1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3 */
4 #include <linux/bpf.h>
5 #include <linux/btf.h>
6 #include <linux/bpf-cgroup.h>
7 #include <linux/cgroup.h>
8 #include <linux/rcupdate.h>
9 #include <linux/random.h>
10 #include <linux/smp.h>
11 #include <linux/topology.h>
12 #include <linux/ktime.h>
13 #include <linux/sched.h>
14 #include <linux/uidgid.h>
15 #include <linux/filter.h>
16 #include <linux/ctype.h>
17 #include <linux/jiffies.h>
18 #include <linux/pid_namespace.h>
19 #include <linux/poison.h>
20 #include <linux/proc_ns.h>
21 #include <linux/sched/task.h>
22 #include <linux/security.h>
23 #include <linux/btf_ids.h>
24 #include <linux/bpf_mem_alloc.h>
25 #include <linux/kasan.h>
26
27 #include "../../lib/kstrtox.h"
28
29 /* If kernel subsystem is allowing eBPF programs to call this function,
30 * inside its own verifier_ops->get_func_proto() callback it should return
31 * bpf_map_lookup_elem_proto, so that verifier can properly check the arguments
32 *
33 * Different map implementations will rely on rcu in map methods
34 * lookup/update/delete, therefore eBPF programs must run under rcu lock
35 * if program is allowed to access maps, so check rcu_read_lock_held() or
36 * rcu_read_lock_trace_held() in all three functions.
37 */
BPF_CALL_2(bpf_map_lookup_elem,struct bpf_map *,map,void *,key)38 BPF_CALL_2(bpf_map_lookup_elem, struct bpf_map *, map, void *, key)
39 {
40 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
41 !rcu_read_lock_bh_held());
42 return (unsigned long) map->ops->map_lookup_elem(map, key);
43 }
44
45 const struct bpf_func_proto bpf_map_lookup_elem_proto = {
46 .func = bpf_map_lookup_elem,
47 .gpl_only = false,
48 .pkt_access = true,
49 .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
50 .arg1_type = ARG_CONST_MAP_PTR,
51 .arg2_type = ARG_PTR_TO_MAP_KEY,
52 };
53
BPF_CALL_4(bpf_map_update_elem,struct bpf_map *,map,void *,key,void *,value,u64,flags)54 BPF_CALL_4(bpf_map_update_elem, struct bpf_map *, map, void *, key,
55 void *, value, u64, flags)
56 {
57 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
58 !rcu_read_lock_bh_held());
59 return map->ops->map_update_elem(map, key, value, flags);
60 }
61
62 const struct bpf_func_proto bpf_map_update_elem_proto = {
63 .func = bpf_map_update_elem,
64 .gpl_only = false,
65 .pkt_access = true,
66 .ret_type = RET_INTEGER,
67 .arg1_type = ARG_CONST_MAP_PTR,
68 .arg2_type = ARG_PTR_TO_MAP_KEY,
69 .arg3_type = ARG_PTR_TO_MAP_VALUE,
70 .arg4_type = ARG_ANYTHING,
71 };
72
BPF_CALL_2(bpf_map_delete_elem,struct bpf_map *,map,void *,key)73 BPF_CALL_2(bpf_map_delete_elem, struct bpf_map *, map, void *, key)
74 {
75 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
76 !rcu_read_lock_bh_held());
77 return map->ops->map_delete_elem(map, key);
78 }
79
80 const struct bpf_func_proto bpf_map_delete_elem_proto = {
81 .func = bpf_map_delete_elem,
82 .gpl_only = false,
83 .pkt_access = true,
84 .ret_type = RET_INTEGER,
85 .arg1_type = ARG_CONST_MAP_PTR,
86 .arg2_type = ARG_PTR_TO_MAP_KEY,
87 };
88
BPF_CALL_3(bpf_map_push_elem,struct bpf_map *,map,void *,value,u64,flags)89 BPF_CALL_3(bpf_map_push_elem, struct bpf_map *, map, void *, value, u64, flags)
90 {
91 return map->ops->map_push_elem(map, value, flags);
92 }
93
94 const struct bpf_func_proto bpf_map_push_elem_proto = {
95 .func = bpf_map_push_elem,
96 .gpl_only = false,
97 .pkt_access = true,
98 .ret_type = RET_INTEGER,
99 .arg1_type = ARG_CONST_MAP_PTR,
100 .arg2_type = ARG_PTR_TO_MAP_VALUE,
101 .arg3_type = ARG_ANYTHING,
102 };
103
BPF_CALL_2(bpf_map_pop_elem,struct bpf_map *,map,void *,value)104 BPF_CALL_2(bpf_map_pop_elem, struct bpf_map *, map, void *, value)
105 {
106 return map->ops->map_pop_elem(map, value);
107 }
108
109 const struct bpf_func_proto bpf_map_pop_elem_proto = {
110 .func = bpf_map_pop_elem,
111 .gpl_only = false,
112 .ret_type = RET_INTEGER,
113 .arg1_type = ARG_CONST_MAP_PTR,
114 .arg2_type = ARG_PTR_TO_MAP_VALUE | MEM_UNINIT | MEM_WRITE,
115 };
116
BPF_CALL_2(bpf_map_peek_elem,struct bpf_map *,map,void *,value)117 BPF_CALL_2(bpf_map_peek_elem, struct bpf_map *, map, void *, value)
118 {
119 return map->ops->map_peek_elem(map, value);
120 }
121
122 const struct bpf_func_proto bpf_map_peek_elem_proto = {
123 .func = bpf_map_peek_elem,
124 .gpl_only = false,
125 .ret_type = RET_INTEGER,
126 .arg1_type = ARG_CONST_MAP_PTR,
127 .arg2_type = ARG_PTR_TO_MAP_VALUE | MEM_UNINIT | MEM_WRITE,
128 };
129
BPF_CALL_3(bpf_map_lookup_percpu_elem,struct bpf_map *,map,void *,key,u32,cpu)130 BPF_CALL_3(bpf_map_lookup_percpu_elem, struct bpf_map *, map, void *, key, u32, cpu)
131 {
132 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
133 !rcu_read_lock_bh_held());
134 return (unsigned long) map->ops->map_lookup_percpu_elem(map, key, cpu);
135 }
136
137 const struct bpf_func_proto bpf_map_lookup_percpu_elem_proto = {
138 .func = bpf_map_lookup_percpu_elem,
139 .gpl_only = false,
140 .pkt_access = true,
141 .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
142 .arg1_type = ARG_CONST_MAP_PTR,
143 .arg2_type = ARG_PTR_TO_MAP_KEY,
144 .arg3_type = ARG_ANYTHING,
145 };
146
147 const struct bpf_func_proto bpf_get_prandom_u32_proto = {
148 .func = bpf_user_rnd_u32,
149 .gpl_only = false,
150 .ret_type = RET_INTEGER,
151 };
152
BPF_CALL_0(bpf_get_smp_processor_id)153 BPF_CALL_0(bpf_get_smp_processor_id)
154 {
155 return smp_processor_id();
156 }
157
158 const struct bpf_func_proto bpf_get_smp_processor_id_proto = {
159 .func = bpf_get_smp_processor_id,
160 .gpl_only = false,
161 .ret_type = RET_INTEGER,
162 .allow_fastcall = true,
163 };
164
BPF_CALL_0(bpf_get_numa_node_id)165 BPF_CALL_0(bpf_get_numa_node_id)
166 {
167 return numa_node_id();
168 }
169
170 const struct bpf_func_proto bpf_get_numa_node_id_proto = {
171 .func = bpf_get_numa_node_id,
172 .gpl_only = false,
173 .ret_type = RET_INTEGER,
174 };
175
BPF_CALL_0(bpf_ktime_get_ns)176 BPF_CALL_0(bpf_ktime_get_ns)
177 {
178 /* NMI safe access to clock monotonic */
179 return ktime_get_mono_fast_ns();
180 }
181
182 const struct bpf_func_proto bpf_ktime_get_ns_proto = {
183 .func = bpf_ktime_get_ns,
184 .gpl_only = false,
185 .ret_type = RET_INTEGER,
186 };
187
BPF_CALL_0(bpf_ktime_get_boot_ns)188 BPF_CALL_0(bpf_ktime_get_boot_ns)
189 {
190 /* NMI safe access to clock boottime */
191 return ktime_get_boot_fast_ns();
192 }
193
194 const struct bpf_func_proto bpf_ktime_get_boot_ns_proto = {
195 .func = bpf_ktime_get_boot_ns,
196 .gpl_only = false,
197 .ret_type = RET_INTEGER,
198 };
199
BPF_CALL_0(bpf_ktime_get_coarse_ns)200 BPF_CALL_0(bpf_ktime_get_coarse_ns)
201 {
202 return ktime_get_coarse_ns();
203 }
204
205 const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto = {
206 .func = bpf_ktime_get_coarse_ns,
207 .gpl_only = false,
208 .ret_type = RET_INTEGER,
209 };
210
BPF_CALL_0(bpf_ktime_get_tai_ns)211 BPF_CALL_0(bpf_ktime_get_tai_ns)
212 {
213 /* NMI safe access to clock tai */
214 return ktime_get_tai_fast_ns();
215 }
216
217 const struct bpf_func_proto bpf_ktime_get_tai_ns_proto = {
218 .func = bpf_ktime_get_tai_ns,
219 .gpl_only = false,
220 .ret_type = RET_INTEGER,
221 };
222
BPF_CALL_0(bpf_get_current_pid_tgid)223 BPF_CALL_0(bpf_get_current_pid_tgid)
224 {
225 struct task_struct *task = current;
226
227 if (unlikely(!task))
228 return -EINVAL;
229
230 return (u64) task->tgid << 32 | task->pid;
231 }
232
233 const struct bpf_func_proto bpf_get_current_pid_tgid_proto = {
234 .func = bpf_get_current_pid_tgid,
235 .gpl_only = false,
236 .ret_type = RET_INTEGER,
237 };
238
BPF_CALL_0(bpf_get_current_uid_gid)239 BPF_CALL_0(bpf_get_current_uid_gid)
240 {
241 struct task_struct *task = current;
242 kuid_t uid;
243 kgid_t gid;
244
245 if (unlikely(!task))
246 return -EINVAL;
247
248 current_uid_gid(&uid, &gid);
249 return (u64) from_kgid(&init_user_ns, gid) << 32 |
250 from_kuid(&init_user_ns, uid);
251 }
252
253 const struct bpf_func_proto bpf_get_current_uid_gid_proto = {
254 .func = bpf_get_current_uid_gid,
255 .gpl_only = false,
256 .ret_type = RET_INTEGER,
257 };
258
BPF_CALL_2(bpf_get_current_comm,char *,buf,u32,size)259 BPF_CALL_2(bpf_get_current_comm, char *, buf, u32, size)
260 {
261 struct task_struct *task = current;
262
263 if (unlikely(!task))
264 goto err_clear;
265
266 /* Verifier guarantees that size > 0 */
267 strscpy_pad(buf, task->comm, size);
268 return 0;
269 err_clear:
270 memset(buf, 0, size);
271 return -EINVAL;
272 }
273
274 const struct bpf_func_proto bpf_get_current_comm_proto = {
275 .func = bpf_get_current_comm,
276 .gpl_only = false,
277 .ret_type = RET_INTEGER,
278 .arg1_type = ARG_PTR_TO_UNINIT_MEM,
279 .arg2_type = ARG_CONST_SIZE,
280 };
281
282 #if defined(CONFIG_QUEUED_SPINLOCKS) || defined(CONFIG_BPF_ARCH_SPINLOCK)
283
__bpf_spin_lock(struct bpf_spin_lock * lock)284 static inline void __bpf_spin_lock(struct bpf_spin_lock *lock)
285 {
286 arch_spinlock_t *l = (void *)lock;
287 union {
288 __u32 val;
289 arch_spinlock_t lock;
290 } u = { .lock = __ARCH_SPIN_LOCK_UNLOCKED };
291
292 compiletime_assert(u.val == 0, "__ARCH_SPIN_LOCK_UNLOCKED not 0");
293 BUILD_BUG_ON(sizeof(*l) != sizeof(__u32));
294 BUILD_BUG_ON(sizeof(*lock) != sizeof(__u32));
295 preempt_disable();
296 arch_spin_lock(l);
297 }
298
__bpf_spin_unlock(struct bpf_spin_lock * lock)299 static inline void __bpf_spin_unlock(struct bpf_spin_lock *lock)
300 {
301 arch_spinlock_t *l = (void *)lock;
302
303 arch_spin_unlock(l);
304 preempt_enable();
305 }
306
307 #else
308
__bpf_spin_lock(struct bpf_spin_lock * lock)309 static inline void __bpf_spin_lock(struct bpf_spin_lock *lock)
310 {
311 atomic_t *l = (void *)lock;
312
313 BUILD_BUG_ON(sizeof(*l) != sizeof(*lock));
314 do {
315 atomic_cond_read_relaxed(l, !VAL);
316 } while (atomic_xchg(l, 1));
317 }
318
__bpf_spin_unlock(struct bpf_spin_lock * lock)319 static inline void __bpf_spin_unlock(struct bpf_spin_lock *lock)
320 {
321 atomic_t *l = (void *)lock;
322
323 atomic_set_release(l, 0);
324 }
325
326 #endif
327
328 static DEFINE_PER_CPU(unsigned long, irqsave_flags);
329
__bpf_spin_lock_irqsave(struct bpf_spin_lock * lock)330 static inline void __bpf_spin_lock_irqsave(struct bpf_spin_lock *lock)
331 {
332 unsigned long flags;
333
334 local_irq_save(flags);
335 __bpf_spin_lock(lock);
336 __this_cpu_write(irqsave_flags, flags);
337 }
338
NOTRACE_BPF_CALL_1(bpf_spin_lock,struct bpf_spin_lock *,lock)339 NOTRACE_BPF_CALL_1(bpf_spin_lock, struct bpf_spin_lock *, lock)
340 {
341 __bpf_spin_lock_irqsave(lock);
342 return 0;
343 }
344
345 const struct bpf_func_proto bpf_spin_lock_proto = {
346 .func = bpf_spin_lock,
347 .gpl_only = false,
348 .ret_type = RET_VOID,
349 .arg1_type = ARG_PTR_TO_SPIN_LOCK,
350 .arg1_btf_id = BPF_PTR_POISON,
351 };
352
__bpf_spin_unlock_irqrestore(struct bpf_spin_lock * lock)353 static inline void __bpf_spin_unlock_irqrestore(struct bpf_spin_lock *lock)
354 {
355 unsigned long flags;
356
357 flags = __this_cpu_read(irqsave_flags);
358 __bpf_spin_unlock(lock);
359 local_irq_restore(flags);
360 }
361
NOTRACE_BPF_CALL_1(bpf_spin_unlock,struct bpf_spin_lock *,lock)362 NOTRACE_BPF_CALL_1(bpf_spin_unlock, struct bpf_spin_lock *, lock)
363 {
364 __bpf_spin_unlock_irqrestore(lock);
365 return 0;
366 }
367
368 const struct bpf_func_proto bpf_spin_unlock_proto = {
369 .func = bpf_spin_unlock,
370 .gpl_only = false,
371 .ret_type = RET_VOID,
372 .arg1_type = ARG_PTR_TO_SPIN_LOCK,
373 .arg1_btf_id = BPF_PTR_POISON,
374 };
375
copy_map_value_locked(struct bpf_map * map,void * dst,void * src,bool lock_src)376 void copy_map_value_locked(struct bpf_map *map, void *dst, void *src,
377 bool lock_src)
378 {
379 struct bpf_spin_lock *lock;
380
381 if (lock_src)
382 lock = src + map->record->spin_lock_off;
383 else
384 lock = dst + map->record->spin_lock_off;
385 preempt_disable();
386 __bpf_spin_lock_irqsave(lock);
387 copy_map_value(map, dst, src);
388 __bpf_spin_unlock_irqrestore(lock);
389 preempt_enable();
390 }
391
BPF_CALL_0(bpf_jiffies64)392 BPF_CALL_0(bpf_jiffies64)
393 {
394 return get_jiffies_64();
395 }
396
397 const struct bpf_func_proto bpf_jiffies64_proto = {
398 .func = bpf_jiffies64,
399 .gpl_only = false,
400 .ret_type = RET_INTEGER,
401 };
402
403 #ifdef CONFIG_CGROUPS
BPF_CALL_0(bpf_get_current_cgroup_id)404 BPF_CALL_0(bpf_get_current_cgroup_id)
405 {
406 struct cgroup *cgrp;
407 u64 cgrp_id;
408
409 rcu_read_lock();
410 cgrp = task_dfl_cgroup(current);
411 cgrp_id = cgroup_id(cgrp);
412 rcu_read_unlock();
413
414 return cgrp_id;
415 }
416
417 const struct bpf_func_proto bpf_get_current_cgroup_id_proto = {
418 .func = bpf_get_current_cgroup_id,
419 .gpl_only = false,
420 .ret_type = RET_INTEGER,
421 };
422
BPF_CALL_1(bpf_get_current_ancestor_cgroup_id,int,ancestor_level)423 BPF_CALL_1(bpf_get_current_ancestor_cgroup_id, int, ancestor_level)
424 {
425 struct cgroup *cgrp;
426 struct cgroup *ancestor;
427 u64 cgrp_id;
428
429 rcu_read_lock();
430 cgrp = task_dfl_cgroup(current);
431 ancestor = cgroup_ancestor(cgrp, ancestor_level);
432 cgrp_id = ancestor ? cgroup_id(ancestor) : 0;
433 rcu_read_unlock();
434
435 return cgrp_id;
436 }
437
438 const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto = {
439 .func = bpf_get_current_ancestor_cgroup_id,
440 .gpl_only = false,
441 .ret_type = RET_INTEGER,
442 .arg1_type = ARG_ANYTHING,
443 };
444 #endif /* CONFIG_CGROUPS */
445
446 #define BPF_STRTOX_BASE_MASK 0x1F
447
__bpf_strtoull(const char * buf,size_t buf_len,u64 flags,unsigned long long * res,bool * is_negative)448 static int __bpf_strtoull(const char *buf, size_t buf_len, u64 flags,
449 unsigned long long *res, bool *is_negative)
450 {
451 unsigned int base = flags & BPF_STRTOX_BASE_MASK;
452 const char *cur_buf = buf;
453 size_t cur_len = buf_len;
454 unsigned int consumed;
455 size_t val_len;
456 char str[64];
457
458 if (!buf || !buf_len || !res || !is_negative)
459 return -EINVAL;
460
461 if (base != 0 && base != 8 && base != 10 && base != 16)
462 return -EINVAL;
463
464 if (flags & ~BPF_STRTOX_BASE_MASK)
465 return -EINVAL;
466
467 while (cur_buf < buf + buf_len && isspace(*cur_buf))
468 ++cur_buf;
469
470 *is_negative = (cur_buf < buf + buf_len && *cur_buf == '-');
471 if (*is_negative)
472 ++cur_buf;
473
474 consumed = cur_buf - buf;
475 cur_len -= consumed;
476 if (!cur_len)
477 return -EINVAL;
478
479 cur_len = min(cur_len, sizeof(str) - 1);
480 memcpy(str, cur_buf, cur_len);
481 str[cur_len] = '\0';
482 cur_buf = str;
483
484 cur_buf = _parse_integer_fixup_radix(cur_buf, &base);
485 val_len = _parse_integer(cur_buf, base, res);
486
487 if (val_len & KSTRTOX_OVERFLOW)
488 return -ERANGE;
489
490 if (val_len == 0)
491 return -EINVAL;
492
493 cur_buf += val_len;
494 consumed += cur_buf - str;
495
496 return consumed;
497 }
498
__bpf_strtoll(const char * buf,size_t buf_len,u64 flags,long long * res)499 static int __bpf_strtoll(const char *buf, size_t buf_len, u64 flags,
500 long long *res)
501 {
502 unsigned long long _res;
503 bool is_negative;
504 int err;
505
506 err = __bpf_strtoull(buf, buf_len, flags, &_res, &is_negative);
507 if (err < 0)
508 return err;
509 if (is_negative) {
510 if ((long long)-_res > 0)
511 return -ERANGE;
512 *res = -_res;
513 } else {
514 if ((long long)_res < 0)
515 return -ERANGE;
516 *res = _res;
517 }
518 return err;
519 }
520
BPF_CALL_4(bpf_strtol,const char *,buf,size_t,buf_len,u64,flags,s64 *,res)521 BPF_CALL_4(bpf_strtol, const char *, buf, size_t, buf_len, u64, flags,
522 s64 *, res)
523 {
524 long long _res;
525 int err;
526
527 *res = 0;
528 err = __bpf_strtoll(buf, buf_len, flags, &_res);
529 if (err < 0)
530 return err;
531 *res = _res;
532 return err;
533 }
534
535 const struct bpf_func_proto bpf_strtol_proto = {
536 .func = bpf_strtol,
537 .gpl_only = false,
538 .ret_type = RET_INTEGER,
539 .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY,
540 .arg2_type = ARG_CONST_SIZE,
541 .arg3_type = ARG_ANYTHING,
542 .arg4_type = ARG_PTR_TO_FIXED_SIZE_MEM | MEM_UNINIT | MEM_WRITE | MEM_ALIGNED,
543 .arg4_size = sizeof(s64),
544 };
545
BPF_CALL_4(bpf_strtoul,const char *,buf,size_t,buf_len,u64,flags,u64 *,res)546 BPF_CALL_4(bpf_strtoul, const char *, buf, size_t, buf_len, u64, flags,
547 u64 *, res)
548 {
549 unsigned long long _res;
550 bool is_negative;
551 int err;
552
553 *res = 0;
554 err = __bpf_strtoull(buf, buf_len, flags, &_res, &is_negative);
555 if (err < 0)
556 return err;
557 if (is_negative)
558 return -EINVAL;
559 *res = _res;
560 return err;
561 }
562
563 const struct bpf_func_proto bpf_strtoul_proto = {
564 .func = bpf_strtoul,
565 .gpl_only = false,
566 .ret_type = RET_INTEGER,
567 .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY,
568 .arg2_type = ARG_CONST_SIZE,
569 .arg3_type = ARG_ANYTHING,
570 .arg4_type = ARG_PTR_TO_FIXED_SIZE_MEM | MEM_UNINIT | MEM_WRITE | MEM_ALIGNED,
571 .arg4_size = sizeof(u64),
572 };
573
BPF_CALL_3(bpf_strncmp,const char *,s1,u32,s1_sz,const char *,s2)574 BPF_CALL_3(bpf_strncmp, const char *, s1, u32, s1_sz, const char *, s2)
575 {
576 return strncmp(s1, s2, s1_sz);
577 }
578
579 static const struct bpf_func_proto bpf_strncmp_proto = {
580 .func = bpf_strncmp,
581 .gpl_only = false,
582 .ret_type = RET_INTEGER,
583 .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY,
584 .arg2_type = ARG_CONST_SIZE,
585 .arg3_type = ARG_PTR_TO_CONST_STR,
586 };
587
BPF_CALL_4(bpf_get_ns_current_pid_tgid,u64,dev,u64,ino,struct bpf_pidns_info *,nsdata,u32,size)588 BPF_CALL_4(bpf_get_ns_current_pid_tgid, u64, dev, u64, ino,
589 struct bpf_pidns_info *, nsdata, u32, size)
590 {
591 struct task_struct *task = current;
592 struct pid_namespace *pidns;
593 int err = -EINVAL;
594
595 if (unlikely(size != sizeof(struct bpf_pidns_info)))
596 goto clear;
597
598 if (unlikely((u64)(dev_t)dev != dev))
599 goto clear;
600
601 if (unlikely(!task))
602 goto clear;
603
604 pidns = task_active_pid_ns(task);
605 if (unlikely(!pidns)) {
606 err = -ENOENT;
607 goto clear;
608 }
609
610 if (!ns_match(&pidns->ns, (dev_t)dev, ino))
611 goto clear;
612
613 nsdata->pid = task_pid_nr_ns(task, pidns);
614 nsdata->tgid = task_tgid_nr_ns(task, pidns);
615 return 0;
616 clear:
617 memset((void *)nsdata, 0, (size_t) size);
618 return err;
619 }
620
621 const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto = {
622 .func = bpf_get_ns_current_pid_tgid,
623 .gpl_only = false,
624 .ret_type = RET_INTEGER,
625 .arg1_type = ARG_ANYTHING,
626 .arg2_type = ARG_ANYTHING,
627 .arg3_type = ARG_PTR_TO_UNINIT_MEM,
628 .arg4_type = ARG_CONST_SIZE,
629 };
630
631 static const struct bpf_func_proto bpf_get_raw_smp_processor_id_proto = {
632 .func = bpf_get_raw_cpu_id,
633 .gpl_only = false,
634 .ret_type = RET_INTEGER,
635 };
636
BPF_CALL_5(bpf_event_output_data,void *,ctx,struct bpf_map *,map,u64,flags,void *,data,u64,size)637 BPF_CALL_5(bpf_event_output_data, void *, ctx, struct bpf_map *, map,
638 u64, flags, void *, data, u64, size)
639 {
640 if (unlikely(flags & ~(BPF_F_INDEX_MASK)))
641 return -EINVAL;
642
643 return bpf_event_output(map, flags, data, size, NULL, 0, NULL);
644 }
645
646 const struct bpf_func_proto bpf_event_output_data_proto = {
647 .func = bpf_event_output_data,
648 .gpl_only = true,
649 .ret_type = RET_INTEGER,
650 .arg1_type = ARG_PTR_TO_CTX,
651 .arg2_type = ARG_CONST_MAP_PTR,
652 .arg3_type = ARG_ANYTHING,
653 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY,
654 .arg5_type = ARG_CONST_SIZE_OR_ZERO,
655 };
656
BPF_CALL_3(bpf_copy_from_user,void *,dst,u32,size,const void __user *,user_ptr)657 BPF_CALL_3(bpf_copy_from_user, void *, dst, u32, size,
658 const void __user *, user_ptr)
659 {
660 int ret = copy_from_user(dst, user_ptr, size);
661
662 if (unlikely(ret)) {
663 memset(dst, 0, size);
664 ret = -EFAULT;
665 }
666
667 return ret;
668 }
669
670 const struct bpf_func_proto bpf_copy_from_user_proto = {
671 .func = bpf_copy_from_user,
672 .gpl_only = false,
673 .might_sleep = true,
674 .ret_type = RET_INTEGER,
675 .arg1_type = ARG_PTR_TO_UNINIT_MEM,
676 .arg2_type = ARG_CONST_SIZE_OR_ZERO,
677 .arg3_type = ARG_ANYTHING,
678 };
679
BPF_CALL_5(bpf_copy_from_user_task,void *,dst,u32,size,const void __user *,user_ptr,struct task_struct *,tsk,u64,flags)680 BPF_CALL_5(bpf_copy_from_user_task, void *, dst, u32, size,
681 const void __user *, user_ptr, struct task_struct *, tsk, u64, flags)
682 {
683 int ret;
684
685 /* flags is not used yet */
686 if (unlikely(flags))
687 return -EINVAL;
688
689 if (unlikely(!size))
690 return 0;
691
692 ret = access_process_vm(tsk, (unsigned long)user_ptr, dst, size, 0);
693 if (ret == size)
694 return 0;
695
696 memset(dst, 0, size);
697 /* Return -EFAULT for partial read */
698 return ret < 0 ? ret : -EFAULT;
699 }
700
701 const struct bpf_func_proto bpf_copy_from_user_task_proto = {
702 .func = bpf_copy_from_user_task,
703 .gpl_only = true,
704 .might_sleep = true,
705 .ret_type = RET_INTEGER,
706 .arg1_type = ARG_PTR_TO_UNINIT_MEM,
707 .arg2_type = ARG_CONST_SIZE_OR_ZERO,
708 .arg3_type = ARG_ANYTHING,
709 .arg4_type = ARG_PTR_TO_BTF_ID,
710 .arg4_btf_id = &btf_tracing_ids[BTF_TRACING_TYPE_TASK],
711 .arg5_type = ARG_ANYTHING
712 };
713
BPF_CALL_2(bpf_per_cpu_ptr,const void *,ptr,u32,cpu)714 BPF_CALL_2(bpf_per_cpu_ptr, const void *, ptr, u32, cpu)
715 {
716 if (cpu >= nr_cpu_ids)
717 return (unsigned long)NULL;
718
719 return (unsigned long)per_cpu_ptr((const void __percpu *)(const uintptr_t)ptr, cpu);
720 }
721
722 const struct bpf_func_proto bpf_per_cpu_ptr_proto = {
723 .func = bpf_per_cpu_ptr,
724 .gpl_only = false,
725 .ret_type = RET_PTR_TO_MEM_OR_BTF_ID | PTR_MAYBE_NULL | MEM_RDONLY,
726 .arg1_type = ARG_PTR_TO_PERCPU_BTF_ID,
727 .arg2_type = ARG_ANYTHING,
728 };
729
BPF_CALL_1(bpf_this_cpu_ptr,const void *,percpu_ptr)730 BPF_CALL_1(bpf_this_cpu_ptr, const void *, percpu_ptr)
731 {
732 return (unsigned long)this_cpu_ptr((const void __percpu *)(const uintptr_t)percpu_ptr);
733 }
734
735 const struct bpf_func_proto bpf_this_cpu_ptr_proto = {
736 .func = bpf_this_cpu_ptr,
737 .gpl_only = false,
738 .ret_type = RET_PTR_TO_MEM_OR_BTF_ID | MEM_RDONLY,
739 .arg1_type = ARG_PTR_TO_PERCPU_BTF_ID,
740 };
741
bpf_trace_copy_string(char * buf,void * unsafe_ptr,char fmt_ptype,size_t bufsz)742 static int bpf_trace_copy_string(char *buf, void *unsafe_ptr, char fmt_ptype,
743 size_t bufsz)
744 {
745 void __user *user_ptr = (__force void __user *)unsafe_ptr;
746
747 buf[0] = 0;
748
749 switch (fmt_ptype) {
750 case 's':
751 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
752 if ((unsigned long)unsafe_ptr < TASK_SIZE)
753 return strncpy_from_user_nofault(buf, user_ptr, bufsz);
754 fallthrough;
755 #endif
756 case 'k':
757 return strncpy_from_kernel_nofault(buf, unsafe_ptr, bufsz);
758 case 'u':
759 return strncpy_from_user_nofault(buf, user_ptr, bufsz);
760 }
761
762 return -EINVAL;
763 }
764
765 /* Per-cpu temp buffers used by printf-like helpers to store the bprintf binary
766 * arguments representation.
767 */
768 #define MAX_BPRINTF_BIN_ARGS 512
769
770 /* Support executing three nested bprintf helper calls on a given CPU */
771 #define MAX_BPRINTF_NEST_LEVEL 3
772 struct bpf_bprintf_buffers {
773 char bin_args[MAX_BPRINTF_BIN_ARGS];
774 char buf[MAX_BPRINTF_BUF];
775 };
776
777 static DEFINE_PER_CPU(struct bpf_bprintf_buffers[MAX_BPRINTF_NEST_LEVEL], bpf_bprintf_bufs);
778 static DEFINE_PER_CPU(int, bpf_bprintf_nest_level);
779
try_get_buffers(struct bpf_bprintf_buffers ** bufs)780 static int try_get_buffers(struct bpf_bprintf_buffers **bufs)
781 {
782 int nest_level;
783
784 preempt_disable();
785 nest_level = this_cpu_inc_return(bpf_bprintf_nest_level);
786 if (WARN_ON_ONCE(nest_level > MAX_BPRINTF_NEST_LEVEL)) {
787 this_cpu_dec(bpf_bprintf_nest_level);
788 preempt_enable();
789 return -EBUSY;
790 }
791 *bufs = this_cpu_ptr(&bpf_bprintf_bufs[nest_level - 1]);
792
793 return 0;
794 }
795
bpf_bprintf_cleanup(struct bpf_bprintf_data * data)796 void bpf_bprintf_cleanup(struct bpf_bprintf_data *data)
797 {
798 if (!data->bin_args && !data->buf)
799 return;
800 if (WARN_ON_ONCE(this_cpu_read(bpf_bprintf_nest_level) == 0))
801 return;
802 this_cpu_dec(bpf_bprintf_nest_level);
803 preempt_enable();
804 }
805
806 /*
807 * bpf_bprintf_prepare - Generic pass on format strings for bprintf-like helpers
808 *
809 * Returns a negative value if fmt is an invalid format string or 0 otherwise.
810 *
811 * This can be used in two ways:
812 * - Format string verification only: when data->get_bin_args is false
813 * - Arguments preparation: in addition to the above verification, it writes in
814 * data->bin_args a binary representation of arguments usable by bstr_printf
815 * where pointers from BPF have been sanitized.
816 *
817 * In argument preparation mode, if 0 is returned, safe temporary buffers are
818 * allocated and bpf_bprintf_cleanup should be called to free them after use.
819 */
bpf_bprintf_prepare(char * fmt,u32 fmt_size,const u64 * raw_args,u32 num_args,struct bpf_bprintf_data * data)820 int bpf_bprintf_prepare(char *fmt, u32 fmt_size, const u64 *raw_args,
821 u32 num_args, struct bpf_bprintf_data *data)
822 {
823 bool get_buffers = (data->get_bin_args && num_args) || data->get_buf;
824 char *unsafe_ptr = NULL, *tmp_buf = NULL, *tmp_buf_end, *fmt_end;
825 struct bpf_bprintf_buffers *buffers = NULL;
826 size_t sizeof_cur_arg, sizeof_cur_ip;
827 int err, i, num_spec = 0;
828 u64 cur_arg;
829 char fmt_ptype, cur_ip[16], ip_spec[] = "%pXX";
830
831 fmt_end = strnchr(fmt, fmt_size, 0);
832 if (!fmt_end)
833 return -EINVAL;
834 fmt_size = fmt_end - fmt;
835
836 if (get_buffers && try_get_buffers(&buffers))
837 return -EBUSY;
838
839 if (data->get_bin_args) {
840 if (num_args)
841 tmp_buf = buffers->bin_args;
842 tmp_buf_end = tmp_buf + MAX_BPRINTF_BIN_ARGS;
843 data->bin_args = (u32 *)tmp_buf;
844 }
845
846 if (data->get_buf)
847 data->buf = buffers->buf;
848
849 for (i = 0; i < fmt_size; i++) {
850 if ((!isprint(fmt[i]) && !isspace(fmt[i])) || !isascii(fmt[i])) {
851 err = -EINVAL;
852 goto out;
853 }
854
855 if (fmt[i] != '%')
856 continue;
857
858 if (fmt[i + 1] == '%') {
859 i++;
860 continue;
861 }
862
863 if (num_spec >= num_args) {
864 err = -EINVAL;
865 goto out;
866 }
867
868 /* The string is zero-terminated so if fmt[i] != 0, we can
869 * always access fmt[i + 1], in the worst case it will be a 0
870 */
871 i++;
872
873 /* skip optional "[0 +-][num]" width formatting field */
874 while (fmt[i] == '0' || fmt[i] == '+' || fmt[i] == '-' ||
875 fmt[i] == ' ')
876 i++;
877 if (fmt[i] >= '1' && fmt[i] <= '9') {
878 i++;
879 while (fmt[i] >= '0' && fmt[i] <= '9')
880 i++;
881 }
882
883 if (fmt[i] == 'p') {
884 sizeof_cur_arg = sizeof(long);
885
886 if (fmt[i + 1] == 0 || isspace(fmt[i + 1]) ||
887 ispunct(fmt[i + 1])) {
888 if (tmp_buf)
889 cur_arg = raw_args[num_spec];
890 goto nocopy_fmt;
891 }
892
893 if ((fmt[i + 1] == 'k' || fmt[i + 1] == 'u') &&
894 fmt[i + 2] == 's') {
895 fmt_ptype = fmt[i + 1];
896 i += 2;
897 goto fmt_str;
898 }
899
900 if (fmt[i + 1] == 'K' ||
901 fmt[i + 1] == 'x' || fmt[i + 1] == 's' ||
902 fmt[i + 1] == 'S') {
903 if (tmp_buf)
904 cur_arg = raw_args[num_spec];
905 i++;
906 goto nocopy_fmt;
907 }
908
909 if (fmt[i + 1] == 'B') {
910 if (tmp_buf) {
911 err = snprintf(tmp_buf,
912 (tmp_buf_end - tmp_buf),
913 "%pB",
914 (void *)(long)raw_args[num_spec]);
915 tmp_buf += (err + 1);
916 }
917
918 i++;
919 num_spec++;
920 continue;
921 }
922
923 /* only support "%pI4", "%pi4", "%pI6" and "%pi6". */
924 if ((fmt[i + 1] != 'i' && fmt[i + 1] != 'I') ||
925 (fmt[i + 2] != '4' && fmt[i + 2] != '6')) {
926 err = -EINVAL;
927 goto out;
928 }
929
930 i += 2;
931 if (!tmp_buf)
932 goto nocopy_fmt;
933
934 sizeof_cur_ip = (fmt[i] == '4') ? 4 : 16;
935 if (tmp_buf_end - tmp_buf < sizeof_cur_ip) {
936 err = -ENOSPC;
937 goto out;
938 }
939
940 unsafe_ptr = (char *)(long)raw_args[num_spec];
941 err = copy_from_kernel_nofault(cur_ip, unsafe_ptr,
942 sizeof_cur_ip);
943 if (err < 0)
944 memset(cur_ip, 0, sizeof_cur_ip);
945
946 /* hack: bstr_printf expects IP addresses to be
947 * pre-formatted as strings, ironically, the easiest way
948 * to do that is to call snprintf.
949 */
950 ip_spec[2] = fmt[i - 1];
951 ip_spec[3] = fmt[i];
952 err = snprintf(tmp_buf, tmp_buf_end - tmp_buf,
953 ip_spec, &cur_ip);
954
955 tmp_buf += err + 1;
956 num_spec++;
957
958 continue;
959 } else if (fmt[i] == 's') {
960 fmt_ptype = fmt[i];
961 fmt_str:
962 if (fmt[i + 1] != 0 &&
963 !isspace(fmt[i + 1]) &&
964 !ispunct(fmt[i + 1])) {
965 err = -EINVAL;
966 goto out;
967 }
968
969 if (!tmp_buf)
970 goto nocopy_fmt;
971
972 if (tmp_buf_end == tmp_buf) {
973 err = -ENOSPC;
974 goto out;
975 }
976
977 unsafe_ptr = (char *)(long)raw_args[num_spec];
978 err = bpf_trace_copy_string(tmp_buf, unsafe_ptr,
979 fmt_ptype,
980 tmp_buf_end - tmp_buf);
981 if (err < 0) {
982 tmp_buf[0] = '\0';
983 err = 1;
984 }
985
986 tmp_buf += err;
987 num_spec++;
988
989 continue;
990 } else if (fmt[i] == 'c') {
991 if (!tmp_buf)
992 goto nocopy_fmt;
993
994 if (tmp_buf_end == tmp_buf) {
995 err = -ENOSPC;
996 goto out;
997 }
998
999 *tmp_buf = raw_args[num_spec];
1000 tmp_buf++;
1001 num_spec++;
1002
1003 continue;
1004 }
1005
1006 sizeof_cur_arg = sizeof(int);
1007
1008 if (fmt[i] == 'l') {
1009 sizeof_cur_arg = sizeof(long);
1010 i++;
1011 }
1012 if (fmt[i] == 'l') {
1013 sizeof_cur_arg = sizeof(long long);
1014 i++;
1015 }
1016
1017 if (fmt[i] != 'i' && fmt[i] != 'd' && fmt[i] != 'u' &&
1018 fmt[i] != 'x' && fmt[i] != 'X') {
1019 err = -EINVAL;
1020 goto out;
1021 }
1022
1023 if (tmp_buf)
1024 cur_arg = raw_args[num_spec];
1025 nocopy_fmt:
1026 if (tmp_buf) {
1027 tmp_buf = PTR_ALIGN(tmp_buf, sizeof(u32));
1028 if (tmp_buf_end - tmp_buf < sizeof_cur_arg) {
1029 err = -ENOSPC;
1030 goto out;
1031 }
1032
1033 if (sizeof_cur_arg == 8) {
1034 *(u32 *)tmp_buf = *(u32 *)&cur_arg;
1035 *(u32 *)(tmp_buf + 4) = *((u32 *)&cur_arg + 1);
1036 } else {
1037 *(u32 *)tmp_buf = (u32)(long)cur_arg;
1038 }
1039 tmp_buf += sizeof_cur_arg;
1040 }
1041 num_spec++;
1042 }
1043
1044 err = 0;
1045 out:
1046 if (err)
1047 bpf_bprintf_cleanup(data);
1048 return err;
1049 }
1050
BPF_CALL_5(bpf_snprintf,char *,str,u32,str_size,char *,fmt,const void *,args,u32,data_len)1051 BPF_CALL_5(bpf_snprintf, char *, str, u32, str_size, char *, fmt,
1052 const void *, args, u32, data_len)
1053 {
1054 struct bpf_bprintf_data data = {
1055 .get_bin_args = true,
1056 };
1057 int err, num_args;
1058
1059 if (data_len % 8 || data_len > MAX_BPRINTF_VARARGS * 8 ||
1060 (data_len && !args))
1061 return -EINVAL;
1062 num_args = data_len / 8;
1063
1064 /* ARG_PTR_TO_CONST_STR guarantees that fmt is zero-terminated so we
1065 * can safely give an unbounded size.
1066 */
1067 err = bpf_bprintf_prepare(fmt, UINT_MAX, args, num_args, &data);
1068 if (err < 0)
1069 return err;
1070
1071 err = bstr_printf(str, str_size, fmt, data.bin_args);
1072
1073 bpf_bprintf_cleanup(&data);
1074
1075 return err + 1;
1076 }
1077
1078 const struct bpf_func_proto bpf_snprintf_proto = {
1079 .func = bpf_snprintf,
1080 .gpl_only = true,
1081 .ret_type = RET_INTEGER,
1082 .arg1_type = ARG_PTR_TO_MEM_OR_NULL,
1083 .arg2_type = ARG_CONST_SIZE_OR_ZERO,
1084 .arg3_type = ARG_PTR_TO_CONST_STR,
1085 .arg4_type = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
1086 .arg5_type = ARG_CONST_SIZE_OR_ZERO,
1087 };
1088
1089 struct bpf_async_cb {
1090 struct bpf_map *map;
1091 struct bpf_prog *prog;
1092 void __rcu *callback_fn;
1093 void *value;
1094 union {
1095 struct rcu_head rcu;
1096 struct work_struct delete_work;
1097 };
1098 u64 flags;
1099 };
1100
1101 /* BPF map elements can contain 'struct bpf_timer'.
1102 * Such map owns all of its BPF timers.
1103 * 'struct bpf_timer' is allocated as part of map element allocation
1104 * and it's zero initialized.
1105 * That space is used to keep 'struct bpf_async_kern'.
1106 * bpf_timer_init() allocates 'struct bpf_hrtimer', inits hrtimer, and
1107 * remembers 'struct bpf_map *' pointer it's part of.
1108 * bpf_timer_set_callback() increments prog refcnt and assign bpf callback_fn.
1109 * bpf_timer_start() arms the timer.
1110 * If user space reference to a map goes to zero at this point
1111 * ops->map_release_uref callback is responsible for cancelling the timers,
1112 * freeing their memory, and decrementing prog's refcnts.
1113 * bpf_timer_cancel() cancels the timer and decrements prog's refcnt.
1114 * Inner maps can contain bpf timers as well. ops->map_release_uref is
1115 * freeing the timers when inner map is replaced or deleted by user space.
1116 */
1117 struct bpf_hrtimer {
1118 struct bpf_async_cb cb;
1119 struct hrtimer timer;
1120 atomic_t cancelling;
1121 };
1122
1123 struct bpf_work {
1124 struct bpf_async_cb cb;
1125 struct work_struct work;
1126 struct work_struct delete_work;
1127 };
1128
1129 /* the actual struct hidden inside uapi struct bpf_timer and bpf_wq */
1130 struct bpf_async_kern {
1131 union {
1132 struct bpf_async_cb *cb;
1133 struct bpf_hrtimer *timer;
1134 struct bpf_work *work;
1135 };
1136 /* bpf_spin_lock is used here instead of spinlock_t to make
1137 * sure that it always fits into space reserved by struct bpf_timer
1138 * regardless of LOCKDEP and spinlock debug flags.
1139 */
1140 struct bpf_spin_lock lock;
1141 } __attribute__((aligned(8)));
1142
1143 enum bpf_async_type {
1144 BPF_ASYNC_TYPE_TIMER = 0,
1145 BPF_ASYNC_TYPE_WQ,
1146 };
1147
1148 static DEFINE_PER_CPU(struct bpf_hrtimer *, hrtimer_running);
1149
bpf_timer_cb(struct hrtimer * hrtimer)1150 static enum hrtimer_restart bpf_timer_cb(struct hrtimer *hrtimer)
1151 {
1152 struct bpf_hrtimer *t = container_of(hrtimer, struct bpf_hrtimer, timer);
1153 struct bpf_map *map = t->cb.map;
1154 void *value = t->cb.value;
1155 bpf_callback_t callback_fn;
1156 void *key;
1157 u32 idx;
1158
1159 BTF_TYPE_EMIT(struct bpf_timer);
1160 callback_fn = rcu_dereference_check(t->cb.callback_fn, rcu_read_lock_bh_held());
1161 if (!callback_fn)
1162 goto out;
1163
1164 /* bpf_timer_cb() runs in hrtimer_run_softirq. It doesn't migrate and
1165 * cannot be preempted by another bpf_timer_cb() on the same cpu.
1166 * Remember the timer this callback is servicing to prevent
1167 * deadlock if callback_fn() calls bpf_timer_cancel() or
1168 * bpf_map_delete_elem() on the same timer.
1169 */
1170 this_cpu_write(hrtimer_running, t);
1171 if (map->map_type == BPF_MAP_TYPE_ARRAY) {
1172 struct bpf_array *array = container_of(map, struct bpf_array, map);
1173
1174 /* compute the key */
1175 idx = ((char *)value - array->value) / array->elem_size;
1176 key = &idx;
1177 } else { /* hash or lru */
1178 key = value - round_up(map->key_size, 8);
1179 }
1180
1181 callback_fn((u64)(long)map, (u64)(long)key, (u64)(long)value, 0, 0);
1182 /* The verifier checked that return value is zero. */
1183
1184 this_cpu_write(hrtimer_running, NULL);
1185 out:
1186 return HRTIMER_NORESTART;
1187 }
1188
bpf_wq_work(struct work_struct * work)1189 static void bpf_wq_work(struct work_struct *work)
1190 {
1191 struct bpf_work *w = container_of(work, struct bpf_work, work);
1192 struct bpf_async_cb *cb = &w->cb;
1193 struct bpf_map *map = cb->map;
1194 bpf_callback_t callback_fn;
1195 void *value = cb->value;
1196 void *key;
1197 u32 idx;
1198
1199 BTF_TYPE_EMIT(struct bpf_wq);
1200
1201 callback_fn = READ_ONCE(cb->callback_fn);
1202 if (!callback_fn)
1203 return;
1204
1205 if (map->map_type == BPF_MAP_TYPE_ARRAY) {
1206 struct bpf_array *array = container_of(map, struct bpf_array, map);
1207
1208 /* compute the key */
1209 idx = ((char *)value - array->value) / array->elem_size;
1210 key = &idx;
1211 } else { /* hash or lru */
1212 key = value - round_up(map->key_size, 8);
1213 }
1214
1215 rcu_read_lock_trace();
1216 migrate_disable();
1217
1218 callback_fn((u64)(long)map, (u64)(long)key, (u64)(long)value, 0, 0);
1219
1220 migrate_enable();
1221 rcu_read_unlock_trace();
1222 }
1223
bpf_wq_delete_work(struct work_struct * work)1224 static void bpf_wq_delete_work(struct work_struct *work)
1225 {
1226 struct bpf_work *w = container_of(work, struct bpf_work, delete_work);
1227
1228 cancel_work_sync(&w->work);
1229
1230 kfree_rcu(w, cb.rcu);
1231 }
1232
bpf_timer_delete_work(struct work_struct * work)1233 static void bpf_timer_delete_work(struct work_struct *work)
1234 {
1235 struct bpf_hrtimer *t = container_of(work, struct bpf_hrtimer, cb.delete_work);
1236
1237 /* Cancel the timer and wait for callback to complete if it was running.
1238 * If hrtimer_cancel() can be safely called it's safe to call
1239 * kfree_rcu(t) right after for both preallocated and non-preallocated
1240 * maps. The async->cb = NULL was already done and no code path can see
1241 * address 't' anymore. Timer if armed for existing bpf_hrtimer before
1242 * bpf_timer_cancel_and_free will have been cancelled.
1243 */
1244 hrtimer_cancel(&t->timer);
1245 kfree_rcu(t, cb.rcu);
1246 }
1247
__bpf_async_init(struct bpf_async_kern * async,struct bpf_map * map,u64 flags,enum bpf_async_type type)1248 static int __bpf_async_init(struct bpf_async_kern *async, struct bpf_map *map, u64 flags,
1249 enum bpf_async_type type)
1250 {
1251 struct bpf_async_cb *cb;
1252 struct bpf_hrtimer *t;
1253 struct bpf_work *w;
1254 clockid_t clockid;
1255 size_t size;
1256 int ret = 0;
1257
1258 if (in_nmi())
1259 return -EOPNOTSUPP;
1260
1261 switch (type) {
1262 case BPF_ASYNC_TYPE_TIMER:
1263 size = sizeof(struct bpf_hrtimer);
1264 break;
1265 case BPF_ASYNC_TYPE_WQ:
1266 size = sizeof(struct bpf_work);
1267 break;
1268 default:
1269 return -EINVAL;
1270 }
1271
1272 __bpf_spin_lock_irqsave(&async->lock);
1273 t = async->timer;
1274 if (t) {
1275 ret = -EBUSY;
1276 goto out;
1277 }
1278
1279 /* Allocate via bpf_map_kmalloc_node() for memcg accounting. Until
1280 * kmalloc_nolock() is available, avoid locking issues by using
1281 * __GFP_HIGH (GFP_ATOMIC & ~__GFP_RECLAIM).
1282 */
1283 cb = bpf_map_kmalloc_node(map, size, __GFP_HIGH, map->numa_node);
1284 if (!cb) {
1285 ret = -ENOMEM;
1286 goto out;
1287 }
1288
1289 switch (type) {
1290 case BPF_ASYNC_TYPE_TIMER:
1291 clockid = flags & (MAX_CLOCKS - 1);
1292 t = (struct bpf_hrtimer *)cb;
1293
1294 atomic_set(&t->cancelling, 0);
1295 INIT_WORK(&t->cb.delete_work, bpf_timer_delete_work);
1296 hrtimer_init(&t->timer, clockid, HRTIMER_MODE_REL_SOFT);
1297 t->timer.function = bpf_timer_cb;
1298 cb->value = (void *)async - map->record->timer_off;
1299 break;
1300 case BPF_ASYNC_TYPE_WQ:
1301 w = (struct bpf_work *)cb;
1302
1303 INIT_WORK(&w->work, bpf_wq_work);
1304 INIT_WORK(&w->delete_work, bpf_wq_delete_work);
1305 cb->value = (void *)async - map->record->wq_off;
1306 break;
1307 }
1308 cb->map = map;
1309 cb->prog = NULL;
1310 cb->flags = flags;
1311 rcu_assign_pointer(cb->callback_fn, NULL);
1312
1313 WRITE_ONCE(async->cb, cb);
1314 /* Guarantee the order between async->cb and map->usercnt. So
1315 * when there are concurrent uref release and bpf timer init, either
1316 * bpf_timer_cancel_and_free() called by uref release reads a no-NULL
1317 * timer or atomic64_read() below returns a zero usercnt.
1318 */
1319 smp_mb();
1320 if (!atomic64_read(&map->usercnt)) {
1321 /* maps with timers must be either held by user space
1322 * or pinned in bpffs.
1323 */
1324 WRITE_ONCE(async->cb, NULL);
1325 kfree(cb);
1326 ret = -EPERM;
1327 }
1328 out:
1329 __bpf_spin_unlock_irqrestore(&async->lock);
1330 return ret;
1331 }
1332
BPF_CALL_3(bpf_timer_init,struct bpf_async_kern *,timer,struct bpf_map *,map,u64,flags)1333 BPF_CALL_3(bpf_timer_init, struct bpf_async_kern *, timer, struct bpf_map *, map,
1334 u64, flags)
1335 {
1336 clock_t clockid = flags & (MAX_CLOCKS - 1);
1337
1338 BUILD_BUG_ON(MAX_CLOCKS != 16);
1339 BUILD_BUG_ON(sizeof(struct bpf_async_kern) > sizeof(struct bpf_timer));
1340 BUILD_BUG_ON(__alignof__(struct bpf_async_kern) != __alignof__(struct bpf_timer));
1341
1342 if (flags >= MAX_CLOCKS ||
1343 /* similar to timerfd except _ALARM variants are not supported */
1344 (clockid != CLOCK_MONOTONIC &&
1345 clockid != CLOCK_REALTIME &&
1346 clockid != CLOCK_BOOTTIME))
1347 return -EINVAL;
1348
1349 return __bpf_async_init(timer, map, flags, BPF_ASYNC_TYPE_TIMER);
1350 }
1351
1352 static const struct bpf_func_proto bpf_timer_init_proto = {
1353 .func = bpf_timer_init,
1354 .gpl_only = true,
1355 .ret_type = RET_INTEGER,
1356 .arg1_type = ARG_PTR_TO_TIMER,
1357 .arg2_type = ARG_CONST_MAP_PTR,
1358 .arg3_type = ARG_ANYTHING,
1359 };
1360
__bpf_async_set_callback(struct bpf_async_kern * async,void * callback_fn,struct bpf_prog_aux * aux,unsigned int flags,enum bpf_async_type type)1361 static int __bpf_async_set_callback(struct bpf_async_kern *async, void *callback_fn,
1362 struct bpf_prog_aux *aux, unsigned int flags,
1363 enum bpf_async_type type)
1364 {
1365 struct bpf_prog *prev, *prog = aux->prog;
1366 struct bpf_async_cb *cb;
1367 int ret = 0;
1368
1369 if (in_nmi())
1370 return -EOPNOTSUPP;
1371 __bpf_spin_lock_irqsave(&async->lock);
1372 cb = async->cb;
1373 if (!cb) {
1374 ret = -EINVAL;
1375 goto out;
1376 }
1377 if (!atomic64_read(&cb->map->usercnt)) {
1378 /* maps with timers must be either held by user space
1379 * or pinned in bpffs. Otherwise timer might still be
1380 * running even when bpf prog is detached and user space
1381 * is gone, since map_release_uref won't ever be called.
1382 */
1383 ret = -EPERM;
1384 goto out;
1385 }
1386 prev = cb->prog;
1387 if (prev != prog) {
1388 /* Bump prog refcnt once. Every bpf_timer_set_callback()
1389 * can pick different callback_fn-s within the same prog.
1390 */
1391 prog = bpf_prog_inc_not_zero(prog);
1392 if (IS_ERR(prog)) {
1393 ret = PTR_ERR(prog);
1394 goto out;
1395 }
1396 if (prev)
1397 /* Drop prev prog refcnt when swapping with new prog */
1398 bpf_prog_put(prev);
1399 cb->prog = prog;
1400 }
1401 rcu_assign_pointer(cb->callback_fn, callback_fn);
1402 out:
1403 __bpf_spin_unlock_irqrestore(&async->lock);
1404 return ret;
1405 }
1406
BPF_CALL_3(bpf_timer_set_callback,struct bpf_async_kern *,timer,void *,callback_fn,struct bpf_prog_aux *,aux)1407 BPF_CALL_3(bpf_timer_set_callback, struct bpf_async_kern *, timer, void *, callback_fn,
1408 struct bpf_prog_aux *, aux)
1409 {
1410 return __bpf_async_set_callback(timer, callback_fn, aux, 0, BPF_ASYNC_TYPE_TIMER);
1411 }
1412
1413 static const struct bpf_func_proto bpf_timer_set_callback_proto = {
1414 .func = bpf_timer_set_callback,
1415 .gpl_only = true,
1416 .ret_type = RET_INTEGER,
1417 .arg1_type = ARG_PTR_TO_TIMER,
1418 .arg2_type = ARG_PTR_TO_FUNC,
1419 };
1420
BPF_CALL_3(bpf_timer_start,struct bpf_async_kern *,timer,u64,nsecs,u64,flags)1421 BPF_CALL_3(bpf_timer_start, struct bpf_async_kern *, timer, u64, nsecs, u64, flags)
1422 {
1423 struct bpf_hrtimer *t;
1424 int ret = 0;
1425 enum hrtimer_mode mode;
1426
1427 if (in_nmi())
1428 return -EOPNOTSUPP;
1429 if (flags & ~(BPF_F_TIMER_ABS | BPF_F_TIMER_CPU_PIN))
1430 return -EINVAL;
1431 __bpf_spin_lock_irqsave(&timer->lock);
1432 t = timer->timer;
1433 if (!t || !t->cb.prog) {
1434 ret = -EINVAL;
1435 goto out;
1436 }
1437
1438 if (flags & BPF_F_TIMER_ABS)
1439 mode = HRTIMER_MODE_ABS_SOFT;
1440 else
1441 mode = HRTIMER_MODE_REL_SOFT;
1442
1443 if (flags & BPF_F_TIMER_CPU_PIN)
1444 mode |= HRTIMER_MODE_PINNED;
1445
1446 hrtimer_start(&t->timer, ns_to_ktime(nsecs), mode);
1447 out:
1448 __bpf_spin_unlock_irqrestore(&timer->lock);
1449 return ret;
1450 }
1451
1452 static const struct bpf_func_proto bpf_timer_start_proto = {
1453 .func = bpf_timer_start,
1454 .gpl_only = true,
1455 .ret_type = RET_INTEGER,
1456 .arg1_type = ARG_PTR_TO_TIMER,
1457 .arg2_type = ARG_ANYTHING,
1458 .arg3_type = ARG_ANYTHING,
1459 };
1460
drop_prog_refcnt(struct bpf_async_cb * async)1461 static void drop_prog_refcnt(struct bpf_async_cb *async)
1462 {
1463 struct bpf_prog *prog = async->prog;
1464
1465 if (prog) {
1466 bpf_prog_put(prog);
1467 async->prog = NULL;
1468 rcu_assign_pointer(async->callback_fn, NULL);
1469 }
1470 }
1471
BPF_CALL_1(bpf_timer_cancel,struct bpf_async_kern *,timer)1472 BPF_CALL_1(bpf_timer_cancel, struct bpf_async_kern *, timer)
1473 {
1474 struct bpf_hrtimer *t, *cur_t;
1475 bool inc = false;
1476 int ret = 0;
1477
1478 if (in_nmi())
1479 return -EOPNOTSUPP;
1480 rcu_read_lock();
1481 __bpf_spin_lock_irqsave(&timer->lock);
1482 t = timer->timer;
1483 if (!t) {
1484 ret = -EINVAL;
1485 goto out;
1486 }
1487
1488 cur_t = this_cpu_read(hrtimer_running);
1489 if (cur_t == t) {
1490 /* If bpf callback_fn is trying to bpf_timer_cancel()
1491 * its own timer the hrtimer_cancel() will deadlock
1492 * since it waits for callback_fn to finish.
1493 */
1494 ret = -EDEADLK;
1495 goto out;
1496 }
1497
1498 /* Only account in-flight cancellations when invoked from a timer
1499 * callback, since we want to avoid waiting only if other _callbacks_
1500 * are waiting on us, to avoid introducing lockups. Non-callback paths
1501 * are ok, since nobody would synchronously wait for their completion.
1502 */
1503 if (!cur_t)
1504 goto drop;
1505 atomic_inc(&t->cancelling);
1506 /* Need full barrier after relaxed atomic_inc */
1507 smp_mb__after_atomic();
1508 inc = true;
1509 if (atomic_read(&cur_t->cancelling)) {
1510 /* We're cancelling timer t, while some other timer callback is
1511 * attempting to cancel us. In such a case, it might be possible
1512 * that timer t belongs to the other callback, or some other
1513 * callback waiting upon it (creating transitive dependencies
1514 * upon us), and we will enter a deadlock if we continue
1515 * cancelling and waiting for it synchronously, since it might
1516 * do the same. Bail!
1517 */
1518 ret = -EDEADLK;
1519 goto out;
1520 }
1521 drop:
1522 drop_prog_refcnt(&t->cb);
1523 out:
1524 __bpf_spin_unlock_irqrestore(&timer->lock);
1525 /* Cancel the timer and wait for associated callback to finish
1526 * if it was running.
1527 */
1528 ret = ret ?: hrtimer_cancel(&t->timer);
1529 if (inc)
1530 atomic_dec(&t->cancelling);
1531 rcu_read_unlock();
1532 return ret;
1533 }
1534
1535 static const struct bpf_func_proto bpf_timer_cancel_proto = {
1536 .func = bpf_timer_cancel,
1537 .gpl_only = true,
1538 .ret_type = RET_INTEGER,
1539 .arg1_type = ARG_PTR_TO_TIMER,
1540 };
1541
__bpf_async_cancel_and_free(struct bpf_async_kern * async)1542 static struct bpf_async_cb *__bpf_async_cancel_and_free(struct bpf_async_kern *async)
1543 {
1544 struct bpf_async_cb *cb;
1545
1546 /* Performance optimization: read async->cb without lock first. */
1547 if (!READ_ONCE(async->cb))
1548 return NULL;
1549
1550 __bpf_spin_lock_irqsave(&async->lock);
1551 /* re-read it under lock */
1552 cb = async->cb;
1553 if (!cb)
1554 goto out;
1555 drop_prog_refcnt(cb);
1556 /* The subsequent bpf_timer_start/cancel() helpers won't be able to use
1557 * this timer, since it won't be initialized.
1558 */
1559 WRITE_ONCE(async->cb, NULL);
1560 out:
1561 __bpf_spin_unlock_irqrestore(&async->lock);
1562 return cb;
1563 }
1564
1565 /* This function is called by map_delete/update_elem for individual element and
1566 * by ops->map_release_uref when the user space reference to a map reaches zero.
1567 */
bpf_timer_cancel_and_free(void * val)1568 void bpf_timer_cancel_and_free(void *val)
1569 {
1570 struct bpf_hrtimer *t;
1571
1572 t = (struct bpf_hrtimer *)__bpf_async_cancel_and_free(val);
1573
1574 if (!t)
1575 return;
1576 /* We check that bpf_map_delete/update_elem() was called from timer
1577 * callback_fn. In such case we don't call hrtimer_cancel() (since it
1578 * will deadlock) and don't call hrtimer_try_to_cancel() (since it will
1579 * just return -1). Though callback_fn is still running on this cpu it's
1580 * safe to do kfree(t) because bpf_timer_cb() read everything it needed
1581 * from 't'. The bpf subprog callback_fn won't be able to access 't',
1582 * since async->cb = NULL was already done. The timer will be
1583 * effectively cancelled because bpf_timer_cb() will return
1584 * HRTIMER_NORESTART.
1585 *
1586 * However, it is possible the timer callback_fn calling us armed the
1587 * timer _before_ calling us, such that failing to cancel it here will
1588 * cause it to possibly use struct hrtimer after freeing bpf_hrtimer.
1589 * Therefore, we _need_ to cancel any outstanding timers before we do
1590 * kfree_rcu, even though no more timers can be armed.
1591 *
1592 * Moreover, we need to schedule work even if timer does not belong to
1593 * the calling callback_fn, as on two different CPUs, we can end up in a
1594 * situation where both sides run in parallel, try to cancel one
1595 * another, and we end up waiting on both sides in hrtimer_cancel
1596 * without making forward progress, since timer1 depends on time2
1597 * callback to finish, and vice versa.
1598 *
1599 * CPU 1 (timer1_cb) CPU 2 (timer2_cb)
1600 * bpf_timer_cancel_and_free(timer2) bpf_timer_cancel_and_free(timer1)
1601 *
1602 * To avoid these issues, punt to workqueue context when we are in a
1603 * timer callback.
1604 */
1605 if (this_cpu_read(hrtimer_running)) {
1606 queue_work(system_unbound_wq, &t->cb.delete_work);
1607 return;
1608 }
1609
1610 if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
1611 /* If the timer is running on other CPU, also use a kworker to
1612 * wait for the completion of the timer instead of trying to
1613 * acquire a sleepable lock in hrtimer_cancel() to wait for its
1614 * completion.
1615 */
1616 if (hrtimer_try_to_cancel(&t->timer) >= 0)
1617 kfree_rcu(t, cb.rcu);
1618 else
1619 queue_work(system_unbound_wq, &t->cb.delete_work);
1620 } else {
1621 bpf_timer_delete_work(&t->cb.delete_work);
1622 }
1623 }
1624
1625 /* This function is called by map_delete/update_elem for individual element and
1626 * by ops->map_release_uref when the user space reference to a map reaches zero.
1627 */
bpf_wq_cancel_and_free(void * val)1628 void bpf_wq_cancel_and_free(void *val)
1629 {
1630 struct bpf_work *work;
1631
1632 BTF_TYPE_EMIT(struct bpf_wq);
1633
1634 work = (struct bpf_work *)__bpf_async_cancel_and_free(val);
1635 if (!work)
1636 return;
1637 /* Trigger cancel of the sleepable work, but *do not* wait for
1638 * it to finish if it was running as we might not be in a
1639 * sleepable context.
1640 * kfree will be called once the work has finished.
1641 */
1642 schedule_work(&work->delete_work);
1643 }
1644
BPF_CALL_2(bpf_kptr_xchg,void *,dst,void *,ptr)1645 BPF_CALL_2(bpf_kptr_xchg, void *, dst, void *, ptr)
1646 {
1647 unsigned long *kptr = dst;
1648
1649 /* This helper may be inlined by verifier. */
1650 return xchg(kptr, (unsigned long)ptr);
1651 }
1652
1653 /* Unlike other PTR_TO_BTF_ID helpers the btf_id in bpf_kptr_xchg()
1654 * helper is determined dynamically by the verifier. Use BPF_PTR_POISON to
1655 * denote type that verifier will determine.
1656 */
1657 static const struct bpf_func_proto bpf_kptr_xchg_proto = {
1658 .func = bpf_kptr_xchg,
1659 .gpl_only = false,
1660 .ret_type = RET_PTR_TO_BTF_ID_OR_NULL,
1661 .ret_btf_id = BPF_PTR_POISON,
1662 .arg1_type = ARG_KPTR_XCHG_DEST,
1663 .arg2_type = ARG_PTR_TO_BTF_ID_OR_NULL | OBJ_RELEASE,
1664 .arg2_btf_id = BPF_PTR_POISON,
1665 };
1666
1667 /* Since the upper 8 bits of dynptr->size is reserved, the
1668 * maximum supported size is 2^24 - 1.
1669 */
1670 #define DYNPTR_MAX_SIZE ((1UL << 24) - 1)
1671 #define DYNPTR_TYPE_SHIFT 28
1672 #define DYNPTR_SIZE_MASK 0xFFFFFF
1673 #define DYNPTR_RDONLY_BIT BIT(31)
1674
__bpf_dynptr_is_rdonly(const struct bpf_dynptr_kern * ptr)1675 bool __bpf_dynptr_is_rdonly(const struct bpf_dynptr_kern *ptr)
1676 {
1677 return ptr->size & DYNPTR_RDONLY_BIT;
1678 }
1679
bpf_dynptr_set_rdonly(struct bpf_dynptr_kern * ptr)1680 void bpf_dynptr_set_rdonly(struct bpf_dynptr_kern *ptr)
1681 {
1682 ptr->size |= DYNPTR_RDONLY_BIT;
1683 }
1684
bpf_dynptr_set_type(struct bpf_dynptr_kern * ptr,enum bpf_dynptr_type type)1685 static void bpf_dynptr_set_type(struct bpf_dynptr_kern *ptr, enum bpf_dynptr_type type)
1686 {
1687 ptr->size |= type << DYNPTR_TYPE_SHIFT;
1688 }
1689
bpf_dynptr_get_type(const struct bpf_dynptr_kern * ptr)1690 static enum bpf_dynptr_type bpf_dynptr_get_type(const struct bpf_dynptr_kern *ptr)
1691 {
1692 return (ptr->size & ~(DYNPTR_RDONLY_BIT)) >> DYNPTR_TYPE_SHIFT;
1693 }
1694
__bpf_dynptr_size(const struct bpf_dynptr_kern * ptr)1695 u32 __bpf_dynptr_size(const struct bpf_dynptr_kern *ptr)
1696 {
1697 return ptr->size & DYNPTR_SIZE_MASK;
1698 }
1699
bpf_dynptr_set_size(struct bpf_dynptr_kern * ptr,u32 new_size)1700 static void bpf_dynptr_set_size(struct bpf_dynptr_kern *ptr, u32 new_size)
1701 {
1702 u32 metadata = ptr->size & ~DYNPTR_SIZE_MASK;
1703
1704 ptr->size = new_size | metadata;
1705 }
1706
bpf_dynptr_check_size(u32 size)1707 int bpf_dynptr_check_size(u32 size)
1708 {
1709 return size > DYNPTR_MAX_SIZE ? -E2BIG : 0;
1710 }
1711
bpf_dynptr_init(struct bpf_dynptr_kern * ptr,void * data,enum bpf_dynptr_type type,u32 offset,u32 size)1712 void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data,
1713 enum bpf_dynptr_type type, u32 offset, u32 size)
1714 {
1715 ptr->data = data;
1716 ptr->offset = offset;
1717 ptr->size = size;
1718 bpf_dynptr_set_type(ptr, type);
1719 }
1720
bpf_dynptr_set_null(struct bpf_dynptr_kern * ptr)1721 void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr)
1722 {
1723 memset(ptr, 0, sizeof(*ptr));
1724 }
1725
bpf_dynptr_check_off_len(const struct bpf_dynptr_kern * ptr,u32 offset,u32 len)1726 static int bpf_dynptr_check_off_len(const struct bpf_dynptr_kern *ptr, u32 offset, u32 len)
1727 {
1728 u32 size = __bpf_dynptr_size(ptr);
1729
1730 if (len > size || offset > size - len)
1731 return -E2BIG;
1732
1733 return 0;
1734 }
1735
BPF_CALL_4(bpf_dynptr_from_mem,void *,data,u32,size,u64,flags,struct bpf_dynptr_kern *,ptr)1736 BPF_CALL_4(bpf_dynptr_from_mem, void *, data, u32, size, u64, flags, struct bpf_dynptr_kern *, ptr)
1737 {
1738 int err;
1739
1740 BTF_TYPE_EMIT(struct bpf_dynptr);
1741
1742 err = bpf_dynptr_check_size(size);
1743 if (err)
1744 goto error;
1745
1746 /* flags is currently unsupported */
1747 if (flags) {
1748 err = -EINVAL;
1749 goto error;
1750 }
1751
1752 bpf_dynptr_init(ptr, data, BPF_DYNPTR_TYPE_LOCAL, 0, size);
1753
1754 return 0;
1755
1756 error:
1757 bpf_dynptr_set_null(ptr);
1758 return err;
1759 }
1760
1761 static const struct bpf_func_proto bpf_dynptr_from_mem_proto = {
1762 .func = bpf_dynptr_from_mem,
1763 .gpl_only = false,
1764 .ret_type = RET_INTEGER,
1765 .arg1_type = ARG_PTR_TO_UNINIT_MEM,
1766 .arg2_type = ARG_CONST_SIZE_OR_ZERO,
1767 .arg3_type = ARG_ANYTHING,
1768 .arg4_type = ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_LOCAL | MEM_UNINIT | MEM_WRITE,
1769 };
1770
BPF_CALL_5(bpf_dynptr_read,void *,dst,u32,len,const struct bpf_dynptr_kern *,src,u32,offset,u64,flags)1771 BPF_CALL_5(bpf_dynptr_read, void *, dst, u32, len, const struct bpf_dynptr_kern *, src,
1772 u32, offset, u64, flags)
1773 {
1774 enum bpf_dynptr_type type;
1775 int err;
1776
1777 if (!src->data || flags)
1778 return -EINVAL;
1779
1780 err = bpf_dynptr_check_off_len(src, offset, len);
1781 if (err)
1782 return err;
1783
1784 type = bpf_dynptr_get_type(src);
1785
1786 switch (type) {
1787 case BPF_DYNPTR_TYPE_LOCAL:
1788 case BPF_DYNPTR_TYPE_RINGBUF:
1789 /* Source and destination may possibly overlap, hence use memmove to
1790 * copy the data. E.g. bpf_dynptr_from_mem may create two dynptr
1791 * pointing to overlapping PTR_TO_MAP_VALUE regions.
1792 */
1793 memmove(dst, src->data + src->offset + offset, len);
1794 return 0;
1795 case BPF_DYNPTR_TYPE_SKB:
1796 return __bpf_skb_load_bytes(src->data, src->offset + offset, dst, len);
1797 case BPF_DYNPTR_TYPE_XDP:
1798 return __bpf_xdp_load_bytes(src->data, src->offset + offset, dst, len);
1799 default:
1800 WARN_ONCE(true, "bpf_dynptr_read: unknown dynptr type %d\n", type);
1801 return -EFAULT;
1802 }
1803 }
1804
1805 static const struct bpf_func_proto bpf_dynptr_read_proto = {
1806 .func = bpf_dynptr_read,
1807 .gpl_only = false,
1808 .ret_type = RET_INTEGER,
1809 .arg1_type = ARG_PTR_TO_UNINIT_MEM,
1810 .arg2_type = ARG_CONST_SIZE_OR_ZERO,
1811 .arg3_type = ARG_PTR_TO_DYNPTR | MEM_RDONLY,
1812 .arg4_type = ARG_ANYTHING,
1813 .arg5_type = ARG_ANYTHING,
1814 };
1815
BPF_CALL_5(bpf_dynptr_write,const struct bpf_dynptr_kern *,dst,u32,offset,void *,src,u32,len,u64,flags)1816 BPF_CALL_5(bpf_dynptr_write, const struct bpf_dynptr_kern *, dst, u32, offset, void *, src,
1817 u32, len, u64, flags)
1818 {
1819 enum bpf_dynptr_type type;
1820 int err;
1821
1822 if (!dst->data || __bpf_dynptr_is_rdonly(dst))
1823 return -EINVAL;
1824
1825 err = bpf_dynptr_check_off_len(dst, offset, len);
1826 if (err)
1827 return err;
1828
1829 type = bpf_dynptr_get_type(dst);
1830
1831 switch (type) {
1832 case BPF_DYNPTR_TYPE_LOCAL:
1833 case BPF_DYNPTR_TYPE_RINGBUF:
1834 if (flags)
1835 return -EINVAL;
1836 /* Source and destination may possibly overlap, hence use memmove to
1837 * copy the data. E.g. bpf_dynptr_from_mem may create two dynptr
1838 * pointing to overlapping PTR_TO_MAP_VALUE regions.
1839 */
1840 memmove(dst->data + dst->offset + offset, src, len);
1841 return 0;
1842 case BPF_DYNPTR_TYPE_SKB:
1843 return __bpf_skb_store_bytes(dst->data, dst->offset + offset, src, len,
1844 flags);
1845 case BPF_DYNPTR_TYPE_XDP:
1846 if (flags)
1847 return -EINVAL;
1848 return __bpf_xdp_store_bytes(dst->data, dst->offset + offset, src, len);
1849 default:
1850 WARN_ONCE(true, "bpf_dynptr_write: unknown dynptr type %d\n", type);
1851 return -EFAULT;
1852 }
1853 }
1854
1855 static const struct bpf_func_proto bpf_dynptr_write_proto = {
1856 .func = bpf_dynptr_write,
1857 .gpl_only = false,
1858 .ret_type = RET_INTEGER,
1859 .arg1_type = ARG_PTR_TO_DYNPTR | MEM_RDONLY,
1860 .arg2_type = ARG_ANYTHING,
1861 .arg3_type = ARG_PTR_TO_MEM | MEM_RDONLY,
1862 .arg4_type = ARG_CONST_SIZE_OR_ZERO,
1863 .arg5_type = ARG_ANYTHING,
1864 };
1865
BPF_CALL_3(bpf_dynptr_data,const struct bpf_dynptr_kern *,ptr,u32,offset,u32,len)1866 BPF_CALL_3(bpf_dynptr_data, const struct bpf_dynptr_kern *, ptr, u32, offset, u32, len)
1867 {
1868 enum bpf_dynptr_type type;
1869 int err;
1870
1871 if (!ptr->data)
1872 return 0;
1873
1874 err = bpf_dynptr_check_off_len(ptr, offset, len);
1875 if (err)
1876 return 0;
1877
1878 if (__bpf_dynptr_is_rdonly(ptr))
1879 return 0;
1880
1881 type = bpf_dynptr_get_type(ptr);
1882
1883 switch (type) {
1884 case BPF_DYNPTR_TYPE_LOCAL:
1885 case BPF_DYNPTR_TYPE_RINGBUF:
1886 return (unsigned long)(ptr->data + ptr->offset + offset);
1887 case BPF_DYNPTR_TYPE_SKB:
1888 case BPF_DYNPTR_TYPE_XDP:
1889 /* skb and xdp dynptrs should use bpf_dynptr_slice / bpf_dynptr_slice_rdwr */
1890 return 0;
1891 default:
1892 WARN_ONCE(true, "bpf_dynptr_data: unknown dynptr type %d\n", type);
1893 return 0;
1894 }
1895 }
1896
1897 static const struct bpf_func_proto bpf_dynptr_data_proto = {
1898 .func = bpf_dynptr_data,
1899 .gpl_only = false,
1900 .ret_type = RET_PTR_TO_DYNPTR_MEM_OR_NULL,
1901 .arg1_type = ARG_PTR_TO_DYNPTR | MEM_RDONLY,
1902 .arg2_type = ARG_ANYTHING,
1903 .arg3_type = ARG_CONST_ALLOC_SIZE_OR_ZERO,
1904 };
1905
1906 const struct bpf_func_proto bpf_get_current_task_proto __weak;
1907 const struct bpf_func_proto bpf_get_current_task_btf_proto __weak;
1908 const struct bpf_func_proto bpf_probe_read_user_proto __weak;
1909 const struct bpf_func_proto bpf_probe_read_user_str_proto __weak;
1910 const struct bpf_func_proto bpf_probe_read_kernel_proto __weak;
1911 const struct bpf_func_proto bpf_probe_read_kernel_str_proto __weak;
1912 const struct bpf_func_proto bpf_task_pt_regs_proto __weak;
1913
1914 const struct bpf_func_proto *
bpf_base_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)1915 bpf_base_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1916 {
1917 switch (func_id) {
1918 case BPF_FUNC_map_lookup_elem:
1919 return &bpf_map_lookup_elem_proto;
1920 case BPF_FUNC_map_update_elem:
1921 return &bpf_map_update_elem_proto;
1922 case BPF_FUNC_map_delete_elem:
1923 return &bpf_map_delete_elem_proto;
1924 case BPF_FUNC_map_push_elem:
1925 return &bpf_map_push_elem_proto;
1926 case BPF_FUNC_map_pop_elem:
1927 return &bpf_map_pop_elem_proto;
1928 case BPF_FUNC_map_peek_elem:
1929 return &bpf_map_peek_elem_proto;
1930 case BPF_FUNC_map_lookup_percpu_elem:
1931 return &bpf_map_lookup_percpu_elem_proto;
1932 case BPF_FUNC_get_prandom_u32:
1933 return &bpf_get_prandom_u32_proto;
1934 case BPF_FUNC_get_smp_processor_id:
1935 return &bpf_get_raw_smp_processor_id_proto;
1936 case BPF_FUNC_get_numa_node_id:
1937 return &bpf_get_numa_node_id_proto;
1938 case BPF_FUNC_tail_call:
1939 return &bpf_tail_call_proto;
1940 case BPF_FUNC_ktime_get_ns:
1941 return &bpf_ktime_get_ns_proto;
1942 case BPF_FUNC_ktime_get_boot_ns:
1943 return &bpf_ktime_get_boot_ns_proto;
1944 case BPF_FUNC_ktime_get_tai_ns:
1945 return &bpf_ktime_get_tai_ns_proto;
1946 case BPF_FUNC_ringbuf_output:
1947 return &bpf_ringbuf_output_proto;
1948 case BPF_FUNC_ringbuf_reserve:
1949 return &bpf_ringbuf_reserve_proto;
1950 case BPF_FUNC_ringbuf_submit:
1951 return &bpf_ringbuf_submit_proto;
1952 case BPF_FUNC_ringbuf_discard:
1953 return &bpf_ringbuf_discard_proto;
1954 case BPF_FUNC_ringbuf_query:
1955 return &bpf_ringbuf_query_proto;
1956 case BPF_FUNC_strncmp:
1957 return &bpf_strncmp_proto;
1958 case BPF_FUNC_strtol:
1959 return &bpf_strtol_proto;
1960 case BPF_FUNC_strtoul:
1961 return &bpf_strtoul_proto;
1962 case BPF_FUNC_get_current_pid_tgid:
1963 return &bpf_get_current_pid_tgid_proto;
1964 case BPF_FUNC_get_ns_current_pid_tgid:
1965 return &bpf_get_ns_current_pid_tgid_proto;
1966 default:
1967 break;
1968 }
1969
1970 if (!bpf_token_capable(prog->aux->token, CAP_BPF))
1971 return NULL;
1972
1973 switch (func_id) {
1974 case BPF_FUNC_spin_lock:
1975 return &bpf_spin_lock_proto;
1976 case BPF_FUNC_spin_unlock:
1977 return &bpf_spin_unlock_proto;
1978 case BPF_FUNC_jiffies64:
1979 return &bpf_jiffies64_proto;
1980 case BPF_FUNC_per_cpu_ptr:
1981 return &bpf_per_cpu_ptr_proto;
1982 case BPF_FUNC_this_cpu_ptr:
1983 return &bpf_this_cpu_ptr_proto;
1984 case BPF_FUNC_timer_init:
1985 return &bpf_timer_init_proto;
1986 case BPF_FUNC_timer_set_callback:
1987 return &bpf_timer_set_callback_proto;
1988 case BPF_FUNC_timer_start:
1989 return &bpf_timer_start_proto;
1990 case BPF_FUNC_timer_cancel:
1991 return &bpf_timer_cancel_proto;
1992 case BPF_FUNC_kptr_xchg:
1993 return &bpf_kptr_xchg_proto;
1994 case BPF_FUNC_for_each_map_elem:
1995 return &bpf_for_each_map_elem_proto;
1996 case BPF_FUNC_loop:
1997 return &bpf_loop_proto;
1998 case BPF_FUNC_user_ringbuf_drain:
1999 return &bpf_user_ringbuf_drain_proto;
2000 case BPF_FUNC_ringbuf_reserve_dynptr:
2001 return &bpf_ringbuf_reserve_dynptr_proto;
2002 case BPF_FUNC_ringbuf_submit_dynptr:
2003 return &bpf_ringbuf_submit_dynptr_proto;
2004 case BPF_FUNC_ringbuf_discard_dynptr:
2005 return &bpf_ringbuf_discard_dynptr_proto;
2006 case BPF_FUNC_dynptr_from_mem:
2007 return &bpf_dynptr_from_mem_proto;
2008 case BPF_FUNC_dynptr_read:
2009 return &bpf_dynptr_read_proto;
2010 case BPF_FUNC_dynptr_write:
2011 return &bpf_dynptr_write_proto;
2012 case BPF_FUNC_dynptr_data:
2013 return &bpf_dynptr_data_proto;
2014 #ifdef CONFIG_CGROUPS
2015 case BPF_FUNC_cgrp_storage_get:
2016 return &bpf_cgrp_storage_get_proto;
2017 case BPF_FUNC_cgrp_storage_delete:
2018 return &bpf_cgrp_storage_delete_proto;
2019 case BPF_FUNC_get_current_cgroup_id:
2020 return &bpf_get_current_cgroup_id_proto;
2021 case BPF_FUNC_get_current_ancestor_cgroup_id:
2022 return &bpf_get_current_ancestor_cgroup_id_proto;
2023 #endif
2024 default:
2025 break;
2026 }
2027
2028 if (!bpf_token_capable(prog->aux->token, CAP_PERFMON))
2029 return NULL;
2030
2031 switch (func_id) {
2032 case BPF_FUNC_trace_printk:
2033 return bpf_get_trace_printk_proto();
2034 case BPF_FUNC_get_current_task:
2035 return &bpf_get_current_task_proto;
2036 case BPF_FUNC_get_current_task_btf:
2037 return &bpf_get_current_task_btf_proto;
2038 case BPF_FUNC_probe_read_user:
2039 return &bpf_probe_read_user_proto;
2040 case BPF_FUNC_probe_read_kernel:
2041 return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
2042 NULL : &bpf_probe_read_kernel_proto;
2043 case BPF_FUNC_probe_read_user_str:
2044 return &bpf_probe_read_user_str_proto;
2045 case BPF_FUNC_probe_read_kernel_str:
2046 return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
2047 NULL : &bpf_probe_read_kernel_str_proto;
2048 case BPF_FUNC_snprintf_btf:
2049 return &bpf_snprintf_btf_proto;
2050 case BPF_FUNC_snprintf:
2051 return &bpf_snprintf_proto;
2052 case BPF_FUNC_task_pt_regs:
2053 return &bpf_task_pt_regs_proto;
2054 case BPF_FUNC_trace_vprintk:
2055 return bpf_get_trace_vprintk_proto();
2056 default:
2057 return NULL;
2058 }
2059 }
2060 EXPORT_SYMBOL_GPL(bpf_base_func_proto);
2061
bpf_list_head_free(const struct btf_field * field,void * list_head,struct bpf_spin_lock * spin_lock)2062 void bpf_list_head_free(const struct btf_field *field, void *list_head,
2063 struct bpf_spin_lock *spin_lock)
2064 {
2065 struct list_head *head = list_head, *orig_head = list_head;
2066
2067 BUILD_BUG_ON(sizeof(struct list_head) > sizeof(struct bpf_list_head));
2068 BUILD_BUG_ON(__alignof__(struct list_head) > __alignof__(struct bpf_list_head));
2069
2070 /* Do the actual list draining outside the lock to not hold the lock for
2071 * too long, and also prevent deadlocks if tracing programs end up
2072 * executing on entry/exit of functions called inside the critical
2073 * section, and end up doing map ops that call bpf_list_head_free for
2074 * the same map value again.
2075 */
2076 __bpf_spin_lock_irqsave(spin_lock);
2077 if (!head->next || list_empty(head))
2078 goto unlock;
2079 head = head->next;
2080 unlock:
2081 INIT_LIST_HEAD(orig_head);
2082 __bpf_spin_unlock_irqrestore(spin_lock);
2083
2084 while (head != orig_head) {
2085 void *obj = head;
2086
2087 obj -= field->graph_root.node_offset;
2088 head = head->next;
2089 /* The contained type can also have resources, including a
2090 * bpf_list_head which needs to be freed.
2091 */
2092 migrate_disable();
2093 __bpf_obj_drop_impl(obj, field->graph_root.value_rec, false);
2094 migrate_enable();
2095 }
2096 }
2097
2098 /* Like rbtree_postorder_for_each_entry_safe, but 'pos' and 'n' are
2099 * 'rb_node *', so field name of rb_node within containing struct is not
2100 * needed.
2101 *
2102 * Since bpf_rb_tree's node type has a corresponding struct btf_field with
2103 * graph_root.node_offset, it's not necessary to know field name
2104 * or type of node struct
2105 */
2106 #define bpf_rbtree_postorder_for_each_entry_safe(pos, n, root) \
2107 for (pos = rb_first_postorder(root); \
2108 pos && ({ n = rb_next_postorder(pos); 1; }); \
2109 pos = n)
2110
bpf_rb_root_free(const struct btf_field * field,void * rb_root,struct bpf_spin_lock * spin_lock)2111 void bpf_rb_root_free(const struct btf_field *field, void *rb_root,
2112 struct bpf_spin_lock *spin_lock)
2113 {
2114 struct rb_root_cached orig_root, *root = rb_root;
2115 struct rb_node *pos, *n;
2116 void *obj;
2117
2118 BUILD_BUG_ON(sizeof(struct rb_root_cached) > sizeof(struct bpf_rb_root));
2119 BUILD_BUG_ON(__alignof__(struct rb_root_cached) > __alignof__(struct bpf_rb_root));
2120
2121 __bpf_spin_lock_irqsave(spin_lock);
2122 orig_root = *root;
2123 *root = RB_ROOT_CACHED;
2124 __bpf_spin_unlock_irqrestore(spin_lock);
2125
2126 bpf_rbtree_postorder_for_each_entry_safe(pos, n, &orig_root.rb_root) {
2127 obj = pos;
2128 obj -= field->graph_root.node_offset;
2129
2130
2131 migrate_disable();
2132 __bpf_obj_drop_impl(obj, field->graph_root.value_rec, false);
2133 migrate_enable();
2134 }
2135 }
2136
2137 __bpf_kfunc_start_defs();
2138
bpf_obj_new_impl(u64 local_type_id__k,void * meta__ign)2139 __bpf_kfunc void *bpf_obj_new_impl(u64 local_type_id__k, void *meta__ign)
2140 {
2141 struct btf_struct_meta *meta = meta__ign;
2142 u64 size = local_type_id__k;
2143 void *p;
2144
2145 p = bpf_mem_alloc(&bpf_global_ma, size);
2146 if (!p)
2147 return NULL;
2148 if (meta)
2149 bpf_obj_init(meta->record, p);
2150 return p;
2151 }
2152
bpf_percpu_obj_new_impl(u64 local_type_id__k,void * meta__ign)2153 __bpf_kfunc void *bpf_percpu_obj_new_impl(u64 local_type_id__k, void *meta__ign)
2154 {
2155 u64 size = local_type_id__k;
2156
2157 /* The verifier has ensured that meta__ign must be NULL */
2158 return bpf_mem_alloc(&bpf_global_percpu_ma, size);
2159 }
2160
2161 /* Must be called under migrate_disable(), as required by bpf_mem_free */
__bpf_obj_drop_impl(void * p,const struct btf_record * rec,bool percpu)2162 void __bpf_obj_drop_impl(void *p, const struct btf_record *rec, bool percpu)
2163 {
2164 struct bpf_mem_alloc *ma;
2165
2166 if (rec && rec->refcount_off >= 0 &&
2167 !refcount_dec_and_test((refcount_t *)(p + rec->refcount_off))) {
2168 /* Object is refcounted and refcount_dec didn't result in 0
2169 * refcount. Return without freeing the object
2170 */
2171 return;
2172 }
2173
2174 if (rec)
2175 bpf_obj_free_fields(rec, p);
2176
2177 if (percpu)
2178 ma = &bpf_global_percpu_ma;
2179 else
2180 ma = &bpf_global_ma;
2181 bpf_mem_free_rcu(ma, p);
2182 }
2183
bpf_obj_drop_impl(void * p__alloc,void * meta__ign)2184 __bpf_kfunc void bpf_obj_drop_impl(void *p__alloc, void *meta__ign)
2185 {
2186 struct btf_struct_meta *meta = meta__ign;
2187 void *p = p__alloc;
2188
2189 __bpf_obj_drop_impl(p, meta ? meta->record : NULL, false);
2190 }
2191
bpf_percpu_obj_drop_impl(void * p__alloc,void * meta__ign)2192 __bpf_kfunc void bpf_percpu_obj_drop_impl(void *p__alloc, void *meta__ign)
2193 {
2194 /* The verifier has ensured that meta__ign must be NULL */
2195 bpf_mem_free_rcu(&bpf_global_percpu_ma, p__alloc);
2196 }
2197
bpf_refcount_acquire_impl(void * p__refcounted_kptr,void * meta__ign)2198 __bpf_kfunc void *bpf_refcount_acquire_impl(void *p__refcounted_kptr, void *meta__ign)
2199 {
2200 struct btf_struct_meta *meta = meta__ign;
2201 struct bpf_refcount *ref;
2202
2203 /* Could just cast directly to refcount_t *, but need some code using
2204 * bpf_refcount type so that it is emitted in vmlinux BTF
2205 */
2206 ref = (struct bpf_refcount *)(p__refcounted_kptr + meta->record->refcount_off);
2207 if (!refcount_inc_not_zero((refcount_t *)ref))
2208 return NULL;
2209
2210 /* Verifier strips KF_RET_NULL if input is owned ref, see is_kfunc_ret_null
2211 * in verifier.c
2212 */
2213 return (void *)p__refcounted_kptr;
2214 }
2215
__bpf_list_add(struct bpf_list_node_kern * node,struct bpf_list_head * head,bool tail,struct btf_record * rec,u64 off)2216 static int __bpf_list_add(struct bpf_list_node_kern *node,
2217 struct bpf_list_head *head,
2218 bool tail, struct btf_record *rec, u64 off)
2219 {
2220 struct list_head *n = &node->list_head, *h = (void *)head;
2221
2222 /* If list_head was 0-initialized by map, bpf_obj_init_field wasn't
2223 * called on its fields, so init here
2224 */
2225 if (unlikely(!h->next))
2226 INIT_LIST_HEAD(h);
2227
2228 /* node->owner != NULL implies !list_empty(n), no need to separately
2229 * check the latter
2230 */
2231 if (cmpxchg(&node->owner, NULL, BPF_PTR_POISON)) {
2232 /* Only called from BPF prog, no need to migrate_disable */
2233 __bpf_obj_drop_impl((void *)n - off, rec, false);
2234 return -EINVAL;
2235 }
2236
2237 tail ? list_add_tail(n, h) : list_add(n, h);
2238 WRITE_ONCE(node->owner, head);
2239
2240 return 0;
2241 }
2242
bpf_list_push_front_impl(struct bpf_list_head * head,struct bpf_list_node * node,void * meta__ign,u64 off)2243 __bpf_kfunc int bpf_list_push_front_impl(struct bpf_list_head *head,
2244 struct bpf_list_node *node,
2245 void *meta__ign, u64 off)
2246 {
2247 struct bpf_list_node_kern *n = (void *)node;
2248 struct btf_struct_meta *meta = meta__ign;
2249
2250 return __bpf_list_add(n, head, false, meta ? meta->record : NULL, off);
2251 }
2252
bpf_list_push_back_impl(struct bpf_list_head * head,struct bpf_list_node * node,void * meta__ign,u64 off)2253 __bpf_kfunc int bpf_list_push_back_impl(struct bpf_list_head *head,
2254 struct bpf_list_node *node,
2255 void *meta__ign, u64 off)
2256 {
2257 struct bpf_list_node_kern *n = (void *)node;
2258 struct btf_struct_meta *meta = meta__ign;
2259
2260 return __bpf_list_add(n, head, true, meta ? meta->record : NULL, off);
2261 }
2262
__bpf_list_del(struct bpf_list_head * head,bool tail)2263 static struct bpf_list_node *__bpf_list_del(struct bpf_list_head *head, bool tail)
2264 {
2265 struct list_head *n, *h = (void *)head;
2266 struct bpf_list_node_kern *node;
2267
2268 /* If list_head was 0-initialized by map, bpf_obj_init_field wasn't
2269 * called on its fields, so init here
2270 */
2271 if (unlikely(!h->next))
2272 INIT_LIST_HEAD(h);
2273 if (list_empty(h))
2274 return NULL;
2275
2276 n = tail ? h->prev : h->next;
2277 node = container_of(n, struct bpf_list_node_kern, list_head);
2278 if (WARN_ON_ONCE(READ_ONCE(node->owner) != head))
2279 return NULL;
2280
2281 list_del_init(n);
2282 WRITE_ONCE(node->owner, NULL);
2283 return (struct bpf_list_node *)n;
2284 }
2285
bpf_list_pop_front(struct bpf_list_head * head)2286 __bpf_kfunc struct bpf_list_node *bpf_list_pop_front(struct bpf_list_head *head)
2287 {
2288 return __bpf_list_del(head, false);
2289 }
2290
bpf_list_pop_back(struct bpf_list_head * head)2291 __bpf_kfunc struct bpf_list_node *bpf_list_pop_back(struct bpf_list_head *head)
2292 {
2293 return __bpf_list_del(head, true);
2294 }
2295
bpf_rbtree_remove(struct bpf_rb_root * root,struct bpf_rb_node * node)2296 __bpf_kfunc struct bpf_rb_node *bpf_rbtree_remove(struct bpf_rb_root *root,
2297 struct bpf_rb_node *node)
2298 {
2299 struct bpf_rb_node_kern *node_internal = (struct bpf_rb_node_kern *)node;
2300 struct rb_root_cached *r = (struct rb_root_cached *)root;
2301 struct rb_node *n = &node_internal->rb_node;
2302
2303 /* node_internal->owner != root implies either RB_EMPTY_NODE(n) or
2304 * n is owned by some other tree. No need to check RB_EMPTY_NODE(n)
2305 */
2306 if (READ_ONCE(node_internal->owner) != root)
2307 return NULL;
2308
2309 rb_erase_cached(n, r);
2310 RB_CLEAR_NODE(n);
2311 WRITE_ONCE(node_internal->owner, NULL);
2312 return (struct bpf_rb_node *)n;
2313 }
2314
2315 /* Need to copy rbtree_add_cached's logic here because our 'less' is a BPF
2316 * program
2317 */
__bpf_rbtree_add(struct bpf_rb_root * root,struct bpf_rb_node_kern * node,void * less,struct btf_record * rec,u64 off)2318 static int __bpf_rbtree_add(struct bpf_rb_root *root,
2319 struct bpf_rb_node_kern *node,
2320 void *less, struct btf_record *rec, u64 off)
2321 {
2322 struct rb_node **link = &((struct rb_root_cached *)root)->rb_root.rb_node;
2323 struct rb_node *parent = NULL, *n = &node->rb_node;
2324 bpf_callback_t cb = (bpf_callback_t)less;
2325 bool leftmost = true;
2326
2327 /* node->owner != NULL implies !RB_EMPTY_NODE(n), no need to separately
2328 * check the latter
2329 */
2330 if (cmpxchg(&node->owner, NULL, BPF_PTR_POISON)) {
2331 /* Only called from BPF prog, no need to migrate_disable */
2332 __bpf_obj_drop_impl((void *)n - off, rec, false);
2333 return -EINVAL;
2334 }
2335
2336 while (*link) {
2337 parent = *link;
2338 if (cb((uintptr_t)node, (uintptr_t)parent, 0, 0, 0)) {
2339 link = &parent->rb_left;
2340 } else {
2341 link = &parent->rb_right;
2342 leftmost = false;
2343 }
2344 }
2345
2346 rb_link_node(n, parent, link);
2347 rb_insert_color_cached(n, (struct rb_root_cached *)root, leftmost);
2348 WRITE_ONCE(node->owner, root);
2349 return 0;
2350 }
2351
bpf_rbtree_add_impl(struct bpf_rb_root * root,struct bpf_rb_node * node,bool (less)(struct bpf_rb_node * a,const struct bpf_rb_node * b),void * meta__ign,u64 off)2352 __bpf_kfunc int bpf_rbtree_add_impl(struct bpf_rb_root *root, struct bpf_rb_node *node,
2353 bool (less)(struct bpf_rb_node *a, const struct bpf_rb_node *b),
2354 void *meta__ign, u64 off)
2355 {
2356 struct btf_struct_meta *meta = meta__ign;
2357 struct bpf_rb_node_kern *n = (void *)node;
2358
2359 return __bpf_rbtree_add(root, n, (void *)less, meta ? meta->record : NULL, off);
2360 }
2361
bpf_rbtree_first(struct bpf_rb_root * root)2362 __bpf_kfunc struct bpf_rb_node *bpf_rbtree_first(struct bpf_rb_root *root)
2363 {
2364 struct rb_root_cached *r = (struct rb_root_cached *)root;
2365
2366 return (struct bpf_rb_node *)rb_first_cached(r);
2367 }
2368
2369 /**
2370 * bpf_task_acquire - Acquire a reference to a task. A task acquired by this
2371 * kfunc which is not stored in a map as a kptr, must be released by calling
2372 * bpf_task_release().
2373 * @p: The task on which a reference is being acquired.
2374 */
bpf_task_acquire(struct task_struct * p)2375 __bpf_kfunc struct task_struct *bpf_task_acquire(struct task_struct *p)
2376 {
2377 if (refcount_inc_not_zero(&p->rcu_users))
2378 return p;
2379 return NULL;
2380 }
2381
2382 /**
2383 * bpf_task_release - Release the reference acquired on a task.
2384 * @p: The task on which a reference is being released.
2385 */
bpf_task_release(struct task_struct * p)2386 __bpf_kfunc void bpf_task_release(struct task_struct *p)
2387 {
2388 put_task_struct_rcu_user(p);
2389 }
2390
bpf_task_release_dtor(void * p)2391 __bpf_kfunc void bpf_task_release_dtor(void *p)
2392 {
2393 put_task_struct_rcu_user(p);
2394 }
2395 CFI_NOSEAL(bpf_task_release_dtor);
2396
2397 #ifdef CONFIG_CGROUPS
2398 /**
2399 * bpf_cgroup_acquire - Acquire a reference to a cgroup. A cgroup acquired by
2400 * this kfunc which is not stored in a map as a kptr, must be released by
2401 * calling bpf_cgroup_release().
2402 * @cgrp: The cgroup on which a reference is being acquired.
2403 */
bpf_cgroup_acquire(struct cgroup * cgrp)2404 __bpf_kfunc struct cgroup *bpf_cgroup_acquire(struct cgroup *cgrp)
2405 {
2406 return cgroup_tryget(cgrp) ? cgrp : NULL;
2407 }
2408
2409 /**
2410 * bpf_cgroup_release - Release the reference acquired on a cgroup.
2411 * If this kfunc is invoked in an RCU read region, the cgroup is guaranteed to
2412 * not be freed until the current grace period has ended, even if its refcount
2413 * drops to 0.
2414 * @cgrp: The cgroup on which a reference is being released.
2415 */
bpf_cgroup_release(struct cgroup * cgrp)2416 __bpf_kfunc void bpf_cgroup_release(struct cgroup *cgrp)
2417 {
2418 cgroup_put(cgrp);
2419 }
2420
bpf_cgroup_release_dtor(void * cgrp)2421 __bpf_kfunc void bpf_cgroup_release_dtor(void *cgrp)
2422 {
2423 cgroup_put(cgrp);
2424 }
2425 CFI_NOSEAL(bpf_cgroup_release_dtor);
2426
2427 /**
2428 * bpf_cgroup_ancestor - Perform a lookup on an entry in a cgroup's ancestor
2429 * array. A cgroup returned by this kfunc which is not subsequently stored in a
2430 * map, must be released by calling bpf_cgroup_release().
2431 * @cgrp: The cgroup for which we're performing a lookup.
2432 * @level: The level of ancestor to look up.
2433 */
bpf_cgroup_ancestor(struct cgroup * cgrp,int level)2434 __bpf_kfunc struct cgroup *bpf_cgroup_ancestor(struct cgroup *cgrp, int level)
2435 {
2436 struct cgroup *ancestor;
2437
2438 if (level > cgrp->level || level < 0)
2439 return NULL;
2440
2441 /* cgrp's refcnt could be 0 here, but ancestors can still be accessed */
2442 ancestor = cgrp->ancestors[level];
2443 if (!cgroup_tryget(ancestor))
2444 return NULL;
2445 return ancestor;
2446 }
2447
2448 /**
2449 * bpf_cgroup_from_id - Find a cgroup from its ID. A cgroup returned by this
2450 * kfunc which is not subsequently stored in a map, must be released by calling
2451 * bpf_cgroup_release().
2452 * @cgid: cgroup id.
2453 */
bpf_cgroup_from_id(u64 cgid)2454 __bpf_kfunc struct cgroup *bpf_cgroup_from_id(u64 cgid)
2455 {
2456 struct cgroup *cgrp;
2457
2458 cgrp = cgroup_get_from_id(cgid);
2459 if (IS_ERR(cgrp))
2460 return NULL;
2461 return cgrp;
2462 }
2463
2464 /**
2465 * bpf_task_under_cgroup - wrap task_under_cgroup_hierarchy() as a kfunc, test
2466 * task's membership of cgroup ancestry.
2467 * @task: the task to be tested
2468 * @ancestor: possible ancestor of @task's cgroup
2469 *
2470 * Tests whether @task's default cgroup hierarchy is a descendant of @ancestor.
2471 * It follows all the same rules as cgroup_is_descendant, and only applies
2472 * to the default hierarchy.
2473 */
bpf_task_under_cgroup(struct task_struct * task,struct cgroup * ancestor)2474 __bpf_kfunc long bpf_task_under_cgroup(struct task_struct *task,
2475 struct cgroup *ancestor)
2476 {
2477 long ret;
2478
2479 rcu_read_lock();
2480 ret = task_under_cgroup_hierarchy(task, ancestor);
2481 rcu_read_unlock();
2482 return ret;
2483 }
2484
BPF_CALL_2(bpf_current_task_under_cgroup,struct bpf_map *,map,u32,idx)2485 BPF_CALL_2(bpf_current_task_under_cgroup, struct bpf_map *, map, u32, idx)
2486 {
2487 struct bpf_array *array = container_of(map, struct bpf_array, map);
2488 struct cgroup *cgrp;
2489
2490 if (unlikely(idx >= array->map.max_entries))
2491 return -E2BIG;
2492
2493 cgrp = READ_ONCE(array->ptrs[idx]);
2494 if (unlikely(!cgrp))
2495 return -EAGAIN;
2496
2497 return task_under_cgroup_hierarchy(current, cgrp);
2498 }
2499
2500 const struct bpf_func_proto bpf_current_task_under_cgroup_proto = {
2501 .func = bpf_current_task_under_cgroup,
2502 .gpl_only = false,
2503 .ret_type = RET_INTEGER,
2504 .arg1_type = ARG_CONST_MAP_PTR,
2505 .arg2_type = ARG_ANYTHING,
2506 };
2507
2508 /**
2509 * bpf_task_get_cgroup1 - Acquires the associated cgroup of a task within a
2510 * specific cgroup1 hierarchy. The cgroup1 hierarchy is identified by its
2511 * hierarchy ID.
2512 * @task: The target task
2513 * @hierarchy_id: The ID of a cgroup1 hierarchy
2514 *
2515 * On success, the cgroup is returen. On failure, NULL is returned.
2516 */
2517 __bpf_kfunc struct cgroup *
bpf_task_get_cgroup1(struct task_struct * task,int hierarchy_id)2518 bpf_task_get_cgroup1(struct task_struct *task, int hierarchy_id)
2519 {
2520 struct cgroup *cgrp = task_get_cgroup1(task, hierarchy_id);
2521
2522 if (IS_ERR(cgrp))
2523 return NULL;
2524 return cgrp;
2525 }
2526 #endif /* CONFIG_CGROUPS */
2527
2528 /**
2529 * bpf_task_from_pid - Find a struct task_struct from its pid by looking it up
2530 * in the root pid namespace idr. If a task is returned, it must either be
2531 * stored in a map, or released with bpf_task_release().
2532 * @pid: The pid of the task being looked up.
2533 */
bpf_task_from_pid(s32 pid)2534 __bpf_kfunc struct task_struct *bpf_task_from_pid(s32 pid)
2535 {
2536 struct task_struct *p;
2537
2538 rcu_read_lock();
2539 p = find_task_by_pid_ns(pid, &init_pid_ns);
2540 if (p)
2541 p = bpf_task_acquire(p);
2542 rcu_read_unlock();
2543
2544 return p;
2545 }
2546
2547 /**
2548 * bpf_dynptr_slice() - Obtain a read-only pointer to the dynptr data.
2549 * @p: The dynptr whose data slice to retrieve
2550 * @offset: Offset into the dynptr
2551 * @buffer__opt: User-provided buffer to copy contents into. May be NULL
2552 * @buffer__szk: Size (in bytes) of the buffer if present. This is the
2553 * length of the requested slice. This must be a constant.
2554 *
2555 * For non-skb and non-xdp type dynptrs, there is no difference between
2556 * bpf_dynptr_slice and bpf_dynptr_data.
2557 *
2558 * If buffer__opt is NULL, the call will fail if buffer_opt was needed.
2559 *
2560 * If the intention is to write to the data slice, please use
2561 * bpf_dynptr_slice_rdwr.
2562 *
2563 * The user must check that the returned pointer is not null before using it.
2564 *
2565 * Please note that in the case of skb and xdp dynptrs, bpf_dynptr_slice
2566 * does not change the underlying packet data pointers, so a call to
2567 * bpf_dynptr_slice will not invalidate any ctx->data/data_end pointers in
2568 * the bpf program.
2569 *
2570 * Return: NULL if the call failed (eg invalid dynptr), pointer to a read-only
2571 * data slice (can be either direct pointer to the data or a pointer to the user
2572 * provided buffer, with its contents containing the data, if unable to obtain
2573 * direct pointer)
2574 */
bpf_dynptr_slice(const struct bpf_dynptr * p,u32 offset,void * buffer__opt,u32 buffer__szk)2575 __bpf_kfunc void *bpf_dynptr_slice(const struct bpf_dynptr *p, u32 offset,
2576 void *buffer__opt, u32 buffer__szk)
2577 {
2578 const struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)p;
2579 enum bpf_dynptr_type type;
2580 u32 len = buffer__szk;
2581 int err;
2582
2583 if (!ptr->data)
2584 return NULL;
2585
2586 err = bpf_dynptr_check_off_len(ptr, offset, len);
2587 if (err)
2588 return NULL;
2589
2590 type = bpf_dynptr_get_type(ptr);
2591
2592 switch (type) {
2593 case BPF_DYNPTR_TYPE_LOCAL:
2594 case BPF_DYNPTR_TYPE_RINGBUF:
2595 return ptr->data + ptr->offset + offset;
2596 case BPF_DYNPTR_TYPE_SKB:
2597 if (buffer__opt)
2598 return skb_header_pointer(ptr->data, ptr->offset + offset, len, buffer__opt);
2599 else
2600 return skb_pointer_if_linear(ptr->data, ptr->offset + offset, len);
2601 case BPF_DYNPTR_TYPE_XDP:
2602 {
2603 void *xdp_ptr = bpf_xdp_pointer(ptr->data, ptr->offset + offset, len);
2604 if (!IS_ERR_OR_NULL(xdp_ptr))
2605 return xdp_ptr;
2606
2607 if (!buffer__opt)
2608 return NULL;
2609 bpf_xdp_copy_buf(ptr->data, ptr->offset + offset, buffer__opt, len, false);
2610 return buffer__opt;
2611 }
2612 default:
2613 WARN_ONCE(true, "unknown dynptr type %d\n", type);
2614 return NULL;
2615 }
2616 }
2617
2618 /**
2619 * bpf_dynptr_slice_rdwr() - Obtain a writable pointer to the dynptr data.
2620 * @p: The dynptr whose data slice to retrieve
2621 * @offset: Offset into the dynptr
2622 * @buffer__opt: User-provided buffer to copy contents into. May be NULL
2623 * @buffer__szk: Size (in bytes) of the buffer if present. This is the
2624 * length of the requested slice. This must be a constant.
2625 *
2626 * For non-skb and non-xdp type dynptrs, there is no difference between
2627 * bpf_dynptr_slice and bpf_dynptr_data.
2628 *
2629 * If buffer__opt is NULL, the call will fail if buffer_opt was needed.
2630 *
2631 * The returned pointer is writable and may point to either directly the dynptr
2632 * data at the requested offset or to the buffer if unable to obtain a direct
2633 * data pointer to (example: the requested slice is to the paged area of an skb
2634 * packet). In the case where the returned pointer is to the buffer, the user
2635 * is responsible for persisting writes through calling bpf_dynptr_write(). This
2636 * usually looks something like this pattern:
2637 *
2638 * struct eth_hdr *eth = bpf_dynptr_slice_rdwr(&dynptr, 0, buffer, sizeof(buffer));
2639 * if (!eth)
2640 * return TC_ACT_SHOT;
2641 *
2642 * // mutate eth header //
2643 *
2644 * if (eth == buffer)
2645 * bpf_dynptr_write(&ptr, 0, buffer, sizeof(buffer), 0);
2646 *
2647 * Please note that, as in the example above, the user must check that the
2648 * returned pointer is not null before using it.
2649 *
2650 * Please also note that in the case of skb and xdp dynptrs, bpf_dynptr_slice_rdwr
2651 * does not change the underlying packet data pointers, so a call to
2652 * bpf_dynptr_slice_rdwr will not invalidate any ctx->data/data_end pointers in
2653 * the bpf program.
2654 *
2655 * Return: NULL if the call failed (eg invalid dynptr), pointer to a
2656 * data slice (can be either direct pointer to the data or a pointer to the user
2657 * provided buffer, with its contents containing the data, if unable to obtain
2658 * direct pointer)
2659 */
bpf_dynptr_slice_rdwr(const struct bpf_dynptr * p,u32 offset,void * buffer__opt,u32 buffer__szk)2660 __bpf_kfunc void *bpf_dynptr_slice_rdwr(const struct bpf_dynptr *p, u32 offset,
2661 void *buffer__opt, u32 buffer__szk)
2662 {
2663 const struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)p;
2664
2665 if (!ptr->data || __bpf_dynptr_is_rdonly(ptr))
2666 return NULL;
2667
2668 /* bpf_dynptr_slice_rdwr is the same logic as bpf_dynptr_slice.
2669 *
2670 * For skb-type dynptrs, it is safe to write into the returned pointer
2671 * if the bpf program allows skb data writes. There are two possibilities
2672 * that may occur when calling bpf_dynptr_slice_rdwr:
2673 *
2674 * 1) The requested slice is in the head of the skb. In this case, the
2675 * returned pointer is directly to skb data, and if the skb is cloned, the
2676 * verifier will have uncloned it (see bpf_unclone_prologue()) already.
2677 * The pointer can be directly written into.
2678 *
2679 * 2) Some portion of the requested slice is in the paged buffer area.
2680 * In this case, the requested data will be copied out into the buffer
2681 * and the returned pointer will be a pointer to the buffer. The skb
2682 * will not be pulled. To persist the write, the user will need to call
2683 * bpf_dynptr_write(), which will pull the skb and commit the write.
2684 *
2685 * Similarly for xdp programs, if the requested slice is not across xdp
2686 * fragments, then a direct pointer will be returned, otherwise the data
2687 * will be copied out into the buffer and the user will need to call
2688 * bpf_dynptr_write() to commit changes.
2689 */
2690 return bpf_dynptr_slice(p, offset, buffer__opt, buffer__szk);
2691 }
2692
bpf_dynptr_adjust(const struct bpf_dynptr * p,u32 start,u32 end)2693 __bpf_kfunc int bpf_dynptr_adjust(const struct bpf_dynptr *p, u32 start, u32 end)
2694 {
2695 struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)p;
2696 u32 size;
2697
2698 if (!ptr->data || start > end)
2699 return -EINVAL;
2700
2701 size = __bpf_dynptr_size(ptr);
2702
2703 if (start > size || end > size)
2704 return -ERANGE;
2705
2706 ptr->offset += start;
2707 bpf_dynptr_set_size(ptr, end - start);
2708
2709 return 0;
2710 }
2711
bpf_dynptr_is_null(const struct bpf_dynptr * p)2712 __bpf_kfunc bool bpf_dynptr_is_null(const struct bpf_dynptr *p)
2713 {
2714 struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)p;
2715
2716 return !ptr->data;
2717 }
2718
bpf_dynptr_is_rdonly(const struct bpf_dynptr * p)2719 __bpf_kfunc bool bpf_dynptr_is_rdonly(const struct bpf_dynptr *p)
2720 {
2721 struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)p;
2722
2723 if (!ptr->data)
2724 return false;
2725
2726 return __bpf_dynptr_is_rdonly(ptr);
2727 }
2728
bpf_dynptr_size(const struct bpf_dynptr * p)2729 __bpf_kfunc __u32 bpf_dynptr_size(const struct bpf_dynptr *p)
2730 {
2731 struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)p;
2732
2733 if (!ptr->data)
2734 return -EINVAL;
2735
2736 return __bpf_dynptr_size(ptr);
2737 }
2738
bpf_dynptr_clone(const struct bpf_dynptr * p,struct bpf_dynptr * clone__uninit)2739 __bpf_kfunc int bpf_dynptr_clone(const struct bpf_dynptr *p,
2740 struct bpf_dynptr *clone__uninit)
2741 {
2742 struct bpf_dynptr_kern *clone = (struct bpf_dynptr_kern *)clone__uninit;
2743 struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)p;
2744
2745 if (!ptr->data) {
2746 bpf_dynptr_set_null(clone);
2747 return -EINVAL;
2748 }
2749
2750 *clone = *ptr;
2751
2752 return 0;
2753 }
2754
bpf_cast_to_kern_ctx(void * obj)2755 __bpf_kfunc void *bpf_cast_to_kern_ctx(void *obj)
2756 {
2757 return obj;
2758 }
2759
bpf_rdonly_cast(const void * obj__ign,u32 btf_id__k)2760 __bpf_kfunc void *bpf_rdonly_cast(const void *obj__ign, u32 btf_id__k)
2761 {
2762 return (void *)obj__ign;
2763 }
2764
bpf_rcu_read_lock(void)2765 __bpf_kfunc void bpf_rcu_read_lock(void)
2766 {
2767 rcu_read_lock();
2768 }
2769
bpf_rcu_read_unlock(void)2770 __bpf_kfunc void bpf_rcu_read_unlock(void)
2771 {
2772 rcu_read_unlock();
2773 }
2774
2775 struct bpf_throw_ctx {
2776 struct bpf_prog_aux *aux;
2777 u64 sp;
2778 u64 bp;
2779 int cnt;
2780 };
2781
bpf_stack_walker(void * cookie,u64 ip,u64 sp,u64 bp)2782 static bool bpf_stack_walker(void *cookie, u64 ip, u64 sp, u64 bp)
2783 {
2784 struct bpf_throw_ctx *ctx = cookie;
2785 struct bpf_prog *prog;
2786
2787 /*
2788 * The RCU read lock is held to safely traverse the latch tree, but we
2789 * don't need its protection when accessing the prog, since it has an
2790 * active stack frame on the current stack trace, and won't disappear.
2791 */
2792 rcu_read_lock();
2793 prog = bpf_prog_ksym_find(ip);
2794 rcu_read_unlock();
2795 if (!prog)
2796 return !ctx->cnt;
2797 ctx->cnt++;
2798 if (bpf_is_subprog(prog))
2799 return true;
2800 ctx->aux = prog->aux;
2801 ctx->sp = sp;
2802 ctx->bp = bp;
2803 return false;
2804 }
2805
bpf_throw(u64 cookie)2806 __bpf_kfunc void bpf_throw(u64 cookie)
2807 {
2808 struct bpf_throw_ctx ctx = {};
2809
2810 arch_bpf_stack_walk(bpf_stack_walker, &ctx);
2811 WARN_ON_ONCE(!ctx.aux);
2812 if (ctx.aux)
2813 WARN_ON_ONCE(!ctx.aux->exception_boundary);
2814 WARN_ON_ONCE(!ctx.bp);
2815 WARN_ON_ONCE(!ctx.cnt);
2816 /* Prevent KASAN false positives for CONFIG_KASAN_STACK by unpoisoning
2817 * deeper stack depths than ctx.sp as we do not return from bpf_throw,
2818 * which skips compiler generated instrumentation to do the same.
2819 */
2820 kasan_unpoison_task_stack_below((void *)(long)ctx.sp);
2821 ctx.aux->bpf_exception_cb(cookie, ctx.sp, ctx.bp, 0, 0);
2822 WARN(1, "A call to BPF exception callback should never return\n");
2823 }
2824
bpf_wq_init(struct bpf_wq * wq,void * p__map,unsigned int flags)2825 __bpf_kfunc int bpf_wq_init(struct bpf_wq *wq, void *p__map, unsigned int flags)
2826 {
2827 struct bpf_async_kern *async = (struct bpf_async_kern *)wq;
2828 struct bpf_map *map = p__map;
2829
2830 BUILD_BUG_ON(sizeof(struct bpf_async_kern) > sizeof(struct bpf_wq));
2831 BUILD_BUG_ON(__alignof__(struct bpf_async_kern) != __alignof__(struct bpf_wq));
2832
2833 if (flags)
2834 return -EINVAL;
2835
2836 return __bpf_async_init(async, map, flags, BPF_ASYNC_TYPE_WQ);
2837 }
2838
bpf_wq_start(struct bpf_wq * wq,unsigned int flags)2839 __bpf_kfunc int bpf_wq_start(struct bpf_wq *wq, unsigned int flags)
2840 {
2841 struct bpf_async_kern *async = (struct bpf_async_kern *)wq;
2842 struct bpf_work *w;
2843
2844 if (in_nmi())
2845 return -EOPNOTSUPP;
2846 if (flags)
2847 return -EINVAL;
2848 w = READ_ONCE(async->work);
2849 if (!w || !READ_ONCE(w->cb.prog))
2850 return -EINVAL;
2851
2852 schedule_work(&w->work);
2853 return 0;
2854 }
2855
bpf_wq_set_callback_impl(struct bpf_wq * wq,int (callback_fn)(void * map,int * key,void * value),unsigned int flags,void * aux__ign)2856 __bpf_kfunc int bpf_wq_set_callback_impl(struct bpf_wq *wq,
2857 int (callback_fn)(void *map, int *key, void *value),
2858 unsigned int flags,
2859 void *aux__ign)
2860 {
2861 struct bpf_prog_aux *aux = (struct bpf_prog_aux *)aux__ign;
2862 struct bpf_async_kern *async = (struct bpf_async_kern *)wq;
2863
2864 if (flags)
2865 return -EINVAL;
2866
2867 return __bpf_async_set_callback(async, callback_fn, aux, flags, BPF_ASYNC_TYPE_WQ);
2868 }
2869
bpf_preempt_disable(void)2870 __bpf_kfunc void bpf_preempt_disable(void)
2871 {
2872 preempt_disable();
2873 }
2874
bpf_preempt_enable(void)2875 __bpf_kfunc void bpf_preempt_enable(void)
2876 {
2877 preempt_enable();
2878 }
2879
2880 struct bpf_iter_bits {
2881 __u64 __opaque[2];
2882 } __aligned(8);
2883
2884 #define BITS_ITER_NR_WORDS_MAX 511
2885
2886 struct bpf_iter_bits_kern {
2887 union {
2888 __u64 *bits;
2889 __u64 bits_copy;
2890 };
2891 int nr_bits;
2892 int bit;
2893 } __aligned(8);
2894
2895 /* On 64-bit hosts, unsigned long and u64 have the same size, so passing
2896 * a u64 pointer and an unsigned long pointer to find_next_bit() will
2897 * return the same result, as both point to the same 8-byte area.
2898 *
2899 * For 32-bit little-endian hosts, using a u64 pointer or unsigned long
2900 * pointer also makes no difference. This is because the first iterated
2901 * unsigned long is composed of bits 0-31 of the u64 and the second unsigned
2902 * long is composed of bits 32-63 of the u64.
2903 *
2904 * However, for 32-bit big-endian hosts, this is not the case. The first
2905 * iterated unsigned long will be bits 32-63 of the u64, so swap these two
2906 * ulong values within the u64.
2907 */
swap_ulong_in_u64(u64 * bits,unsigned int nr)2908 static void swap_ulong_in_u64(u64 *bits, unsigned int nr)
2909 {
2910 #if (BITS_PER_LONG == 32) && defined(__BIG_ENDIAN)
2911 unsigned int i;
2912
2913 for (i = 0; i < nr; i++)
2914 bits[i] = (bits[i] >> 32) | ((u64)(u32)bits[i] << 32);
2915 #endif
2916 }
2917
2918 /**
2919 * bpf_iter_bits_new() - Initialize a new bits iterator for a given memory area
2920 * @it: The new bpf_iter_bits to be created
2921 * @unsafe_ptr__ign: A pointer pointing to a memory area to be iterated over
2922 * @nr_words: The size of the specified memory area, measured in 8-byte units.
2923 * The maximum value of @nr_words is @BITS_ITER_NR_WORDS_MAX. This limit may be
2924 * further reduced by the BPF memory allocator implementation.
2925 *
2926 * This function initializes a new bpf_iter_bits structure for iterating over
2927 * a memory area which is specified by the @unsafe_ptr__ign and @nr_words. It
2928 * copies the data of the memory area to the newly created bpf_iter_bits @it for
2929 * subsequent iteration operations.
2930 *
2931 * On success, 0 is returned. On failure, ERR is returned.
2932 */
2933 __bpf_kfunc int
bpf_iter_bits_new(struct bpf_iter_bits * it,const u64 * unsafe_ptr__ign,u32 nr_words)2934 bpf_iter_bits_new(struct bpf_iter_bits *it, const u64 *unsafe_ptr__ign, u32 nr_words)
2935 {
2936 struct bpf_iter_bits_kern *kit = (void *)it;
2937 u32 nr_bytes = nr_words * sizeof(u64);
2938 u32 nr_bits = BYTES_TO_BITS(nr_bytes);
2939 int err;
2940
2941 BUILD_BUG_ON(sizeof(struct bpf_iter_bits_kern) != sizeof(struct bpf_iter_bits));
2942 BUILD_BUG_ON(__alignof__(struct bpf_iter_bits_kern) !=
2943 __alignof__(struct bpf_iter_bits));
2944
2945 kit->nr_bits = 0;
2946 kit->bits_copy = 0;
2947 kit->bit = -1;
2948
2949 if (!unsafe_ptr__ign || !nr_words)
2950 return -EINVAL;
2951 if (nr_words > BITS_ITER_NR_WORDS_MAX)
2952 return -E2BIG;
2953
2954 /* Optimization for u64 mask */
2955 if (nr_bits == 64) {
2956 err = bpf_probe_read_kernel_common(&kit->bits_copy, nr_bytes, unsafe_ptr__ign);
2957 if (err)
2958 return -EFAULT;
2959
2960 swap_ulong_in_u64(&kit->bits_copy, nr_words);
2961
2962 kit->nr_bits = nr_bits;
2963 return 0;
2964 }
2965
2966 if (bpf_mem_alloc_check_size(false, nr_bytes))
2967 return -E2BIG;
2968
2969 /* Fallback to memalloc */
2970 kit->bits = bpf_mem_alloc(&bpf_global_ma, nr_bytes);
2971 if (!kit->bits)
2972 return -ENOMEM;
2973
2974 err = bpf_probe_read_kernel_common(kit->bits, nr_bytes, unsafe_ptr__ign);
2975 if (err) {
2976 bpf_mem_free(&bpf_global_ma, kit->bits);
2977 return err;
2978 }
2979
2980 swap_ulong_in_u64(kit->bits, nr_words);
2981
2982 kit->nr_bits = nr_bits;
2983 return 0;
2984 }
2985
2986 /**
2987 * bpf_iter_bits_next() - Get the next bit in a bpf_iter_bits
2988 * @it: The bpf_iter_bits to be checked
2989 *
2990 * This function returns a pointer to a number representing the value of the
2991 * next bit in the bits.
2992 *
2993 * If there are no further bits available, it returns NULL.
2994 */
bpf_iter_bits_next(struct bpf_iter_bits * it)2995 __bpf_kfunc int *bpf_iter_bits_next(struct bpf_iter_bits *it)
2996 {
2997 struct bpf_iter_bits_kern *kit = (void *)it;
2998 int bit = kit->bit, nr_bits = kit->nr_bits;
2999 const void *bits;
3000
3001 if (!nr_bits || bit >= nr_bits)
3002 return NULL;
3003
3004 bits = nr_bits == 64 ? &kit->bits_copy : kit->bits;
3005 bit = find_next_bit(bits, nr_bits, bit + 1);
3006 if (bit >= nr_bits) {
3007 kit->bit = bit;
3008 return NULL;
3009 }
3010
3011 kit->bit = bit;
3012 return &kit->bit;
3013 }
3014
3015 /**
3016 * bpf_iter_bits_destroy() - Destroy a bpf_iter_bits
3017 * @it: The bpf_iter_bits to be destroyed
3018 *
3019 * Destroy the resource associated with the bpf_iter_bits.
3020 */
bpf_iter_bits_destroy(struct bpf_iter_bits * it)3021 __bpf_kfunc void bpf_iter_bits_destroy(struct bpf_iter_bits *it)
3022 {
3023 struct bpf_iter_bits_kern *kit = (void *)it;
3024
3025 if (kit->nr_bits <= 64)
3026 return;
3027 bpf_mem_free(&bpf_global_ma, kit->bits);
3028 }
3029
3030 /**
3031 * bpf_copy_from_user_str() - Copy a string from an unsafe user address
3032 * @dst: Destination address, in kernel space. This buffer must be
3033 * at least @dst__sz bytes long.
3034 * @dst__sz: Maximum number of bytes to copy, includes the trailing NUL.
3035 * @unsafe_ptr__ign: Source address, in user space.
3036 * @flags: The only supported flag is BPF_F_PAD_ZEROS
3037 *
3038 * Copies a NUL-terminated string from userspace to BPF space. If user string is
3039 * too long this will still ensure zero termination in the dst buffer unless
3040 * buffer size is 0.
3041 *
3042 * If BPF_F_PAD_ZEROS flag is set, memset the tail of @dst to 0 on success and
3043 * memset all of @dst on failure.
3044 */
bpf_copy_from_user_str(void * dst,u32 dst__sz,const void __user * unsafe_ptr__ign,u64 flags)3045 __bpf_kfunc int bpf_copy_from_user_str(void *dst, u32 dst__sz, const void __user *unsafe_ptr__ign, u64 flags)
3046 {
3047 int ret;
3048
3049 if (unlikely(flags & ~BPF_F_PAD_ZEROS))
3050 return -EINVAL;
3051
3052 if (unlikely(!dst__sz))
3053 return 0;
3054
3055 ret = strncpy_from_user(dst, unsafe_ptr__ign, dst__sz - 1);
3056 if (ret < 0) {
3057 if (flags & BPF_F_PAD_ZEROS)
3058 memset((char *)dst, 0, dst__sz);
3059
3060 return ret;
3061 }
3062
3063 if (flags & BPF_F_PAD_ZEROS)
3064 memset((char *)dst + ret, 0, dst__sz - ret);
3065 else
3066 ((char *)dst)[ret] = '\0';
3067
3068 return ret + 1;
3069 }
3070
3071 __bpf_kfunc_end_defs();
3072
3073 BTF_KFUNCS_START(generic_btf_ids)
3074 #ifdef CONFIG_CRASH_DUMP
3075 BTF_ID_FLAGS(func, crash_kexec, KF_DESTRUCTIVE)
3076 #endif
3077 BTF_ID_FLAGS(func, bpf_obj_new_impl, KF_ACQUIRE | KF_RET_NULL)
3078 BTF_ID_FLAGS(func, bpf_percpu_obj_new_impl, KF_ACQUIRE | KF_RET_NULL)
3079 BTF_ID_FLAGS(func, bpf_obj_drop_impl, KF_RELEASE)
3080 BTF_ID_FLAGS(func, bpf_percpu_obj_drop_impl, KF_RELEASE)
3081 BTF_ID_FLAGS(func, bpf_refcount_acquire_impl, KF_ACQUIRE | KF_RET_NULL | KF_RCU)
3082 BTF_ID_FLAGS(func, bpf_list_push_front_impl)
3083 BTF_ID_FLAGS(func, bpf_list_push_back_impl)
3084 BTF_ID_FLAGS(func, bpf_list_pop_front, KF_ACQUIRE | KF_RET_NULL)
3085 BTF_ID_FLAGS(func, bpf_list_pop_back, KF_ACQUIRE | KF_RET_NULL)
3086 BTF_ID_FLAGS(func, bpf_task_acquire, KF_ACQUIRE | KF_RCU | KF_RET_NULL)
3087 BTF_ID_FLAGS(func, bpf_task_release, KF_RELEASE)
3088 BTF_ID_FLAGS(func, bpf_rbtree_remove, KF_ACQUIRE | KF_RET_NULL)
3089 BTF_ID_FLAGS(func, bpf_rbtree_add_impl)
3090 BTF_ID_FLAGS(func, bpf_rbtree_first, KF_RET_NULL)
3091
3092 #ifdef CONFIG_CGROUPS
3093 BTF_ID_FLAGS(func, bpf_cgroup_acquire, KF_ACQUIRE | KF_RCU | KF_RET_NULL)
3094 BTF_ID_FLAGS(func, bpf_cgroup_release, KF_RELEASE)
3095 BTF_ID_FLAGS(func, bpf_cgroup_ancestor, KF_ACQUIRE | KF_RCU | KF_RET_NULL)
3096 BTF_ID_FLAGS(func, bpf_cgroup_from_id, KF_ACQUIRE | KF_RET_NULL)
3097 BTF_ID_FLAGS(func, bpf_task_under_cgroup, KF_RCU)
3098 BTF_ID_FLAGS(func, bpf_task_get_cgroup1, KF_ACQUIRE | KF_RCU | KF_RET_NULL)
3099 #endif
3100 BTF_ID_FLAGS(func, bpf_task_from_pid, KF_ACQUIRE | KF_RET_NULL)
3101 BTF_ID_FLAGS(func, bpf_throw)
3102 BTF_KFUNCS_END(generic_btf_ids)
3103
3104 static const struct btf_kfunc_id_set generic_kfunc_set = {
3105 .owner = THIS_MODULE,
3106 .set = &generic_btf_ids,
3107 };
3108
3109
3110 BTF_ID_LIST(generic_dtor_ids)
3111 BTF_ID(struct, task_struct)
3112 BTF_ID(func, bpf_task_release_dtor)
3113 #ifdef CONFIG_CGROUPS
3114 BTF_ID(struct, cgroup)
3115 BTF_ID(func, bpf_cgroup_release_dtor)
3116 #endif
3117
3118 BTF_KFUNCS_START(common_btf_ids)
3119 BTF_ID_FLAGS(func, bpf_cast_to_kern_ctx)
3120 BTF_ID_FLAGS(func, bpf_rdonly_cast)
3121 BTF_ID_FLAGS(func, bpf_rcu_read_lock)
3122 BTF_ID_FLAGS(func, bpf_rcu_read_unlock)
3123 BTF_ID_FLAGS(func, bpf_dynptr_slice, KF_RET_NULL)
3124 BTF_ID_FLAGS(func, bpf_dynptr_slice_rdwr, KF_RET_NULL)
3125 BTF_ID_FLAGS(func, bpf_iter_num_new, KF_ITER_NEW)
3126 BTF_ID_FLAGS(func, bpf_iter_num_next, KF_ITER_NEXT | KF_RET_NULL)
3127 BTF_ID_FLAGS(func, bpf_iter_num_destroy, KF_ITER_DESTROY)
3128 BTF_ID_FLAGS(func, bpf_iter_task_vma_new, KF_ITER_NEW | KF_RCU)
3129 BTF_ID_FLAGS(func, bpf_iter_task_vma_next, KF_ITER_NEXT | KF_RET_NULL)
3130 BTF_ID_FLAGS(func, bpf_iter_task_vma_destroy, KF_ITER_DESTROY)
3131 #ifdef CONFIG_CGROUPS
3132 BTF_ID_FLAGS(func, bpf_iter_css_task_new, KF_ITER_NEW | KF_TRUSTED_ARGS)
3133 BTF_ID_FLAGS(func, bpf_iter_css_task_next, KF_ITER_NEXT | KF_RET_NULL)
3134 BTF_ID_FLAGS(func, bpf_iter_css_task_destroy, KF_ITER_DESTROY)
3135 BTF_ID_FLAGS(func, bpf_iter_css_new, KF_ITER_NEW | KF_TRUSTED_ARGS | KF_RCU_PROTECTED)
3136 BTF_ID_FLAGS(func, bpf_iter_css_next, KF_ITER_NEXT | KF_RET_NULL)
3137 BTF_ID_FLAGS(func, bpf_iter_css_destroy, KF_ITER_DESTROY)
3138 #endif
3139 BTF_ID_FLAGS(func, bpf_iter_task_new, KF_ITER_NEW | KF_TRUSTED_ARGS | KF_RCU_PROTECTED)
3140 BTF_ID_FLAGS(func, bpf_iter_task_next, KF_ITER_NEXT | KF_RET_NULL)
3141 BTF_ID_FLAGS(func, bpf_iter_task_destroy, KF_ITER_DESTROY)
3142 BTF_ID_FLAGS(func, bpf_dynptr_adjust)
3143 BTF_ID_FLAGS(func, bpf_dynptr_is_null)
3144 BTF_ID_FLAGS(func, bpf_dynptr_is_rdonly)
3145 BTF_ID_FLAGS(func, bpf_dynptr_size)
3146 BTF_ID_FLAGS(func, bpf_dynptr_clone)
3147 BTF_ID_FLAGS(func, bpf_modify_return_test_tp)
3148 BTF_ID_FLAGS(func, bpf_wq_init)
3149 BTF_ID_FLAGS(func, bpf_wq_set_callback_impl)
3150 BTF_ID_FLAGS(func, bpf_wq_start)
3151 BTF_ID_FLAGS(func, bpf_preempt_disable)
3152 BTF_ID_FLAGS(func, bpf_preempt_enable)
3153 BTF_ID_FLAGS(func, bpf_iter_bits_new, KF_ITER_NEW)
3154 BTF_ID_FLAGS(func, bpf_iter_bits_next, KF_ITER_NEXT | KF_RET_NULL)
3155 BTF_ID_FLAGS(func, bpf_iter_bits_destroy, KF_ITER_DESTROY)
3156 BTF_ID_FLAGS(func, bpf_copy_from_user_str, KF_SLEEPABLE)
3157 #ifdef CONFIG_DMA_SHARED_BUFFER
3158 BTF_ID_FLAGS(func, bpf_iter_dmabuf_new, KF_ITER_NEW | KF_SLEEPABLE)
3159 BTF_ID_FLAGS(func, bpf_iter_dmabuf_next, KF_ITER_NEXT | KF_RET_NULL | KF_SLEEPABLE)
3160 BTF_ID_FLAGS(func, bpf_iter_dmabuf_destroy, KF_ITER_DESTROY | KF_SLEEPABLE)
3161 #endif
3162 BTF_KFUNCS_END(common_btf_ids)
3163
3164 static const struct btf_kfunc_id_set common_kfunc_set = {
3165 .owner = THIS_MODULE,
3166 .set = &common_btf_ids,
3167 };
3168
kfunc_init(void)3169 static int __init kfunc_init(void)
3170 {
3171 int ret;
3172 const struct btf_id_dtor_kfunc generic_dtors[] = {
3173 {
3174 .btf_id = generic_dtor_ids[0],
3175 .kfunc_btf_id = generic_dtor_ids[1]
3176 },
3177 #ifdef CONFIG_CGROUPS
3178 {
3179 .btf_id = generic_dtor_ids[2],
3180 .kfunc_btf_id = generic_dtor_ids[3]
3181 },
3182 #endif
3183 };
3184
3185 ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING, &generic_kfunc_set);
3186 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SCHED_CLS, &generic_kfunc_set);
3187 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_XDP, &generic_kfunc_set);
3188 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, &generic_kfunc_set);
3189 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SYSCALL, &generic_kfunc_set);
3190 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_CGROUP_SKB, &generic_kfunc_set);
3191 ret = ret ?: register_btf_id_dtor_kfuncs(generic_dtors,
3192 ARRAY_SIZE(generic_dtors),
3193 THIS_MODULE);
3194 return ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_UNSPEC, &common_kfunc_set);
3195 }
3196
3197 late_initcall(kfunc_init);
3198
3199 /* Get a pointer to dynptr data up to len bytes for read only access. If
3200 * the dynptr doesn't have continuous data up to len bytes, return NULL.
3201 */
__bpf_dynptr_data(const struct bpf_dynptr_kern * ptr,u32 len)3202 const void *__bpf_dynptr_data(const struct bpf_dynptr_kern *ptr, u32 len)
3203 {
3204 const struct bpf_dynptr *p = (struct bpf_dynptr *)ptr;
3205
3206 return bpf_dynptr_slice(p, 0, NULL, len);
3207 }
3208
3209 /* Get a pointer to dynptr data up to len bytes for read write access. If
3210 * the dynptr doesn't have continuous data up to len bytes, or the dynptr
3211 * is read only, return NULL.
3212 */
__bpf_dynptr_data_rw(const struct bpf_dynptr_kern * ptr,u32 len)3213 void *__bpf_dynptr_data_rw(const struct bpf_dynptr_kern *ptr, u32 len)
3214 {
3215 if (__bpf_dynptr_is_rdonly(ptr))
3216 return NULL;
3217 return (void *)__bpf_dynptr_data(ptr, len);
3218 }
3219