943 }
5944 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
5945 
5946 /**
5947  * ring_buffer_iter_advance - advance the iterator to the next location
5948  * @iter: The ring buffer iterator
5949  *
5950  * Move the location of the iterator such that the next read will
5951  * be the next location of the iterator.
5952  */
ring_buffer_iter_advance(struct ring_buffer_iter * iter)5953 void ring_buffer_iter_advance(struct ring_buffer_iter *iter)
5954 {
5955 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5956 	unsigned long flags;
5957 
5958 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5959 
5960 	rb_advance_iter(iter);
5961 
5962 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5963 }
5964 EXPORT_SYMBOL_GPL(ring_buffer_iter_advance);
5965 
5966 /**
5967  * ring_buffer_size - return the size of the ring buffer (in bytes)
5968  * @buffer: The ring buffer.
5969  * @cpu: The CPU to get ring buffer size from.
5970  */
ring_buffer_size(struct trace_buffer * buffer,int cpu)5971 unsigned long ring_buffer_size(struct trace_buffer *buffer, int cpu)
5972 {
5973 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5974 		return 0;
5975 
5976 	return buffer->subbuf_size * buffer->buffers[cpu]->nr_pages;
5977 }
5978 EXPORT_SYMBOL_GPL(ring_buffer_size);
5979 
5980 /**
5981  * ring_buffer_max_event_size - return the max data size of an event
5982  * @buffer: The ring buffer.
5983  *
5984  * Returns the maximum size an event can be.
5985  */
ring_buffer_max_event_size(struct trace_buffer * buffer)5986 unsigned long ring_buffer_max_event_size(struct trace_buffer *buffer)
5987 {
5988 	/* If abs timestamp is requested, events have a timestamp too */
5989 	if (ring_buffer_time_stamp_abs(buffer))
5990 		return buffer->max_data_size - RB_LEN_TIME_EXTEND;
5991 	return buffer->max_data_size;
5992 }
5993 EXPORT_SYMBOL_GPL(ring_buffer_max_event_size);
5994 
rb_clear_buffer_page(struct buffer_page * page)5995 static void rb_clear_buffer_page(struct buffer_page *page)
5996 {
5997 	local_set(&page->write, 0);
5998 	local_set(&page->entries, 0);
5999 	rb_init_page(page->page);
6000 	page->read = 0;
6001 }
6002 
rb_update_meta_page(struct ring_buffer_per_cpu * cpu_buffer)6003 static void rb_update_meta_page(struct ring_buffer_per_cpu *cpu_buffer)
6004 {
6005 	struct trace_buffer_meta *meta = cpu_buffer->meta_page;
6006 
6007 	if (!meta)
6008 		return;
6009 
6010 	meta->reader.read = cpu_buffer->reader_page->read;
6011 	meta->reader.id = cpu_buffer->reader_page->id;
6012 	meta->reader.lost_events = cpu_buffer->lost_events;
6013 
6014 	meta->entries = local_read(&cpu_buffer->entries);
6015 	meta->overrun = local_read(&cpu_buffer->overrun);
6016 	meta->read = cpu_buffer->read;
6017 
6018 	/* Some archs do not have data cache coherency between kernel and user-space */
6019 	flush_kernel_vmap_range(cpu_buffer->meta_page, PAGE_SIZE);
6020 }
6021 
6022 static void
rb_reset_cpu(struct ring_buffer_per_cpu * cpu_buffer)6023 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
6024 {
6025 	struct buffer_page *page;
6026 
6027 	if (cpu_buffer->writer) {
6028 		if (!cpu_buffer->writer->reset)
6029 			return;
6030 
6031 		cpu_buffer->writer->reset(cpu_buffer->cpu);
6032 		rb_read_writer_meta_page(cpu_buffer);
6033 
6034 		/* Read related values, not covered by the meta-page */
6035 		local_set(&cpu_buffer->pages_read, 0);
6036 		cpu_buffer->read = 0;
6037 		cpu_buffer->read_bytes = 0;
6038 		cpu_buffer->last_overrun = 0;
6039 		cpu_buffer->reader_page->read = 0;
6040 
6041 		return;
6042 	}
6043 
6044 	rb_head_page_deactivate(cpu_buffer);
6045 
6046 	cpu_buffer->head_page
6047 		= list_entry(cpu_buffer->pages, struct buffer_page, list);
6048 	rb_clear_buffer_page(cpu_buffer->head_page);
6049 	list_for_each_entry(page, cpu_buffer->pages, list) {
6050 		rb_clear_buffer_page(page);
6051 	}
6052 
6053 	cpu_buffer->tail_page = cpu_buffer->head_page;
6054 	cpu_buffer->commit_page = cpu_buffer->head_page;
6055 
6056 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
6057 	INIT_LIST_HEAD(&cpu_buffer->new_pages);
6058 	rb_clear_buffer_page(cpu_buffer->reader_page);
6059 
6060 	local_set(&cpu_buffer->entries_bytes, 0);
6061 	local_set(&cpu_buffer->overrun, 0);
6062 	local_set(&cpu_buffer->commit_overrun, 0);
6063 	local_set(&cpu_buffer->dropped_events, 0);
6064 	local_set(&cpu_buffer->entries, 0);
6065 	local_set(&cpu_buffer->committing, 0);
6066 	local_set(&cpu_buffer->commits, 0);
6067 	local_set(&cpu_buffer->pages_touched, 0);
6068 	local_set(&cpu_buffer->pages_lost, 0);
6069 	local_set(&cpu_buffer->pages_read, 0);
6070 	cpu_buffer->last_pages_touch = 0;
6071 	cpu_buffer->shortest_full = 0;
6072 	cpu_buffer->read = 0;
6073 	cpu_buffer->read_bytes = 0;
6074 
6075 	rb_time_set(&cpu_buffer->write_stamp, 0);
6076 	rb_time_set(&cpu_buffer->before_stamp, 0);
6077 
6078 	memset(cpu_buffer->event_stamp, 0, sizeof(cpu_buffer->event_stamp));
6079 
6080 	cpu_buffer->lost_events = 0;
6081 	cpu_buffer->last_overrun = 0;
6082 
6083 	rb_head_page_activate(cpu_buffer);
6084 	cpu_buffer->pages_removed = 0;
6085 
6086 	if (cpu_buffer->mapped) {
6087 		rb_update_meta_page(cpu_buffer);
6088 		if (cpu_buffer->ring_meta) {
6089 			struct ring_buffer_meta *meta = cpu_buffer->ring_meta;
6090 			meta->commit_buffer = meta->head_buffer;
6091 		}
6092 	}
6093 }
6094 
6095 /* Must have disabled the cpu buffer then done a synchronize_rcu */
reset_disabled_cpu_buffer(struct ring_buffer_per_cpu * cpu_buffer)6096 static void reset_disabled_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
6097 {
6098 	unsigned long flags;
6099 
6100 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
6101 
6102 	if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
6103 		goto out;
6104 
6105 	arch_spin_lock(&cpu_buffer->lock);
6106 
6107 	rb_reset_cpu(cpu_buffer);
6108 
6109 	arch_spin_unlock(&cpu_buffer->lock);
6110 
6111  out:
6112 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
6113 }
6114 
6115 /**
6116  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
6117  * @buffer: The ring buffer to reset a per cpu buffer of
6118  * @cpu: The CPU buffer to be reset
6119  */
ring_buffer_reset_cpu(struct trace_buffer * buffer,int cpu)6120 void ring_buffer_reset_cpu(struct trace_buffer *buffer, int cpu)
6121 {
6122 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
6123 	struct ring_buffer_meta *meta;
6124 
6125 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
6126 		return;
6127 
6128 	/* prevent another thread from changing buffer sizes */
6129 	mutex_lock(&buffer->mutex);
6130 
6131 	atomic_inc(&cpu_buffer->resize_disabled);
6132 	atomic_inc(&cpu_buffer->record_disabled);
6133 
6134 	/* Make sure all commits have finished */
6135 	synchronize_rcu();
6136 
6137 	reset_disabled_cpu_buffer(cpu_buffer);
6138 
6139 	atomic_dec(&cpu_buffer->record_disabled);
6140 	atomic_dec(&cpu_buffer->resize_disabled);
6141 
6142 	/* Make sure persistent meta now uses this buffer's addresses */
6143 	meta = rb_range_meta(buffer, 0, cpu_buffer->cpu);
6144 	if (meta)
6145 		rb_meta_init_text_addr(meta);
6146 
6147 	mutex_unlock(&buffer->mutex);
6148 }
6149 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
6150 
6151 /* Flag to ensure proper resetting of atomic variables */
6152 #define RESET_BIT	(1 << 30)
6153 
6154 /**
6155  * ring_buffer_reset_online_cpus - reset a ring buffer per CPU buffer
6156  * @buffer: The ring buffer to reset a per cpu buffer of
6157  */
ring_buffer_reset_online_cpus(struct trace_buffer * buffer)6158 void ring_buffer_reset_online_cpus(struct trace_buffer *buffer)
6159 {
6160 	struct ring_buffer_per_cpu *cpu_buffer;
6161 	struct ring_buffer_meta *meta;
6162 	int cpu;
6163 
6164 	/* prevent another thread from changing buffer sizes */
6165 	mutex_lock(&buffer->mutex);
6166 
6167 	for_each_online_buffer_cpu(buffer, cpu) {
6168 		cpu_buffer = buffer->buffers[cpu];
6169 
6170 		atomic_add(RESET_BIT, &cpu_buffer->resize_disabled);
6171 		atomic_inc(&cpu_buffer->record_disabled);
6172 	}
6173 
6174 	/* Make sure all commits have finished */
6175 	synchronize_rcu();
6176 
6177 	for_each_buffer_cpu(buffer, cpu) {
6178 		cpu_buffer = buffer->buffers[cpu];
6179 
6180 		/*
6181 		 * If a CPU came online during the synchronize_rcu(), then
6182 		 * ignore it.
6183 		 */
6184 		if (!(atomic_read(&cpu_buffer->resize_disabled) & RESET_BIT))
6185 			continue;
6186 
6187 		reset_disabled_cpu_buffer(cpu_buffer);
6188 
6189 		/* Make sure persistent meta now uses this buffer's addresses */
6190 		meta = rb_range_meta(buffer, 0, cpu_buffer->cpu);
6191 		if (meta)
6192 			rb_meta_init_text_addr(meta);
6193 
6194 		atomic_dec(&cpu_buffer->record_disabled);
6195 		atomic_sub(RESET_BIT, &cpu_buffer->resize_disabled);
6196 	}
6197 
6198 	mutex_unlock(&buffer->mutex);
6199 }
6200 
6201 /**
6202  * ring_buffer_reset - reset a ring buffer
6203  * @buffer: The ring buffer to reset all cpu buffers
6204  */
ring_buffer_reset(struct trace_buffer * buffer)6205 void ring_buffer_reset(struct trace_buffer *buffer)
6206 {
6207 	struct ring_buffer_per_cpu *cpu_buffer;
6208 	int cpu;
6209 
6210 	/* prevent another thread from changing buffer sizes */
6211 	mutex_lock(&buffer->mutex);
6212 
6213 	for_each_buffer_cpu(buffer, cpu) {
6214 		cpu_buffer = buffer->buffers[cpu];
6215 
6216 		atomic_inc(&cpu_buffer->resize_disabled);
6217 		atomic_inc(&cpu_buffer->record_disabled);
6218 	}
6219 
6220 	/* Make sure all commits have finished */
6221 	synchronize_rcu();
6222 
6223 	for_each_buffer_cpu(buffer, cpu) {
6224 		cpu_buffer = buffer->buffers[cpu];
6225 
6226 		reset_disabled_cpu_buffer(cpu_buffer);
6227 
6228 		atomic_dec(&cpu_buffer->record_disabled);
6229 		atomic_dec(&cpu_buffer->resize_disabled);
6230 	}
6231 
6232 	mutex_unlock(&buffer->mutex);
6233 }
6234 EXPORT_SYMBOL_GPL(ring_buffer_reset);
6235 
6236 /**
6237  * ring_buffer_empty - is the ring buffer empty?
6238  * @buffer: The ring buffer to test
6239  */
ring_buffer_empty(struct trace_buffer * buffer)6240 bool ring_buffer_empty(struct trace_buffer *buffer)
6241 {
6242 	struct ring_buffer_per_cpu *cpu_buffer;
6243 	unsigned long flags;
6244 	bool dolock;
6245 	bool ret;
6246 	int cpu;
6247 
6248 	/* yes this is racy, but if you don't like the race, lock the buffer */
6249 	for_each_buffer_cpu(buffer, cpu) {
6250 		cpu_buffer = buffer->buffers[cpu];
6251 		local_irq_save(flags);
6252 		dolock = rb_reader_lock(cpu_buffer);
6253 		ret = rb_per_cpu_empty(cpu_buffer);
6254 		rb_reader_unlock(cpu_buffer, dolock);
6255 		local_irq_restore(flags);
6256 
6257 		if (!ret)
6258 			return false;
6259 	}
6260 
6261 	return true;
6262 }
6263 EXPORT_SYMBOL_GPL(ring_buffer_empty);
6264 
6265 /**
6266  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
6267  * @buffer: The ring buffer
6268  * @cpu: The CPU buffer to test
6269  */
ring_buffer_empty_cpu(struct trace_buffer * buffer,int cpu)6270 bool ring_buffer_empty_cpu(struct trace_buffer *buffer, int cpu)
6271 {
6272 	struct ring_buffer_per_cpu *cpu_buffer;
6273 	unsigned long flags;
6274 	bool dolock;
6275 	bool ret;
6276 
6277 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
6278 		return true;
6279 
6280 	cpu_buffer = buffer->buffers[cpu];
6281 	local_irq_save(flags);
6282 	dolock = rb_reader_lock(cpu_buffer);
6283 	ret = rb_per_cpu_empty(cpu_buffer);
6284 	rb_reader_unlock(cpu_buffer, dolock);
6285 	local_irq_restore(flags);
6286 
6287 	return ret;
6288 }
6289 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
6290 
ring_buffer_poll_writer(struct trace_buffer * buffer,int cpu)6291 int ring_buffer_poll_writer(struct trace_buffer *buffer, int cpu)
6292 {
6293 	struct ring_buffer_per_cpu *cpu_buffer;
6294 	unsigned long flags;
6295 
6296 	if (cpu != RING_BUFFER_ALL_CPUS) {
6297 		if (!cpumask_test_cpu(cpu, buffer->cpumask))
6298 			return -EINVAL;
6299 
6300 		cpu_buffer = buffer->buffers[cpu];
6301 
6302 		raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
6303 		if (rb_read_writer_meta_page(cpu_buffer))
6304 			rb_wakeups(buffer, cpu_buffer);
6305 		raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
6306 
6307 		return 0;
6308 	}
6309 
6310 	/*
6311 	 * Make sure all the ring buffers are up to date before we start reading
6312 	 * them.
6313 	 */
6314 	for_each_buffer_cpu(buffer, cpu) {
6315 		cpu_buffer = buffer->buffers[cpu];
6316 
6317 		raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
6318 		rb_read_writer_meta_page(buffer->buffers[cpu]);
6319 		raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
6320 	}
6321 
6322 	for_each_buffer_cpu(buffer, cpu) {
6323 		cpu_buffer = buffer->buffers[cpu];
6324 
6325 		raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
6326 		if (rb_num_of_entries(cpu_buffer))
6327 			rb_wakeups(buffer, buffer->buffers[cpu]);
6328 		raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
6329 	}
6330 
6331 	return 0;
6332 }
6333 
6334 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
6335 /**
6336  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
6337  * @buffer_a: One buffer to swap with
6338  * @buffer_b: The other buffer to swap with
6339  * @cpu: the CPU of the buffers to swap
6340  *
6341  * This function is useful for tracers that want to take a "snapshot"
6342  * of a CPU buffer and has another back up buffer lying around.
6343  * it is expected that the tracer handles the cpu buffer not being
6344  * used at the moment.
6345  */
ring_buffer_swap_cpu(struct trace_buffer * buffer_a,struct trace_buffer * buffer_b,int cpu)6346 int ring_buffer_swap_cpu(struct trace_buffer *buffer_a,
6347 			 struct trace_buffer *buffer_b, int cpu)
6348 {
6349 	struct ring_buffer_per_cpu *cpu_buffer_a;
6350 	struct ring_buffer_per_cpu *cpu_buffer_b;
6351 	int ret = -EINVAL;
6352 
6353 	if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
6354 	    !cpumask_test_cpu(cpu, buffer_b->cpumask))
6355 		goto out;
6356 
6357 	cpu_buffer_a = buffer_a->buffers[cpu];
6358 	cpu_buffer_b = buffer_b->buffers[cpu];
6359 
6360 	/* It's up to the callers to not try to swap mapped buffers */
6361 	if (WARN_ON_ONCE(cpu_buffer_a->mapped || cpu_buffer_b->mapped)) {
6362 		ret = -EBUSY;
6363 		goto out;
6364 	}
6365 
6366 	/* At least make sure the two buffers are somewhat the same */
6367 	if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
6368 		goto out;
6369 
6370 	if (buffer_a->subbuf_order != buffer_b->subbuf_order)
6371 		goto out;
6372 
6373 	ret = -EAGAIN;
6374 
6375 	if (atomic_read(&buffer_a->record_disabled))
6376 		goto out;
6377 
6378 	if (atomic_read(&buffer_b->record_disabled))
6379 		goto out;
6380 
6381 	if (atomic_read(&cpu_buffer_a->record_disabled))
6382 		goto out;
6383 
6384 	if (atomic_read(&cpu_buffer_b->record_disabled))
6385 		goto out;
6386 
6387 	/*
6388 	 * We can't do a synchronize_rcu here because this
6389 	 * function can be called in atomic context.
6390 	 * Normally this will be called from the same CPU as cpu.
6391 	 * If not it's up to the caller to protect this.
6392 	 */
6393 	atomic_inc(&cpu_buffer_a->record_disabled);
6394 	atomic_inc(&cpu_buffer_b->record_disabled);
6395 
6396 	ret = -EBUSY;
6397 	if (local_read(&cpu_buffer_a->committing))
6398 		goto out_dec;
6399 	if (local_read(&cpu_buffer_b->committing))
6400 		goto out_dec;
6401 
6402 	/*
6403 	 * When resize is in progress, we cannot swap it because
6404 	 * it will mess the state of the cpu buffer.
6405 	 */
6406 	if (atomic_read(&buffer_a->resizing))
6407 		goto out_dec;
6408 	if (atomic_read(&buffer_b->resizing))
6409 		goto out_dec;
6410 
6411 	buffer_a->buffers[cpu] = cpu_buffer_b;
6412 	buffer_b->buffers[cpu] = cpu_buffer_a;
6413 
6414 	cpu_buffer_b->buffer = buffer_a;
6415 	cpu_buffer_a->buffer = buffer_b;
6416 
6417 	ret = 0;
6418 
6419 out_dec:
6420 	atomic_dec(&cpu_buffer_a->record_disabled);
6421 	atomic_dec(&cpu_buffer_b->record_disabled);
6422 out:
6423 	return ret;
6424 }
6425 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
6426 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
6427 
6428 /**
6429  * ring_buffer_alloc_read_page - allocate a page to read from buffer
6430  * @buffer: the buffer to allocate for.
6431  * @cpu: the cpu buffer to allocate.
6432  *
6433  * This function is used in conjunction with ring_buffer_read_page.
6434  * When reading a full page from the ring buffer, these functions
6435  * can be used to speed up the process. The calling function should
6436  * allocate a few pages first with this function. Then when it
6437  * needs to get pages from the ring buffer, it passes the result
6438  * of this function into ring_buffer_read_page, which will swap
6439  * the page that was allocated, with the read page of the buffer.
6440  *
6441  * Returns:
6442  *  The page allocated, or ERR_PTR
6443  */
6444 struct buffer_data_read_page *
ring_buffer_alloc_read_page(struct trace_buffer * buffer,int cpu)6445 ring_buffer_alloc_read_page(struct trace_buffer *buffer, int cpu)
6446 {
6447 	struct ring_buffer_per_cpu *cpu_buffer;
6448 	struct buffer_data_read_page *bpage = NULL;
6449 	unsigned long flags;
6450 	struct page *page;
6451 
6452 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
6453 		return ERR_PTR(-ENODEV);
6454 
6455 	bpage = kzalloc(sizeof(*bpage), GFP_KERNEL);
6456 	if (!bpage)
6457 		return ERR_PTR(-ENOMEM);
6458 
6459 	bpage->order = buffer->subbuf_order;
6460 	cpu_buffer = buffer->buffers[cpu];
6461 	local_irq_save(flags);
6462 	arch_spin_lock(&cpu_buffer->lock);
6463 
6464 	if (cpu_buffer->free_page) {
6465 		bpage->data = cpu_buffer->free_page;
6466 		cpu_buffer->free_page = NULL;
6467 	}
6468 
6469 	arch_spin_unlock(&cpu_buffer->lock);
6470 	local_irq_restore(flags);
6471 
6472 	if (bpage->data)
6473 		goto out;
6474 
6475 	page = alloc_pages_node(cpu_to_node(cpu),
6476 				GFP_KERNEL | __GFP_NORETRY | __GFP_COMP | __GFP_ZERO,
6477 				cpu_buffer->buffer->subbuf_order);
6478 	if (!page) {
6479 		kfree(bpage);
6480 		return ERR_PTR(-ENOMEM);
6481 	}
6482 
6483 	bpage->data = page_address(page);
6484 
6485  out:
6486 	rb_init_page(bpage->data);
6487 
6488 	return bpage;
6489 }
6490 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
6491 
6492 /**
6493  * ring_buffer_free_read_page - free an allocated read page
6494  * @buffer: the buffer the page was allocate for
6495  * @cpu: the cpu buffer the page came from
6496  * @data_page: the page to free
6497  *
6498  * Free a page allocated from ring_buffer_alloc_read_page.
6499  */
ring_buffer_free_read_page(struct trace_buffer * buffer,int cpu,struct buffer_data_read_page * data_page)6500 void ring_buffer_free_read_page(struct trace_buffer *buffer, int cpu,
6501 				struct buffer_data_read_page *data_page)
6502 {
6503 	struct ring_buffer_per_cpu *cpu_buffer;
6504 	struct buffer_data_page *bpage = data_page->data;
6505 	struct page *page = virt_to_page(bpage);
6506 	unsigned long flags;
6507 
6508 	if (!buffer || !buffer->buffers || !buffer->buffers[cpu])
6509 		return;
6510 
6511 	cpu_buffer = buffer->buffers[cpu];
6512 
6513 	/*
6514 	 * If the page is still in use someplace else, or order of the page
6515 	 * is different from the subbuffer order of the buffer -
6516 	 * we can't reuse it
6517 	 */
6518 	if (page_ref_count(page) > 1 || data_page->order != buffer->subbuf_order)
6519 		goto out;
6520 
6521 	local_irq_save(flags);
6522 	arch_spin_lock(&cpu_buffer->lock);
6523 
6524 	if (!cpu_buffer->free_page) {
6525 		cpu_buffer->free_page = bpage;
6526 		bpage = NULL;
6527 	}
6528 
6529 	arch_spin_unlock(&cpu_buffer->lock);
6530 	local_irq_restore(flags);
6531 
6532  out:
6533 	free_pages((unsigned long)bpage, data_page->order);
6534 	kfree(data_page);
6535 }
6536 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
6537 
6538 /**
6539  * ring_buffer_read_page - extract a page from the ring buffer
6540  * @buffer: buffer to extract from
6541  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
6542  * @len: amount to extract
6543  * @cpu: the cpu of the buffer to extract
6544  * @full: should the extraction only happen when the page is full.
6545  *
6546  * This function will pull out a page from the ring buffer and consume it.
6547  * @data_page must be the address of the variable that was returned
6548  * from ring_buffer_alloc_read_page. This is because the page might be used
6549  * to swap with a page in the ring buffer.
6550  *
6551  * for example:
6552  *	rpage = ring_buffer_alloc_read_page(buffer, cpu);
6553  *	if (IS_ERR(rpage))
6554  *		return PTR_ERR(rpage);
6555  *	ret = ring_buffer_read_page(buffer, rpage, len, cpu, 0);
6556  *	if (ret >= 0)
6557  *		process_page(ring_buffer_read_page_data(rpage), ret);
6558  *	ring_buffer_free_read_page(buffer, cpu, rpage);
6559  *
6560  * When @full is set, the function will not return true unless
6561  * the writer is off the reader page.
6562  *
6563  * Note: it is up to the calling functions to handle sleeps and wakeups.
6564  *  The ring buffer can be used anywhere in the kernel and can not
6565  *  blindly call wake_up. The layer that uses the ring buffer must be
6566  *  responsible for that.
6567  *
6568  * Returns:
6569  *  >=0 if data has been transferred, returns the offset of consumed data.
6570  *  <0 if no data has been transferred.
6571  */
ring_buffer_read_page(struct trace_buffer * buffer,struct buffer_data_read_page * data_page,size_t len,int cpu,int full)6572 int ring_buffer_read_page(struct trace_buffer *buffer,
6573 			  struct buffer_data_read_page *data_page,
6574 			  size_t len, int cpu, int full)
6575 {
6576 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
6577 	struct ring_buffer_event *event;
6578 	struct buffer_data_page *bpage;
6579 	struct buffer_page *reader;
6580 	unsigned long missed_events;
6581 	unsigned long flags;
6582 	unsigned int commit;
6583 	unsigned int read;
6584 	u64 save_timestamp;
6585 	bool force_memcpy;
6586 	int ret = -1;
6587 
6588 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
6589 		goto out;
6590 
6591 	/*
6592 	 * If len is not big enough to hold the page header, then
6593 	 * we can not copy anything.
6594 	 */
6595 	if (len <= BUF_PAGE_HDR_SIZE)
6596 		goto out;
6597 
6598 	len -= BUF_PAGE_HDR_SIZE;
6599 
6600 	if (!data_page || !data_page->data)
6601 		goto out;
6602 	if (data_page->order != buffer->subbuf_order)
6603 		goto out;
6604 
6605 	bpage = data_page->data;
6606 	if (!bpage)
6607 		goto out;
6608 
6609 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
6610 
6611 	reader = rb_get_reader_page(cpu_buffer);
6612 	if (!reader)
6613 		goto out_unlock;
6614 
6615 	event = rb_reader_event(cpu_buffer);
6616 
6617 	read = reader->read;
6618 	commit = rb_page_size(reader);
6619 
6620 	/* Check if any events were dropped */
6621 	missed_events = cpu_buffer->lost_events;
6622 
6623 	force_memcpy = cpu_buffer->mapped || cpu_buffer->writer;
6624 
6625 	/*
6626 	 * If this page has been partially read or
6627 	 * if len is not big enough to read the rest of the page or
6628 	 * a writer is still on the page, then
6629 	 * we must copy the data from the page to the buffer.
6630 	 * Otherwise, we can simply swap the page with the one passed in.
6631 	 */
6632 	if (read || (len < (commit - read)) ||
6633 	    cpu_buffer->reader_page == cpu_buffer->commit_page ||
6634 	    force_memcpy) {
6635 		struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
6636 		unsigned int rpos = read;
6637 		unsigned int pos = 0;
6638 		unsigned int size;
6639 
6640 		/*
6641 		 * If a full page is expected, this can still be returned
6642 		 * if there's been a previous partial read and the
6643 		 * rest of the page can be read and the commit page is off
6644 		 * the reader page.
6645 		 */
6646 		if (full &&
6647 		    (!read || (len < (commit - read)) ||
6648 		     cpu_buffer->reader_page == cpu_buffer->commit_page))
6649 			goto out_unlock;
6650 
6651 		if (len > (commit - read))
6652 			len = (commit - read);
6653 
6654 		/* Always keep the time extend and data together */
6655 		size = rb_event_ts_length(event);
6656 
6657 		if (len < size)
6658 			goto out_unlock;
6659 
6660 		/* save the current timestamp, since the user will need it */
6661 		save_timestamp = cpu_buffer->read_stamp;
6662 
6663 		/* Need to copy one event at a time */
6664 		do {
6665 			/* We need the size of one event, because
6666 			 * rb_advance_reader only advances by one event,
6667 			 * whereas rb_event_ts_length may include the size of
6668 			 * one or two events.
6669 			 * We have already ensured there's enough space if this
6670 			 * is a time extend. */
6671 			size = rb_event_length(event);
6672 			memcpy(bpage->data + pos, rpage->data + rpos, size);
6673 
6674 			len -= size;
6675 
6676 			rb_advance_reader(cpu_buffer);
6677 			rpos = reader->read;
6678 			pos += size;
6679 
6680 			if (rpos >= commit)
6681 				break;
6682 
6683 			event = rb_reader_event(cpu_buffer);
6684 			/* Always keep the time extend and data together */
6685 			size = rb_event_ts_length(event);
6686 		} while (len >= size);
6687 
6688 		/* update bpage */
6689 		local_set(&bpage->commit, pos);
6690 		bpage->time_stamp = save_timestamp;
6691 
6692 		/* we copied everything to the beginning */
6693 		read = 0;
6694 	} else {
6695 		/* update the entry counter */
6696 		cpu_buffer->read += rb_page_entries(reader);
6697 		cpu_buffer->read_bytes += rb_page_size(reader);
6698 
6699 		/* swap the pages */
6700 		rb_init_page(bpage);
6701 		bpage = reader->page;
6702 		reader->page = data_page->data;
6703 		local_set(&reader->write, 0);
6704 		local_set(&reader->entries, 0);
6705 		reader->read = 0;
6706 		data_page->data = bpage;
6707 
6708 		/*
6709 		 * Use the real_end for the data size,
6710 		 * This gives us a chance to store the lost events
6711 		 * on the page.
6712 		 */
6713 		if (reader->real_end)
6714 			local_set(&bpage->commit, reader->real_end);
6715 	}
6716 	ret = read;
6717 
6718 	cpu_buffer->lost_events = 0;
6719 
6720 	commit = local_read(&bpage->commit);
6721 	/*
6722 	 * Set a flag in the commit field if we lost events
6723 	 */
6724 	if (missed_events) {
6725 		/* If there is room at the end of the page to save the
6726 		 * missed events, then record it there.
6727 		 */
6728 		if (buffer->subbuf_size - commit >= sizeof(missed_events)) {
6729 			memcpy(&bpage->data[commit], &missed_events,
6730 			       sizeof(missed_events));
6731 			local_add(RB_MISSED_STORED, &bpage->commit);
6732 			commit += sizeof(missed_events);
6733 		}
6734 		local_add(RB_MISSED_EVENTS, &bpage->commit);
6735 	}
6736 
6737 	/*
6738 	 * This page may be off to user land. Zero it out here.
6739 	 */
6740 	if (commit < buffer->subbuf_size)
6741 		memset(&bpage->data[commit], 0, buffer->subbuf_size - commit);
6742 
6743  out_unlock:
6744 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
6745 
6746  out:
6747 	return ret;
6748 }
6749 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
6750 
6751 /**
6752  * ring_buffer_read_page_data - get pointer to the data in the page.
6753  * @page:  the page to get the data from
6754  *
6755  * Returns pointer to the actual data in this page.
6756  */
ring_buffer_read_page_data(struct buffer_data_read_page * page)6757 void *ring_buffer_read_page_data(struct buffer_data_read_page *page)
6758 {
6759 	return page->data;
6760 }
6761 EXPORT_SYMBOL_GPL(ring_buffer_read_page_data);
6762 
6763 /**
6764  * ring_buffer_subbuf_size_get - get size of the sub buffer.
6765  * @buffer: the buffer to get the sub buffer size from
6766  *
6767  * Returns size of the sub buffer, in bytes.
6768  */
ring_buffer_subbuf_size_get(struct trace_buffer * buffer)6769 int ring_buffer_subbuf_size_get(struct trace_buffer *buffer)
6770 {
6771 	return buffer->subbuf_size + BUF_PAGE_HDR_SIZE;
6772 }
6773 EXPORT_SYMBOL_GPL(ring_buffer_subbuf_size_get);
6774 
6775 /**
6776  * ring_buffer_subbuf_order_get - get order of system sub pages in one buffer page.
6777  * @buffer: The ring_buffer to get the system sub page order from
6778  *
6779  * By default, one ring buffer sub page equals to one system page. This parameter
6780  * is configurable, per ring buffer. The size of the ring buffer sub page can be
6781  * extended, but must be an order of system page size.
6782  *
6783  * Returns the order of buffer sub page size, in system pages:
6784  * 0 means the sub buffer size is 1 system page and so forth.
6785  * In case of an error < 0 is returned.
6786  */
ring_buffer_subbuf_order_get(struct trace_buffer * buffer)6787 int ring_buffer_subbuf_order_get(struct trace_buffer *buffer)
6788 {
6789 	if (!buffer)
6790 		return -EINVAL;
6791 
6792 	return buffer->subbuf_order;
6793 }
6794 EXPORT_SYMBOL_GPL(ring_buffer_subbuf_order_get);
6795 
6796 /**
6797  * ring_buffer_subbuf_order_set - set the size of ring buffer sub page.
6798  * @buffer: The ring_buffer to set the new page size.
6799  * @order: Order of the system pages in one sub buffer page
6800  *
6801  * By default, one ring buffer pages equals to one system page. This API can be
6802  * used to set new size of the ring buffer page. The size must be order of
6803  * system page size, that's why the input parameter @order is the order of
6804  * system pages that are allocated for one ring buffer page:
6805  *  0 - 1 system page
6806  *  1 - 2 system pages
6807  *  3 - 4 system pages
6808  *  ...
6809  *
6810  * Returns 0 on success or < 0 in case of an error.
6811  */
ring_buffer_subbuf_order_set(struct trace_buffer * buffer,int order)6812 int ring_buffer_subbuf_order_set(struct trace_buffer *buffer, int order)
6813 {
6814 	struct ring_buffer_per_cpu *cpu_buffer;
6815 	struct buffer_page *bpage, *tmp;
6816 	int old_order, old_size;
6817 	int nr_pages;
6818 	int psize;
6819 	int err;
6820 	int cpu;
6821 
6822 	if (!buffer || order < 0)
6823 		return -EINVAL;
6824 
6825 	if (buffer->subbuf_order == order)
6826 		return 0;
6827 
6828 	psize = (1 << order) * PAGE_SIZE;
6829 	if (psize <= BUF_PAGE_HDR_SIZE)
6830 		return -EINVAL;
6831 
6832 	/* Size of a subbuf cannot be greater than the write counter */
6833 	if (psize > RB_WRITE_MASK + 1)
6834 		return -EINVAL;
6835 
6836 	old_order = buffer->subbuf_order;
6837 	old_size = buffer->subbuf_size;
6838 
6839 	/* prevent another thread from changing buffer sizes */
6840 	guard(mutex)(&buffer->mutex);
6841 	atomic_inc(&buffer->record_disabled);
6842 
6843 	/* Make sure all commits have finished */
6844 	synchronize_rcu();
6845 
6846 	buffer->subbuf_order = order;
6847 	buffer->subbuf_size = psize - BUF_PAGE_HDR_SIZE;
6848 
6849 	/* Make sure all new buffers are allocated, before deleting the old ones */
6850 	for_each_buffer_cpu(buffer, cpu) {
6851 
6852 		if (!cpumask_test_cpu(cpu, buffer->cpumask))
6853 			continue;
6854 
6855 		cpu_buffer = buffer->buffers[cpu];
6856 
6857 		if (cpu_buffer->mapped) {
6858 			err = -EBUSY;
6859 			goto error;
6860 		}
6861 
6862 		/* Update the number of pages to match the new size */
6863 		nr_pages = old_size * buffer->buffers[cpu]->nr_pages;
6864 		nr_pages = DIV_ROUND_UP(nr_pages, buffer->subbuf_size);
6865 
6866 		/* we need a minimum of two pages */
6867 		if (nr_pages < 2)
6868 			nr_pages = 2;
6869 
6870 		cpu_buffer->nr_pages_to_update = nr_pages;
6871 
6872 		/* Include the reader page */
6873 		nr_pages++;
6874 
6875 		/* Allocate the new size buffer */
6876 		INIT_LIST_HEAD(&cpu_buffer->new_pages);
6877 		if (__rb_allocate_pages(cpu_buffer, nr_pages,
6878 					&cpu_buffer->new_pages)) {
6879 			/* not enough memory for new pages */
6880 			err = -ENOMEM;
6881 			goto error;
6882 		}
6883 	}
6884 
6885 	for_each_buffer_cpu(buffer, cpu) {
6886 		struct buffer_data_page *old_free_data_page;
6887 		struct list_head old_pages;
6888 		unsigned long flags;
6889 
6890 		if (!cpumask_test_cpu(cpu, buffer->cpumask))
6891 			continue;
6892 
6893 		cpu_buffer = buffer->buffers[cpu];
6894 
6895 		raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
6896 
6897 		/* Clear the head bit to make the link list normal to read */
6898 		rb_head_page_deactivate(cpu_buffer);
6899 
6900 		/*
6901 		 * Collect buffers from the cpu_buffer pages list and the
6902 		 * reader_page on old_pages, so they can be freed later when not
6903 		 * under a spinlock. The pages list is a linked list with no
6904 		 * head, adding old_pages turns it into a regular list with
6905 		 * old_pages being the head.
6906 		 */
6907 		list_add(&old_pages, cpu_buffer->pages);
6908 		list_add(&cpu_buffer->reader_page->list, &old_pages);
6909 
6910 		/* One page was allocated for the reader page */
6911 		cpu_buffer->reader_page = list_entry(cpu_buffer->new_pages.next,
6912 						     struct buffer_page, list);
6913 		list_del_init(&cpu_buffer->reader_page->list);
6914 
6915 		/* Install the new pages, remove the head from the list */
6916 		cpu_buffer->pages = cpu_buffer->new_pages.next;
6917 		list_del_init(&cpu_buffer->new_pages);
6918 		cpu_buffer->cnt++;
6919 
6920 		cpu_buffer->head_page
6921 			= list_entry(cpu_buffer->pages, struct buffer_page, list);
6922 		cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
6923 
6924 		cpu_buffer->nr_pages = cpu_buffer->nr_pages_to_update;
6925 		cpu_buffer->nr_pages_to_update = 0;
6926 
6927 		old_free_data_page = cpu_buffer->free_page;
6928 		cpu_buffer->free_page = NULL;
6929 
6930 		rb_head_page_activate(cpu_buffer);
6931 
6932 		raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
6933 
6934 		/* Free old sub buffers */
6935 		list_for_each_entry_safe(bpage, tmp, &old_pages, list) {
6936 			list_del_init(&bpage->list);
6937 			free_buffer_page(bpage);
6938 		}
6939 		free_pages((unsigned long)old_free_data_page, old_order);
6940 
6941 		rb_check_pages(cpu_buffer);
6942 	}
6943 
6944 	atomic_dec(&buffer->record_disabled);
6945 
6946 	return 0;
6947 
6948 error:
6949 	buffer->subbuf_order = old_order;
6950 	buffer->subbuf_size = old_size;
6951 
6952 	atomic_dec(&buffer->record_disabled);
6953 
6954 	for_each_buffer_cpu(buffer, cpu) {
6955 		cpu_buffer = buffer->buffers[cpu];
6956 
6957 		if (!cpu_buffer->nr_pages_to_update)
6958 			continue;
6959 
6960 		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, list) {
6961 			list_del_init(&bpage->list);
6962 			free_buffer_page(bpage);
6963 		}
6964 	}
6965 
6966 	return err;
6967 }
6968 EXPORT_SYMBOL_GPL(ring_buffer_subbuf_order_set);
6969 
rb_alloc_meta_page(struct ring_buffer_per_cpu * cpu_buffer)6970 static int rb_alloc_meta_page(struct ring_buffer_per_cpu *cpu_buffer)
6971 {
6972 	struct page *page;
6973 
6974 	if (cpu_buffer->meta_page)
6975 		return 0;
6976 
6977 	page = alloc_page(GFP_USER | __GFP_ZERO);
6978 	if (!page)
6979 		return -ENOMEM;
6980 
6981 	cpu_buffer->meta_page = page_to_virt(page);
6982 
6983 	return 0;
6984 }
6985 
rb_free_meta_page(struct ring_buffer_per_cpu * cpu_buffer)6986 static void rb_free_meta_page(struct ring_buffer_per_cpu *cpu_buffer)
6987 {
6988 	unsigned long addr = (unsigned long)cpu_buffer->meta_page;
6989 
6990 	free_page(addr);
6991 	cpu_buffer->meta_page = NULL;
6992 }
6993 
rb_setup_ids_meta_page(struct ring_buffer_per_cpu * cpu_buffer,unsigned long * subbuf_ids)6994 static void rb_setup_ids_meta_page(struct ring_buffer_per_cpu *cpu_buffer,
6995 				   unsigned long *subbuf_ids)
6996 {
6997 	struct trace_buffer_meta *meta = cpu_buffer->meta_page;
6998 	unsigned int nr_subbufs = cpu_buffer->nr_pages + 1;
6999 	struct buffer_page *first_subbuf, *subbuf;
7000 	int id = 0;
7001 
7002 	subbuf_ids[id] = (unsigned long)cpu_buffer->reader_page->page;
7003 	cpu_buffer->reader_page->id = id++;
7004 
7005 	first_subbuf = subbuf = rb_set_head_page(cpu_buffer);
7006 	do {
7007 		if (WARN_ON(id >= nr_subbufs))
7008 			break;
7009 
7010 		subbuf_ids[id] = (unsigned long)subbuf->page;
7011 		subbuf->id = id;
7012 
7013 		rb_inc_page(&subbuf);
7014 		id++;
7015 	} while (subbuf != first_subbuf);
7016 
7017 	/* install subbuf ID to kern VA translation */
7018 	cpu_buffer->subbuf_ids = subbuf_ids;
7019 
7020 	meta->meta_struct_len = sizeof(*meta);
7021 	meta->nr_subbufs = nr_subbufs;
7022 	meta->subbuf_size = cpu_buffer->buffer->subbuf_size + BUF_PAGE_HDR_SIZE;
7023 	meta->meta_page_size = meta->subbuf_size;
7024 
7025 	rb_update_meta_page(cpu_buffer);
7026 }
7027 
7028 static struct ring_buffer_per_cpu *
rb_get_mapped_buffer(struct trace_buffer * buffer,int cpu)7029 rb_get_mapped_buffer(struct trace_buffer *buffer, int cpu)
7030 {
7031 	struct ring_buffer_per_cpu *cpu_buffer;
7032 
7033 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
7034 		return ERR_PTR(-EINVAL);
7035 
7036 	cpu_buffer = buffer->buffers[cpu];
7037 
7038 	mutex_lock(&cpu_buffer->mapping_lock);
7039 
7040 	if (!cpu_buffer->user_mapped) {
7041 		mutex_unlock(&cpu_buffer->mapping_lock);
7042 		return ERR_PTR(-ENODEV);
7043 	}
7044 
7045 	return cpu_buffer;
7046 }
7047 
rb_put_mapped_buffer(struct ring_buffer_per_cpu * cpu_buffer)7048 static void rb_put_mapped_buffer(struct ring_buffer_per_cpu *cpu_buffer)
7049 {
7050 	mutex_unlock(&cpu_buffer->mapping_lock);
7051 }
7052 
7053 /*
7054  * Fast-path for rb_buffer_(un)map(). Called whenever the meta-page doesn't need
7055  * to be set-up or torn-down.
7056  */
__rb_inc_dec_mapped(struct ring_buffer_per_cpu * cpu_buffer,bool inc)7057 static int __rb_inc_dec_mapped(struct ring_buffer_per_cpu *cpu_buffer,
7058 			       bool inc)
7059 {
7060 	unsigned long flags;
7061 
7062 	lockdep_assert_held(&cpu_buffer->mapping_lock);
7063 
7064 	/* mapped is always greater or equal to user_mapped */
7065 	if (WARN_ON(cpu_buffer->mapped < cpu_buffer->user_mapped))
7066 		return -EINVAL;
7067 
7068 	if (inc && cpu_buffer->mapped == UINT_MAX)
7069 		return -EBUSY;
7070 
7071 	if (WARN_ON(!inc && cpu_buffer->user_mapped == 0))
7072 		return -EINVAL;
7073 
7074 	mutex_lock(&cpu_buffer->buffer->mutex);
7075 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
7076 
7077 	if (inc) {
7078 		cpu_buffer->user_mapped++;
7079 		cpu_buffer->mapped++;
7080 	} else {
7081 		cpu_buffer->user_mapped--;
7082 		cpu_buffer->mapped--;
7083 	}
7084 
7085 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7086 	mutex_unlock(&cpu_buffer->buffer->mutex);
7087 
7088 	return 0;
7089 }
7090 
7091 /*
7092  *   +--------------+  pgoff == 0
7093  *   |   meta page  |
7094  *   +--------------+  pgoff == 1
7095  *   | subbuffer 0  |
7096  *   |              |
7097  *   +--------------+  pgoff == (1 + (1 << subbuf_order))
7098  *   | subbuffer 1  |
7099  *   |              |
7100  *         ...
7101  */
7102 #ifdef CONFIG_MMU
__rb_map_vma(struct ring_buffer_per_cpu * cpu_buffer,struct vm_area_struct * vma)7103 static int __rb_map_vma(struct ring_buffer_per_cpu *cpu_buffer,
7104 			struct vm_area_struct *vma)
7105 {
7106 	unsigned long nr_subbufs, nr_pages, nr_vma_pages, pgoff = vma->vm_pgoff;
7107 	unsigned int subbuf_pages, subbuf_order;
7108 	struct page **pages;
7109 	int p = 0, s = 0;
7110 	int err;
7111 
7112 	/* Refuse MP_PRIVATE or writable mappings */
7113 	if (vma->vm_flags & VM_WRITE || vma->vm_flags & VM_EXEC ||
7114 	    !(vma->vm_flags & VM_MAYSHARE))
7115 		return -EPERM;
7116 
7117 	subbuf_order = cpu_buffer->buffer->subbuf_order;
7118 	subbuf_pages = 1 << subbuf_order;
7119 
7120 	if (subbuf_order && pgoff % subbuf_pages)
7121 		return -EINVAL;
7122 
7123 	/*
7124 	 * Make sure the mapping cannot become writable later. Also tell the VM
7125 	 * to not touch these pages (VM_DONTCOPY | VM_DONTEXPAND).
7126 	 */
7127 	vm_flags_mod(vma, VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP,
7128 		     VM_MAYWRITE);
7129 
7130 	lockdep_assert_held(&cpu_buffer->mapping_lock);
7131 
7132 	nr_subbufs = cpu_buffer->nr_pages + 1; /* + reader-subbuf */
7133 	nr_pages = ((nr_subbufs + 1) << subbuf_order); /* + meta-page */
7134 	if (nr_pages <= pgoff)
7135 		return -EINVAL;
7136 
7137 	nr_pages -= pgoff;
7138 
7139 	nr_vma_pages = vma_pages(vma);
7140 	if (!nr_vma_pages || nr_vma_pages > nr_pages)
7141 		return -EINVAL;
7142 
7143 	nr_pages = nr_vma_pages;
7144 
7145 	pages = kcalloc(nr_pages, sizeof(*pages), GFP_KERNEL);
7146 	if (!pages)
7147 		return -ENOMEM;
7148 
7149 	if (!pgoff) {
7150 		unsigned long meta_page_padding;
7151 
7152 		pages[p++] = virt_to_page(cpu_buffer->meta_page);
7153 
7154 		/*
7155 		 * Pad with the zero-page to align the meta-page with the
7156 		 * sub-buffers.
7157 		 */
7158 		meta_page_padding = subbuf_pages - 1;
7159 		while (meta_page_padding-- && p < nr_pages) {
7160 			unsigned long __maybe_unused zero_addr =
7161 				vma->vm_start + (PAGE_SIZE * p);
7162 
7163 			pages[p++] = ZERO_PAGE(zero_addr);
7164 		}
7165 	} else {
7166 		/* Skip the meta-page */
7167 		pgoff -= subbuf_pages;
7168 
7169 		s += pgoff / subbuf_pages;
7170 	}
7171 
7172 	while (p < nr_pages) {
7173 		struct page *page;
7174 		int off = 0;
7175 
7176 		if (WARN_ON_ONCE(s >= nr_subbufs)) {
7177 			err = -EINVAL;
7178 			goto out;
7179 		}
7180 
7181 		page = virt_to_page((void *)cpu_buffer->subbuf_ids[s]);
7182 
7183 		for (; off < (1 << (subbuf_order)); off++, page++) {
7184 			if (p >= nr_pages)
7185 				break;
7186 
7187 			pages[p++] = page;
7188 		}
7189 		s++;
7190 	}
7191 
7192 	err = vm_insert_pages(vma, vma->vm_start, pages, &nr_pages);
7193 
7194 out:
7195 	kfree(pages);
7196 
7197 	return err;
7198 }
7199 #else
__rb_map_vma(struct ring_buffer_per_cpu * cpu_buffer,struct vm_area_struct * vma)7200 static int __rb_map_vma(struct ring_buffer_per_cpu *cpu_buffer,
7201 			struct vm_area_struct *vma)
7202 {
7203 	return -EOPNOTSUPP;
7204 }
7205 #endif
7206 
ring_buffer_map(struct trace_buffer * buffer,int cpu,struct vm_area_struct * vma)7207 int ring_buffer_map(struct trace_buffer *buffer, int cpu,
7208 		    struct vm_area_struct *vma)
7209 {
7210 	struct ring_buffer_per_cpu *cpu_buffer;
7211 	unsigned long flags, *subbuf_ids;
7212 	int err = 0;
7213 
7214 	if (!cpumask_test_cpu(cpu, buffer->cpumask) || buffer->writer)
7215 		return -EINVAL;
7216 
7217 	cpu_buffer = buffer->buffers[cpu];
7218 
7219 	mutex_lock(&cpu_buffer->mapping_lock);
7220 
7221 	if (cpu_buffer->user_mapped) {
7222 		err = __rb_map_vma(cpu_buffer, vma);
7223 		if (!err)
7224 			err = __rb_inc_dec_mapped(cpu_buffer, true);
7225 		mutex_unlock(&cpu_buffer->mapping_lock);
7226 		return err;
7227 	}
7228 
7229 	/* prevent another thread from changing buffer/sub-buffer sizes */
7230 	mutex_lock(&buffer->mutex);
7231 
7232 	err = rb_alloc_meta_page(cpu_buffer);
7233 	if (err)
7234 		goto unlock;
7235 
7236 	/* subbuf_ids include the reader while nr_pages does not */
7237 	subbuf_ids = kcalloc(cpu_buffer->nr_pages + 1, sizeof(*subbuf_ids), GFP_KERNEL);
7238 	if (!subbuf_ids) {
7239 		rb_free_meta_page(cpu_buffer);
7240 		err = -ENOMEM;
7241 		goto unlock;
7242 	}
7243 
7244 	atomic_inc(&cpu_buffer->resize_disabled);
7245 
7246 	/*
7247 	 * Lock all readers to block any subbuf swap until the subbuf IDs are
7248 	 * assigned.
7249 	 */
7250 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
7251 	rb_setup_ids_meta_page(cpu_buffer, subbuf_ids);
7252 
7253 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7254 
7255 	err = __rb_map_vma(cpu_buffer, vma);
7256 	if (!err) {
7257 		raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
7258 		/* This is the first time it is mapped by user */
7259 		cpu_buffer->mapped++;
7260 		cpu_buffer->user_mapped = 1;
7261 		raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7262 	} else {
7263 		kfree(cpu_buffer->subbuf_ids);
7264 		cpu_buffer->subbuf_ids = NULL;
7265 		rb_free_meta_page(cpu_buffer);
7266 		atomic_dec(&cpu_buffer->resize_disabled);
7267 	}
7268 
7269 unlock:
7270 	mutex_unlock(&buffer->mutex);
7271 	mutex_unlock(&cpu_buffer->mapping_lock);
7272 
7273 	return err;
7274 }
7275 
ring_buffer_unmap(struct trace_buffer * buffer,int cpu)7276 int ring_buffer_unmap(struct trace_buffer *buffer, int cpu)
7277 {
7278 	struct ring_buffer_per_cpu *cpu_buffer;
7279 	unsigned long flags;
7280 	int err = 0;
7281 
7282 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
7283 		return -EINVAL;
7284 
7285 	cpu_buffer = buffer->buffers[cpu];
7286 
7287 	mutex_lock(&cpu_buffer->mapping_lock);
7288 
7289 	if (!cpu_buffer->user_mapped) {
7290 		err = -ENODEV;
7291 		goto out;
7292 	} else if (cpu_buffer->user_mapped > 1) {
7293 		__rb_inc_dec_mapped(cpu_buffer, false);
7294 		goto out;
7295 	}
7296 
7297 	mutex_lock(&buffer->mutex);
7298 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
7299 
7300 	/* This is the last user space mapping */
7301 	if (!WARN_ON_ONCE(cpu_buffer->mapped < cpu_buffer->user_mapped))
7302 		cpu_buffer->mapped--;
7303 	cpu_buffer->user_mapped = 0;
7304 
7305 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7306 
7307 	kfree(cpu_buffer->subbuf_ids);
7308 	cpu_buffer->subbuf_ids = NULL;
7309 	rb_free_meta_page(cpu_buffer);
7310 	atomic_dec(&cpu_buffer->resize_disabled);
7311 
7312 	mutex_unlock(&buffer->mutex);
7313 
7314 out:
7315 	mutex_unlock(&cpu_buffer->mapping_lock);
7316 
7317 	return err;
7318 }
7319 
ring_buffer_map_get_reader(struct trace_buffer * buffer,int cpu)7320 int ring_buffer_map_get_reader(struct trace_buffer *buffer, int cpu)
7321 {
7322 	struct ring_buffer_per_cpu *cpu_buffer;
7323 	struct buffer_page *reader;
7324 	unsigned long missed_events;
7325 	unsigned long reader_size;
7326 	unsigned long flags;
7327 
7328 	cpu_buffer = rb_get_mapped_buffer(buffer, cpu);
7329 	if (IS_ERR(cpu_buffer))
7330 		return (int)PTR_ERR(cpu_buffer);
7331 
7332 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
7333 
7334 consume:
7335 	if (rb_per_cpu_empty(cpu_buffer))
7336 		goto out;
7337 
7338 	reader_size = rb_page_size(cpu_buffer->reader_page);
7339 
7340 	/*
7341 	 * There are data to be read on the current reader page, we can
7342 	 * return to the caller. But before that, we assume the latter will read
7343 	 * everything. Let's update the kernel reader accordingly.
7344 	 */
7345 	if (cpu_buffer->reader_page->read < reader_size) {
7346 		while (cpu_buffer->reader_page->read < reader_size)
7347 			rb_advance_reader(cpu_buffer);
7348 		goto out;
7349 	}
7350 
7351 	reader = rb_get_reader_page(cpu_buffer);
7352 	if (WARN_ON(!reader))
7353 		goto out;
7354 
7355 	/* Check if any events were dropped */
7356 	missed_events = cpu_buffer->lost_events;
7357 
7358 	if (missed_events) {
7359 		if (cpu_buffer->reader_page != cpu_buffer->commit_page) {
7360 			struct buffer_data_page *bpage = reader->page;
7361 			unsigned int commit;
7362 			/*
7363 			 * Use the real_end for the data size,
7364 			 * This gives us a chance to store the lost events
7365 			 * on the page.
7366 			 */
7367 			if (reader->real_end)
7368 				local_set(&bpage->commit, reader->real_end);
7369 			/*
7370 			 * If there is room at the end of the page to save the
7371 			 * missed events, then record it there.
7372 			 */
7373 			commit = rb_page_size(reader);
7374 			if (buffer->subbuf_size - commit >= sizeof(missed_events)) {
7375 				memcpy(&bpage->data[commit], &missed_events,
7376 				       sizeof(missed_events));
7377 				local_add(RB_MISSED_STORED, &bpage->commit);
7378 			}
7379 			local_add(RB_MISSED_EVENTS, &bpage->commit);
7380 		} else if (!WARN_ONCE(cpu_buffer->reader_page == cpu_buffer->tail_page,
7381 				      "Reader on commit with %ld missed events",
7382 				      missed_events)) {
7383 			/*
7384 			 * There shouldn't be any missed events if the tail_page
7385 			 * is on the reader page. But if the tail page is not on the
7386 			 * reader page and the commit_page is, that would mean that
7387 			 * there's a commit_overrun (an interrupt preempted an
7388 			 * addition of an event and then filled the buffer
7389 			 * with new events). In this case it's not an
7390 			 * error, but it should still be reported.
7391 			 *
7392 			 * TODO: Add missed events to the page for user space to know.
7393 			 */
7394 			pr_info("Ring buffer [%d] commit overrun lost %ld events at timestamp:%lld\n",
7395 				cpu, missed_events, cpu_buffer->reader_page->page->time_stamp);
7396 		}
7397 	}
7398 
7399 	cpu_buffer->lost_events = 0;
7400 
7401 	goto consume;
7402 
7403 out:
7404 	/* Some archs do not have data cache coherency between kernel and user-space */
7405 	flush_kernel_vmap_range(cpu_buffer->reader_page->page,
7406 				buffer->subbuf_size + BUF_PAGE_HDR_SIZE);
7407 
7408 	rb_update_meta_page(cpu_buffer);
7409 
7410 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7411 	rb_put_mapped_buffer(cpu_buffer);
7412 
7413 	return 0;
7414 }
7415 
7416 /*
7417  * We only allocate new buffers, never free them if the CPU goes down.
7418  * If we were to free the buffer, then the user would lose any trace that was in
7419  * the buffer.
7420  */
trace_rb_cpu_prepare(unsigned int cpu,struct hlist_node * node)7421 int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node)
7422 {
7423 	struct trace_buffer *buffer;
7424 	long nr_pages_same;
7425 	int cpu_i;
7426 	unsigned long nr_pages;
7427 
7428 	buffer = container_of(node, struct trace_buffer, node);
7429 	if (cpumask_test_cpu(cpu, buffer->cpumask))
7430 		return 0;
7431 
7432 	nr_pages = 0;
7433 	nr_pages_same = 1;
7434 	/* check if all cpu sizes are same */
7435 	for_each_buffer_cpu(buffer, cpu_i) {
7436 		/* fill in the size from first enabled cpu */
7437 		if (nr_pages == 0)
7438 			nr_pages = buffer->buffers[cpu_i]->nr_pages;
7439 		if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
7440 			nr_pages_same = 0;
7441 			break;
7442 		}
7443 	}
7444 	/* allocate minimum pages, user can later expand it */
7445 	if (!nr_pages_same)
7446 		nr_pages = 2;
7447 	buffer->buffers[cpu] =
7448 		rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
7449 	if (!buffer->buffers[cpu]) {
7450 		WARN(1, "failed to allocate ring buffer on CPU %u\n",
7451 		     cpu);
7452 		return -ENOMEM;
7453 	}
7454 	smp_wmb();
7455 	cpumask_set_cpu(cpu, buffer->cpumask);
7456 	return 0;
7457 }
7458 
7459 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
7460 /*
7461  * This is a basic integrity check of the ring buffer.
7462  * Late in the boot cycle this test will run when configured in.
7463  * It will kick off a thread per CPU that will go into a loop
7464  * writing to the per cpu ring buffer various sizes of data.
7465  * Some of the data will be large items, some small.
7466  *
7467  * Another thread is created that goes into a spin, sending out
7468  * IPIs to the other CPUs to also write into the ring buffer.
7469  * this is to test the nesting ability of the buffer.
7470  *
7471  * Basic stats are recorded and reported. If something in the
7472  * ring buffer should happen that's not expected, a big warning
7473  * is displayed and all ring buffers are disabled.
7474  */
7475 static struct task_struct *rb_threads[NR_CPUS] __initdata;
7476 
7477 struct rb_test_data {
7478 	struct trace_buffer *buffer;
7479 	unsigned long		events;
7480 	unsigned long		bytes_written;
7481 	unsigned long		bytes_alloc;
7482 	unsigned long		bytes_dropped;
7483 	unsigned long		events_nested;
7484 	unsigned long		bytes_written_nested;
7485 	unsigned long		bytes_alloc_nested;
7486 	unsigned long		bytes_dropped_nested;
7487 	int			min_size_nested;
7488 	int			max_size_nested;
7489 	int			max_size;
7490 	int			min_size;
7491 	int			cpu;
7492 	int			cnt;
7493 };
7494 
7495 static struct rb_test_data rb_data[NR_CPUS] __initdata;
7496 
7497 /* 1 meg per cpu */
7498 #define RB_TEST_BUFFER_SIZE	1048576
7499 
7500 static char rb_string[] __initdata =
7501 	"abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
7502 	"?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
7503 	"!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
7504 
7505 static bool rb_test_started __initdata;
7506 
7507 struct rb_item {
7508 	int size;
7509 	char str[];
7510 };
7511 
rb_write_something(struct rb_test_data * data,bool nested)7512 static __init int rb_write_something(struct rb_test_data *data, bool nested)
7513 {
7514 	struct ring_buffer_event *event;
7515 	struct rb_item *item;
7516 	bool started;
7517 	int event_len;
7518 	int size;
7519 	int len;
7520 	int cnt;
7521 
7522 	/* Have nested writes different that what is written */
7523 	cnt = data->cnt + (nested ? 27 : 0);
7524 
7525 	/* Multiply cnt by ~e, to make some unique increment */
7526 	size = (cnt * 68 / 25) % (sizeof(rb_string) - 1);
7527 
7528 	len = size + sizeof(struct rb_item);
7529 
7530 	started = rb_test_started;
7531 	/* read rb_test_started before checking buffer enabled */
7532 	smp_rmb();
7533 
7534 	event = ring_buffer_lock_reserve(data->buffer, len);
7535 	if (!event) {
7536 		/* Ignore dropped events before test starts. */
7537 		if (started) {
7538 			if (nested)
7539 				data->bytes_dropped_nested += len;
7540 			else
7541 				data->bytes_dropped += len;
7542 		}
7543 		return len;
7544 	}
7545 
7546 	event_len = ring_buffer_event_length(event);
7547 
7548 	if (RB_WARN_ON(data->buffer, event_len < len))
7549 		goto out;
7550 
7551 	item = ring_buffer_event_data(event);
7552 	item->size = size;
7553 	memcpy(item->str, rb_string, size);
7554 
7555 	if (nested) {
7556 		data->bytes_alloc_nested += event_len;
7557 		data->bytes_written_nested += len;
7558 		data->events_nested++;
7559 		if (!data->min_size_nested || len < data->min_size_nested)
7560 			data->min_size_nested = len;
7561 		if (len > data->max_size_nested)
7562 			data->max_size_nested = len;
7563 	} else {
7564 		data->bytes_alloc += event_len;
7565 		data->bytes_written += len;
7566 		data->events++;
7567 		if (!data->min_size || len < data->min_size)
7568 			data->max_size = len;
7569 		if (len > data->max_size)
7570 			data->max_size = len;
7571 	}
7572 
7573  out:
7574 	ring_buffer_unlock_commit(data->buffer);
7575 
7576 	return 0;
7577 }
7578 
rb_test(void * arg)7579 static __init int rb_test(void *arg)
7580 {
7581 	struct rb_test_data *data = arg;
7582 
7583 	while (!kthread_should_stop()) {
7584 		rb_write_something(data, false);
7585 		data->cnt++;
7586 
7587 		set_current_state(TASK_INTERRUPTIBLE);
7588 		/* Now sleep between a min of 100-300us and a max of 1ms */
7589 		usleep_range(((data->cnt % 3) + 1) * 100, 1000);
7590 	}
7591 
7592 	return 0;
7593 }
7594 
rb_ipi(void * ignore)7595 static __init void rb_ipi(void *ignore)
7596 {
7597 	struct rb_test_data *data;
7598 	int cpu = smp_processor_id();
7599 
7600 	data = &rb_data[cpu];
7601 	rb_write_something(data, true);
7602 }
7603 
rb_hammer_test(void * arg)7604 static __init int rb_hammer_test(void *arg)
7605 {
7606 	while (!kthread_should_stop()) {
7607 
7608 		/* Send an IPI to all cpus to write data! */
7609 		smp_call_function(rb_ipi, NULL, 1);
7610 		/* No sleep, but for non preempt, let others run */
7611 		schedule();
7612 	}
7613 
7614 	return 0;
7615 }
7616 
test_ringbuffer(void)7617 static __init int test_ringbuffer(void)
7618 {
7619 	struct task_struct *rb_hammer;
7620 	struct trace_buffer *buffer;
7621 	int cpu;
7622 	int ret = 0;
7623 
7624 	if (security_locked_down(LOCKDOWN_TRACEFS)) {
7625 		pr_warn("Lockdown is enabled, skipping ring buffer tests\n");
7626 		return 0;
7627 	}
7628 
7629 	pr_info("Running ring buffer tests...\n");
7630 
7631 	buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
7632 	if (WARN_ON(!buffer))
7633 		return 0;
7634 
7635 	/* Disable buffer so that threads can't write to it yet */
7636 	ring_buffer_record_off(buffer);
7637 
7638 	for_each_online_cpu(cpu) {
7639 		rb_data[cpu].buffer = buffer;
7640 		rb_data[cpu].cpu = cpu;
7641 		rb_data[cpu].cnt = cpu;
7642 		rb_threads[cpu] = kthread_run_on_cpu(rb_test, &rb_data[cpu],
7643 						     cpu, "rbtester/%u");
7644 		if (WARN_ON(IS_ERR(rb_threads[cpu]))) {
7645 			pr_cont("FAILED\n");
7646 			ret = PTR_ERR(rb_threads[cpu]);
7647 			goto out_free;
7648 		}
7649 	}
7650 
7651 	/* Now create the rb hammer! */
7652 	rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
7653 	if (WARN_ON(IS_ERR(rb_hammer))) {
7654 		pr_cont("FAILED\n");
7655 		ret = PTR_ERR(rb_hammer);
7656 		goto out_free;
7657 	}
7658 
7659 	ring_buffer_record_on(buffer);
7660 	/*
7661 	 * Show buffer is enabled before setting rb_test_started.
7662 	 * Yes there's a small race window where events could be
7663 	 * dropped and the thread wont catch it. But when a ring
7664 	 * buffer gets enabled, there will always be some kind of
7665 	 * delay before other CPUs see it. Thus, we don't care about
7666 	 * those dropped events. We care about events dropped after
7667 	 * the threads see that the buffer is active.
7668 	 */
7669 	smp_wmb();
7670 	rb_test_started = true;
7671 
7672 	set_current_state(TASK_INTERRUPTIBLE);
7673 	/* Just run for 10 seconds */;
7674 	schedule_timeout(10 * HZ);
7675 
7676 	kthread_stop(rb_hammer);
7677 
7678  out_free:
7679 	for_each_online_cpu(cpu) {
7680 		if (!rb_threads[cpu])
7681 			break;
7682 		kthread_stop(rb_threads[cpu]);
7683 	}
7684 	if (ret) {
7685 		ring_buffer_free(buffer);
7686 		return ret;
7687 	}
7688 
7689 	/* Report! */
7690 	pr_info("finished\n");
7691 	for_each_online_cpu(cpu) {
7692 		struct ring_buffer_event *event;
7693 		struct rb_test_data *data = &rb_data[cpu];
7694 		struct rb_item *item;
7695 		unsigned long total_events;
7696 		unsigned long total_dropped;
7697 		unsigned long total_written;
7698 		unsigned long total_alloc;
7699 		unsigned long total_read = 0;
7700 		unsigned long total_size = 0;
7701 		unsigned long total_len = 0;
7702 		unsigned long total_lost = 0;
7703 		unsigned long lost;
7704 		int big_event_size;
7705 		int small_event_size;
7706 
7707 		ret = -1;
7708 
7709 		total_events = data->events + data->events_nested;
7710 		total_written = data->bytes_written + data->bytes_written_nested;
7711 		total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
7712 		total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
7713 
7714 		big_event_size = data->max_size + data->max_size_nested;
7715 		small_event_size = data->min_size + data->min_size_nested;
7716 
7717 		pr_info("CPU %d:\n", cpu);
7718 		pr_info("              events:    %ld\n", total_events);
7719 		pr_info("       dropped bytes:    %ld\n", total_dropped);
7720 		pr_info("       alloced bytes:    %ld\n", total_alloc);
7721 		pr_info("       written bytes:    %ld\n", total_written);
7722 		pr_info("       biggest event:    %d\n", big_event_size);
7723 		pr_info("      smallest event:    %d\n", small_event_size);
7724 
7725 		if (RB_WARN_ON(buffer, total_dropped))
7726 			break;
7727 
7728 		ret = 0;
7729 
7730 		while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
7731 			total_lost += lost;
7732 			item = ring_buffer_event_data(event);
7733 			total_len += ring_buffer_event_length(event);
7734 			total_size += item->size + sizeof(struct rb_item);
7735 			if (memcmp(&item->str[0], rb_string, item->size) != 0) {
7736 				pr_info("FAILED!\n");
7737 				pr_info("buffer had: %.*s\n", item->size, item->str);
7738 				pr_info("expected:   %.*s\n", item->size, rb_string);
7739 				RB_WARN_ON(buffer, 1);
7740 				ret = -1;
7741 				break;
7742 			}
7743 			total_read++;
7744 		}
7745 		if (ret)
7746 			break;
7747 
7748 		ret = -1;
7749 
7750 		pr_info("         read events:   %ld\n", total_read);
7751 		pr_info("         lost events:   %ld\n", total_lost);
7752 		pr_info("        total events:   %ld\n", total_lost + total_read);
7753 		pr_info("  recorded len bytes:   %ld\n", total_len);
7754 		pr_info(" recorded size bytes:   %ld\n", total_size);
7755 		if (total_lost) {
7756 			pr_info(" With dropped events, record len and size may not match\n"
7757 				" alloced and written from above\n");
7758 		} else {
7759 			if (RB_WARN_ON(buffer, total_len != total_alloc ||
7760 				       total_size != total_written))
7761 				break;
7762 		}
7763 		if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
7764 			break;
7765 
7766 		ret = 0;
7767 	}
7768 	if (!ret)
7769 		pr_info("Ring buffer PASSED!\n");
7770 
7771 	ring_buffer_free(buffer);
7772 	return 0;
7773 }
7774 
7775 late_initcall(test_ringbuffer);
7776 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */
7777