1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Generic ring buffer
4 *
5 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
6 */
7 #include <linux/trace_recursion.h>
8 #include <linux/trace_events.h>
9 #include <linux/ring_buffer.h>
10 #include <linux/trace_clock.h>
11 #include <linux/sched/clock.h>
12 #include <linux/cacheflush.h>
13 #include <linux/trace_seq.h>
14 #include <linux/spinlock.h>
15 #include <linux/irq_work.h>
16 #include <linux/security.h>
17 #include <linux/uaccess.h>
18 #include <linux/hardirq.h>
19 #include <linux/kthread.h> /* for self test */
20 #include <linux/module.h>
21 #include <linux/percpu.h>
22 #include <linux/mutex.h>
23 #include <linux/delay.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/hash.h>
27 #include <linux/list.h>
28 #include <linux/cpu.h>
29 #include <linux/oom.h>
30 #include <linux/mm.h>
31
32 #include <asm/local64.h>
33 #include <asm/local.h>
34
35 #include "trace.h"
36
37 /*
38 * The "absolute" timestamp in the buffer is only 59 bits.
39 * If a clock has the 5 MSBs set, it needs to be saved and
40 * reinserted.
41 */
42 #define TS_MSB (0xf8ULL << 56)
43 #define ABS_TS_MASK (~TS_MSB)
44
45 static void update_pages_handler(struct work_struct *work);
46
47 #define RING_BUFFER_META_MAGIC 0xBADFEED
48
49 struct ring_buffer_meta {
50 int magic;
51 int struct_size;
52 unsigned long text_addr;
53 unsigned long data_addr;
54 unsigned long first_buffer;
55 unsigned long head_buffer;
56 unsigned long commit_buffer;
57 __u32 subbuf_size;
58 __u32 nr_subbufs;
59 int buffers[];
60 };
61
62 /*
63 * The ring buffer header is special. We must manually up keep it.
64 */
ring_buffer_print_entry_header(struct trace_seq * s)65 int ring_buffer_print_entry_header(struct trace_seq *s)
66 {
67 trace_seq_puts(s, "# compressed entry header\n");
68 trace_seq_puts(s, "\ttype_len : 5 bits\n");
69 trace_seq_puts(s, "\ttime_delta : 27 bits\n");
70 trace_seq_puts(s, "\tarray : 32 bits\n");
71 trace_seq_putc(s, '\n');
72 trace_seq_printf(s, "\tpadding : type == %d\n",
73 RINGBUF_TYPE_PADDING);
74 trace_seq_printf(s, "\ttime_extend : type == %d\n",
75 RINGBUF_TYPE_TIME_EXTEND);
76 trace_seq_printf(s, "\ttime_stamp : type == %d\n",
77 RINGBUF_TYPE_TIME_STAMP);
78 trace_seq_printf(s, "\tdata max type_len == %d\n",
79 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
80
81 return !trace_seq_has_overflowed(s);
82 }
83
84 /*
85 * The ring buffer is made up of a list of pages. A separate list of pages is
86 * allocated for each CPU. A writer may only write to a buffer that is
87 * associated with the CPU it is currently executing on. A reader may read
88 * from any per cpu buffer.
89 *
90 * The reader is special. For each per cpu buffer, the reader has its own
91 * reader page. When a reader has read the entire reader page, this reader
92 * page is swapped with another page in the ring buffer.
93 *
94 * Now, as long as the writer is off the reader page, the reader can do what
95 * ever it wants with that page. The writer will never write to that page
96 * again (as long as it is out of the ring buffer).
97 *
98 * Here's some silly ASCII art.
99 *
100 * +------+
101 * |reader| RING BUFFER
102 * |page |
103 * +------+ +---+ +---+ +---+
104 * | |-->| |-->| |
105 * +---+ +---+ +---+
106 * ^ |
107 * | |
108 * +---------------+
109 *
110 *
111 * +------+
112 * |reader| RING BUFFER
113 * |page |------------------v
114 * +------+ +---+ +---+ +---+
115 * | |-->| |-->| |
116 * +---+ +---+ +---+
117 * ^ |
118 * | |
119 * +---------------+
120 *
121 *
122 * +------+
123 * |reader| RING BUFFER
124 * |page |------------------v
125 * +------+ +---+ +---+ +---+
126 * ^ | |-->| |-->| |
127 * | +---+ +---+ +---+
128 * | |
129 * | |
130 * +------------------------------+
131 *
132 *
133 * +------+
134 * |buffer| RING BUFFER
135 * |page |------------------v
136 * +------+ +---+ +---+ +---+
137 * ^ | | | |-->| |
138 * | New +---+ +---+ +---+
139 * | Reader------^ |
140 * | page |
141 * +------------------------------+
142 *
143 *
144 * After we make this swap, the reader can hand this page off to the splice
145 * code and be done with it. It can even allocate a new page if it needs to
146 * and swap that into the ring buffer.
147 *
148 * We will be using cmpxchg soon to make all this lockless.
149 *
150 */
151
152 /* Used for individual buffers (after the counter) */
153 #define RB_BUFFER_OFF (1 << 20)
154
155 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
156 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
157
158 enum {
159 RB_LEN_TIME_EXTEND = 8,
160 RB_LEN_TIME_STAMP = 8,
161 };
162
163 #define skip_time_extend(event) \
164 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
165
166 #define extended_time(event) \
167 (event->type_len >= RINGBUF_TYPE_TIME_EXTEND)
168
rb_null_event(struct ring_buffer_event * event)169 static inline bool rb_null_event(struct ring_buffer_event *event)
170 {
171 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
172 }
173
rb_event_set_padding(struct ring_buffer_event * event)174 static void rb_event_set_padding(struct ring_buffer_event *event)
175 {
176 /* padding has a NULL time_delta */
177 event->type_len = RINGBUF_TYPE_PADDING;
178 event->time_delta = 0;
179 }
180
181 static unsigned
rb_event_data_length(struct ring_buffer_event * event)182 rb_event_data_length(struct ring_buffer_event *event)
183 {
184 unsigned length;
185
186 if (event->type_len)
187 length = event->type_len * RB_ALIGNMENT;
188 else
189 length = event->array[0];
190 return length + RB_EVNT_HDR_SIZE;
191 }
192
193 /*
194 * Return the length of the given event. Will return
195 * the length of the time extend if the event is a
196 * time extend.
197 */
198 static inline unsigned
rb_event_length(struct ring_buffer_event * event)199 rb_event_length(struct ring_buffer_event *event)
200 {
201 switch (event->type_len) {
202 case RINGBUF_TYPE_PADDING:
203 if (rb_null_event(event))
204 /* undefined */
205 return -1;
206 return event->array[0] + RB_EVNT_HDR_SIZE;
207
208 case RINGBUF_TYPE_TIME_EXTEND:
209 return RB_LEN_TIME_EXTEND;
210
211 case RINGBUF_TYPE_TIME_STAMP:
212 return RB_LEN_TIME_STAMP;
213
214 case RINGBUF_TYPE_DATA:
215 return rb_event_data_length(event);
216 default:
217 WARN_ON_ONCE(1);
218 }
219 /* not hit */
220 return 0;
221 }
222
223 /*
224 * Return total length of time extend and data,
225 * or just the event length for all other events.
226 */
227 static inline unsigned
rb_event_ts_length(struct ring_buffer_event * event)228 rb_event_ts_length(struct ring_buffer_event *event)
229 {
230 unsigned len = 0;
231
232 if (extended_time(event)) {
233 /* time extends include the data event after it */
234 len = RB_LEN_TIME_EXTEND;
235 event = skip_time_extend(event);
236 }
237 return len + rb_event_length(event);
238 }
239
240 /**
241 * ring_buffer_event_length - return the length of the event
242 * @event: the event to get the length of
243 *
244 * Returns the size of the data load of a data event.
245 * If the event is something other than a data event, it
246 * returns the size of the event itself. With the exception
247 * of a TIME EXTEND, where it still returns the size of the
248 * data load of the data event after it.
249 */
ring_buffer_event_length(struct ring_buffer_event * event)250 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
251 {
252 unsigned length;
253
254 if (extended_time(event))
255 event = skip_time_extend(event);
256
257 length = rb_event_length(event);
258 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
259 return length;
260 length -= RB_EVNT_HDR_SIZE;
261 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
262 length -= sizeof(event->array[0]);
263 return length;
264 }
265 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
266
267 /* inline for ring buffer fast paths */
268 static __always_inline void *
rb_event_data(struct ring_buffer_event * event)269 rb_event_data(struct ring_buffer_event *event)
270 {
271 if (extended_time(event))
272 event = skip_time_extend(event);
273 WARN_ON_ONCE(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
274 /* If length is in len field, then array[0] has the data */
275 if (event->type_len)
276 return (void *)&event->array[0];
277 /* Otherwise length is in array[0] and array[1] has the data */
278 return (void *)&event->array[1];
279 }
280
281 /**
282 * ring_buffer_event_data - return the data of the event
283 * @event: the event to get the data from
284 */
ring_buffer_event_data(struct ring_buffer_event * event)285 void *ring_buffer_event_data(struct ring_buffer_event *event)
286 {
287 return rb_event_data(event);
288 }
289 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
290
291 #define for_each_buffer_cpu(buffer, cpu) \
292 for_each_cpu(cpu, buffer->cpumask)
293
294 #define for_each_online_buffer_cpu(buffer, cpu) \
295 for_each_cpu_and(cpu, buffer->cpumask, cpu_online_mask)
296
rb_event_time_stamp(struct ring_buffer_event * event)297 static u64 rb_event_time_stamp(struct ring_buffer_event *event)
298 {
299 u64 ts;
300
301 ts = event->array[0];
302 ts <<= TS_SHIFT;
303 ts += event->time_delta;
304
305 return ts;
306 }
307
308 /* Flag when events were overwritten */
309 #define RB_MISSED_EVENTS (1 << 31)
310 /* Missed count stored at end */
311 #define RB_MISSED_STORED (1 << 30)
312
313 #define RB_MISSED_MASK (3 << 30)
314
315 struct buffer_data_read_page {
316 unsigned order; /* order of the page */
317 struct buffer_data_page *data; /* actual data, stored in this page */
318 };
319
320 /*
321 * Note, the buffer_page list must be first. The buffer pages
322 * are allocated in cache lines, which means that each buffer
323 * page will be at the beginning of a cache line, and thus
324 * the least significant bits will be zero. We use this to
325 * add flags in the list struct pointers, to make the ring buffer
326 * lockless.
327 */
328 struct buffer_page {
329 struct list_head list; /* list of buffer pages */
330 local_t write; /* index for next write */
331 unsigned read; /* index for next read */
332 local_t entries; /* entries on this page */
333 unsigned long real_end; /* real end of data */
334 unsigned order; /* order of the page */
335 u32 id:30; /* ID for external mapping */
336 u32 range:1; /* Mapped via a range */
337 struct buffer_data_page *page; /* Actual data page */
338 };
339
340 /*
341 * The buffer page counters, write and entries, must be reset
342 * atomically when crossing page boundaries. To synchronize this
343 * update, two counters are inserted into the number. One is
344 * the actual counter for the write position or count on the page.
345 *
346 * The other is a counter of updaters. Before an update happens
347 * the update partition of the counter is incremented. This will
348 * allow the updater to update the counter atomically.
349 *
350 * The counter is 20 bits, and the state data is 12.
351 */
352 #define RB_WRITE_MASK 0xfffff
353 #define RB_WRITE_INTCNT (1 << 20)
354
rb_init_page(struct buffer_data_page * bpage)355 static void rb_init_page(struct buffer_data_page *bpage)
356 {
357 local_set(&bpage->commit, 0);
358 }
359
rb_page_commit(struct buffer_page * bpage)360 static __always_inline unsigned int rb_page_commit(struct buffer_page *bpage)
361 {
362 return local_read(&bpage->page->commit);
363 }
364
free_buffer_page(struct buffer_page * bpage)365 static void free_buffer_page(struct buffer_page *bpage)
366 {
367 /* Range pages are not to be freed */
368 if (!bpage->range)
369 free_pages((unsigned long)bpage->page, bpage->order);
370 kfree(bpage);
371 }
372
373 struct rb_irq_work {
374 struct irq_work work;
375 wait_queue_head_t waiters;
376 wait_queue_head_t full_waiters;
377 atomic_t seq;
378 bool waiters_pending;
379 bool full_waiters_pending;
380 bool wakeup_full;
381 };
382
383 /*
384 * Structure to hold event state and handle nested events.
385 */
386 struct rb_event_info {
387 u64 ts;
388 u64 delta;
389 u64 before;
390 u64 after;
391 unsigned long length;
392 struct buffer_page *tail_page;
393 int add_timestamp;
394 };
395
396 /*
397 * Used for the add_timestamp
398 * NONE
399 * EXTEND - wants a time extend
400 * ABSOLUTE - the buffer requests all events to have absolute time stamps
401 * FORCE - force a full time stamp.
402 */
403 enum {
404 RB_ADD_STAMP_NONE = 0,
405 RB_ADD_STAMP_EXTEND = BIT(1),
406 RB_ADD_STAMP_ABSOLUTE = BIT(2),
407 RB_ADD_STAMP_FORCE = BIT(3)
408 };
409 /*
410 * Used for which event context the event is in.
411 * TRANSITION = 0
412 * NMI = 1
413 * IRQ = 2
414 * SOFTIRQ = 3
415 * NORMAL = 4
416 *
417 * See trace_recursive_lock() comment below for more details.
418 */
419 enum {
420 RB_CTX_TRANSITION,
421 RB_CTX_NMI,
422 RB_CTX_IRQ,
423 RB_CTX_SOFTIRQ,
424 RB_CTX_NORMAL,
425 RB_CTX_MAX
426 };
427
428 struct rb_time_struct {
429 local64_t time;
430 };
431 typedef struct rb_time_struct rb_time_t;
432
433 #define MAX_NEST 5
434
435 /*
436 * head_page == tail_page && head == tail then buffer is empty.
437 */
438 struct ring_buffer_per_cpu {
439 int cpu;
440 atomic_t record_disabled;
441 atomic_t resize_disabled;
442 struct trace_buffer *buffer;
443 raw_spinlock_t reader_lock; /* serialize readers */
444 arch_spinlock_t lock;
445 struct lock_class_key lock_key;
446 struct buffer_data_page *free_page;
447 unsigned long nr_pages;
448 unsigned int current_context;
449 struct list_head *pages;
450 /* pages generation counter, incremented when the list changes */
451 unsigned long cnt;
452 struct buffer_page *head_page; /* read from head */
453 struct buffer_page *tail_page; /* write to tail */
454 struct buffer_page *commit_page; /* committed pages */
455 struct buffer_page *reader_page;
456 unsigned long lost_events;
457 unsigned long last_overrun;
458 unsigned long nest;
459 local_t entries_bytes;
460 local_t entries;
461 local_t overrun;
462 local_t commit_overrun;
463 local_t dropped_events;
464 local_t committing;
465 local_t commits;
466 local_t pages_touched;
467 local_t pages_lost;
468 local_t pages_read;
469 long last_pages_touch;
470 size_t shortest_full;
471 unsigned long read;
472 unsigned long read_bytes;
473 rb_time_t write_stamp;
474 rb_time_t before_stamp;
475 u64 event_stamp[MAX_NEST];
476 u64 read_stamp;
477 /* pages removed since last reset */
478 unsigned long pages_removed;
479
480 unsigned int mapped;
481 unsigned int user_mapped; /* user space mapping */
482 struct mutex mapping_lock;
483 unsigned long *subbuf_ids; /* ID to subbuf VA */
484 struct trace_buffer_meta *meta_page;
485 struct ring_buffer_meta *ring_meta;
486
487 struct ring_buffer_writer *writer;
488
489 /* ring buffer pages to update, > 0 to add, < 0 to remove */
490 long nr_pages_to_update;
491 struct list_head new_pages; /* new pages to add */
492 struct work_struct update_pages_work;
493 struct completion update_done;
494
495 struct rb_irq_work irq_work;
496 };
497
498 struct trace_buffer {
499 unsigned flags;
500 int cpus;
501 atomic_t record_disabled;
502 atomic_t resizing;
503 cpumask_var_t cpumask;
504
505 struct lock_class_key *reader_lock_key;
506
507 struct mutex mutex;
508
509 struct ring_buffer_per_cpu **buffers;
510
511 struct ring_buffer_writer *writer;
512
513 struct hlist_node node;
514 u64 (*clock)(void);
515
516 struct rb_irq_work irq_work;
517 bool time_stamp_abs;
518
519 unsigned long range_addr_start;
520 unsigned long range_addr_end;
521
522 long last_text_delta;
523 long last_data_delta;
524
525 unsigned int subbuf_size;
526 unsigned int subbuf_order;
527 unsigned int max_data_size;
528 };
529
530 struct ring_buffer_iter {
531 struct ring_buffer_per_cpu *cpu_buffer;
532 unsigned long head;
533 unsigned long next_event;
534 struct buffer_page *head_page;
535 struct buffer_page *cache_reader_page;
536 unsigned long cache_read;
537 unsigned long cache_pages_removed;
538 u64 read_stamp;
539 u64 page_stamp;
540 struct ring_buffer_event *event;
541 size_t event_size;
542 int missed_events;
543 };
544
ring_buffer_print_page_header(struct trace_buffer * buffer,struct trace_seq * s)545 int ring_buffer_print_page_header(struct trace_buffer *buffer, struct trace_seq *s)
546 {
547 struct buffer_data_page field;
548
549 trace_seq_printf(s, "\tfield: u64 timestamp;\t"
550 "offset:0;\tsize:%u;\tsigned:%u;\n",
551 (unsigned int)sizeof(field.time_stamp),
552 (unsigned int)is_signed_type(u64));
553
554 trace_seq_printf(s, "\tfield: local_t commit;\t"
555 "offset:%u;\tsize:%u;\tsigned:%u;\n",
556 (unsigned int)offsetof(typeof(field), commit),
557 (unsigned int)sizeof(field.commit),
558 (unsigned int)is_signed_type(long));
559
560 trace_seq_printf(s, "\tfield: int overwrite;\t"
561 "offset:%u;\tsize:%u;\tsigned:%u;\n",
562 (unsigned int)offsetof(typeof(field), commit),
563 1,
564 (unsigned int)is_signed_type(long));
565
566 trace_seq_printf(s, "\tfield: char data;\t"
567 "offset:%u;\tsize:%u;\tsigned:%u;\n",
568 (unsigned int)offsetof(typeof(field), data),
569 (unsigned int)buffer->subbuf_size,
570 (unsigned int)is_signed_type(char));
571
572 return !trace_seq_has_overflowed(s);
573 }
574
rb_time_read(rb_time_t * t,u64 * ret)575 static inline void rb_time_read(rb_time_t *t, u64 *ret)
576 {
577 *ret = local64_read(&t->time);
578 }
rb_time_set(rb_time_t * t,u64 val)579 static void rb_time_set(rb_time_t *t, u64 val)
580 {
581 local64_set(&t->time, val);
582 }
583
584 /*
585 * Enable this to make sure that the event passed to
586 * ring_buffer_event_time_stamp() is not committed and also
587 * is on the buffer that it passed in.
588 */
589 //#define RB_VERIFY_EVENT
590 #ifdef RB_VERIFY_EVENT
591 static struct list_head *rb_list_head(struct list_head *list);
verify_event(struct ring_buffer_per_cpu * cpu_buffer,void * event)592 static void verify_event(struct ring_buffer_per_cpu *cpu_buffer,
593 void *event)
594 {
595 struct buffer_page *page = cpu_buffer->commit_page;
596 struct buffer_page *tail_page = READ_ONCE(cpu_buffer->tail_page);
597 struct list_head *next;
598 long commit, write;
599 unsigned long addr = (unsigned long)event;
600 bool done = false;
601 int stop = 0;
602
603 /* Make sure the event exists and is not committed yet */
604 do {
605 if (page == tail_page || WARN_ON_ONCE(stop++ > 100))
606 done = true;
607 commit = local_read(&page->page->commit);
608 write = local_read(&page->write);
609 if (addr >= (unsigned long)&page->page->data[commit] &&
610 addr < (unsigned long)&page->page->data[write])
611 return;
612
613 next = rb_list_head(page->list.next);
614 page = list_entry(next, struct buffer_page, list);
615 } while (!done);
616 WARN_ON_ONCE(1);
617 }
618 #else
verify_event(struct ring_buffer_per_cpu * cpu_buffer,void * event)619 static inline void verify_event(struct ring_buffer_per_cpu *cpu_buffer,
620 void *event)
621 {
622 }
623 #endif
624
625 /*
626 * The absolute time stamp drops the 5 MSBs and some clocks may
627 * require them. The rb_fix_abs_ts() will take a previous full
628 * time stamp, and add the 5 MSB of that time stamp on to the
629 * saved absolute time stamp. Then they are compared in case of
630 * the unlikely event that the latest time stamp incremented
631 * the 5 MSB.
632 */
rb_fix_abs_ts(u64 abs,u64 save_ts)633 static inline u64 rb_fix_abs_ts(u64 abs, u64 save_ts)
634 {
635 if (save_ts & TS_MSB) {
636 abs |= save_ts & TS_MSB;
637 /* Check for overflow */
638 if (unlikely(abs < save_ts))
639 abs += 1ULL << 59;
640 }
641 return abs;
642 }
643
644 static inline u64 rb_time_stamp(struct trace_buffer *buffer);
645
646 /**
647 * ring_buffer_event_time_stamp - return the event's current time stamp
648 * @buffer: The buffer that the event is on
649 * @event: the event to get the time stamp of
650 *
651 * Note, this must be called after @event is reserved, and before it is
652 * committed to the ring buffer. And must be called from the same
653 * context where the event was reserved (normal, softirq, irq, etc).
654 *
655 * Returns the time stamp associated with the current event.
656 * If the event has an extended time stamp, then that is used as
657 * the time stamp to return.
658 * In the highly unlikely case that the event was nested more than
659 * the max nesting, then the write_stamp of the buffer is returned,
660 * otherwise current time is returned, but that really neither of
661 * the last two cases should ever happen.
662 */
ring_buffer_event_time_stamp(struct trace_buffer * buffer,struct ring_buffer_event * event)663 u64 ring_buffer_event_time_stamp(struct trace_buffer *buffer,
664 struct ring_buffer_event *event)
665 {
666 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[smp_processor_id()];
667 unsigned int nest;
668 u64 ts;
669
670 /* If the event includes an absolute time, then just use that */
671 if (event->type_len == RINGBUF_TYPE_TIME_STAMP) {
672 ts = rb_event_time_stamp(event);
673 return rb_fix_abs_ts(ts, cpu_buffer->tail_page->page->time_stamp);
674 }
675
676 nest = local_read(&cpu_buffer->committing);
677 verify_event(cpu_buffer, event);
678 if (WARN_ON_ONCE(!nest))
679 goto fail;
680
681 /* Read the current saved nesting level time stamp */
682 if (likely(--nest < MAX_NEST))
683 return cpu_buffer->event_stamp[nest];
684
685 /* Shouldn't happen, warn if it does */
686 WARN_ONCE(1, "nest (%d) greater than max", nest);
687
688 fail:
689 rb_time_read(&cpu_buffer->write_stamp, &ts);
690
691 return ts;
692 }
693
694 /**
695 * ring_buffer_nr_dirty_pages - get the number of used pages in the ring buffer
696 * @buffer: The ring_buffer to get the number of pages from
697 * @cpu: The cpu of the ring_buffer to get the number of pages from
698 *
699 * Returns the number of pages that have content in the ring buffer.
700 */
ring_buffer_nr_dirty_pages(struct trace_buffer * buffer,int cpu)701 size_t ring_buffer_nr_dirty_pages(struct trace_buffer *buffer, int cpu)
702 {
703 size_t read;
704 size_t lost;
705 size_t cnt;
706
707 read = local_read(&buffer->buffers[cpu]->pages_read);
708 lost = local_read(&buffer->buffers[cpu]->pages_lost);
709 cnt = local_read(&buffer->buffers[cpu]->pages_touched);
710
711 if (WARN_ON_ONCE(cnt < lost))
712 return 0;
713
714 cnt -= lost;
715
716 /* The reader can read an empty page, but not more than that */
717 if (cnt < read) {
718 WARN_ON_ONCE(read > cnt + 1);
719 return 0;
720 }
721
722 return cnt - read;
723 }
724
full_hit(struct trace_buffer * buffer,int cpu,int full)725 static __always_inline bool full_hit(struct trace_buffer *buffer, int cpu, int full)
726 {
727 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
728 size_t nr_pages;
729 size_t dirty;
730
731 nr_pages = cpu_buffer->nr_pages;
732 if (!nr_pages || !full)
733 return true;
734
735 /*
736 * Add one as dirty will never equal nr_pages, as the sub-buffer
737 * that the writer is on is not counted as dirty.
738 * This is needed if "buffer_percent" is set to 100.
739 */
740 dirty = ring_buffer_nr_dirty_pages(buffer, cpu) + 1;
741
742 return (dirty * 100) >= (full * nr_pages);
743 }
744
745 /*
746 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
747 *
748 * Schedules a delayed work to wake up any task that is blocked on the
749 * ring buffer waiters queue.
750 */
rb_wake_up_waiters(struct irq_work * work)751 static void rb_wake_up_waiters(struct irq_work *work)
752 {
753 struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
754
755 /* For waiters waiting for the first wake up */
756 (void)atomic_fetch_inc_release(&rbwork->seq);
757
758 wake_up_all(&rbwork->waiters);
759 if (rbwork->full_waiters_pending || rbwork->wakeup_full) {
760 /* Only cpu_buffer sets the above flags */
761 struct ring_buffer_per_cpu *cpu_buffer =
762 container_of(rbwork, struct ring_buffer_per_cpu, irq_work);
763
764 /* Called from interrupt context */
765 raw_spin_lock(&cpu_buffer->reader_lock);
766 rbwork->wakeup_full = false;
767 rbwork->full_waiters_pending = false;
768
769 /* Waking up all waiters, they will reset the shortest full */
770 cpu_buffer->shortest_full = 0;
771 raw_spin_unlock(&cpu_buffer->reader_lock);
772
773 wake_up_all(&rbwork->full_waiters);
774 }
775 }
776
777 /**
778 * ring_buffer_wake_waiters - wake up any waiters on this ring buffer
779 * @buffer: The ring buffer to wake waiters on
780 * @cpu: The CPU buffer to wake waiters on
781 *
782 * In the case of a file that represents a ring buffer is closing,
783 * it is prudent to wake up any waiters that are on this.
784 */
ring_buffer_wake_waiters(struct trace_buffer * buffer,int cpu)785 void ring_buffer_wake_waiters(struct trace_buffer *buffer, int cpu)
786 {
787 struct ring_buffer_per_cpu *cpu_buffer;
788 struct rb_irq_work *rbwork;
789
790 if (!buffer)
791 return;
792
793 if (cpu == RING_BUFFER_ALL_CPUS) {
794
795 /* Wake up individual ones too. One level recursion */
796 for_each_buffer_cpu(buffer, cpu)
797 ring_buffer_wake_waiters(buffer, cpu);
798
799 rbwork = &buffer->irq_work;
800 } else {
801 if (WARN_ON_ONCE(!buffer->buffers))
802 return;
803 if (WARN_ON_ONCE(cpu >= nr_cpu_ids))
804 return;
805
806 cpu_buffer = buffer->buffers[cpu];
807 /* The CPU buffer may not have been initialized yet */
808 if (!cpu_buffer)
809 return;
810 rbwork = &cpu_buffer->irq_work;
811 }
812
813 /* This can be called in any context */
814 irq_work_queue(&rbwork->work);
815 }
816
rb_watermark_hit(struct trace_buffer * buffer,int cpu,int full)817 static bool rb_watermark_hit(struct trace_buffer *buffer, int cpu, int full)
818 {
819 struct ring_buffer_per_cpu *cpu_buffer;
820 bool ret = false;
821
822 /* Reads of all CPUs always waits for any data */
823 if (cpu == RING_BUFFER_ALL_CPUS)
824 return !ring_buffer_empty(buffer);
825
826 cpu_buffer = buffer->buffers[cpu];
827
828 if (!ring_buffer_empty_cpu(buffer, cpu)) {
829 unsigned long flags;
830 bool pagebusy;
831
832 if (!full)
833 return true;
834
835 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
836 pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
837 ret = !pagebusy && full_hit(buffer, cpu, full);
838
839 if (!ret && (!cpu_buffer->shortest_full ||
840 cpu_buffer->shortest_full > full)) {
841 cpu_buffer->shortest_full = full;
842 }
843 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
844 }
845 return ret;
846 }
847
848 static inline bool
rb_wait_cond(struct rb_irq_work * rbwork,struct trace_buffer * buffer,int cpu,int full,ring_buffer_cond_fn cond,void * data)849 rb_wait_cond(struct rb_irq_work *rbwork, struct trace_buffer *buffer,
850 int cpu, int full, ring_buffer_cond_fn cond, void *data)
851 {
852 if (rb_watermark_hit(buffer, cpu, full))
853 return true;
854
855 if (cond(data))
856 return true;
857
858 /*
859 * The events can happen in critical sections where
860 * checking a work queue can cause deadlocks.
861 * After adding a task to the queue, this flag is set
862 * only to notify events to try to wake up the queue
863 * using irq_work.
864 *
865 * We don't clear it even if the buffer is no longer
866 * empty. The flag only causes the next event to run
867 * irq_work to do the work queue wake up. The worse
868 * that can happen if we race with !trace_empty() is that
869 * an event will cause an irq_work to try to wake up
870 * an empty queue.
871 *
872 * There's no reason to protect this flag either, as
873 * the work queue and irq_work logic will do the necessary
874 * synchronization for the wake ups. The only thing
875 * that is necessary is that the wake up happens after
876 * a task has been queued. It's OK for spurious wake ups.
877 */
878 if (full)
879 rbwork->full_waiters_pending = true;
880 else
881 rbwork->waiters_pending = true;
882
883 return false;
884 }
885
886 struct rb_wait_data {
887 struct rb_irq_work *irq_work;
888 int seq;
889 };
890
891 /*
892 * The default wait condition for ring_buffer_wait() is to just to exit the
893 * wait loop the first time it is woken up.
894 */
rb_wait_once(void * data)895 static bool rb_wait_once(void *data)
896 {
897 struct rb_wait_data *rdata = data;
898 struct rb_irq_work *rbwork = rdata->irq_work;
899
900 return atomic_read_acquire(&rbwork->seq) != rdata->seq;
901 }
902
903 /**
904 * ring_buffer_wait - wait for input to the ring buffer
905 * @buffer: buffer to wait on
906 * @cpu: the cpu buffer to wait on
907 * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS
908 * @cond: condition function to break out of wait (NULL to run once)
909 * @data: the data to pass to @cond.
910 *
911 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
912 * as data is added to any of the @buffer's cpu buffers. Otherwise
913 * it will wait for data to be added to a specific cpu buffer.
914 */
ring_buffer_wait(struct trace_buffer * buffer,int cpu,int full,ring_buffer_cond_fn cond,void * data)915 int ring_buffer_wait(struct trace_buffer *buffer, int cpu, int full,
916 ring_buffer_cond_fn cond, void *data)
917 {
918 struct ring_buffer_per_cpu *cpu_buffer;
919 struct wait_queue_head *waitq;
920 struct rb_irq_work *rbwork;
921 struct rb_wait_data rdata;
922 int ret = 0;
923
924 /*
925 * Depending on what the caller is waiting for, either any
926 * data in any cpu buffer, or a specific buffer, put the
927 * caller on the appropriate wait queue.
928 */
929 if (cpu == RING_BUFFER_ALL_CPUS) {
930 rbwork = &buffer->irq_work;
931 /* Full only makes sense on per cpu reads */
932 full = 0;
933 } else {
934 if (!cpumask_test_cpu(cpu, buffer->cpumask))
935 return -ENODEV;
936 cpu_buffer = buffer->buffers[cpu];
937 rbwork = &cpu_buffer->irq_work;
938 }
939
940 if (full)
941 waitq = &rbwork->full_waiters;
942 else
943 waitq = &rbwork->waiters;
944
945 /* Set up to exit loop as soon as it is woken */
946 if (!cond) {
947 cond = rb_wait_once;
948 rdata.irq_work = rbwork;
949 rdata.seq = atomic_read_acquire(&rbwork->seq);
950 data = &rdata;
951 }
952
953 ret = wait_event_interruptible((*waitq),
954 rb_wait_cond(rbwork, buffer, cpu, full, cond, data));
955
956 return ret;
957 }
958
959 /**
960 * ring_buffer_poll_wait - poll on buffer input
961 * @buffer: buffer to wait on
962 * @cpu: the cpu buffer to wait on
963 * @filp: the file descriptor
964 * @poll_table: The poll descriptor
965 * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS
966 *
967 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
968 * as data is added to any of the @buffer's cpu buffers. Otherwise
969 * it will wait for data to be added to a specific cpu buffer.
970 *
971 * Returns EPOLLIN | EPOLLRDNORM if data exists in the buffers,
972 * zero otherwise.
973 */
ring_buffer_poll_wait(struct trace_buffer * buffer,int cpu,struct file * filp,poll_table * poll_table,int full)974 __poll_t ring_buffer_poll_wait(struct trace_buffer *buffer, int cpu,
975 struct file *filp, poll_table *poll_table, int full)
976 {
977 struct ring_buffer_per_cpu *cpu_buffer;
978 struct rb_irq_work *rbwork;
979
980 if (cpu == RING_BUFFER_ALL_CPUS) {
981 rbwork = &buffer->irq_work;
982 full = 0;
983 } else {
984 if (!cpumask_test_cpu(cpu, buffer->cpumask))
985 return EPOLLERR;
986
987 cpu_buffer = buffer->buffers[cpu];
988 rbwork = &cpu_buffer->irq_work;
989 }
990
991 if (full) {
992 poll_wait(filp, &rbwork->full_waiters, poll_table);
993
994 if (rb_watermark_hit(buffer, cpu, full))
995 return EPOLLIN | EPOLLRDNORM;
996 /*
997 * Only allow full_waiters_pending update to be seen after
998 * the shortest_full is set (in rb_watermark_hit). If the
999 * writer sees the full_waiters_pending flag set, it will
1000 * compare the amount in the ring buffer to shortest_full.
1001 * If the amount in the ring buffer is greater than the
1002 * shortest_full percent, it will call the irq_work handler
1003 * to wake up this list. The irq_handler will reset shortest_full
1004 * back to zero. That's done under the reader_lock, but
1005 * the below smp_mb() makes sure that the update to
1006 * full_waiters_pending doesn't leak up into the above.
1007 */
1008 smp_mb();
1009 rbwork->full_waiters_pending = true;
1010 return 0;
1011 }
1012
1013 poll_wait(filp, &rbwork->waiters, poll_table);
1014 rbwork->waiters_pending = true;
1015
1016 /*
1017 * There's a tight race between setting the waiters_pending and
1018 * checking if the ring buffer is empty. Once the waiters_pending bit
1019 * is set, the next event will wake the task up, but we can get stuck
1020 * if there's only a single event in.
1021 *
1022 * FIXME: Ideally, we need a memory barrier on the writer side as well,
1023 * but adding a memory barrier to all events will cause too much of a
1024 * performance hit in the fast path. We only need a memory barrier when
1025 * the buffer goes from empty to having content. But as this race is
1026 * extremely small, and it's not a problem if another event comes in, we
1027 * will fix it later.
1028 */
1029 smp_mb();
1030
1031 if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
1032 (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
1033 return EPOLLIN | EPOLLRDNORM;
1034 return 0;
1035 }
1036
1037 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
1038 #define RB_WARN_ON(b, cond) \
1039 ({ \
1040 int _____ret = unlikely(cond); \
1041 if (_____ret) { \
1042 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
1043 struct ring_buffer_per_cpu *__b = \
1044 (void *)b; \
1045 atomic_inc(&__b->buffer->record_disabled); \
1046 } else \
1047 atomic_inc(&b->record_disabled); \
1048 WARN_ON(1); \
1049 } \
1050 _____ret; \
1051 })
1052
1053 /* Up this if you want to test the TIME_EXTENTS and normalization */
1054 #define DEBUG_SHIFT 0
1055
rb_time_stamp(struct trace_buffer * buffer)1056 static inline u64 rb_time_stamp(struct trace_buffer *buffer)
1057 {
1058 u64 ts;
1059
1060 /* Skip retpolines :-( */
1061 if (IS_ENABLED(CONFIG_MITIGATION_RETPOLINE) && likely(buffer->clock == trace_clock_local))
1062 ts = trace_clock_local();
1063 else
1064 ts = buffer->clock();
1065
1066 /* shift to debug/test normalization and TIME_EXTENTS */
1067 return ts << DEBUG_SHIFT;
1068 }
1069
ring_buffer_time_stamp(struct trace_buffer * buffer)1070 u64 ring_buffer_time_stamp(struct trace_buffer *buffer)
1071 {
1072 u64 time;
1073
1074 preempt_disable_notrace();
1075 time = rb_time_stamp(buffer);
1076 preempt_enable_notrace();
1077
1078 return time;
1079 }
1080 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
1081
ring_buffer_normalize_time_stamp(struct trace_buffer * buffer,int cpu,u64 * ts)1082 void ring_buffer_normalize_time_stamp(struct trace_buffer *buffer,
1083 int cpu, u64 *ts)
1084 {
1085 /* Just stupid testing the normalize function and deltas */
1086 *ts >>= DEBUG_SHIFT;
1087 }
1088 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
1089
1090 /*
1091 * Making the ring buffer lockless makes things tricky.
1092 * Although writes only happen on the CPU that they are on,
1093 * and they only need to worry about interrupts. Reads can
1094 * happen on any CPU.
1095 *
1096 * The reader page is always off the ring buffer, but when the
1097 * reader finishes with a page, it needs to swap its page with
1098 * a new one from the buffer. The reader needs to take from
1099 * the head (writes go to the tail). But if a writer is in overwrite
1100 * mode and wraps, it must push the head page forward.
1101 *
1102 * Here lies the problem.
1103 *
1104 * The reader must be careful to replace only the head page, and
1105 * not another one. As described at the top of the file in the
1106 * ASCII art, the reader sets its old page to point to the next
1107 * page after head. It then sets the page after head to point to
1108 * the old reader page. But if the writer moves the head page
1109 * during this operation, the reader could end up with the tail.
1110 *
1111 * We use cmpxchg to help prevent this race. We also do something
1112 * special with the page before head. We set the LSB to 1.
1113 *
1114 * When the writer must push the page forward, it will clear the
1115 * bit that points to the head page, move the head, and then set
1116 * the bit that points to the new head page.
1117 *
1118 * We also don't want an interrupt coming in and moving the head
1119 * page on another writer. Thus we use the second LSB to catch
1120 * that too. Thus:
1121 *
1122 * head->list->prev->next bit 1 bit 0
1123 * ------- -------
1124 * Normal page 0 0
1125 * Points to head page 0 1
1126 * New head page 1 0
1127 *
1128 * Note we can not trust the prev pointer of the head page, because:
1129 *
1130 * +----+ +-----+ +-----+
1131 * | |------>| T |---X--->| N |
1132 * | |<------| | | |
1133 * +----+ +-----+ +-----+
1134 * ^ ^ |
1135 * | +-----+ | |
1136 * +----------| R |----------+ |
1137 * | |<-----------+
1138 * +-----+
1139 *
1140 * Key: ---X--> HEAD flag set in pointer
1141 * T Tail page
1142 * R Reader page
1143 * N Next page
1144 *
1145 * (see __rb_reserve_next() to see where this happens)
1146 *
1147 * What the above shows is that the reader just swapped out
1148 * the reader page with a page in the buffer, but before it
1149 * could make the new header point back to the new page added
1150 * it was preempted by a writer. The writer moved forward onto
1151 * the new page added by the reader and is about to move forward
1152 * again.
1153 *
1154 * You can see, it is legitimate for the previous pointer of
1155 * the head (or any page) not to point back to itself. But only
1156 * temporarily.
1157 */
1158
1159 #define RB_PAGE_NORMAL 0UL
1160 #define RB_PAGE_HEAD 1UL
1161 #define RB_PAGE_UPDATE 2UL
1162
1163
1164 #define RB_FLAG_MASK 3UL
1165
1166 /* PAGE_MOVED is not part of the mask */
1167 #define RB_PAGE_MOVED 4UL
1168
1169 /*
1170 * rb_list_head - remove any bit
1171 */
rb_list_head(struct list_head * list)1172 static struct list_head *rb_list_head(struct list_head *list)
1173 {
1174 unsigned long val = (unsigned long)list;
1175
1176 return (struct list_head *)(val & ~RB_FLAG_MASK);
1177 }
1178
1179 /*
1180 * rb_is_head_page - test if the given page is the head page
1181 *
1182 * Because the reader may move the head_page pointer, we can
1183 * not trust what the head page is (it may be pointing to
1184 * the reader page). But if the next page is a header page,
1185 * its flags will be non zero.
1186 */
1187 static inline int
rb_is_head_page(struct buffer_page * page,struct list_head * list)1188 rb_is_head_page(struct buffer_page *page, struct list_head *list)
1189 {
1190 unsigned long val;
1191
1192 val = (unsigned long)list->next;
1193
1194 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
1195 return RB_PAGE_MOVED;
1196
1197 return val & RB_FLAG_MASK;
1198 }
1199
1200 /*
1201 * rb_is_reader_page
1202 *
1203 * The unique thing about the reader page, is that, if the
1204 * writer is ever on it, the previous pointer never points
1205 * back to the reader page.
1206 */
rb_is_reader_page(struct buffer_page * page)1207 static bool rb_is_reader_page(struct buffer_page *page)
1208 {
1209 struct list_head *list = page->list.prev;
1210
1211 return rb_list_head(list->next) != &page->list;
1212 }
1213
1214 /*
1215 * rb_set_list_to_head - set a list_head to be pointing to head.
1216 */
rb_set_list_to_head(struct list_head * list)1217 static void rb_set_list_to_head(struct list_head *list)
1218 {
1219 unsigned long *ptr;
1220
1221 ptr = (unsigned long *)&list->next;
1222 *ptr |= RB_PAGE_HEAD;
1223 *ptr &= ~RB_PAGE_UPDATE;
1224 }
1225
1226 /*
1227 * rb_head_page_activate - sets up head page
1228 */
rb_head_page_activate(struct ring_buffer_per_cpu * cpu_buffer)1229 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
1230 {
1231 struct buffer_page *head;
1232
1233 head = cpu_buffer->head_page;
1234 if (!head)
1235 return;
1236
1237 /*
1238 * Set the previous list pointer to have the HEAD flag.
1239 */
1240 rb_set_list_to_head(head->list.prev);
1241
1242 if (cpu_buffer->ring_meta) {
1243 struct ring_buffer_meta *meta = cpu_buffer->ring_meta;
1244 meta->head_buffer = (unsigned long)head->page;
1245 }
1246 }
1247
rb_list_head_clear(struct list_head * list)1248 static void rb_list_head_clear(struct list_head *list)
1249 {
1250 unsigned long *ptr = (unsigned long *)&list->next;
1251
1252 *ptr &= ~RB_FLAG_MASK;
1253 }
1254
1255 /*
1256 * rb_head_page_deactivate - clears head page ptr (for free list)
1257 */
1258 static void
rb_head_page_deactivate(struct ring_buffer_per_cpu * cpu_buffer)1259 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
1260 {
1261 struct list_head *hd;
1262
1263 /* Go through the whole list and clear any pointers found. */
1264 rb_list_head_clear(cpu_buffer->pages);
1265
1266 list_for_each(hd, cpu_buffer->pages)
1267 rb_list_head_clear(hd);
1268 }
1269
rb_head_page_set(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * head,struct buffer_page * prev,int old_flag,int new_flag)1270 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
1271 struct buffer_page *head,
1272 struct buffer_page *prev,
1273 int old_flag, int new_flag)
1274 {
1275 struct list_head *list;
1276 unsigned long val = (unsigned long)&head->list;
1277 unsigned long ret;
1278
1279 list = &prev->list;
1280
1281 val &= ~RB_FLAG_MASK;
1282
1283 ret = cmpxchg((unsigned long *)&list->next,
1284 val | old_flag, val | new_flag);
1285
1286 /* check if the reader took the page */
1287 if ((ret & ~RB_FLAG_MASK) != val)
1288 return RB_PAGE_MOVED;
1289
1290 return ret & RB_FLAG_MASK;
1291 }
1292
rb_head_page_set_update(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * head,struct buffer_page * prev,int old_flag)1293 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
1294 struct buffer_page *head,
1295 struct buffer_page *prev,
1296 int old_flag)
1297 {
1298 return rb_head_page_set(cpu_buffer, head, prev,
1299 old_flag, RB_PAGE_UPDATE);
1300 }
1301
rb_head_page_set_head(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * head,struct buffer_page * prev,int old_flag)1302 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
1303 struct buffer_page *head,
1304 struct buffer_page *prev,
1305 int old_flag)
1306 {
1307 return rb_head_page_set(cpu_buffer, head, prev,
1308 old_flag, RB_PAGE_HEAD);
1309 }
1310
rb_head_page_set_normal(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * head,struct buffer_page * prev,int old_flag)1311 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
1312 struct buffer_page *head,
1313 struct buffer_page *prev,
1314 int old_flag)
1315 {
1316 return rb_head_page_set(cpu_buffer, head, prev,
1317 old_flag, RB_PAGE_NORMAL);
1318 }
1319
rb_inc_page(struct buffer_page ** bpage)1320 static inline void rb_inc_page(struct buffer_page **bpage)
1321 {
1322 struct list_head *p = rb_list_head((*bpage)->list.next);
1323
1324 *bpage = list_entry(p, struct buffer_page, list);
1325 }
1326
1327 static struct buffer_page *
rb_set_head_page(struct ring_buffer_per_cpu * cpu_buffer)1328 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
1329 {
1330 struct buffer_page *head;
1331 struct buffer_page *page;
1332 struct list_head *list;
1333 int i;
1334
1335 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
1336 return NULL;
1337
1338 /* sanity check */
1339 list = cpu_buffer->pages;
1340 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
1341 return NULL;
1342
1343 page = head = cpu_buffer->head_page;
1344 /*
1345 * It is possible that the writer moves the header behind
1346 * where we started, and we miss in one loop.
1347 * A second loop should grab the header, but we'll do
1348 * three loops just because I'm paranoid.
1349 */
1350 for (i = 0; i < 3; i++) {
1351 do {
1352 if (rb_is_head_page(page, page->list.prev)) {
1353 cpu_buffer->head_page = page;
1354 return page;
1355 }
1356 rb_inc_page(&page);
1357 } while (page != head);
1358 }
1359
1360 RB_WARN_ON(cpu_buffer, 1);
1361
1362 return NULL;
1363 }
1364
rb_head_page_replace(struct buffer_page * old,struct buffer_page * new)1365 static bool rb_head_page_replace(struct buffer_page *old,
1366 struct buffer_page *new)
1367 {
1368 unsigned long *ptr = (unsigned long *)&old->list.prev->next;
1369 unsigned long val;
1370
1371 val = *ptr & ~RB_FLAG_MASK;
1372 val |= RB_PAGE_HEAD;
1373
1374 return try_cmpxchg(ptr, &val, (unsigned long)&new->list);
1375 }
1376
1377 /*
1378 * rb_tail_page_update - move the tail page forward
1379 */
rb_tail_page_update(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * tail_page,struct buffer_page * next_page)1380 static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1381 struct buffer_page *tail_page,
1382 struct buffer_page *next_page)
1383 {
1384 unsigned long old_entries;
1385 unsigned long old_write;
1386
1387 /*
1388 * The tail page now needs to be moved forward.
1389 *
1390 * We need to reset the tail page, but without messing
1391 * with possible erasing of data brought in by interrupts
1392 * that have moved the tail page and are currently on it.
1393 *
1394 * We add a counter to the write field to denote this.
1395 */
1396 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1397 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1398
1399 /*
1400 * Just make sure we have seen our old_write and synchronize
1401 * with any interrupts that come in.
1402 */
1403 barrier();
1404
1405 /*
1406 * If the tail page is still the same as what we think
1407 * it is, then it is up to us to update the tail
1408 * pointer.
1409 */
1410 if (tail_page == READ_ONCE(cpu_buffer->tail_page)) {
1411 /* Zero the write counter */
1412 unsigned long val = old_write & ~RB_WRITE_MASK;
1413 unsigned long eval = old_entries & ~RB_WRITE_MASK;
1414
1415 /*
1416 * This will only succeed if an interrupt did
1417 * not come in and change it. In which case, we
1418 * do not want to modify it.
1419 *
1420 * We add (void) to let the compiler know that we do not care
1421 * about the return value of these functions. We use the
1422 * cmpxchg to only update if an interrupt did not already
1423 * do it for us. If the cmpxchg fails, we don't care.
1424 */
1425 (void)local_cmpxchg(&next_page->write, old_write, val);
1426 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
1427
1428 /*
1429 * No need to worry about races with clearing out the commit.
1430 * it only can increment when a commit takes place. But that
1431 * only happens in the outer most nested commit.
1432 */
1433 local_set(&next_page->page->commit, 0);
1434
1435 /* Either we update tail_page or an interrupt does */
1436 if (try_cmpxchg(&cpu_buffer->tail_page, &tail_page, next_page))
1437 local_inc(&cpu_buffer->pages_touched);
1438 }
1439 }
1440
rb_check_bpage(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * bpage)1441 static void rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1442 struct buffer_page *bpage)
1443 {
1444 unsigned long val = (unsigned long)bpage;
1445
1446 RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK);
1447 }
1448
rb_check_links(struct ring_buffer_per_cpu * cpu_buffer,struct list_head * list)1449 static bool rb_check_links(struct ring_buffer_per_cpu *cpu_buffer,
1450 struct list_head *list)
1451 {
1452 if (RB_WARN_ON(cpu_buffer,
1453 rb_list_head(rb_list_head(list->next)->prev) != list))
1454 return false;
1455
1456 if (RB_WARN_ON(cpu_buffer,
1457 rb_list_head(rb_list_head(list->prev)->next) != list))
1458 return false;
1459
1460 return true;
1461 }
1462
1463 /**
1464 * rb_check_pages - integrity check of buffer pages
1465 * @cpu_buffer: CPU buffer with pages to test
1466 *
1467 * As a safety measure we check to make sure the data pages have not
1468 * been corrupted.
1469 */
rb_check_pages(struct ring_buffer_per_cpu * cpu_buffer)1470 static void rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1471 {
1472 struct list_head *head, *tmp;
1473 unsigned long buffer_cnt;
1474 unsigned long flags;
1475 int nr_loops = 0;
1476
1477 /*
1478 * Walk the linked list underpinning the ring buffer and validate all
1479 * its next and prev links.
1480 *
1481 * The check acquires the reader_lock to avoid concurrent processing
1482 * with code that could be modifying the list. However, the lock cannot
1483 * be held for the entire duration of the walk, as this would make the
1484 * time when interrupts are disabled non-deterministic, dependent on the
1485 * ring buffer size. Therefore, the code releases and re-acquires the
1486 * lock after checking each page. The ring_buffer_per_cpu.cnt variable
1487 * is then used to detect if the list was modified while the lock was
1488 * not held, in which case the check needs to be restarted.
1489 *
1490 * The code attempts to perform the check at most three times before
1491 * giving up. This is acceptable because this is only a self-validation
1492 * to detect problems early on. In practice, the list modification
1493 * operations are fairly spaced, and so this check typically succeeds at
1494 * most on the second try.
1495 */
1496 again:
1497 if (++nr_loops > 3)
1498 return;
1499
1500 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
1501 head = rb_list_head(cpu_buffer->pages);
1502 if (!rb_check_links(cpu_buffer, head))
1503 goto out_locked;
1504 buffer_cnt = cpu_buffer->cnt;
1505 tmp = head;
1506 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1507
1508 while (true) {
1509 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
1510
1511 if (buffer_cnt != cpu_buffer->cnt) {
1512 /* The list was updated, try again. */
1513 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1514 goto again;
1515 }
1516
1517 tmp = rb_list_head(tmp->next);
1518 if (tmp == head)
1519 /* The iteration circled back, all is done. */
1520 goto out_locked;
1521
1522 if (!rb_check_links(cpu_buffer, tmp))
1523 goto out_locked;
1524
1525 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1526 }
1527
1528 out_locked:
1529 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1530 }
1531
1532 /*
1533 * Take an address, add the meta data size as well as the array of
1534 * array subbuffer indexes, then align it to a subbuffer size.
1535 *
1536 * This is used to help find the next per cpu subbuffer within a mapped range.
1537 */
1538 static unsigned long
rb_range_align_subbuf(unsigned long addr,int subbuf_size,int nr_subbufs)1539 rb_range_align_subbuf(unsigned long addr, int subbuf_size, int nr_subbufs)
1540 {
1541 addr += sizeof(struct ring_buffer_meta) +
1542 sizeof(int) * nr_subbufs;
1543 return ALIGN(addr, subbuf_size);
1544 }
1545
1546 /*
1547 * Return the ring_buffer_meta for a given @cpu.
1548 */
rb_range_meta(struct trace_buffer * buffer,int nr_pages,int cpu)1549 static void *rb_range_meta(struct trace_buffer *buffer, int nr_pages, int cpu)
1550 {
1551 int subbuf_size = buffer->subbuf_size + BUF_PAGE_HDR_SIZE;
1552 unsigned long ptr = buffer->range_addr_start;
1553 struct ring_buffer_meta *meta;
1554 int nr_subbufs;
1555
1556 if (!ptr)
1557 return NULL;
1558
1559 /* When nr_pages passed in is zero, the first meta has already been initialized */
1560 if (!nr_pages) {
1561 meta = (struct ring_buffer_meta *)ptr;
1562 nr_subbufs = meta->nr_subbufs;
1563 } else {
1564 meta = NULL;
1565 /* Include the reader page */
1566 nr_subbufs = nr_pages + 1;
1567 }
1568
1569 /*
1570 * The first chunk may not be subbuffer aligned, where as
1571 * the rest of the chunks are.
1572 */
1573 if (cpu) {
1574 ptr = rb_range_align_subbuf(ptr, subbuf_size, nr_subbufs);
1575 ptr += subbuf_size * nr_subbufs;
1576
1577 /* We can use multiplication to find chunks greater than 1 */
1578 if (cpu > 1) {
1579 unsigned long size;
1580 unsigned long p;
1581
1582 /* Save the beginning of this CPU chunk */
1583 p = ptr;
1584 ptr = rb_range_align_subbuf(ptr, subbuf_size, nr_subbufs);
1585 ptr += subbuf_size * nr_subbufs;
1586
1587 /* Now all chunks after this are the same size */
1588 size = ptr - p;
1589 ptr += size * (cpu - 2);
1590 }
1591 }
1592 return (void *)ptr;
1593 }
1594
1595 /* Return the start of subbufs given the meta pointer */
rb_subbufs_from_meta(struct ring_buffer_meta * meta)1596 static void *rb_subbufs_from_meta(struct ring_buffer_meta *meta)
1597 {
1598 int subbuf_size = meta->subbuf_size;
1599 unsigned long ptr;
1600
1601 ptr = (unsigned long)meta;
1602 ptr = rb_range_align_subbuf(ptr, subbuf_size, meta->nr_subbufs);
1603
1604 return (void *)ptr;
1605 }
1606
1607 /*
1608 * Return a specific sub-buffer for a given @cpu defined by @idx.
1609 */
rb_range_buffer(struct ring_buffer_per_cpu * cpu_buffer,int idx)1610 static void *rb_range_buffer(struct ring_buffer_per_cpu *cpu_buffer, int idx)
1611 {
1612 struct ring_buffer_meta *meta;
1613 unsigned long ptr;
1614 int subbuf_size;
1615
1616 meta = rb_range_meta(cpu_buffer->buffer, 0, cpu_buffer->cpu);
1617 if (!meta)
1618 return NULL;
1619
1620 if (WARN_ON_ONCE(idx >= meta->nr_subbufs))
1621 return NULL;
1622
1623 subbuf_size = meta->subbuf_size;
1624
1625 /* Map this buffer to the order that's in meta->buffers[] */
1626 idx = meta->buffers[idx];
1627
1628 ptr = (unsigned long)rb_subbufs_from_meta(meta);
1629
1630 ptr += subbuf_size * idx;
1631 if (ptr + subbuf_size > cpu_buffer->buffer->range_addr_end)
1632 return NULL;
1633
1634 return (void *)ptr;
1635 }
1636
1637 /*
1638 * See if the existing memory contains valid ring buffer data.
1639 * As the previous kernel must be the same as this kernel, all
1640 * the calculations (size of buffers and number of buffers)
1641 * must be the same.
1642 */
rb_meta_valid(struct ring_buffer_meta * meta,int cpu,struct trace_buffer * buffer,int nr_pages,unsigned long * subbuf_mask)1643 static bool rb_meta_valid(struct ring_buffer_meta *meta, int cpu,
1644 struct trace_buffer *buffer, int nr_pages,
1645 unsigned long *subbuf_mask)
1646 {
1647 int subbuf_size = PAGE_SIZE;
1648 struct buffer_data_page *subbuf;
1649 unsigned long buffers_start;
1650 unsigned long buffers_end;
1651 int i;
1652
1653 if (!subbuf_mask)
1654 return false;
1655
1656 /* Check the meta magic and meta struct size */
1657 if (meta->magic != RING_BUFFER_META_MAGIC ||
1658 meta->struct_size != sizeof(*meta)) {
1659 pr_info("Ring buffer boot meta[%d] mismatch of magic or struct size\n", cpu);
1660 return false;
1661 }
1662
1663 /* The subbuffer's size and number of subbuffers must match */
1664 if (meta->subbuf_size != subbuf_size ||
1665 meta->nr_subbufs != nr_pages + 1) {
1666 pr_info("Ring buffer boot meta [%d] mismatch of subbuf_size/nr_pages\n", cpu);
1667 return false;
1668 }
1669
1670 buffers_start = meta->first_buffer;
1671 buffers_end = meta->first_buffer + (subbuf_size * meta->nr_subbufs);
1672
1673 /* Is the head and commit buffers within the range of buffers? */
1674 if (meta->head_buffer < buffers_start ||
1675 meta->head_buffer >= buffers_end) {
1676 pr_info("Ring buffer boot meta [%d] head buffer out of range\n", cpu);
1677 return false;
1678 }
1679
1680 if (meta->commit_buffer < buffers_start ||
1681 meta->commit_buffer >= buffers_end) {
1682 pr_info("Ring buffer boot meta [%d] commit buffer out of range\n", cpu);
1683 return false;
1684 }
1685
1686 subbuf = rb_subbufs_from_meta(meta);
1687
1688 bitmap_clear(subbuf_mask, 0, meta->nr_subbufs);
1689
1690 /* Is the meta buffers and the subbufs themselves have correct data? */
1691 for (i = 0; i < meta->nr_subbufs; i++) {
1692 if (meta->buffers[i] < 0 ||
1693 meta->buffers[i] >= meta->nr_subbufs) {
1694 pr_info("Ring buffer boot meta [%d] array out of range\n", cpu);
1695 return false;
1696 }
1697
1698 if ((unsigned)local_read(&subbuf->commit) > subbuf_size) {
1699 pr_info("Ring buffer boot meta [%d] buffer invalid commit\n", cpu);
1700 return false;
1701 }
1702
1703 if (test_bit(meta->buffers[i], subbuf_mask)) {
1704 pr_info("Ring buffer boot meta [%d] array has duplicates\n", cpu);
1705 return false;
1706 }
1707
1708 set_bit(meta->buffers[i], subbuf_mask);
1709 subbuf = (void *)subbuf + subbuf_size;
1710 }
1711
1712 return true;
1713 }
1714
1715 static int rb_meta_subbuf_idx(struct ring_buffer_meta *meta, void *subbuf);
1716
rb_read_data_buffer(struct buffer_data_page * dpage,int tail,int cpu,unsigned long long * timestamp,u64 * delta_ptr)1717 static int rb_read_data_buffer(struct buffer_data_page *dpage, int tail, int cpu,
1718 unsigned long long *timestamp, u64 *delta_ptr)
1719 {
1720 struct ring_buffer_event *event;
1721 u64 ts, delta;
1722 int events = 0;
1723 int e;
1724
1725 *delta_ptr = 0;
1726 *timestamp = 0;
1727
1728 ts = dpage->time_stamp;
1729
1730 for (e = 0; e < tail; e += rb_event_length(event)) {
1731
1732 event = (struct ring_buffer_event *)(dpage->data + e);
1733
1734 switch (event->type_len) {
1735
1736 case RINGBUF_TYPE_TIME_EXTEND:
1737 delta = rb_event_time_stamp(event);
1738 ts += delta;
1739 break;
1740
1741 case RINGBUF_TYPE_TIME_STAMP:
1742 delta = rb_event_time_stamp(event);
1743 delta = rb_fix_abs_ts(delta, ts);
1744 if (delta < ts) {
1745 *delta_ptr = delta;
1746 *timestamp = ts;
1747 return -1;
1748 }
1749 ts = delta;
1750 break;
1751
1752 case RINGBUF_TYPE_PADDING:
1753 if (event->time_delta == 1)
1754 break;
1755 fallthrough;
1756 case RINGBUF_TYPE_DATA:
1757 events++;
1758 ts += event->time_delta;
1759 break;
1760
1761 default:
1762 return -1;
1763 }
1764 }
1765 *timestamp = ts;
1766 return events;
1767 }
1768
rb_validate_buffer(struct buffer_data_page * dpage,int cpu)1769 static int rb_validate_buffer(struct buffer_data_page *dpage, int cpu)
1770 {
1771 unsigned long long ts;
1772 u64 delta;
1773 int tail;
1774
1775 tail = local_read(&dpage->commit);
1776 return rb_read_data_buffer(dpage, tail, cpu, &ts, &delta);
1777 }
1778
1779 /* If the meta data has been validated, now validate the events */
rb_meta_validate_events(struct ring_buffer_per_cpu * cpu_buffer)1780 static void rb_meta_validate_events(struct ring_buffer_per_cpu *cpu_buffer)
1781 {
1782 struct ring_buffer_meta *meta = cpu_buffer->ring_meta;
1783 struct buffer_page *head_page;
1784 unsigned long entry_bytes = 0;
1785 unsigned long entries = 0;
1786 int ret;
1787 int i;
1788
1789 if (!meta || !meta->head_buffer)
1790 return;
1791
1792 /* Do the reader page first */
1793 ret = rb_validate_buffer(cpu_buffer->reader_page->page, cpu_buffer->cpu);
1794 if (ret < 0) {
1795 pr_info("Ring buffer reader page is invalid\n");
1796 goto invalid;
1797 }
1798 entries += ret;
1799 entry_bytes += local_read(&cpu_buffer->reader_page->page->commit);
1800 local_set(&cpu_buffer->reader_page->entries, ret);
1801
1802 head_page = cpu_buffer->head_page;
1803
1804 /* If the commit_buffer is the reader page, update the commit page */
1805 if (meta->commit_buffer == (unsigned long)cpu_buffer->reader_page->page) {
1806 cpu_buffer->commit_page = cpu_buffer->reader_page;
1807 /* Nothing more to do, the only page is the reader page */
1808 goto done;
1809 }
1810
1811 /* Iterate until finding the commit page */
1812 for (i = 0; i < meta->nr_subbufs + 1; i++, rb_inc_page(&head_page)) {
1813
1814 /* Reader page has already been done */
1815 if (head_page == cpu_buffer->reader_page)
1816 continue;
1817
1818 ret = rb_validate_buffer(head_page->page, cpu_buffer->cpu);
1819 if (ret < 0) {
1820 pr_info("Ring buffer meta [%d] invalid buffer page\n",
1821 cpu_buffer->cpu);
1822 goto invalid;
1823 }
1824
1825 /* If the buffer has content, update pages_touched */
1826 if (ret)
1827 local_inc(&cpu_buffer->pages_touched);
1828
1829 entries += ret;
1830 entry_bytes += local_read(&head_page->page->commit);
1831 local_set(&cpu_buffer->head_page->entries, ret);
1832
1833 if (head_page == cpu_buffer->commit_page)
1834 break;
1835 }
1836
1837 if (head_page != cpu_buffer->commit_page) {
1838 pr_info("Ring buffer meta [%d] commit page not found\n",
1839 cpu_buffer->cpu);
1840 goto invalid;
1841 }
1842 done:
1843 local_set(&cpu_buffer->entries, entries);
1844 local_set(&cpu_buffer->entries_bytes, entry_bytes);
1845
1846 pr_info("Ring buffer meta [%d] is from previous boot!\n", cpu_buffer->cpu);
1847 return;
1848
1849 invalid:
1850 /* The content of the buffers are invalid, reset the meta data */
1851 meta->head_buffer = 0;
1852 meta->commit_buffer = 0;
1853
1854 /* Reset the reader page */
1855 local_set(&cpu_buffer->reader_page->entries, 0);
1856 local_set(&cpu_buffer->reader_page->page->commit, 0);
1857
1858 /* Reset all the subbuffers */
1859 for (i = 0; i < meta->nr_subbufs - 1; i++, rb_inc_page(&head_page)) {
1860 local_set(&head_page->entries, 0);
1861 local_set(&head_page->page->commit, 0);
1862 }
1863 }
1864
1865 /* Used to calculate data delta */
1866 static char rb_data_ptr[] = "";
1867
1868 #define THIS_TEXT_PTR ((unsigned long)rb_meta_init_text_addr)
1869 #define THIS_DATA_PTR ((unsigned long)rb_data_ptr)
1870
rb_meta_init_text_addr(struct ring_buffer_meta * meta)1871 static void rb_meta_init_text_addr(struct ring_buffer_meta *meta)
1872 {
1873 meta->text_addr = THIS_TEXT_PTR;
1874 meta->data_addr = THIS_DATA_PTR;
1875 }
1876
rb_range_meta_init(struct trace_buffer * buffer,int nr_pages)1877 static void rb_range_meta_init(struct trace_buffer *buffer, int nr_pages)
1878 {
1879 struct ring_buffer_meta *meta;
1880 unsigned long *subbuf_mask;
1881 unsigned long delta;
1882 void *subbuf;
1883 int cpu;
1884 int i;
1885
1886 /* Create a mask to test the subbuf array */
1887 subbuf_mask = bitmap_alloc(nr_pages + 1, GFP_KERNEL);
1888 /* If subbuf_mask fails to allocate, then rb_meta_valid() will return false */
1889
1890 for (cpu = 0; cpu < nr_cpu_ids; cpu++) {
1891 void *next_meta;
1892
1893 meta = rb_range_meta(buffer, nr_pages, cpu);
1894
1895 if (rb_meta_valid(meta, cpu, buffer, nr_pages, subbuf_mask)) {
1896 /* Make the mappings match the current address */
1897 subbuf = rb_subbufs_from_meta(meta);
1898 delta = (unsigned long)subbuf - meta->first_buffer;
1899 meta->first_buffer += delta;
1900 meta->head_buffer += delta;
1901 meta->commit_buffer += delta;
1902 buffer->last_text_delta = THIS_TEXT_PTR - meta->text_addr;
1903 buffer->last_data_delta = THIS_DATA_PTR - meta->data_addr;
1904 continue;
1905 }
1906
1907 if (cpu < nr_cpu_ids - 1)
1908 next_meta = rb_range_meta(buffer, nr_pages, cpu + 1);
1909 else
1910 next_meta = (void *)buffer->range_addr_end;
1911
1912 memset(meta, 0, next_meta - (void *)meta);
1913
1914 meta->magic = RING_BUFFER_META_MAGIC;
1915 meta->struct_size = sizeof(*meta);
1916
1917 meta->nr_subbufs = nr_pages + 1;
1918 meta->subbuf_size = PAGE_SIZE;
1919
1920 subbuf = rb_subbufs_from_meta(meta);
1921
1922 meta->first_buffer = (unsigned long)subbuf;
1923 rb_meta_init_text_addr(meta);
1924
1925 /*
1926 * The buffers[] array holds the order of the sub-buffers
1927 * that are after the meta data. The sub-buffers may
1928 * be swapped out when read and inserted into a different
1929 * location of the ring buffer. Although their addresses
1930 * remain the same, the buffers[] array contains the
1931 * index into the sub-buffers holding their actual order.
1932 */
1933 for (i = 0; i < meta->nr_subbufs; i++) {
1934 meta->buffers[i] = i;
1935 rb_init_page(subbuf);
1936 subbuf += meta->subbuf_size;
1937 }
1938 }
1939 bitmap_free(subbuf_mask);
1940 }
1941
rbm_start(struct seq_file * m,loff_t * pos)1942 static void *rbm_start(struct seq_file *m, loff_t *pos)
1943 {
1944 struct ring_buffer_per_cpu *cpu_buffer = m->private;
1945 struct ring_buffer_meta *meta = cpu_buffer->ring_meta;
1946 unsigned long val;
1947
1948 if (!meta)
1949 return NULL;
1950
1951 if (*pos > meta->nr_subbufs)
1952 return NULL;
1953
1954 val = *pos;
1955 val++;
1956
1957 return (void *)val;
1958 }
1959
rbm_next(struct seq_file * m,void * v,loff_t * pos)1960 static void *rbm_next(struct seq_file *m, void *v, loff_t *pos)
1961 {
1962 (*pos)++;
1963
1964 return rbm_start(m, pos);
1965 }
1966
rbm_show(struct seq_file * m,void * v)1967 static int rbm_show(struct seq_file *m, void *v)
1968 {
1969 struct ring_buffer_per_cpu *cpu_buffer = m->private;
1970 struct ring_buffer_meta *meta = cpu_buffer->ring_meta;
1971 unsigned long val = (unsigned long)v;
1972
1973 if (val == 1) {
1974 seq_printf(m, "head_buffer: %d\n",
1975 rb_meta_subbuf_idx(meta, (void *)meta->head_buffer));
1976 seq_printf(m, "commit_buffer: %d\n",
1977 rb_meta_subbuf_idx(meta, (void *)meta->commit_buffer));
1978 seq_printf(m, "subbuf_size: %d\n", meta->subbuf_size);
1979 seq_printf(m, "nr_subbufs: %d\n", meta->nr_subbufs);
1980 return 0;
1981 }
1982
1983 val -= 2;
1984 seq_printf(m, "buffer[%ld]: %d\n", val, meta->buffers[val]);
1985
1986 return 0;
1987 }
1988
rbm_stop(struct seq_file * m,void * p)1989 static void rbm_stop(struct seq_file *m, void *p)
1990 {
1991 }
1992
1993 static const struct seq_operations rb_meta_seq_ops = {
1994 .start = rbm_start,
1995 .next = rbm_next,
1996 .show = rbm_show,
1997 .stop = rbm_stop,
1998 };
1999
ring_buffer_meta_seq_init(struct file * file,struct trace_buffer * buffer,int cpu)2000 int ring_buffer_meta_seq_init(struct file *file, struct trace_buffer *buffer, int cpu)
2001 {
2002 struct seq_file *m;
2003 int ret;
2004
2005 ret = seq_open(file, &rb_meta_seq_ops);
2006 if (ret)
2007 return ret;
2008
2009 m = file->private_data;
2010 m->private = buffer->buffers[cpu];
2011
2012 return 0;
2013 }
2014
2015 /* Map the buffer_pages to the previous head and commit pages */
rb_meta_buffer_update(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * bpage)2016 static void rb_meta_buffer_update(struct ring_buffer_per_cpu *cpu_buffer,
2017 struct buffer_page *bpage)
2018 {
2019 struct ring_buffer_meta *meta = cpu_buffer->ring_meta;
2020
2021 if (meta->head_buffer == (unsigned long)bpage->page)
2022 cpu_buffer->head_page = bpage;
2023
2024 if (meta->commit_buffer == (unsigned long)bpage->page) {
2025 cpu_buffer->commit_page = bpage;
2026 cpu_buffer->tail_page = bpage;
2027 }
2028 }
2029
__rb_allocate_pages(struct ring_buffer_per_cpu * cpu_buffer,long nr_pages,struct list_head * pages)2030 static int __rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
2031 long nr_pages, struct list_head *pages)
2032 {
2033 struct trace_buffer *buffer = cpu_buffer->buffer;
2034 struct ring_buffer_meta *meta = NULL;
2035 struct buffer_page *bpage, *tmp;
2036 bool user_thread = current->mm != NULL;
2037 gfp_t mflags;
2038 long i;
2039
2040 /*
2041 * Check if the available memory is there first.
2042 * Note, si_mem_available() only gives us a rough estimate of available
2043 * memory. It may not be accurate. But we don't care, we just want
2044 * to prevent doing any allocation when it is obvious that it is
2045 * not going to succeed.
2046 */
2047 i = si_mem_available();
2048 if (i < nr_pages)
2049 return -ENOMEM;
2050
2051 /*
2052 * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails
2053 * gracefully without invoking oom-killer and the system is not
2054 * destabilized.
2055 */
2056 mflags = GFP_KERNEL | __GFP_RETRY_MAYFAIL;
2057
2058 /*
2059 * If a user thread allocates too much, and si_mem_available()
2060 * reports there's enough memory, even though there is not.
2061 * Make sure the OOM killer kills this thread. This can happen
2062 * even with RETRY_MAYFAIL because another task may be doing
2063 * an allocation after this task has taken all memory.
2064 * This is the task the OOM killer needs to take out during this
2065 * loop, even if it was triggered by an allocation somewhere else.
2066 */
2067 if (user_thread)
2068 set_current_oom_origin();
2069
2070 if (buffer->range_addr_start)
2071 meta = rb_range_meta(buffer, nr_pages, cpu_buffer->cpu);
2072
2073 for (i = 0; i < nr_pages; i++) {
2074 struct page *page;
2075
2076 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
2077 mflags, cpu_to_node(cpu_buffer->cpu));
2078 if (!bpage)
2079 goto free_pages;
2080
2081 rb_check_bpage(cpu_buffer, bpage);
2082
2083 /*
2084 * Append the pages as for mapped buffers we want to keep
2085 * the order
2086 */
2087 list_add_tail(&bpage->list, pages);
2088
2089 if (meta) {
2090 /* A range was given. Use that for the buffer page */
2091 bpage->page = rb_range_buffer(cpu_buffer, i + 1);
2092 if (!bpage->page)
2093 goto free_pages;
2094 /* If this is valid from a previous boot */
2095 if (meta->head_buffer)
2096 rb_meta_buffer_update(cpu_buffer, bpage);
2097 bpage->range = 1;
2098 bpage->id = i + 1;
2099 } else {
2100 page = alloc_pages_node(cpu_to_node(cpu_buffer->cpu),
2101 mflags | __GFP_COMP | __GFP_ZERO,
2102 cpu_buffer->buffer->subbuf_order);
2103 if (!page)
2104 goto free_pages;
2105 bpage->page = page_address(page);
2106 rb_init_page(bpage->page);
2107 }
2108 bpage->order = cpu_buffer->buffer->subbuf_order;
2109
2110 if (user_thread && fatal_signal_pending(current))
2111 goto free_pages;
2112 }
2113 if (user_thread)
2114 clear_current_oom_origin();
2115
2116 return 0;
2117
2118 free_pages:
2119 list_for_each_entry_safe(bpage, tmp, pages, list) {
2120 list_del_init(&bpage->list);
2121 free_buffer_page(bpage);
2122 }
2123 if (user_thread)
2124 clear_current_oom_origin();
2125
2126 return -ENOMEM;
2127 }
2128
rb_page_desc(struct trace_page_desc * trace_pdesc,int cpu)2129 static struct rb_page_desc *rb_page_desc(struct trace_page_desc *trace_pdesc,
2130 int cpu)
2131 {
2132 struct rb_page_desc *pdesc;
2133 int i;
2134
2135 if (!trace_pdesc)
2136 return NULL;
2137
2138 if (cpu >= trace_pdesc->nr_cpus)
2139 return NULL;
2140
2141 for_each_rb_page_desc(pdesc, i, trace_pdesc) {
2142 if (pdesc->cpu == cpu)
2143 return pdesc;
2144 }
2145
2146 return NULL;
2147 }
2148
rb_page_desc_page(struct rb_page_desc * pdesc,int page_id)2149 static void *rb_page_desc_page(struct rb_page_desc *pdesc, int page_id)
2150 {
2151 return page_id > pdesc->nr_page_va ? NULL : (void *)pdesc->page_va[page_id];
2152 }
2153
2154
rb_allocate_pages(struct ring_buffer_per_cpu * cpu_buffer,unsigned long nr_pages)2155 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
2156 unsigned long nr_pages)
2157 {
2158 LIST_HEAD(pages);
2159
2160 WARN_ON(!nr_pages);
2161
2162 if (__rb_allocate_pages(cpu_buffer, nr_pages, &pages))
2163 return -ENOMEM;
2164
2165 /*
2166 * The ring buffer page list is a circular list that does not
2167 * start and end with a list head. All page list items point to
2168 * other pages.
2169 */
2170 cpu_buffer->pages = pages.next;
2171 list_del(&pages);
2172
2173 cpu_buffer->nr_pages = nr_pages;
2174
2175 rb_check_pages(cpu_buffer);
2176
2177 return 0;
2178 }
2179
2180 static struct ring_buffer_per_cpu *
rb_allocate_cpu_buffer(struct trace_buffer * buffer,long nr_pages,int cpu)2181 rb_allocate_cpu_buffer(struct trace_buffer *buffer, long nr_pages, int cpu)
2182 {
2183 struct ring_buffer_per_cpu *cpu_buffer;
2184 struct ring_buffer_meta *meta;
2185 struct buffer_page *bpage;
2186 struct page *page;
2187 int ret;
2188
2189 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
2190 GFP_KERNEL, cpu_to_node(cpu));
2191 if (!cpu_buffer)
2192 return NULL;
2193
2194 cpu_buffer->cpu = cpu;
2195 cpu_buffer->buffer = buffer;
2196 raw_spin_lock_init(&cpu_buffer->reader_lock);
2197 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
2198 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
2199 INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
2200 init_completion(&cpu_buffer->update_done);
2201 init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
2202 init_waitqueue_head(&cpu_buffer->irq_work.waiters);
2203 init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
2204 mutex_init(&cpu_buffer->mapping_lock);
2205
2206 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
2207 GFP_KERNEL, cpu_to_node(cpu));
2208 if (!bpage)
2209 goto fail_free_buffer;
2210
2211 rb_check_bpage(cpu_buffer, bpage);
2212
2213 cpu_buffer->reader_page = bpage;
2214
2215 if (buffer->writer) {
2216 struct rb_page_desc *pdesc = rb_page_desc(buffer->writer->pdesc, cpu);
2217
2218 if (!pdesc)
2219 goto fail_free_reader;
2220
2221 cpu_buffer->writer = buffer->writer;
2222 cpu_buffer->meta_page = (struct trace_buffer_meta *)(void *)pdesc->meta_va;
2223 cpu_buffer->subbuf_ids = pdesc->page_va;
2224 cpu_buffer->nr_pages = pdesc->nr_page_va - 1;
2225 atomic_inc(&cpu_buffer->record_disabled);
2226 atomic_inc(&cpu_buffer->resize_disabled);
2227
2228 bpage->page = rb_page_desc_page(pdesc,
2229 cpu_buffer->meta_page->reader.id);
2230 if (!bpage->page)
2231 goto fail_free_reader;
2232 /*
2233 * The meta-page can only describe which of the ring-buffer page
2234 * is the reader. There is no need to init the rest of the
2235 * ring-buffer.
2236 */
2237 return cpu_buffer;
2238 }
2239
2240 if (buffer->range_addr_start) {
2241 /*
2242 * Range mapped buffers have the same restrictions as memory
2243 * mapped ones do.
2244 */
2245 cpu_buffer->mapped = 1;
2246 cpu_buffer->ring_meta = rb_range_meta(buffer, nr_pages, cpu);
2247 bpage->page = rb_range_buffer(cpu_buffer, 0);
2248 if (!bpage->page)
2249 goto fail_free_reader;
2250 if (cpu_buffer->ring_meta->head_buffer)
2251 rb_meta_buffer_update(cpu_buffer, bpage);
2252 bpage->range = 1;
2253 } else {
2254 page = alloc_pages_node(cpu_to_node(cpu),
2255 GFP_KERNEL | __GFP_COMP | __GFP_ZERO,
2256 cpu_buffer->buffer->subbuf_order);
2257 if (!page)
2258 goto fail_free_reader;
2259 bpage->page = page_address(page);
2260 rb_init_page(bpage->page);
2261 }
2262
2263 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
2264 INIT_LIST_HEAD(&cpu_buffer->new_pages);
2265
2266 ret = rb_allocate_pages(cpu_buffer, nr_pages);
2267 if (ret < 0)
2268 goto fail_free_reader;
2269
2270 rb_meta_validate_events(cpu_buffer);
2271
2272 /* If the boot meta was valid then this has already been updated */
2273 meta = cpu_buffer->ring_meta;
2274 if (!meta || !meta->head_buffer ||
2275 !cpu_buffer->head_page || !cpu_buffer->commit_page || !cpu_buffer->tail_page) {
2276 if (meta && meta->head_buffer &&
2277 (cpu_buffer->head_page || cpu_buffer->commit_page || cpu_buffer->tail_page)) {
2278 pr_warn("Ring buffer meta buffers not all mapped\n");
2279 if (!cpu_buffer->head_page)
2280 pr_warn(" Missing head_page\n");
2281 if (!cpu_buffer->commit_page)
2282 pr_warn(" Missing commit_page\n");
2283 if (!cpu_buffer->tail_page)
2284 pr_warn(" Missing tail_page\n");
2285 }
2286
2287 cpu_buffer->head_page
2288 = list_entry(cpu_buffer->pages, struct buffer_page, list);
2289 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
2290
2291 rb_head_page_activate(cpu_buffer);
2292
2293 if (cpu_buffer->ring_meta)
2294 meta->commit_buffer = meta->head_buffer;
2295 } else {
2296 /* The valid meta buffer still needs to activate the head page */
2297 rb_head_page_activate(cpu_buffer);
2298 }
2299
2300 return cpu_buffer;
2301
2302 fail_free_reader:
2303 free_buffer_page(cpu_buffer->reader_page);
2304
2305 fail_free_buffer:
2306 kfree(cpu_buffer);
2307 return NULL;
2308 }
2309
rb_free_cpu_buffer(struct ring_buffer_per_cpu * cpu_buffer)2310 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
2311 {
2312 struct list_head *head = cpu_buffer->pages;
2313 struct buffer_page *bpage, *tmp;
2314
2315 irq_work_sync(&cpu_buffer->irq_work.work);
2316
2317 /* ring_buffers with writer set do not own the data pages */
2318 if (cpu_buffer->writer)
2319 cpu_buffer->reader_page->page = NULL;
2320
2321 free_buffer_page(cpu_buffer->reader_page);
2322
2323 if (head) {
2324 rb_head_page_deactivate(cpu_buffer);
2325
2326 list_for_each_entry_safe(bpage, tmp, head, list) {
2327 list_del_init(&bpage->list);
2328 free_buffer_page(bpage);
2329 }
2330 bpage = list_entry(head, struct buffer_page, list);
2331 free_buffer_page(bpage);
2332 }
2333
2334 free_page((unsigned long)cpu_buffer->free_page);
2335
2336 kfree(cpu_buffer);
2337 }
2338
alloc_buffer(unsigned long size,unsigned flags,int order,unsigned long start,unsigned long end,struct lock_class_key * key,struct ring_buffer_writer * writer)2339 static struct trace_buffer *alloc_buffer(unsigned long size, unsigned flags,
2340 int order, unsigned long start,
2341 unsigned long end,
2342 struct lock_class_key *key,
2343 struct ring_buffer_writer *writer)
2344 {
2345 struct trace_buffer *buffer;
2346 long nr_pages;
2347 int subbuf_size;
2348 int bsize;
2349 int cpu;
2350 int ret;
2351
2352 /* keep it in its own cache line */
2353 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
2354 GFP_KERNEL);
2355 if (!buffer)
2356 return NULL;
2357
2358 if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
2359 goto fail_free_buffer;
2360
2361 buffer->subbuf_order = order;
2362 subbuf_size = (PAGE_SIZE << order);
2363 buffer->subbuf_size = subbuf_size - BUF_PAGE_HDR_SIZE;
2364
2365 /* Max payload is buffer page size - header (8bytes) */
2366 buffer->max_data_size = buffer->subbuf_size - (sizeof(u32) * 2);
2367
2368 buffer->flags = flags;
2369 buffer->clock = trace_clock_local;
2370 buffer->reader_lock_key = key;
2371 if (writer) {
2372 buffer->writer = writer;
2373 /* The writer is external and never done by the kernel */
2374 atomic_inc(&buffer->record_disabled);
2375 }
2376
2377 init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
2378 init_waitqueue_head(&buffer->irq_work.waiters);
2379
2380 buffer->cpus = nr_cpu_ids;
2381
2382 bsize = sizeof(void *) * nr_cpu_ids;
2383 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
2384 GFP_KERNEL);
2385 if (!buffer->buffers)
2386 goto fail_free_cpumask;
2387
2388 /* If start/end are specified, then that overrides size */
2389 if (start && end) {
2390 unsigned long ptr;
2391 int n;
2392
2393 size = end - start;
2394 size = size / nr_cpu_ids;
2395
2396 /*
2397 * The number of sub-buffers (nr_pages) is determined by the
2398 * total size allocated minus the meta data size.
2399 * Then that is divided by the number of per CPU buffers
2400 * needed, plus account for the integer array index that
2401 * will be appended to the meta data.
2402 */
2403 nr_pages = (size - sizeof(struct ring_buffer_meta)) /
2404 (subbuf_size + sizeof(int));
2405 /* Need at least two pages plus the reader page */
2406 if (nr_pages < 3)
2407 goto fail_free_buffers;
2408
2409 again:
2410 /* Make sure that the size fits aligned */
2411 for (n = 0, ptr = start; n < nr_cpu_ids; n++) {
2412 ptr += sizeof(struct ring_buffer_meta) +
2413 sizeof(int) * nr_pages;
2414 ptr = ALIGN(ptr, subbuf_size);
2415 ptr += subbuf_size * nr_pages;
2416 }
2417 if (ptr > end) {
2418 if (nr_pages <= 3)
2419 goto fail_free_buffers;
2420 nr_pages--;
2421 goto again;
2422 }
2423
2424 /* nr_pages should not count the reader page */
2425 nr_pages--;
2426 buffer->range_addr_start = start;
2427 buffer->range_addr_end = end;
2428
2429 rb_range_meta_init(buffer, nr_pages);
2430 } else {
2431
2432 /* need at least two pages */
2433 nr_pages = DIV_ROUND_UP(size, buffer->subbuf_size);
2434 if (nr_pages < 2)
2435 nr_pages = 2;
2436 }
2437
2438 cpu = raw_smp_processor_id();
2439 cpumask_set_cpu(cpu, buffer->cpumask);
2440 buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
2441 if (!buffer->buffers[cpu])
2442 goto fail_free_buffers;
2443
2444 ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
2445 if (ret < 0)
2446 goto fail_free_buffers;
2447
2448 mutex_init(&buffer->mutex);
2449
2450 return buffer;
2451
2452 fail_free_buffers:
2453 for_each_buffer_cpu(buffer, cpu) {
2454 if (buffer->buffers[cpu])
2455 rb_free_cpu_buffer(buffer->buffers[cpu]);
2456 }
2457 kfree(buffer->buffers);
2458
2459 fail_free_cpumask:
2460 free_cpumask_var(buffer->cpumask);
2461
2462 fail_free_buffer:
2463 kfree(buffer);
2464 return NULL;
2465 }
2466
2467 /**
2468 * __ring_buffer_alloc - allocate a new ring_buffer
2469 * @size: the size in bytes per cpu that is needed.
2470 * @flags: attributes to set for the ring buffer.
2471 * @key: ring buffer reader_lock_key.
2472 *
2473 * Currently the only flag that is available is the RB_FL_OVERWRITE
2474 * flag. This flag means that the buffer will overwrite old data
2475 * when the buffer wraps. If this flag is not set, the buffer will
2476 * drop data when the tail hits the head.
2477 */
__ring_buffer_alloc(unsigned long size,unsigned flags,struct lock_class_key * key,struct ring_buffer_writer * writer)2478 struct trace_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
2479 struct lock_class_key *key,
2480 struct ring_buffer_writer *writer)
2481 {
2482 /* Default buffer page size - one system page */
2483 return alloc_buffer(size, flags, 0, 0, 0, key, writer);
2484
2485 }
2486 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
2487
2488 /**
2489 * __ring_buffer_alloc_range - allocate a new ring_buffer from existing memory
2490 * @size: the size in bytes per cpu that is needed.
2491 * @flags: attributes to set for the ring buffer.
2492 * @start: start of allocated range
2493 * @range_size: size of allocated range
2494 * @order: sub-buffer order
2495 * @key: ring buffer reader_lock_key.
2496 *
2497 * Currently the only flag that is available is the RB_FL_OVERWRITE
2498 * flag. This flag means that the buffer will overwrite old data
2499 * when the buffer wraps. If this flag is not set, the buffer will
2500 * drop data when the tail hits the head.
2501 */
__ring_buffer_alloc_range(unsigned long size,unsigned flags,int order,unsigned long start,unsigned long range_size,struct lock_class_key * key)2502 struct trace_buffer *__ring_buffer_alloc_range(unsigned long size, unsigned flags,
2503 int order, unsigned long start,
2504 unsigned long range_size,
2505 struct lock_class_key *key)
2506 {
2507 return alloc_buffer(size, flags, order, start, start + range_size, key, NULL);
2508 }
2509
2510 /**
2511 * ring_buffer_last_boot_delta - return the delta offset from last boot
2512 * @buffer: The buffer to return the delta from
2513 * @text: Return text delta
2514 * @data: Return data delta
2515 *
2516 * Returns: The true if the delta is non zero
2517 */
ring_buffer_last_boot_delta(struct trace_buffer * buffer,long * text,long * data)2518 bool ring_buffer_last_boot_delta(struct trace_buffer *buffer, long *text,
2519 long *data)
2520 {
2521 if (!buffer)
2522 return false;
2523
2524 if (!buffer->last_text_delta)
2525 return false;
2526
2527 *text = buffer->last_text_delta;
2528 *data = buffer->last_data_delta;
2529
2530 return true;
2531 }
2532
2533 /**
2534 * ring_buffer_free - free a ring buffer.
2535 * @buffer: the buffer to free.
2536 */
2537 void
ring_buffer_free(struct trace_buffer * buffer)2538 ring_buffer_free(struct trace_buffer *buffer)
2539 {
2540 int cpu;
2541
2542 cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
2543
2544 irq_work_sync(&buffer->irq_work.work);
2545
2546 for_each_buffer_cpu(buffer, cpu)
2547 rb_free_cpu_buffer(buffer->buffers[cpu]);
2548
2549 kfree(buffer->buffers);
2550 free_cpumask_var(buffer->cpumask);
2551
2552 kfree(buffer);
2553 }
2554 EXPORT_SYMBOL_GPL(ring_buffer_free);
2555
ring_buffer_set_clock(struct trace_buffer * buffer,u64 (* clock)(void))2556 void ring_buffer_set_clock(struct trace_buffer *buffer,
2557 u64 (*clock)(void))
2558 {
2559 buffer->clock = clock;
2560 }
2561
ring_buffer_set_time_stamp_abs(struct trace_buffer * buffer,bool abs)2562 void ring_buffer_set_time_stamp_abs(struct trace_buffer *buffer, bool abs)
2563 {
2564 buffer->time_stamp_abs = abs;
2565 }
2566
ring_buffer_time_stamp_abs(struct trace_buffer * buffer)2567 bool ring_buffer_time_stamp_abs(struct trace_buffer *buffer)
2568 {
2569 return buffer->time_stamp_abs;
2570 }
2571
rb_page_entries(struct buffer_page * bpage)2572 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
2573 {
2574 return local_read(&bpage->entries) & RB_WRITE_MASK;
2575 }
2576
rb_page_write(struct buffer_page * bpage)2577 static inline unsigned long rb_page_write(struct buffer_page *bpage)
2578 {
2579 return local_read(&bpage->write) & RB_WRITE_MASK;
2580 }
2581
2582 static bool
rb_remove_pages(struct ring_buffer_per_cpu * cpu_buffer,unsigned long nr_pages)2583 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages)
2584 {
2585 struct list_head *tail_page, *to_remove, *next_page;
2586 struct buffer_page *to_remove_page, *tmp_iter_page;
2587 struct buffer_page *last_page, *first_page;
2588 unsigned long nr_removed;
2589 unsigned long head_bit;
2590 int page_entries;
2591
2592 head_bit = 0;
2593
2594 raw_spin_lock_irq(&cpu_buffer->reader_lock);
2595 atomic_inc(&cpu_buffer->record_disabled);
2596 /*
2597 * We don't race with the readers since we have acquired the reader
2598 * lock. We also don't race with writers after disabling recording.
2599 * This makes it easy to figure out the first and the last page to be
2600 * removed from the list. We unlink all the pages in between including
2601 * the first and last pages. This is done in a busy loop so that we
2602 * lose the least number of traces.
2603 * The pages are freed after we restart recording and unlock readers.
2604 */
2605 tail_page = &cpu_buffer->tail_page->list;
2606
2607 /*
2608 * tail page might be on reader page, we remove the next page
2609 * from the ring buffer
2610 */
2611 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
2612 tail_page = rb_list_head(tail_page->next);
2613 to_remove = tail_page;
2614
2615 /* start of pages to remove */
2616 first_page = list_entry(rb_list_head(to_remove->next),
2617 struct buffer_page, list);
2618
2619 for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
2620 to_remove = rb_list_head(to_remove)->next;
2621 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
2622 }
2623 /* Read iterators need to reset themselves when some pages removed */
2624 cpu_buffer->pages_removed += nr_removed;
2625
2626 next_page = rb_list_head(to_remove)->next;
2627
2628 /*
2629 * Now we remove all pages between tail_page and next_page.
2630 * Make sure that we have head_bit value preserved for the
2631 * next page
2632 */
2633 tail_page->next = (struct list_head *)((unsigned long)next_page |
2634 head_bit);
2635 next_page = rb_list_head(next_page);
2636 next_page->prev = tail_page;
2637
2638 /* make sure pages points to a valid page in the ring buffer */
2639 cpu_buffer->pages = next_page;
2640 cpu_buffer->cnt++;
2641
2642 /* update head page */
2643 if (head_bit)
2644 cpu_buffer->head_page = list_entry(next_page,
2645 struct buffer_page, list);
2646
2647 /* pages are removed, resume tracing and then free the pages */
2648 atomic_dec(&cpu_buffer->record_disabled);
2649 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
2650
2651 RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
2652
2653 /* last buffer page to remove */
2654 last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
2655 list);
2656 tmp_iter_page = first_page;
2657
2658 do {
2659 cond_resched();
2660
2661 to_remove_page = tmp_iter_page;
2662 rb_inc_page(&tmp_iter_page);
2663
2664 /* update the counters */
2665 page_entries = rb_page_entries(to_remove_page);
2666 if (page_entries) {
2667 /*
2668 * If something was added to this page, it was full
2669 * since it is not the tail page. So we deduct the
2670 * bytes consumed in ring buffer from here.
2671 * Increment overrun to account for the lost events.
2672 */
2673 local_add(page_entries, &cpu_buffer->overrun);
2674 local_sub(rb_page_commit(to_remove_page), &cpu_buffer->entries_bytes);
2675 local_inc(&cpu_buffer->pages_lost);
2676 }
2677
2678 /*
2679 * We have already removed references to this list item, just
2680 * free up the buffer_page and its page
2681 */
2682 free_buffer_page(to_remove_page);
2683 nr_removed--;
2684
2685 } while (to_remove_page != last_page);
2686
2687 RB_WARN_ON(cpu_buffer, nr_removed);
2688
2689 return nr_removed == 0;
2690 }
2691
2692 static bool
rb_insert_pages(struct ring_buffer_per_cpu * cpu_buffer)2693 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
2694 {
2695 struct list_head *pages = &cpu_buffer->new_pages;
2696 unsigned long flags;
2697 bool success;
2698 int retries;
2699
2700 /* Can be called at early boot up, where interrupts must not been enabled */
2701 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2702 /*
2703 * We are holding the reader lock, so the reader page won't be swapped
2704 * in the ring buffer. Now we are racing with the writer trying to
2705 * move head page and the tail page.
2706 * We are going to adapt the reader page update process where:
2707 * 1. We first splice the start and end of list of new pages between
2708 * the head page and its previous page.
2709 * 2. We cmpxchg the prev_page->next to point from head page to the
2710 * start of new pages list.
2711 * 3. Finally, we update the head->prev to the end of new list.
2712 *
2713 * We will try this process 10 times, to make sure that we don't keep
2714 * spinning.
2715 */
2716 retries = 10;
2717 success = false;
2718 while (retries--) {
2719 struct list_head *head_page, *prev_page;
2720 struct list_head *last_page, *first_page;
2721 struct list_head *head_page_with_bit;
2722 struct buffer_page *hpage = rb_set_head_page(cpu_buffer);
2723
2724 if (!hpage)
2725 break;
2726 head_page = &hpage->list;
2727 prev_page = head_page->prev;
2728
2729 first_page = pages->next;
2730 last_page = pages->prev;
2731
2732 head_page_with_bit = (struct list_head *)
2733 ((unsigned long)head_page | RB_PAGE_HEAD);
2734
2735 last_page->next = head_page_with_bit;
2736 first_page->prev = prev_page;
2737
2738 /* caution: head_page_with_bit gets updated on cmpxchg failure */
2739 if (try_cmpxchg(&prev_page->next,
2740 &head_page_with_bit, first_page)) {
2741 /*
2742 * yay, we replaced the page pointer to our new list,
2743 * now, we just have to update to head page's prev
2744 * pointer to point to end of list
2745 */
2746 head_page->prev = last_page;
2747 cpu_buffer->cnt++;
2748 success = true;
2749 break;
2750 }
2751 }
2752
2753 if (success)
2754 INIT_LIST_HEAD(pages);
2755 /*
2756 * If we weren't successful in adding in new pages, warn and stop
2757 * tracing
2758 */
2759 RB_WARN_ON(cpu_buffer, !success);
2760 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2761
2762 /* free pages if they weren't inserted */
2763 if (!success) {
2764 struct buffer_page *bpage, *tmp;
2765 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
2766 list) {
2767 list_del_init(&bpage->list);
2768 free_buffer_page(bpage);
2769 }
2770 }
2771 return success;
2772 }
2773
rb_update_pages(struct ring_buffer_per_cpu * cpu_buffer)2774 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
2775 {
2776 bool success;
2777
2778 if (cpu_buffer->nr_pages_to_update > 0)
2779 success = rb_insert_pages(cpu_buffer);
2780 else
2781 success = rb_remove_pages(cpu_buffer,
2782 -cpu_buffer->nr_pages_to_update);
2783
2784 if (success)
2785 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
2786 }
2787
update_pages_handler(struct work_struct * work)2788 static void update_pages_handler(struct work_struct *work)
2789 {
2790 struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
2791 struct ring_buffer_per_cpu, update_pages_work);
2792 rb_update_pages(cpu_buffer);
2793 complete(&cpu_buffer->update_done);
2794 }
2795
2796 /**
2797 * ring_buffer_resize - resize the ring buffer
2798 * @buffer: the buffer to resize.
2799 * @size: the new size.
2800 * @cpu_id: the cpu buffer to resize
2801 *
2802 * Minimum size is 2 * buffer->subbuf_size.
2803 *
2804 * Returns 0 on success and < 0 on failure.
2805 */
ring_buffer_resize(struct trace_buffer * buffer,unsigned long size,int cpu_id)2806 int ring_buffer_resize(struct trace_buffer *buffer, unsigned long size,
2807 int cpu_id)
2808 {
2809 struct ring_buffer_per_cpu *cpu_buffer;
2810 unsigned long nr_pages;
2811 int cpu, err;
2812
2813 /*
2814 * Always succeed at resizing a non-existent buffer:
2815 */
2816 if (!buffer)
2817 return 0;
2818
2819 /* Make sure the requested buffer exists */
2820 if (cpu_id != RING_BUFFER_ALL_CPUS &&
2821 !cpumask_test_cpu(cpu_id, buffer->cpumask))
2822 return 0;
2823
2824 nr_pages = DIV_ROUND_UP(size, buffer->subbuf_size);
2825
2826 /* we need a minimum of two pages */
2827 if (nr_pages < 2)
2828 nr_pages = 2;
2829
2830 /*
2831 * Keep CPUs from coming online while resizing to synchronize
2832 * with new per CPU buffers being created.
2833 */
2834 guard(cpus_read_lock)();
2835
2836 /* prevent another thread from changing buffer sizes */
2837 mutex_lock(&buffer->mutex);
2838 atomic_inc(&buffer->resizing);
2839
2840 if (cpu_id == RING_BUFFER_ALL_CPUS) {
2841 /*
2842 * Don't succeed if resizing is disabled, as a reader might be
2843 * manipulating the ring buffer and is expecting a sane state while
2844 * this is true.
2845 */
2846 for_each_buffer_cpu(buffer, cpu) {
2847 cpu_buffer = buffer->buffers[cpu];
2848 if (atomic_read(&cpu_buffer->resize_disabled)) {
2849 err = -EBUSY;
2850 goto out_err_unlock;
2851 }
2852 }
2853
2854 /* calculate the pages to update */
2855 for_each_buffer_cpu(buffer, cpu) {
2856 cpu_buffer = buffer->buffers[cpu];
2857
2858 cpu_buffer->nr_pages_to_update = nr_pages -
2859 cpu_buffer->nr_pages;
2860 /*
2861 * nothing more to do for removing pages or no update
2862 */
2863 if (cpu_buffer->nr_pages_to_update <= 0)
2864 continue;
2865 /*
2866 * to add pages, make sure all new pages can be
2867 * allocated without receiving ENOMEM
2868 */
2869 INIT_LIST_HEAD(&cpu_buffer->new_pages);
2870 if (__rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update,
2871 &cpu_buffer->new_pages)) {
2872 /* not enough memory for new pages */
2873 err = -ENOMEM;
2874 goto out_err;
2875 }
2876
2877 cond_resched();
2878 }
2879
2880 /*
2881 * Fire off all the required work handlers
2882 * We can't schedule on offline CPUs, but it's not necessary
2883 * since we can change their buffer sizes without any race.
2884 */
2885 for_each_buffer_cpu(buffer, cpu) {
2886 cpu_buffer = buffer->buffers[cpu];
2887 if (!cpu_buffer->nr_pages_to_update)
2888 continue;
2889
2890 /* Can't run something on an offline CPU. */
2891 if (!cpu_online(cpu)) {
2892 rb_update_pages(cpu_buffer);
2893 cpu_buffer->nr_pages_to_update = 0;
2894 } else {
2895 /* Run directly if possible. */
2896 migrate_disable();
2897 if (cpu != smp_processor_id()) {
2898 migrate_enable();
2899 schedule_work_on(cpu,
2900 &cpu_buffer->update_pages_work);
2901 } else {
2902 update_pages_handler(&cpu_buffer->update_pages_work);
2903 migrate_enable();
2904 }
2905 }
2906 }
2907
2908 /* wait for all the updates to complete */
2909 for_each_buffer_cpu(buffer, cpu) {
2910 cpu_buffer = buffer->buffers[cpu];
2911 if (!cpu_buffer->nr_pages_to_update)
2912 continue;
2913
2914 if (cpu_online(cpu))
2915 wait_for_completion(&cpu_buffer->update_done);
2916 cpu_buffer->nr_pages_to_update = 0;
2917 }
2918
2919 } else {
2920 cpu_buffer = buffer->buffers[cpu_id];
2921
2922 if (nr_pages == cpu_buffer->nr_pages)
2923 goto out;
2924
2925 /*
2926 * Don't succeed if resizing is disabled, as a reader might be
2927 * manipulating the ring buffer and is expecting a sane state while
2928 * this is true.
2929 */
2930 if (atomic_read(&cpu_buffer->resize_disabled)) {
2931 err = -EBUSY;
2932 goto out_err_unlock;
2933 }
2934
2935 cpu_buffer->nr_pages_to_update = nr_pages -
2936 cpu_buffer->nr_pages;
2937
2938 INIT_LIST_HEAD(&cpu_buffer->new_pages);
2939 if (cpu_buffer->nr_pages_to_update > 0 &&
2940 __rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update,
2941 &cpu_buffer->new_pages)) {
2942 err = -ENOMEM;
2943 goto out_err;
2944 }
2945
2946 /* Can't run something on an offline CPU. */
2947 if (!cpu_online(cpu_id))
2948 rb_update_pages(cpu_buffer);
2949 else {
2950 /* Run directly if possible. */
2951 migrate_disable();
2952 if (cpu_id == smp_processor_id()) {
2953 rb_update_pages(cpu_buffer);
2954 migrate_enable();
2955 } else {
2956 migrate_enable();
2957 schedule_work_on(cpu_id,
2958 &cpu_buffer->update_pages_work);
2959 wait_for_completion(&cpu_buffer->update_done);
2960 }
2961 }
2962
2963 cpu_buffer->nr_pages_to_update = 0;
2964 }
2965
2966 out:
2967 /*
2968 * The ring buffer resize can happen with the ring buffer
2969 * enabled, so that the update disturbs the tracing as little
2970 * as possible. But if the buffer is disabled, we do not need
2971 * to worry about that, and we can take the time to verify
2972 * that the buffer is not corrupt.
2973 */
2974 if (atomic_read(&buffer->record_disabled)) {
2975 atomic_inc(&buffer->record_disabled);
2976 /*
2977 * Even though the buffer was disabled, we must make sure
2978 * that it is truly disabled before calling rb_check_pages.
2979 * There could have been a race between checking
2980 * record_disable and incrementing it.
2981 */
2982 synchronize_rcu();
2983 for_each_buffer_cpu(buffer, cpu) {
2984 cpu_buffer = buffer->buffers[cpu];
2985 rb_check_pages(cpu_buffer);
2986 }
2987 atomic_dec(&buffer->record_disabled);
2988 }
2989
2990 atomic_dec(&buffer->resizing);
2991 mutex_unlock(&buffer->mutex);
2992 return 0;
2993
2994 out_err:
2995 for_each_buffer_cpu(buffer, cpu) {
2996 struct buffer_page *bpage, *tmp;
2997
2998 cpu_buffer = buffer->buffers[cpu];
2999 cpu_buffer->nr_pages_to_update = 0;
3000
3001 if (list_empty(&cpu_buffer->new_pages))
3002 continue;
3003
3004 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
3005 list) {
3006 list_del_init(&bpage->list);
3007 free_buffer_page(bpage);
3008 }
3009 }
3010 out_err_unlock:
3011 atomic_dec(&buffer->resizing);
3012 mutex_unlock(&buffer->mutex);
3013 return err;
3014 }
3015 EXPORT_SYMBOL_GPL(ring_buffer_resize);
3016
ring_buffer_change_overwrite(struct trace_buffer * buffer,int val)3017 void ring_buffer_change_overwrite(struct trace_buffer *buffer, int val)
3018 {
3019 mutex_lock(&buffer->mutex);
3020 if (val)
3021 buffer->flags |= RB_FL_OVERWRITE;
3022 else
3023 buffer->flags &= ~RB_FL_OVERWRITE;
3024 mutex_unlock(&buffer->mutex);
3025 }
3026 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
3027
__rb_page_index(struct buffer_page * bpage,unsigned index)3028 static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
3029 {
3030 return bpage->page->data + index;
3031 }
3032
3033 static __always_inline struct ring_buffer_event *
rb_reader_event(struct ring_buffer_per_cpu * cpu_buffer)3034 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
3035 {
3036 return __rb_page_index(cpu_buffer->reader_page,
3037 cpu_buffer->reader_page->read);
3038 }
3039
3040 static struct ring_buffer_event *
rb_iter_head_event(struct ring_buffer_iter * iter)3041 rb_iter_head_event(struct ring_buffer_iter *iter)
3042 {
3043 struct ring_buffer_event *event;
3044 struct buffer_page *iter_head_page = iter->head_page;
3045 unsigned long commit;
3046 unsigned length;
3047
3048 if (iter->head != iter->next_event)
3049 return iter->event;
3050
3051 /*
3052 * When the writer goes across pages, it issues a cmpxchg which
3053 * is a mb(), which will synchronize with the rmb here.
3054 * (see rb_tail_page_update() and __rb_reserve_next())
3055 */
3056 commit = rb_page_commit(iter_head_page);
3057 smp_rmb();
3058
3059 /* An event needs to be at least 8 bytes in size */
3060 if (iter->head > commit - 8)
3061 goto reset;
3062
3063 event = __rb_page_index(iter_head_page, iter->head);
3064 length = rb_event_length(event);
3065
3066 /*
3067 * READ_ONCE() doesn't work on functions and we don't want the
3068 * compiler doing any crazy optimizations with length.
3069 */
3070 barrier();
3071
3072 if ((iter->head + length) > commit || length > iter->event_size)
3073 /* Writer corrupted the read? */
3074 goto reset;
3075
3076 memcpy(iter->event, event, length);
3077 /*
3078 * If the page stamp is still the same after this rmb() then the
3079 * event was safely copied without the writer entering the page.
3080 */
3081 smp_rmb();
3082
3083 /* Make sure the page didn't change since we read this */
3084 if (iter->page_stamp != iter_head_page->page->time_stamp ||
3085 commit > rb_page_commit(iter_head_page))
3086 goto reset;
3087
3088 iter->next_event = iter->head + length;
3089 return iter->event;
3090 reset:
3091 /* Reset to the beginning */
3092 iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
3093 iter->head = 0;
3094 iter->next_event = 0;
3095 iter->missed_events = 1;
3096 return NULL;
3097 }
3098
3099 /* Size is determined by what has been committed */
rb_page_size(struct buffer_page * bpage)3100 static __always_inline unsigned rb_page_size(struct buffer_page *bpage)
3101 {
3102 return rb_page_commit(bpage) & ~RB_MISSED_MASK;
3103 }
3104
3105 static __always_inline unsigned
rb_commit_index(struct ring_buffer_per_cpu * cpu_buffer)3106 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
3107 {
3108 return rb_page_commit(cpu_buffer->commit_page);
3109 }
3110
3111 static __always_inline unsigned
rb_event_index(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event)3112 rb_event_index(struct ring_buffer_per_cpu *cpu_buffer, struct ring_buffer_event *event)
3113 {
3114 unsigned long addr = (unsigned long)event;
3115
3116 addr &= (PAGE_SIZE << cpu_buffer->buffer->subbuf_order) - 1;
3117
3118 return addr - BUF_PAGE_HDR_SIZE;
3119 }
3120
rb_inc_iter(struct ring_buffer_iter * iter)3121 static void rb_inc_iter(struct ring_buffer_iter *iter)
3122 {
3123 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3124
3125 /*
3126 * The iterator could be on the reader page (it starts there).
3127 * But the head could have moved, since the reader was
3128 * found. Check for this case and assign the iterator
3129 * to the head page instead of next.
3130 */
3131 if (iter->head_page == cpu_buffer->reader_page)
3132 iter->head_page = rb_set_head_page(cpu_buffer);
3133 else
3134 rb_inc_page(&iter->head_page);
3135
3136 iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
3137 iter->head = 0;
3138 iter->next_event = 0;
3139 }
3140
3141 /* Return the index into the sub-buffers for a given sub-buffer */
rb_meta_subbuf_idx(struct ring_buffer_meta * meta,void * subbuf)3142 static int rb_meta_subbuf_idx(struct ring_buffer_meta *meta, void *subbuf)
3143 {
3144 void *subbuf_array;
3145
3146 subbuf_array = (void *)meta + sizeof(int) * meta->nr_subbufs;
3147 subbuf_array = (void *)ALIGN((unsigned long)subbuf_array, meta->subbuf_size);
3148 return (subbuf - subbuf_array) / meta->subbuf_size;
3149 }
3150
rb_update_meta_head(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * next_page)3151 static void rb_update_meta_head(struct ring_buffer_per_cpu *cpu_buffer,
3152 struct buffer_page *next_page)
3153 {
3154 struct ring_buffer_meta *meta = cpu_buffer->ring_meta;
3155 unsigned long old_head = (unsigned long)next_page->page;
3156 unsigned long new_head;
3157
3158 rb_inc_page(&next_page);
3159 new_head = (unsigned long)next_page->page;
3160
3161 /*
3162 * Only move it forward once, if something else came in and
3163 * moved it forward, then we don't want to touch it.
3164 */
3165 (void)cmpxchg(&meta->head_buffer, old_head, new_head);
3166 }
3167
rb_update_meta_reader(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * reader)3168 static void rb_update_meta_reader(struct ring_buffer_per_cpu *cpu_buffer,
3169 struct buffer_page *reader)
3170 {
3171 struct ring_buffer_meta *meta = cpu_buffer->ring_meta;
3172 void *old_reader = cpu_buffer->reader_page->page;
3173 void *new_reader = reader->page;
3174 int id;
3175
3176 id = reader->id;
3177 cpu_buffer->reader_page->id = id;
3178 reader->id = 0;
3179
3180 meta->buffers[0] = rb_meta_subbuf_idx(meta, new_reader);
3181 meta->buffers[id] = rb_meta_subbuf_idx(meta, old_reader);
3182
3183 /* The head pointer is the one after the reader */
3184 rb_update_meta_head(cpu_buffer, reader);
3185 }
3186
3187 /*
3188 * rb_handle_head_page - writer hit the head page
3189 *
3190 * Returns: +1 to retry page
3191 * 0 to continue
3192 * -1 on error
3193 */
3194 static int
rb_handle_head_page(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * tail_page,struct buffer_page * next_page)3195 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
3196 struct buffer_page *tail_page,
3197 struct buffer_page *next_page)
3198 {
3199 struct buffer_page *new_head;
3200 int entries;
3201 int type;
3202 int ret;
3203
3204 entries = rb_page_entries(next_page);
3205
3206 /*
3207 * The hard part is here. We need to move the head
3208 * forward, and protect against both readers on
3209 * other CPUs and writers coming in via interrupts.
3210 */
3211 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
3212 RB_PAGE_HEAD);
3213
3214 /*
3215 * type can be one of four:
3216 * NORMAL - an interrupt already moved it for us
3217 * HEAD - we are the first to get here.
3218 * UPDATE - we are the interrupt interrupting
3219 * a current move.
3220 * MOVED - a reader on another CPU moved the next
3221 * pointer to its reader page. Give up
3222 * and try again.
3223 */
3224
3225 switch (type) {
3226 case RB_PAGE_HEAD:
3227 /*
3228 * We changed the head to UPDATE, thus
3229 * it is our responsibility to update
3230 * the counters.
3231 */
3232 local_add(entries, &cpu_buffer->overrun);
3233 local_sub(rb_page_commit(next_page), &cpu_buffer->entries_bytes);
3234 local_inc(&cpu_buffer->pages_lost);
3235
3236 if (cpu_buffer->ring_meta)
3237 rb_update_meta_head(cpu_buffer, next_page);
3238 /*
3239 * The entries will be zeroed out when we move the
3240 * tail page.
3241 */
3242
3243 /* still more to do */
3244 break;
3245
3246 case RB_PAGE_UPDATE:
3247 /*
3248 * This is an interrupt that interrupt the
3249 * previous update. Still more to do.
3250 */
3251 break;
3252 case RB_PAGE_NORMAL:
3253 /*
3254 * An interrupt came in before the update
3255 * and processed this for us.
3256 * Nothing left to do.
3257 */
3258 return 1;
3259 case RB_PAGE_MOVED:
3260 /*
3261 * The reader is on another CPU and just did
3262 * a swap with our next_page.
3263 * Try again.
3264 */
3265 return 1;
3266 default:
3267 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
3268 return -1;
3269 }
3270
3271 /*
3272 * Now that we are here, the old head pointer is
3273 * set to UPDATE. This will keep the reader from
3274 * swapping the head page with the reader page.
3275 * The reader (on another CPU) will spin till
3276 * we are finished.
3277 *
3278 * We just need to protect against interrupts
3279 * doing the job. We will set the next pointer
3280 * to HEAD. After that, we set the old pointer
3281 * to NORMAL, but only if it was HEAD before.
3282 * otherwise we are an interrupt, and only
3283 * want the outer most commit to reset it.
3284 */
3285 new_head = next_page;
3286 rb_inc_page(&new_head);
3287
3288 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
3289 RB_PAGE_NORMAL);
3290
3291 /*
3292 * Valid returns are:
3293 * HEAD - an interrupt came in and already set it.
3294 * NORMAL - One of two things:
3295 * 1) We really set it.
3296 * 2) A bunch of interrupts came in and moved
3297 * the page forward again.
3298 */
3299 switch (ret) {
3300 case RB_PAGE_HEAD:
3301 case RB_PAGE_NORMAL:
3302 /* OK */
3303 break;
3304 default:
3305 RB_WARN_ON(cpu_buffer, 1);
3306 return -1;
3307 }
3308
3309 /*
3310 * It is possible that an interrupt came in,
3311 * set the head up, then more interrupts came in
3312 * and moved it again. When we get back here,
3313 * the page would have been set to NORMAL but we
3314 * just set it back to HEAD.
3315 *
3316 * How do you detect this? Well, if that happened
3317 * the tail page would have moved.
3318 */
3319 if (ret == RB_PAGE_NORMAL) {
3320 struct buffer_page *buffer_tail_page;
3321
3322 buffer_tail_page = READ_ONCE(cpu_buffer->tail_page);
3323 /*
3324 * If the tail had moved passed next, then we need
3325 * to reset the pointer.
3326 */
3327 if (buffer_tail_page != tail_page &&
3328 buffer_tail_page != next_page)
3329 rb_head_page_set_normal(cpu_buffer, new_head,
3330 next_page,
3331 RB_PAGE_HEAD);
3332 }
3333
3334 /*
3335 * If this was the outer most commit (the one that
3336 * changed the original pointer from HEAD to UPDATE),
3337 * then it is up to us to reset it to NORMAL.
3338 */
3339 if (type == RB_PAGE_HEAD) {
3340 ret = rb_head_page_set_normal(cpu_buffer, next_page,
3341 tail_page,
3342 RB_PAGE_UPDATE);
3343 if (RB_WARN_ON(cpu_buffer,
3344 ret != RB_PAGE_UPDATE))
3345 return -1;
3346 }
3347
3348 return 0;
3349 }
3350
3351 static inline void
rb_reset_tail(struct ring_buffer_per_cpu * cpu_buffer,unsigned long tail,struct rb_event_info * info)3352 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
3353 unsigned long tail, struct rb_event_info *info)
3354 {
3355 unsigned long bsize = READ_ONCE(cpu_buffer->buffer->subbuf_size);
3356 struct buffer_page *tail_page = info->tail_page;
3357 struct ring_buffer_event *event;
3358 unsigned long length = info->length;
3359
3360 /*
3361 * Only the event that crossed the page boundary
3362 * must fill the old tail_page with padding.
3363 */
3364 if (tail >= bsize) {
3365 /*
3366 * If the page was filled, then we still need
3367 * to update the real_end. Reset it to zero
3368 * and the reader will ignore it.
3369 */
3370 if (tail == bsize)
3371 tail_page->real_end = 0;
3372
3373 local_sub(length, &tail_page->write);
3374 return;
3375 }
3376
3377 event = __rb_page_index(tail_page, tail);
3378
3379 /*
3380 * Save the original length to the meta data.
3381 * This will be used by the reader to add lost event
3382 * counter.
3383 */
3384 tail_page->real_end = tail;
3385
3386 /*
3387 * If this event is bigger than the minimum size, then
3388 * we need to be careful that we don't subtract the
3389 * write counter enough to allow another writer to slip
3390 * in on this page.
3391 * We put in a discarded commit instead, to make sure
3392 * that this space is not used again, and this space will
3393 * not be accounted into 'entries_bytes'.
3394 *
3395 * If we are less than the minimum size, we don't need to
3396 * worry about it.
3397 */
3398 if (tail > (bsize - RB_EVNT_MIN_SIZE)) {
3399 /* No room for any events */
3400
3401 /* Mark the rest of the page with padding */
3402 rb_event_set_padding(event);
3403
3404 /* Make sure the padding is visible before the write update */
3405 smp_wmb();
3406
3407 /* Set the write back to the previous setting */
3408 local_sub(length, &tail_page->write);
3409 return;
3410 }
3411
3412 /* Put in a discarded event */
3413 event->array[0] = (bsize - tail) - RB_EVNT_HDR_SIZE;
3414 event->type_len = RINGBUF_TYPE_PADDING;
3415 /* time delta must be non zero */
3416 event->time_delta = 1;
3417
3418 /* account for padding bytes */
3419 local_add(bsize - tail, &cpu_buffer->entries_bytes);
3420
3421 /* Make sure the padding is visible before the tail_page->write update */
3422 smp_wmb();
3423
3424 /* Set write to end of buffer */
3425 length = (tail + length) - bsize;
3426 local_sub(length, &tail_page->write);
3427 }
3428
3429 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer);
3430
3431 /*
3432 * This is the slow path, force gcc not to inline it.
3433 */
3434 static noinline struct ring_buffer_event *
rb_move_tail(struct ring_buffer_per_cpu * cpu_buffer,unsigned long tail,struct rb_event_info * info)3435 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
3436 unsigned long tail, struct rb_event_info *info)
3437 {
3438 struct buffer_page *tail_page = info->tail_page;
3439 struct buffer_page *commit_page = cpu_buffer->commit_page;
3440 struct trace_buffer *buffer = cpu_buffer->buffer;
3441 struct buffer_page *next_page;
3442 int ret;
3443
3444 next_page = tail_page;
3445
3446 rb_inc_page(&next_page);
3447
3448 /*
3449 * If for some reason, we had an interrupt storm that made
3450 * it all the way around the buffer, bail, and warn
3451 * about it.
3452 */
3453 if (unlikely(next_page == commit_page)) {
3454 local_inc(&cpu_buffer->commit_overrun);
3455 goto out_reset;
3456 }
3457
3458 /*
3459 * This is where the fun begins!
3460 *
3461 * We are fighting against races between a reader that
3462 * could be on another CPU trying to swap its reader
3463 * page with the buffer head.
3464 *
3465 * We are also fighting against interrupts coming in and
3466 * moving the head or tail on us as well.
3467 *
3468 * If the next page is the head page then we have filled
3469 * the buffer, unless the commit page is still on the
3470 * reader page.
3471 */
3472 if (rb_is_head_page(next_page, &tail_page->list)) {
3473
3474 /*
3475 * If the commit is not on the reader page, then
3476 * move the header page.
3477 */
3478 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
3479 /*
3480 * If we are not in overwrite mode,
3481 * this is easy, just stop here.
3482 */
3483 if (!(buffer->flags & RB_FL_OVERWRITE)) {
3484 local_inc(&cpu_buffer->dropped_events);
3485 goto out_reset;
3486 }
3487
3488 ret = rb_handle_head_page(cpu_buffer,
3489 tail_page,
3490 next_page);
3491 if (ret < 0)
3492 goto out_reset;
3493 if (ret)
3494 goto out_again;
3495 } else {
3496 /*
3497 * We need to be careful here too. The
3498 * commit page could still be on the reader
3499 * page. We could have a small buffer, and
3500 * have filled up the buffer with events
3501 * from interrupts and such, and wrapped.
3502 *
3503 * Note, if the tail page is also on the
3504 * reader_page, we let it move out.
3505 */
3506 if (unlikely((cpu_buffer->commit_page !=
3507 cpu_buffer->tail_page) &&
3508 (cpu_buffer->commit_page ==
3509 cpu_buffer->reader_page))) {
3510 local_inc(&cpu_buffer->commit_overrun);
3511 goto out_reset;
3512 }
3513 }
3514 }
3515
3516 rb_tail_page_update(cpu_buffer, tail_page, next_page);
3517
3518 out_again:
3519
3520 rb_reset_tail(cpu_buffer, tail, info);
3521
3522 /* Commit what we have for now. */
3523 rb_end_commit(cpu_buffer);
3524 /* rb_end_commit() decs committing */
3525 local_inc(&cpu_buffer->committing);
3526
3527 /* fail and let the caller try again */
3528 return ERR_PTR(-EAGAIN);
3529
3530 out_reset:
3531 /* reset write */
3532 rb_reset_tail(cpu_buffer, tail, info);
3533
3534 return NULL;
3535 }
3536
3537 /* Slow path */
3538 static struct ring_buffer_event *
rb_add_time_stamp(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event,u64 delta,bool abs)3539 rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3540 struct ring_buffer_event *event, u64 delta, bool abs)
3541 {
3542 if (abs)
3543 event->type_len = RINGBUF_TYPE_TIME_STAMP;
3544 else
3545 event->type_len = RINGBUF_TYPE_TIME_EXTEND;
3546
3547 /* Not the first event on the page, or not delta? */
3548 if (abs || rb_event_index(cpu_buffer, event)) {
3549 event->time_delta = delta & TS_MASK;
3550 event->array[0] = delta >> TS_SHIFT;
3551 } else {
3552 /* nope, just zero it */
3553 event->time_delta = 0;
3554 event->array[0] = 0;
3555 }
3556
3557 return skip_time_extend(event);
3558 }
3559
3560 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
sched_clock_stable(void)3561 static inline bool sched_clock_stable(void)
3562 {
3563 return true;
3564 }
3565 #endif
3566
3567 static void
rb_check_timestamp(struct ring_buffer_per_cpu * cpu_buffer,struct rb_event_info * info)3568 rb_check_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
3569 struct rb_event_info *info)
3570 {
3571 u64 write_stamp;
3572
3573 WARN_ONCE(1, "Delta way too big! %llu ts=%llu before=%llu after=%llu write stamp=%llu\n%s",
3574 (unsigned long long)info->delta,
3575 (unsigned long long)info->ts,
3576 (unsigned long long)info->before,
3577 (unsigned long long)info->after,
3578 (unsigned long long)({rb_time_read(&cpu_buffer->write_stamp, &write_stamp); write_stamp;}),
3579 sched_clock_stable() ? "" :
3580 "If you just came from a suspend/resume,\n"
3581 "please switch to the trace global clock:\n"
3582 " echo global > /sys/kernel/tracing/trace_clock\n"
3583 "or add trace_clock=global to the kernel command line\n");
3584 }
3585
rb_add_timestamp(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event ** event,struct rb_event_info * info,u64 * delta,unsigned int * length)3586 static void rb_add_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
3587 struct ring_buffer_event **event,
3588 struct rb_event_info *info,
3589 u64 *delta,
3590 unsigned int *length)
3591 {
3592 bool abs = info->add_timestamp &
3593 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE);
3594
3595 if (unlikely(info->delta > (1ULL << 59))) {
3596 /*
3597 * Some timers can use more than 59 bits, and when a timestamp
3598 * is added to the buffer, it will lose those bits.
3599 */
3600 if (abs && (info->ts & TS_MSB)) {
3601 info->delta &= ABS_TS_MASK;
3602
3603 /* did the clock go backwards */
3604 } else if (info->before == info->after && info->before > info->ts) {
3605 /* not interrupted */
3606 static int once;
3607
3608 /*
3609 * This is possible with a recalibrating of the TSC.
3610 * Do not produce a call stack, but just report it.
3611 */
3612 if (!once) {
3613 once++;
3614 pr_warn("Ring buffer clock went backwards: %llu -> %llu\n",
3615 info->before, info->ts);
3616 }
3617 } else
3618 rb_check_timestamp(cpu_buffer, info);
3619 if (!abs)
3620 info->delta = 0;
3621 }
3622 *event = rb_add_time_stamp(cpu_buffer, *event, info->delta, abs);
3623 *length -= RB_LEN_TIME_EXTEND;
3624 *delta = 0;
3625 }
3626
3627 /**
3628 * rb_update_event - update event type and data
3629 * @cpu_buffer: The per cpu buffer of the @event
3630 * @event: the event to update
3631 * @info: The info to update the @event with (contains length and delta)
3632 *
3633 * Update the type and data fields of the @event. The length
3634 * is the actual size that is written to the ring buffer,
3635 * and with this, we can determine what to place into the
3636 * data field.
3637 */
3638 static void
rb_update_event(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event,struct rb_event_info * info)3639 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
3640 struct ring_buffer_event *event,
3641 struct rb_event_info *info)
3642 {
3643 unsigned length = info->length;
3644 u64 delta = info->delta;
3645 unsigned int nest = local_read(&cpu_buffer->committing) - 1;
3646
3647 if (!WARN_ON_ONCE(nest >= MAX_NEST))
3648 cpu_buffer->event_stamp[nest] = info->ts;
3649
3650 /*
3651 * If we need to add a timestamp, then we
3652 * add it to the start of the reserved space.
3653 */
3654 if (unlikely(info->add_timestamp))
3655 rb_add_timestamp(cpu_buffer, &event, info, &delta, &length);
3656
3657 event->time_delta = delta;
3658 length -= RB_EVNT_HDR_SIZE;
3659 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
3660 event->type_len = 0;
3661 event->array[0] = length;
3662 } else
3663 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
3664 }
3665
rb_calculate_event_length(unsigned length)3666 static unsigned rb_calculate_event_length(unsigned length)
3667 {
3668 struct ring_buffer_event event; /* Used only for sizeof array */
3669
3670 /* zero length can cause confusions */
3671 if (!length)
3672 length++;
3673
3674 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
3675 length += sizeof(event.array[0]);
3676
3677 length += RB_EVNT_HDR_SIZE;
3678 length = ALIGN(length, RB_ARCH_ALIGNMENT);
3679
3680 /*
3681 * In case the time delta is larger than the 27 bits for it
3682 * in the header, we need to add a timestamp. If another
3683 * event comes in when trying to discard this one to increase
3684 * the length, then the timestamp will be added in the allocated
3685 * space of this event. If length is bigger than the size needed
3686 * for the TIME_EXTEND, then padding has to be used. The events
3687 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
3688 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
3689 * As length is a multiple of 4, we only need to worry if it
3690 * is 12 (RB_LEN_TIME_EXTEND + 4).
3691 */
3692 if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
3693 length += RB_ALIGNMENT;
3694
3695 return length;
3696 }
3697
3698 static inline bool
rb_try_to_discard(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event)3699 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
3700 struct ring_buffer_event *event)
3701 {
3702 unsigned long new_index, old_index;
3703 struct buffer_page *bpage;
3704 unsigned long addr;
3705
3706 new_index = rb_event_index(cpu_buffer, event);
3707 old_index = new_index + rb_event_ts_length(event);
3708 addr = (unsigned long)event;
3709 addr &= ~((PAGE_SIZE << cpu_buffer->buffer->subbuf_order) - 1);
3710
3711 bpage = READ_ONCE(cpu_buffer->tail_page);
3712
3713 /*
3714 * Make sure the tail_page is still the same and
3715 * the next write location is the end of this event
3716 */
3717 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
3718 unsigned long write_mask =
3719 local_read(&bpage->write) & ~RB_WRITE_MASK;
3720 unsigned long event_length = rb_event_length(event);
3721
3722 /*
3723 * For the before_stamp to be different than the write_stamp
3724 * to make sure that the next event adds an absolute
3725 * value and does not rely on the saved write stamp, which
3726 * is now going to be bogus.
3727 *
3728 * By setting the before_stamp to zero, the next event
3729 * is not going to use the write_stamp and will instead
3730 * create an absolute timestamp. This means there's no
3731 * reason to update the wirte_stamp!
3732 */
3733 rb_time_set(&cpu_buffer->before_stamp, 0);
3734
3735 /*
3736 * If an event were to come in now, it would see that the
3737 * write_stamp and the before_stamp are different, and assume
3738 * that this event just added itself before updating
3739 * the write stamp. The interrupting event will fix the
3740 * write stamp for us, and use an absolute timestamp.
3741 */
3742
3743 /*
3744 * This is on the tail page. It is possible that
3745 * a write could come in and move the tail page
3746 * and write to the next page. That is fine
3747 * because we just shorten what is on this page.
3748 */
3749 old_index += write_mask;
3750 new_index += write_mask;
3751
3752 /* caution: old_index gets updated on cmpxchg failure */
3753 if (local_try_cmpxchg(&bpage->write, &old_index, new_index)) {
3754 /* update counters */
3755 local_sub(event_length, &cpu_buffer->entries_bytes);
3756 return true;
3757 }
3758 }
3759
3760 /* could not discard */
3761 return false;
3762 }
3763
rb_start_commit(struct ring_buffer_per_cpu * cpu_buffer)3764 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
3765 {
3766 local_inc(&cpu_buffer->committing);
3767 local_inc(&cpu_buffer->commits);
3768 }
3769
3770 static __always_inline void
rb_set_commit_to_write(struct ring_buffer_per_cpu * cpu_buffer)3771 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
3772 {
3773 unsigned long max_count;
3774
3775 /*
3776 * We only race with interrupts and NMIs on this CPU.
3777 * If we own the commit event, then we can commit
3778 * all others that interrupted us, since the interruptions
3779 * are in stack format (they finish before they come
3780 * back to us). This allows us to do a simple loop to
3781 * assign the commit to the tail.
3782 */
3783 again:
3784 max_count = cpu_buffer->nr_pages * 100;
3785
3786 while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) {
3787 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
3788 return;
3789 if (RB_WARN_ON(cpu_buffer,
3790 rb_is_reader_page(cpu_buffer->tail_page)))
3791 return;
3792 /*
3793 * No need for a memory barrier here, as the update
3794 * of the tail_page did it for this page.
3795 */
3796 local_set(&cpu_buffer->commit_page->page->commit,
3797 rb_page_write(cpu_buffer->commit_page));
3798 rb_inc_page(&cpu_buffer->commit_page);
3799 if (cpu_buffer->ring_meta) {
3800 struct ring_buffer_meta *meta = cpu_buffer->ring_meta;
3801 meta->commit_buffer = (unsigned long)cpu_buffer->commit_page->page;
3802 }
3803 /* add barrier to keep gcc from optimizing too much */
3804 barrier();
3805 }
3806 while (rb_commit_index(cpu_buffer) !=
3807 rb_page_write(cpu_buffer->commit_page)) {
3808
3809 /* Make sure the readers see the content of what is committed. */
3810 smp_wmb();
3811 local_set(&cpu_buffer->commit_page->page->commit,
3812 rb_page_write(cpu_buffer->commit_page));
3813 RB_WARN_ON(cpu_buffer,
3814 local_read(&cpu_buffer->commit_page->page->commit) &
3815 ~RB_WRITE_MASK);
3816 barrier();
3817 }
3818
3819 /* again, keep gcc from optimizing */
3820 barrier();
3821
3822 /*
3823 * If an interrupt came in just after the first while loop
3824 * and pushed the tail page forward, we will be left with
3825 * a dangling commit that will never go forward.
3826 */
3827 if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)))
3828 goto again;
3829 }
3830
rb_end_commit(struct ring_buffer_per_cpu * cpu_buffer)3831 static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
3832 {
3833 unsigned long commits;
3834
3835 if (RB_WARN_ON(cpu_buffer,
3836 !local_read(&cpu_buffer->committing)))
3837 return;
3838
3839 again:
3840 commits = local_read(&cpu_buffer->commits);
3841 /* synchronize with interrupts */
3842 barrier();
3843 if (local_read(&cpu_buffer->committing) == 1)
3844 rb_set_commit_to_write(cpu_buffer);
3845
3846 local_dec(&cpu_buffer->committing);
3847
3848 /* synchronize with interrupts */
3849 barrier();
3850
3851 /*
3852 * Need to account for interrupts coming in between the
3853 * updating of the commit page and the clearing of the
3854 * committing counter.
3855 */
3856 if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
3857 !local_read(&cpu_buffer->committing)) {
3858 local_inc(&cpu_buffer->committing);
3859 goto again;
3860 }
3861 }
3862
rb_event_discard(struct ring_buffer_event * event)3863 static inline void rb_event_discard(struct ring_buffer_event *event)
3864 {
3865 if (extended_time(event))
3866 event = skip_time_extend(event);
3867
3868 /* array[0] holds the actual length for the discarded event */
3869 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
3870 event->type_len = RINGBUF_TYPE_PADDING;
3871 /* time delta must be non zero */
3872 if (!event->time_delta)
3873 event->time_delta = 1;
3874 }
3875
rb_commit(struct ring_buffer_per_cpu * cpu_buffer)3876 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer)
3877 {
3878 local_inc(&cpu_buffer->entries);
3879 rb_end_commit(cpu_buffer);
3880 }
3881
3882 static __always_inline void
rb_wakeups(struct trace_buffer * buffer,struct ring_buffer_per_cpu * cpu_buffer)3883 rb_wakeups(struct trace_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
3884 {
3885 if (buffer->irq_work.waiters_pending) {
3886 buffer->irq_work.waiters_pending = false;
3887 /* irq_work_queue() supplies it's own memory barriers */
3888 irq_work_queue(&buffer->irq_work.work);
3889 }
3890
3891 if (cpu_buffer->irq_work.waiters_pending) {
3892 cpu_buffer->irq_work.waiters_pending = false;
3893 /* irq_work_queue() supplies it's own memory barriers */
3894 irq_work_queue(&cpu_buffer->irq_work.work);
3895 }
3896
3897 if (cpu_buffer->last_pages_touch == local_read(&cpu_buffer->pages_touched))
3898 return;
3899
3900 if (cpu_buffer->reader_page == cpu_buffer->commit_page)
3901 return;
3902
3903 if (!cpu_buffer->irq_work.full_waiters_pending)
3904 return;
3905
3906 cpu_buffer->last_pages_touch = local_read(&cpu_buffer->pages_touched);
3907
3908 if (!full_hit(buffer, cpu_buffer->cpu, cpu_buffer->shortest_full))
3909 return;
3910
3911 cpu_buffer->irq_work.wakeup_full = true;
3912 cpu_buffer->irq_work.full_waiters_pending = false;
3913 /* irq_work_queue() supplies it's own memory barriers */
3914 irq_work_queue(&cpu_buffer->irq_work.work);
3915 }
3916
3917 #ifdef CONFIG_RING_BUFFER_RECORD_RECURSION
3918 # define do_ring_buffer_record_recursion() \
3919 do_ftrace_record_recursion(_THIS_IP_, _RET_IP_)
3920 #else
3921 # define do_ring_buffer_record_recursion() do { } while (0)
3922 #endif
3923
3924 /*
3925 * The lock and unlock are done within a preempt disable section.
3926 * The current_context per_cpu variable can only be modified
3927 * by the current task between lock and unlock. But it can
3928 * be modified more than once via an interrupt. To pass this
3929 * information from the lock to the unlock without having to
3930 * access the 'in_interrupt()' functions again (which do show
3931 * a bit of overhead in something as critical as function tracing,
3932 * we use a bitmask trick.
3933 *
3934 * bit 1 = NMI context
3935 * bit 2 = IRQ context
3936 * bit 3 = SoftIRQ context
3937 * bit 4 = normal context.
3938 *
3939 * This works because this is the order of contexts that can
3940 * preempt other contexts. A SoftIRQ never preempts an IRQ
3941 * context.
3942 *
3943 * When the context is determined, the corresponding bit is
3944 * checked and set (if it was set, then a recursion of that context
3945 * happened).
3946 *
3947 * On unlock, we need to clear this bit. To do so, just subtract
3948 * 1 from the current_context and AND it to itself.
3949 *
3950 * (binary)
3951 * 101 - 1 = 100
3952 * 101 & 100 = 100 (clearing bit zero)
3953 *
3954 * 1010 - 1 = 1001
3955 * 1010 & 1001 = 1000 (clearing bit 1)
3956 *
3957 * The least significant bit can be cleared this way, and it
3958 * just so happens that it is the same bit corresponding to
3959 * the current context.
3960 *
3961 * Now the TRANSITION bit breaks the above slightly. The TRANSITION bit
3962 * is set when a recursion is detected at the current context, and if
3963 * the TRANSITION bit is already set, it will fail the recursion.
3964 * This is needed because there's a lag between the changing of
3965 * interrupt context and updating the preempt count. In this case,
3966 * a false positive will be found. To handle this, one extra recursion
3967 * is allowed, and this is done by the TRANSITION bit. If the TRANSITION
3968 * bit is already set, then it is considered a recursion and the function
3969 * ends. Otherwise, the TRANSITION bit is set, and that bit is returned.
3970 *
3971 * On the trace_recursive_unlock(), the TRANSITION bit will be the first
3972 * to be cleared. Even if it wasn't the context that set it. That is,
3973 * if an interrupt comes in while NORMAL bit is set and the ring buffer
3974 * is called before preempt_count() is updated, since the check will
3975 * be on the NORMAL bit, the TRANSITION bit will then be set. If an
3976 * NMI then comes in, it will set the NMI bit, but when the NMI code
3977 * does the trace_recursive_unlock() it will clear the TRANSITION bit
3978 * and leave the NMI bit set. But this is fine, because the interrupt
3979 * code that set the TRANSITION bit will then clear the NMI bit when it
3980 * calls trace_recursive_unlock(). If another NMI comes in, it will
3981 * set the TRANSITION bit and continue.
3982 *
3983 * Note: The TRANSITION bit only handles a single transition between context.
3984 */
3985
3986 static __always_inline bool
trace_recursive_lock(struct ring_buffer_per_cpu * cpu_buffer)3987 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
3988 {
3989 unsigned int val = cpu_buffer->current_context;
3990 int bit = interrupt_context_level();
3991
3992 bit = RB_CTX_NORMAL - bit;
3993
3994 if (unlikely(val & (1 << (bit + cpu_buffer->nest)))) {
3995 /*
3996 * It is possible that this was called by transitioning
3997 * between interrupt context, and preempt_count() has not
3998 * been updated yet. In this case, use the TRANSITION bit.
3999 */
4000 bit = RB_CTX_TRANSITION;
4001 if (val & (1 << (bit + cpu_buffer->nest))) {
4002 do_ring_buffer_record_recursion();
4003 return true;
4004 }
4005 }
4006
4007 val |= (1 << (bit + cpu_buffer->nest));
4008 cpu_buffer->current_context = val;
4009
4010 return false;
4011 }
4012
4013 static __always_inline void
trace_recursive_unlock(struct ring_buffer_per_cpu * cpu_buffer)4014 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
4015 {
4016 cpu_buffer->current_context &=
4017 cpu_buffer->current_context - (1 << cpu_buffer->nest);
4018 }
4019
4020 /* The recursive locking above uses 5 bits */
4021 #define NESTED_BITS 5
4022
4023 /**
4024 * ring_buffer_nest_start - Allow to trace while nested
4025 * @buffer: The ring buffer to modify
4026 *
4027 * The ring buffer has a safety mechanism to prevent recursion.
4028 * But there may be a case where a trace needs to be done while
4029 * tracing something else. In this case, calling this function
4030 * will allow this function to nest within a currently active
4031 * ring_buffer_lock_reserve().
4032 *
4033 * Call this function before calling another ring_buffer_lock_reserve() and
4034 * call ring_buffer_nest_end() after the nested ring_buffer_unlock_commit().
4035 */
ring_buffer_nest_start(struct trace_buffer * buffer)4036 void ring_buffer_nest_start(struct trace_buffer *buffer)
4037 {
4038 struct ring_buffer_per_cpu *cpu_buffer;
4039 int cpu;
4040
4041 /* Enabled by ring_buffer_nest_end() */
4042 preempt_disable_notrace();
4043 cpu = raw_smp_processor_id();
4044 cpu_buffer = buffer->buffers[cpu];
4045 /* This is the shift value for the above recursive locking */
4046 cpu_buffer->nest += NESTED_BITS;
4047 }
4048
4049 /**
4050 * ring_buffer_nest_end - Allow to trace while nested
4051 * @buffer: The ring buffer to modify
4052 *
4053 * Must be called after ring_buffer_nest_start() and after the
4054 * ring_buffer_unlock_commit().
4055 */
ring_buffer_nest_end(struct trace_buffer * buffer)4056 void ring_buffer_nest_end(struct trace_buffer *buffer)
4057 {
4058 struct ring_buffer_per_cpu *cpu_buffer;
4059 int cpu;
4060
4061 /* disabled by ring_buffer_nest_start() */
4062 cpu = raw_smp_processor_id();
4063 cpu_buffer = buffer->buffers[cpu];
4064 /* This is the shift value for the above recursive locking */
4065 cpu_buffer->nest -= NESTED_BITS;
4066 preempt_enable_notrace();
4067 }
4068
4069 /**
4070 * ring_buffer_unlock_commit - commit a reserved
4071 * @buffer: The buffer to commit to
4072 *
4073 * This commits the data to the ring buffer, and releases any locks held.
4074 *
4075 * Must be paired with ring_buffer_lock_reserve.
4076 */
ring_buffer_unlock_commit(struct trace_buffer * buffer)4077 int ring_buffer_unlock_commit(struct trace_buffer *buffer)
4078 {
4079 struct ring_buffer_per_cpu *cpu_buffer;
4080 int cpu = raw_smp_processor_id();
4081
4082 cpu_buffer = buffer->buffers[cpu];
4083
4084 rb_commit(cpu_buffer);
4085
4086 rb_wakeups(buffer, cpu_buffer);
4087
4088 trace_recursive_unlock(cpu_buffer);
4089
4090 preempt_enable_notrace();
4091
4092 return 0;
4093 }
4094 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
4095
4096 /* Special value to validate all deltas on a page. */
4097 #define CHECK_FULL_PAGE 1L
4098
4099 #ifdef CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS
4100
show_irq_str(int bits)4101 static const char *show_irq_str(int bits)
4102 {
4103 const char *type[] = {
4104 ".", // 0
4105 "s", // 1
4106 "h", // 2
4107 "Hs", // 3
4108 "n", // 4
4109 "Ns", // 5
4110 "Nh", // 6
4111 "NHs", // 7
4112 };
4113
4114 return type[bits];
4115 }
4116
4117 /* Assume this is an trace event */
show_flags(struct ring_buffer_event * event)4118 static const char *show_flags(struct ring_buffer_event *event)
4119 {
4120 struct trace_entry *entry;
4121 int bits = 0;
4122
4123 if (rb_event_data_length(event) - RB_EVNT_HDR_SIZE < sizeof(*entry))
4124 return "X";
4125
4126 entry = ring_buffer_event_data(event);
4127
4128 if (entry->flags & TRACE_FLAG_SOFTIRQ)
4129 bits |= 1;
4130
4131 if (entry->flags & TRACE_FLAG_HARDIRQ)
4132 bits |= 2;
4133
4134 if (entry->flags & TRACE_FLAG_NMI)
4135 bits |= 4;
4136
4137 return show_irq_str(bits);
4138 }
4139
show_irq(struct ring_buffer_event * event)4140 static const char *show_irq(struct ring_buffer_event *event)
4141 {
4142 struct trace_entry *entry;
4143
4144 if (rb_event_data_length(event) - RB_EVNT_HDR_SIZE < sizeof(*entry))
4145 return "";
4146
4147 entry = ring_buffer_event_data(event);
4148 if (entry->flags & TRACE_FLAG_IRQS_OFF)
4149 return "d";
4150 return "";
4151 }
4152
show_interrupt_level(void)4153 static const char *show_interrupt_level(void)
4154 {
4155 unsigned long pc = preempt_count();
4156 unsigned char level = 0;
4157
4158 if (pc & SOFTIRQ_OFFSET)
4159 level |= 1;
4160
4161 if (pc & HARDIRQ_MASK)
4162 level |= 2;
4163
4164 if (pc & NMI_MASK)
4165 level |= 4;
4166
4167 return show_irq_str(level);
4168 }
4169
dump_buffer_page(struct buffer_data_page * bpage,struct rb_event_info * info,unsigned long tail)4170 static void dump_buffer_page(struct buffer_data_page *bpage,
4171 struct rb_event_info *info,
4172 unsigned long tail)
4173 {
4174 struct ring_buffer_event *event;
4175 u64 ts, delta;
4176 int e;
4177
4178 ts = bpage->time_stamp;
4179 pr_warn(" [%lld] PAGE TIME STAMP\n", ts);
4180
4181 for (e = 0; e < tail; e += rb_event_length(event)) {
4182
4183 event = (struct ring_buffer_event *)(bpage->data + e);
4184
4185 switch (event->type_len) {
4186
4187 case RINGBUF_TYPE_TIME_EXTEND:
4188 delta = rb_event_time_stamp(event);
4189 ts += delta;
4190 pr_warn(" 0x%x: [%lld] delta:%lld TIME EXTEND\n",
4191 e, ts, delta);
4192 break;
4193
4194 case RINGBUF_TYPE_TIME_STAMP:
4195 delta = rb_event_time_stamp(event);
4196 ts = rb_fix_abs_ts(delta, ts);
4197 pr_warn(" 0x%x: [%lld] absolute:%lld TIME STAMP\n",
4198 e, ts, delta);
4199 break;
4200
4201 case RINGBUF_TYPE_PADDING:
4202 ts += event->time_delta;
4203 pr_warn(" 0x%x: [%lld] delta:%d PADDING\n",
4204 e, ts, event->time_delta);
4205 break;
4206
4207 case RINGBUF_TYPE_DATA:
4208 ts += event->time_delta;
4209 pr_warn(" 0x%x: [%lld] delta:%d %s%s\n",
4210 e, ts, event->time_delta,
4211 show_flags(event), show_irq(event));
4212 break;
4213
4214 default:
4215 break;
4216 }
4217 }
4218 pr_warn("expected end:0x%lx last event actually ended at:0x%x\n", tail, e);
4219 }
4220
4221 static DEFINE_PER_CPU(atomic_t, checking);
4222 static atomic_t ts_dump;
4223
4224 #define buffer_warn_return(fmt, ...) \
4225 do { \
4226 /* If another report is happening, ignore this one */ \
4227 if (atomic_inc_return(&ts_dump) != 1) { \
4228 atomic_dec(&ts_dump); \
4229 goto out; \
4230 } \
4231 atomic_inc(&cpu_buffer->record_disabled); \
4232 pr_warn(fmt, ##__VA_ARGS__); \
4233 dump_buffer_page(bpage, info, tail); \
4234 atomic_dec(&ts_dump); \
4235 /* There's some cases in boot up that this can happen */ \
4236 if (WARN_ON_ONCE(system_state != SYSTEM_BOOTING)) \
4237 /* Do not re-enable checking */ \
4238 return; \
4239 } while (0)
4240
4241 /*
4242 * Check if the current event time stamp matches the deltas on
4243 * the buffer page.
4244 */
check_buffer(struct ring_buffer_per_cpu * cpu_buffer,struct rb_event_info * info,unsigned long tail)4245 static void check_buffer(struct ring_buffer_per_cpu *cpu_buffer,
4246 struct rb_event_info *info,
4247 unsigned long tail)
4248 {
4249 struct buffer_data_page *bpage;
4250 u64 ts, delta;
4251 bool full = false;
4252 int ret;
4253
4254 bpage = info->tail_page->page;
4255
4256 if (tail == CHECK_FULL_PAGE) {
4257 full = true;
4258 tail = local_read(&bpage->commit);
4259 } else if (info->add_timestamp &
4260 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE)) {
4261 /* Ignore events with absolute time stamps */
4262 return;
4263 }
4264
4265 /*
4266 * Do not check the first event (skip possible extends too).
4267 * Also do not check if previous events have not been committed.
4268 */
4269 if (tail <= 8 || tail > local_read(&bpage->commit))
4270 return;
4271
4272 /*
4273 * If this interrupted another event,
4274 */
4275 if (atomic_inc_return(this_cpu_ptr(&checking)) != 1)
4276 goto out;
4277
4278 ret = rb_read_data_buffer(bpage, tail, cpu_buffer->cpu, &ts, &delta);
4279 if (ret < 0) {
4280 if (delta < ts) {
4281 buffer_warn_return("[CPU: %d]ABSOLUTE TIME WENT BACKWARDS: last ts: %lld absolute ts: %lld\n",
4282 cpu_buffer->cpu, ts, delta);
4283 goto out;
4284 }
4285 }
4286 if ((full && ts > info->ts) ||
4287 (!full && ts + info->delta != info->ts)) {
4288 buffer_warn_return("[CPU: %d]TIME DOES NOT MATCH expected:%lld actual:%lld delta:%lld before:%lld after:%lld%s context:%s\n",
4289 cpu_buffer->cpu,
4290 ts + info->delta, info->ts, info->delta,
4291 info->before, info->after,
4292 full ? " (full)" : "", show_interrupt_level());
4293 }
4294 out:
4295 atomic_dec(this_cpu_ptr(&checking));
4296 }
4297 #else
check_buffer(struct ring_buffer_per_cpu * cpu_buffer,struct rb_event_info * info,unsigned long tail)4298 static inline void check_buffer(struct ring_buffer_per_cpu *cpu_buffer,
4299 struct rb_event_info *info,
4300 unsigned long tail)
4301 {
4302 }
4303 #endif /* CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS */
4304
4305 static struct ring_buffer_event *
__rb_reserve_next(struct ring_buffer_per_cpu * cpu_buffer,struct rb_event_info * info)4306 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
4307 struct rb_event_info *info)
4308 {
4309 struct ring_buffer_event *event;
4310 struct buffer_page *tail_page;
4311 unsigned long tail, write, w;
4312
4313 /* Don't let the compiler play games with cpu_buffer->tail_page */
4314 tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page);
4315
4316 /*A*/ w = local_read(&tail_page->write) & RB_WRITE_MASK;
4317 barrier();
4318 rb_time_read(&cpu_buffer->before_stamp, &info->before);
4319 rb_time_read(&cpu_buffer->write_stamp, &info->after);
4320 barrier();
4321 info->ts = rb_time_stamp(cpu_buffer->buffer);
4322
4323 if ((info->add_timestamp & RB_ADD_STAMP_ABSOLUTE)) {
4324 info->delta = info->ts;
4325 } else {
4326 /*
4327 * If interrupting an event time update, we may need an
4328 * absolute timestamp.
4329 * Don't bother if this is the start of a new page (w == 0).
4330 */
4331 if (!w) {
4332 /* Use the sub-buffer timestamp */
4333 info->delta = 0;
4334 } else if (unlikely(info->before != info->after)) {
4335 info->add_timestamp |= RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND;
4336 info->length += RB_LEN_TIME_EXTEND;
4337 } else {
4338 info->delta = info->ts - info->after;
4339 if (unlikely(test_time_stamp(info->delta))) {
4340 info->add_timestamp |= RB_ADD_STAMP_EXTEND;
4341 info->length += RB_LEN_TIME_EXTEND;
4342 }
4343 }
4344 }
4345
4346 /*B*/ rb_time_set(&cpu_buffer->before_stamp, info->ts);
4347
4348 /*C*/ write = local_add_return(info->length, &tail_page->write);
4349
4350 /* set write to only the index of the write */
4351 write &= RB_WRITE_MASK;
4352
4353 tail = write - info->length;
4354
4355 /* See if we shot pass the end of this buffer page */
4356 if (unlikely(write > cpu_buffer->buffer->subbuf_size)) {
4357 check_buffer(cpu_buffer, info, CHECK_FULL_PAGE);
4358 return rb_move_tail(cpu_buffer, tail, info);
4359 }
4360
4361 if (likely(tail == w)) {
4362 /* Nothing interrupted us between A and C */
4363 /*D*/ rb_time_set(&cpu_buffer->write_stamp, info->ts);
4364 /*
4365 * If something came in between C and D, the write stamp
4366 * may now not be in sync. But that's fine as the before_stamp
4367 * will be different and then next event will just be forced
4368 * to use an absolute timestamp.
4369 */
4370 if (likely(!(info->add_timestamp &
4371 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
4372 /* This did not interrupt any time update */
4373 info->delta = info->ts - info->after;
4374 else
4375 /* Just use full timestamp for interrupting event */
4376 info->delta = info->ts;
4377 check_buffer(cpu_buffer, info, tail);
4378 } else {
4379 u64 ts;
4380 /* SLOW PATH - Interrupted between A and C */
4381
4382 /* Save the old before_stamp */
4383 rb_time_read(&cpu_buffer->before_stamp, &info->before);
4384
4385 /*
4386 * Read a new timestamp and update the before_stamp to make
4387 * the next event after this one force using an absolute
4388 * timestamp. This is in case an interrupt were to come in
4389 * between E and F.
4390 */
4391 ts = rb_time_stamp(cpu_buffer->buffer);
4392 rb_time_set(&cpu_buffer->before_stamp, ts);
4393
4394 barrier();
4395 /*E*/ rb_time_read(&cpu_buffer->write_stamp, &info->after);
4396 barrier();
4397 /*F*/ if (write == (local_read(&tail_page->write) & RB_WRITE_MASK) &&
4398 info->after == info->before && info->after < ts) {
4399 /*
4400 * Nothing came after this event between C and F, it is
4401 * safe to use info->after for the delta as it
4402 * matched info->before and is still valid.
4403 */
4404 info->delta = ts - info->after;
4405 } else {
4406 /*
4407 * Interrupted between C and F:
4408 * Lost the previous events time stamp. Just set the
4409 * delta to zero, and this will be the same time as
4410 * the event this event interrupted. And the events that
4411 * came after this will still be correct (as they would
4412 * have built their delta on the previous event.
4413 */
4414 info->delta = 0;
4415 }
4416 info->ts = ts;
4417 info->add_timestamp &= ~RB_ADD_STAMP_FORCE;
4418 }
4419
4420 /*
4421 * If this is the first commit on the page, then it has the same
4422 * timestamp as the page itself.
4423 */
4424 if (unlikely(!tail && !(info->add_timestamp &
4425 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
4426 info->delta = 0;
4427
4428 /* We reserved something on the buffer */
4429
4430 event = __rb_page_index(tail_page, tail);
4431 rb_update_event(cpu_buffer, event, info);
4432
4433 local_inc(&tail_page->entries);
4434
4435 /*
4436 * If this is the first commit on the page, then update
4437 * its timestamp.
4438 */
4439 if (unlikely(!tail))
4440 tail_page->page->time_stamp = info->ts;
4441
4442 /* account for these added bytes */
4443 local_add(info->length, &cpu_buffer->entries_bytes);
4444
4445 return event;
4446 }
4447
4448 static __always_inline struct ring_buffer_event *
rb_reserve_next_event(struct trace_buffer * buffer,struct ring_buffer_per_cpu * cpu_buffer,unsigned long length)4449 rb_reserve_next_event(struct trace_buffer *buffer,
4450 struct ring_buffer_per_cpu *cpu_buffer,
4451 unsigned long length)
4452 {
4453 struct ring_buffer_event *event;
4454 struct rb_event_info info;
4455 int nr_loops = 0;
4456 int add_ts_default;
4457
4458 /*
4459 * ring buffer does cmpxchg as well as atomic64 operations
4460 * (which some archs use locking for atomic64), make sure this
4461 * is safe in NMI context
4462 */
4463 if ((!IS_ENABLED(CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG) ||
4464 IS_ENABLED(CONFIG_GENERIC_ATOMIC64)) &&
4465 (unlikely(in_nmi()))) {
4466 return NULL;
4467 }
4468
4469 rb_start_commit(cpu_buffer);
4470 /* The commit page can not change after this */
4471
4472 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4473 /*
4474 * Due to the ability to swap a cpu buffer from a buffer
4475 * it is possible it was swapped before we committed.
4476 * (committing stops a swap). We check for it here and
4477 * if it happened, we have to fail the write.
4478 */
4479 barrier();
4480 if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) {
4481 local_dec(&cpu_buffer->committing);
4482 local_dec(&cpu_buffer->commits);
4483 return NULL;
4484 }
4485 #endif
4486
4487 info.length = rb_calculate_event_length(length);
4488
4489 if (ring_buffer_time_stamp_abs(cpu_buffer->buffer)) {
4490 add_ts_default = RB_ADD_STAMP_ABSOLUTE;
4491 info.length += RB_LEN_TIME_EXTEND;
4492 if (info.length > cpu_buffer->buffer->max_data_size)
4493 goto out_fail;
4494 } else {
4495 add_ts_default = RB_ADD_STAMP_NONE;
4496 }
4497
4498 again:
4499 info.add_timestamp = add_ts_default;
4500 info.delta = 0;
4501
4502 /*
4503 * We allow for interrupts to reenter here and do a trace.
4504 * If one does, it will cause this original code to loop
4505 * back here. Even with heavy interrupts happening, this
4506 * should only happen a few times in a row. If this happens
4507 * 1000 times in a row, there must be either an interrupt
4508 * storm or we have something buggy.
4509 * Bail!
4510 */
4511 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
4512 goto out_fail;
4513
4514 event = __rb_reserve_next(cpu_buffer, &info);
4515
4516 if (unlikely(PTR_ERR(event) == -EAGAIN)) {
4517 if (info.add_timestamp & (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND))
4518 info.length -= RB_LEN_TIME_EXTEND;
4519 goto again;
4520 }
4521
4522 if (likely(event))
4523 return event;
4524 out_fail:
4525 rb_end_commit(cpu_buffer);
4526 return NULL;
4527 }
4528
4529 /**
4530 * ring_buffer_lock_reserve - reserve a part of the buffer
4531 * @buffer: the ring buffer to reserve from
4532 * @length: the length of the data to reserve (excluding event header)
4533 *
4534 * Returns a reserved event on the ring buffer to copy directly to.
4535 * The user of this interface will need to get the body to write into
4536 * and can use the ring_buffer_event_data() interface.
4537 *
4538 * The length is the length of the data needed, not the event length
4539 * which also includes the event header.
4540 *
4541 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
4542 * If NULL is returned, then nothing has been allocated or locked.
4543 */
4544 struct ring_buffer_event *
ring_buffer_lock_reserve(struct trace_buffer * buffer,unsigned long length)4545 ring_buffer_lock_reserve(struct trace_buffer *buffer, unsigned long length)
4546 {
4547 struct ring_buffer_per_cpu *cpu_buffer;
4548 struct ring_buffer_event *event;
4549 int cpu;
4550
4551 /* If we are tracing schedule, we don't want to recurse */
4552 preempt_disable_notrace();
4553
4554 if (unlikely(atomic_read(&buffer->record_disabled)))
4555 goto out;
4556
4557 cpu = raw_smp_processor_id();
4558
4559 if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
4560 goto out;
4561
4562 cpu_buffer = buffer->buffers[cpu];
4563
4564 if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
4565 goto out;
4566
4567 if (unlikely(length > buffer->max_data_size))
4568 goto out;
4569
4570 if (unlikely(trace_recursive_lock(cpu_buffer)))
4571 goto out;
4572
4573 event = rb_reserve_next_event(buffer, cpu_buffer, length);
4574 if (!event)
4575 goto out_unlock;
4576
4577 return event;
4578
4579 out_unlock:
4580 trace_recursive_unlock(cpu_buffer);
4581 out:
4582 preempt_enable_notrace();
4583 return NULL;
4584 }
4585 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
4586
4587 /*
4588 * Decrement the entries to the page that an event is on.
4589 * The event does not even need to exist, only the pointer
4590 * to the page it is on. This may only be called before the commit
4591 * takes place.
4592 */
4593 static inline void
rb_decrement_entry(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event)4594 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
4595 struct ring_buffer_event *event)
4596 {
4597 unsigned long addr = (unsigned long)event;
4598 struct buffer_page *bpage = cpu_buffer->commit_page;
4599 struct buffer_page *start;
4600
4601 addr &= ~((PAGE_SIZE << cpu_buffer->buffer->subbuf_order) - 1);
4602
4603 /* Do the likely case first */
4604 if (likely(bpage->page == (void *)addr)) {
4605 local_dec(&bpage->entries);
4606 return;
4607 }
4608
4609 /*
4610 * Because the commit page may be on the reader page we
4611 * start with the next page and check the end loop there.
4612 */
4613 rb_inc_page(&bpage);
4614 start = bpage;
4615 do {
4616 if (bpage->page == (void *)addr) {
4617 local_dec(&bpage->entries);
4618 return;
4619 }
4620 rb_inc_page(&bpage);
4621 } while (bpage != start);
4622
4623 /* commit not part of this buffer?? */
4624 RB_WARN_ON(cpu_buffer, 1);
4625 }
4626
4627 /**
4628 * ring_buffer_discard_commit - discard an event that has not been committed
4629 * @buffer: the ring buffer
4630 * @event: non committed event to discard
4631 *
4632 * Sometimes an event that is in the ring buffer needs to be ignored.
4633 * This function lets the user discard an event in the ring buffer
4634 * and then that event will not be read later.
4635 *
4636 * This function only works if it is called before the item has been
4637 * committed. It will try to free the event from the ring buffer
4638 * if another event has not been added behind it.
4639 *
4640 * If another event has been added behind it, it will set the event
4641 * up as discarded, and perform the commit.
4642 *
4643 * If this function is called, do not call ring_buffer_unlock_commit on
4644 * the event.
4645 */
ring_buffer_discard_commit(struct trace_buffer * buffer,struct ring_buffer_event * event)4646 void ring_buffer_discard_commit(struct trace_buffer *buffer,
4647 struct ring_buffer_event *event)
4648 {
4649 struct ring_buffer_per_cpu *cpu_buffer;
4650 int cpu;
4651
4652 /* The event is discarded regardless */
4653 rb_event_discard(event);
4654
4655 cpu = smp_processor_id();
4656 cpu_buffer = buffer->buffers[cpu];
4657
4658 /*
4659 * This must only be called if the event has not been
4660 * committed yet. Thus we can assume that preemption
4661 * is still disabled.
4662 */
4663 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
4664
4665 rb_decrement_entry(cpu_buffer, event);
4666 if (rb_try_to_discard(cpu_buffer, event))
4667 goto out;
4668
4669 out:
4670 rb_end_commit(cpu_buffer);
4671
4672 trace_recursive_unlock(cpu_buffer);
4673
4674 preempt_enable_notrace();
4675
4676 }
4677 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
4678
4679 /**
4680 * ring_buffer_write - write data to the buffer without reserving
4681 * @buffer: The ring buffer to write to.
4682 * @length: The length of the data being written (excluding the event header)
4683 * @data: The data to write to the buffer.
4684 *
4685 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
4686 * one function. If you already have the data to write to the buffer, it
4687 * may be easier to simply call this function.
4688 *
4689 * Note, like ring_buffer_lock_reserve, the length is the length of the data
4690 * and not the length of the event which would hold the header.
4691 */
ring_buffer_write(struct trace_buffer * buffer,unsigned long length,void * data)4692 int ring_buffer_write(struct trace_buffer *buffer,
4693 unsigned long length,
4694 void *data)
4695 {
4696 struct ring_buffer_per_cpu *cpu_buffer;
4697 struct ring_buffer_event *event;
4698 void *body;
4699 int ret = -EBUSY;
4700 int cpu;
4701
4702 preempt_disable_notrace();
4703
4704 if (atomic_read(&buffer->record_disabled))
4705 goto out;
4706
4707 cpu = raw_smp_processor_id();
4708
4709 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4710 goto out;
4711
4712 cpu_buffer = buffer->buffers[cpu];
4713
4714 if (atomic_read(&cpu_buffer->record_disabled))
4715 goto out;
4716
4717 if (length > buffer->max_data_size)
4718 goto out;
4719
4720 if (unlikely(trace_recursive_lock(cpu_buffer)))
4721 goto out;
4722
4723 event = rb_reserve_next_event(buffer, cpu_buffer, length);
4724 if (!event)
4725 goto out_unlock;
4726
4727 body = rb_event_data(event);
4728
4729 memcpy(body, data, length);
4730
4731 rb_commit(cpu_buffer);
4732
4733 rb_wakeups(buffer, cpu_buffer);
4734
4735 ret = 0;
4736
4737 out_unlock:
4738 trace_recursive_unlock(cpu_buffer);
4739
4740 out:
4741 preempt_enable_notrace();
4742
4743 return ret;
4744 }
4745 EXPORT_SYMBOL_GPL(ring_buffer_write);
4746
4747 /*
4748 * The total entries in the ring buffer is the running counter
4749 * of entries entered into the ring buffer, minus the sum of
4750 * the entries read from the ring buffer and the number of
4751 * entries that were overwritten.
4752 */
4753 static inline unsigned long
rb_num_of_entries(struct ring_buffer_per_cpu * cpu_buffer)4754 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
4755 {
4756 return local_read(&cpu_buffer->entries) -
4757 (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
4758 }
4759
rb_per_cpu_empty(struct ring_buffer_per_cpu * cpu_buffer)4760 static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
4761 {
4762 return !rb_num_of_entries(cpu_buffer);
4763 }
4764
4765 /**
4766 * ring_buffer_record_disable - stop all writes into the buffer
4767 * @buffer: The ring buffer to stop writes to.
4768 *
4769 * This prevents all writes to the buffer. Any attempt to write
4770 * to the buffer after this will fail and return NULL.
4771 *
4772 * The caller should call synchronize_rcu() after this.
4773 */
ring_buffer_record_disable(struct trace_buffer * buffer)4774 void ring_buffer_record_disable(struct trace_buffer *buffer)
4775 {
4776 atomic_inc(&buffer->record_disabled);
4777 }
4778 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
4779
4780 /**
4781 * ring_buffer_record_enable - enable writes to the buffer
4782 * @buffer: The ring buffer to enable writes
4783 *
4784 * Note, multiple disables will need the same number of enables
4785 * to truly enable the writing (much like preempt_disable).
4786 */
ring_buffer_record_enable(struct trace_buffer * buffer)4787 void ring_buffer_record_enable(struct trace_buffer *buffer)
4788 {
4789 atomic_dec(&buffer->record_disabled);
4790 }
4791 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
4792
4793 /**
4794 * ring_buffer_record_off - stop all writes into the buffer
4795 * @buffer: The ring buffer to stop writes to.
4796 *
4797 * This prevents all writes to the buffer. Any attempt to write
4798 * to the buffer after this will fail and return NULL.
4799 *
4800 * This is different than ring_buffer_record_disable() as
4801 * it works like an on/off switch, where as the disable() version
4802 * must be paired with a enable().
4803 */
ring_buffer_record_off(struct trace_buffer * buffer)4804 void ring_buffer_record_off(struct trace_buffer *buffer)
4805 {
4806 unsigned int rd;
4807 unsigned int new_rd;
4808
4809 rd = atomic_read(&buffer->record_disabled);
4810 do {
4811 new_rd = rd | RB_BUFFER_OFF;
4812 } while (!atomic_try_cmpxchg(&buffer->record_disabled, &rd, new_rd));
4813 }
4814 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
4815
4816 /**
4817 * ring_buffer_record_on - restart writes into the buffer
4818 * @buffer: The ring buffer to start writes to.
4819 *
4820 * This enables all writes to the buffer that was disabled by
4821 * ring_buffer_record_off().
4822 *
4823 * This is different than ring_buffer_record_enable() as
4824 * it works like an on/off switch, where as the enable() version
4825 * must be paired with a disable().
4826 */
ring_buffer_record_on(struct trace_buffer * buffer)4827 void ring_buffer_record_on(struct trace_buffer *buffer)
4828 {
4829 unsigned int rd;
4830 unsigned int new_rd;
4831
4832 rd = atomic_read(&buffer->record_disabled);
4833 do {
4834 new_rd = rd & ~RB_BUFFER_OFF;
4835 } while (!atomic_try_cmpxchg(&buffer->record_disabled, &rd, new_rd));
4836 }
4837 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
4838
4839 /**
4840 * ring_buffer_record_is_on - return true if the ring buffer can write
4841 * @buffer: The ring buffer to see if write is enabled
4842 *
4843 * Returns true if the ring buffer is in a state that it accepts writes.
4844 */
ring_buffer_record_is_on(struct trace_buffer * buffer)4845 bool ring_buffer_record_is_on(struct trace_buffer *buffer)
4846 {
4847 return !atomic_read(&buffer->record_disabled);
4848 }
4849
4850 /**
4851 * ring_buffer_record_is_set_on - return true if the ring buffer is set writable
4852 * @buffer: The ring buffer to see if write is set enabled
4853 *
4854 * Returns true if the ring buffer is set writable by ring_buffer_record_on().
4855 * Note that this does NOT mean it is in a writable state.
4856 *
4857 * It may return true when the ring buffer has been disabled by
4858 * ring_buffer_record_disable(), as that is a temporary disabling of
4859 * the ring buffer.
4860 */
ring_buffer_record_is_set_on(struct trace_buffer * buffer)4861 bool ring_buffer_record_is_set_on(struct trace_buffer *buffer)
4862 {
4863 return !(atomic_read(&buffer->record_disabled) & RB_BUFFER_OFF);
4864 }
4865
4866 /**
4867 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
4868 * @buffer: The ring buffer to stop writes to.
4869 * @cpu: The CPU buffer to stop
4870 *
4871 * This prevents all writes to the buffer. Any attempt to write
4872 * to the buffer after this will fail and return NULL.
4873 *
4874 * The caller should call synchronize_rcu() after this.
4875 */
ring_buffer_record_disable_cpu(struct trace_buffer * buffer,int cpu)4876 void ring_buffer_record_disable_cpu(struct trace_buffer *buffer, int cpu)
4877 {
4878 struct ring_buffer_per_cpu *cpu_buffer;
4879
4880 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4881 return;
4882
4883 cpu_buffer = buffer->buffers[cpu];
4884 atomic_inc(&cpu_buffer->record_disabled);
4885 }
4886 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
4887
4888 /**
4889 * ring_buffer_record_enable_cpu - enable writes to the buffer
4890 * @buffer: The ring buffer to enable writes
4891 * @cpu: The CPU to enable.
4892 *
4893 * Note, multiple disables will need the same number of enables
4894 * to truly enable the writing (much like preempt_disable).
4895 */
ring_buffer_record_enable_cpu(struct trace_buffer * buffer,int cpu)4896 void ring_buffer_record_enable_cpu(struct trace_buffer *buffer, int cpu)
4897 {
4898 struct ring_buffer_per_cpu *cpu_buffer;
4899
4900 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4901 return;
4902
4903 cpu_buffer = buffer->buffers[cpu];
4904 atomic_dec(&cpu_buffer->record_disabled);
4905 }
4906 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
4907
4908 /**
4909 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
4910 * @buffer: The ring buffer
4911 * @cpu: The per CPU buffer to read from.
4912 */
ring_buffer_oldest_event_ts(struct trace_buffer * buffer,int cpu)4913 u64 ring_buffer_oldest_event_ts(struct trace_buffer *buffer, int cpu)
4914 {
4915 unsigned long flags;
4916 struct ring_buffer_per_cpu *cpu_buffer;
4917 struct buffer_page *bpage;
4918 u64 ret = 0;
4919
4920 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4921 return 0;
4922
4923 cpu_buffer = buffer->buffers[cpu];
4924 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4925 /*
4926 * if the tail is on reader_page, oldest time stamp is on the reader
4927 * page
4928 */
4929 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
4930 bpage = cpu_buffer->reader_page;
4931 else
4932 bpage = rb_set_head_page(cpu_buffer);
4933 if (bpage)
4934 ret = bpage->page->time_stamp;
4935 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4936
4937 return ret;
4938 }
4939 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
4940
4941 /**
4942 * ring_buffer_bytes_cpu - get the number of bytes unconsumed in a cpu buffer
4943 * @buffer: The ring buffer
4944 * @cpu: The per CPU buffer to read from.
4945 */
ring_buffer_bytes_cpu(struct trace_buffer * buffer,int cpu)4946 unsigned long ring_buffer_bytes_cpu(struct trace_buffer *buffer, int cpu)
4947 {
4948 struct ring_buffer_per_cpu *cpu_buffer;
4949 unsigned long ret;
4950
4951 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4952 return 0;
4953
4954 cpu_buffer = buffer->buffers[cpu];
4955 ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
4956
4957 return ret;
4958 }
4959 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
4960
4961 /**
4962 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
4963 * @buffer: The ring buffer
4964 * @cpu: The per CPU buffer to get the entries from.
4965 */
ring_buffer_entries_cpu(struct trace_buffer * buffer,int cpu)4966 unsigned long ring_buffer_entries_cpu(struct trace_buffer *buffer, int cpu)
4967 {
4968 struct ring_buffer_per_cpu *cpu_buffer;
4969
4970 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4971 return 0;
4972
4973 cpu_buffer = buffer->buffers[cpu];
4974
4975 return rb_num_of_entries(cpu_buffer);
4976 }
4977 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
4978
4979 /**
4980 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
4981 * buffer wrapping around (only if RB_FL_OVERWRITE is on).
4982 * @buffer: The ring buffer
4983 * @cpu: The per CPU buffer to get the number of overruns from
4984 */
ring_buffer_overrun_cpu(struct trace_buffer * buffer,int cpu)4985 unsigned long ring_buffer_overrun_cpu(struct trace_buffer *buffer, int cpu)
4986 {
4987 struct ring_buffer_per_cpu *cpu_buffer;
4988 unsigned long ret;
4989
4990 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4991 return 0;
4992
4993 cpu_buffer = buffer->buffers[cpu];
4994 ret = local_read(&cpu_buffer->overrun);
4995
4996 return ret;
4997 }
4998 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
4999
5000 /**
5001 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
5002 * commits failing due to the buffer wrapping around while there are uncommitted
5003 * events, such as during an interrupt storm.
5004 * @buffer: The ring buffer
5005 * @cpu: The per CPU buffer to get the number of overruns from
5006 */
5007 unsigned long
ring_buffer_commit_overrun_cpu(struct trace_buffer * buffer,int cpu)5008 ring_buffer_commit_overrun_cpu(struct trace_buffer *buffer, int cpu)
5009 {
5010 struct ring_buffer_per_cpu *cpu_buffer;
5011 unsigned long ret;
5012
5013 if (!cpumask_test_cpu(cpu, buffer->cpumask))
5014 return 0;
5015
5016 cpu_buffer = buffer->buffers[cpu];
5017 ret = local_read(&cpu_buffer->commit_overrun);
5018
5019 return ret;
5020 }
5021 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
5022
5023 /**
5024 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
5025 * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
5026 * @buffer: The ring buffer
5027 * @cpu: The per CPU buffer to get the number of overruns from
5028 */
5029 unsigned long
ring_buffer_dropped_events_cpu(struct trace_buffer * buffer,int cpu)5030 ring_buffer_dropped_events_cpu(struct trace_buffer *buffer, int cpu)
5031 {
5032 struct ring_buffer_per_cpu *cpu_buffer;
5033 unsigned long ret;
5034
5035 if (!cpumask_test_cpu(cpu, buffer->cpumask))
5036 return 0;
5037
5038 cpu_buffer = buffer->buffers[cpu];
5039 ret = local_read(&cpu_buffer->dropped_events);
5040
5041 return ret;
5042 }
5043 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
5044
5045 /**
5046 * ring_buffer_read_events_cpu - get the number of events successfully read
5047 * @buffer: The ring buffer
5048 * @cpu: The per CPU buffer to get the number of events read
5049 */
5050 unsigned long
ring_buffer_read_events_cpu(struct trace_buffer * buffer,int cpu)5051 ring_buffer_read_events_cpu(struct trace_buffer *buffer, int cpu)
5052 {
5053 struct ring_buffer_per_cpu *cpu_buffer;
5054
5055 if (!cpumask_test_cpu(cpu, buffer->cpumask))
5056 return 0;
5057
5058 cpu_buffer = buffer->buffers[cpu];
5059 return cpu_buffer->read;
5060 }
5061 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
5062
5063 /**
5064 * ring_buffer_entries - get the number of entries in a buffer
5065 * @buffer: The ring buffer
5066 *
5067 * Returns the total number of entries in the ring buffer
5068 * (all CPU entries)
5069 */
ring_buffer_entries(struct trace_buffer * buffer)5070 unsigned long ring_buffer_entries(struct trace_buffer *buffer)
5071 {
5072 struct ring_buffer_per_cpu *cpu_buffer;
5073 unsigned long entries = 0;
5074 int cpu;
5075
5076 /* if you care about this being correct, lock the buffer */
5077 for_each_buffer_cpu(buffer, cpu) {
5078 cpu_buffer = buffer->buffers[cpu];
5079 entries += rb_num_of_entries(cpu_buffer);
5080 }
5081
5082 return entries;
5083 }
5084 EXPORT_SYMBOL_GPL(ring_buffer_entries);
5085
5086 /**
5087 * ring_buffer_overruns - get the number of overruns in buffer
5088 * @buffer: The ring buffer
5089 *
5090 * Returns the total number of overruns in the ring buffer
5091 * (all CPU entries)
5092 */
ring_buffer_overruns(struct trace_buffer * buffer)5093 unsigned long ring_buffer_overruns(struct trace_buffer *buffer)
5094 {
5095 struct ring_buffer_per_cpu *cpu_buffer;
5096 unsigned long overruns = 0;
5097 int cpu;
5098
5099 /* if you care about this being correct, lock the buffer */
5100 for_each_buffer_cpu(buffer, cpu) {
5101 cpu_buffer = buffer->buffers[cpu];
5102 overruns += local_read(&cpu_buffer->overrun);
5103 }
5104
5105 return overruns;
5106 }
5107 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
5108
rb_iter_reset(struct ring_buffer_iter * iter)5109 static void rb_iter_reset(struct ring_buffer_iter *iter)
5110 {
5111 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5112
5113 /* Iterator usage is expected to have record disabled */
5114 iter->head_page = cpu_buffer->reader_page;
5115 iter->head = cpu_buffer->reader_page->read;
5116 iter->next_event = iter->head;
5117
5118 iter->cache_reader_page = iter->head_page;
5119 iter->cache_read = cpu_buffer->read;
5120 iter->cache_pages_removed = cpu_buffer->pages_removed;
5121
5122 if (iter->head) {
5123 iter->read_stamp = cpu_buffer->read_stamp;
5124 iter->page_stamp = cpu_buffer->reader_page->page->time_stamp;
5125 } else {
5126 iter->read_stamp = iter->head_page->page->time_stamp;
5127 iter->page_stamp = iter->read_stamp;
5128 }
5129 }
5130
5131 /**
5132 * ring_buffer_iter_reset - reset an iterator
5133 * @iter: The iterator to reset
5134 *
5135 * Resets the iterator, so that it will start from the beginning
5136 * again.
5137 */
ring_buffer_iter_reset(struct ring_buffer_iter * iter)5138 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
5139 {
5140 struct ring_buffer_per_cpu *cpu_buffer;
5141 unsigned long flags;
5142
5143 if (!iter)
5144 return;
5145
5146 cpu_buffer = iter->cpu_buffer;
5147
5148 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5149 rb_iter_reset(iter);
5150 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5151 }
5152 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
5153
5154 /**
5155 * ring_buffer_iter_empty - check if an iterator has no more to read
5156 * @iter: The iterator to check
5157 */
ring_buffer_iter_empty(struct ring_buffer_iter * iter)5158 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
5159 {
5160 struct ring_buffer_per_cpu *cpu_buffer;
5161 struct buffer_page *reader;
5162 struct buffer_page *head_page;
5163 struct buffer_page *commit_page;
5164 struct buffer_page *curr_commit_page;
5165 unsigned commit;
5166 u64 curr_commit_ts;
5167 u64 commit_ts;
5168
5169 cpu_buffer = iter->cpu_buffer;
5170 reader = cpu_buffer->reader_page;
5171 head_page = cpu_buffer->head_page;
5172 commit_page = READ_ONCE(cpu_buffer->commit_page);
5173 commit_ts = commit_page->page->time_stamp;
5174
5175 /*
5176 * When the writer goes across pages, it issues a cmpxchg which
5177 * is a mb(), which will synchronize with the rmb here.
5178 * (see rb_tail_page_update())
5179 */
5180 smp_rmb();
5181 commit = rb_page_commit(commit_page);
5182 /* We want to make sure that the commit page doesn't change */
5183 smp_rmb();
5184
5185 /* Make sure commit page didn't change */
5186 curr_commit_page = READ_ONCE(cpu_buffer->commit_page);
5187 curr_commit_ts = READ_ONCE(curr_commit_page->page->time_stamp);
5188
5189 /* If the commit page changed, then there's more data */
5190 if (curr_commit_page != commit_page ||
5191 curr_commit_ts != commit_ts)
5192 return 0;
5193
5194 /* Still racy, as it may return a false positive, but that's OK */
5195 return ((iter->head_page == commit_page && iter->head >= commit) ||
5196 (iter->head_page == reader && commit_page == head_page &&
5197 head_page->read == commit &&
5198 iter->head == rb_page_size(cpu_buffer->reader_page)));
5199 }
5200 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
5201
5202 static void
rb_update_read_stamp(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event)5203 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
5204 struct ring_buffer_event *event)
5205 {
5206 u64 delta;
5207
5208 switch (event->type_len) {
5209 case RINGBUF_TYPE_PADDING:
5210 return;
5211
5212 case RINGBUF_TYPE_TIME_EXTEND:
5213 delta = rb_event_time_stamp(event);
5214 cpu_buffer->read_stamp += delta;
5215 return;
5216
5217 case RINGBUF_TYPE_TIME_STAMP:
5218 delta = rb_event_time_stamp(event);
5219 delta = rb_fix_abs_ts(delta, cpu_buffer->read_stamp);
5220 cpu_buffer->read_stamp = delta;
5221 return;
5222
5223 case RINGBUF_TYPE_DATA:
5224 cpu_buffer->read_stamp += event->time_delta;
5225 return;
5226
5227 default:
5228 RB_WARN_ON(cpu_buffer, 1);
5229 }
5230 }
5231
5232 static void
rb_update_iter_read_stamp(struct ring_buffer_iter * iter,struct ring_buffer_event * event)5233 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
5234 struct ring_buffer_event *event)
5235 {
5236 u64 delta;
5237
5238 switch (event->type_len) {
5239 case RINGBUF_TYPE_PADDING:
5240 return;
5241
5242 case RINGBUF_TYPE_TIME_EXTEND:
5243 delta = rb_event_time_stamp(event);
5244 iter->read_stamp += delta;
5245 return;
5246
5247 case RINGBUF_TYPE_TIME_STAMP:
5248 delta = rb_event_time_stamp(event);
5249 delta = rb_fix_abs_ts(delta, iter->read_stamp);
5250 iter->read_stamp = delta;
5251 return;
5252
5253 case RINGBUF_TYPE_DATA:
5254 iter->read_stamp += event->time_delta;
5255 return;
5256
5257 default:
5258 RB_WARN_ON(iter->cpu_buffer, 1);
5259 }
5260 }
5261
rb_read_writer_meta_page(struct ring_buffer_per_cpu * cpu_buffer)5262 static bool rb_read_writer_meta_page(struct ring_buffer_per_cpu *cpu_buffer)
5263 {
5264 local_set(&cpu_buffer->entries, READ_ONCE(cpu_buffer->meta_page->entries));
5265 local_set(&cpu_buffer->overrun, READ_ONCE(cpu_buffer->meta_page->overrun));
5266 local_set(&cpu_buffer->pages_touched, READ_ONCE(meta_pages_touched(cpu_buffer->meta_page)));
5267 local_set(&cpu_buffer->pages_lost, READ_ONCE(meta_pages_lost(cpu_buffer->meta_page)));
5268 /*
5269 * No need to get the "read" field, it can be tracked here as any
5270 * reader will have to go through a rign_buffer_per_cpu.
5271 */
5272
5273 return rb_num_of_entries(cpu_buffer);
5274 }
5275
5276 static struct buffer_page *
__rb_get_reader_page_from_writer(struct ring_buffer_per_cpu * cpu_buffer)5277 __rb_get_reader_page_from_writer(struct ring_buffer_per_cpu *cpu_buffer)
5278 {
5279 u32 prev_reader;
5280
5281 if (!rb_read_writer_meta_page(cpu_buffer))
5282 return NULL;
5283
5284 /* More to read on the reader page */
5285 if (cpu_buffer->reader_page->read < rb_page_size(cpu_buffer->reader_page)) {
5286 if (cpu_buffer->reader_page->read == 0)
5287 cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
5288 return cpu_buffer->reader_page;
5289 }
5290
5291 prev_reader = cpu_buffer->meta_page->reader.id;
5292 if (cpu_buffer->meta_page->reader.id == cpu_buffer->reader_page->id)
5293 WARN_ON(cpu_buffer->writer->get_reader_page(cpu_buffer->cpu));
5294
5295 /* nr_pages doesn't include the reader page */
5296 if (cpu_buffer->meta_page->reader.id > cpu_buffer->nr_pages) {
5297 WARN_ON(1);
5298 return NULL;
5299 }
5300
5301 cpu_buffer->reader_page->page =
5302 (void *)cpu_buffer->subbuf_ids[cpu_buffer->meta_page->reader.id];
5303 cpu_buffer->reader_page->id = cpu_buffer->meta_page->reader.id;
5304 cpu_buffer->reader_page->read = 0;
5305 cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
5306 cpu_buffer->lost_events = cpu_buffer->meta_page->reader.lost_events;
5307
5308 WARN_ON(!IS_ENABLED(CONFIG_PKVM_DUMP_TRACE_ON_PANIC) &&
5309 prev_reader == cpu_buffer->meta_page->reader.id);
5310
5311 if (!rb_page_size(cpu_buffer->reader_page))
5312 return NULL;
5313
5314 return cpu_buffer->reader_page;
5315 }
5316
5317 static struct buffer_page *
__rb_get_reader_page(struct ring_buffer_per_cpu * cpu_buffer)5318 __rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
5319 {
5320 struct buffer_page *reader = NULL;
5321 unsigned long bsize = READ_ONCE(cpu_buffer->buffer->subbuf_size);
5322 unsigned long overwrite;
5323 unsigned long flags;
5324 int nr_loops = 0;
5325 bool ret;
5326
5327 local_irq_save(flags);
5328 arch_spin_lock(&cpu_buffer->lock);
5329
5330 again:
5331 /*
5332 * This should normally only loop twice. But because the
5333 * start of the reader inserts an empty page, it causes
5334 * a case where we will loop three times. There should be no
5335 * reason to loop four times (that I know of).
5336 */
5337 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
5338 reader = NULL;
5339 goto out;
5340 }
5341
5342 reader = cpu_buffer->reader_page;
5343
5344 /* If there's more to read, return this page */
5345 if (cpu_buffer->reader_page->read < rb_page_size(reader))
5346 goto out;
5347
5348 /* Never should we have an index greater than the size */
5349 if (RB_WARN_ON(cpu_buffer,
5350 cpu_buffer->reader_page->read > rb_page_size(reader)))
5351 goto out;
5352
5353 /* check if we caught up to the tail */
5354 reader = NULL;
5355 if (cpu_buffer->commit_page == cpu_buffer->reader_page)
5356 goto out;
5357
5358 /* Don't bother swapping if the ring buffer is empty */
5359 if (rb_num_of_entries(cpu_buffer) == 0)
5360 goto out;
5361
5362 /*
5363 * Reset the reader page to size zero.
5364 */
5365 local_set(&cpu_buffer->reader_page->write, 0);
5366 local_set(&cpu_buffer->reader_page->entries, 0);
5367 local_set(&cpu_buffer->reader_page->page->commit, 0);
5368 cpu_buffer->reader_page->real_end = 0;
5369
5370 spin:
5371 /*
5372 * Splice the empty reader page into the list around the head.
5373 */
5374 reader = rb_set_head_page(cpu_buffer);
5375 if (!reader)
5376 goto out;
5377 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
5378 cpu_buffer->reader_page->list.prev = reader->list.prev;
5379
5380 /*
5381 * cpu_buffer->pages just needs to point to the buffer, it
5382 * has no specific buffer page to point to. Lets move it out
5383 * of our way so we don't accidentally swap it.
5384 */
5385 cpu_buffer->pages = reader->list.prev;
5386
5387 /* The reader page will be pointing to the new head */
5388 rb_set_list_to_head(&cpu_buffer->reader_page->list);
5389
5390 /*
5391 * We want to make sure we read the overruns after we set up our
5392 * pointers to the next object. The writer side does a
5393 * cmpxchg to cross pages which acts as the mb on the writer
5394 * side. Note, the reader will constantly fail the swap
5395 * while the writer is updating the pointers, so this
5396 * guarantees that the overwrite recorded here is the one we
5397 * want to compare with the last_overrun.
5398 */
5399 smp_mb();
5400 overwrite = local_read(&(cpu_buffer->overrun));
5401
5402 /*
5403 * Here's the tricky part.
5404 *
5405 * We need to move the pointer past the header page.
5406 * But we can only do that if a writer is not currently
5407 * moving it. The page before the header page has the
5408 * flag bit '1' set if it is pointing to the page we want.
5409 * but if the writer is in the process of moving it
5410 * than it will be '2' or already moved '0'.
5411 */
5412
5413 ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
5414
5415 /*
5416 * If we did not convert it, then we must try again.
5417 */
5418 if (!ret)
5419 goto spin;
5420
5421 if (cpu_buffer->ring_meta)
5422 rb_update_meta_reader(cpu_buffer, reader);
5423
5424 /*
5425 * Yay! We succeeded in replacing the page.
5426 *
5427 * Now make the new head point back to the reader page.
5428 */
5429 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
5430 rb_inc_page(&cpu_buffer->head_page);
5431
5432 cpu_buffer->cnt++;
5433 local_inc(&cpu_buffer->pages_read);
5434
5435 /* Finally update the reader page to the new head */
5436 cpu_buffer->reader_page = reader;
5437 cpu_buffer->reader_page->read = 0;
5438
5439 if (overwrite != cpu_buffer->last_overrun) {
5440 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
5441 cpu_buffer->last_overrun = overwrite;
5442 }
5443
5444 goto again;
5445
5446 out:
5447 /* Update the read_stamp on the first event */
5448 if (reader && reader->read == 0)
5449 cpu_buffer->read_stamp = reader->page->time_stamp;
5450
5451 arch_spin_unlock(&cpu_buffer->lock);
5452 local_irq_restore(flags);
5453
5454 /*
5455 * The writer has preempt disable, wait for it. But not forever
5456 * Although, 1 second is pretty much "forever"
5457 */
5458 #define USECS_WAIT 1000000
5459 for (nr_loops = 0; nr_loops < USECS_WAIT; nr_loops++) {
5460 /* If the write is past the end of page, a writer is still updating it */
5461 if (likely(!reader || rb_page_write(reader) <= bsize))
5462 break;
5463
5464 udelay(1);
5465
5466 /* Get the latest version of the reader write value */
5467 smp_rmb();
5468 }
5469
5470 /* The writer is not moving forward? Something is wrong */
5471 if (RB_WARN_ON(cpu_buffer, nr_loops == USECS_WAIT))
5472 reader = NULL;
5473
5474 /*
5475 * Make sure we see any padding after the write update
5476 * (see rb_reset_tail()).
5477 *
5478 * In addition, a writer may be writing on the reader page
5479 * if the page has not been fully filled, so the read barrier
5480 * is also needed to make sure we see the content of what is
5481 * committed by the writer (see rb_set_commit_to_write()).
5482 */
5483 smp_rmb();
5484
5485
5486 return reader;
5487 }
5488
5489 static struct buffer_page *
rb_get_reader_page(struct ring_buffer_per_cpu * cpu_buffer)5490 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
5491 {
5492 return cpu_buffer->writer ? __rb_get_reader_page_from_writer(cpu_buffer) :
5493 __rb_get_reader_page(cpu_buffer);
5494 }
5495
rb_advance_reader(struct ring_buffer_per_cpu * cpu_buffer)5496 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
5497 {
5498 struct ring_buffer_event *event;
5499 struct buffer_page *reader;
5500 unsigned length;
5501
5502 reader = rb_get_reader_page(cpu_buffer);
5503
5504 /* This function should not be called when buffer is empty */
5505 if (RB_WARN_ON(cpu_buffer, !reader))
5506 return;
5507
5508 event = rb_reader_event(cpu_buffer);
5509
5510 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
5511 cpu_buffer->read++;
5512
5513 rb_update_read_stamp(cpu_buffer, event);
5514
5515 length = rb_event_length(event);
5516 cpu_buffer->reader_page->read += length;
5517 cpu_buffer->read_bytes += length;
5518 }
5519
rb_advance_iter(struct ring_buffer_iter * iter)5520 static void rb_advance_iter(struct ring_buffer_iter *iter)
5521 {
5522 struct ring_buffer_per_cpu *cpu_buffer;
5523
5524 cpu_buffer = iter->cpu_buffer;
5525
5526 /* If head == next_event then we need to jump to the next event */
5527 if (iter->head == iter->next_event) {
5528 /* If the event gets overwritten again, there's nothing to do */
5529 if (rb_iter_head_event(iter) == NULL)
5530 return;
5531 }
5532
5533 iter->head = iter->next_event;
5534
5535 /*
5536 * Check if we are at the end of the buffer.
5537 */
5538 if (iter->next_event >= rb_page_size(iter->head_page)) {
5539 /* discarded commits can make the page empty */
5540 if (iter->head_page == cpu_buffer->commit_page)
5541 return;
5542 rb_inc_iter(iter);
5543 return;
5544 }
5545
5546 rb_update_iter_read_stamp(iter, iter->event);
5547 }
5548
rb_lost_events(struct ring_buffer_per_cpu * cpu_buffer)5549 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
5550 {
5551 return cpu_buffer->lost_events;
5552 }
5553
5554 static struct ring_buffer_event *
rb_buffer_peek(struct ring_buffer_per_cpu * cpu_buffer,u64 * ts,unsigned long * lost_events)5555 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
5556 unsigned long *lost_events)
5557 {
5558 struct ring_buffer_event *event;
5559 struct buffer_page *reader;
5560 int nr_loops = 0;
5561
5562 if (ts)
5563 *ts = 0;
5564 again:
5565 /*
5566 * We repeat when a time extend is encountered.
5567 * Since the time extend is always attached to a data event,
5568 * we should never loop more than once.
5569 * (We never hit the following condition more than twice).
5570 */
5571 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
5572 return NULL;
5573
5574 reader = rb_get_reader_page(cpu_buffer);
5575 if (!reader)
5576 return NULL;
5577
5578 event = rb_reader_event(cpu_buffer);
5579
5580 switch (event->type_len) {
5581 case RINGBUF_TYPE_PADDING:
5582 if (rb_null_event(event))
5583 RB_WARN_ON(cpu_buffer, 1);
5584 /*
5585 * Because the writer could be discarding every
5586 * event it creates (which would probably be bad)
5587 * if we were to go back to "again" then we may never
5588 * catch up, and will trigger the warn on, or lock
5589 * the box. Return the padding, and we will release
5590 * the current locks, and try again.
5591 */
5592 return event;
5593
5594 case RINGBUF_TYPE_TIME_EXTEND:
5595 /* Internal data, OK to advance */
5596 rb_advance_reader(cpu_buffer);
5597 goto again;
5598
5599 case RINGBUF_TYPE_TIME_STAMP:
5600 if (ts) {
5601 *ts = rb_event_time_stamp(event);
5602 *ts = rb_fix_abs_ts(*ts, reader->page->time_stamp);
5603 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
5604 cpu_buffer->cpu, ts);
5605 }
5606 /* Internal data, OK to advance */
5607 rb_advance_reader(cpu_buffer);
5608 goto again;
5609
5610 case RINGBUF_TYPE_DATA:
5611 if (ts && !(*ts)) {
5612 *ts = cpu_buffer->read_stamp + event->time_delta;
5613 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
5614 cpu_buffer->cpu, ts);
5615 }
5616 if (lost_events)
5617 *lost_events = rb_lost_events(cpu_buffer);
5618 return event;
5619
5620 default:
5621 RB_WARN_ON(cpu_buffer, 1);
5622 }
5623
5624 return NULL;
5625 }
5626 EXPORT_SYMBOL_GPL(ring_buffer_peek);
5627
5628 static struct ring_buffer_event *
rb_iter_peek(struct ring_buffer_iter * iter,u64 * ts)5629 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
5630 {
5631 struct trace_buffer *buffer;
5632 struct ring_buffer_per_cpu *cpu_buffer;
5633 struct ring_buffer_event *event;
5634 int nr_loops = 0;
5635
5636 if (ts)
5637 *ts = 0;
5638
5639 cpu_buffer = iter->cpu_buffer;
5640 buffer = cpu_buffer->buffer;
5641
5642 /*
5643 * Check if someone performed a consuming read to the buffer
5644 * or removed some pages from the buffer. In these cases,
5645 * iterator was invalidated and we need to reset it.
5646 */
5647 if (unlikely(iter->cache_read != cpu_buffer->read ||
5648 iter->cache_reader_page != cpu_buffer->reader_page ||
5649 iter->cache_pages_removed != cpu_buffer->pages_removed))
5650 rb_iter_reset(iter);
5651
5652 again:
5653 if (ring_buffer_iter_empty(iter))
5654 return NULL;
5655
5656 /*
5657 * As the writer can mess with what the iterator is trying
5658 * to read, just give up if we fail to get an event after
5659 * three tries. The iterator is not as reliable when reading
5660 * the ring buffer with an active write as the consumer is.
5661 * Do not warn if the three failures is reached.
5662 */
5663 if (++nr_loops > 3)
5664 return NULL;
5665
5666 if (rb_per_cpu_empty(cpu_buffer))
5667 return NULL;
5668
5669 if (iter->head >= rb_page_size(iter->head_page)) {
5670 rb_inc_iter(iter);
5671 goto again;
5672 }
5673
5674 event = rb_iter_head_event(iter);
5675 if (!event)
5676 goto again;
5677
5678 switch (event->type_len) {
5679 case RINGBUF_TYPE_PADDING:
5680 if (rb_null_event(event)) {
5681 rb_inc_iter(iter);
5682 goto again;
5683 }
5684 rb_advance_iter(iter);
5685 return event;
5686
5687 case RINGBUF_TYPE_TIME_EXTEND:
5688 /* Internal data, OK to advance */
5689 rb_advance_iter(iter);
5690 goto again;
5691
5692 case RINGBUF_TYPE_TIME_STAMP:
5693 if (ts) {
5694 *ts = rb_event_time_stamp(event);
5695 *ts = rb_fix_abs_ts(*ts, iter->head_page->page->time_stamp);
5696 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
5697 cpu_buffer->cpu, ts);
5698 }
5699 /* Internal data, OK to advance */
5700 rb_advance_iter(iter);
5701 goto again;
5702
5703 case RINGBUF_TYPE_DATA:
5704 if (ts && !(*ts)) {
5705 *ts = iter->read_stamp + event->time_delta;
5706 ring_buffer_normalize_time_stamp(buffer,
5707 cpu_buffer->cpu, ts);
5708 }
5709 return event;
5710
5711 default:
5712 RB_WARN_ON(cpu_buffer, 1);
5713 }
5714
5715 return NULL;
5716 }
5717 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
5718
rb_reader_lock(struct ring_buffer_per_cpu * cpu_buffer)5719 static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
5720 {
5721 if (likely(!in_nmi())) {
5722 raw_spin_lock(&cpu_buffer->reader_lock);
5723 return true;
5724 }
5725
5726 /*
5727 * If an NMI die dumps out the content of the ring buffer
5728 * trylock must be used to prevent a deadlock if the NMI
5729 * preempted a task that holds the ring buffer locks. If
5730 * we get the lock then all is fine, if not, then continue
5731 * to do the read, but this can corrupt the ring buffer,
5732 * so it must be permanently disabled from future writes.
5733 * Reading from NMI is a oneshot deal.
5734 */
5735 if (raw_spin_trylock(&cpu_buffer->reader_lock))
5736 return true;
5737
5738 /* Continue without locking, but disable the ring buffer */
5739 atomic_inc(&cpu_buffer->record_disabled);
5740 return false;
5741 }
5742
5743 static inline void
rb_reader_unlock(struct ring_buffer_per_cpu * cpu_buffer,bool locked)5744 rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
5745 {
5746 if (likely(locked))
5747 raw_spin_unlock(&cpu_buffer->reader_lock);
5748 }
5749
5750 /**
5751 * ring_buffer_peek - peek at the next event to be read
5752 * @buffer: The ring buffer to read
5753 * @cpu: The cpu to peak at
5754 * @ts: The timestamp counter of this event.
5755 * @lost_events: a variable to store if events were lost (may be NULL)
5756 *
5757 * This will return the event that will be read next, but does
5758 * not consume the data.
5759 */
5760 struct ring_buffer_event *
ring_buffer_peek(struct trace_buffer * buffer,int cpu,u64 * ts,unsigned long * lost_events)5761 ring_buffer_peek(struct trace_buffer *buffer, int cpu, u64 *ts,
5762 unsigned long *lost_events)
5763 {
5764 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
5765 struct ring_buffer_event *event;
5766 unsigned long flags;
5767 bool dolock;
5768
5769 if (!cpumask_test_cpu(cpu, buffer->cpumask))
5770 return NULL;
5771
5772 again:
5773 local_irq_save(flags);
5774 dolock = rb_reader_lock(cpu_buffer);
5775 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
5776 if (event && event->type_len == RINGBUF_TYPE_PADDING)
5777 rb_advance_reader(cpu_buffer);
5778 rb_reader_unlock(cpu_buffer, dolock);
5779 local_irq_restore(flags);
5780
5781 if (event && event->type_len == RINGBUF_TYPE_PADDING)
5782 goto again;
5783
5784 return event;
5785 }
5786
5787 /** ring_buffer_iter_dropped - report if there are dropped events
5788 * @iter: The ring buffer iterator
5789 *
5790 * Returns true if there was dropped events since the last peek.
5791 */
ring_buffer_iter_dropped(struct ring_buffer_iter * iter)5792 bool ring_buffer_iter_dropped(struct ring_buffer_iter *iter)
5793 {
5794 bool ret = iter->missed_events != 0;
5795
5796 iter->missed_events = 0;
5797 return ret;
5798 }
5799 EXPORT_SYMBOL_GPL(ring_buffer_iter_dropped);
5800
5801 /**
5802 * ring_buffer_iter_peek - peek at the next event to be read
5803 * @iter: The ring buffer iterator
5804 * @ts: The timestamp counter of this event.
5805 *
5806 * This will return the event that will be read next, but does
5807 * not increment the iterator.
5808 */
5809 struct ring_buffer_event *
ring_buffer_iter_peek(struct ring_buffer_iter * iter,u64 * ts)5810 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
5811 {
5812 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5813 struct ring_buffer_event *event;
5814 unsigned long flags;
5815
5816 again:
5817 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5818 event = rb_iter_peek(iter, ts);
5819 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5820
5821 if (event && event->type_len == RINGBUF_TYPE_PADDING)
5822 goto again;
5823
5824 return event;
5825 }
5826
5827 /**
5828 * ring_buffer_consume - return an event and consume it
5829 * @buffer: The ring buffer to get the next event from
5830 * @cpu: the cpu to read the buffer from
5831 * @ts: a variable to store the timestamp (may be NULL)
5832 * @lost_events: a variable to store if events were lost (may be NULL)
5833 *
5834 * Returns the next event in the ring buffer, and that event is consumed.
5835 * Meaning, that sequential reads will keep returning a different event,
5836 * and eventually empty the ring buffer if the producer is slower.
5837 */
5838 struct ring_buffer_event *
ring_buffer_consume(struct trace_buffer * buffer,int cpu,u64 * ts,unsigned long * lost_events)5839 ring_buffer_consume(struct trace_buffer *buffer, int cpu, u64 *ts,
5840 unsigned long *lost_events)
5841 {
5842 struct ring_buffer_per_cpu *cpu_buffer;
5843 struct ring_buffer_event *event = NULL;
5844 unsigned long flags;
5845 bool dolock;
5846
5847 again:
5848 /* might be called in atomic */
5849 preempt_disable();
5850
5851 if (!cpumask_test_cpu(cpu, buffer->cpumask))
5852 goto out;
5853
5854 cpu_buffer = buffer->buffers[cpu];
5855 local_irq_save(flags);
5856 dolock = rb_reader_lock(cpu_buffer);
5857
5858 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
5859 if (event) {
5860 cpu_buffer->lost_events = 0;
5861 rb_advance_reader(cpu_buffer);
5862 }
5863
5864 rb_reader_unlock(cpu_buffer, dolock);
5865 local_irq_restore(flags);
5866
5867 out:
5868 preempt_enable();
5869
5870 if (event && event->type_len == RINGBUF_TYPE_PADDING)
5871 goto again;
5872
5873 return event;
5874 }
5875 EXPORT_SYMBOL_GPL(ring_buffer_consume);
5876
5877 /**
5878 * ring_buffer_read_start - start a non consuming read of the buffer
5879 * @buffer: The ring buffer to read from
5880 * @cpu: The cpu buffer to iterate over
5881 * @flags: gfp flags to use for memory allocation
5882 *
5883 * This creates an iterator to allow non-consuming iteration through
5884 * the buffer. If the buffer is disabled for writing, it will produce
5885 * the same information each time, but if the buffer is still writing
5886 * then the first hit of a write will cause the iteration to stop.
5887 *
5888 * Must be paired with ring_buffer_read_finish.
5889 */
5890 struct ring_buffer_iter *
ring_buffer_read_start(struct trace_buffer * buffer,int cpu,gfp_t flags)5891 ring_buffer_read_start(struct trace_buffer *buffer, int cpu, gfp_t flags)
5892 {
5893 struct ring_buffer_per_cpu *cpu_buffer;
5894 struct ring_buffer_iter *iter;
5895
5896 if (!cpumask_test_cpu(cpu, buffer->cpumask) || buffer->writer)
5897 return NULL;
5898
5899 iter = kzalloc(sizeof(*iter), flags);
5900 if (!iter)
5901 return NULL;
5902
5903 /* Holds the entire event: data and meta data */
5904 iter->event_size = buffer->subbuf_size;
5905 iter->event = kmalloc(iter->event_size, flags);
5906 if (!iter->event) {
5907 kfree(iter);
5908 return NULL;
5909 }
5910
5911 cpu_buffer = buffer->buffers[cpu];
5912
5913 iter->cpu_buffer = cpu_buffer;
5914
5915 atomic_inc(&cpu_buffer->resize_disabled);
5916
5917 guard(raw_spinlock_irqsave)(&cpu_buffer->reader_lock);
5918 arch_spin_lock(&cpu_buffer->lock);
5919 rb_iter_reset(iter);
5920 arch_spin_unlock(&cpu_buffer->lock);
5921
5922 return iter;
5923 }
5924 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
5925
5926 /**
5927 * ring_buffer_read_finish - finish reading the iterator of the buffer
5928 * @iter: The iterator retrieved by ring_buffer_start
5929 *
5930 * This re-enables resizing of the buffer, and frees the iterator.
5931 */
5932 void
ring_buffer_read_finish(struct ring_buffer_iter * iter)5933 ring_buffer_read_finish(struct ring_buffer_iter *iter)
5934 {
5935 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5936
5937 /* Use this opportunity to check the integrity of the ring buffer. */
5938 rb_check_pages(cpu_buffer);
5939
5940 atomic_dec(&cpu_buffer->resize_disabled);
5941 kfree(iter->event);
5942 kfree(iter);
5943 }
5944 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
5945
5946 /**
5947 * ring_buffer_iter_advance - advance the iterator to the next location
5948 * @iter: The ring buffer iterator
5949 *
5950 * Move the location of the iterator such that the next read will
5951 * be the next location of the iterator.
5952 */
ring_buffer_iter_advance(struct ring_buffer_iter * iter)5953 void ring_buffer_iter_advance(struct ring_buffer_iter *iter)
5954 {
5955 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5956 unsigned long flags;
5957
5958 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5959
5960 rb_advance_iter(iter);
5961
5962 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5963 }
5964 EXPORT_SYMBOL_GPL(ring_buffer_iter_advance);
5965
5966 /**
5967 * ring_buffer_size - return the size of the ring buffer (in bytes)
5968 * @buffer: The ring buffer.
5969 * @cpu: The CPU to get ring buffer size from.
5970 */
ring_buffer_size(struct trace_buffer * buffer,int cpu)5971 unsigned long ring_buffer_size(struct trace_buffer *buffer, int cpu)
5972 {
5973 if (!cpumask_test_cpu(cpu, buffer->cpumask))
5974 return 0;
5975
5976 return buffer->subbuf_size * buffer->buffers[cpu]->nr_pages;
5977 }
5978 EXPORT_SYMBOL_GPL(ring_buffer_size);
5979
5980 /**
5981 * ring_buffer_max_event_size - return the max data size of an event
5982 * @buffer: The ring buffer.
5983 *
5984 * Returns the maximum size an event can be.
5985 */
ring_buffer_max_event_size(struct trace_buffer * buffer)5986 unsigned long ring_buffer_max_event_size(struct trace_buffer *buffer)
5987 {
5988 /* If abs timestamp is requested, events have a timestamp too */
5989 if (ring_buffer_time_stamp_abs(buffer))
5990 return buffer->max_data_size - RB_LEN_TIME_EXTEND;
5991 return buffer->max_data_size;
5992 }
5993 EXPORT_SYMBOL_GPL(ring_buffer_max_event_size);
5994
rb_clear_buffer_page(struct buffer_page * page)5995 static void rb_clear_buffer_page(struct buffer_page *page)
5996 {
5997 local_set(&page->write, 0);
5998 local_set(&page->entries, 0);
5999 rb_init_page(page->page);
6000 page->read = 0;
6001 }
6002
rb_update_meta_page(struct ring_buffer_per_cpu * cpu_buffer)6003 static void rb_update_meta_page(struct ring_buffer_per_cpu *cpu_buffer)
6004 {
6005 struct trace_buffer_meta *meta = cpu_buffer->meta_page;
6006
6007 if (!meta)
6008 return;
6009
6010 meta->reader.read = cpu_buffer->reader_page->read;
6011 meta->reader.id = cpu_buffer->reader_page->id;
6012 meta->reader.lost_events = cpu_buffer->lost_events;
6013
6014 meta->entries = local_read(&cpu_buffer->entries);
6015 meta->overrun = local_read(&cpu_buffer->overrun);
6016 meta->read = cpu_buffer->read;
6017
6018 /* Some archs do not have data cache coherency between kernel and user-space */
6019 flush_kernel_vmap_range(cpu_buffer->meta_page, PAGE_SIZE);
6020 }
6021
6022 static void
rb_reset_cpu(struct ring_buffer_per_cpu * cpu_buffer)6023 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
6024 {
6025 struct buffer_page *page;
6026
6027 if (cpu_buffer->writer) {
6028 if (!cpu_buffer->writer->reset)
6029 return;
6030
6031 cpu_buffer->writer->reset(cpu_buffer->cpu);
6032 rb_read_writer_meta_page(cpu_buffer);
6033
6034 /* Read related values, not covered by the meta-page */
6035 local_set(&cpu_buffer->pages_read, 0);
6036 cpu_buffer->read = 0;
6037 cpu_buffer->read_bytes = 0;
6038 cpu_buffer->last_overrun = 0;
6039 cpu_buffer->reader_page->read = 0;
6040
6041 return;
6042 }
6043
6044 rb_head_page_deactivate(cpu_buffer);
6045
6046 cpu_buffer->head_page
6047 = list_entry(cpu_buffer->pages, struct buffer_page, list);
6048 rb_clear_buffer_page(cpu_buffer->head_page);
6049 list_for_each_entry(page, cpu_buffer->pages, list) {
6050 rb_clear_buffer_page(page);
6051 }
6052
6053 cpu_buffer->tail_page = cpu_buffer->head_page;
6054 cpu_buffer->commit_page = cpu_buffer->head_page;
6055
6056 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
6057 INIT_LIST_HEAD(&cpu_buffer->new_pages);
6058 rb_clear_buffer_page(cpu_buffer->reader_page);
6059
6060 local_set(&cpu_buffer->entries_bytes, 0);
6061 local_set(&cpu_buffer->overrun, 0);
6062 local_set(&cpu_buffer->commit_overrun, 0);
6063 local_set(&cpu_buffer->dropped_events, 0);
6064 local_set(&cpu_buffer->entries, 0);
6065 local_set(&cpu_buffer->committing, 0);
6066 local_set(&cpu_buffer->commits, 0);
6067 local_set(&cpu_buffer->pages_touched, 0);
6068 local_set(&cpu_buffer->pages_lost, 0);
6069 local_set(&cpu_buffer->pages_read, 0);
6070 cpu_buffer->last_pages_touch = 0;
6071 cpu_buffer->shortest_full = 0;
6072 cpu_buffer->read = 0;
6073 cpu_buffer->read_bytes = 0;
6074
6075 rb_time_set(&cpu_buffer->write_stamp, 0);
6076 rb_time_set(&cpu_buffer->before_stamp, 0);
6077
6078 memset(cpu_buffer->event_stamp, 0, sizeof(cpu_buffer->event_stamp));
6079
6080 cpu_buffer->lost_events = 0;
6081 cpu_buffer->last_overrun = 0;
6082
6083 rb_head_page_activate(cpu_buffer);
6084 cpu_buffer->pages_removed = 0;
6085
6086 if (cpu_buffer->mapped) {
6087 rb_update_meta_page(cpu_buffer);
6088 if (cpu_buffer->ring_meta) {
6089 struct ring_buffer_meta *meta = cpu_buffer->ring_meta;
6090 meta->commit_buffer = meta->head_buffer;
6091 }
6092 }
6093 }
6094
6095 /* Must have disabled the cpu buffer then done a synchronize_rcu */
reset_disabled_cpu_buffer(struct ring_buffer_per_cpu * cpu_buffer)6096 static void reset_disabled_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
6097 {
6098 unsigned long flags;
6099
6100 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
6101
6102 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
6103 goto out;
6104
6105 arch_spin_lock(&cpu_buffer->lock);
6106
6107 rb_reset_cpu(cpu_buffer);
6108
6109 arch_spin_unlock(&cpu_buffer->lock);
6110
6111 out:
6112 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
6113 }
6114
6115 /**
6116 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
6117 * @buffer: The ring buffer to reset a per cpu buffer of
6118 * @cpu: The CPU buffer to be reset
6119 */
ring_buffer_reset_cpu(struct trace_buffer * buffer,int cpu)6120 void ring_buffer_reset_cpu(struct trace_buffer *buffer, int cpu)
6121 {
6122 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
6123 struct ring_buffer_meta *meta;
6124
6125 if (!cpumask_test_cpu(cpu, buffer->cpumask))
6126 return;
6127
6128 /* prevent another thread from changing buffer sizes */
6129 mutex_lock(&buffer->mutex);
6130
6131 atomic_inc(&cpu_buffer->resize_disabled);
6132 atomic_inc(&cpu_buffer->record_disabled);
6133
6134 /* Make sure all commits have finished */
6135 synchronize_rcu();
6136
6137 reset_disabled_cpu_buffer(cpu_buffer);
6138
6139 atomic_dec(&cpu_buffer->record_disabled);
6140 atomic_dec(&cpu_buffer->resize_disabled);
6141
6142 /* Make sure persistent meta now uses this buffer's addresses */
6143 meta = rb_range_meta(buffer, 0, cpu_buffer->cpu);
6144 if (meta)
6145 rb_meta_init_text_addr(meta);
6146
6147 mutex_unlock(&buffer->mutex);
6148 }
6149 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
6150
6151 /* Flag to ensure proper resetting of atomic variables */
6152 #define RESET_BIT (1 << 30)
6153
6154 /**
6155 * ring_buffer_reset_online_cpus - reset a ring buffer per CPU buffer
6156 * @buffer: The ring buffer to reset a per cpu buffer of
6157 */
ring_buffer_reset_online_cpus(struct trace_buffer * buffer)6158 void ring_buffer_reset_online_cpus(struct trace_buffer *buffer)
6159 {
6160 struct ring_buffer_per_cpu *cpu_buffer;
6161 struct ring_buffer_meta *meta;
6162 int cpu;
6163
6164 /* prevent another thread from changing buffer sizes */
6165 mutex_lock(&buffer->mutex);
6166
6167 for_each_online_buffer_cpu(buffer, cpu) {
6168 cpu_buffer = buffer->buffers[cpu];
6169
6170 atomic_add(RESET_BIT, &cpu_buffer->resize_disabled);
6171 atomic_inc(&cpu_buffer->record_disabled);
6172 }
6173
6174 /* Make sure all commits have finished */
6175 synchronize_rcu();
6176
6177 for_each_buffer_cpu(buffer, cpu) {
6178 cpu_buffer = buffer->buffers[cpu];
6179
6180 /*
6181 * If a CPU came online during the synchronize_rcu(), then
6182 * ignore it.
6183 */
6184 if (!(atomic_read(&cpu_buffer->resize_disabled) & RESET_BIT))
6185 continue;
6186
6187 reset_disabled_cpu_buffer(cpu_buffer);
6188
6189 /* Make sure persistent meta now uses this buffer's addresses */
6190 meta = rb_range_meta(buffer, 0, cpu_buffer->cpu);
6191 if (meta)
6192 rb_meta_init_text_addr(meta);
6193
6194 atomic_dec(&cpu_buffer->record_disabled);
6195 atomic_sub(RESET_BIT, &cpu_buffer->resize_disabled);
6196 }
6197
6198 mutex_unlock(&buffer->mutex);
6199 }
6200
6201 /**
6202 * ring_buffer_reset - reset a ring buffer
6203 * @buffer: The ring buffer to reset all cpu buffers
6204 */
ring_buffer_reset(struct trace_buffer * buffer)6205 void ring_buffer_reset(struct trace_buffer *buffer)
6206 {
6207 struct ring_buffer_per_cpu *cpu_buffer;
6208 int cpu;
6209
6210 /* prevent another thread from changing buffer sizes */
6211 mutex_lock(&buffer->mutex);
6212
6213 for_each_buffer_cpu(buffer, cpu) {
6214 cpu_buffer = buffer->buffers[cpu];
6215
6216 atomic_inc(&cpu_buffer->resize_disabled);
6217 atomic_inc(&cpu_buffer->record_disabled);
6218 }
6219
6220 /* Make sure all commits have finished */
6221 synchronize_rcu();
6222
6223 for_each_buffer_cpu(buffer, cpu) {
6224 cpu_buffer = buffer->buffers[cpu];
6225
6226 reset_disabled_cpu_buffer(cpu_buffer);
6227
6228 atomic_dec(&cpu_buffer->record_disabled);
6229 atomic_dec(&cpu_buffer->resize_disabled);
6230 }
6231
6232 mutex_unlock(&buffer->mutex);
6233 }
6234 EXPORT_SYMBOL_GPL(ring_buffer_reset);
6235
6236 /**
6237 * ring_buffer_empty - is the ring buffer empty?
6238 * @buffer: The ring buffer to test
6239 */
ring_buffer_empty(struct trace_buffer * buffer)6240 bool ring_buffer_empty(struct trace_buffer *buffer)
6241 {
6242 struct ring_buffer_per_cpu *cpu_buffer;
6243 unsigned long flags;
6244 bool dolock;
6245 bool ret;
6246 int cpu;
6247
6248 /* yes this is racy, but if you don't like the race, lock the buffer */
6249 for_each_buffer_cpu(buffer, cpu) {
6250 cpu_buffer = buffer->buffers[cpu];
6251 local_irq_save(flags);
6252 dolock = rb_reader_lock(cpu_buffer);
6253 ret = rb_per_cpu_empty(cpu_buffer);
6254 rb_reader_unlock(cpu_buffer, dolock);
6255 local_irq_restore(flags);
6256
6257 if (!ret)
6258 return false;
6259 }
6260
6261 return true;
6262 }
6263 EXPORT_SYMBOL_GPL(ring_buffer_empty);
6264
6265 /**
6266 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
6267 * @buffer: The ring buffer
6268 * @cpu: The CPU buffer to test
6269 */
ring_buffer_empty_cpu(struct trace_buffer * buffer,int cpu)6270 bool ring_buffer_empty_cpu(struct trace_buffer *buffer, int cpu)
6271 {
6272 struct ring_buffer_per_cpu *cpu_buffer;
6273 unsigned long flags;
6274 bool dolock;
6275 bool ret;
6276
6277 if (!cpumask_test_cpu(cpu, buffer->cpumask))
6278 return true;
6279
6280 cpu_buffer = buffer->buffers[cpu];
6281 local_irq_save(flags);
6282 dolock = rb_reader_lock(cpu_buffer);
6283 ret = rb_per_cpu_empty(cpu_buffer);
6284 rb_reader_unlock(cpu_buffer, dolock);
6285 local_irq_restore(flags);
6286
6287 return ret;
6288 }
6289 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
6290
ring_buffer_poll_writer(struct trace_buffer * buffer,int cpu)6291 int ring_buffer_poll_writer(struct trace_buffer *buffer, int cpu)
6292 {
6293 struct ring_buffer_per_cpu *cpu_buffer;
6294 unsigned long flags;
6295
6296 if (cpu != RING_BUFFER_ALL_CPUS) {
6297 if (!cpumask_test_cpu(cpu, buffer->cpumask))
6298 return -EINVAL;
6299
6300 cpu_buffer = buffer->buffers[cpu];
6301
6302 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
6303 if (rb_read_writer_meta_page(cpu_buffer))
6304 rb_wakeups(buffer, cpu_buffer);
6305 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
6306
6307 return 0;
6308 }
6309
6310 /*
6311 * Make sure all the ring buffers are up to date before we start reading
6312 * them.
6313 */
6314 for_each_buffer_cpu(buffer, cpu) {
6315 cpu_buffer = buffer->buffers[cpu];
6316
6317 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
6318 rb_read_writer_meta_page(buffer->buffers[cpu]);
6319 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
6320 }
6321
6322 for_each_buffer_cpu(buffer, cpu) {
6323 cpu_buffer = buffer->buffers[cpu];
6324
6325 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
6326 if (rb_num_of_entries(cpu_buffer))
6327 rb_wakeups(buffer, buffer->buffers[cpu]);
6328 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
6329 }
6330
6331 return 0;
6332 }
6333
6334 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
6335 /**
6336 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
6337 * @buffer_a: One buffer to swap with
6338 * @buffer_b: The other buffer to swap with
6339 * @cpu: the CPU of the buffers to swap
6340 *
6341 * This function is useful for tracers that want to take a "snapshot"
6342 * of a CPU buffer and has another back up buffer lying around.
6343 * it is expected that the tracer handles the cpu buffer not being
6344 * used at the moment.
6345 */
ring_buffer_swap_cpu(struct trace_buffer * buffer_a,struct trace_buffer * buffer_b,int cpu)6346 int ring_buffer_swap_cpu(struct trace_buffer *buffer_a,
6347 struct trace_buffer *buffer_b, int cpu)
6348 {
6349 struct ring_buffer_per_cpu *cpu_buffer_a;
6350 struct ring_buffer_per_cpu *cpu_buffer_b;
6351 int ret = -EINVAL;
6352
6353 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
6354 !cpumask_test_cpu(cpu, buffer_b->cpumask))
6355 goto out;
6356
6357 cpu_buffer_a = buffer_a->buffers[cpu];
6358 cpu_buffer_b = buffer_b->buffers[cpu];
6359
6360 /* It's up to the callers to not try to swap mapped buffers */
6361 if (WARN_ON_ONCE(cpu_buffer_a->mapped || cpu_buffer_b->mapped)) {
6362 ret = -EBUSY;
6363 goto out;
6364 }
6365
6366 /* At least make sure the two buffers are somewhat the same */
6367 if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
6368 goto out;
6369
6370 if (buffer_a->subbuf_order != buffer_b->subbuf_order)
6371 goto out;
6372
6373 ret = -EAGAIN;
6374
6375 if (atomic_read(&buffer_a->record_disabled))
6376 goto out;
6377
6378 if (atomic_read(&buffer_b->record_disabled))
6379 goto out;
6380
6381 if (atomic_read(&cpu_buffer_a->record_disabled))
6382 goto out;
6383
6384 if (atomic_read(&cpu_buffer_b->record_disabled))
6385 goto out;
6386
6387 /*
6388 * We can't do a synchronize_rcu here because this
6389 * function can be called in atomic context.
6390 * Normally this will be called from the same CPU as cpu.
6391 * If not it's up to the caller to protect this.
6392 */
6393 atomic_inc(&cpu_buffer_a->record_disabled);
6394 atomic_inc(&cpu_buffer_b->record_disabled);
6395
6396 ret = -EBUSY;
6397 if (local_read(&cpu_buffer_a->committing))
6398 goto out_dec;
6399 if (local_read(&cpu_buffer_b->committing))
6400 goto out_dec;
6401
6402 /*
6403 * When resize is in progress, we cannot swap it because
6404 * it will mess the state of the cpu buffer.
6405 */
6406 if (atomic_read(&buffer_a->resizing))
6407 goto out_dec;
6408 if (atomic_read(&buffer_b->resizing))
6409 goto out_dec;
6410
6411 buffer_a->buffers[cpu] = cpu_buffer_b;
6412 buffer_b->buffers[cpu] = cpu_buffer_a;
6413
6414 cpu_buffer_b->buffer = buffer_a;
6415 cpu_buffer_a->buffer = buffer_b;
6416
6417 ret = 0;
6418
6419 out_dec:
6420 atomic_dec(&cpu_buffer_a->record_disabled);
6421 atomic_dec(&cpu_buffer_b->record_disabled);
6422 out:
6423 return ret;
6424 }
6425 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
6426 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
6427
6428 /**
6429 * ring_buffer_alloc_read_page - allocate a page to read from buffer
6430 * @buffer: the buffer to allocate for.
6431 * @cpu: the cpu buffer to allocate.
6432 *
6433 * This function is used in conjunction with ring_buffer_read_page.
6434 * When reading a full page from the ring buffer, these functions
6435 * can be used to speed up the process. The calling function should
6436 * allocate a few pages first with this function. Then when it
6437 * needs to get pages from the ring buffer, it passes the result
6438 * of this function into ring_buffer_read_page, which will swap
6439 * the page that was allocated, with the read page of the buffer.
6440 *
6441 * Returns:
6442 * The page allocated, or ERR_PTR
6443 */
6444 struct buffer_data_read_page *
ring_buffer_alloc_read_page(struct trace_buffer * buffer,int cpu)6445 ring_buffer_alloc_read_page(struct trace_buffer *buffer, int cpu)
6446 {
6447 struct ring_buffer_per_cpu *cpu_buffer;
6448 struct buffer_data_read_page *bpage = NULL;
6449 unsigned long flags;
6450 struct page *page;
6451
6452 if (!cpumask_test_cpu(cpu, buffer->cpumask))
6453 return ERR_PTR(-ENODEV);
6454
6455 bpage = kzalloc(sizeof(*bpage), GFP_KERNEL);
6456 if (!bpage)
6457 return ERR_PTR(-ENOMEM);
6458
6459 bpage->order = buffer->subbuf_order;
6460 cpu_buffer = buffer->buffers[cpu];
6461 local_irq_save(flags);
6462 arch_spin_lock(&cpu_buffer->lock);
6463
6464 if (cpu_buffer->free_page) {
6465 bpage->data = cpu_buffer->free_page;
6466 cpu_buffer->free_page = NULL;
6467 }
6468
6469 arch_spin_unlock(&cpu_buffer->lock);
6470 local_irq_restore(flags);
6471
6472 if (bpage->data)
6473 goto out;
6474
6475 page = alloc_pages_node(cpu_to_node(cpu),
6476 GFP_KERNEL | __GFP_NORETRY | __GFP_COMP | __GFP_ZERO,
6477 cpu_buffer->buffer->subbuf_order);
6478 if (!page) {
6479 kfree(bpage);
6480 return ERR_PTR(-ENOMEM);
6481 }
6482
6483 bpage->data = page_address(page);
6484
6485 out:
6486 rb_init_page(bpage->data);
6487
6488 return bpage;
6489 }
6490 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
6491
6492 /**
6493 * ring_buffer_free_read_page - free an allocated read page
6494 * @buffer: the buffer the page was allocate for
6495 * @cpu: the cpu buffer the page came from
6496 * @data_page: the page to free
6497 *
6498 * Free a page allocated from ring_buffer_alloc_read_page.
6499 */
ring_buffer_free_read_page(struct trace_buffer * buffer,int cpu,struct buffer_data_read_page * data_page)6500 void ring_buffer_free_read_page(struct trace_buffer *buffer, int cpu,
6501 struct buffer_data_read_page *data_page)
6502 {
6503 struct ring_buffer_per_cpu *cpu_buffer;
6504 struct buffer_data_page *bpage = data_page->data;
6505 struct page *page = virt_to_page(bpage);
6506 unsigned long flags;
6507
6508 if (!buffer || !buffer->buffers || !buffer->buffers[cpu])
6509 return;
6510
6511 cpu_buffer = buffer->buffers[cpu];
6512
6513 /*
6514 * If the page is still in use someplace else, or order of the page
6515 * is different from the subbuffer order of the buffer -
6516 * we can't reuse it
6517 */
6518 if (page_ref_count(page) > 1 || data_page->order != buffer->subbuf_order)
6519 goto out;
6520
6521 local_irq_save(flags);
6522 arch_spin_lock(&cpu_buffer->lock);
6523
6524 if (!cpu_buffer->free_page) {
6525 cpu_buffer->free_page = bpage;
6526 bpage = NULL;
6527 }
6528
6529 arch_spin_unlock(&cpu_buffer->lock);
6530 local_irq_restore(flags);
6531
6532 out:
6533 free_pages((unsigned long)bpage, data_page->order);
6534 kfree(data_page);
6535 }
6536 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
6537
6538 /**
6539 * ring_buffer_read_page - extract a page from the ring buffer
6540 * @buffer: buffer to extract from
6541 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
6542 * @len: amount to extract
6543 * @cpu: the cpu of the buffer to extract
6544 * @full: should the extraction only happen when the page is full.
6545 *
6546 * This function will pull out a page from the ring buffer and consume it.
6547 * @data_page must be the address of the variable that was returned
6548 * from ring_buffer_alloc_read_page. This is because the page might be used
6549 * to swap with a page in the ring buffer.
6550 *
6551 * for example:
6552 * rpage = ring_buffer_alloc_read_page(buffer, cpu);
6553 * if (IS_ERR(rpage))
6554 * return PTR_ERR(rpage);
6555 * ret = ring_buffer_read_page(buffer, rpage, len, cpu, 0);
6556 * if (ret >= 0)
6557 * process_page(ring_buffer_read_page_data(rpage), ret);
6558 * ring_buffer_free_read_page(buffer, cpu, rpage);
6559 *
6560 * When @full is set, the function will not return true unless
6561 * the writer is off the reader page.
6562 *
6563 * Note: it is up to the calling functions to handle sleeps and wakeups.
6564 * The ring buffer can be used anywhere in the kernel and can not
6565 * blindly call wake_up. The layer that uses the ring buffer must be
6566 * responsible for that.
6567 *
6568 * Returns:
6569 * >=0 if data has been transferred, returns the offset of consumed data.
6570 * <0 if no data has been transferred.
6571 */
ring_buffer_read_page(struct trace_buffer * buffer,struct buffer_data_read_page * data_page,size_t len,int cpu,int full)6572 int ring_buffer_read_page(struct trace_buffer *buffer,
6573 struct buffer_data_read_page *data_page,
6574 size_t len, int cpu, int full)
6575 {
6576 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
6577 struct ring_buffer_event *event;
6578 struct buffer_data_page *bpage;
6579 struct buffer_page *reader;
6580 unsigned long missed_events;
6581 unsigned long flags;
6582 unsigned int commit;
6583 unsigned int read;
6584 u64 save_timestamp;
6585 bool force_memcpy;
6586 int ret = -1;
6587
6588 if (!cpumask_test_cpu(cpu, buffer->cpumask))
6589 goto out;
6590
6591 /*
6592 * If len is not big enough to hold the page header, then
6593 * we can not copy anything.
6594 */
6595 if (len <= BUF_PAGE_HDR_SIZE)
6596 goto out;
6597
6598 len -= BUF_PAGE_HDR_SIZE;
6599
6600 if (!data_page || !data_page->data)
6601 goto out;
6602 if (data_page->order != buffer->subbuf_order)
6603 goto out;
6604
6605 bpage = data_page->data;
6606 if (!bpage)
6607 goto out;
6608
6609 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
6610
6611 reader = rb_get_reader_page(cpu_buffer);
6612 if (!reader)
6613 goto out_unlock;
6614
6615 event = rb_reader_event(cpu_buffer);
6616
6617 read = reader->read;
6618 commit = rb_page_size(reader);
6619
6620 /* Check if any events were dropped */
6621 missed_events = cpu_buffer->lost_events;
6622
6623 force_memcpy = cpu_buffer->mapped || cpu_buffer->writer;
6624
6625 /*
6626 * If this page has been partially read or
6627 * if len is not big enough to read the rest of the page or
6628 * a writer is still on the page, then
6629 * we must copy the data from the page to the buffer.
6630 * Otherwise, we can simply swap the page with the one passed in.
6631 */
6632 if (read || (len < (commit - read)) ||
6633 cpu_buffer->reader_page == cpu_buffer->commit_page ||
6634 force_memcpy) {
6635 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
6636 unsigned int rpos = read;
6637 unsigned int pos = 0;
6638 unsigned int size;
6639
6640 /*
6641 * If a full page is expected, this can still be returned
6642 * if there's been a previous partial read and the
6643 * rest of the page can be read and the commit page is off
6644 * the reader page.
6645 */
6646 if (full &&
6647 (!read || (len < (commit - read)) ||
6648 cpu_buffer->reader_page == cpu_buffer->commit_page))
6649 goto out_unlock;
6650
6651 if (len > (commit - read))
6652 len = (commit - read);
6653
6654 /* Always keep the time extend and data together */
6655 size = rb_event_ts_length(event);
6656
6657 if (len < size)
6658 goto out_unlock;
6659
6660 /* save the current timestamp, since the user will need it */
6661 save_timestamp = cpu_buffer->read_stamp;
6662
6663 /* Need to copy one event at a time */
6664 do {
6665 /* We need the size of one event, because
6666 * rb_advance_reader only advances by one event,
6667 * whereas rb_event_ts_length may include the size of
6668 * one or two events.
6669 * We have already ensured there's enough space if this
6670 * is a time extend. */
6671 size = rb_event_length(event);
6672 memcpy(bpage->data + pos, rpage->data + rpos, size);
6673
6674 len -= size;
6675
6676 rb_advance_reader(cpu_buffer);
6677 rpos = reader->read;
6678 pos += size;
6679
6680 if (rpos >= commit)
6681 break;
6682
6683 event = rb_reader_event(cpu_buffer);
6684 /* Always keep the time extend and data together */
6685 size = rb_event_ts_length(event);
6686 } while (len >= size);
6687
6688 /* update bpage */
6689 local_set(&bpage->commit, pos);
6690 bpage->time_stamp = save_timestamp;
6691
6692 /* we copied everything to the beginning */
6693 read = 0;
6694 } else {
6695 /* update the entry counter */
6696 cpu_buffer->read += rb_page_entries(reader);
6697 cpu_buffer->read_bytes += rb_page_size(reader);
6698
6699 /* swap the pages */
6700 rb_init_page(bpage);
6701 bpage = reader->page;
6702 reader->page = data_page->data;
6703 local_set(&reader->write, 0);
6704 local_set(&reader->entries, 0);
6705 reader->read = 0;
6706 data_page->data = bpage;
6707
6708 /*
6709 * Use the real_end for the data size,
6710 * This gives us a chance to store the lost events
6711 * on the page.
6712 */
6713 if (reader->real_end)
6714 local_set(&bpage->commit, reader->real_end);
6715 }
6716 ret = read;
6717
6718 cpu_buffer->lost_events = 0;
6719
6720 commit = local_read(&bpage->commit);
6721 /*
6722 * Set a flag in the commit field if we lost events
6723 */
6724 if (missed_events) {
6725 /* If there is room at the end of the page to save the
6726 * missed events, then record it there.
6727 */
6728 if (buffer->subbuf_size - commit >= sizeof(missed_events)) {
6729 memcpy(&bpage->data[commit], &missed_events,
6730 sizeof(missed_events));
6731 local_add(RB_MISSED_STORED, &bpage->commit);
6732 commit += sizeof(missed_events);
6733 }
6734 local_add(RB_MISSED_EVENTS, &bpage->commit);
6735 }
6736
6737 /*
6738 * This page may be off to user land. Zero it out here.
6739 */
6740 if (commit < buffer->subbuf_size)
6741 memset(&bpage->data[commit], 0, buffer->subbuf_size - commit);
6742
6743 out_unlock:
6744 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
6745
6746 out:
6747 return ret;
6748 }
6749 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
6750
6751 /**
6752 * ring_buffer_read_page_data - get pointer to the data in the page.
6753 * @page: the page to get the data from
6754 *
6755 * Returns pointer to the actual data in this page.
6756 */
ring_buffer_read_page_data(struct buffer_data_read_page * page)6757 void *ring_buffer_read_page_data(struct buffer_data_read_page *page)
6758 {
6759 return page->data;
6760 }
6761 EXPORT_SYMBOL_GPL(ring_buffer_read_page_data);
6762
6763 /**
6764 * ring_buffer_subbuf_size_get - get size of the sub buffer.
6765 * @buffer: the buffer to get the sub buffer size from
6766 *
6767 * Returns size of the sub buffer, in bytes.
6768 */
ring_buffer_subbuf_size_get(struct trace_buffer * buffer)6769 int ring_buffer_subbuf_size_get(struct trace_buffer *buffer)
6770 {
6771 return buffer->subbuf_size + BUF_PAGE_HDR_SIZE;
6772 }
6773 EXPORT_SYMBOL_GPL(ring_buffer_subbuf_size_get);
6774
6775 /**
6776 * ring_buffer_subbuf_order_get - get order of system sub pages in one buffer page.
6777 * @buffer: The ring_buffer to get the system sub page order from
6778 *
6779 * By default, one ring buffer sub page equals to one system page. This parameter
6780 * is configurable, per ring buffer. The size of the ring buffer sub page can be
6781 * extended, but must be an order of system page size.
6782 *
6783 * Returns the order of buffer sub page size, in system pages:
6784 * 0 means the sub buffer size is 1 system page and so forth.
6785 * In case of an error < 0 is returned.
6786 */
ring_buffer_subbuf_order_get(struct trace_buffer * buffer)6787 int ring_buffer_subbuf_order_get(struct trace_buffer *buffer)
6788 {
6789 if (!buffer)
6790 return -EINVAL;
6791
6792 return buffer->subbuf_order;
6793 }
6794 EXPORT_SYMBOL_GPL(ring_buffer_subbuf_order_get);
6795
6796 /**
6797 * ring_buffer_subbuf_order_set - set the size of ring buffer sub page.
6798 * @buffer: The ring_buffer to set the new page size.
6799 * @order: Order of the system pages in one sub buffer page
6800 *
6801 * By default, one ring buffer pages equals to one system page. This API can be
6802 * used to set new size of the ring buffer page. The size must be order of
6803 * system page size, that's why the input parameter @order is the order of
6804 * system pages that are allocated for one ring buffer page:
6805 * 0 - 1 system page
6806 * 1 - 2 system pages
6807 * 3 - 4 system pages
6808 * ...
6809 *
6810 * Returns 0 on success or < 0 in case of an error.
6811 */
ring_buffer_subbuf_order_set(struct trace_buffer * buffer,int order)6812 int ring_buffer_subbuf_order_set(struct trace_buffer *buffer, int order)
6813 {
6814 struct ring_buffer_per_cpu *cpu_buffer;
6815 struct buffer_page *bpage, *tmp;
6816 int old_order, old_size;
6817 int nr_pages;
6818 int psize;
6819 int err;
6820 int cpu;
6821
6822 if (!buffer || order < 0)
6823 return -EINVAL;
6824
6825 if (buffer->subbuf_order == order)
6826 return 0;
6827
6828 psize = (1 << order) * PAGE_SIZE;
6829 if (psize <= BUF_PAGE_HDR_SIZE)
6830 return -EINVAL;
6831
6832 /* Size of a subbuf cannot be greater than the write counter */
6833 if (psize > RB_WRITE_MASK + 1)
6834 return -EINVAL;
6835
6836 old_order = buffer->subbuf_order;
6837 old_size = buffer->subbuf_size;
6838
6839 /* prevent another thread from changing buffer sizes */
6840 guard(mutex)(&buffer->mutex);
6841 atomic_inc(&buffer->record_disabled);
6842
6843 /* Make sure all commits have finished */
6844 synchronize_rcu();
6845
6846 buffer->subbuf_order = order;
6847 buffer->subbuf_size = psize - BUF_PAGE_HDR_SIZE;
6848
6849 /* Make sure all new buffers are allocated, before deleting the old ones */
6850 for_each_buffer_cpu(buffer, cpu) {
6851
6852 if (!cpumask_test_cpu(cpu, buffer->cpumask))
6853 continue;
6854
6855 cpu_buffer = buffer->buffers[cpu];
6856
6857 if (cpu_buffer->mapped) {
6858 err = -EBUSY;
6859 goto error;
6860 }
6861
6862 /* Update the number of pages to match the new size */
6863 nr_pages = old_size * buffer->buffers[cpu]->nr_pages;
6864 nr_pages = DIV_ROUND_UP(nr_pages, buffer->subbuf_size);
6865
6866 /* we need a minimum of two pages */
6867 if (nr_pages < 2)
6868 nr_pages = 2;
6869
6870 cpu_buffer->nr_pages_to_update = nr_pages;
6871
6872 /* Include the reader page */
6873 nr_pages++;
6874
6875 /* Allocate the new size buffer */
6876 INIT_LIST_HEAD(&cpu_buffer->new_pages);
6877 if (__rb_allocate_pages(cpu_buffer, nr_pages,
6878 &cpu_buffer->new_pages)) {
6879 /* not enough memory for new pages */
6880 err = -ENOMEM;
6881 goto error;
6882 }
6883 }
6884
6885 for_each_buffer_cpu(buffer, cpu) {
6886 struct buffer_data_page *old_free_data_page;
6887 struct list_head old_pages;
6888 unsigned long flags;
6889
6890 if (!cpumask_test_cpu(cpu, buffer->cpumask))
6891 continue;
6892
6893 cpu_buffer = buffer->buffers[cpu];
6894
6895 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
6896
6897 /* Clear the head bit to make the link list normal to read */
6898 rb_head_page_deactivate(cpu_buffer);
6899
6900 /*
6901 * Collect buffers from the cpu_buffer pages list and the
6902 * reader_page on old_pages, so they can be freed later when not
6903 * under a spinlock. The pages list is a linked list with no
6904 * head, adding old_pages turns it into a regular list with
6905 * old_pages being the head.
6906 */
6907 list_add(&old_pages, cpu_buffer->pages);
6908 list_add(&cpu_buffer->reader_page->list, &old_pages);
6909
6910 /* One page was allocated for the reader page */
6911 cpu_buffer->reader_page = list_entry(cpu_buffer->new_pages.next,
6912 struct buffer_page, list);
6913 list_del_init(&cpu_buffer->reader_page->list);
6914
6915 /* Install the new pages, remove the head from the list */
6916 cpu_buffer->pages = cpu_buffer->new_pages.next;
6917 list_del_init(&cpu_buffer->new_pages);
6918 cpu_buffer->cnt++;
6919
6920 cpu_buffer->head_page
6921 = list_entry(cpu_buffer->pages, struct buffer_page, list);
6922 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
6923
6924 cpu_buffer->nr_pages = cpu_buffer->nr_pages_to_update;
6925 cpu_buffer->nr_pages_to_update = 0;
6926
6927 old_free_data_page = cpu_buffer->free_page;
6928 cpu_buffer->free_page = NULL;
6929
6930 rb_head_page_activate(cpu_buffer);
6931
6932 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
6933
6934 /* Free old sub buffers */
6935 list_for_each_entry_safe(bpage, tmp, &old_pages, list) {
6936 list_del_init(&bpage->list);
6937 free_buffer_page(bpage);
6938 }
6939 free_pages((unsigned long)old_free_data_page, old_order);
6940
6941 rb_check_pages(cpu_buffer);
6942 }
6943
6944 atomic_dec(&buffer->record_disabled);
6945
6946 return 0;
6947
6948 error:
6949 buffer->subbuf_order = old_order;
6950 buffer->subbuf_size = old_size;
6951
6952 atomic_dec(&buffer->record_disabled);
6953
6954 for_each_buffer_cpu(buffer, cpu) {
6955 cpu_buffer = buffer->buffers[cpu];
6956
6957 if (!cpu_buffer->nr_pages_to_update)
6958 continue;
6959
6960 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, list) {
6961 list_del_init(&bpage->list);
6962 free_buffer_page(bpage);
6963 }
6964 }
6965
6966 return err;
6967 }
6968 EXPORT_SYMBOL_GPL(ring_buffer_subbuf_order_set);
6969
rb_alloc_meta_page(struct ring_buffer_per_cpu * cpu_buffer)6970 static int rb_alloc_meta_page(struct ring_buffer_per_cpu *cpu_buffer)
6971 {
6972 struct page *page;
6973
6974 if (cpu_buffer->meta_page)
6975 return 0;
6976
6977 page = alloc_page(GFP_USER | __GFP_ZERO);
6978 if (!page)
6979 return -ENOMEM;
6980
6981 cpu_buffer->meta_page = page_to_virt(page);
6982
6983 return 0;
6984 }
6985
rb_free_meta_page(struct ring_buffer_per_cpu * cpu_buffer)6986 static void rb_free_meta_page(struct ring_buffer_per_cpu *cpu_buffer)
6987 {
6988 unsigned long addr = (unsigned long)cpu_buffer->meta_page;
6989
6990 free_page(addr);
6991 cpu_buffer->meta_page = NULL;
6992 }
6993
rb_setup_ids_meta_page(struct ring_buffer_per_cpu * cpu_buffer,unsigned long * subbuf_ids)6994 static void rb_setup_ids_meta_page(struct ring_buffer_per_cpu *cpu_buffer,
6995 unsigned long *subbuf_ids)
6996 {
6997 struct trace_buffer_meta *meta = cpu_buffer->meta_page;
6998 unsigned int nr_subbufs = cpu_buffer->nr_pages + 1;
6999 struct buffer_page *first_subbuf, *subbuf;
7000 int id = 0;
7001
7002 subbuf_ids[id] = (unsigned long)cpu_buffer->reader_page->page;
7003 cpu_buffer->reader_page->id = id++;
7004
7005 first_subbuf = subbuf = rb_set_head_page(cpu_buffer);
7006 do {
7007 if (WARN_ON(id >= nr_subbufs))
7008 break;
7009
7010 subbuf_ids[id] = (unsigned long)subbuf->page;
7011 subbuf->id = id;
7012
7013 rb_inc_page(&subbuf);
7014 id++;
7015 } while (subbuf != first_subbuf);
7016
7017 /* install subbuf ID to kern VA translation */
7018 cpu_buffer->subbuf_ids = subbuf_ids;
7019
7020 meta->meta_struct_len = sizeof(*meta);
7021 meta->nr_subbufs = nr_subbufs;
7022 meta->subbuf_size = cpu_buffer->buffer->subbuf_size + BUF_PAGE_HDR_SIZE;
7023 meta->meta_page_size = meta->subbuf_size;
7024
7025 rb_update_meta_page(cpu_buffer);
7026 }
7027
7028 static struct ring_buffer_per_cpu *
rb_get_mapped_buffer(struct trace_buffer * buffer,int cpu)7029 rb_get_mapped_buffer(struct trace_buffer *buffer, int cpu)
7030 {
7031 struct ring_buffer_per_cpu *cpu_buffer;
7032
7033 if (!cpumask_test_cpu(cpu, buffer->cpumask))
7034 return ERR_PTR(-EINVAL);
7035
7036 cpu_buffer = buffer->buffers[cpu];
7037
7038 mutex_lock(&cpu_buffer->mapping_lock);
7039
7040 if (!cpu_buffer->user_mapped) {
7041 mutex_unlock(&cpu_buffer->mapping_lock);
7042 return ERR_PTR(-ENODEV);
7043 }
7044
7045 return cpu_buffer;
7046 }
7047
rb_put_mapped_buffer(struct ring_buffer_per_cpu * cpu_buffer)7048 static void rb_put_mapped_buffer(struct ring_buffer_per_cpu *cpu_buffer)
7049 {
7050 mutex_unlock(&cpu_buffer->mapping_lock);
7051 }
7052
7053 /*
7054 * Fast-path for rb_buffer_(un)map(). Called whenever the meta-page doesn't need
7055 * to be set-up or torn-down.
7056 */
__rb_inc_dec_mapped(struct ring_buffer_per_cpu * cpu_buffer,bool inc)7057 static int __rb_inc_dec_mapped(struct ring_buffer_per_cpu *cpu_buffer,
7058 bool inc)
7059 {
7060 unsigned long flags;
7061
7062 lockdep_assert_held(&cpu_buffer->mapping_lock);
7063
7064 /* mapped is always greater or equal to user_mapped */
7065 if (WARN_ON(cpu_buffer->mapped < cpu_buffer->user_mapped))
7066 return -EINVAL;
7067
7068 if (inc && cpu_buffer->mapped == UINT_MAX)
7069 return -EBUSY;
7070
7071 if (WARN_ON(!inc && cpu_buffer->user_mapped == 0))
7072 return -EINVAL;
7073
7074 mutex_lock(&cpu_buffer->buffer->mutex);
7075 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
7076
7077 if (inc) {
7078 cpu_buffer->user_mapped++;
7079 cpu_buffer->mapped++;
7080 } else {
7081 cpu_buffer->user_mapped--;
7082 cpu_buffer->mapped--;
7083 }
7084
7085 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7086 mutex_unlock(&cpu_buffer->buffer->mutex);
7087
7088 return 0;
7089 }
7090
7091 /*
7092 * +--------------+ pgoff == 0
7093 * | meta page |
7094 * +--------------+ pgoff == 1
7095 * | subbuffer 0 |
7096 * | |
7097 * +--------------+ pgoff == (1 + (1 << subbuf_order))
7098 * | subbuffer 1 |
7099 * | |
7100 * ...
7101 */
7102 #ifdef CONFIG_MMU
__rb_map_vma(struct ring_buffer_per_cpu * cpu_buffer,struct vm_area_struct * vma)7103 static int __rb_map_vma(struct ring_buffer_per_cpu *cpu_buffer,
7104 struct vm_area_struct *vma)
7105 {
7106 unsigned long nr_subbufs, nr_pages, nr_vma_pages, pgoff = vma->vm_pgoff;
7107 unsigned int subbuf_pages, subbuf_order;
7108 struct page **pages;
7109 int p = 0, s = 0;
7110 int err;
7111
7112 /* Refuse MP_PRIVATE or writable mappings */
7113 if (vma->vm_flags & VM_WRITE || vma->vm_flags & VM_EXEC ||
7114 !(vma->vm_flags & VM_MAYSHARE))
7115 return -EPERM;
7116
7117 subbuf_order = cpu_buffer->buffer->subbuf_order;
7118 subbuf_pages = 1 << subbuf_order;
7119
7120 if (subbuf_order && pgoff % subbuf_pages)
7121 return -EINVAL;
7122
7123 /*
7124 * Make sure the mapping cannot become writable later. Also tell the VM
7125 * to not touch these pages (VM_DONTCOPY | VM_DONTEXPAND).
7126 */
7127 vm_flags_mod(vma, VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP,
7128 VM_MAYWRITE);
7129
7130 lockdep_assert_held(&cpu_buffer->mapping_lock);
7131
7132 nr_subbufs = cpu_buffer->nr_pages + 1; /* + reader-subbuf */
7133 nr_pages = ((nr_subbufs + 1) << subbuf_order); /* + meta-page */
7134 if (nr_pages <= pgoff)
7135 return -EINVAL;
7136
7137 nr_pages -= pgoff;
7138
7139 nr_vma_pages = vma_pages(vma);
7140 if (!nr_vma_pages || nr_vma_pages > nr_pages)
7141 return -EINVAL;
7142
7143 nr_pages = nr_vma_pages;
7144
7145 pages = kcalloc(nr_pages, sizeof(*pages), GFP_KERNEL);
7146 if (!pages)
7147 return -ENOMEM;
7148
7149 if (!pgoff) {
7150 unsigned long meta_page_padding;
7151
7152 pages[p++] = virt_to_page(cpu_buffer->meta_page);
7153
7154 /*
7155 * Pad with the zero-page to align the meta-page with the
7156 * sub-buffers.
7157 */
7158 meta_page_padding = subbuf_pages - 1;
7159 while (meta_page_padding-- && p < nr_pages) {
7160 unsigned long __maybe_unused zero_addr =
7161 vma->vm_start + (PAGE_SIZE * p);
7162
7163 pages[p++] = ZERO_PAGE(zero_addr);
7164 }
7165 } else {
7166 /* Skip the meta-page */
7167 pgoff -= subbuf_pages;
7168
7169 s += pgoff / subbuf_pages;
7170 }
7171
7172 while (p < nr_pages) {
7173 struct page *page;
7174 int off = 0;
7175
7176 if (WARN_ON_ONCE(s >= nr_subbufs)) {
7177 err = -EINVAL;
7178 goto out;
7179 }
7180
7181 page = virt_to_page((void *)cpu_buffer->subbuf_ids[s]);
7182
7183 for (; off < (1 << (subbuf_order)); off++, page++) {
7184 if (p >= nr_pages)
7185 break;
7186
7187 pages[p++] = page;
7188 }
7189 s++;
7190 }
7191
7192 err = vm_insert_pages(vma, vma->vm_start, pages, &nr_pages);
7193
7194 out:
7195 kfree(pages);
7196
7197 return err;
7198 }
7199 #else
__rb_map_vma(struct ring_buffer_per_cpu * cpu_buffer,struct vm_area_struct * vma)7200 static int __rb_map_vma(struct ring_buffer_per_cpu *cpu_buffer,
7201 struct vm_area_struct *vma)
7202 {
7203 return -EOPNOTSUPP;
7204 }
7205 #endif
7206
ring_buffer_map(struct trace_buffer * buffer,int cpu,struct vm_area_struct * vma)7207 int ring_buffer_map(struct trace_buffer *buffer, int cpu,
7208 struct vm_area_struct *vma)
7209 {
7210 struct ring_buffer_per_cpu *cpu_buffer;
7211 unsigned long flags, *subbuf_ids;
7212 int err = 0;
7213
7214 if (!cpumask_test_cpu(cpu, buffer->cpumask) || buffer->writer)
7215 return -EINVAL;
7216
7217 cpu_buffer = buffer->buffers[cpu];
7218
7219 mutex_lock(&cpu_buffer->mapping_lock);
7220
7221 if (cpu_buffer->user_mapped) {
7222 err = __rb_map_vma(cpu_buffer, vma);
7223 if (!err)
7224 err = __rb_inc_dec_mapped(cpu_buffer, true);
7225 mutex_unlock(&cpu_buffer->mapping_lock);
7226 return err;
7227 }
7228
7229 /* prevent another thread from changing buffer/sub-buffer sizes */
7230 mutex_lock(&buffer->mutex);
7231
7232 err = rb_alloc_meta_page(cpu_buffer);
7233 if (err)
7234 goto unlock;
7235
7236 /* subbuf_ids include the reader while nr_pages does not */
7237 subbuf_ids = kcalloc(cpu_buffer->nr_pages + 1, sizeof(*subbuf_ids), GFP_KERNEL);
7238 if (!subbuf_ids) {
7239 rb_free_meta_page(cpu_buffer);
7240 err = -ENOMEM;
7241 goto unlock;
7242 }
7243
7244 atomic_inc(&cpu_buffer->resize_disabled);
7245
7246 /*
7247 * Lock all readers to block any subbuf swap until the subbuf IDs are
7248 * assigned.
7249 */
7250 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
7251 rb_setup_ids_meta_page(cpu_buffer, subbuf_ids);
7252
7253 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7254
7255 err = __rb_map_vma(cpu_buffer, vma);
7256 if (!err) {
7257 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
7258 /* This is the first time it is mapped by user */
7259 cpu_buffer->mapped++;
7260 cpu_buffer->user_mapped = 1;
7261 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7262 } else {
7263 kfree(cpu_buffer->subbuf_ids);
7264 cpu_buffer->subbuf_ids = NULL;
7265 rb_free_meta_page(cpu_buffer);
7266 atomic_dec(&cpu_buffer->resize_disabled);
7267 }
7268
7269 unlock:
7270 mutex_unlock(&buffer->mutex);
7271 mutex_unlock(&cpu_buffer->mapping_lock);
7272
7273 return err;
7274 }
7275
ring_buffer_unmap(struct trace_buffer * buffer,int cpu)7276 int ring_buffer_unmap(struct trace_buffer *buffer, int cpu)
7277 {
7278 struct ring_buffer_per_cpu *cpu_buffer;
7279 unsigned long flags;
7280 int err = 0;
7281
7282 if (!cpumask_test_cpu(cpu, buffer->cpumask))
7283 return -EINVAL;
7284
7285 cpu_buffer = buffer->buffers[cpu];
7286
7287 mutex_lock(&cpu_buffer->mapping_lock);
7288
7289 if (!cpu_buffer->user_mapped) {
7290 err = -ENODEV;
7291 goto out;
7292 } else if (cpu_buffer->user_mapped > 1) {
7293 __rb_inc_dec_mapped(cpu_buffer, false);
7294 goto out;
7295 }
7296
7297 mutex_lock(&buffer->mutex);
7298 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
7299
7300 /* This is the last user space mapping */
7301 if (!WARN_ON_ONCE(cpu_buffer->mapped < cpu_buffer->user_mapped))
7302 cpu_buffer->mapped--;
7303 cpu_buffer->user_mapped = 0;
7304
7305 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7306
7307 kfree(cpu_buffer->subbuf_ids);
7308 cpu_buffer->subbuf_ids = NULL;
7309 rb_free_meta_page(cpu_buffer);
7310 atomic_dec(&cpu_buffer->resize_disabled);
7311
7312 mutex_unlock(&buffer->mutex);
7313
7314 out:
7315 mutex_unlock(&cpu_buffer->mapping_lock);
7316
7317 return err;
7318 }
7319
ring_buffer_map_get_reader(struct trace_buffer * buffer,int cpu)7320 int ring_buffer_map_get_reader(struct trace_buffer *buffer, int cpu)
7321 {
7322 struct ring_buffer_per_cpu *cpu_buffer;
7323 struct buffer_page *reader;
7324 unsigned long missed_events;
7325 unsigned long reader_size;
7326 unsigned long flags;
7327
7328 cpu_buffer = rb_get_mapped_buffer(buffer, cpu);
7329 if (IS_ERR(cpu_buffer))
7330 return (int)PTR_ERR(cpu_buffer);
7331
7332 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
7333
7334 consume:
7335 if (rb_per_cpu_empty(cpu_buffer))
7336 goto out;
7337
7338 reader_size = rb_page_size(cpu_buffer->reader_page);
7339
7340 /*
7341 * There are data to be read on the current reader page, we can
7342 * return to the caller. But before that, we assume the latter will read
7343 * everything. Let's update the kernel reader accordingly.
7344 */
7345 if (cpu_buffer->reader_page->read < reader_size) {
7346 while (cpu_buffer->reader_page->read < reader_size)
7347 rb_advance_reader(cpu_buffer);
7348 goto out;
7349 }
7350
7351 reader = rb_get_reader_page(cpu_buffer);
7352 if (WARN_ON(!reader))
7353 goto out;
7354
7355 /* Check if any events were dropped */
7356 missed_events = cpu_buffer->lost_events;
7357
7358 if (missed_events) {
7359 if (cpu_buffer->reader_page != cpu_buffer->commit_page) {
7360 struct buffer_data_page *bpage = reader->page;
7361 unsigned int commit;
7362 /*
7363 * Use the real_end for the data size,
7364 * This gives us a chance to store the lost events
7365 * on the page.
7366 */
7367 if (reader->real_end)
7368 local_set(&bpage->commit, reader->real_end);
7369 /*
7370 * If there is room at the end of the page to save the
7371 * missed events, then record it there.
7372 */
7373 commit = rb_page_size(reader);
7374 if (buffer->subbuf_size - commit >= sizeof(missed_events)) {
7375 memcpy(&bpage->data[commit], &missed_events,
7376 sizeof(missed_events));
7377 local_add(RB_MISSED_STORED, &bpage->commit);
7378 }
7379 local_add(RB_MISSED_EVENTS, &bpage->commit);
7380 } else if (!WARN_ONCE(cpu_buffer->reader_page == cpu_buffer->tail_page,
7381 "Reader on commit with %ld missed events",
7382 missed_events)) {
7383 /*
7384 * There shouldn't be any missed events if the tail_page
7385 * is on the reader page. But if the tail page is not on the
7386 * reader page and the commit_page is, that would mean that
7387 * there's a commit_overrun (an interrupt preempted an
7388 * addition of an event and then filled the buffer
7389 * with new events). In this case it's not an
7390 * error, but it should still be reported.
7391 *
7392 * TODO: Add missed events to the page for user space to know.
7393 */
7394 pr_info("Ring buffer [%d] commit overrun lost %ld events at timestamp:%lld\n",
7395 cpu, missed_events, cpu_buffer->reader_page->page->time_stamp);
7396 }
7397 }
7398
7399 cpu_buffer->lost_events = 0;
7400
7401 goto consume;
7402
7403 out:
7404 /* Some archs do not have data cache coherency between kernel and user-space */
7405 flush_kernel_vmap_range(cpu_buffer->reader_page->page,
7406 buffer->subbuf_size + BUF_PAGE_HDR_SIZE);
7407
7408 rb_update_meta_page(cpu_buffer);
7409
7410 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7411 rb_put_mapped_buffer(cpu_buffer);
7412
7413 return 0;
7414 }
7415
7416 /*
7417 * We only allocate new buffers, never free them if the CPU goes down.
7418 * If we were to free the buffer, then the user would lose any trace that was in
7419 * the buffer.
7420 */
trace_rb_cpu_prepare(unsigned int cpu,struct hlist_node * node)7421 int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node)
7422 {
7423 struct trace_buffer *buffer;
7424 long nr_pages_same;
7425 int cpu_i;
7426 unsigned long nr_pages;
7427
7428 buffer = container_of(node, struct trace_buffer, node);
7429 if (cpumask_test_cpu(cpu, buffer->cpumask))
7430 return 0;
7431
7432 nr_pages = 0;
7433 nr_pages_same = 1;
7434 /* check if all cpu sizes are same */
7435 for_each_buffer_cpu(buffer, cpu_i) {
7436 /* fill in the size from first enabled cpu */
7437 if (nr_pages == 0)
7438 nr_pages = buffer->buffers[cpu_i]->nr_pages;
7439 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
7440 nr_pages_same = 0;
7441 break;
7442 }
7443 }
7444 /* allocate minimum pages, user can later expand it */
7445 if (!nr_pages_same)
7446 nr_pages = 2;
7447 buffer->buffers[cpu] =
7448 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
7449 if (!buffer->buffers[cpu]) {
7450 WARN(1, "failed to allocate ring buffer on CPU %u\n",
7451 cpu);
7452 return -ENOMEM;
7453 }
7454 smp_wmb();
7455 cpumask_set_cpu(cpu, buffer->cpumask);
7456 return 0;
7457 }
7458
7459 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
7460 /*
7461 * This is a basic integrity check of the ring buffer.
7462 * Late in the boot cycle this test will run when configured in.
7463 * It will kick off a thread per CPU that will go into a loop
7464 * writing to the per cpu ring buffer various sizes of data.
7465 * Some of the data will be large items, some small.
7466 *
7467 * Another thread is created that goes into a spin, sending out
7468 * IPIs to the other CPUs to also write into the ring buffer.
7469 * this is to test the nesting ability of the buffer.
7470 *
7471 * Basic stats are recorded and reported. If something in the
7472 * ring buffer should happen that's not expected, a big warning
7473 * is displayed and all ring buffers are disabled.
7474 */
7475 static struct task_struct *rb_threads[NR_CPUS] __initdata;
7476
7477 struct rb_test_data {
7478 struct trace_buffer *buffer;
7479 unsigned long events;
7480 unsigned long bytes_written;
7481 unsigned long bytes_alloc;
7482 unsigned long bytes_dropped;
7483 unsigned long events_nested;
7484 unsigned long bytes_written_nested;
7485 unsigned long bytes_alloc_nested;
7486 unsigned long bytes_dropped_nested;
7487 int min_size_nested;
7488 int max_size_nested;
7489 int max_size;
7490 int min_size;
7491 int cpu;
7492 int cnt;
7493 };
7494
7495 static struct rb_test_data rb_data[NR_CPUS] __initdata;
7496
7497 /* 1 meg per cpu */
7498 #define RB_TEST_BUFFER_SIZE 1048576
7499
7500 static char rb_string[] __initdata =
7501 "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
7502 "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
7503 "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
7504
7505 static bool rb_test_started __initdata;
7506
7507 struct rb_item {
7508 int size;
7509 char str[];
7510 };
7511
rb_write_something(struct rb_test_data * data,bool nested)7512 static __init int rb_write_something(struct rb_test_data *data, bool nested)
7513 {
7514 struct ring_buffer_event *event;
7515 struct rb_item *item;
7516 bool started;
7517 int event_len;
7518 int size;
7519 int len;
7520 int cnt;
7521
7522 /* Have nested writes different that what is written */
7523 cnt = data->cnt + (nested ? 27 : 0);
7524
7525 /* Multiply cnt by ~e, to make some unique increment */
7526 size = (cnt * 68 / 25) % (sizeof(rb_string) - 1);
7527
7528 len = size + sizeof(struct rb_item);
7529
7530 started = rb_test_started;
7531 /* read rb_test_started before checking buffer enabled */
7532 smp_rmb();
7533
7534 event = ring_buffer_lock_reserve(data->buffer, len);
7535 if (!event) {
7536 /* Ignore dropped events before test starts. */
7537 if (started) {
7538 if (nested)
7539 data->bytes_dropped_nested += len;
7540 else
7541 data->bytes_dropped += len;
7542 }
7543 return len;
7544 }
7545
7546 event_len = ring_buffer_event_length(event);
7547
7548 if (RB_WARN_ON(data->buffer, event_len < len))
7549 goto out;
7550
7551 item = ring_buffer_event_data(event);
7552 item->size = size;
7553 memcpy(item->str, rb_string, size);
7554
7555 if (nested) {
7556 data->bytes_alloc_nested += event_len;
7557 data->bytes_written_nested += len;
7558 data->events_nested++;
7559 if (!data->min_size_nested || len < data->min_size_nested)
7560 data->min_size_nested = len;
7561 if (len > data->max_size_nested)
7562 data->max_size_nested = len;
7563 } else {
7564 data->bytes_alloc += event_len;
7565 data->bytes_written += len;
7566 data->events++;
7567 if (!data->min_size || len < data->min_size)
7568 data->max_size = len;
7569 if (len > data->max_size)
7570 data->max_size = len;
7571 }
7572
7573 out:
7574 ring_buffer_unlock_commit(data->buffer);
7575
7576 return 0;
7577 }
7578
rb_test(void * arg)7579 static __init int rb_test(void *arg)
7580 {
7581 struct rb_test_data *data = arg;
7582
7583 while (!kthread_should_stop()) {
7584 rb_write_something(data, false);
7585 data->cnt++;
7586
7587 set_current_state(TASK_INTERRUPTIBLE);
7588 /* Now sleep between a min of 100-300us and a max of 1ms */
7589 usleep_range(((data->cnt % 3) + 1) * 100, 1000);
7590 }
7591
7592 return 0;
7593 }
7594
rb_ipi(void * ignore)7595 static __init void rb_ipi(void *ignore)
7596 {
7597 struct rb_test_data *data;
7598 int cpu = smp_processor_id();
7599
7600 data = &rb_data[cpu];
7601 rb_write_something(data, true);
7602 }
7603
rb_hammer_test(void * arg)7604 static __init int rb_hammer_test(void *arg)
7605 {
7606 while (!kthread_should_stop()) {
7607
7608 /* Send an IPI to all cpus to write data! */
7609 smp_call_function(rb_ipi, NULL, 1);
7610 /* No sleep, but for non preempt, let others run */
7611 schedule();
7612 }
7613
7614 return 0;
7615 }
7616
test_ringbuffer(void)7617 static __init int test_ringbuffer(void)
7618 {
7619 struct task_struct *rb_hammer;
7620 struct trace_buffer *buffer;
7621 int cpu;
7622 int ret = 0;
7623
7624 if (security_locked_down(LOCKDOWN_TRACEFS)) {
7625 pr_warn("Lockdown is enabled, skipping ring buffer tests\n");
7626 return 0;
7627 }
7628
7629 pr_info("Running ring buffer tests...\n");
7630
7631 buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
7632 if (WARN_ON(!buffer))
7633 return 0;
7634
7635 /* Disable buffer so that threads can't write to it yet */
7636 ring_buffer_record_off(buffer);
7637
7638 for_each_online_cpu(cpu) {
7639 rb_data[cpu].buffer = buffer;
7640 rb_data[cpu].cpu = cpu;
7641 rb_data[cpu].cnt = cpu;
7642 rb_threads[cpu] = kthread_run_on_cpu(rb_test, &rb_data[cpu],
7643 cpu, "rbtester/%u");
7644 if (WARN_ON(IS_ERR(rb_threads[cpu]))) {
7645 pr_cont("FAILED\n");
7646 ret = PTR_ERR(rb_threads[cpu]);
7647 goto out_free;
7648 }
7649 }
7650
7651 /* Now create the rb hammer! */
7652 rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
7653 if (WARN_ON(IS_ERR(rb_hammer))) {
7654 pr_cont("FAILED\n");
7655 ret = PTR_ERR(rb_hammer);
7656 goto out_free;
7657 }
7658
7659 ring_buffer_record_on(buffer);
7660 /*
7661 * Show buffer is enabled before setting rb_test_started.
7662 * Yes there's a small race window where events could be
7663 * dropped and the thread wont catch it. But when a ring
7664 * buffer gets enabled, there will always be some kind of
7665 * delay before other CPUs see it. Thus, we don't care about
7666 * those dropped events. We care about events dropped after
7667 * the threads see that the buffer is active.
7668 */
7669 smp_wmb();
7670 rb_test_started = true;
7671
7672 set_current_state(TASK_INTERRUPTIBLE);
7673 /* Just run for 10 seconds */;
7674 schedule_timeout(10 * HZ);
7675
7676 kthread_stop(rb_hammer);
7677
7678 out_free:
7679 for_each_online_cpu(cpu) {
7680 if (!rb_threads[cpu])
7681 break;
7682 kthread_stop(rb_threads[cpu]);
7683 }
7684 if (ret) {
7685 ring_buffer_free(buffer);
7686 return ret;
7687 }
7688
7689 /* Report! */
7690 pr_info("finished\n");
7691 for_each_online_cpu(cpu) {
7692 struct ring_buffer_event *event;
7693 struct rb_test_data *data = &rb_data[cpu];
7694 struct rb_item *item;
7695 unsigned long total_events;
7696 unsigned long total_dropped;
7697 unsigned long total_written;
7698 unsigned long total_alloc;
7699 unsigned long total_read = 0;
7700 unsigned long total_size = 0;
7701 unsigned long total_len = 0;
7702 unsigned long total_lost = 0;
7703 unsigned long lost;
7704 int big_event_size;
7705 int small_event_size;
7706
7707 ret = -1;
7708
7709 total_events = data->events + data->events_nested;
7710 total_written = data->bytes_written + data->bytes_written_nested;
7711 total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
7712 total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
7713
7714 big_event_size = data->max_size + data->max_size_nested;
7715 small_event_size = data->min_size + data->min_size_nested;
7716
7717 pr_info("CPU %d:\n", cpu);
7718 pr_info(" events: %ld\n", total_events);
7719 pr_info(" dropped bytes: %ld\n", total_dropped);
7720 pr_info(" alloced bytes: %ld\n", total_alloc);
7721 pr_info(" written bytes: %ld\n", total_written);
7722 pr_info(" biggest event: %d\n", big_event_size);
7723 pr_info(" smallest event: %d\n", small_event_size);
7724
7725 if (RB_WARN_ON(buffer, total_dropped))
7726 break;
7727
7728 ret = 0;
7729
7730 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
7731 total_lost += lost;
7732 item = ring_buffer_event_data(event);
7733 total_len += ring_buffer_event_length(event);
7734 total_size += item->size + sizeof(struct rb_item);
7735 if (memcmp(&item->str[0], rb_string, item->size) != 0) {
7736 pr_info("FAILED!\n");
7737 pr_info("buffer had: %.*s\n", item->size, item->str);
7738 pr_info("expected: %.*s\n", item->size, rb_string);
7739 RB_WARN_ON(buffer, 1);
7740 ret = -1;
7741 break;
7742 }
7743 total_read++;
7744 }
7745 if (ret)
7746 break;
7747
7748 ret = -1;
7749
7750 pr_info(" read events: %ld\n", total_read);
7751 pr_info(" lost events: %ld\n", total_lost);
7752 pr_info(" total events: %ld\n", total_lost + total_read);
7753 pr_info(" recorded len bytes: %ld\n", total_len);
7754 pr_info(" recorded size bytes: %ld\n", total_size);
7755 if (total_lost) {
7756 pr_info(" With dropped events, record len and size may not match\n"
7757 " alloced and written from above\n");
7758 } else {
7759 if (RB_WARN_ON(buffer, total_len != total_alloc ||
7760 total_size != total_written))
7761 break;
7762 }
7763 if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
7764 break;
7765
7766 ret = 0;
7767 }
7768 if (!ret)
7769 pr_info("Ring buffer PASSED!\n");
7770
7771 ring_buffer_free(buffer);
7772 return 0;
7773 }
7774
7775 late_initcall(test_ringbuffer);
7776 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */
7777