• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Remote Processor Framework
4  *
5  * Copyright (C) 2011 Texas Instruments, Inc.
6  * Copyright (C) 2011 Google, Inc.
7  *
8  * Ohad Ben-Cohen <ohad@wizery.com>
9  * Brian Swetland <swetland@google.com>
10  * Mark Grosen <mgrosen@ti.com>
11  * Fernando Guzman Lugo <fernando.lugo@ti.com>
12  * Suman Anna <s-anna@ti.com>
13  * Robert Tivy <rtivy@ti.com>
14  * Armando Uribe De Leon <x0095078@ti.com>
15  */
16 
17 #define pr_fmt(fmt)    "%s: " fmt, __func__
18 
19 #include <linux/delay.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/device.h>
23 #include <linux/panic_notifier.h>
24 #include <linux/slab.h>
25 #include <linux/mutex.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/firmware.h>
28 #include <linux/string.h>
29 #include <linux/debugfs.h>
30 #include <linux/rculist.h>
31 #include <linux/remoteproc.h>
32 #include <linux/iommu.h>
33 #include <linux/idr.h>
34 #include <linux/elf.h>
35 #include <linux/crc32.h>
36 #include <linux/of_platform.h>
37 #include <linux/of_reserved_mem.h>
38 #include <linux/virtio_ids.h>
39 #include <linux/virtio_ring.h>
40 #include <asm/byteorder.h>
41 #include <linux/platform_device.h>
42 #include <trace/hooks/remoteproc.h>
43 
44 #include "remoteproc_internal.h"
45 
46 #define HIGH_BITS_MASK 0xFFFFFFFF00000000ULL
47 
48 static DEFINE_MUTEX(rproc_list_mutex);
49 static LIST_HEAD(rproc_list);
50 static struct notifier_block rproc_panic_nb;
51 
52 typedef int (*rproc_handle_resource_t)(struct rproc *rproc,
53 				 void *, int offset, int avail);
54 
55 static int rproc_alloc_carveout(struct rproc *rproc,
56 				struct rproc_mem_entry *mem);
57 static int rproc_release_carveout(struct rproc *rproc,
58 				  struct rproc_mem_entry *mem);
59 
60 /* Unique indices for remoteproc devices */
61 static DEFINE_IDA(rproc_dev_index);
62 static struct workqueue_struct *rproc_recovery_wq;
63 
64 static const char * const rproc_crash_names[] = {
65 	[RPROC_MMUFAULT]	= "mmufault",
66 	[RPROC_WATCHDOG]	= "watchdog",
67 	[RPROC_FATAL_ERROR]	= "fatal error",
68 };
69 
70 /* translate rproc_crash_type to string */
rproc_crash_to_string(enum rproc_crash_type type)71 static const char *rproc_crash_to_string(enum rproc_crash_type type)
72 {
73 	if (type < ARRAY_SIZE(rproc_crash_names))
74 		return rproc_crash_names[type];
75 	return "unknown";
76 }
77 
78 /*
79  * This is the IOMMU fault handler we register with the IOMMU API
80  * (when relevant; not all remote processors access memory through
81  * an IOMMU).
82  *
83  * IOMMU core will invoke this handler whenever the remote processor
84  * will try to access an unmapped device address.
85  */
rproc_iommu_fault(struct iommu_domain * domain,struct device * dev,unsigned long iova,int flags,void * token)86 static int rproc_iommu_fault(struct iommu_domain *domain, struct device *dev,
87 			     unsigned long iova, int flags, void *token)
88 {
89 	struct rproc *rproc = token;
90 
91 	dev_err(dev, "iommu fault: da 0x%lx flags 0x%x\n", iova, flags);
92 
93 	rproc_report_crash(rproc, RPROC_MMUFAULT);
94 
95 	/*
96 	 * Let the iommu core know we're not really handling this fault;
97 	 * we just used it as a recovery trigger.
98 	 */
99 	return -ENOSYS;
100 }
101 
rproc_enable_iommu(struct rproc * rproc)102 static int rproc_enable_iommu(struct rproc *rproc)
103 {
104 	struct iommu_domain *domain;
105 	struct device *dev = rproc->dev.parent;
106 	int ret;
107 
108 	if (!rproc->has_iommu) {
109 		dev_dbg(dev, "iommu not present\n");
110 		return 0;
111 	}
112 
113 	domain = iommu_domain_alloc(dev->bus);
114 	if (!domain) {
115 		dev_err(dev, "can't alloc iommu domain\n");
116 		return -ENOMEM;
117 	}
118 
119 	iommu_set_fault_handler(domain, rproc_iommu_fault, rproc);
120 
121 	ret = iommu_attach_device(domain, dev);
122 	if (ret) {
123 		dev_err(dev, "can't attach iommu device: %d\n", ret);
124 		goto free_domain;
125 	}
126 
127 	rproc->domain = domain;
128 
129 	return 0;
130 
131 free_domain:
132 	iommu_domain_free(domain);
133 	return ret;
134 }
135 
rproc_disable_iommu(struct rproc * rproc)136 static void rproc_disable_iommu(struct rproc *rproc)
137 {
138 	struct iommu_domain *domain = rproc->domain;
139 	struct device *dev = rproc->dev.parent;
140 
141 	if (!domain)
142 		return;
143 
144 	iommu_detach_device(domain, dev);
145 	iommu_domain_free(domain);
146 }
147 
rproc_va_to_pa(void * cpu_addr)148 phys_addr_t rproc_va_to_pa(void *cpu_addr)
149 {
150 	/*
151 	 * Return physical address according to virtual address location
152 	 * - in vmalloc: if region ioremapped or defined as dma_alloc_coherent
153 	 * - in kernel: if region allocated in generic dma memory pool
154 	 */
155 	if (is_vmalloc_addr(cpu_addr)) {
156 		return page_to_phys(vmalloc_to_page(cpu_addr)) +
157 				    offset_in_page(cpu_addr);
158 	}
159 
160 	WARN_ON(!virt_addr_valid(cpu_addr));
161 	return virt_to_phys(cpu_addr);
162 }
163 EXPORT_SYMBOL(rproc_va_to_pa);
164 
165 /**
166  * rproc_da_to_va() - lookup the kernel virtual address for a remoteproc address
167  * @rproc: handle of a remote processor
168  * @da: remoteproc device address to translate
169  * @len: length of the memory region @da is pointing to
170  * @is_iomem: optional pointer filled in to indicate if @da is iomapped memory
171  *
172  * Some remote processors will ask us to allocate them physically contiguous
173  * memory regions (which we call "carveouts"), and map them to specific
174  * device addresses (which are hardcoded in the firmware). They may also have
175  * dedicated memory regions internal to the processors, and use them either
176  * exclusively or alongside carveouts.
177  *
178  * They may then ask us to copy objects into specific device addresses (e.g.
179  * code/data sections) or expose us certain symbols in other device address
180  * (e.g. their trace buffer).
181  *
182  * This function is a helper function with which we can go over the allocated
183  * carveouts and translate specific device addresses to kernel virtual addresses
184  * so we can access the referenced memory. This function also allows to perform
185  * translations on the internal remoteproc memory regions through a platform
186  * implementation specific da_to_va ops, if present.
187  *
188  * Note: phys_to_virt(iommu_iova_to_phys(rproc->domain, da)) will work too,
189  * but only on kernel direct mapped RAM memory. Instead, we're just using
190  * here the output of the DMA API for the carveouts, which should be more
191  * correct.
192  *
193  * Return: a valid kernel address on success or NULL on failure
194  */
rproc_da_to_va(struct rproc * rproc,u64 da,size_t len,bool * is_iomem)195 void *rproc_da_to_va(struct rproc *rproc, u64 da, size_t len, bool *is_iomem)
196 {
197 	struct rproc_mem_entry *carveout;
198 	void *ptr = NULL;
199 
200 	if (rproc->ops->da_to_va) {
201 		ptr = rproc->ops->da_to_va(rproc, da, len, is_iomem);
202 		if (ptr)
203 			goto out;
204 	}
205 
206 	list_for_each_entry(carveout, &rproc->carveouts, node) {
207 		int offset = da - carveout->da;
208 
209 		/*  Verify that carveout is allocated */
210 		if (!carveout->va)
211 			continue;
212 
213 		/* try next carveout if da is too small */
214 		if (offset < 0)
215 			continue;
216 
217 		/* try next carveout if da is too large */
218 		if (offset + len > carveout->len)
219 			continue;
220 
221 		ptr = carveout->va + offset;
222 
223 		if (is_iomem)
224 			*is_iomem = carveout->is_iomem;
225 
226 		break;
227 	}
228 
229 out:
230 	return ptr;
231 }
232 EXPORT_SYMBOL(rproc_da_to_va);
233 
234 /**
235  * rproc_find_carveout_by_name() - lookup the carveout region by a name
236  * @rproc: handle of a remote processor
237  * @name: carveout name to find (format string)
238  * @...: optional parameters matching @name string
239  *
240  * Platform driver has the capability to register some pre-allacoted carveout
241  * (physically contiguous memory regions) before rproc firmware loading and
242  * associated resource table analysis. These regions may be dedicated memory
243  * regions internal to the coprocessor or specified DDR region with specific
244  * attributes
245  *
246  * This function is a helper function with which we can go over the
247  * allocated carveouts and return associated region characteristics like
248  * coprocessor address, length or processor virtual address.
249  *
250  * Return: a valid pointer on carveout entry on success or NULL on failure.
251  */
252 __printf(2, 3)
253 struct rproc_mem_entry *
rproc_find_carveout_by_name(struct rproc * rproc,const char * name,...)254 rproc_find_carveout_by_name(struct rproc *rproc, const char *name, ...)
255 {
256 	va_list args;
257 	char _name[32];
258 	struct rproc_mem_entry *carveout, *mem = NULL;
259 
260 	if (!name)
261 		return NULL;
262 
263 	va_start(args, name);
264 	vsnprintf(_name, sizeof(_name), name, args);
265 	va_end(args);
266 
267 	list_for_each_entry(carveout, &rproc->carveouts, node) {
268 		/* Compare carveout and requested names */
269 		if (!strcmp(carveout->name, _name)) {
270 			mem = carveout;
271 			break;
272 		}
273 	}
274 
275 	return mem;
276 }
277 
278 /**
279  * rproc_check_carveout_da() - Check specified carveout da configuration
280  * @rproc: handle of a remote processor
281  * @mem: pointer on carveout to check
282  * @da: area device address
283  * @len: associated area size
284  *
285  * This function is a helper function to verify requested device area (couple
286  * da, len) is part of specified carveout.
287  * If da is not set (defined as FW_RSC_ADDR_ANY), only requested length is
288  * checked.
289  *
290  * Return: 0 if carveout matches request else error
291  */
rproc_check_carveout_da(struct rproc * rproc,struct rproc_mem_entry * mem,u32 da,u32 len)292 static int rproc_check_carveout_da(struct rproc *rproc,
293 				   struct rproc_mem_entry *mem, u32 da, u32 len)
294 {
295 	struct device *dev = &rproc->dev;
296 	int delta;
297 
298 	/* Check requested resource length */
299 	if (len > mem->len) {
300 		dev_err(dev, "Registered carveout doesn't fit len request\n");
301 		return -EINVAL;
302 	}
303 
304 	if (da != FW_RSC_ADDR_ANY && mem->da == FW_RSC_ADDR_ANY) {
305 		/* Address doesn't match registered carveout configuration */
306 		return -EINVAL;
307 	} else if (da != FW_RSC_ADDR_ANY && mem->da != FW_RSC_ADDR_ANY) {
308 		delta = da - mem->da;
309 
310 		/* Check requested resource belongs to registered carveout */
311 		if (delta < 0) {
312 			dev_err(dev,
313 				"Registered carveout doesn't fit da request\n");
314 			return -EINVAL;
315 		}
316 
317 		if (delta + len > mem->len) {
318 			dev_err(dev,
319 				"Registered carveout doesn't fit len request\n");
320 			return -EINVAL;
321 		}
322 	}
323 
324 	return 0;
325 }
326 
rproc_alloc_vring(struct rproc_vdev * rvdev,int i)327 int rproc_alloc_vring(struct rproc_vdev *rvdev, int i)
328 {
329 	struct rproc *rproc = rvdev->rproc;
330 	struct device *dev = &rproc->dev;
331 	struct rproc_vring *rvring = &rvdev->vring[i];
332 	struct fw_rsc_vdev *rsc;
333 	int ret, notifyid;
334 	struct rproc_mem_entry *mem;
335 	size_t size;
336 
337 	/* actual size of vring (in bytes) */
338 	size = PAGE_ALIGN(vring_size(rvring->num, rvring->align));
339 
340 	rsc = (void *)rproc->table_ptr + rvdev->rsc_offset;
341 
342 	/* Search for pre-registered carveout */
343 	mem = rproc_find_carveout_by_name(rproc, "vdev%dvring%d", rvdev->index,
344 					  i);
345 	if (mem) {
346 		if (rproc_check_carveout_da(rproc, mem, rsc->vring[i].da, size))
347 			return -ENOMEM;
348 	} else {
349 		/* Register carveout in list */
350 		mem = rproc_mem_entry_init(dev, NULL, 0,
351 					   size, rsc->vring[i].da,
352 					   rproc_alloc_carveout,
353 					   rproc_release_carveout,
354 					   "vdev%dvring%d",
355 					   rvdev->index, i);
356 		if (!mem) {
357 			dev_err(dev, "Can't allocate memory entry structure\n");
358 			return -ENOMEM;
359 		}
360 
361 		rproc_add_carveout(rproc, mem);
362 	}
363 
364 	/*
365 	 * Assign an rproc-wide unique index for this vring
366 	 * TODO: assign a notifyid for rvdev updates as well
367 	 * TODO: support predefined notifyids (via resource table)
368 	 */
369 	ret = idr_alloc(&rproc->notifyids, rvring, 0, 0, GFP_KERNEL);
370 	if (ret < 0) {
371 		dev_err(dev, "idr_alloc failed: %d\n", ret);
372 		return ret;
373 	}
374 	notifyid = ret;
375 
376 	/* Potentially bump max_notifyid */
377 	if (notifyid > rproc->max_notifyid)
378 		rproc->max_notifyid = notifyid;
379 
380 	rvring->notifyid = notifyid;
381 
382 	/* Let the rproc know the notifyid of this vring.*/
383 	rsc->vring[i].notifyid = notifyid;
384 	return 0;
385 }
386 
387 int
rproc_parse_vring(struct rproc_vdev * rvdev,struct fw_rsc_vdev * rsc,int i)388 rproc_parse_vring(struct rproc_vdev *rvdev, struct fw_rsc_vdev *rsc, int i)
389 {
390 	struct rproc *rproc = rvdev->rproc;
391 	struct device *dev = &rproc->dev;
392 	struct fw_rsc_vdev_vring *vring = &rsc->vring[i];
393 	struct rproc_vring *rvring = &rvdev->vring[i];
394 
395 	dev_dbg(dev, "vdev rsc: vring%d: da 0x%x, qsz %d, align %d\n",
396 		i, vring->da, vring->num, vring->align);
397 
398 	/* verify queue size and vring alignment are sane */
399 	if (!vring->num || !vring->align) {
400 		dev_err(dev, "invalid qsz (%d) or alignment (%d)\n",
401 			vring->num, vring->align);
402 		return -EINVAL;
403 	}
404 
405 	rvring->num = vring->num;
406 	rvring->align = vring->align;
407 	rvring->rvdev = rvdev;
408 
409 	return 0;
410 }
411 
rproc_free_vring(struct rproc_vring * rvring)412 void rproc_free_vring(struct rproc_vring *rvring)
413 {
414 	struct rproc *rproc = rvring->rvdev->rproc;
415 	int idx = rvring - rvring->rvdev->vring;
416 	struct fw_rsc_vdev *rsc;
417 
418 	idr_remove(&rproc->notifyids, rvring->notifyid);
419 
420 	/*
421 	 * At this point rproc_stop() has been called and the installed resource
422 	 * table in the remote processor memory may no longer be accessible. As
423 	 * such and as per rproc_stop(), rproc->table_ptr points to the cached
424 	 * resource table (rproc->cached_table).  The cached resource table is
425 	 * only available when a remote processor has been booted by the
426 	 * remoteproc core, otherwise it is NULL.
427 	 *
428 	 * Based on the above, reset the virtio device section in the cached
429 	 * resource table only if there is one to work with.
430 	 */
431 	if (rproc->table_ptr) {
432 		rsc = (void *)rproc->table_ptr + rvring->rvdev->rsc_offset;
433 		rsc->vring[idx].da = 0;
434 		rsc->vring[idx].notifyid = -1;
435 	}
436 }
437 
rproc_add_rvdev(struct rproc * rproc,struct rproc_vdev * rvdev)438 void rproc_add_rvdev(struct rproc *rproc, struct rproc_vdev *rvdev)
439 {
440 	if (rvdev && rproc)
441 		list_add_tail(&rvdev->node, &rproc->rvdevs);
442 }
443 
rproc_remove_rvdev(struct rproc_vdev * rvdev)444 void rproc_remove_rvdev(struct rproc_vdev *rvdev)
445 {
446 	if (rvdev)
447 		list_del(&rvdev->node);
448 }
449 /**
450  * rproc_handle_vdev() - handle a vdev fw resource
451  * @rproc: the remote processor
452  * @ptr: the vring resource descriptor
453  * @offset: offset of the resource entry
454  * @avail: size of available data (for sanity checking the image)
455  *
456  * This resource entry requests the host to statically register a virtio
457  * device (vdev), and setup everything needed to support it. It contains
458  * everything needed to make it possible: the virtio device id, virtio
459  * device features, vrings information, virtio config space, etc...
460  *
461  * Before registering the vdev, the vrings are allocated from non-cacheable
462  * physically contiguous memory. Currently we only support two vrings per
463  * remote processor (temporary limitation). We might also want to consider
464  * doing the vring allocation only later when ->find_vqs() is invoked, and
465  * then release them upon ->del_vqs().
466  *
467  * Note: @da is currently not really handled correctly: we dynamically
468  * allocate it using the DMA API, ignoring requested hard coded addresses,
469  * and we don't take care of any required IOMMU programming. This is all
470  * going to be taken care of when the generic iommu-based DMA API will be
471  * merged. Meanwhile, statically-addressed iommu-based firmware images should
472  * use RSC_DEVMEM resource entries to map their required @da to the physical
473  * address of their base CMA region (ouch, hacky!).
474  *
475  * Return: 0 on success, or an appropriate error code otherwise
476  */
rproc_handle_vdev(struct rproc * rproc,void * ptr,int offset,int avail)477 static int rproc_handle_vdev(struct rproc *rproc, void *ptr,
478 			     int offset, int avail)
479 {
480 	struct fw_rsc_vdev *rsc = ptr;
481 	struct device *dev = &rproc->dev;
482 	struct rproc_vdev *rvdev;
483 	size_t rsc_size;
484 	struct rproc_vdev_data rvdev_data;
485 	struct platform_device *pdev;
486 
487 	/* make sure resource isn't truncated */
488 	rsc_size = struct_size(rsc, vring, rsc->num_of_vrings);
489 	if (size_add(rsc_size, rsc->config_len) > avail) {
490 		dev_err(dev, "vdev rsc is truncated\n");
491 		return -EINVAL;
492 	}
493 
494 	/* make sure reserved bytes are zeroes */
495 	if (rsc->reserved[0] || rsc->reserved[1]) {
496 		dev_err(dev, "vdev rsc has non zero reserved bytes\n");
497 		return -EINVAL;
498 	}
499 
500 	dev_dbg(dev, "vdev rsc: id %d, dfeatures 0x%x, cfg len %d, %d vrings\n",
501 		rsc->id, rsc->dfeatures, rsc->config_len, rsc->num_of_vrings);
502 
503 	/* we currently support only two vrings per rvdev */
504 	if (rsc->num_of_vrings > ARRAY_SIZE(rvdev->vring)) {
505 		dev_err(dev, "too many vrings: %d\n", rsc->num_of_vrings);
506 		return -EINVAL;
507 	}
508 
509 	rvdev_data.id = rsc->id;
510 	rvdev_data.index = rproc->nb_vdev++;
511 	rvdev_data.rsc_offset = offset;
512 	rvdev_data.rsc = rsc;
513 
514 	/*
515 	 * When there is more than one remote processor, rproc->nb_vdev number is
516 	 * same for each separate instances of "rproc". If rvdev_data.index is used
517 	 * as device id, then we get duplication in sysfs, so need to use
518 	 * PLATFORM_DEVID_AUTO to auto select device id.
519 	 */
520 	pdev = platform_device_register_data(dev, "rproc-virtio", PLATFORM_DEVID_AUTO, &rvdev_data,
521 					     sizeof(rvdev_data));
522 	if (IS_ERR(pdev)) {
523 		dev_err(dev, "failed to create rproc-virtio device\n");
524 		return PTR_ERR(pdev);
525 	}
526 
527 	return 0;
528 }
529 
530 /**
531  * rproc_handle_trace() - handle a shared trace buffer resource
532  * @rproc: the remote processor
533  * @ptr: the trace resource descriptor
534  * @offset: offset of the resource entry
535  * @avail: size of available data (for sanity checking the image)
536  *
537  * In case the remote processor dumps trace logs into memory,
538  * export it via debugfs.
539  *
540  * Currently, the 'da' member of @rsc should contain the device address
541  * where the remote processor is dumping the traces. Later we could also
542  * support dynamically allocating this address using the generic
543  * DMA API (but currently there isn't a use case for that).
544  *
545  * Return: 0 on success, or an appropriate error code otherwise
546  */
rproc_handle_trace(struct rproc * rproc,void * ptr,int offset,int avail)547 static int rproc_handle_trace(struct rproc *rproc, void *ptr,
548 			      int offset, int avail)
549 {
550 	struct fw_rsc_trace *rsc = ptr;
551 	struct rproc_debug_trace *trace;
552 	struct device *dev = &rproc->dev;
553 	char name[15];
554 
555 	if (sizeof(*rsc) > avail) {
556 		dev_err(dev, "trace rsc is truncated\n");
557 		return -EINVAL;
558 	}
559 
560 	/* make sure reserved bytes are zeroes */
561 	if (rsc->reserved) {
562 		dev_err(dev, "trace rsc has non zero reserved bytes\n");
563 		return -EINVAL;
564 	}
565 
566 	trace = kzalloc(sizeof(*trace), GFP_KERNEL);
567 	if (!trace)
568 		return -ENOMEM;
569 
570 	/* set the trace buffer dma properties */
571 	trace->trace_mem.len = rsc->len;
572 	trace->trace_mem.da = rsc->da;
573 
574 	/* set pointer on rproc device */
575 	trace->rproc = rproc;
576 
577 	/* make sure snprintf always null terminates, even if truncating */
578 	snprintf(name, sizeof(name), "trace%d", rproc->num_traces);
579 
580 	/* create the debugfs entry */
581 	trace->tfile = rproc_create_trace_file(name, rproc, trace);
582 
583 	list_add_tail(&trace->node, &rproc->traces);
584 
585 	rproc->num_traces++;
586 
587 	dev_dbg(dev, "%s added: da 0x%x, len 0x%x\n",
588 		name, rsc->da, rsc->len);
589 
590 	return 0;
591 }
592 
593 /**
594  * rproc_handle_devmem() - handle devmem resource entry
595  * @rproc: remote processor handle
596  * @ptr: the devmem resource entry
597  * @offset: offset of the resource entry
598  * @avail: size of available data (for sanity checking the image)
599  *
600  * Remote processors commonly need to access certain on-chip peripherals.
601  *
602  * Some of these remote processors access memory via an iommu device,
603  * and might require us to configure their iommu before they can access
604  * the on-chip peripherals they need.
605  *
606  * This resource entry is a request to map such a peripheral device.
607  *
608  * These devmem entries will contain the physical address of the device in
609  * the 'pa' member. If a specific device address is expected, then 'da' will
610  * contain it (currently this is the only use case supported). 'len' will
611  * contain the size of the physical region we need to map.
612  *
613  * Currently we just "trust" those devmem entries to contain valid physical
614  * addresses, but this is going to change: we want the implementations to
615  * tell us ranges of physical addresses the firmware is allowed to request,
616  * and not allow firmwares to request access to physical addresses that
617  * are outside those ranges.
618  *
619  * Return: 0 on success, or an appropriate error code otherwise
620  */
rproc_handle_devmem(struct rproc * rproc,void * ptr,int offset,int avail)621 static int rproc_handle_devmem(struct rproc *rproc, void *ptr,
622 			       int offset, int avail)
623 {
624 	struct fw_rsc_devmem *rsc = ptr;
625 	struct rproc_mem_entry *mapping;
626 	struct device *dev = &rproc->dev;
627 	int ret;
628 
629 	/* no point in handling this resource without a valid iommu domain */
630 	if (!rproc->domain)
631 		return -EINVAL;
632 
633 	if (sizeof(*rsc) > avail) {
634 		dev_err(dev, "devmem rsc is truncated\n");
635 		return -EINVAL;
636 	}
637 
638 	/* make sure reserved bytes are zeroes */
639 	if (rsc->reserved) {
640 		dev_err(dev, "devmem rsc has non zero reserved bytes\n");
641 		return -EINVAL;
642 	}
643 
644 	mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
645 	if (!mapping)
646 		return -ENOMEM;
647 
648 	ret = iommu_map(rproc->domain, rsc->da, rsc->pa, rsc->len, rsc->flags,
649 			GFP_KERNEL);
650 	if (ret) {
651 		dev_err(dev, "failed to map devmem: %d\n", ret);
652 		goto out;
653 	}
654 
655 	/*
656 	 * We'll need this info later when we'll want to unmap everything
657 	 * (e.g. on shutdown).
658 	 *
659 	 * We can't trust the remote processor not to change the resource
660 	 * table, so we must maintain this info independently.
661 	 */
662 	mapping->da = rsc->da;
663 	mapping->len = rsc->len;
664 	list_add_tail(&mapping->node, &rproc->mappings);
665 
666 	dev_dbg(dev, "mapped devmem pa 0x%x, da 0x%x, len 0x%x\n",
667 		rsc->pa, rsc->da, rsc->len);
668 
669 	return 0;
670 
671 out:
672 	kfree(mapping);
673 	return ret;
674 }
675 
676 /**
677  * rproc_alloc_carveout() - allocated specified carveout
678  * @rproc: rproc handle
679  * @mem: the memory entry to allocate
680  *
681  * This function allocate specified memory entry @mem using
682  * dma_alloc_coherent() as default allocator
683  *
684  * Return: 0 on success, or an appropriate error code otherwise
685  */
rproc_alloc_carveout(struct rproc * rproc,struct rproc_mem_entry * mem)686 static int rproc_alloc_carveout(struct rproc *rproc,
687 				struct rproc_mem_entry *mem)
688 {
689 	struct rproc_mem_entry *mapping = NULL;
690 	struct device *dev = &rproc->dev;
691 	dma_addr_t dma;
692 	void *va;
693 	int ret;
694 
695 	va = dma_alloc_coherent(dev->parent, mem->len, &dma, GFP_KERNEL);
696 	if (!va) {
697 		dev_err(dev->parent,
698 			"failed to allocate dma memory: len 0x%zx\n",
699 			mem->len);
700 		return -ENOMEM;
701 	}
702 
703 	dev_dbg(dev, "carveout va %pK, dma %pad, len 0x%zx\n",
704 		va, &dma, mem->len);
705 
706 	if (mem->da != FW_RSC_ADDR_ANY && !rproc->domain) {
707 		/*
708 		 * Check requested da is equal to dma address
709 		 * and print a warn message in case of missalignment.
710 		 * Don't stop rproc_start sequence as coprocessor may
711 		 * build pa to da translation on its side.
712 		 */
713 		if (mem->da != (u32)dma)
714 			dev_warn(dev->parent,
715 				 "Allocated carveout doesn't fit device address request\n");
716 	}
717 
718 	/*
719 	 * Ok, this is non-standard.
720 	 *
721 	 * Sometimes we can't rely on the generic iommu-based DMA API
722 	 * to dynamically allocate the device address and then set the IOMMU
723 	 * tables accordingly, because some remote processors might
724 	 * _require_ us to use hard coded device addresses that their
725 	 * firmware was compiled with.
726 	 *
727 	 * In this case, we must use the IOMMU API directly and map
728 	 * the memory to the device address as expected by the remote
729 	 * processor.
730 	 *
731 	 * Obviously such remote processor devices should not be configured
732 	 * to use the iommu-based DMA API: we expect 'dma' to contain the
733 	 * physical address in this case.
734 	 */
735 	if (mem->da != FW_RSC_ADDR_ANY && rproc->domain) {
736 		mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
737 		if (!mapping) {
738 			ret = -ENOMEM;
739 			goto dma_free;
740 		}
741 
742 		ret = iommu_map(rproc->domain, mem->da, dma, mem->len,
743 				mem->flags, GFP_KERNEL);
744 		if (ret) {
745 			dev_err(dev, "iommu_map failed: %d\n", ret);
746 			goto free_mapping;
747 		}
748 
749 		/*
750 		 * We'll need this info later when we'll want to unmap
751 		 * everything (e.g. on shutdown).
752 		 *
753 		 * We can't trust the remote processor not to change the
754 		 * resource table, so we must maintain this info independently.
755 		 */
756 		mapping->da = mem->da;
757 		mapping->len = mem->len;
758 		list_add_tail(&mapping->node, &rproc->mappings);
759 
760 		dev_dbg(dev, "carveout mapped 0x%x to %pad\n",
761 			mem->da, &dma);
762 	}
763 
764 	if (mem->da == FW_RSC_ADDR_ANY) {
765 		/* Update device address as undefined by requester */
766 		if ((u64)dma & HIGH_BITS_MASK)
767 			dev_warn(dev, "DMA address cast in 32bit to fit resource table format\n");
768 
769 		mem->da = (u32)dma;
770 	}
771 
772 	mem->dma = dma;
773 	mem->va = va;
774 
775 	return 0;
776 
777 free_mapping:
778 	kfree(mapping);
779 dma_free:
780 	dma_free_coherent(dev->parent, mem->len, va, dma);
781 	return ret;
782 }
783 
784 /**
785  * rproc_release_carveout() - release acquired carveout
786  * @rproc: rproc handle
787  * @mem: the memory entry to release
788  *
789  * This function releases specified memory entry @mem allocated via
790  * rproc_alloc_carveout() function by @rproc.
791  *
792  * Return: 0 on success, or an appropriate error code otherwise
793  */
rproc_release_carveout(struct rproc * rproc,struct rproc_mem_entry * mem)794 static int rproc_release_carveout(struct rproc *rproc,
795 				  struct rproc_mem_entry *mem)
796 {
797 	struct device *dev = &rproc->dev;
798 
799 	/* clean up carveout allocations */
800 	dma_free_coherent(dev->parent, mem->len, mem->va, mem->dma);
801 	return 0;
802 }
803 
804 /**
805  * rproc_handle_carveout() - handle phys contig memory allocation requests
806  * @rproc: rproc handle
807  * @ptr: the resource entry
808  * @offset: offset of the resource entry
809  * @avail: size of available data (for image validation)
810  *
811  * This function will handle firmware requests for allocation of physically
812  * contiguous memory regions.
813  *
814  * These request entries should come first in the firmware's resource table,
815  * as other firmware entries might request placing other data objects inside
816  * these memory regions (e.g. data/code segments, trace resource entries, ...).
817  *
818  * Allocating memory this way helps utilizing the reserved physical memory
819  * (e.g. CMA) more efficiently, and also minimizes the number of TLB entries
820  * needed to map it (in case @rproc is using an IOMMU). Reducing the TLB
821  * pressure is important; it may have a substantial impact on performance.
822  *
823  * Return: 0 on success, or an appropriate error code otherwise
824  */
rproc_handle_carveout(struct rproc * rproc,void * ptr,int offset,int avail)825 static int rproc_handle_carveout(struct rproc *rproc,
826 				 void *ptr, int offset, int avail)
827 {
828 	struct fw_rsc_carveout *rsc = ptr;
829 	struct rproc_mem_entry *carveout;
830 	struct device *dev = &rproc->dev;
831 
832 	if (sizeof(*rsc) > avail) {
833 		dev_err(dev, "carveout rsc is truncated\n");
834 		return -EINVAL;
835 	}
836 
837 	/* make sure reserved bytes are zeroes */
838 	if (rsc->reserved) {
839 		dev_err(dev, "carveout rsc has non zero reserved bytes\n");
840 		return -EINVAL;
841 	}
842 
843 	dev_dbg(dev, "carveout rsc: name: %s, da 0x%x, pa 0x%x, len 0x%x, flags 0x%x\n",
844 		rsc->name, rsc->da, rsc->pa, rsc->len, rsc->flags);
845 
846 	/*
847 	 * Check carveout rsc already part of a registered carveout,
848 	 * Search by name, then check the da and length
849 	 */
850 	carveout = rproc_find_carveout_by_name(rproc, rsc->name);
851 
852 	if (carveout) {
853 		if (carveout->rsc_offset != FW_RSC_ADDR_ANY) {
854 			dev_err(dev,
855 				"Carveout already associated to resource table\n");
856 			return -ENOMEM;
857 		}
858 
859 		if (rproc_check_carveout_da(rproc, carveout, rsc->da, rsc->len))
860 			return -ENOMEM;
861 
862 		/* Update memory carveout with resource table info */
863 		carveout->rsc_offset = offset;
864 		carveout->flags = rsc->flags;
865 
866 		return 0;
867 	}
868 
869 	/* Register carveout in list */
870 	carveout = rproc_mem_entry_init(dev, NULL, 0, rsc->len, rsc->da,
871 					rproc_alloc_carveout,
872 					rproc_release_carveout, rsc->name);
873 	if (!carveout) {
874 		dev_err(dev, "Can't allocate memory entry structure\n");
875 		return -ENOMEM;
876 	}
877 
878 	carveout->flags = rsc->flags;
879 	carveout->rsc_offset = offset;
880 	rproc_add_carveout(rproc, carveout);
881 
882 	return 0;
883 }
884 
885 /**
886  * rproc_add_carveout() - register an allocated carveout region
887  * @rproc: rproc handle
888  * @mem: memory entry to register
889  *
890  * This function registers specified memory entry in @rproc carveouts list.
891  * Specified carveout should have been allocated before registering.
892  */
rproc_add_carveout(struct rproc * rproc,struct rproc_mem_entry * mem)893 void rproc_add_carveout(struct rproc *rproc, struct rproc_mem_entry *mem)
894 {
895 	list_add_tail(&mem->node, &rproc->carveouts);
896 }
897 EXPORT_SYMBOL(rproc_add_carveout);
898 
899 /**
900  * rproc_mem_entry_init() - allocate and initialize rproc_mem_entry struct
901  * @dev: pointer on device struct
902  * @va: virtual address
903  * @dma: dma address
904  * @len: memory carveout length
905  * @da: device address
906  * @alloc: memory carveout allocation function
907  * @release: memory carveout release function
908  * @name: carveout name
909  *
910  * This function allocates a rproc_mem_entry struct and fill it with parameters
911  * provided by client.
912  *
913  * Return: a valid pointer on success, or NULL on failure
914  */
915 __printf(8, 9)
916 struct rproc_mem_entry *
rproc_mem_entry_init(struct device * dev,void * va,dma_addr_t dma,size_t len,u32 da,int (* alloc)(struct rproc *,struct rproc_mem_entry *),int (* release)(struct rproc *,struct rproc_mem_entry *),const char * name,...)917 rproc_mem_entry_init(struct device *dev,
918 		     void *va, dma_addr_t dma, size_t len, u32 da,
919 		     int (*alloc)(struct rproc *, struct rproc_mem_entry *),
920 		     int (*release)(struct rproc *, struct rproc_mem_entry *),
921 		     const char *name, ...)
922 {
923 	struct rproc_mem_entry *mem;
924 	va_list args;
925 
926 	mem = kzalloc(sizeof(*mem), GFP_KERNEL);
927 	if (!mem)
928 		return mem;
929 
930 	mem->va = va;
931 	mem->dma = dma;
932 	mem->da = da;
933 	mem->len = len;
934 	mem->alloc = alloc;
935 	mem->release = release;
936 	mem->rsc_offset = FW_RSC_ADDR_ANY;
937 	mem->of_resm_idx = -1;
938 
939 	va_start(args, name);
940 	vsnprintf(mem->name, sizeof(mem->name), name, args);
941 	va_end(args);
942 
943 	return mem;
944 }
945 EXPORT_SYMBOL(rproc_mem_entry_init);
946 
947 /**
948  * rproc_of_resm_mem_entry_init() - allocate and initialize rproc_mem_entry struct
949  * from a reserved memory phandle
950  * @dev: pointer on device struct
951  * @of_resm_idx: reserved memory phandle index in "memory-region"
952  * @len: memory carveout length
953  * @da: device address
954  * @name: carveout name
955  *
956  * This function allocates a rproc_mem_entry struct and fill it with parameters
957  * provided by client.
958  *
959  * Return: a valid pointer on success, or NULL on failure
960  */
961 __printf(5, 6)
962 struct rproc_mem_entry *
rproc_of_resm_mem_entry_init(struct device * dev,u32 of_resm_idx,size_t len,u32 da,const char * name,...)963 rproc_of_resm_mem_entry_init(struct device *dev, u32 of_resm_idx, size_t len,
964 			     u32 da, const char *name, ...)
965 {
966 	struct rproc_mem_entry *mem;
967 	va_list args;
968 
969 	mem = kzalloc(sizeof(*mem), GFP_KERNEL);
970 	if (!mem)
971 		return mem;
972 
973 	mem->da = da;
974 	mem->len = len;
975 	mem->rsc_offset = FW_RSC_ADDR_ANY;
976 	mem->of_resm_idx = of_resm_idx;
977 
978 	va_start(args, name);
979 	vsnprintf(mem->name, sizeof(mem->name), name, args);
980 	va_end(args);
981 
982 	return mem;
983 }
984 EXPORT_SYMBOL(rproc_of_resm_mem_entry_init);
985 
986 /**
987  * rproc_of_parse_firmware() - parse and return the firmware-name
988  * @dev: pointer on device struct representing a rproc
989  * @index: index to use for the firmware-name retrieval
990  * @fw_name: pointer to a character string, in which the firmware
991  *           name is returned on success and unmodified otherwise.
992  *
993  * This is an OF helper function that parses a device's DT node for
994  * the "firmware-name" property and returns the firmware name pointer
995  * in @fw_name on success.
996  *
997  * Return: 0 on success, or an appropriate failure.
998  */
rproc_of_parse_firmware(struct device * dev,int index,const char ** fw_name)999 int rproc_of_parse_firmware(struct device *dev, int index, const char **fw_name)
1000 {
1001 	int ret;
1002 
1003 	ret = of_property_read_string_index(dev->of_node, "firmware-name",
1004 					    index, fw_name);
1005 	return ret ? ret : 0;
1006 }
1007 EXPORT_SYMBOL(rproc_of_parse_firmware);
1008 
1009 /*
1010  * A lookup table for resource handlers. The indices are defined in
1011  * enum fw_resource_type.
1012  */
1013 static rproc_handle_resource_t rproc_loading_handlers[RSC_LAST] = {
1014 	[RSC_CARVEOUT] = rproc_handle_carveout,
1015 	[RSC_DEVMEM] = rproc_handle_devmem,
1016 	[RSC_TRACE] = rproc_handle_trace,
1017 	[RSC_VDEV] = rproc_handle_vdev,
1018 };
1019 
1020 /* handle firmware resource entries before booting the remote processor */
rproc_handle_resources(struct rproc * rproc,rproc_handle_resource_t handlers[RSC_LAST])1021 static int rproc_handle_resources(struct rproc *rproc,
1022 				  rproc_handle_resource_t handlers[RSC_LAST])
1023 {
1024 	struct device *dev = &rproc->dev;
1025 	rproc_handle_resource_t handler;
1026 	int ret = 0, i;
1027 
1028 	if (!rproc->table_ptr)
1029 		return 0;
1030 
1031 	for (i = 0; i < rproc->table_ptr->num; i++) {
1032 		int offset = rproc->table_ptr->offset[i];
1033 		struct fw_rsc_hdr *hdr = (void *)rproc->table_ptr + offset;
1034 		int avail = rproc->table_sz - offset - sizeof(*hdr);
1035 		void *rsc = (void *)hdr + sizeof(*hdr);
1036 
1037 		/* make sure table isn't truncated */
1038 		if (avail < 0) {
1039 			dev_err(dev, "rsc table is truncated\n");
1040 			return -EINVAL;
1041 		}
1042 
1043 		dev_dbg(dev, "rsc: type %d\n", hdr->type);
1044 
1045 		if (hdr->type >= RSC_VENDOR_START &&
1046 		    hdr->type <= RSC_VENDOR_END) {
1047 			ret = rproc_handle_rsc(rproc, hdr->type, rsc,
1048 					       offset + sizeof(*hdr), avail);
1049 			if (ret == RSC_HANDLED)
1050 				continue;
1051 			else if (ret < 0)
1052 				break;
1053 
1054 			dev_warn(dev, "unsupported vendor resource %d\n",
1055 				 hdr->type);
1056 			continue;
1057 		}
1058 
1059 		if (hdr->type >= RSC_LAST) {
1060 			dev_warn(dev, "unsupported resource %d\n", hdr->type);
1061 			continue;
1062 		}
1063 
1064 		handler = handlers[hdr->type];
1065 		if (!handler)
1066 			continue;
1067 
1068 		ret = handler(rproc, rsc, offset + sizeof(*hdr), avail);
1069 		if (ret)
1070 			break;
1071 	}
1072 
1073 	return ret;
1074 }
1075 
rproc_prepare_subdevices(struct rproc * rproc)1076 static int rproc_prepare_subdevices(struct rproc *rproc)
1077 {
1078 	struct rproc_subdev *subdev;
1079 	int ret;
1080 
1081 	list_for_each_entry(subdev, &rproc->subdevs, node) {
1082 		if (subdev->prepare) {
1083 			ret = subdev->prepare(subdev);
1084 			if (ret)
1085 				goto unroll_preparation;
1086 		}
1087 	}
1088 
1089 	return 0;
1090 
1091 unroll_preparation:
1092 	list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node) {
1093 		if (subdev->unprepare)
1094 			subdev->unprepare(subdev);
1095 	}
1096 
1097 	return ret;
1098 }
1099 
rproc_start_subdevices(struct rproc * rproc)1100 static int rproc_start_subdevices(struct rproc *rproc)
1101 {
1102 	struct rproc_subdev *subdev;
1103 	int ret;
1104 
1105 	list_for_each_entry(subdev, &rproc->subdevs, node) {
1106 		if (subdev->start) {
1107 			ret = subdev->start(subdev);
1108 			if (ret)
1109 				goto unroll_registration;
1110 		}
1111 	}
1112 
1113 	return 0;
1114 
1115 unroll_registration:
1116 	list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node) {
1117 		if (subdev->stop)
1118 			subdev->stop(subdev, true);
1119 	}
1120 
1121 	return ret;
1122 }
1123 
rproc_stop_subdevices(struct rproc * rproc,bool crashed)1124 static void rproc_stop_subdevices(struct rproc *rproc, bool crashed)
1125 {
1126 	struct rproc_subdev *subdev;
1127 
1128 	list_for_each_entry_reverse(subdev, &rproc->subdevs, node) {
1129 		if (subdev->stop)
1130 			subdev->stop(subdev, crashed);
1131 	}
1132 }
1133 
rproc_unprepare_subdevices(struct rproc * rproc)1134 static void rproc_unprepare_subdevices(struct rproc *rproc)
1135 {
1136 	struct rproc_subdev *subdev;
1137 
1138 	list_for_each_entry_reverse(subdev, &rproc->subdevs, node) {
1139 		if (subdev->unprepare)
1140 			subdev->unprepare(subdev);
1141 	}
1142 }
1143 
1144 /**
1145  * rproc_alloc_registered_carveouts() - allocate all carveouts registered
1146  * in the list
1147  * @rproc: the remote processor handle
1148  *
1149  * This function parses registered carveout list, performs allocation
1150  * if alloc() ops registered and updates resource table information
1151  * if rsc_offset set.
1152  *
1153  * Return: 0 on success
1154  */
rproc_alloc_registered_carveouts(struct rproc * rproc)1155 static int rproc_alloc_registered_carveouts(struct rproc *rproc)
1156 {
1157 	struct rproc_mem_entry *entry, *tmp;
1158 	struct fw_rsc_carveout *rsc;
1159 	struct device *dev = &rproc->dev;
1160 	u64 pa;
1161 	int ret;
1162 
1163 	list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
1164 		if (entry->alloc) {
1165 			ret = entry->alloc(rproc, entry);
1166 			if (ret) {
1167 				dev_err(dev, "Unable to allocate carveout %s: %d\n",
1168 					entry->name, ret);
1169 				return -ENOMEM;
1170 			}
1171 		}
1172 
1173 		if (entry->rsc_offset != FW_RSC_ADDR_ANY) {
1174 			/* update resource table */
1175 			rsc = (void *)rproc->table_ptr + entry->rsc_offset;
1176 
1177 			/*
1178 			 * Some remote processors might need to know the pa
1179 			 * even though they are behind an IOMMU. E.g., OMAP4's
1180 			 * remote M3 processor needs this so it can control
1181 			 * on-chip hardware accelerators that are not behind
1182 			 * the IOMMU, and therefor must know the pa.
1183 			 *
1184 			 * Generally we don't want to expose physical addresses
1185 			 * if we don't have to (remote processors are generally
1186 			 * _not_ trusted), so we might want to do this only for
1187 			 * remote processor that _must_ have this (e.g. OMAP4's
1188 			 * dual M3 subsystem).
1189 			 *
1190 			 * Non-IOMMU processors might also want to have this info.
1191 			 * In this case, the device address and the physical address
1192 			 * are the same.
1193 			 */
1194 
1195 			/* Use va if defined else dma to generate pa */
1196 			if (entry->va)
1197 				pa = (u64)rproc_va_to_pa(entry->va);
1198 			else
1199 				pa = (u64)entry->dma;
1200 
1201 			if (((u64)pa) & HIGH_BITS_MASK)
1202 				dev_warn(dev,
1203 					 "Physical address cast in 32bit to fit resource table format\n");
1204 
1205 			rsc->pa = (u32)pa;
1206 			rsc->da = entry->da;
1207 			rsc->len = entry->len;
1208 		}
1209 	}
1210 
1211 	return 0;
1212 }
1213 
1214 
1215 /**
1216  * rproc_resource_cleanup() - clean up and free all acquired resources
1217  * @rproc: rproc handle
1218  *
1219  * This function will free all resources acquired for @rproc, and it
1220  * is called whenever @rproc either shuts down or fails to boot.
1221  */
rproc_resource_cleanup(struct rproc * rproc)1222 void rproc_resource_cleanup(struct rproc *rproc)
1223 {
1224 	struct rproc_mem_entry *entry, *tmp;
1225 	struct rproc_debug_trace *trace, *ttmp;
1226 	struct rproc_vdev *rvdev, *rvtmp;
1227 	struct device *dev = &rproc->dev;
1228 
1229 	/* clean up debugfs trace entries */
1230 	list_for_each_entry_safe(trace, ttmp, &rproc->traces, node) {
1231 		rproc_remove_trace_file(trace->tfile);
1232 		rproc->num_traces--;
1233 		list_del(&trace->node);
1234 		kfree(trace);
1235 	}
1236 
1237 	/* clean up iommu mapping entries */
1238 	list_for_each_entry_safe(entry, tmp, &rproc->mappings, node) {
1239 		size_t unmapped;
1240 
1241 		unmapped = iommu_unmap(rproc->domain, entry->da, entry->len);
1242 		if (unmapped != entry->len) {
1243 			/* nothing much to do besides complaining */
1244 			dev_err(dev, "failed to unmap %zx/%zu\n", entry->len,
1245 				unmapped);
1246 		}
1247 
1248 		list_del(&entry->node);
1249 		kfree(entry);
1250 	}
1251 
1252 	/* clean up carveout allocations */
1253 	list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
1254 		if (entry->release)
1255 			entry->release(rproc, entry);
1256 		list_del(&entry->node);
1257 		kfree(entry);
1258 	}
1259 
1260 	/* clean up remote vdev entries */
1261 	list_for_each_entry_safe(rvdev, rvtmp, &rproc->rvdevs, node)
1262 		platform_device_unregister(rvdev->pdev);
1263 
1264 	rproc_coredump_cleanup(rproc);
1265 }
1266 EXPORT_SYMBOL(rproc_resource_cleanup);
1267 
rproc_start(struct rproc * rproc,const struct firmware * fw)1268 static int rproc_start(struct rproc *rproc, const struct firmware *fw)
1269 {
1270 	struct resource_table *loaded_table;
1271 	struct device *dev = &rproc->dev;
1272 	int ret;
1273 
1274 	/* load the ELF segments to memory */
1275 	ret = rproc_load_segments(rproc, fw);
1276 	if (ret) {
1277 		dev_err(dev, "Failed to load program segments: %d\n", ret);
1278 		return ret;
1279 	}
1280 
1281 	/*
1282 	 * The starting device has been given the rproc->cached_table as the
1283 	 * resource table. The address of the vring along with the other
1284 	 * allocated resources (carveouts etc) is stored in cached_table.
1285 	 * In order to pass this information to the remote device we must copy
1286 	 * this information to device memory. We also update the table_ptr so
1287 	 * that any subsequent changes will be applied to the loaded version.
1288 	 */
1289 	loaded_table = rproc_find_loaded_rsc_table(rproc, fw);
1290 	if (loaded_table) {
1291 		memcpy(loaded_table, rproc->cached_table, rproc->table_sz);
1292 		rproc->table_ptr = loaded_table;
1293 	}
1294 
1295 	ret = rproc_prepare_subdevices(rproc);
1296 	if (ret) {
1297 		dev_err(dev, "failed to prepare subdevices for %s: %d\n",
1298 			rproc->name, ret);
1299 		goto reset_table_ptr;
1300 	}
1301 
1302 	/* power up the remote processor */
1303 	ret = rproc->ops->start(rproc);
1304 	if (ret) {
1305 		dev_err(dev, "can't start rproc %s: %d\n", rproc->name, ret);
1306 		goto unprepare_subdevices;
1307 	}
1308 
1309 	/* Start any subdevices for the remote processor */
1310 	ret = rproc_start_subdevices(rproc);
1311 	if (ret) {
1312 		dev_err(dev, "failed to probe subdevices for %s: %d\n",
1313 			rproc->name, ret);
1314 		goto stop_rproc;
1315 	}
1316 
1317 	rproc->state = RPROC_RUNNING;
1318 
1319 	dev_info(dev, "remote processor %s is now up\n", rproc->name);
1320 
1321 	return 0;
1322 
1323 stop_rproc:
1324 	rproc->ops->stop(rproc);
1325 unprepare_subdevices:
1326 	rproc_unprepare_subdevices(rproc);
1327 reset_table_ptr:
1328 	rproc->table_ptr = rproc->cached_table;
1329 
1330 	return ret;
1331 }
1332 
__rproc_attach(struct rproc * rproc)1333 static int __rproc_attach(struct rproc *rproc)
1334 {
1335 	struct device *dev = &rproc->dev;
1336 	int ret;
1337 
1338 	ret = rproc_prepare_subdevices(rproc);
1339 	if (ret) {
1340 		dev_err(dev, "failed to prepare subdevices for %s: %d\n",
1341 			rproc->name, ret);
1342 		goto out;
1343 	}
1344 
1345 	/* Attach to the remote processor */
1346 	ret = rproc_attach_device(rproc);
1347 	if (ret) {
1348 		dev_err(dev, "can't attach to rproc %s: %d\n",
1349 			rproc->name, ret);
1350 		goto unprepare_subdevices;
1351 	}
1352 
1353 	/* Start any subdevices for the remote processor */
1354 	ret = rproc_start_subdevices(rproc);
1355 	if (ret) {
1356 		dev_err(dev, "failed to probe subdevices for %s: %d\n",
1357 			rproc->name, ret);
1358 		goto stop_rproc;
1359 	}
1360 
1361 	rproc->state = RPROC_ATTACHED;
1362 
1363 	dev_info(dev, "remote processor %s is now attached\n", rproc->name);
1364 
1365 	return 0;
1366 
1367 stop_rproc:
1368 	rproc->ops->stop(rproc);
1369 unprepare_subdevices:
1370 	rproc_unprepare_subdevices(rproc);
1371 out:
1372 	return ret;
1373 }
1374 
1375 /*
1376  * take a firmware and boot a remote processor with it.
1377  */
rproc_fw_boot(struct rproc * rproc,const struct firmware * fw)1378 static int rproc_fw_boot(struct rproc *rproc, const struct firmware *fw)
1379 {
1380 	struct device *dev = &rproc->dev;
1381 	const char *name = rproc->firmware;
1382 	int ret;
1383 
1384 	ret = rproc_fw_sanity_check(rproc, fw);
1385 	if (ret)
1386 		return ret;
1387 
1388 	dev_info(dev, "Booting fw image %s, size %zd\n", name, fw->size);
1389 
1390 	/*
1391 	 * if enabling an IOMMU isn't relevant for this rproc, this is
1392 	 * just a nop
1393 	 */
1394 	ret = rproc_enable_iommu(rproc);
1395 	if (ret) {
1396 		dev_err(dev, "can't enable iommu: %d\n", ret);
1397 		return ret;
1398 	}
1399 
1400 	/* Prepare rproc for firmware loading if needed */
1401 	ret = rproc_prepare_device(rproc);
1402 	if (ret) {
1403 		dev_err(dev, "can't prepare rproc %s: %d\n", rproc->name, ret);
1404 		goto disable_iommu;
1405 	}
1406 
1407 	rproc->bootaddr = rproc_get_boot_addr(rproc, fw);
1408 
1409 	/* Load resource table, core dump segment list etc from the firmware */
1410 	ret = rproc_parse_fw(rproc, fw);
1411 	if (ret)
1412 		goto unprepare_rproc;
1413 
1414 	/* reset max_notifyid */
1415 	rproc->max_notifyid = -1;
1416 
1417 	/* reset handled vdev */
1418 	rproc->nb_vdev = 0;
1419 
1420 	/* handle fw resources which are required to boot rproc */
1421 	ret = rproc_handle_resources(rproc, rproc_loading_handlers);
1422 	if (ret) {
1423 		dev_err(dev, "Failed to process resources: %d\n", ret);
1424 		goto clean_up_resources;
1425 	}
1426 
1427 	/* Allocate carveout resources associated to rproc */
1428 	ret = rproc_alloc_registered_carveouts(rproc);
1429 	if (ret) {
1430 		dev_err(dev, "Failed to allocate associated carveouts: %d\n",
1431 			ret);
1432 		goto clean_up_resources;
1433 	}
1434 
1435 	ret = rproc_start(rproc, fw);
1436 	if (ret)
1437 		goto clean_up_resources;
1438 
1439 	return 0;
1440 
1441 clean_up_resources:
1442 	rproc_resource_cleanup(rproc);
1443 	kfree(rproc->cached_table);
1444 	rproc->cached_table = NULL;
1445 	rproc->table_ptr = NULL;
1446 unprepare_rproc:
1447 	/* release HW resources if needed */
1448 	rproc_unprepare_device(rproc);
1449 disable_iommu:
1450 	rproc_disable_iommu(rproc);
1451 	return ret;
1452 }
1453 
rproc_set_rsc_table(struct rproc * rproc)1454 static int rproc_set_rsc_table(struct rproc *rproc)
1455 {
1456 	struct resource_table *table_ptr;
1457 	struct device *dev = &rproc->dev;
1458 	size_t table_sz;
1459 	int ret;
1460 
1461 	table_ptr = rproc_get_loaded_rsc_table(rproc, &table_sz);
1462 	if (!table_ptr) {
1463 		/* Not having a resource table is acceptable */
1464 		return 0;
1465 	}
1466 
1467 	if (IS_ERR(table_ptr)) {
1468 		ret = PTR_ERR(table_ptr);
1469 		dev_err(dev, "can't load resource table: %d\n", ret);
1470 		return ret;
1471 	}
1472 
1473 	/*
1474 	 * If it is possible to detach the remote processor, keep an untouched
1475 	 * copy of the resource table.  That way we can start fresh again when
1476 	 * the remote processor is re-attached, that is:
1477 	 *
1478 	 *      DETACHED -> ATTACHED -> DETACHED -> ATTACHED
1479 	 *
1480 	 * Free'd in rproc_reset_rsc_table_on_detach() and
1481 	 * rproc_reset_rsc_table_on_stop().
1482 	 */
1483 	if (rproc->ops->detach) {
1484 		rproc->clean_table = kmemdup(table_ptr, table_sz, GFP_KERNEL);
1485 		if (!rproc->clean_table)
1486 			return -ENOMEM;
1487 	} else {
1488 		rproc->clean_table = NULL;
1489 	}
1490 
1491 	rproc->cached_table = NULL;
1492 	rproc->table_ptr = table_ptr;
1493 	rproc->table_sz = table_sz;
1494 
1495 	return 0;
1496 }
1497 
rproc_reset_rsc_table_on_detach(struct rproc * rproc)1498 static int rproc_reset_rsc_table_on_detach(struct rproc *rproc)
1499 {
1500 	struct resource_table *table_ptr;
1501 
1502 	/* A resource table was never retrieved, nothing to do here */
1503 	if (!rproc->table_ptr)
1504 		return 0;
1505 
1506 	/*
1507 	 * If we made it to this point a clean_table _must_ have been
1508 	 * allocated in rproc_set_rsc_table().  If one isn't present
1509 	 * something went really wrong and we must complain.
1510 	 */
1511 	if (WARN_ON(!rproc->clean_table))
1512 		return -EINVAL;
1513 
1514 	/* Remember where the external entity installed the resource table */
1515 	table_ptr = rproc->table_ptr;
1516 
1517 	/*
1518 	 * If we made it here the remote processor was started by another
1519 	 * entity and a cache table doesn't exist.  As such make a copy of
1520 	 * the resource table currently used by the remote processor and
1521 	 * use that for the rest of the shutdown process.  The memory
1522 	 * allocated here is free'd in rproc_detach().
1523 	 */
1524 	rproc->cached_table = kmemdup(rproc->table_ptr,
1525 				      rproc->table_sz, GFP_KERNEL);
1526 	if (!rproc->cached_table)
1527 		return -ENOMEM;
1528 
1529 	/*
1530 	 * Use a copy of the resource table for the remainder of the
1531 	 * shutdown process.
1532 	 */
1533 	rproc->table_ptr = rproc->cached_table;
1534 
1535 	/*
1536 	 * Reset the memory area where the firmware loaded the resource table
1537 	 * to its original value.  That way when we re-attach the remote
1538 	 * processor the resource table is clean and ready to be used again.
1539 	 */
1540 	memcpy(table_ptr, rproc->clean_table, rproc->table_sz);
1541 
1542 	/*
1543 	 * The clean resource table is no longer needed.  Allocated in
1544 	 * rproc_set_rsc_table().
1545 	 */
1546 	kfree(rproc->clean_table);
1547 
1548 	return 0;
1549 }
1550 
rproc_reset_rsc_table_on_stop(struct rproc * rproc)1551 static int rproc_reset_rsc_table_on_stop(struct rproc *rproc)
1552 {
1553 	/* A resource table was never retrieved, nothing to do here */
1554 	if (!rproc->table_ptr)
1555 		return 0;
1556 
1557 	/*
1558 	 * If a cache table exists the remote processor was started by
1559 	 * the remoteproc core.  That cache table should be used for
1560 	 * the rest of the shutdown process.
1561 	 */
1562 	if (rproc->cached_table)
1563 		goto out;
1564 
1565 	/*
1566 	 * If we made it here the remote processor was started by another
1567 	 * entity and a cache table doesn't exist.  As such make a copy of
1568 	 * the resource table currently used by the remote processor and
1569 	 * use that for the rest of the shutdown process.  The memory
1570 	 * allocated here is free'd in rproc_shutdown().
1571 	 */
1572 	rproc->cached_table = kmemdup(rproc->table_ptr,
1573 				      rproc->table_sz, GFP_KERNEL);
1574 	if (!rproc->cached_table)
1575 		return -ENOMEM;
1576 
1577 	/*
1578 	 * Since the remote processor is being switched off the clean table
1579 	 * won't be needed.  Allocated in rproc_set_rsc_table().
1580 	 */
1581 	kfree(rproc->clean_table);
1582 
1583 out:
1584 	/*
1585 	 * Use a copy of the resource table for the remainder of the
1586 	 * shutdown process.
1587 	 */
1588 	rproc->table_ptr = rproc->cached_table;
1589 	return 0;
1590 }
1591 
1592 /*
1593  * Attach to remote processor - similar to rproc_fw_boot() but without
1594  * the steps that deal with the firmware image.
1595  */
rproc_attach(struct rproc * rproc)1596 static int rproc_attach(struct rproc *rproc)
1597 {
1598 	struct device *dev = &rproc->dev;
1599 	int ret;
1600 
1601 	/*
1602 	 * if enabling an IOMMU isn't relevant for this rproc, this is
1603 	 * just a nop
1604 	 */
1605 	ret = rproc_enable_iommu(rproc);
1606 	if (ret) {
1607 		dev_err(dev, "can't enable iommu: %d\n", ret);
1608 		return ret;
1609 	}
1610 
1611 	/* Do anything that is needed to boot the remote processor */
1612 	ret = rproc_prepare_device(rproc);
1613 	if (ret) {
1614 		dev_err(dev, "can't prepare rproc %s: %d\n", rproc->name, ret);
1615 		goto disable_iommu;
1616 	}
1617 
1618 	ret = rproc_set_rsc_table(rproc);
1619 	if (ret) {
1620 		dev_err(dev, "can't load resource table: %d\n", ret);
1621 		goto clean_up_resources;
1622 	}
1623 
1624 	/* reset max_notifyid */
1625 	rproc->max_notifyid = -1;
1626 
1627 	/* reset handled vdev */
1628 	rproc->nb_vdev = 0;
1629 
1630 	/*
1631 	 * Handle firmware resources required to attach to a remote processor.
1632 	 * Because we are attaching rather than booting the remote processor,
1633 	 * we expect the platform driver to properly set rproc->table_ptr.
1634 	 */
1635 	ret = rproc_handle_resources(rproc, rproc_loading_handlers);
1636 	if (ret) {
1637 		dev_err(dev, "Failed to process resources: %d\n", ret);
1638 		goto clean_up_resources;
1639 	}
1640 
1641 	/* Allocate carveout resources associated to rproc */
1642 	ret = rproc_alloc_registered_carveouts(rproc);
1643 	if (ret) {
1644 		dev_err(dev, "Failed to allocate associated carveouts: %d\n",
1645 			ret);
1646 		goto clean_up_resources;
1647 	}
1648 
1649 	ret = __rproc_attach(rproc);
1650 	if (ret)
1651 		goto clean_up_resources;
1652 
1653 	return 0;
1654 
1655 clean_up_resources:
1656 	rproc_resource_cleanup(rproc);
1657 	/* release HW resources if needed */
1658 	rproc_unprepare_device(rproc);
1659 	kfree(rproc->clean_table);
1660 disable_iommu:
1661 	rproc_disable_iommu(rproc);
1662 	return ret;
1663 }
1664 
1665 /*
1666  * take a firmware and boot it up.
1667  *
1668  * Note: this function is called asynchronously upon registration of the
1669  * remote processor (so we must wait until it completes before we try
1670  * to unregister the device. one other option is just to use kref here,
1671  * that might be cleaner).
1672  */
rproc_auto_boot_callback(const struct firmware * fw,void * context)1673 static void rproc_auto_boot_callback(const struct firmware *fw, void *context)
1674 {
1675 	struct rproc *rproc = context;
1676 
1677 	rproc_boot(rproc);
1678 
1679 	release_firmware(fw);
1680 }
1681 
rproc_trigger_auto_boot(struct rproc * rproc)1682 static int rproc_trigger_auto_boot(struct rproc *rproc)
1683 {
1684 	int ret;
1685 
1686 	/*
1687 	 * Since the remote processor is in a detached state, it has already
1688 	 * been booted by another entity.  As such there is no point in waiting
1689 	 * for a firmware image to be loaded, we can simply initiate the process
1690 	 * of attaching to it immediately.
1691 	 */
1692 	if (rproc->state == RPROC_DETACHED)
1693 		return rproc_boot(rproc);
1694 
1695 	/*
1696 	 * We're initiating an asynchronous firmware loading, so we can
1697 	 * be built-in kernel code, without hanging the boot process.
1698 	 */
1699 	ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_UEVENT,
1700 				      rproc->firmware, &rproc->dev, GFP_KERNEL,
1701 				      rproc, rproc_auto_boot_callback);
1702 	if (ret < 0)
1703 		dev_err(&rproc->dev, "request_firmware_nowait err: %d\n", ret);
1704 
1705 	return ret;
1706 }
1707 
rproc_stop(struct rproc * rproc,bool crashed)1708 static int rproc_stop(struct rproc *rproc, bool crashed)
1709 {
1710 	struct device *dev = &rproc->dev;
1711 	int ret;
1712 
1713 	/* No need to continue if a stop() operation has not been provided */
1714 	if (!rproc->ops->stop)
1715 		return -EINVAL;
1716 
1717 	/* Stop any subdevices for the remote processor */
1718 	rproc_stop_subdevices(rproc, crashed);
1719 
1720 	/* the installed resource table is no longer accessible */
1721 	ret = rproc_reset_rsc_table_on_stop(rproc);
1722 	if (ret) {
1723 		dev_err(dev, "can't reset resource table: %d\n", ret);
1724 		return ret;
1725 	}
1726 
1727 
1728 	/* power off the remote processor */
1729 	ret = rproc->ops->stop(rproc);
1730 	if (ret) {
1731 		dev_err(dev, "can't stop rproc: %d\n", ret);
1732 		return ret;
1733 	}
1734 
1735 	rproc_unprepare_subdevices(rproc);
1736 
1737 	rproc->state = RPROC_OFFLINE;
1738 
1739 	dev_info(dev, "stopped remote processor %s\n", rproc->name);
1740 
1741 	return 0;
1742 }
1743 
1744 /*
1745  * __rproc_detach(): Does the opposite of __rproc_attach()
1746  */
__rproc_detach(struct rproc * rproc)1747 static int __rproc_detach(struct rproc *rproc)
1748 {
1749 	struct device *dev = &rproc->dev;
1750 	int ret;
1751 
1752 	/* No need to continue if a detach() operation has not been provided */
1753 	if (!rproc->ops->detach)
1754 		return -EINVAL;
1755 
1756 	/* Stop any subdevices for the remote processor */
1757 	rproc_stop_subdevices(rproc, false);
1758 
1759 	/* the installed resource table is no longer accessible */
1760 	ret = rproc_reset_rsc_table_on_detach(rproc);
1761 	if (ret) {
1762 		dev_err(dev, "can't reset resource table: %d\n", ret);
1763 		return ret;
1764 	}
1765 
1766 	/* Tell the remote processor the core isn't available anymore */
1767 	ret = rproc->ops->detach(rproc);
1768 	if (ret) {
1769 		dev_err(dev, "can't detach from rproc: %d\n", ret);
1770 		return ret;
1771 	}
1772 
1773 	rproc_unprepare_subdevices(rproc);
1774 
1775 	rproc->state = RPROC_DETACHED;
1776 
1777 	dev_info(dev, "detached remote processor %s\n", rproc->name);
1778 
1779 	return 0;
1780 }
1781 
rproc_attach_recovery(struct rproc * rproc)1782 static int rproc_attach_recovery(struct rproc *rproc)
1783 {
1784 	int ret;
1785 
1786 	ret = __rproc_detach(rproc);
1787 	if (ret)
1788 		return ret;
1789 
1790 	return __rproc_attach(rproc);
1791 }
1792 
rproc_boot_recovery(struct rproc * rproc)1793 static int rproc_boot_recovery(struct rproc *rproc)
1794 {
1795 	const struct firmware *firmware_p;
1796 	struct device *dev = &rproc->dev;
1797 	int ret;
1798 
1799 	ret = rproc_stop(rproc, true);
1800 	if (ret)
1801 		return ret;
1802 
1803 	/* generate coredump */
1804 	rproc->ops->coredump(rproc);
1805 
1806 	/* load firmware */
1807 	ret = request_firmware(&firmware_p, rproc->firmware, dev);
1808 	if (ret < 0) {
1809 		dev_err(dev, "request_firmware failed: %d\n", ret);
1810 		return ret;
1811 	}
1812 
1813 	/* boot the remote processor up again */
1814 	ret = rproc_start(rproc, firmware_p);
1815 
1816 	release_firmware(firmware_p);
1817 
1818 	return ret;
1819 }
1820 
1821 /**
1822  * rproc_trigger_recovery() - recover a remoteproc
1823  * @rproc: the remote processor
1824  *
1825  * The recovery is done by resetting all the virtio devices, that way all the
1826  * rpmsg drivers will be reseted along with the remote processor making the
1827  * remoteproc functional again.
1828  *
1829  * This function can sleep, so it cannot be called from atomic context.
1830  *
1831  * Return: 0 on success or a negative value upon failure
1832  */
rproc_trigger_recovery(struct rproc * rproc)1833 int rproc_trigger_recovery(struct rproc *rproc)
1834 {
1835 	struct device *dev = &rproc->dev;
1836 	int ret;
1837 
1838 	ret = mutex_lock_interruptible(&rproc->lock);
1839 	if (ret)
1840 		return ret;
1841 
1842 	/* State could have changed before we got the mutex */
1843 	if (rproc->state != RPROC_CRASHED)
1844 		goto unlock_mutex;
1845 
1846 	dev_err(dev, "recovering %s\n", rproc->name);
1847 
1848 	if (rproc_has_feature(rproc, RPROC_FEAT_ATTACH_ON_RECOVERY))
1849 		ret = rproc_attach_recovery(rproc);
1850 	else
1851 		ret = rproc_boot_recovery(rproc);
1852 
1853 unlock_mutex:
1854 	mutex_unlock(&rproc->lock);
1855 	return ret;
1856 }
1857 
1858 /**
1859  * rproc_crash_handler_work() - handle a crash
1860  * @work: work treating the crash
1861  *
1862  * This function needs to handle everything related to a crash, like cpu
1863  * registers and stack dump, information to help to debug the fatal error, etc.
1864  */
rproc_crash_handler_work(struct work_struct * work)1865 static void rproc_crash_handler_work(struct work_struct *work)
1866 {
1867 	struct rproc *rproc = container_of(work, struct rproc, crash_handler);
1868 	struct device *dev = &rproc->dev;
1869 
1870 	dev_dbg(dev, "enter %s\n", __func__);
1871 
1872 	mutex_lock(&rproc->lock);
1873 
1874 	if (rproc->state == RPROC_CRASHED) {
1875 		/* handle only the first crash detected */
1876 		mutex_unlock(&rproc->lock);
1877 		return;
1878 	}
1879 
1880 	if (rproc->state == RPROC_OFFLINE) {
1881 		/* Don't recover if the remote processor was stopped */
1882 		mutex_unlock(&rproc->lock);
1883 		goto out;
1884 	}
1885 
1886 	rproc->state = RPROC_CRASHED;
1887 	dev_err(dev, "handling crash #%u in %s\n", ++rproc->crash_cnt,
1888 		rproc->name);
1889 
1890 	mutex_unlock(&rproc->lock);
1891 
1892 	if (!rproc->recovery_disabled)
1893 		rproc_trigger_recovery(rproc);
1894 
1895 out:
1896 	trace_android_vh_rproc_recovery(rproc);
1897 
1898 	pm_relax(rproc->dev.parent);
1899 }
1900 
1901 /**
1902  * rproc_boot() - boot a remote processor
1903  * @rproc: handle of a remote processor
1904  *
1905  * Boot a remote processor (i.e. load its firmware, power it on, ...).
1906  *
1907  * If the remote processor is already powered on, this function immediately
1908  * returns (successfully).
1909  *
1910  * Return: 0 on success, and an appropriate error value otherwise
1911  */
rproc_boot(struct rproc * rproc)1912 int rproc_boot(struct rproc *rproc)
1913 {
1914 	const struct firmware *firmware_p;
1915 	struct device *dev;
1916 	int ret;
1917 
1918 	if (!rproc) {
1919 		pr_err("invalid rproc handle\n");
1920 		return -EINVAL;
1921 	}
1922 
1923 	dev = &rproc->dev;
1924 
1925 	ret = mutex_lock_interruptible(&rproc->lock);
1926 	if (ret) {
1927 		dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
1928 		return ret;
1929 	}
1930 
1931 	if (rproc->state == RPROC_DELETED) {
1932 		ret = -ENODEV;
1933 		dev_err(dev, "can't boot deleted rproc %s\n", rproc->name);
1934 		goto unlock_mutex;
1935 	}
1936 
1937 	/* skip the boot or attach process if rproc is already powered up */
1938 	if (atomic_inc_return(&rproc->power) > 1) {
1939 		ret = 0;
1940 		goto unlock_mutex;
1941 	}
1942 
1943 	if (rproc->state == RPROC_DETACHED) {
1944 		dev_info(dev, "attaching to %s\n", rproc->name);
1945 
1946 		ret = rproc_attach(rproc);
1947 	} else {
1948 		dev_info(dev, "powering up %s\n", rproc->name);
1949 
1950 		/* load firmware */
1951 		ret = request_firmware(&firmware_p, rproc->firmware, dev);
1952 		if (ret < 0) {
1953 			dev_err(dev, "request_firmware failed: %d\n", ret);
1954 			goto downref_rproc;
1955 		}
1956 
1957 		ret = rproc_fw_boot(rproc, firmware_p);
1958 
1959 		release_firmware(firmware_p);
1960 	}
1961 
1962 downref_rproc:
1963 	if (ret)
1964 		atomic_dec(&rproc->power);
1965 unlock_mutex:
1966 	mutex_unlock(&rproc->lock);
1967 	return ret;
1968 }
1969 EXPORT_SYMBOL(rproc_boot);
1970 
1971 /**
1972  * rproc_shutdown() - power off the remote processor
1973  * @rproc: the remote processor
1974  *
1975  * Power off a remote processor (previously booted with rproc_boot()).
1976  *
1977  * In case @rproc is still being used by an additional user(s), then
1978  * this function will just decrement the power refcount and exit,
1979  * without really powering off the device.
1980  *
1981  * Every call to rproc_boot() must (eventually) be accompanied by a call
1982  * to rproc_shutdown(). Calling rproc_shutdown() redundantly is a bug.
1983  *
1984  * Notes:
1985  * - we're not decrementing the rproc's refcount, only the power refcount.
1986  *   which means that the @rproc handle stays valid even after rproc_shutdown()
1987  *   returns, and users can still use it with a subsequent rproc_boot(), if
1988  *   needed.
1989  *
1990  * Return: 0 on success, and an appropriate error value otherwise
1991  */
rproc_shutdown(struct rproc * rproc)1992 int rproc_shutdown(struct rproc *rproc)
1993 {
1994 	struct device *dev = &rproc->dev;
1995 	int ret = 0;
1996 
1997 	ret = mutex_lock_interruptible(&rproc->lock);
1998 	if (ret) {
1999 		dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
2000 		return ret;
2001 	}
2002 
2003 	if (rproc->state != RPROC_RUNNING &&
2004 	    rproc->state != RPROC_ATTACHED) {
2005 		ret = -EINVAL;
2006 		goto out;
2007 	}
2008 
2009 	/* if the remote proc is still needed, bail out */
2010 	if (!atomic_dec_and_test(&rproc->power))
2011 		goto out;
2012 
2013 	ret = rproc_stop(rproc, false);
2014 	if (ret) {
2015 		atomic_inc(&rproc->power);
2016 		goto out;
2017 	}
2018 
2019 	/* clean up all acquired resources */
2020 	rproc_resource_cleanup(rproc);
2021 
2022 	/* release HW resources if needed */
2023 	rproc_unprepare_device(rproc);
2024 
2025 	rproc_disable_iommu(rproc);
2026 
2027 	/* Free the copy of the resource table */
2028 	kfree(rproc->cached_table);
2029 	rproc->cached_table = NULL;
2030 	rproc->table_ptr = NULL;
2031 	rproc->table_sz = 0;
2032 out:
2033 	mutex_unlock(&rproc->lock);
2034 	return ret;
2035 }
2036 EXPORT_SYMBOL(rproc_shutdown);
2037 
2038 /**
2039  * rproc_detach() - Detach the remote processor from the
2040  * remoteproc core
2041  *
2042  * @rproc: the remote processor
2043  *
2044  * Detach a remote processor (previously attached to with rproc_attach()).
2045  *
2046  * In case @rproc is still being used by an additional user(s), then
2047  * this function will just decrement the power refcount and exit,
2048  * without disconnecting the device.
2049  *
2050  * Function rproc_detach() calls __rproc_detach() in order to let a remote
2051  * processor know that services provided by the application processor are
2052  * no longer available.  From there it should be possible to remove the
2053  * platform driver and even power cycle the application processor (if the HW
2054  * supports it) without needing to switch off the remote processor.
2055  *
2056  * Return: 0 on success, and an appropriate error value otherwise
2057  */
rproc_detach(struct rproc * rproc)2058 int rproc_detach(struct rproc *rproc)
2059 {
2060 	struct device *dev = &rproc->dev;
2061 	int ret;
2062 
2063 	ret = mutex_lock_interruptible(&rproc->lock);
2064 	if (ret) {
2065 		dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
2066 		return ret;
2067 	}
2068 
2069 	if (rproc->state != RPROC_ATTACHED) {
2070 		ret = -EINVAL;
2071 		goto out;
2072 	}
2073 
2074 	/* if the remote proc is still needed, bail out */
2075 	if (!atomic_dec_and_test(&rproc->power)) {
2076 		ret = 0;
2077 		goto out;
2078 	}
2079 
2080 	ret = __rproc_detach(rproc);
2081 	if (ret) {
2082 		atomic_inc(&rproc->power);
2083 		goto out;
2084 	}
2085 
2086 	/* clean up all acquired resources */
2087 	rproc_resource_cleanup(rproc);
2088 
2089 	/* release HW resources if needed */
2090 	rproc_unprepare_device(rproc);
2091 
2092 	rproc_disable_iommu(rproc);
2093 
2094 	/* Free the copy of the resource table */
2095 	kfree(rproc->cached_table);
2096 	rproc->cached_table = NULL;
2097 	rproc->table_ptr = NULL;
2098 out:
2099 	mutex_unlock(&rproc->lock);
2100 	return ret;
2101 }
2102 EXPORT_SYMBOL(rproc_detach);
2103 
2104 /**
2105  * rproc_get_by_phandle() - find a remote processor by phandle
2106  * @phandle: phandle to the rproc
2107  *
2108  * Finds an rproc handle using the remote processor's phandle, and then
2109  * return a handle to the rproc.
2110  *
2111  * This function increments the remote processor's refcount, so always
2112  * use rproc_put() to decrement it back once rproc isn't needed anymore.
2113  *
2114  * Return: rproc handle on success, and NULL on failure
2115  */
2116 #ifdef CONFIG_OF
rproc_get_by_phandle(phandle phandle)2117 struct rproc *rproc_get_by_phandle(phandle phandle)
2118 {
2119 	struct rproc *rproc = NULL, *r;
2120 	struct device_driver *driver;
2121 	struct device_node *np;
2122 
2123 	np = of_find_node_by_phandle(phandle);
2124 	if (!np)
2125 		return NULL;
2126 
2127 	rcu_read_lock();
2128 	list_for_each_entry_rcu(r, &rproc_list, node) {
2129 		if (r->dev.parent && device_match_of_node(r->dev.parent, np)) {
2130 			/* prevent underlying implementation from being removed */
2131 
2132 			/*
2133 			 * If the remoteproc's parent has a driver, the
2134 			 * remoteproc is not part of a cluster and we can use
2135 			 * that driver.
2136 			 */
2137 			driver = r->dev.parent->driver;
2138 
2139 			/*
2140 			 * If the remoteproc's parent does not have a driver,
2141 			 * look for the driver associated with the cluster.
2142 			 */
2143 			if (!driver) {
2144 				if (r->dev.parent->parent)
2145 					driver = r->dev.parent->parent->driver;
2146 				if (!driver)
2147 					break;
2148 			}
2149 
2150 			if (!try_module_get(driver->owner)) {
2151 				dev_err(&r->dev, "can't get owner\n");
2152 				break;
2153 			}
2154 
2155 			rproc = r;
2156 			get_device(&rproc->dev);
2157 			break;
2158 		}
2159 	}
2160 	rcu_read_unlock();
2161 
2162 	of_node_put(np);
2163 
2164 	return rproc;
2165 }
2166 #else
rproc_get_by_phandle(phandle phandle)2167 struct rproc *rproc_get_by_phandle(phandle phandle)
2168 {
2169 	return NULL;
2170 }
2171 #endif
2172 EXPORT_SYMBOL(rproc_get_by_phandle);
2173 
2174 /**
2175  * rproc_set_firmware() - assign a new firmware
2176  * @rproc: rproc handle to which the new firmware is being assigned
2177  * @fw_name: new firmware name to be assigned
2178  *
2179  * This function allows remoteproc drivers or clients to configure a custom
2180  * firmware name that is different from the default name used during remoteproc
2181  * registration. The function does not trigger a remote processor boot,
2182  * only sets the firmware name used for a subsequent boot. This function
2183  * should also be called only when the remote processor is offline.
2184  *
2185  * This allows either the userspace to configure a different name through
2186  * sysfs or a kernel-level remoteproc or a remoteproc client driver to set
2187  * a specific firmware when it is controlling the boot and shutdown of the
2188  * remote processor.
2189  *
2190  * Return: 0 on success or a negative value upon failure
2191  */
rproc_set_firmware(struct rproc * rproc,const char * fw_name)2192 int rproc_set_firmware(struct rproc *rproc, const char *fw_name)
2193 {
2194 	struct device *dev;
2195 	int ret, len;
2196 	char *p;
2197 
2198 	if (!rproc || !fw_name)
2199 		return -EINVAL;
2200 
2201 	dev = rproc->dev.parent;
2202 
2203 	ret = mutex_lock_interruptible(&rproc->lock);
2204 	if (ret) {
2205 		dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
2206 		return -EINVAL;
2207 	}
2208 
2209 	if (rproc->state != RPROC_OFFLINE) {
2210 		dev_err(dev, "can't change firmware while running\n");
2211 		ret = -EBUSY;
2212 		goto out;
2213 	}
2214 
2215 	len = strcspn(fw_name, "\n");
2216 	if (!len) {
2217 		dev_err(dev, "can't provide empty string for firmware name\n");
2218 		ret = -EINVAL;
2219 		goto out;
2220 	}
2221 
2222 	p = kstrndup(fw_name, len, GFP_KERNEL);
2223 	if (!p) {
2224 		ret = -ENOMEM;
2225 		goto out;
2226 	}
2227 
2228 	kfree_const(rproc->firmware);
2229 	rproc->firmware = p;
2230 
2231 out:
2232 	mutex_unlock(&rproc->lock);
2233 	return ret;
2234 }
2235 EXPORT_SYMBOL(rproc_set_firmware);
2236 
rproc_validate(struct rproc * rproc)2237 static int rproc_validate(struct rproc *rproc)
2238 {
2239 	switch (rproc->state) {
2240 	case RPROC_OFFLINE:
2241 		/*
2242 		 * An offline processor without a start()
2243 		 * function makes no sense.
2244 		 */
2245 		if (!rproc->ops->start)
2246 			return -EINVAL;
2247 		break;
2248 	case RPROC_DETACHED:
2249 		/*
2250 		 * A remote processor in a detached state without an
2251 		 * attach() function makes not sense.
2252 		 */
2253 		if (!rproc->ops->attach)
2254 			return -EINVAL;
2255 		/*
2256 		 * When attaching to a remote processor the device memory
2257 		 * is already available and as such there is no need to have a
2258 		 * cached table.
2259 		 */
2260 		if (rproc->cached_table)
2261 			return -EINVAL;
2262 		break;
2263 	default:
2264 		/*
2265 		 * When adding a remote processor, the state of the device
2266 		 * can be offline or detached, nothing else.
2267 		 */
2268 		return -EINVAL;
2269 	}
2270 
2271 	return 0;
2272 }
2273 
2274 /**
2275  * rproc_add() - register a remote processor
2276  * @rproc: the remote processor handle to register
2277  *
2278  * Registers @rproc with the remoteproc framework, after it has been
2279  * allocated with rproc_alloc().
2280  *
2281  * This is called by the platform-specific rproc implementation, whenever
2282  * a new remote processor device is probed.
2283  *
2284  * Note: this function initiates an asynchronous firmware loading
2285  * context, which will look for virtio devices supported by the rproc's
2286  * firmware.
2287  *
2288  * If found, those virtio devices will be created and added, so as a result
2289  * of registering this remote processor, additional virtio drivers might be
2290  * probed.
2291  *
2292  * Return: 0 on success and an appropriate error code otherwise
2293  */
rproc_add(struct rproc * rproc)2294 int rproc_add(struct rproc *rproc)
2295 {
2296 	struct device *dev = &rproc->dev;
2297 	int ret;
2298 
2299 	ret = rproc_validate(rproc);
2300 	if (ret < 0)
2301 		return ret;
2302 
2303 	/* add char device for this remoteproc */
2304 	ret = rproc_char_device_add(rproc);
2305 	if (ret < 0)
2306 		return ret;
2307 
2308 	ret = device_add(dev);
2309 	if (ret < 0) {
2310 		put_device(dev);
2311 		goto rproc_remove_cdev;
2312 	}
2313 
2314 	dev_info(dev, "%s is available\n", rproc->name);
2315 
2316 	/* create debugfs entries */
2317 	rproc_create_debug_dir(rproc);
2318 
2319 	/* if rproc is marked always-on, request it to boot */
2320 	if (rproc->auto_boot) {
2321 		ret = rproc_trigger_auto_boot(rproc);
2322 		if (ret < 0)
2323 			goto rproc_remove_dev;
2324 	}
2325 
2326 	/* expose to rproc_get_by_phandle users */
2327 	mutex_lock(&rproc_list_mutex);
2328 	list_add_rcu(&rproc->node, &rproc_list);
2329 	mutex_unlock(&rproc_list_mutex);
2330 
2331 	return 0;
2332 
2333 rproc_remove_dev:
2334 	rproc_delete_debug_dir(rproc);
2335 	device_del(dev);
2336 rproc_remove_cdev:
2337 	rproc_char_device_remove(rproc);
2338 	return ret;
2339 }
2340 EXPORT_SYMBOL(rproc_add);
2341 
devm_rproc_remove(void * rproc)2342 static void devm_rproc_remove(void *rproc)
2343 {
2344 	rproc_del(rproc);
2345 }
2346 
2347 /**
2348  * devm_rproc_add() - resource managed rproc_add()
2349  * @dev: the underlying device
2350  * @rproc: the remote processor handle to register
2351  *
2352  * This function performs like rproc_add() but the registered rproc device will
2353  * automatically be removed on driver detach.
2354  *
2355  * Return: 0 on success, negative errno on failure
2356  */
devm_rproc_add(struct device * dev,struct rproc * rproc)2357 int devm_rproc_add(struct device *dev, struct rproc *rproc)
2358 {
2359 	int err;
2360 
2361 	err = rproc_add(rproc);
2362 	if (err)
2363 		return err;
2364 
2365 	return devm_add_action_or_reset(dev, devm_rproc_remove, rproc);
2366 }
2367 EXPORT_SYMBOL(devm_rproc_add);
2368 
2369 /**
2370  * rproc_type_release() - release a remote processor instance
2371  * @dev: the rproc's device
2372  *
2373  * This function should _never_ be called directly.
2374  *
2375  * It will be called by the driver core when no one holds a valid pointer
2376  * to @dev anymore.
2377  */
rproc_type_release(struct device * dev)2378 static void rproc_type_release(struct device *dev)
2379 {
2380 	struct rproc *rproc = container_of(dev, struct rproc, dev);
2381 
2382 	dev_info(&rproc->dev, "releasing %s\n", rproc->name);
2383 
2384 	idr_destroy(&rproc->notifyids);
2385 
2386 	if (rproc->index >= 0)
2387 		ida_free(&rproc_dev_index, rproc->index);
2388 
2389 	kfree_const(rproc->firmware);
2390 	kfree_const(rproc->name);
2391 	kfree(rproc->ops);
2392 	kfree(rproc);
2393 }
2394 
2395 static const struct device_type rproc_type = {
2396 	.name		= "remoteproc",
2397 	.release	= rproc_type_release,
2398 };
2399 
rproc_alloc_firmware(struct rproc * rproc,const char * name,const char * firmware)2400 static int rproc_alloc_firmware(struct rproc *rproc,
2401 				const char *name, const char *firmware)
2402 {
2403 	const char *p;
2404 
2405 	/*
2406 	 * Allocate a firmware name if the caller gave us one to work
2407 	 * with.  Otherwise construct a new one using a default pattern.
2408 	 */
2409 	if (firmware)
2410 		p = kstrdup_const(firmware, GFP_KERNEL);
2411 	else
2412 		p = kasprintf(GFP_KERNEL, "rproc-%s-fw", name);
2413 
2414 	if (!p)
2415 		return -ENOMEM;
2416 
2417 	rproc->firmware = p;
2418 
2419 	return 0;
2420 }
2421 
rproc_alloc_ops(struct rproc * rproc,const struct rproc_ops * ops)2422 static int rproc_alloc_ops(struct rproc *rproc, const struct rproc_ops *ops)
2423 {
2424 	rproc->ops = kmemdup(ops, sizeof(*ops), GFP_KERNEL);
2425 	if (!rproc->ops)
2426 		return -ENOMEM;
2427 
2428 	/* Default to rproc_coredump if no coredump function is specified */
2429 	if (!rproc->ops->coredump)
2430 		rproc->ops->coredump = rproc_coredump;
2431 
2432 	if (rproc->ops->load)
2433 		return 0;
2434 
2435 	/* Default to ELF loader if no load function is specified */
2436 	rproc->ops->load = rproc_elf_load_segments;
2437 	rproc->ops->parse_fw = rproc_elf_load_rsc_table;
2438 	rproc->ops->find_loaded_rsc_table = rproc_elf_find_loaded_rsc_table;
2439 	rproc->ops->sanity_check = rproc_elf_sanity_check;
2440 	rproc->ops->get_boot_addr = rproc_elf_get_boot_addr;
2441 
2442 	return 0;
2443 }
2444 
2445 /**
2446  * rproc_alloc() - allocate a remote processor handle
2447  * @dev: the underlying device
2448  * @name: name of this remote processor
2449  * @ops: platform-specific handlers (mainly start/stop)
2450  * @firmware: name of firmware file to load, can be NULL
2451  * @len: length of private data needed by the rproc driver (in bytes)
2452  *
2453  * Allocates a new remote processor handle, but does not register
2454  * it yet. if @firmware is NULL, a default name is used.
2455  *
2456  * This function should be used by rproc implementations during initialization
2457  * of the remote processor.
2458  *
2459  * After creating an rproc handle using this function, and when ready,
2460  * implementations should then call rproc_add() to complete
2461  * the registration of the remote processor.
2462  *
2463  * Note: _never_ directly deallocate @rproc, even if it was not registered
2464  * yet. Instead, when you need to unroll rproc_alloc(), use rproc_free().
2465  *
2466  * Return: new rproc pointer on success, and NULL on failure
2467  */
rproc_alloc(struct device * dev,const char * name,const struct rproc_ops * ops,const char * firmware,int len)2468 struct rproc *rproc_alloc(struct device *dev, const char *name,
2469 			  const struct rproc_ops *ops,
2470 			  const char *firmware, int len)
2471 {
2472 	struct rproc *rproc;
2473 
2474 	if (!dev || !name || !ops)
2475 		return NULL;
2476 
2477 	rproc = kzalloc(sizeof(struct rproc) + len, GFP_KERNEL);
2478 	if (!rproc)
2479 		return NULL;
2480 
2481 	rproc->priv = &rproc[1];
2482 	rproc->auto_boot = true;
2483 	rproc->elf_class = ELFCLASSNONE;
2484 	rproc->elf_machine = EM_NONE;
2485 
2486 	device_initialize(&rproc->dev);
2487 	rproc->dev.parent = dev;
2488 	rproc->dev.type = &rproc_type;
2489 	rproc->dev.class = &rproc_class;
2490 	rproc->dev.driver_data = rproc;
2491 	idr_init(&rproc->notifyids);
2492 
2493 	/* Assign a unique device index and name */
2494 	rproc->index = ida_alloc(&rproc_dev_index, GFP_KERNEL);
2495 	if (rproc->index < 0) {
2496 		dev_err(dev, "ida_alloc failed: %d\n", rproc->index);
2497 		goto put_device;
2498 	}
2499 
2500 	rproc->name = kstrdup_const(name, GFP_KERNEL);
2501 	if (!rproc->name)
2502 		goto put_device;
2503 
2504 	if (rproc_alloc_firmware(rproc, name, firmware))
2505 		goto put_device;
2506 
2507 	if (rproc_alloc_ops(rproc, ops))
2508 		goto put_device;
2509 
2510 	dev_set_name(&rproc->dev, "remoteproc%d", rproc->index);
2511 
2512 	atomic_set(&rproc->power, 0);
2513 
2514 	mutex_init(&rproc->lock);
2515 
2516 	INIT_LIST_HEAD(&rproc->carveouts);
2517 	INIT_LIST_HEAD(&rproc->mappings);
2518 	INIT_LIST_HEAD(&rproc->traces);
2519 	INIT_LIST_HEAD(&rproc->rvdevs);
2520 	INIT_LIST_HEAD(&rproc->subdevs);
2521 	INIT_LIST_HEAD(&rproc->dump_segments);
2522 
2523 	INIT_WORK(&rproc->crash_handler, rproc_crash_handler_work);
2524 
2525 	rproc->state = RPROC_OFFLINE;
2526 
2527 	return rproc;
2528 
2529 put_device:
2530 	put_device(&rproc->dev);
2531 	return NULL;
2532 }
2533 EXPORT_SYMBOL(rproc_alloc);
2534 
2535 /**
2536  * rproc_free() - unroll rproc_alloc()
2537  * @rproc: the remote processor handle
2538  *
2539  * This function decrements the rproc dev refcount.
2540  *
2541  * If no one holds any reference to rproc anymore, then its refcount would
2542  * now drop to zero, and it would be freed.
2543  */
rproc_free(struct rproc * rproc)2544 void rproc_free(struct rproc *rproc)
2545 {
2546 	put_device(&rproc->dev);
2547 }
2548 EXPORT_SYMBOL(rproc_free);
2549 
2550 /**
2551  * rproc_put() - release rproc reference
2552  * @rproc: the remote processor handle
2553  *
2554  * This function decrements the rproc dev refcount.
2555  *
2556  * If no one holds any reference to rproc anymore, then its refcount would
2557  * now drop to zero, and it would be freed.
2558  */
rproc_put(struct rproc * rproc)2559 void rproc_put(struct rproc *rproc)
2560 {
2561 	if (rproc->dev.parent->driver)
2562 		module_put(rproc->dev.parent->driver->owner);
2563 	else
2564 		module_put(rproc->dev.parent->parent->driver->owner);
2565 
2566 	put_device(&rproc->dev);
2567 }
2568 EXPORT_SYMBOL(rproc_put);
2569 
2570 /**
2571  * rproc_del() - unregister a remote processor
2572  * @rproc: rproc handle to unregister
2573  *
2574  * This function should be called when the platform specific rproc
2575  * implementation decides to remove the rproc device. it should
2576  * _only_ be called if a previous invocation of rproc_add()
2577  * has completed successfully.
2578  *
2579  * After rproc_del() returns, @rproc isn't freed yet, because
2580  * of the outstanding reference created by rproc_alloc. To decrement that
2581  * one last refcount, one still needs to call rproc_free().
2582  *
2583  * Return: 0 on success and -EINVAL if @rproc isn't valid
2584  */
rproc_del(struct rproc * rproc)2585 int rproc_del(struct rproc *rproc)
2586 {
2587 	if (!rproc)
2588 		return -EINVAL;
2589 
2590 	/* TODO: make sure this works with rproc->power > 1 */
2591 	rproc_shutdown(rproc);
2592 
2593 	mutex_lock(&rproc->lock);
2594 	rproc->state = RPROC_DELETED;
2595 	mutex_unlock(&rproc->lock);
2596 
2597 	rproc_delete_debug_dir(rproc);
2598 
2599 	/* the rproc is downref'ed as soon as it's removed from the klist */
2600 	mutex_lock(&rproc_list_mutex);
2601 	list_del_rcu(&rproc->node);
2602 	mutex_unlock(&rproc_list_mutex);
2603 
2604 	/* Ensure that no readers of rproc_list are still active */
2605 	synchronize_rcu();
2606 
2607 	device_del(&rproc->dev);
2608 	rproc_char_device_remove(rproc);
2609 
2610 	return 0;
2611 }
2612 EXPORT_SYMBOL(rproc_del);
2613 
devm_rproc_free(struct device * dev,void * res)2614 static void devm_rproc_free(struct device *dev, void *res)
2615 {
2616 	rproc_free(*(struct rproc **)res);
2617 }
2618 
2619 /**
2620  * devm_rproc_alloc() - resource managed rproc_alloc()
2621  * @dev: the underlying device
2622  * @name: name of this remote processor
2623  * @ops: platform-specific handlers (mainly start/stop)
2624  * @firmware: name of firmware file to load, can be NULL
2625  * @len: length of private data needed by the rproc driver (in bytes)
2626  *
2627  * This function performs like rproc_alloc() but the acquired rproc device will
2628  * automatically be released on driver detach.
2629  *
2630  * Return: new rproc instance, or NULL on failure
2631  */
devm_rproc_alloc(struct device * dev,const char * name,const struct rproc_ops * ops,const char * firmware,int len)2632 struct rproc *devm_rproc_alloc(struct device *dev, const char *name,
2633 			       const struct rproc_ops *ops,
2634 			       const char *firmware, int len)
2635 {
2636 	struct rproc **ptr, *rproc;
2637 
2638 	ptr = devres_alloc(devm_rproc_free, sizeof(*ptr), GFP_KERNEL);
2639 	if (!ptr)
2640 		return NULL;
2641 
2642 	rproc = rproc_alloc(dev, name, ops, firmware, len);
2643 	if (rproc) {
2644 		*ptr = rproc;
2645 		devres_add(dev, ptr);
2646 	} else {
2647 		devres_free(ptr);
2648 	}
2649 
2650 	return rproc;
2651 }
2652 EXPORT_SYMBOL(devm_rproc_alloc);
2653 
2654 /**
2655  * rproc_add_subdev() - add a subdevice to a remoteproc
2656  * @rproc: rproc handle to add the subdevice to
2657  * @subdev: subdev handle to register
2658  *
2659  * Caller is responsible for populating optional subdevice function pointers.
2660  */
rproc_add_subdev(struct rproc * rproc,struct rproc_subdev * subdev)2661 void rproc_add_subdev(struct rproc *rproc, struct rproc_subdev *subdev)
2662 {
2663 	list_add_tail(&subdev->node, &rproc->subdevs);
2664 }
2665 EXPORT_SYMBOL(rproc_add_subdev);
2666 
2667 /**
2668  * rproc_remove_subdev() - remove a subdevice from a remoteproc
2669  * @rproc: rproc handle to remove the subdevice from
2670  * @subdev: subdev handle, previously registered with rproc_add_subdev()
2671  */
rproc_remove_subdev(struct rproc * rproc,struct rproc_subdev * subdev)2672 void rproc_remove_subdev(struct rproc *rproc, struct rproc_subdev *subdev)
2673 {
2674 	list_del(&subdev->node);
2675 }
2676 EXPORT_SYMBOL(rproc_remove_subdev);
2677 
2678 /**
2679  * rproc_get_by_child() - acquire rproc handle of @dev's ancestor
2680  * @dev:	child device to find ancestor of
2681  *
2682  * Return: the ancestor rproc instance, or NULL if not found
2683  */
rproc_get_by_child(struct device * dev)2684 struct rproc *rproc_get_by_child(struct device *dev)
2685 {
2686 	for (dev = dev->parent; dev; dev = dev->parent) {
2687 		if (dev->type == &rproc_type)
2688 			return dev->driver_data;
2689 	}
2690 
2691 	return NULL;
2692 }
2693 EXPORT_SYMBOL(rproc_get_by_child);
2694 
2695 /**
2696  * rproc_report_crash() - rproc crash reporter function
2697  * @rproc: remote processor
2698  * @type: crash type
2699  *
2700  * This function must be called every time a crash is detected by the low-level
2701  * drivers implementing a specific remoteproc. This should not be called from a
2702  * non-remoteproc driver.
2703  *
2704  * This function can be called from atomic/interrupt context.
2705  */
rproc_report_crash(struct rproc * rproc,enum rproc_crash_type type)2706 void rproc_report_crash(struct rproc *rproc, enum rproc_crash_type type)
2707 {
2708 	if (!rproc) {
2709 		pr_err("NULL rproc pointer\n");
2710 		return;
2711 	}
2712 
2713 	/* Prevent suspend while the remoteproc is being recovered */
2714 	pm_stay_awake(rproc->dev.parent);
2715 
2716 	dev_err(&rproc->dev, "crash detected in %s: type %s\n",
2717 		rproc->name, rproc_crash_to_string(type));
2718 
2719 	queue_work(rproc_recovery_wq, &rproc->crash_handler);
2720 }
2721 EXPORT_SYMBOL(rproc_report_crash);
2722 
rproc_panic_handler(struct notifier_block * nb,unsigned long event,void * ptr)2723 static int rproc_panic_handler(struct notifier_block *nb, unsigned long event,
2724 			       void *ptr)
2725 {
2726 	unsigned int longest = 0;
2727 	struct rproc *rproc;
2728 	unsigned int d;
2729 
2730 	rcu_read_lock();
2731 	list_for_each_entry_rcu(rproc, &rproc_list, node) {
2732 		if (!rproc->ops->panic)
2733 			continue;
2734 
2735 		if (rproc->state != RPROC_RUNNING &&
2736 		    rproc->state != RPROC_ATTACHED)
2737 			continue;
2738 
2739 		d = rproc->ops->panic(rproc);
2740 		longest = max(longest, d);
2741 	}
2742 	rcu_read_unlock();
2743 
2744 	/*
2745 	 * Delay for the longest requested duration before returning. This can
2746 	 * be used by the remoteproc drivers to give the remote processor time
2747 	 * to perform any requested operations (such as flush caches), when
2748 	 * it's not possible to signal the Linux side due to the panic.
2749 	 */
2750 	mdelay(longest);
2751 
2752 	return NOTIFY_DONE;
2753 }
2754 
rproc_init_panic(void)2755 static void __init rproc_init_panic(void)
2756 {
2757 	rproc_panic_nb.notifier_call = rproc_panic_handler;
2758 	atomic_notifier_chain_register(&panic_notifier_list, &rproc_panic_nb);
2759 }
2760 
rproc_exit_panic(void)2761 static void __exit rproc_exit_panic(void)
2762 {
2763 	atomic_notifier_chain_unregister(&panic_notifier_list, &rproc_panic_nb);
2764 }
2765 
remoteproc_init(void)2766 static int __init remoteproc_init(void)
2767 {
2768 	rproc_recovery_wq = alloc_workqueue("rproc_recovery_wq",
2769 						WQ_UNBOUND | WQ_FREEZABLE, 0);
2770 	if (!rproc_recovery_wq) {
2771 		pr_err("remoteproc: creation of rproc_recovery_wq failed\n");
2772 		return -ENOMEM;
2773 	}
2774 
2775 	rproc_init_sysfs();
2776 	rproc_init_debugfs();
2777 	rproc_init_cdev();
2778 	rproc_init_panic();
2779 
2780 	return 0;
2781 }
2782 subsys_initcall(remoteproc_init);
2783 
remoteproc_exit(void)2784 static void __exit remoteproc_exit(void)
2785 {
2786 	ida_destroy(&rproc_dev_index);
2787 
2788 	if (!rproc_recovery_wq)
2789 		return;
2790 
2791 	rproc_exit_panic();
2792 	rproc_exit_debugfs();
2793 	rproc_exit_sysfs();
2794 	destroy_workqueue(rproc_recovery_wq);
2795 }
2796 module_exit(remoteproc_exit);
2797 
2798 MODULE_DESCRIPTION("Generic Remote Processor Framework");
2799