1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_SCHED_H
3 #define _LINUX_SCHED_H
4 
5 /*
6  * Define 'struct task_struct' and provide the main scheduler
7  * APIs (schedule(), wakeup variants, etc.)
8  */
9 
10 #include <uapi/linux/sched.h>
11 
12 #include <asm/current.h>
13 #include <asm/processor.h>
14 #include <linux/thread_info.h>
15 #include <linux/preempt.h>
16 #include <linux/cpumask_types.h>
17 
18 #include <linux/cache.h>
19 #include <linux/irqflags_types.h>
20 #include <linux/smp_types.h>
21 #include <linux/pid_types.h>
22 #include <linux/sem_types.h>
23 #include <linux/shm.h>
24 #include <linux/kmsan_types.h>
25 #include <linux/mutex_types.h>
26 #include <linux/plist_types.h>
27 #include <linux/hrtimer_types.h>
28 #include <linux/timer_types.h>
29 #include <linux/seccomp_types.h>
30 #include <linux/nodemask_types.h>
31 #include <linux/refcount_types.h>
32 #include <linux/resource.h>
33 #include <linux/latencytop.h>
34 #include <linux/sched/prio.h>
35 #include <linux/sched/types.h>
36 #include <linux/signal_types.h>
37 #include <linux/spinlock.h>
38 #include <linux/syscall_user_dispatch_types.h>
39 #include <linux/mm_types_task.h>
40 #include <linux/netdevice_xmit.h>
41 #include <linux/task_io_accounting.h>
42 #include <linux/posix-timers_types.h>
43 #include <linux/restart_block.h>
44 #include <uapi/linux/rseq.h>
45 #include <linux/seqlock_types.h>
46 #include <linux/kcsan.h>
47 #include <linux/rv.h>
48 #include <linux/livepatch_sched.h>
49 #include <linux/uidgid_types.h>
50 #include <linux/android_vendor.h>
51 #include <linux/android_kabi.h>
52 #include <asm/kmap_size.h>
53 
54 /* task_struct member predeclarations (sorted alphabetically): */
55 struct audit_context;
56 struct bio_list;
57 struct blk_plug;
58 struct bpf_local_storage;
59 struct bpf_run_ctx;
60 struct bpf_net_context;
61 struct capture_control;
62 struct cfs_rq;
63 struct fs_struct;
64 struct futex_pi_state;
65 struct io_context;
66 struct io_uring_task;
67 struct mempolicy;
68 struct nameidata;
69 struct nsproxy;
70 struct perf_event_context;
71 struct pid_namespace;
72 struct pipe_inode_info;
73 struct rcu_node;
74 struct reclaim_state;
75 struct robust_list_head;
76 struct root_domain;
77 struct rq;
78 struct sched_attr;
79 struct sched_dl_entity;
80 struct seq_file;
81 struct sighand_struct;
82 struct signal_struct;
83 struct task_delay_info;
84 struct task_group;
85 struct task_struct;
86 struct user_event_mm;
87 
88 #include <linux/sched/ext.h>
89 
90 /*
91  * Task state bitmask. NOTE! These bits are also
92  * encoded in fs/proc/array.c: get_task_state().
93  *
94  * We have two separate sets of flags: task->__state
95  * is about runnability, while task->exit_state are
96  * about the task exiting. Confusing, but this way
97  * modifying one set can't modify the other one by
98  * mistake.
99  */
100 
101 /* Used in tsk->__state: */
102 #define TASK_RUNNING			0x00000000
103 #define TASK_INTERRUPTIBLE		0x00000001
104 #define TASK_UNINTERRUPTIBLE		0x00000002
105 #define __TASK_STOPPED			0x00000004
106 #define __TASK_TRACED			0x00000008
107 /* Used in tsk->exit_state: */
108 #define EXIT_DEAD			0x00000010
109 #define EXIT_ZOMBIE			0x00000020
110 #define EXIT_TRACE			(EXIT_ZOMBIE | EXIT_DEAD)
111 /* Used in tsk->__state again: */
112 #define TASK_PARKED			0x00000040
113 #define TASK_DEAD			0x00000080
114 #define TASK_WAKEKILL			0x00000100
115 #define TASK_WAKING			0x00000200
116 #define TASK_NOLOAD			0x00000400
117 #define TASK_NEW			0x00000800
118 #define TASK_RTLOCK_WAIT		0x00001000
119 #define TASK_FREEZABLE			0x00002000
120 #define __TASK_FREEZABLE_UNSAFE	       (0x00004000 * IS_ENABLED(CONFIG_LOCKDEP))
121 #define TASK_FROZEN			0x00008000
122 #define TASK_STATE_MAX			0x00010000
123 
124 #define TASK_ANY			(TASK_STATE_MAX-1)
125 
126 /*
127  * DO NOT ADD ANY NEW USERS !
128  */
129 #define TASK_FREEZABLE_UNSAFE		(TASK_FREEZABLE | __TASK_FREEZABLE_UNSAFE)
130 
131 /* Convenience macros for the sake of set_current_state: */
132 #define TASK_KILLABLE			(TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
133 #define TASK_STOPPED			(TASK_WAKEKILL | __TASK_STOPPED)
134 #define TASK_TRACED			__TASK_TRACED
135 
136 #define TASK_IDLE			(TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
137 
138 /* Convenience macros for the sake of wake_up(): */
139 #define TASK_NORMAL			(TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
140 
141 /* get_task_state(): */
142 #define TASK_REPORT			(TASK_RUNNING | TASK_INTERRUPTIBLE | \
143 					 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
144 					 __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \
145 					 TASK_PARKED)
146 
147 #define task_is_running(task)		(READ_ONCE((task)->__state) == TASK_RUNNING)
148 
149 #define task_is_traced(task)		((READ_ONCE(task->jobctl) & JOBCTL_TRACED) != 0)
150 #define task_is_stopped(task)		((READ_ONCE(task->jobctl) & JOBCTL_STOPPED) != 0)
151 #define task_is_stopped_or_traced(task)	((READ_ONCE(task->jobctl) & (JOBCTL_STOPPED | JOBCTL_TRACED)) != 0)
152 
153 /*
154  * Special states are those that do not use the normal wait-loop pattern. See
155  * the comment with set_special_state().
156  */
157 #define is_special_task_state(state)					\
158 	((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED |	\
159 		    TASK_DEAD | TASK_FROZEN))
160 
161 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
162 # define debug_normal_state_change(state_value)				\
163 	do {								\
164 		WARN_ON_ONCE(is_special_task_state(state_value));	\
165 		current->task_state_change = _THIS_IP_;			\
166 	} while (0)
167 
168 # define debug_special_state_change(state_value)			\
169 	do {								\
170 		WARN_ON_ONCE(!is_special_task_state(state_value));	\
171 		current->task_state_change = _THIS_IP_;			\
172 	} while (0)
173 
174 # define debug_rtlock_wait_set_state()					\
175 	do {								 \
176 		current->saved_state_change = current->task_state_change;\
177 		current->task_state_change = _THIS_IP_;			 \
178 	} while (0)
179 
180 # define debug_rtlock_wait_restore_state()				\
181 	do {								 \
182 		current->task_state_change = current->saved_state_change;\
183 	} while (0)
184 
185 #else
186 # define debug_normal_state_change(cond)	do { } while (0)
187 # define debug_special_state_change(cond)	do { } while (0)
188 # define debug_rtlock_wait_set_state()		do { } while (0)
189 # define debug_rtlock_wait_restore_state()	do { } while (0)
190 #endif
191 
192 /*
193  * set_current_state() includes a barrier so that the write of current->__state
194  * is correctly serialised wrt the caller's subsequent test of whether to
195  * actually sleep:
196  *
197  *   for (;;) {
198  *	set_current_state(TASK_UNINTERRUPTIBLE);
199  *	if (CONDITION)
200  *	   break;
201  *
202  *	schedule();
203  *   }
204  *   __set_current_state(TASK_RUNNING);
205  *
206  * If the caller does not need such serialisation (because, for instance, the
207  * CONDITION test and condition change and wakeup are under the same lock) then
208  * use __set_current_state().
209  *
210  * The above is typically ordered against the wakeup, which does:
211  *
212  *   CONDITION = 1;
213  *   wake_up_state(p, TASK_UNINTERRUPTIBLE);
214  *
215  * where wake_up_state()/try_to_wake_up() executes a full memory barrier before
216  * accessing p->__state.
217  *
218  * Wakeup will do: if (@state & p->__state) p->__state = TASK_RUNNING, that is,
219  * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
220  * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
221  *
222  * However, with slightly different timing the wakeup TASK_RUNNING store can
223  * also collide with the TASK_UNINTERRUPTIBLE store. Losing that store is not
224  * a problem either because that will result in one extra go around the loop
225  * and our @cond test will save the day.
226  *
227  * Also see the comments of try_to_wake_up().
228  */
229 #define __set_current_state(state_value)				\
230 	do {								\
231 		debug_normal_state_change((state_value));		\
232 		WRITE_ONCE(current->__state, (state_value));		\
233 	} while (0)
234 
235 #define set_current_state(state_value)					\
236 	do {								\
237 		debug_normal_state_change((state_value));		\
238 		smp_store_mb(current->__state, (state_value));		\
239 	} while (0)
240 
241 /*
242  * set_special_state() should be used for those states when the blocking task
243  * can not use the regular condition based wait-loop. In that case we must
244  * serialize against wakeups such that any possible in-flight TASK_RUNNING
245  * stores will not collide with our state change.
246  */
247 #define set_special_state(state_value)					\
248 	do {								\
249 		unsigned long flags; /* may shadow */			\
250 									\
251 		raw_spin_lock_irqsave(¤t->pi_lock, flags);	\
252 		debug_special_state_change((state_value));		\
253 		WRITE_ONCE(current->__state, (state_value));		\
254 		raw_spin_unlock_irqrestore(¤t->pi_lock, flags);	\
255 	} while (0)
256 
257 /*
258  * PREEMPT_RT specific variants for "sleeping" spin/rwlocks
259  *
260  * RT's spin/rwlock substitutions are state preserving. The state of the
261  * task when blocking on the lock is saved in task_struct::saved_state and
262  * restored after the lock has been acquired.  These operations are
263  * serialized by task_struct::pi_lock against try_to_wake_up(). Any non RT
264  * lock related wakeups while the task is blocked on the lock are
265  * redirected to operate on task_struct::saved_state to ensure that these
266  * are not dropped. On restore task_struct::saved_state is set to
267  * TASK_RUNNING so any wakeup attempt redirected to saved_state will fail.
268  *
269  * The lock operation looks like this:
270  *
271  *	current_save_and_set_rtlock_wait_state();
272  *	for (;;) {
273  *		if (try_lock())
274  *			break;
275  *		raw_spin_unlock_irq(&lock->wait_lock);
276  *		schedule_rtlock();
277  *		raw_spin_lock_irq(&lock->wait_lock);
278  *		set_current_state(TASK_RTLOCK_WAIT);
279  *	}
280  *	current_restore_rtlock_saved_state();
281  */
282 #define current_save_and_set_rtlock_wait_state()			\
283 	do {								\
284 		lockdep_assert_irqs_disabled();				\
285 		raw_spin_lock(¤t->pi_lock);			\
286 		current->saved_state = current->__state;		\
287 		debug_rtlock_wait_set_state();				\
288 		WRITE_ONCE(current->__state, TASK_RTLOCK_WAIT);		\
289 		raw_spin_unlock(¤t->pi_lock);			\
290 	} while (0);
291 
292 #define current_restore_rtlock_saved_state()				\
293 	do {								\
294 		lockdep_assert_irqs_disabled();				\
295 		raw_spin_lock(¤t->pi_lock);			\
296 		debug_rtlock_wait_restore_state();			\
297 		WRITE_ONCE(current->__state, current->saved_state);	\
298 		current->saved_state = TASK_RUNNING;			\
299 		raw_spin_unlock(¤t->pi_lock);			\
300 	} while (0);
301 
302 #define get_current_state()	READ_ONCE(current->__state)
303 
304 /*
305  * Define the task command name length as enum, then it can be visible to
306  * BPF programs.
307  */
308 enum {
309 	TASK_COMM_LEN = 16,
310 };
311 
312 extern void sched_tick(void);
313 
314 #define	MAX_SCHEDULE_TIMEOUT		LONG_MAX
315 
316 extern long schedule_timeout(long timeout);
317 extern long schedule_timeout_interruptible(long timeout);
318 extern long schedule_timeout_killable(long timeout);
319 extern long schedule_timeout_uninterruptible(long timeout);
320 extern long schedule_timeout_idle(long timeout);
321 asmlinkage void schedule(void);
322 extern void schedule_preempt_disabled(void);
323 asmlinkage void preempt_schedule_irq(void);
324 #ifdef CONFIG_PREEMPT_RT
325  extern void schedule_rtlock(void);
326 #endif
327 
328 extern int __must_check io_schedule_prepare(void);
329 extern void io_schedule_finish(int token);
330 extern long io_schedule_timeout(long timeout);
331 extern void io_schedule(void);
332 extern int select_fallback_rq(int cpu, struct task_struct *p);
333 extern struct task_struct *pick_task(struct rq *rq);
334 
335 /**
336  * struct prev_cputime - snapshot of system and user cputime
337  * @utime: time spent in user mode
338  * @stime: time spent in system mode
339  * @lock: protects the above two fields
340  *
341  * Stores previous user/system time values such that we can guarantee
342  * monotonicity.
343  */
344 struct prev_cputime {
345 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
346 	u64				utime;
347 	u64				stime;
348 	raw_spinlock_t			lock;
349 #endif
350 };
351 
352 enum vtime_state {
353 	/* Task is sleeping or running in a CPU with VTIME inactive: */
354 	VTIME_INACTIVE = 0,
355 	/* Task is idle */
356 	VTIME_IDLE,
357 	/* Task runs in kernelspace in a CPU with VTIME active: */
358 	VTIME_SYS,
359 	/* Task runs in userspace in a CPU with VTIME active: */
360 	VTIME_USER,
361 	/* Task runs as guests in a CPU with VTIME active: */
362 	VTIME_GUEST,
363 };
364 
365 struct vtime {
366 	seqcount_t		seqcount;
367 	unsigned long long	starttime;
368 	enum vtime_state	state;
369 	unsigned int		cpu;
370 	u64			utime;
371 	u64			stime;
372 	u64			gtime;
373 };
374 
375 /*
376  * Utilization clamp constraints.
377  * @UCLAMP_MIN:	Minimum utilization
378  * @UCLAMP_MAX:	Maximum utilization
379  * @UCLAMP_CNT:	Utilization clamp constraints count
380  */
381 enum uclamp_id {
382 	UCLAMP_MIN = 0,
383 	UCLAMP_MAX,
384 	UCLAMP_CNT
385 };
386 
387 #ifdef CONFIG_SMP
388 extern struct root_domain def_root_domain;
389 extern struct mutex sched_domains_mutex;
390 #endif
391 
392 struct sched_param {
393 	int sched_priority;
394 };
395 
396 struct sched_info {
397 #ifdef CONFIG_SCHED_INFO
398 	/* Cumulative counters: */
399 
400 	/* # of times we have run on this CPU: */
401 	unsigned long			pcount;
402 
403 	/* Time spent waiting on a runqueue: */
404 	unsigned long long		run_delay;
405 
406 	/* Timestamps: */
407 
408 	/* When did we last run on a CPU? */
409 	unsigned long long		last_arrival;
410 
411 	/* When were we last queued to run? */
412 	unsigned long long		last_queued;
413 
414 #endif /* CONFIG_SCHED_INFO */
415 };
416 
417 /*
418  * Integer metrics need fixed point arithmetic, e.g., sched/fair
419  * has a few: load, load_avg, util_avg, freq, and capacity.
420  *
421  * We define a basic fixed point arithmetic range, and then formalize
422  * all these metrics based on that basic range.
423  */
424 # define SCHED_FIXEDPOINT_SHIFT		10
425 # define SCHED_FIXEDPOINT_SCALE		(1L << SCHED_FIXEDPOINT_SHIFT)
426 
427 /* Increase resolution of cpu_capacity calculations */
428 # define SCHED_CAPACITY_SHIFT		SCHED_FIXEDPOINT_SHIFT
429 # define SCHED_CAPACITY_SCALE		(1L << SCHED_CAPACITY_SHIFT)
430 
431 struct load_weight {
432 	unsigned long			weight;
433 	u32				inv_weight;
434 };
435 
436 /*
437  * The load/runnable/util_avg accumulates an infinite geometric series
438  * (see __update_load_avg_cfs_rq() in kernel/sched/pelt.c).
439  *
440  * [load_avg definition]
441  *
442  *   load_avg = runnable% * scale_load_down(load)
443  *
444  * [runnable_avg definition]
445  *
446  *   runnable_avg = runnable% * SCHED_CAPACITY_SCALE
447  *
448  * [util_avg definition]
449  *
450  *   util_avg = running% * SCHED_CAPACITY_SCALE
451  *
452  * where runnable% is the time ratio that a sched_entity is runnable and
453  * running% the time ratio that a sched_entity is running.
454  *
455  * For cfs_rq, they are the aggregated values of all runnable and blocked
456  * sched_entities.
457  *
458  * The load/runnable/util_avg doesn't directly factor frequency scaling and CPU
459  * capacity scaling. The scaling is done through the rq_clock_pelt that is used
460  * for computing those signals (see update_rq_clock_pelt())
461  *
462  * N.B., the above ratios (runnable% and running%) themselves are in the
463  * range of [0, 1]. To do fixed point arithmetics, we therefore scale them
464  * to as large a range as necessary. This is for example reflected by
465  * util_avg's SCHED_CAPACITY_SCALE.
466  *
467  * [Overflow issue]
468  *
469  * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
470  * with the highest load (=88761), always runnable on a single cfs_rq,
471  * and should not overflow as the number already hits PID_MAX_LIMIT.
472  *
473  * For all other cases (including 32-bit kernels), struct load_weight's
474  * weight will overflow first before we do, because:
475  *
476  *    Max(load_avg) <= Max(load.weight)
477  *
478  * Then it is the load_weight's responsibility to consider overflow
479  * issues.
480  */
481 struct sched_avg {
482 	u64				last_update_time;
483 	u64				load_sum;
484 	u64				runnable_sum;
485 	u32				util_sum;
486 	u32				period_contrib;
487 	unsigned long			load_avg;
488 	unsigned long			runnable_avg;
489 	unsigned long			util_avg;
490 	unsigned int			util_est;
491 } ____cacheline_aligned;
492 
493 /*
494  * The UTIL_AVG_UNCHANGED flag is used to synchronize util_est with util_avg
495  * updates. When a task is dequeued, its util_est should not be updated if its
496  * util_avg has not been updated in the meantime.
497  * This information is mapped into the MSB bit of util_est at dequeue time.
498  * Since max value of util_est for a task is 1024 (PELT util_avg for a task)
499  * it is safe to use MSB.
500  */
501 #define UTIL_EST_WEIGHT_SHIFT		2
502 #define UTIL_AVG_UNCHANGED		0x80000000
503 
504 struct sched_statistics {
505 #ifdef CONFIG_SCHEDSTATS
506 	u64				wait_start;
507 	u64				wait_max;
508 	u64				wait_count;
509 	u64				wait_sum;
510 	u64				iowait_count;
511 	u64				iowait_sum;
512 
513 	u64				sleep_start;
514 	u64				sleep_max;
515 	s64				sum_sleep_runtime;
516 
517 	u64				block_start;
518 	u64				block_max;
519 	s64				sum_block_runtime;
520 
521 	s64				exec_max;
522 	u64				slice_max;
523 
524 	u64				nr_migrations_cold;
525 	u64				nr_failed_migrations_affine;
526 	u64				nr_failed_migrations_running;
527 	u64				nr_failed_migrations_hot;
528 	u64				nr_forced_migrations;
529 
530 	u64				nr_wakeups;
531 	u64				nr_wakeups_sync;
532 	u64				nr_wakeups_migrate;
533 	u64				nr_wakeups_local;
534 	u64				nr_wakeups_remote;
535 	u64				nr_wakeups_affine;
536 	u64				nr_wakeups_affine_attempts;
537 	u64				nr_wakeups_passive;
538 	u64				nr_wakeups_idle;
539 
540 #ifdef CONFIG_SCHED_CORE
541 	u64				core_forceidle_sum;
542 #endif
543 #endif /* CONFIG_SCHEDSTATS */
544 } ____cacheline_aligned;
545 
546 struct sched_entity {
547 	/* For load-balancing: */
548 	struct load_weight		load;
549 	struct rb_node			run_node;
550 	u64				deadline;
551 	u64				min_vruntime;
552 	u64				min_slice;
553 
554 	struct list_head		group_node;
555 	unsigned char			on_rq;
556 	unsigned char			sched_delayed;
557 	unsigned char			rel_deadline;
558 	unsigned char			custom_slice;
559 					/* hole */
560 
561 	u64				exec_start;
562 	u64				sum_exec_runtime;
563 	u64				prev_sum_exec_runtime;
564 	u64				vruntime;
565 	s64				vlag;
566 	u64				slice;
567 
568 	u64				nr_migrations;
569 
570 #ifdef CONFIG_FAIR_GROUP_SCHED
571 	int				depth;
572 	struct sched_entity		*parent;
573 	/* rq on which this entity is (to be) queued: */
574 	struct cfs_rq			*cfs_rq;
575 	/* rq "owned" by this entity/group: */
576 	struct cfs_rq			*my_q;
577 	/* cached value of my_q->h_nr_running */
578 	unsigned long			runnable_weight;
579 #endif
580 
581 #ifdef CONFIG_SMP
582 	/*
583 	 * Per entity load average tracking.
584 	 *
585 	 * Put into separate cache line so it does not
586 	 * collide with read-mostly values above.
587 	 */
588 	struct sched_avg		avg;
589 #endif
590 
591 	ANDROID_KABI_RESERVE(1);
592 	ANDROID_KABI_RESERVE(2);
593 	ANDROID_KABI_RESERVE(3);
594 	ANDROID_KABI_RESERVE(4);
595 };
596 
597 struct sched_rt_entity {
598 	struct list_head		run_list;
599 	unsigned long			timeout;
600 	unsigned long			watchdog_stamp;
601 	unsigned int			time_slice;
602 	unsigned short			on_rq;
603 	unsigned short			on_list;
604 
605 	struct sched_rt_entity		*back;
606 #ifdef CONFIG_RT_GROUP_SCHED
607 	struct sched_rt_entity		*parent;
608 	/* rq on which this entity is (to be) queued: */
609 	struct rt_rq			*rt_rq;
610 	/* rq "owned" by this entity/group: */
611 	struct rt_rq			*my_q;
612 #endif
613 
614 	ANDROID_KABI_RESERVE(1);
615 	ANDROID_KABI_RESERVE(2);
616 	ANDROID_KABI_RESERVE(3);
617 	ANDROID_KABI_RESERVE(4);
618 } __randomize_layout;
619 
620 typedef bool (*dl_server_has_tasks_f)(struct sched_dl_entity *);
621 typedef struct task_struct *(*dl_server_pick_f)(struct sched_dl_entity *);
622 
623 struct sched_dl_entity {
624 	struct rb_node			rb_node;
625 
626 	/*
627 	 * Original scheduling parameters. Copied here from sched_attr
628 	 * during sched_setattr(), they will remain the same until
629 	 * the next sched_setattr().
630 	 */
631 	u64				dl_runtime;	/* Maximum runtime for each instance	*/
632 	u64				dl_deadline;	/* Relative deadline of each instance	*/
633 	u64				dl_period;	/* Separation of two instances (period) */
634 	u64				dl_bw;		/* dl_runtime / dl_period		*/
635 	u64				dl_density;	/* dl_runtime / dl_deadline		*/
636 
637 	/*
638 	 * Actual scheduling parameters. Initialized with the values above,
639 	 * they are continuously updated during task execution. Note that
640 	 * the remaining runtime could be < 0 in case we are in overrun.
641 	 */
642 	s64				runtime;	/* Remaining runtime for this instance	*/
643 	u64				deadline;	/* Absolute deadline for this instance	*/
644 	unsigned int			flags;		/* Specifying the scheduler behaviour	*/
645 
646 	/*
647 	 * Some bool flags:
648 	 *
649 	 * @dl_throttled tells if we exhausted the runtime. If so, the
650 	 * task has to wait for a replenishment to be performed at the
651 	 * next firing of dl_timer.
652 	 *
653 	 * @dl_yielded tells if task gave up the CPU before consuming
654 	 * all its available runtime during the last job.
655 	 *
656 	 * @dl_non_contending tells if the task is inactive while still
657 	 * contributing to the active utilization. In other words, it
658 	 * indicates if the inactive timer has been armed and its handler
659 	 * has not been executed yet. This flag is useful to avoid race
660 	 * conditions between the inactive timer handler and the wakeup
661 	 * code.
662 	 *
663 	 * @dl_overrun tells if the task asked to be informed about runtime
664 	 * overruns.
665 	 *
666 	 * @dl_server tells if this is a server entity.
667 	 *
668 	 * @dl_defer tells if this is a deferred or regular server. For
669 	 * now only defer server exists.
670 	 *
671 	 * @dl_defer_armed tells if the deferrable server is waiting
672 	 * for the replenishment timer to activate it.
673 	 *
674 	 * @dl_server_active tells if the dlserver is active(started).
675 	 * dlserver is started on first cfs enqueue on an idle runqueue
676 	 * and is stopped when a dequeue results in 0 cfs tasks on the
677 	 * runqueue. In other words, dlserver is active only when cpu's
678 	 * runqueue has atleast one cfs task.
679 	 *
680 	 * @dl_defer_running tells if the deferrable server is actually
681 	 * running, skipping the defer phase.
682 	 */
683 	unsigned int			dl_throttled      : 1;
684 	unsigned int			dl_yielded        : 1;
685 	unsigned int			dl_non_contending : 1;
686 	unsigned int			dl_overrun	  : 1;
687 	unsigned int			dl_server         : 1;
688 	unsigned int			dl_server_active  : 1;
689 	unsigned int			dl_defer	  : 1;
690 	unsigned int			dl_defer_armed	  : 1;
691 	unsigned int			dl_defer_running  : 1;
692 	unsigned int			dl_server_idle    : 1; //UNUSED but kept for KMI
693 
694 	/*
695 	 * Bandwidth enforcement timer. Each -deadline task has its
696 	 * own bandwidth to be enforced, thus we need one timer per task.
697 	 */
698 	struct hrtimer			dl_timer;
699 
700 	/*
701 	 * Inactive timer, responsible for decreasing the active utilization
702 	 * at the "0-lag time". When a -deadline task blocks, it contributes
703 	 * to GRUB's active utilization until the "0-lag time", hence a
704 	 * timer is needed to decrease the active utilization at the correct
705 	 * time.
706 	 */
707 	struct hrtimer			inactive_timer;
708 
709 	/*
710 	 * Bits for DL-server functionality. Also see the comment near
711 	 * dl_server_update().
712 	 *
713 	 * @rq the runqueue this server is for
714 	 *
715 	 * @server_has_tasks() returns true if @server_pick return a
716 	 * runnable task.
717 	 */
718 	struct rq			*rq;
719 	dl_server_has_tasks_f		server_has_tasks; //UNUSED, but preserved for KMI
720 	dl_server_pick_f		server_pick_task;
721 
722 #ifdef CONFIG_RT_MUTEXES
723 	/*
724 	 * Priority Inheritance. When a DEADLINE scheduling entity is boosted
725 	 * pi_se points to the donor, otherwise points to the dl_se it belongs
726 	 * to (the original one/itself).
727 	 */
728 	struct sched_dl_entity *pi_se;
729 #endif
730 };
731 
732 ANDROID_KABI_TYPE_STRING("s#sched_dl_entity", "structure_type sched_dl_entity "
733 	"{ member s#rb_node rb_node data_member_location(0) , member t#u64 "
734 	"dl_runtime data_member_location(24) , member t#u64 dl_deadline "
735 	"data_member_location(32) , member t#u64 dl_period data_member_location(40) "
736 	", member t#u64 dl_bw data_member_location(48) , member t#u64 dl_density "
737 	"data_member_location(56) , member t#s64 runtime data_member_location(64) , "
738 	"member t#u64 deadline data_member_location(72) , member base_type unsigned "
739 	"int byte_size(4) encoding(7) flags data_member_location(80) , member base_type "
740 	"unsigned int byte_size(4) encoding(7) dl_throttled bit_size(1) "
741 	"data_bit_offset(672) , member base_type unsigned int byte_size(4) encoding(7) "
742 	"dl_yielded bit_size(1) data_bit_offset(673) , member base_type unsigned int "
743 	"byte_size(4) encoding(7) dl_non_contending bit_size(1) data_bit_offset(674) , "
744 	"member base_type unsigned int byte_size(4) encoding(7) dl_overrun bit_size(1) "
745 	"data_bit_offset(675) , member base_type unsigned int byte_size(4) encoding(7) "
746 	"dl_server bit_size(1) data_bit_offset(676) , member base_type unsigned int "
747 	"byte_size(4) encoding(7) dl_server_active bit_size(1) data_bit_offset(677) , "
748 	"member base_type unsigned int byte_size(4) encoding(7) dl_defer bit_size(1) "
749 	"data_bit_offset(678) , member base_type unsigned int byte_size(4) encoding(7) "
750 	"dl_defer_armed bit_size(1) data_bit_offset(679) , member base_type unsigned "
751 	"int byte_size(4) encoding(7) dl_defer_running bit_size(1) "
752 	"data_bit_offset(680) , member s#hrtimer dl_timer data_member_location(88) , "
753 	"member s#hrtimer inactive_timer data_member_location(152) , member "
754 	"pointer_type { s#rq } rq data_member_location(216) , member "
755 	"t#dl_server_has_tasks_f server_has_tasks data_member_location(224) , member "
756 	"t#dl_server_pick_f server_pick_task data_member_location(232) , member "
757 	"pointer_type { s#sched_dl_entity } pi_se data_member_location(240) } "
758 	"byte_size(248)");
759 
760 #ifdef CONFIG_UCLAMP_TASK
761 /* Number of utilization clamp buckets (shorter alias) */
762 #define UCLAMP_BUCKETS CONFIG_UCLAMP_BUCKETS_COUNT
763 
764 /*
765  * Utilization clamp for a scheduling entity
766  * @value:		clamp value "assigned" to a se
767  * @bucket_id:		bucket index corresponding to the "assigned" value
768  * @active:		the se is currently refcounted in a rq's bucket
769  * @user_defined:	the requested clamp value comes from user-space
770  *
771  * The bucket_id is the index of the clamp bucket matching the clamp value
772  * which is pre-computed and stored to avoid expensive integer divisions from
773  * the fast path.
774  *
775  * The active bit is set whenever a task has got an "effective" value assigned,
776  * which can be different from the clamp value "requested" from user-space.
777  * This allows to know a task is refcounted in the rq's bucket corresponding
778  * to the "effective" bucket_id.
779  *
780  * The user_defined bit is set whenever a task has got a task-specific clamp
781  * value requested from userspace, i.e. the system defaults apply to this task
782  * just as a restriction. This allows to relax default clamps when a less
783  * restrictive task-specific value has been requested, thus allowing to
784  * implement a "nice" semantic. For example, a task running with a 20%
785  * default boost can still drop its own boosting to 0%.
786  */
787 struct uclamp_se {
788 	unsigned int value		: bits_per(SCHED_CAPACITY_SCALE);
789 	unsigned int bucket_id		: bits_per(UCLAMP_BUCKETS);
790 	unsigned int active		: 1;
791 	unsigned int user_defined	: 1;
792 };
793 #endif /* CONFIG_UCLAMP_TASK */
794 
795 union rcu_special {
796 	struct {
797 		u8			blocked;
798 		u8			need_qs;
799 		u8			exp_hint; /* Hint for performance. */
800 		u8			need_mb; /* Readers need smp_mb(). */
801 	} b; /* Bits. */
802 	u32 s; /* Set of bits. */
803 };
804 
805 enum perf_event_task_context {
806 	perf_invalid_context = -1,
807 	perf_hw_context = 0,
808 	perf_sw_context,
809 	perf_nr_task_contexts,
810 };
811 
812 /*
813  * Number of contexts where an event can trigger:
814  *      task, softirq, hardirq, nmi.
815  */
816 #define PERF_NR_CONTEXTS	4
817 
818 struct wake_q_node {
819 	struct wake_q_node *next;
820 };
821 
822 struct kmap_ctrl {
823 #ifdef CONFIG_KMAP_LOCAL
824 	int				idx;
825 	pte_t				pteval[KM_MAX_IDX];
826 #endif
827 };
828 
829 enum blocked_on_state {
830 	BO_RUNNABLE,
831 	BO_BLOCKED,
832 	BO_WAKING,
833 };
834 
835 struct task_struct {
836 #ifdef CONFIG_THREAD_INFO_IN_TASK
837 	/*
838 	 * For reasons of header soup (see current_thread_info()), this
839 	 * must be the first element of task_struct.
840 	 */
841 	struct thread_info		thread_info;
842 #endif
843 	unsigned int			__state;
844 
845 	/* saved state for "spinlock sleepers" */
846 	unsigned int			saved_state;
847 
848 	/*
849 	 * This begins the randomizable portion of task_struct. Only
850 	 * scheduling-critical items should be added above here.
851 	 */
852 	randomized_struct_fields_start
853 
854 	void				*stack;
855 	refcount_t			usage;
856 	/* Per task flags (PF_*), defined further below: */
857 	unsigned int			flags;
858 	unsigned int			ptrace;
859 
860 #ifdef CONFIG_MEM_ALLOC_PROFILING
861 	struct alloc_tag		*alloc_tag;
862 #endif
863 
864 #ifdef CONFIG_SMP
865 	int				on_cpu;
866 	struct __call_single_node	wake_entry;
867 	unsigned int			wakee_flips;
868 	unsigned long			wakee_flip_decay_ts;
869 	struct task_struct		*last_wakee;
870 
871 	/*
872 	 * recent_used_cpu is initially set as the last CPU used by a task
873 	 * that wakes affine another task. Waker/wakee relationships can
874 	 * push tasks around a CPU where each wakeup moves to the next one.
875 	 * Tracking a recently used CPU allows a quick search for a recently
876 	 * used CPU that may be idle.
877 	 */
878 	int				recent_used_cpu;
879 	int				wake_cpu;
880 #endif
881 	int				on_rq;
882 
883 	int				prio;
884 	int				static_prio;
885 	int				normal_prio;
886 	unsigned int			rt_priority;
887 
888 	struct sched_entity		se;
889 	struct sched_rt_entity		rt;
890 	struct sched_dl_entity		dl;
891 	struct sched_dl_entity		*dl_server;
892 #ifdef CONFIG_SCHED_CLASS_EXT
893 	struct sched_ext_entity		scx;
894 #endif
895 	const struct sched_class	*sched_class;
896 
897 #ifdef CONFIG_SCHED_CORE
898 	struct rb_node			core_node;
899 	unsigned long			core_cookie;
900 	unsigned int			core_occupation;
901 #endif
902 
903 #ifdef CONFIG_CGROUP_SCHED
904 	struct task_group		*sched_task_group;
905 #endif
906 
907 
908 #ifdef CONFIG_UCLAMP_TASK
909 	/*
910 	 * Clamp values requested for a scheduling entity.
911 	 * Must be updated with task_rq_lock() held.
912 	 */
913 	struct uclamp_se		uclamp_req[UCLAMP_CNT];
914 	/*
915 	 * Effective clamp values used for a scheduling entity.
916 	 * Must be updated with task_rq_lock() held.
917 	 */
918 	struct uclamp_se		uclamp[UCLAMP_CNT];
919 #endif
920 
921 	struct sched_statistics         stats;
922 
923 #ifdef CONFIG_PREEMPT_NOTIFIERS
924 	/* List of struct preempt_notifier: */
925 	struct hlist_head		preempt_notifiers;
926 #endif
927 
928 #ifdef CONFIG_BLK_DEV_IO_TRACE
929 	unsigned int			btrace_seq;
930 #endif
931 
932 	unsigned int			policy;
933 	unsigned long			max_allowed_capacity;
934 	int				nr_cpus_allowed;
935 	const cpumask_t			*cpus_ptr;
936 	cpumask_t			*user_cpus_ptr;
937 	cpumask_t			cpus_mask;
938 	void				*migration_pending;
939 #ifdef CONFIG_SMP
940 	unsigned short			migration_disabled;
941 #endif
942 	unsigned short			migration_flags;
943 
944 #ifdef CONFIG_PREEMPT_RCU
945 	int				rcu_read_lock_nesting;
946 	union rcu_special		rcu_read_unlock_special;
947 	struct list_head		rcu_node_entry;
948 	struct rcu_node			*rcu_blocked_node;
949 #endif /* #ifdef CONFIG_PREEMPT_RCU */
950 
951 #ifdef CONFIG_TASKS_RCU
952 	unsigned long			rcu_tasks_nvcsw;
953 	u8				rcu_tasks_holdout;
954 	u8				rcu_tasks_idx;
955 	int				rcu_tasks_idle_cpu;
956 	struct list_head		rcu_tasks_holdout_list;
957 	int				rcu_tasks_exit_cpu;
958 	struct list_head		rcu_tasks_exit_list;
959 #endif /* #ifdef CONFIG_TASKS_RCU */
960 
961 #ifdef CONFIG_TASKS_TRACE_RCU
962 	int				trc_reader_nesting;
963 	int				trc_ipi_to_cpu;
964 	union rcu_special		trc_reader_special;
965 	struct list_head		trc_holdout_list;
966 	struct list_head		trc_blkd_node;
967 	int				trc_blkd_cpu;
968 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
969 
970 	struct sched_info		sched_info;
971 
972 	struct list_head		tasks;
973 #ifdef CONFIG_SMP
974 	struct plist_node		pushable_tasks;
975 	struct rb_node			pushable_dl_tasks;
976 #endif
977 
978 	struct mm_struct		*mm;
979 	struct mm_struct		*active_mm;
980 	struct address_space		*faults_disabled_mapping;
981 
982 	int				exit_state;
983 	int				exit_code;
984 	int				exit_signal;
985 	/* The signal sent when the parent dies: */
986 	int				pdeath_signal;
987 	/* JOBCTL_*, siglock protected: */
988 	unsigned long			jobctl;
989 
990 	/* Used for emulating ABI behavior of previous Linux versions: */
991 	unsigned int			personality;
992 
993 	/* Scheduler bits, serialized by scheduler locks: */
994 	unsigned			sched_reset_on_fork:1;
995 	unsigned			sched_contributes_to_load:1;
996 	unsigned			sched_migrated:1;
997 	unsigned			sched_task_hot:1;
998 
999 	/* Force alignment to the next boundary: */
1000 	unsigned			:0;
1001 
1002 	/* Unserialized, strictly 'current' */
1003 
1004 	/*
1005 	 * This field must not be in the scheduler word above due to wakelist
1006 	 * queueing no longer being serialized by p->on_cpu. However:
1007 	 *
1008 	 * p->XXX = X;			ttwu()
1009 	 * schedule()			  if (p->on_rq && ..) // false
1010 	 *   smp_mb__after_spinlock();	  if (smp_load_acquire(&p->on_cpu) && //true
1011 	 *   deactivate_task()		      ttwu_queue_wakelist())
1012 	 *     p->on_rq = 0;			p->sched_remote_wakeup = Y;
1013 	 *
1014 	 * guarantees all stores of 'current' are visible before
1015 	 * ->sched_remote_wakeup gets used, so it can be in this word.
1016 	 */
1017 	unsigned			sched_remote_wakeup:1;
1018 #ifdef CONFIG_RT_MUTEXES
1019 	unsigned			sched_rt_mutex:1;
1020 #endif
1021 
1022 	/* Bit to tell TOMOYO we're in execve(): */
1023 	unsigned			in_execve:1;
1024 	unsigned			in_iowait:1;
1025 #ifndef TIF_RESTORE_SIGMASK
1026 	unsigned			restore_sigmask:1;
1027 #endif
1028 #ifdef CONFIG_MEMCG_V1
1029 	unsigned			in_user_fault:1;
1030 #endif
1031 #ifdef CONFIG_LRU_GEN
1032 	/* whether the LRU algorithm may apply to this access */
1033 	unsigned			in_lru_fault:1;
1034 #endif
1035 #ifdef CONFIG_COMPAT_BRK
1036 	unsigned			brk_randomized:1;
1037 #endif
1038 #ifdef CONFIG_CGROUPS
1039 	/* disallow userland-initiated cgroup migration */
1040 	unsigned			no_cgroup_migration:1;
1041 	/* task is frozen/stopped (used by the cgroup freezer) */
1042 	unsigned			frozen:1;
1043 #endif
1044 #ifdef CONFIG_BLK_CGROUP
1045 	unsigned			use_memdelay:1;
1046 #endif
1047 #ifdef CONFIG_PSI
1048 	/* Stalled due to lack of memory */
1049 	unsigned			in_memstall:1;
1050 #endif
1051 #ifdef CONFIG_PAGE_OWNER
1052 	/* Used by page_owner=on to detect recursion in page tracking. */
1053 	unsigned			in_page_owner:1;
1054 #endif
1055 #ifdef CONFIG_EVENTFD
1056 	/* Recursion prevention for eventfd_signal() */
1057 	unsigned			in_eventfd:1;
1058 #endif
1059 #ifdef CONFIG_ARCH_HAS_CPU_PASID
1060 	unsigned			pasid_activated:1;
1061 #endif
1062 #ifdef	CONFIG_CPU_SUP_INTEL
1063 	unsigned			reported_split_lock:1;
1064 #endif
1065 #ifdef CONFIG_TASK_DELAY_ACCT
1066 	/* delay due to memory thrashing */
1067 	unsigned                        in_thrashing:1;
1068 #endif
1069 #ifdef CONFIG_PREEMPT_RT
1070 	struct netdev_xmit		net_xmit;
1071 #endif
1072 	unsigned long			atomic_flags; /* Flags requiring atomic access. */
1073 
1074 	struct restart_block		restart_block;
1075 
1076 	pid_t				pid;
1077 	pid_t				tgid;
1078 
1079 #ifdef CONFIG_STACKPROTECTOR
1080 	/* Canary value for the -fstack-protector GCC feature: */
1081 	unsigned long			stack_canary;
1082 #endif
1083 	/*
1084 	 * Pointers to the (original) parent process, youngest child, younger sibling,
1085 	 * older sibling, respectively.  (p->father can be replaced with
1086 	 * p->real_parent->pid)
1087 	 */
1088 
1089 	/* Real parent process: */
1090 	struct task_struct __rcu	*real_parent;
1091 
1092 	/* Recipient of SIGCHLD, wait4() reports: */
1093 	struct task_struct __rcu	*parent;
1094 
1095 	/*
1096 	 * Children/sibling form the list of natural children:
1097 	 */
1098 	struct list_head		children;
1099 	struct list_head		sibling;
1100 	struct task_struct		*group_leader;
1101 
1102 	/*
1103 	 * 'ptraced' is the list of tasks this task is using ptrace() on.
1104 	 *
1105 	 * This includes both natural children and PTRACE_ATTACH targets.
1106 	 * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
1107 	 */
1108 	struct list_head		ptraced;
1109 	struct list_head		ptrace_entry;
1110 
1111 	/* PID/PID hash table linkage. */
1112 	struct pid			*thread_pid;
1113 	struct hlist_node		pid_links[PIDTYPE_MAX];
1114 	struct list_head		thread_node;
1115 
1116 	struct completion		*vfork_done;
1117 
1118 	/* CLONE_CHILD_SETTID: */
1119 	int __user			*set_child_tid;
1120 
1121 	/* CLONE_CHILD_CLEARTID: */
1122 	int __user			*clear_child_tid;
1123 
1124 	/* PF_KTHREAD | PF_IO_WORKER */
1125 	void				*worker_private;
1126 
1127 	u64				utime;
1128 	u64				stime;
1129 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1130 	u64				utimescaled;
1131 	u64				stimescaled;
1132 #endif
1133 	u64				gtime;
1134 #ifdef CONFIG_CPU_FREQ_TIMES
1135 	u64				*time_in_state;
1136 	unsigned int			max_state;
1137 #endif
1138 	struct prev_cputime		prev_cputime;
1139 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1140 	struct vtime			vtime;
1141 #endif
1142 
1143 #ifdef CONFIG_NO_HZ_FULL
1144 	atomic_t			tick_dep_mask;
1145 #endif
1146 	/* Context switch counts: */
1147 	unsigned long			nvcsw;
1148 	unsigned long			nivcsw;
1149 
1150 	/* Monotonic time in nsecs: */
1151 	u64				start_time;
1152 
1153 	/* Boot based time in nsecs: */
1154 	u64				start_boottime;
1155 
1156 	/* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
1157 	unsigned long			min_flt;
1158 	unsigned long			maj_flt;
1159 
1160 	/* Empty if CONFIG_POSIX_CPUTIMERS=n */
1161 	struct posix_cputimers		posix_cputimers;
1162 
1163 #ifdef CONFIG_POSIX_CPU_TIMERS_TASK_WORK
1164 	struct posix_cputimers_work	posix_cputimers_work;
1165 #endif
1166 
1167 	/* Process credentials: */
1168 
1169 	/* Tracer's credentials at attach: */
1170 	const struct cred __rcu		*ptracer_cred;
1171 
1172 	/* Objective and real subjective task credentials (COW): */
1173 	const struct cred __rcu		*real_cred;
1174 
1175 	/* Effective (overridable) subjective task credentials (COW): */
1176 	const struct cred __rcu		*cred;
1177 
1178 #ifdef CONFIG_KEYS
1179 	/* Cached requested key. */
1180 	struct key			*cached_requested_key;
1181 #endif
1182 
1183 	/*
1184 	 * executable name, excluding path.
1185 	 *
1186 	 * - normally initialized setup_new_exec()
1187 	 * - access it with [gs]et_task_comm()
1188 	 * - lock it with task_lock()
1189 	 */
1190 	char				comm[TASK_COMM_LEN];
1191 
1192 	struct nameidata		*nameidata;
1193 
1194 #ifdef CONFIG_SYSVIPC
1195 	struct sysv_sem			sysvsem;
1196 	struct sysv_shm			sysvshm;
1197 #endif
1198 #ifdef CONFIG_DETECT_HUNG_TASK
1199 	unsigned long			last_switch_count;
1200 	unsigned long			last_switch_time;
1201 #endif
1202 	/* Filesystem information: */
1203 	struct fs_struct		*fs;
1204 
1205 	/* Open file information: */
1206 	struct files_struct		*files;
1207 
1208 #ifdef CONFIG_IO_URING
1209 	struct io_uring_task		*io_uring;
1210 #endif
1211 
1212 	/* Namespaces: */
1213 	struct nsproxy			*nsproxy;
1214 
1215 	/* Signal handlers: */
1216 	struct signal_struct		*signal;
1217 	struct sighand_struct __rcu		*sighand;
1218 	sigset_t			blocked;
1219 	sigset_t			real_blocked;
1220 	/* Restored if set_restore_sigmask() was used: */
1221 	sigset_t			saved_sigmask;
1222 	struct sigpending		pending;
1223 	unsigned long			sas_ss_sp;
1224 	size_t				sas_ss_size;
1225 	unsigned int			sas_ss_flags;
1226 
1227 	struct callback_head		*task_works;
1228 
1229 #ifdef CONFIG_AUDIT
1230 #ifdef CONFIG_AUDITSYSCALL
1231 	struct audit_context		*audit_context;
1232 #endif
1233 	kuid_t				loginuid;
1234 	unsigned int			sessionid;
1235 #endif
1236 	struct seccomp			seccomp;
1237 	struct syscall_user_dispatch	syscall_dispatch;
1238 
1239 	/* Thread group tracking: */
1240 	u64				parent_exec_id;
1241 	u64				self_exec_id;
1242 
1243 	/* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
1244 	spinlock_t			alloc_lock;
1245 
1246 	/* Protection of the PI data structures: */
1247 	raw_spinlock_t			pi_lock;
1248 
1249 	struct wake_q_node		wake_q;
1250 	int				wake_q_count;
1251 
1252 #ifdef CONFIG_RT_MUTEXES
1253 	/* PI waiters blocked on a rt_mutex held by this task: */
1254 	struct rb_root_cached		pi_waiters;
1255 	/* Updated under owner's pi_lock and rq lock */
1256 	struct task_struct		*pi_top_task;
1257 	/* Deadlock detection and priority inheritance handling: */
1258 	struct rt_mutex_waiter		*pi_blocked_on;
1259 #endif
1260 
1261 	enum blocked_on_state		blocked_on_state;
1262 	struct mutex			*blocked_on;	/* lock we're blocked on */
1263 	struct task_struct		*blocked_donor;	/* task that is boosting this task */
1264 	struct list_head		migration_node;
1265 #ifdef CONFIG_SCHED_PROXY_EXEC
1266 	struct list_head		blocked_head;  /* tasks blocked on this task */
1267 	struct list_head		blocked_node;  /* our entry on someone elses blocked_head */
1268 	/* Node for list of tasks to process blocked_head list for blocked entitiy activations */
1269 	struct list_head		blocked_activation_node;
1270 	struct task_struct		*sleeping_owner; /* task our blocked_node is enqueued on */
1271 #endif
1272 	raw_spinlock_t			blocked_lock;
1273 
1274 #ifdef CONFIG_DETECT_HUNG_TASK_BLOCKER
1275 	struct mutex			*blocker_mutex;
1276 #endif
1277 
1278 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1279 	int				non_block_count;
1280 #endif
1281 
1282 #ifdef CONFIG_TRACE_IRQFLAGS
1283 	struct irqtrace_events		irqtrace;
1284 	unsigned int			hardirq_threaded;
1285 	u64				hardirq_chain_key;
1286 	int				softirqs_enabled;
1287 	int				softirq_context;
1288 	int				irq_config;
1289 #endif
1290 #ifdef CONFIG_PREEMPT_RT
1291 	int				softirq_disable_cnt;
1292 #endif
1293 
1294 #ifdef CONFIG_LOCKDEP
1295 # define MAX_LOCK_DEPTH			48UL
1296 	u64				curr_chain_key;
1297 	int				lockdep_depth;
1298 	unsigned int			lockdep_recursion;
1299 	struct held_lock		held_locks[MAX_LOCK_DEPTH];
1300 #endif
1301 
1302 #if defined(CONFIG_UBSAN) && !defined(CONFIG_UBSAN_TRAP)
1303 	unsigned int			in_ubsan;
1304 #endif
1305 
1306 	/* Journalling filesystem info: */
1307 	void				*journal_info;
1308 
1309 	/* Stacked block device info: */
1310 	struct bio_list			*bio_list;
1311 
1312 	/* Stack plugging: */
1313 	struct blk_plug			*plug;
1314 
1315 	/* VM state: */
1316 	struct reclaim_state		*reclaim_state;
1317 
1318 	struct io_context		*io_context;
1319 
1320 #ifdef CONFIG_COMPACTION
1321 	struct capture_control		*capture_control;
1322 #endif
1323 	/* Ptrace state: */
1324 	unsigned long			ptrace_message;
1325 	kernel_siginfo_t		*last_siginfo;
1326 
1327 	struct task_io_accounting	ioac;
1328 #ifdef CONFIG_PSI
1329 	/* Pressure stall state */
1330 	unsigned int			psi_flags;
1331 #endif
1332 #ifdef CONFIG_TASK_XACCT
1333 	/* Accumulated RSS usage: */
1334 	u64				acct_rss_mem1;
1335 	/* Accumulated virtual memory usage: */
1336 	u64				acct_vm_mem1;
1337 	/* stime + utime since last update: */
1338 	u64				acct_timexpd;
1339 #endif
1340 #ifdef CONFIG_CPUSETS
1341 	/* Protected by ->alloc_lock: */
1342 	nodemask_t			mems_allowed;
1343 	/* Sequence number to catch updates: */
1344 	seqcount_spinlock_t		mems_allowed_seq;
1345 	int				cpuset_mem_spread_rotor;
1346 #endif
1347 #ifdef CONFIG_CGROUPS
1348 	/* Control Group info protected by css_set_lock: */
1349 	struct css_set __rcu		*cgroups;
1350 	/* cg_list protected by css_set_lock and tsk->alloc_lock: */
1351 	struct list_head		cg_list;
1352 #endif
1353 #ifdef CONFIG_X86_CPU_RESCTRL
1354 	u32				closid;
1355 	u32				rmid;
1356 #endif
1357 #ifdef CONFIG_FUTEX
1358 	struct robust_list_head __user	*robust_list;
1359 #ifdef CONFIG_COMPAT
1360 	struct compat_robust_list_head __user *compat_robust_list;
1361 #endif
1362 	struct list_head		pi_state_list;
1363 	struct futex_pi_state		*pi_state_cache;
1364 	struct mutex			futex_exit_mutex;
1365 	unsigned int			futex_state;
1366 #endif
1367 #ifdef CONFIG_PERF_EVENTS
1368 	u8				perf_recursion[PERF_NR_CONTEXTS];
1369 	struct perf_event_context	*perf_event_ctxp;
1370 	struct mutex			perf_event_mutex;
1371 	struct list_head		perf_event_list;
1372 #endif
1373 #ifdef CONFIG_DEBUG_PREEMPT
1374 	unsigned long			preempt_disable_ip;
1375 #endif
1376 #ifdef CONFIG_NUMA
1377 	/* Protected by alloc_lock: */
1378 	struct mempolicy		*mempolicy;
1379 	short				il_prev;
1380 	u8				il_weight;
1381 	short				pref_node_fork;
1382 #endif
1383 #ifdef CONFIG_NUMA_BALANCING
1384 	int				numa_scan_seq;
1385 	unsigned int			numa_scan_period;
1386 	unsigned int			numa_scan_period_max;
1387 	int				numa_preferred_nid;
1388 	unsigned long			numa_migrate_retry;
1389 	/* Migration stamp: */
1390 	u64				node_stamp;
1391 	u64				last_task_numa_placement;
1392 	u64				last_sum_exec_runtime;
1393 	struct callback_head		numa_work;
1394 
1395 	/*
1396 	 * This pointer is only modified for current in syscall and
1397 	 * pagefault context (and for tasks being destroyed), so it can be read
1398 	 * from any of the following contexts:
1399 	 *  - RCU read-side critical section
1400 	 *  - current->numa_group from everywhere
1401 	 *  - task's runqueue locked, task not running
1402 	 */
1403 	struct numa_group __rcu		*numa_group;
1404 
1405 	/*
1406 	 * numa_faults is an array split into four regions:
1407 	 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1408 	 * in this precise order.
1409 	 *
1410 	 * faults_memory: Exponential decaying average of faults on a per-node
1411 	 * basis. Scheduling placement decisions are made based on these
1412 	 * counts. The values remain static for the duration of a PTE scan.
1413 	 * faults_cpu: Track the nodes the process was running on when a NUMA
1414 	 * hinting fault was incurred.
1415 	 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1416 	 * during the current scan window. When the scan completes, the counts
1417 	 * in faults_memory and faults_cpu decay and these values are copied.
1418 	 */
1419 	unsigned long			*numa_faults;
1420 	unsigned long			total_numa_faults;
1421 
1422 	/*
1423 	 * numa_faults_locality tracks if faults recorded during the last
1424 	 * scan window were remote/local or failed to migrate. The task scan
1425 	 * period is adapted based on the locality of the faults with different
1426 	 * weights depending on whether they were shared or private faults
1427 	 */
1428 	unsigned long			numa_faults_locality[3];
1429 
1430 	unsigned long			numa_pages_migrated;
1431 #endif /* CONFIG_NUMA_BALANCING */
1432 
1433 #ifdef CONFIG_RSEQ
1434 	struct rseq __user *rseq;
1435 	u32 rseq_len;
1436 	u32 rseq_sig;
1437 	/*
1438 	 * RmW on rseq_event_mask must be performed atomically
1439 	 * with respect to preemption.
1440 	 */
1441 	unsigned long rseq_event_mask;
1442 #endif
1443 
1444 #ifdef CONFIG_SCHED_MM_CID
1445 	int				mm_cid;		/* Current cid in mm */
1446 	int				last_mm_cid;	/* Most recent cid in mm */
1447 	int				migrate_from_cpu;
1448 	int				mm_cid_active;	/* Whether cid bitmap is active */
1449 	struct callback_head		cid_work;
1450 #endif
1451 
1452 	struct tlbflush_unmap_batch	tlb_ubc;
1453 
1454 	/* Cache last used pipe for splice(): */
1455 	struct pipe_inode_info		*splice_pipe;
1456 
1457 	struct page_frag		task_frag;
1458 
1459 #ifdef CONFIG_TASK_DELAY_ACCT
1460 	struct task_delay_info		*delays;
1461 #endif
1462 
1463 #ifdef CONFIG_FAULT_INJECTION
1464 	int				make_it_fail;
1465 	unsigned int			fail_nth;
1466 #endif
1467 	/*
1468 	 * When (nr_dirtied >= nr_dirtied_pause), it's time to call
1469 	 * balance_dirty_pages() for a dirty throttling pause:
1470 	 */
1471 	int				nr_dirtied;
1472 	int				nr_dirtied_pause;
1473 	/* Start of a write-and-pause period: */
1474 	unsigned long			dirty_paused_when;
1475 
1476 #ifdef CONFIG_LATENCYTOP
1477 	int				latency_record_count;
1478 	struct latency_record		latency_record[LT_SAVECOUNT];
1479 #endif
1480 	/*
1481 	 * Time slack values; these are used to round up poll() and
1482 	 * select() etc timeout values. These are in nanoseconds.
1483 	 */
1484 	u64				timer_slack_ns;
1485 	u64				default_timer_slack_ns;
1486 
1487 #if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS)
1488 	unsigned int			kasan_depth;
1489 #endif
1490 
1491 #ifdef CONFIG_KCSAN
1492 	struct kcsan_ctx		kcsan_ctx;
1493 #ifdef CONFIG_TRACE_IRQFLAGS
1494 	struct irqtrace_events		kcsan_save_irqtrace;
1495 #endif
1496 #ifdef CONFIG_KCSAN_WEAK_MEMORY
1497 	int				kcsan_stack_depth;
1498 #endif
1499 #endif
1500 
1501 #ifdef CONFIG_KMSAN
1502 	struct kmsan_ctx		kmsan_ctx;
1503 #endif
1504 
1505 #if IS_ENABLED(CONFIG_KUNIT)
1506 	struct kunit			*kunit_test;
1507 #endif
1508 
1509 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1510 	/* Index of current stored address in ret_stack: */
1511 	int				curr_ret_stack;
1512 	int				curr_ret_depth;
1513 
1514 	/* Stack of return addresses for return function tracing: */
1515 	unsigned long			*ret_stack;
1516 
1517 	/* Timestamp for last schedule: */
1518 	unsigned long long		ftrace_timestamp;
1519 
1520 	/*
1521 	 * Number of functions that haven't been traced
1522 	 * because of depth overrun:
1523 	 */
1524 	atomic_t			trace_overrun;
1525 
1526 	/* Pause tracing: */
1527 	atomic_t			tracing_graph_pause;
1528 #endif
1529 
1530 #ifdef CONFIG_TRACING
1531 	/* Bitmask and counter of trace recursion: */
1532 	unsigned long			trace_recursion;
1533 #endif /* CONFIG_TRACING */
1534 
1535 #ifdef CONFIG_KCOV
1536 	/* See kernel/kcov.c for more details. */
1537 
1538 	/* Coverage collection mode enabled for this task (0 if disabled): */
1539 	unsigned int			kcov_mode;
1540 
1541 	/* Size of the kcov_area: */
1542 	unsigned int			kcov_size;
1543 
1544 	/* Buffer for coverage collection: */
1545 	void				*kcov_area;
1546 
1547 	/* KCOV descriptor wired with this task or NULL: */
1548 	struct kcov			*kcov;
1549 
1550 	/* KCOV common handle for remote coverage collection: */
1551 	u64				kcov_handle;
1552 
1553 	/* KCOV sequence number: */
1554 	int				kcov_sequence;
1555 
1556 	/* Collect coverage from softirq context: */
1557 	unsigned int			kcov_softirq;
1558 #endif
1559 
1560 #ifdef CONFIG_MEMCG_V1
1561 	struct mem_cgroup		*memcg_in_oom;
1562 #endif
1563 
1564 #ifdef CONFIG_MEMCG
1565 	/* Number of pages to reclaim on returning to userland: */
1566 	unsigned int			memcg_nr_pages_over_high;
1567 
1568 	/* Used by memcontrol for targeted memcg charge: */
1569 	struct mem_cgroup		*active_memcg;
1570 
1571 	/* Cache for current->cgroups->memcg->objcg lookups: */
1572 	struct obj_cgroup		*objcg;
1573 #endif
1574 
1575 #ifdef CONFIG_BLK_CGROUP
1576 	struct gendisk			*throttle_disk;
1577 #endif
1578 
1579 #ifdef CONFIG_UPROBES
1580 	struct uprobe_task		*utask;
1581 #endif
1582 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1583 	unsigned int			sequential_io;
1584 	unsigned int			sequential_io_avg;
1585 #endif
1586 	struct kmap_ctrl		kmap_ctrl;
1587 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1588 	unsigned long			task_state_change;
1589 # ifdef CONFIG_PREEMPT_RT
1590 	unsigned long			saved_state_change;
1591 # endif
1592 #endif
1593 	struct rcu_head			rcu;
1594 	refcount_t			rcu_users;
1595 	int				pagefault_disabled;
1596 #ifdef CONFIG_MMU
1597 	struct task_struct		*oom_reaper_list;
1598 	struct timer_list		oom_reaper_timer;
1599 #endif
1600 #ifdef CONFIG_VMAP_STACK
1601 	struct vm_struct		*stack_vm_area;
1602 #endif
1603 #ifdef CONFIG_THREAD_INFO_IN_TASK
1604 	/* A live task holds one reference: */
1605 	refcount_t			stack_refcount;
1606 #endif
1607 #ifdef CONFIG_LIVEPATCH
1608 	int patch_state;
1609 #endif
1610 #ifdef CONFIG_SECURITY
1611 	/* Used by LSM modules for access restriction: */
1612 	void				*security;
1613 #endif
1614 #ifdef CONFIG_BPF_SYSCALL
1615 	/* Used by BPF task local storage */
1616 	struct bpf_local_storage __rcu	*bpf_storage;
1617 	/* Used for BPF run context */
1618 	struct bpf_run_ctx		*bpf_ctx;
1619 #endif
1620 	/* Used by BPF for per-TASK xdp storage */
1621 	struct bpf_net_context		*bpf_net_context;
1622 
1623 #ifdef CONFIG_GCC_PLUGIN_STACKLEAK
1624 	unsigned long			lowest_stack;
1625 	unsigned long			prev_lowest_stack;
1626 #endif
1627 
1628 #ifdef CONFIG_X86_MCE
1629 	void __user			*mce_vaddr;
1630 	__u64				mce_kflags;
1631 	u64				mce_addr;
1632 	__u64				mce_ripv : 1,
1633 					mce_whole_page : 1,
1634 					__mce_reserved : 62;
1635 	struct callback_head		mce_kill_me;
1636 	int				mce_count;
1637 #endif
1638 	ANDROID_VENDOR_DATA_ARRAY(1, 6);
1639 	ANDROID_OEM_DATA_ARRAY(1, 6);
1640 
1641 #ifdef CONFIG_KRETPROBES
1642 	struct llist_head               kretprobe_instances;
1643 #endif
1644 #ifdef CONFIG_RETHOOK
1645 	struct llist_head               rethooks;
1646 #endif
1647 
1648 #ifdef CONFIG_ARCH_HAS_PARANOID_L1D_FLUSH
1649 	/*
1650 	 * If L1D flush is supported on mm context switch
1651 	 * then we use this callback head to queue kill work
1652 	 * to kill tasks that are not running on SMT disabled
1653 	 * cores
1654 	 */
1655 	struct callback_head		l1d_flush_kill;
1656 #endif
1657 	ANDROID_KABI_RESERVE(1);
1658 	ANDROID_KABI_RESERVE(2);
1659 	ANDROID_KABI_RESERVE(3);
1660 	ANDROID_KABI_RESERVE(4);
1661 	ANDROID_KABI_RESERVE(5);
1662 	ANDROID_KABI_RESERVE(6);
1663 	ANDROID_KABI_RESERVE(7);
1664 	ANDROID_KABI_RESERVE(8);
1665 
1666 #ifdef CONFIG_RV
1667 	/*
1668 	 * Per-task RV monitor. Nowadays fixed in RV_PER_TASK_MONITORS.
1669 	 * If we find justification for more monitors, we can think
1670 	 * about adding more or developing a dynamic method. So far,
1671 	 * none of these are justified.
1672 	 */
1673 	union rv_task_monitor		rv[RV_PER_TASK_MONITORS];
1674 #endif
1675 
1676 #ifdef CONFIG_USER_EVENTS
1677 	struct user_event_mm		*user_event_mm;
1678 #endif
1679 
1680 	/*
1681 	 * New fields for task_struct should be added above here, so that
1682 	 * they are included in the randomized portion of task_struct.
1683 	 */
1684 	randomized_struct_fields_end
1685 
1686 	/* CPU-specific state of this task: */
1687 	struct thread_struct		thread;
1688 
1689 	/*
1690 	 * WARNING: on x86, 'thread_struct' contains a variable-sized
1691 	 * structure.  It *MUST* be at the end of 'task_struct'.
1692 	 *
1693 	 * Do not put anything below here!
1694 	 */
1695 };
1696 
1697 #ifdef CONFIG_SCHED_PROXY_EXEC
1698 DECLARE_STATIC_KEY_FALSE(__sched_proxy_exec);
sched_proxy_exec(void)1699 static inline bool sched_proxy_exec(void)
1700 {
1701 	return static_branch_likely(&__sched_proxy_exec);
1702 }
1703 #else
sched_proxy_exec(void)1704 static inline bool sched_proxy_exec(void)
1705 {
1706 	return false;
1707 }
1708 #endif
1709 
1710 #define TASK_REPORT_IDLE	(TASK_REPORT + 1)
1711 #define TASK_REPORT_MAX		(TASK_REPORT_IDLE << 1)
1712 
__task_state_index(unsigned int tsk_state,unsigned int tsk_exit_state)1713 static inline unsigned int __task_state_index(unsigned int tsk_state,
1714 					      unsigned int tsk_exit_state)
1715 {
1716 	unsigned int state = (tsk_state | tsk_exit_state) & TASK_REPORT;
1717 
1718 	BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX);
1719 
1720 	if ((tsk_state & TASK_IDLE) == TASK_IDLE)
1721 		state = TASK_REPORT_IDLE;
1722 
1723 	/*
1724 	 * We're lying here, but rather than expose a completely new task state
1725 	 * to userspace, we can make this appear as if the task has gone through
1726 	 * a regular rt_mutex_lock() call.
1727 	 * Report frozen tasks as uninterruptible.
1728 	 */
1729 	if ((tsk_state & TASK_RTLOCK_WAIT) || (tsk_state & TASK_FROZEN))
1730 		state = TASK_UNINTERRUPTIBLE;
1731 
1732 	return fls(state);
1733 }
1734 
task_state_index(struct task_struct * tsk)1735 static inline unsigned int task_state_index(struct task_struct *tsk)
1736 {
1737 	return __task_state_index(READ_ONCE(tsk->__state), tsk->exit_state);
1738 }
1739 
task_index_to_char(unsigned int state)1740 static inline char task_index_to_char(unsigned int state)
1741 {
1742 	static const char state_char[] = "RSDTtXZPI";
1743 
1744 	BUILD_BUG_ON(TASK_REPORT_MAX * 2 != 1 << (sizeof(state_char) - 1));
1745 
1746 	return state_char[state];
1747 }
1748 
task_state_to_char(struct task_struct * tsk)1749 static inline char task_state_to_char(struct task_struct *tsk)
1750 {
1751 	return task_index_to_char(task_state_index(tsk));
1752 }
1753 
1754 extern struct pid *cad_pid;
1755 
1756 /*
1757  * Per process flags
1758  */
1759 #define PF_VCPU			0x00000001	/* I'm a virtual CPU */
1760 #define PF_IDLE			0x00000002	/* I am an IDLE thread */
1761 #define PF_EXITING		0x00000004	/* Getting shut down */
1762 #define PF_POSTCOREDUMP		0x00000008	/* Coredumps should ignore this task */
1763 #define PF_IO_WORKER		0x00000010	/* Task is an IO worker */
1764 #define PF_WQ_WORKER		0x00000020	/* I'm a workqueue worker */
1765 #define PF_FORKNOEXEC		0x00000040	/* Forked but didn't exec */
1766 #define PF_MCE_PROCESS		0x00000080      /* Process policy on mce errors */
1767 #define PF_SUPERPRIV		0x00000100	/* Used super-user privileges */
1768 #define PF_DUMPCORE		0x00000200	/* Dumped core */
1769 #define PF_SIGNALED		0x00000400	/* Killed by a signal */
1770 #define PF_MEMALLOC		0x00000800	/* Allocating memory to free memory. See memalloc_noreclaim_save() */
1771 #define PF_NPROC_EXCEEDED	0x00001000	/* set_user() noticed that RLIMIT_NPROC was exceeded */
1772 #define PF_USED_MATH		0x00002000	/* If unset the fpu must be initialized before use */
1773 #define PF_USER_WORKER		0x00004000	/* Kernel thread cloned from userspace thread */
1774 #define PF_NOFREEZE		0x00008000	/* This thread should not be frozen */
1775 #define PF_KCOMPACTD		0x00010000	/* I am kcompactd */
1776 #define PF_KSWAPD		0x00020000	/* I am kswapd */
1777 #define PF_MEMALLOC_NOFS	0x00040000	/* All allocations inherit GFP_NOFS. See memalloc_nfs_save() */
1778 #define PF_MEMALLOC_NOIO	0x00080000	/* All allocations inherit GFP_NOIO. See memalloc_noio_save() */
1779 #define PF_LOCAL_THROTTLE	0x00100000	/* Throttle writes only against the bdi I write to,
1780 						 * I am cleaning dirty pages from some other bdi. */
1781 #define PF_KTHREAD		0x00200000	/* I am a kernel thread */
1782 #define PF_RANDOMIZE		0x00400000	/* Randomize virtual address space */
1783 #define PF__HOLE__00800000	0x00800000
1784 #define PF__HOLE__01000000	0x01000000
1785 #define PF__HOLE__02000000	0x02000000
1786 #define PF_NO_SETAFFINITY	0x04000000	/* Userland is not allowed to meddle with cpus_mask */
1787 #define PF_MCE_EARLY		0x08000000      /* Early kill for mce process policy */
1788 #define PF_MEMALLOC_PIN		0x10000000	/* Allocations constrained to zones which allow long term pinning.
1789 						 * See memalloc_pin_save() */
1790 #define PF_BLOCK_TS		0x20000000	/* plug has ts that needs updating */
1791 #define PF__HOLE__40000000	0x40000000
1792 #define PF_SUSPEND_TASK		0x80000000      /* This thread called freeze_processes() and should not be frozen */
1793 
1794 /*
1795  * Only the _current_ task can read/write to tsk->flags, but other
1796  * tasks can access tsk->flags in readonly mode for example
1797  * with tsk_used_math (like during threaded core dumping).
1798  * There is however an exception to this rule during ptrace
1799  * or during fork: the ptracer task is allowed to write to the
1800  * child->flags of its traced child (same goes for fork, the parent
1801  * can write to the child->flags), because we're guaranteed the
1802  * child is not running and in turn not changing child->flags
1803  * at the same time the parent does it.
1804  */
1805 #define clear_stopped_child_used_math(child)	do { (child)->flags &= ~PF_USED_MATH; } while (0)
1806 #define set_stopped_child_used_math(child)	do { (child)->flags |= PF_USED_MATH; } while (0)
1807 #define clear_used_math()			clear_stopped_child_used_math(current)
1808 #define set_used_math()				set_stopped_child_used_math(current)
1809 
1810 #define conditional_stopped_child_used_math(condition, child) \
1811 	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1812 
1813 #define conditional_used_math(condition)	conditional_stopped_child_used_math(condition, current)
1814 
1815 #define copy_to_stopped_child_used_math(child) \
1816 	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1817 
1818 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1819 #define tsk_used_math(p)			((p)->flags & PF_USED_MATH)
1820 #define used_math()				tsk_used_math(current)
1821 
is_percpu_thread(void)1822 static __always_inline bool is_percpu_thread(void)
1823 {
1824 #ifdef CONFIG_SMP
1825 	return (current->flags & PF_NO_SETAFFINITY) &&
1826 		(current->nr_cpus_allowed  == 1);
1827 #else
1828 	return true;
1829 #endif
1830 }
1831 
1832 /* Per-process atomic flags. */
1833 #define PFA_NO_NEW_PRIVS		0	/* May not gain new privileges. */
1834 #define PFA_SPREAD_PAGE			1	/* Spread page cache over cpuset */
1835 #define PFA_SPREAD_SLAB			2	/* Spread some slab caches over cpuset */
1836 #define PFA_SPEC_SSB_DISABLE		3	/* Speculative Store Bypass disabled */
1837 #define PFA_SPEC_SSB_FORCE_DISABLE	4	/* Speculative Store Bypass force disabled*/
1838 #define PFA_SPEC_IB_DISABLE		5	/* Indirect branch speculation restricted */
1839 #define PFA_SPEC_IB_FORCE_DISABLE	6	/* Indirect branch speculation permanently restricted */
1840 #define PFA_SPEC_SSB_NOEXEC		7	/* Speculative Store Bypass clear on execve() */
1841 
1842 #define TASK_PFA_TEST(name, func)					\
1843 	static inline bool task_##func(struct task_struct *p)		\
1844 	{ return test_bit(PFA_##name, &p->atomic_flags); }
1845 
1846 #define TASK_PFA_SET(name, func)					\
1847 	static inline void task_set_##func(struct task_struct *p)	\
1848 	{ set_bit(PFA_##name, &p->atomic_flags); }
1849 
1850 #define TASK_PFA_CLEAR(name, func)					\
1851 	static inline void task_clear_##func(struct task_struct *p)	\
1852 	{ clear_bit(PFA_##name, &p->atomic_flags); }
1853 
TASK_PFA_TEST(NO_NEW_PRIVS,no_new_privs)1854 TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
1855 TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1856 
1857 TASK_PFA_TEST(SPREAD_PAGE, spread_page)
1858 TASK_PFA_SET(SPREAD_PAGE, spread_page)
1859 TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
1860 
1861 TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
1862 TASK_PFA_SET(SPREAD_SLAB, spread_slab)
1863 TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1864 
1865 TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable)
1866 TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable)
1867 TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable)
1868 
1869 TASK_PFA_TEST(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1870 TASK_PFA_SET(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1871 TASK_PFA_CLEAR(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1872 
1873 TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1874 TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1875 
1876 TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable)
1877 TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable)
1878 TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable)
1879 
1880 TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1881 TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1882 
1883 static inline void
1884 current_restore_flags(unsigned long orig_flags, unsigned long flags)
1885 {
1886 	current->flags &= ~flags;
1887 	current->flags |= orig_flags & flags;
1888 }
1889 
1890 extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
1891 extern int task_can_attach(struct task_struct *p);
1892 extern int dl_bw_alloc(int cpu, u64 dl_bw);
1893 extern void dl_bw_free(int cpu, u64 dl_bw);
1894 #ifdef CONFIG_SMP
1895 
1896 /* do_set_cpus_allowed() - consider using set_cpus_allowed_ptr() instead */
1897 extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
1898 
1899 /**
1900  * set_cpus_allowed_ptr - set CPU affinity mask of a task
1901  * @p: the task
1902  * @new_mask: CPU affinity mask
1903  *
1904  * Return: zero if successful, or a negative error code
1905  */
1906 extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
1907 extern int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, int node);
1908 extern void release_user_cpus_ptr(struct task_struct *p);
1909 extern int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask);
1910 extern void force_compatible_cpus_allowed_ptr(struct task_struct *p);
1911 extern void relax_compatible_cpus_allowed_ptr(struct task_struct *p);
1912 #else
do_set_cpus_allowed(struct task_struct * p,const struct cpumask * new_mask)1913 static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1914 {
1915 }
set_cpus_allowed_ptr(struct task_struct * p,const struct cpumask * new_mask)1916 static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1917 {
1918 	/* Opencoded cpumask_test_cpu(0, new_mask) to avoid dependency on cpumask.h */
1919 	if ((*cpumask_bits(new_mask) & 1) == 0)
1920 		return -EINVAL;
1921 	return 0;
1922 }
dup_user_cpus_ptr(struct task_struct * dst,struct task_struct * src,int node)1923 static inline int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, int node)
1924 {
1925 	if (src->user_cpus_ptr)
1926 		return -EINVAL;
1927 	return 0;
1928 }
release_user_cpus_ptr(struct task_struct * p)1929 static inline void release_user_cpus_ptr(struct task_struct *p)
1930 {
1931 	WARN_ON(p->user_cpus_ptr);
1932 }
1933 
dl_task_check_affinity(struct task_struct * p,const struct cpumask * mask)1934 static inline int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask)
1935 {
1936 	return 0;
1937 }
1938 #endif
1939 
1940 extern int yield_to(struct task_struct *p, bool preempt);
1941 extern void set_user_nice(struct task_struct *p, long nice);
1942 extern int task_prio(const struct task_struct *p);
1943 
1944 /**
1945  * task_nice - return the nice value of a given task.
1946  * @p: the task in question.
1947  *
1948  * Return: The nice value [ -20 ... 0 ... 19 ].
1949  */
task_nice(const struct task_struct * p)1950 static inline int task_nice(const struct task_struct *p)
1951 {
1952 	return PRIO_TO_NICE((p)->static_prio);
1953 }
1954 
1955 extern int can_nice(const struct task_struct *p, const int nice);
1956 extern int task_curr(const struct task_struct *p);
1957 extern int idle_cpu(int cpu);
1958 extern int available_idle_cpu(int cpu);
1959 extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
1960 extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
1961 extern void sched_set_fifo(struct task_struct *p);
1962 extern void sched_set_fifo_low(struct task_struct *p);
1963 extern void sched_set_normal(struct task_struct *p, int nice);
1964 extern int sched_setattr(struct task_struct *, const struct sched_attr *);
1965 extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *);
1966 extern struct task_struct *idle_task(int cpu);
1967 
1968 /**
1969  * is_idle_task - is the specified task an idle task?
1970  * @p: the task in question.
1971  *
1972  * Return: 1 if @p is an idle task. 0 otherwise.
1973  */
is_idle_task(const struct task_struct * p)1974 static __always_inline bool is_idle_task(const struct task_struct *p)
1975 {
1976 	return !!(p->flags & PF_IDLE);
1977 }
1978 
1979 extern struct task_struct *curr_task(int cpu);
1980 extern void ia64_set_curr_task(int cpu, struct task_struct *p);
1981 
1982 void yield(void);
1983 
1984 union thread_union {
1985 	struct task_struct task;
1986 #ifndef CONFIG_THREAD_INFO_IN_TASK
1987 	struct thread_info thread_info;
1988 #endif
1989 	unsigned long stack[THREAD_SIZE/sizeof(long)];
1990 };
1991 
1992 #ifndef CONFIG_THREAD_INFO_IN_TASK
1993 extern struct thread_info init_thread_info;
1994 #endif
1995 
1996 extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)];
1997 
1998 #ifdef CONFIG_THREAD_INFO_IN_TASK
1999 # define task_thread_info(task)	(&(task)->thread_info)
2000 #elif !defined(__HAVE_THREAD_FUNCTIONS)
2001 # define task_thread_info(task)	((struct thread_info *)(task)->stack)
2002 #endif
2003 
2004 /*
2005  * find a task by one of its numerical ids
2006  *
2007  * find_task_by_pid_ns():
2008  *      finds a task by its pid in the specified namespace
2009  * find_task_by_vpid():
2010  *      finds a task by its virtual pid
2011  *
2012  * see also find_vpid() etc in include/linux/pid.h
2013  */
2014 
2015 extern struct task_struct *find_task_by_vpid(pid_t nr);
2016 extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
2017 
2018 /*
2019  * find a task by its virtual pid and get the task struct
2020  */
2021 extern struct task_struct *find_get_task_by_vpid(pid_t nr);
2022 
2023 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
2024 extern int wake_up_process(struct task_struct *tsk);
2025 extern void wake_up_new_task(struct task_struct *tsk);
2026 
2027 #ifdef CONFIG_SMP
2028 extern void kick_process(struct task_struct *tsk);
2029 #else
kick_process(struct task_struct * tsk)2030 static inline void kick_process(struct task_struct *tsk) { }
2031 #endif
2032 
2033 extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
2034 
set_task_comm(struct task_struct * tsk,const char * from)2035 static inline void set_task_comm(struct task_struct *tsk, const char *from)
2036 {
2037 	__set_task_comm(tsk, from, false);
2038 }
2039 
2040 extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk);
2041 #define get_task_comm(buf, tsk) ({			\
2042 	BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN);	\
2043 	__get_task_comm(buf, sizeof(buf), tsk);		\
2044 })
2045 
2046 #ifdef CONFIG_SMP
scheduler_ipi(void)2047 static __always_inline void scheduler_ipi(void)
2048 {
2049 	/*
2050 	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
2051 	 * TIF_NEED_RESCHED remotely (for the first time) will also send
2052 	 * this IPI.
2053 	 */
2054 	preempt_fold_need_resched();
2055 }
2056 #else
scheduler_ipi(void)2057 static inline void scheduler_ipi(void) { }
2058 #endif
2059 
2060 extern unsigned long wait_task_inactive(struct task_struct *, unsigned int match_state);
2061 
2062 /*
2063  * Set thread flags in other task's structures.
2064  * See asm/thread_info.h for TIF_xxxx flags available:
2065  */
set_tsk_thread_flag(struct task_struct * tsk,int flag)2066 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2067 {
2068 	set_ti_thread_flag(task_thread_info(tsk), flag);
2069 }
2070 
clear_tsk_thread_flag(struct task_struct * tsk,int flag)2071 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2072 {
2073 	clear_ti_thread_flag(task_thread_info(tsk), flag);
2074 }
2075 
update_tsk_thread_flag(struct task_struct * tsk,int flag,bool value)2076 static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag,
2077 					  bool value)
2078 {
2079 	update_ti_thread_flag(task_thread_info(tsk), flag, value);
2080 }
2081 
test_and_set_tsk_thread_flag(struct task_struct * tsk,int flag)2082 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2083 {
2084 	return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2085 }
2086 
test_and_clear_tsk_thread_flag(struct task_struct * tsk,int flag)2087 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2088 {
2089 	return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2090 }
2091 
test_tsk_thread_flag(struct task_struct * tsk,int flag)2092 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2093 {
2094 	return test_ti_thread_flag(task_thread_info(tsk), flag);
2095 }
2096 
set_tsk_need_resched(struct task_struct * tsk)2097 static inline void set_tsk_need_resched(struct task_struct *tsk)
2098 {
2099 	set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2100 }
2101 
clear_tsk_need_resched(struct task_struct * tsk)2102 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2103 {
2104 	clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2105 }
2106 
test_tsk_need_resched(struct task_struct * tsk)2107 static inline int test_tsk_need_resched(struct task_struct *tsk)
2108 {
2109 	return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2110 }
2111 
2112 /*
2113  * cond_resched() and cond_resched_lock(): latency reduction via
2114  * explicit rescheduling in places that are safe. The return
2115  * value indicates whether a reschedule was done in fact.
2116  * cond_resched_lock() will drop the spinlock before scheduling,
2117  */
2118 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
2119 extern int __cond_resched(void);
2120 
2121 #if defined(CONFIG_PREEMPT_DYNAMIC) && defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
2122 
2123 void sched_dynamic_klp_enable(void);
2124 void sched_dynamic_klp_disable(void);
2125 
2126 DECLARE_STATIC_CALL(cond_resched, __cond_resched);
2127 
_cond_resched(void)2128 static __always_inline int _cond_resched(void)
2129 {
2130 	return static_call_mod(cond_resched)();
2131 }
2132 
2133 #elif defined(CONFIG_PREEMPT_DYNAMIC) && defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
2134 
2135 extern int dynamic_cond_resched(void);
2136 
_cond_resched(void)2137 static __always_inline int _cond_resched(void)
2138 {
2139 	return dynamic_cond_resched();
2140 }
2141 
2142 #else /* !CONFIG_PREEMPTION */
2143 
_cond_resched(void)2144 static inline int _cond_resched(void)
2145 {
2146 	klp_sched_try_switch();
2147 	return __cond_resched();
2148 }
2149 
2150 #endif /* PREEMPT_DYNAMIC && CONFIG_HAVE_PREEMPT_DYNAMIC_CALL */
2151 
2152 #else /* CONFIG_PREEMPTION && !CONFIG_PREEMPT_DYNAMIC */
2153 
_cond_resched(void)2154 static inline int _cond_resched(void)
2155 {
2156 	klp_sched_try_switch();
2157 	return 0;
2158 }
2159 
2160 #endif /* !CONFIG_PREEMPTION || CONFIG_PREEMPT_DYNAMIC */
2161 
2162 #define cond_resched() ({			\
2163 	__might_resched(__FILE__, __LINE__, 0);	\
2164 	_cond_resched();			\
2165 })
2166 
2167 extern int __cond_resched_lock(spinlock_t *lock);
2168 extern int __cond_resched_rwlock_read(rwlock_t *lock);
2169 extern int __cond_resched_rwlock_write(rwlock_t *lock);
2170 
2171 #define MIGHT_RESCHED_RCU_SHIFT		8
2172 #define MIGHT_RESCHED_PREEMPT_MASK	((1U << MIGHT_RESCHED_RCU_SHIFT) - 1)
2173 
2174 #ifndef CONFIG_PREEMPT_RT
2175 /*
2176  * Non RT kernels have an elevated preempt count due to the held lock,
2177  * but are not allowed to be inside a RCU read side critical section
2178  */
2179 # define PREEMPT_LOCK_RESCHED_OFFSETS	PREEMPT_LOCK_OFFSET
2180 #else
2181 /*
2182  * spin/rw_lock() on RT implies rcu_read_lock(). The might_sleep() check in
2183  * cond_resched*lock() has to take that into account because it checks for
2184  * preempt_count() and rcu_preempt_depth().
2185  */
2186 # define PREEMPT_LOCK_RESCHED_OFFSETS	\
2187 	(PREEMPT_LOCK_OFFSET + (1U << MIGHT_RESCHED_RCU_SHIFT))
2188 #endif
2189 
2190 #define cond_resched_lock(lock) ({						\
2191 	__might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS);	\
2192 	__cond_resched_lock(lock);						\
2193 })
2194 
2195 #define cond_resched_rwlock_read(lock) ({					\
2196 	__might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS);	\
2197 	__cond_resched_rwlock_read(lock);					\
2198 })
2199 
2200 #define cond_resched_rwlock_write(lock) ({					\
2201 	__might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS);	\
2202 	__cond_resched_rwlock_write(lock);					\
2203 })
2204 
__force_blocked_on_runnable(struct task_struct * p)2205 static inline void __force_blocked_on_runnable(struct task_struct *p)
2206 {
2207 	lockdep_assert_held(&p->blocked_lock);
2208 	p->blocked_on_state = BO_RUNNABLE;
2209 }
2210 
force_blocked_on_runnable(struct task_struct * p)2211 static inline void force_blocked_on_runnable(struct task_struct *p)
2212 {
2213 	guard(raw_spinlock_irqsave)(&p->blocked_lock);
2214 	__force_blocked_on_runnable(p);
2215 }
2216 
__set_blocked_on_runnable(struct task_struct * p)2217 static inline void __set_blocked_on_runnable(struct task_struct *p)
2218 {
2219 	lockdep_assert_held(&p->blocked_lock);
2220 
2221 	if (p->blocked_on_state == BO_WAKING)
2222 		p->blocked_on_state = BO_RUNNABLE;
2223 }
2224 
set_blocked_on_runnable(struct task_struct * p)2225 static inline void set_blocked_on_runnable(struct task_struct *p)
2226 {
2227 	if (!sched_proxy_exec())
2228 		return;
2229 
2230 	guard(raw_spinlock_irqsave)(&p->blocked_lock);
2231 	__set_blocked_on_runnable(p);
2232 }
2233 
__set_blocked_on_waking(struct task_struct * p)2234 static inline void __set_blocked_on_waking(struct task_struct *p)
2235 {
2236 	lockdep_assert_held(&p->blocked_lock);
2237 
2238 	if (p->blocked_on_state == BO_BLOCKED)
2239 		p->blocked_on_state = BO_WAKING;
2240 }
2241 
__get_task_blocked_on(struct task_struct * p)2242 static inline struct mutex *__get_task_blocked_on(struct task_struct *p)
2243 {
2244 	lockdep_assert_held_once(&p->blocked_lock);
2245 	return p->blocked_on;
2246 }
2247 
2248 #ifndef CONFIG_PREEMPT_RT
set_blocked_on_waking_nested(struct task_struct * p,struct mutex * m)2249 static inline void set_blocked_on_waking_nested(struct task_struct *p, struct mutex *m)
2250 {
2251 	raw_spin_lock_nested(&p->blocked_lock, SINGLE_DEPTH_NESTING);
2252 	__set_blocked_on_waking(p);
2253 	raw_spin_unlock(&p->blocked_lock);
2254 }
2255 #else
set_blocked_on_waking_nested(struct task_struct * p,struct rt_mutex * m)2256 static inline void set_blocked_on_waking_nested(struct task_struct *p, struct rt_mutex *m)
2257 {
2258 	raw_spin_lock_nested(&p->blocked_lock, SINGLE_DEPTH_NESTING);
2259 	__set_blocked_on_waking(p);
2260 	raw_spin_unlock(&p->blocked_lock);
2261 }
2262 #endif
2263 
__set_task_blocked_on(struct task_struct * p,struct mutex * m)2264 static inline void __set_task_blocked_on(struct task_struct *p, struct mutex *m)
2265 {
2266 	WARN_ON_ONCE(!m);
2267 	/* The task should only be setting itself as blocked */
2268 	WARN_ON_ONCE(p != current);
2269 	/* Currently we serialize blocked_on under the task::blocked_lock */
2270 	lockdep_assert_held_once(&p->blocked_lock);
2271 	/*
2272 	 * Check ensure we don't overwrite existing mutex value
2273 	 * with a different mutex.
2274 	 */
2275 	WARN_ON_ONCE(p->blocked_on);
2276 	p->blocked_on = m;
2277 	p->blocked_on_state = BO_BLOCKED;
2278 }
2279 
__clear_task_blocked_on(struct task_struct * p,struct mutex * m)2280 static inline void __clear_task_blocked_on(struct task_struct *p, struct mutex *m)
2281 {
2282 	/* The task should only be clearing itself */
2283 	WARN_ON_ONCE(p != current);
2284 	/* Currently we serialize blocked_on under the task::blocked_lock */
2285 	lockdep_assert_held_once(&p->blocked_lock);
2286 	/* Make sure we are clearing the relationship with the right lock */
2287 	WARN_ON_ONCE(p->blocked_on != m);
2288 	p->blocked_on = NULL;
2289 	p->blocked_on_state = BO_RUNNABLE;
2290 }
2291 
need_resched(void)2292 static __always_inline bool need_resched(void)
2293 {
2294 	return unlikely(tif_need_resched());
2295 }
2296 
2297 /*
2298  * Wrappers for p->thread_info->cpu access. No-op on UP.
2299  */
2300 #ifdef CONFIG_SMP
2301 
task_cpu(const struct task_struct * p)2302 static inline unsigned int task_cpu(const struct task_struct *p)
2303 {
2304 	return READ_ONCE(task_thread_info(p)->cpu);
2305 }
2306 
2307 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2308 
2309 #else
2310 
task_cpu(const struct task_struct * p)2311 static inline unsigned int task_cpu(const struct task_struct *p)
2312 {
2313 	return 0;
2314 }
2315 
set_task_cpu(struct task_struct * p,unsigned int cpu)2316 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2317 {
2318 }
2319 
2320 #endif /* CONFIG_SMP */
2321 
task_is_runnable(struct task_struct * p)2322 static inline bool task_is_runnable(struct task_struct *p)
2323 {
2324 	return p->on_rq && !p->se.sched_delayed;
2325 }
2326 
2327 extern bool sched_task_on_rq(struct task_struct *p);
2328 extern unsigned long get_wchan(struct task_struct *p);
2329 extern struct task_struct *cpu_curr_snapshot(int cpu);
2330 
2331 /*
2332  * In order to reduce various lock holder preemption latencies provide an
2333  * interface to see if a vCPU is currently running or not.
2334  *
2335  * This allows us to terminate optimistic spin loops and block, analogous to
2336  * the native optimistic spin heuristic of testing if the lock owner task is
2337  * running or not.
2338  */
2339 #ifndef vcpu_is_preempted
vcpu_is_preempted(int cpu)2340 static inline bool vcpu_is_preempted(int cpu)
2341 {
2342 	return false;
2343 }
2344 #endif
2345 
2346 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2347 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2348 
2349 #ifndef TASK_SIZE_OF
2350 #define TASK_SIZE_OF(tsk)	TASK_SIZE
2351 #endif
2352 
2353 #ifdef CONFIG_SMP
owner_on_cpu(struct task_struct * owner)2354 static inline bool owner_on_cpu(struct task_struct *owner)
2355 {
2356 	/*
2357 	 * As lock holder preemption issue, we both skip spinning if
2358 	 * task is not on cpu or its cpu is preempted
2359 	 */
2360 	return READ_ONCE(owner->on_cpu) && !vcpu_is_preempted(task_cpu(owner));
2361 }
2362 
2363 /* Returns effective CPU energy utilization, as seen by the scheduler */
2364 unsigned long sched_cpu_util(int cpu);
2365 #endif /* CONFIG_SMP */
2366 
2367 #ifdef CONFIG_SCHED_CORE
2368 extern void sched_core_free(struct task_struct *tsk);
2369 extern void sched_core_fork(struct task_struct *p);
2370 extern int sched_core_share_pid(unsigned int cmd, pid_t pid, enum pid_type type,
2371 				unsigned long uaddr);
2372 extern int sched_core_idle_cpu(int cpu);
2373 #else
sched_core_free(struct task_struct * tsk)2374 static inline void sched_core_free(struct task_struct *tsk) { }
sched_core_fork(struct task_struct * p)2375 static inline void sched_core_fork(struct task_struct *p) { }
sched_core_idle_cpu(int cpu)2376 static inline int sched_core_idle_cpu(int cpu) { return idle_cpu(cpu); }
2377 #endif
2378 
2379 extern void sched_set_stop_task(int cpu, struct task_struct *stop);
2380 
2381 #ifdef CONFIG_MEM_ALLOC_PROFILING
alloc_tag_save(struct alloc_tag * tag)2382 static __always_inline struct alloc_tag *alloc_tag_save(struct alloc_tag *tag)
2383 {
2384 	swap(current->alloc_tag, tag);
2385 	return tag;
2386 }
2387 
alloc_tag_restore(struct alloc_tag * tag,struct alloc_tag * old)2388 static __always_inline void alloc_tag_restore(struct alloc_tag *tag, struct alloc_tag *old)
2389 {
2390 #ifdef CONFIG_MEM_ALLOC_PROFILING_DEBUG
2391 	WARN(current->alloc_tag != tag, "current->alloc_tag was changed:\n");
2392 #endif
2393 	current->alloc_tag = old;
2394 }
2395 #else
2396 #define alloc_tag_save(_tag)			NULL
2397 #define alloc_tag_restore(_tag, _old)		do {} while (0)
2398 #endif
2399 
2400 #endif
2401