1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 1999 Eric Youngdale
4 * Copyright (C) 2014 Christoph Hellwig
5 *
6 * SCSI queueing library.
7 * Initial versions: Eric Youngdale (eric@andante.org).
8 * Based upon conversations with large numbers
9 * of people at Linux Expo.
10 */
11
12 #include <linux/bio.h>
13 #include <linux/bitops.h>
14 #include <linux/blkdev.h>
15 #include <linux/completion.h>
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/init.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/hardirq.h>
22 #include <linux/scatterlist.h>
23 #include <linux/blk-mq.h>
24 #include <linux/blk-integrity.h>
25 #include <linux/ratelimit.h>
26 #include <linux/unaligned.h>
27
28 #include <scsi/scsi.h>
29 #include <scsi/scsi_cmnd.h>
30 #include <scsi/scsi_dbg.h>
31 #include <scsi/scsi_device.h>
32 #include <scsi/scsi_driver.h>
33 #include <scsi/scsi_eh.h>
34 #include <scsi/scsi_host.h>
35 #include <scsi/scsi_transport.h> /* scsi_init_limits() */
36 #include <scsi/scsi_dh.h>
37
38 #include <trace/events/scsi.h>
39
40 #include "scsi_debugfs.h"
41 #include "scsi_priv.h"
42 #include "scsi_logging.h"
43
44 /*
45 * Size of integrity metadata is usually small, 1 inline sg should
46 * cover normal cases.
47 */
48 #ifdef CONFIG_ARCH_NO_SG_CHAIN
49 #define SCSI_INLINE_PROT_SG_CNT 0
50 #define SCSI_INLINE_SG_CNT 0
51 #else
52 #define SCSI_INLINE_PROT_SG_CNT 1
53 #define SCSI_INLINE_SG_CNT 2
54 #endif
55
56 EXPORT_TRACEPOINT_SYMBOL_GPL(scsi_dispatch_cmd_start);
57 EXPORT_TRACEPOINT_SYMBOL_GPL(scsi_dispatch_cmd_done);
58
59 static struct kmem_cache *scsi_sense_cache;
60 static DEFINE_MUTEX(scsi_sense_cache_mutex);
61
62 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd);
63
scsi_init_sense_cache(struct Scsi_Host * shost)64 int scsi_init_sense_cache(struct Scsi_Host *shost)
65 {
66 int ret = 0;
67
68 mutex_lock(&scsi_sense_cache_mutex);
69 if (!scsi_sense_cache) {
70 scsi_sense_cache =
71 kmem_cache_create_usercopy("scsi_sense_cache",
72 SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN,
73 0, SCSI_SENSE_BUFFERSIZE, NULL);
74 if (!scsi_sense_cache)
75 ret = -ENOMEM;
76 }
77 mutex_unlock(&scsi_sense_cache_mutex);
78 return ret;
79 }
80
81 static void
scsi_set_blocked(struct scsi_cmnd * cmd,int reason)82 scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
83 {
84 struct Scsi_Host *host = cmd->device->host;
85 struct scsi_device *device = cmd->device;
86 struct scsi_target *starget = scsi_target(device);
87
88 /*
89 * Set the appropriate busy bit for the device/host.
90 *
91 * If the host/device isn't busy, assume that something actually
92 * completed, and that we should be able to queue a command now.
93 *
94 * Note that the prior mid-layer assumption that any host could
95 * always queue at least one command is now broken. The mid-layer
96 * will implement a user specifiable stall (see
97 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
98 * if a command is requeued with no other commands outstanding
99 * either for the device or for the host.
100 */
101 switch (reason) {
102 case SCSI_MLQUEUE_HOST_BUSY:
103 atomic_set(&host->host_blocked, host->max_host_blocked);
104 break;
105 case SCSI_MLQUEUE_DEVICE_BUSY:
106 case SCSI_MLQUEUE_EH_RETRY:
107 atomic_set(&device->device_blocked,
108 device->max_device_blocked);
109 break;
110 case SCSI_MLQUEUE_TARGET_BUSY:
111 atomic_set(&starget->target_blocked,
112 starget->max_target_blocked);
113 break;
114 }
115 }
116
scsi_mq_requeue_cmd(struct scsi_cmnd * cmd,unsigned long msecs)117 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd, unsigned long msecs)
118 {
119 struct request *rq = scsi_cmd_to_rq(cmd);
120
121 if (rq->rq_flags & RQF_DONTPREP) {
122 rq->rq_flags &= ~RQF_DONTPREP;
123 scsi_mq_uninit_cmd(cmd);
124 } else {
125 WARN_ON_ONCE(true);
126 }
127
128 blk_mq_requeue_request(rq, false);
129 if (!scsi_host_in_recovery(cmd->device->host))
130 blk_mq_delay_kick_requeue_list(rq->q, msecs);
131 }
132
133 /**
134 * __scsi_queue_insert - private queue insertion
135 * @cmd: The SCSI command being requeued
136 * @reason: The reason for the requeue
137 * @unbusy: Whether the queue should be unbusied
138 *
139 * This is a private queue insertion. The public interface
140 * scsi_queue_insert() always assumes the queue should be unbusied
141 * because it's always called before the completion. This function is
142 * for a requeue after completion, which should only occur in this
143 * file.
144 */
__scsi_queue_insert(struct scsi_cmnd * cmd,int reason,bool unbusy)145 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy)
146 {
147 struct scsi_device *device = cmd->device;
148
149 SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
150 "Inserting command %p into mlqueue\n", cmd));
151
152 scsi_set_blocked(cmd, reason);
153
154 /*
155 * Decrement the counters, since these commands are no longer
156 * active on the host/device.
157 */
158 if (unbusy)
159 scsi_device_unbusy(device, cmd);
160
161 /*
162 * Requeue this command. It will go before all other commands
163 * that are already in the queue. Schedule requeue work under
164 * lock such that the kblockd_schedule_work() call happens
165 * before blk_mq_destroy_queue() finishes.
166 */
167 cmd->result = 0;
168
169 blk_mq_requeue_request(scsi_cmd_to_rq(cmd),
170 !scsi_host_in_recovery(cmd->device->host));
171 }
172
173 /**
174 * scsi_queue_insert - Reinsert a command in the queue.
175 * @cmd: command that we are adding to queue.
176 * @reason: why we are inserting command to queue.
177 *
178 * We do this for one of two cases. Either the host is busy and it cannot accept
179 * any more commands for the time being, or the device returned QUEUE_FULL and
180 * can accept no more commands.
181 *
182 * Context: This could be called either from an interrupt context or a normal
183 * process context.
184 */
scsi_queue_insert(struct scsi_cmnd * cmd,int reason)185 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
186 {
187 __scsi_queue_insert(cmd, reason, true);
188 }
189
scsi_failures_reset_retries(struct scsi_failures * failures)190 void scsi_failures_reset_retries(struct scsi_failures *failures)
191 {
192 struct scsi_failure *failure;
193
194 failures->total_retries = 0;
195
196 for (failure = failures->failure_definitions; failure->result;
197 failure++)
198 failure->retries = 0;
199 }
200 EXPORT_SYMBOL_GPL(scsi_failures_reset_retries);
201
202 /**
203 * scsi_check_passthrough - Determine if passthrough scsi_cmnd needs a retry.
204 * @scmd: scsi_cmnd to check.
205 * @failures: scsi_failures struct that lists failures to check for.
206 *
207 * Returns -EAGAIN if the caller should retry else 0.
208 */
scsi_check_passthrough(struct scsi_cmnd * scmd,struct scsi_failures * failures)209 static int scsi_check_passthrough(struct scsi_cmnd *scmd,
210 struct scsi_failures *failures)
211 {
212 struct scsi_failure *failure;
213 struct scsi_sense_hdr sshdr;
214 enum sam_status status;
215
216 if (!scmd->result)
217 return 0;
218
219 if (!failures)
220 return 0;
221
222 for (failure = failures->failure_definitions; failure->result;
223 failure++) {
224 if (failure->result == SCMD_FAILURE_RESULT_ANY)
225 goto maybe_retry;
226
227 if (host_byte(scmd->result) &&
228 host_byte(scmd->result) == host_byte(failure->result))
229 goto maybe_retry;
230
231 status = status_byte(scmd->result);
232 if (!status)
233 continue;
234
235 if (failure->result == SCMD_FAILURE_STAT_ANY &&
236 !scsi_status_is_good(scmd->result))
237 goto maybe_retry;
238
239 if (status != status_byte(failure->result))
240 continue;
241
242 if (status_byte(failure->result) != SAM_STAT_CHECK_CONDITION ||
243 failure->sense == SCMD_FAILURE_SENSE_ANY)
244 goto maybe_retry;
245
246 if (!scsi_command_normalize_sense(scmd, &sshdr))
247 return 0;
248
249 if (failure->sense != sshdr.sense_key)
250 continue;
251
252 if (failure->asc == SCMD_FAILURE_ASC_ANY)
253 goto maybe_retry;
254
255 if (failure->asc != sshdr.asc)
256 continue;
257
258 if (failure->ascq == SCMD_FAILURE_ASCQ_ANY ||
259 failure->ascq == sshdr.ascq)
260 goto maybe_retry;
261 }
262
263 return 0;
264
265 maybe_retry:
266 if (failure->allowed) {
267 if (failure->allowed == SCMD_FAILURE_NO_LIMIT ||
268 ++failure->retries <= failure->allowed)
269 return -EAGAIN;
270 } else {
271 if (failures->total_allowed == SCMD_FAILURE_NO_LIMIT ||
272 ++failures->total_retries <= failures->total_allowed)
273 return -EAGAIN;
274 }
275
276 return 0;
277 }
278
279 /**
280 * scsi_execute_cmd - insert request and wait for the result
281 * @sdev: scsi_device
282 * @cmd: scsi command
283 * @opf: block layer request cmd_flags
284 * @buffer: data buffer
285 * @bufflen: len of buffer
286 * @timeout: request timeout in HZ
287 * @ml_retries: number of times SCSI midlayer will retry request
288 * @args: Optional args. See struct definition for field descriptions
289 *
290 * Returns the scsi_cmnd result field if a command was executed, or a negative
291 * Linux error code if we didn't get that far.
292 */
scsi_execute_cmd(struct scsi_device * sdev,const unsigned char * cmd,blk_opf_t opf,void * buffer,unsigned int bufflen,int timeout,int ml_retries,const struct scsi_exec_args * args)293 int scsi_execute_cmd(struct scsi_device *sdev, const unsigned char *cmd,
294 blk_opf_t opf, void *buffer, unsigned int bufflen,
295 int timeout, int ml_retries,
296 const struct scsi_exec_args *args)
297 {
298 static const struct scsi_exec_args default_args;
299 struct request *req;
300 struct scsi_cmnd *scmd;
301 int ret;
302
303 if (!args)
304 args = &default_args;
305 else if (WARN_ON_ONCE(args->sense &&
306 args->sense_len != SCSI_SENSE_BUFFERSIZE))
307 return -EINVAL;
308
309 retry:
310 req = scsi_alloc_request(sdev->request_queue, opf, args->req_flags);
311 if (IS_ERR(req))
312 return PTR_ERR(req);
313
314 if (bufflen) {
315 ret = blk_rq_map_kern(sdev->request_queue, req,
316 buffer, bufflen, GFP_NOIO);
317 if (ret)
318 goto out;
319 }
320 scmd = blk_mq_rq_to_pdu(req);
321 scmd->cmd_len = COMMAND_SIZE(cmd[0]);
322 memcpy(scmd->cmnd, cmd, scmd->cmd_len);
323 scmd->allowed = ml_retries;
324 scmd->flags |= args->scmd_flags;
325 req->timeout = timeout;
326 req->rq_flags |= RQF_QUIET;
327
328 /*
329 * head injection *required* here otherwise quiesce won't work
330 */
331 blk_execute_rq(req, true);
332
333 if (scsi_check_passthrough(scmd, args->failures) == -EAGAIN) {
334 blk_mq_free_request(req);
335 goto retry;
336 }
337
338 /*
339 * Some devices (USB mass-storage in particular) may transfer
340 * garbage data together with a residue indicating that the data
341 * is invalid. Prevent the garbage from being misinterpreted
342 * and prevent security leaks by zeroing out the excess data.
343 */
344 if (unlikely(scmd->resid_len > 0 && scmd->resid_len <= bufflen))
345 memset(buffer + bufflen - scmd->resid_len, 0, scmd->resid_len);
346
347 if (args->resid)
348 *args->resid = scmd->resid_len;
349 if (args->sense)
350 memcpy(args->sense, scmd->sense_buffer, SCSI_SENSE_BUFFERSIZE);
351 if (args->sshdr)
352 scsi_normalize_sense(scmd->sense_buffer, scmd->sense_len,
353 args->sshdr);
354
355 ret = scmd->result;
356 out:
357 blk_mq_free_request(req);
358
359 return ret;
360 }
361 EXPORT_SYMBOL(scsi_execute_cmd);
362
363 /*
364 * Wake up the error handler if necessary. Avoid as follows that the error
365 * handler is not woken up if host in-flight requests number ==
366 * shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination
367 * with an RCU read lock in this function to ensure that this function in
368 * its entirety either finishes before scsi_eh_scmd_add() increases the
369 * host_failed counter or that it notices the shost state change made by
370 * scsi_eh_scmd_add().
371 */
scsi_dec_host_busy(struct Scsi_Host * shost,struct scsi_cmnd * cmd)372 static void scsi_dec_host_busy(struct Scsi_Host *shost, struct scsi_cmnd *cmd)
373 {
374 unsigned long flags;
375
376 rcu_read_lock();
377 __clear_bit(SCMD_STATE_INFLIGHT, &cmd->state);
378 if (unlikely(scsi_host_in_recovery(shost))) {
379 unsigned int busy = scsi_host_busy(shost);
380
381 spin_lock_irqsave(shost->host_lock, flags);
382 if (shost->host_failed || shost->host_eh_scheduled)
383 scsi_eh_wakeup(shost, busy);
384 spin_unlock_irqrestore(shost->host_lock, flags);
385 }
386 rcu_read_unlock();
387 }
388
scsi_device_unbusy(struct scsi_device * sdev,struct scsi_cmnd * cmd)389 void scsi_device_unbusy(struct scsi_device *sdev, struct scsi_cmnd *cmd)
390 {
391 struct Scsi_Host *shost = sdev->host;
392 struct scsi_target *starget = scsi_target(sdev);
393
394 WARN_ON_ONCE(cmd->budget_token < 0);
395
396 scsi_dec_host_busy(shost, cmd);
397
398 if (starget->can_queue > 0)
399 atomic_dec(&starget->target_busy);
400
401 sbitmap_put(&sdev->budget_map, cmd->budget_token);
402 cmd->budget_token = -1;
403 }
404
405 /*
406 * Kick the queue of SCSI device @sdev if @sdev != current_sdev. Called with
407 * interrupts disabled.
408 */
scsi_kick_sdev_queue(struct scsi_device * sdev,void * data)409 static void scsi_kick_sdev_queue(struct scsi_device *sdev, void *data)
410 {
411 struct scsi_device *current_sdev = data;
412
413 if (sdev != current_sdev)
414 blk_mq_run_hw_queues(sdev->request_queue, true);
415 }
416
417 /*
418 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
419 * and call blk_run_queue for all the scsi_devices on the target -
420 * including current_sdev first.
421 *
422 * Called with *no* scsi locks held.
423 */
scsi_single_lun_run(struct scsi_device * current_sdev)424 static void scsi_single_lun_run(struct scsi_device *current_sdev)
425 {
426 struct Scsi_Host *shost = current_sdev->host;
427 struct scsi_target *starget = scsi_target(current_sdev);
428 unsigned long flags;
429
430 spin_lock_irqsave(shost->host_lock, flags);
431 starget->starget_sdev_user = NULL;
432 spin_unlock_irqrestore(shost->host_lock, flags);
433
434 /*
435 * Call blk_run_queue for all LUNs on the target, starting with
436 * current_sdev. We race with others (to set starget_sdev_user),
437 * but in most cases, we will be first. Ideally, each LU on the
438 * target would get some limited time or requests on the target.
439 */
440 blk_mq_run_hw_queues(current_sdev->request_queue,
441 shost->queuecommand_may_block);
442
443 spin_lock_irqsave(shost->host_lock, flags);
444 if (!starget->starget_sdev_user)
445 __starget_for_each_device(starget, current_sdev,
446 scsi_kick_sdev_queue);
447 spin_unlock_irqrestore(shost->host_lock, flags);
448 }
449
scsi_device_is_busy(struct scsi_device * sdev)450 static inline bool scsi_device_is_busy(struct scsi_device *sdev)
451 {
452 if (scsi_device_busy(sdev) >= sdev->queue_depth)
453 return true;
454 if (atomic_read(&sdev->device_blocked) > 0)
455 return true;
456 return false;
457 }
458
scsi_target_is_busy(struct scsi_target * starget)459 static inline bool scsi_target_is_busy(struct scsi_target *starget)
460 {
461 if (starget->can_queue > 0) {
462 if (atomic_read(&starget->target_busy) >= starget->can_queue)
463 return true;
464 if (atomic_read(&starget->target_blocked) > 0)
465 return true;
466 }
467 return false;
468 }
469
scsi_host_is_busy(struct Scsi_Host * shost)470 static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
471 {
472 if (atomic_read(&shost->host_blocked) > 0)
473 return true;
474 if (shost->host_self_blocked)
475 return true;
476 return false;
477 }
478
scsi_starved_list_run(struct Scsi_Host * shost)479 static void scsi_starved_list_run(struct Scsi_Host *shost)
480 {
481 LIST_HEAD(starved_list);
482 struct scsi_device *sdev;
483 unsigned long flags;
484
485 spin_lock_irqsave(shost->host_lock, flags);
486 list_splice_init(&shost->starved_list, &starved_list);
487
488 while (!list_empty(&starved_list)) {
489 struct request_queue *slq;
490
491 /*
492 * As long as shost is accepting commands and we have
493 * starved queues, call blk_run_queue. scsi_request_fn
494 * drops the queue_lock and can add us back to the
495 * starved_list.
496 *
497 * host_lock protects the starved_list and starved_entry.
498 * scsi_request_fn must get the host_lock before checking
499 * or modifying starved_list or starved_entry.
500 */
501 if (scsi_host_is_busy(shost))
502 break;
503
504 sdev = list_entry(starved_list.next,
505 struct scsi_device, starved_entry);
506 list_del_init(&sdev->starved_entry);
507 if (scsi_target_is_busy(scsi_target(sdev))) {
508 list_move_tail(&sdev->starved_entry,
509 &shost->starved_list);
510 continue;
511 }
512
513 /*
514 * Once we drop the host lock, a racing scsi_remove_device()
515 * call may remove the sdev from the starved list and destroy
516 * it and the queue. Mitigate by taking a reference to the
517 * queue and never touching the sdev again after we drop the
518 * host lock. Note: if __scsi_remove_device() invokes
519 * blk_mq_destroy_queue() before the queue is run from this
520 * function then blk_run_queue() will return immediately since
521 * blk_mq_destroy_queue() marks the queue with QUEUE_FLAG_DYING.
522 */
523 slq = sdev->request_queue;
524 if (!blk_get_queue(slq))
525 continue;
526 spin_unlock_irqrestore(shost->host_lock, flags);
527
528 blk_mq_run_hw_queues(slq, false);
529 blk_put_queue(slq);
530
531 spin_lock_irqsave(shost->host_lock, flags);
532 }
533 /* put any unprocessed entries back */
534 list_splice(&starved_list, &shost->starved_list);
535 spin_unlock_irqrestore(shost->host_lock, flags);
536 }
537
538 /**
539 * scsi_run_queue - Select a proper request queue to serve next.
540 * @q: last request's queue
541 *
542 * The previous command was completely finished, start a new one if possible.
543 */
scsi_run_queue(struct request_queue * q)544 static void scsi_run_queue(struct request_queue *q)
545 {
546 struct scsi_device *sdev = q->queuedata;
547
548 if (scsi_target(sdev)->single_lun)
549 scsi_single_lun_run(sdev);
550 if (!list_empty(&sdev->host->starved_list))
551 scsi_starved_list_run(sdev->host);
552
553 /* Note: blk_mq_kick_requeue_list() runs the queue asynchronously. */
554 blk_mq_kick_requeue_list(q);
555 }
556
scsi_requeue_run_queue(struct work_struct * work)557 void scsi_requeue_run_queue(struct work_struct *work)
558 {
559 struct scsi_device *sdev;
560 struct request_queue *q;
561
562 sdev = container_of(work, struct scsi_device, requeue_work);
563 q = sdev->request_queue;
564 scsi_run_queue(q);
565 }
566
scsi_run_host_queues(struct Scsi_Host * shost)567 void scsi_run_host_queues(struct Scsi_Host *shost)
568 {
569 struct scsi_device *sdev;
570
571 shost_for_each_device(sdev, shost)
572 scsi_run_queue(sdev->request_queue);
573 }
574
scsi_uninit_cmd(struct scsi_cmnd * cmd)575 static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
576 {
577 if (!blk_rq_is_passthrough(scsi_cmd_to_rq(cmd))) {
578 struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
579
580 if (drv->uninit_command)
581 drv->uninit_command(cmd);
582 }
583 }
584
scsi_free_sgtables(struct scsi_cmnd * cmd)585 void scsi_free_sgtables(struct scsi_cmnd *cmd)
586 {
587 if (cmd->sdb.table.nents)
588 sg_free_table_chained(&cmd->sdb.table,
589 SCSI_INLINE_SG_CNT);
590 if (scsi_prot_sg_count(cmd))
591 sg_free_table_chained(&cmd->prot_sdb->table,
592 SCSI_INLINE_PROT_SG_CNT);
593 }
594 EXPORT_SYMBOL_GPL(scsi_free_sgtables);
595
scsi_mq_uninit_cmd(struct scsi_cmnd * cmd)596 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
597 {
598 scsi_free_sgtables(cmd);
599 scsi_uninit_cmd(cmd);
600 }
601
scsi_run_queue_async(struct scsi_device * sdev)602 static void scsi_run_queue_async(struct scsi_device *sdev)
603 {
604 if (scsi_host_in_recovery(sdev->host))
605 return;
606
607 if (scsi_target(sdev)->single_lun ||
608 !list_empty(&sdev->host->starved_list)) {
609 kblockd_schedule_work(&sdev->requeue_work);
610 } else {
611 /*
612 * smp_mb() present in sbitmap_queue_clear() or implied in
613 * .end_io is for ordering writing .device_busy in
614 * scsi_device_unbusy() and reading sdev->restarts.
615 */
616 int old = atomic_read(&sdev->restarts);
617
618 /*
619 * ->restarts has to be kept as non-zero if new budget
620 * contention occurs.
621 *
622 * No need to run queue when either another re-run
623 * queue wins in updating ->restarts or a new budget
624 * contention occurs.
625 */
626 if (old && atomic_cmpxchg(&sdev->restarts, old, 0) == old)
627 blk_mq_run_hw_queues(sdev->request_queue, true);
628 }
629 }
630
631 /* Returns false when no more bytes to process, true if there are more */
scsi_end_request(struct request * req,blk_status_t error,unsigned int bytes)632 static bool scsi_end_request(struct request *req, blk_status_t error,
633 unsigned int bytes)
634 {
635 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
636 struct scsi_device *sdev = cmd->device;
637 struct request_queue *q = sdev->request_queue;
638
639 if (blk_update_request(req, error, bytes))
640 return true;
641
642 if (q->limits.features & BLK_FEAT_ADD_RANDOM)
643 add_disk_randomness(req->q->disk);
644
645 WARN_ON_ONCE(!blk_rq_is_passthrough(req) &&
646 !(cmd->flags & SCMD_INITIALIZED));
647 cmd->flags = 0;
648
649 /*
650 * Calling rcu_barrier() is not necessary here because the
651 * SCSI error handler guarantees that the function called by
652 * call_rcu() has been called before scsi_end_request() is
653 * called.
654 */
655 destroy_rcu_head(&cmd->rcu);
656
657 /*
658 * In the MQ case the command gets freed by __blk_mq_end_request,
659 * so we have to do all cleanup that depends on it earlier.
660 *
661 * We also can't kick the queues from irq context, so we
662 * will have to defer it to a workqueue.
663 */
664 scsi_mq_uninit_cmd(cmd);
665
666 /*
667 * queue is still alive, so grab the ref for preventing it
668 * from being cleaned up during running queue.
669 */
670 percpu_ref_get(&q->q_usage_counter);
671
672 __blk_mq_end_request(req, error);
673
674 scsi_run_queue_async(sdev);
675
676 percpu_ref_put(&q->q_usage_counter);
677 return false;
678 }
679
680 /**
681 * scsi_result_to_blk_status - translate a SCSI result code into blk_status_t
682 * @result: scsi error code
683 *
684 * Translate a SCSI result code into a blk_status_t value.
685 */
scsi_result_to_blk_status(int result)686 static blk_status_t scsi_result_to_blk_status(int result)
687 {
688 /*
689 * Check the scsi-ml byte first in case we converted a host or status
690 * byte.
691 */
692 switch (scsi_ml_byte(result)) {
693 case SCSIML_STAT_OK:
694 break;
695 case SCSIML_STAT_RESV_CONFLICT:
696 return BLK_STS_RESV_CONFLICT;
697 case SCSIML_STAT_NOSPC:
698 return BLK_STS_NOSPC;
699 case SCSIML_STAT_MED_ERROR:
700 return BLK_STS_MEDIUM;
701 case SCSIML_STAT_TGT_FAILURE:
702 return BLK_STS_TARGET;
703 case SCSIML_STAT_DL_TIMEOUT:
704 return BLK_STS_DURATION_LIMIT;
705 }
706
707 switch (host_byte(result)) {
708 case DID_OK:
709 if (scsi_status_is_good(result))
710 return BLK_STS_OK;
711 return BLK_STS_IOERR;
712 case DID_TRANSPORT_FAILFAST:
713 case DID_TRANSPORT_MARGINAL:
714 return BLK_STS_TRANSPORT;
715 default:
716 return BLK_STS_IOERR;
717 }
718 }
719
720 /**
721 * scsi_rq_err_bytes - determine number of bytes till the next failure boundary
722 * @rq: request to examine
723 *
724 * Description:
725 * A request could be merge of IOs which require different failure
726 * handling. This function determines the number of bytes which
727 * can be failed from the beginning of the request without
728 * crossing into area which need to be retried further.
729 *
730 * Return:
731 * The number of bytes to fail.
732 */
scsi_rq_err_bytes(const struct request * rq)733 static unsigned int scsi_rq_err_bytes(const struct request *rq)
734 {
735 blk_opf_t ff = rq->cmd_flags & REQ_FAILFAST_MASK;
736 unsigned int bytes = 0;
737 struct bio *bio;
738
739 if (!(rq->rq_flags & RQF_MIXED_MERGE))
740 return blk_rq_bytes(rq);
741
742 /*
743 * Currently the only 'mixing' which can happen is between
744 * different fastfail types. We can safely fail portions
745 * which have all the failfast bits that the first one has -
746 * the ones which are at least as eager to fail as the first
747 * one.
748 */
749 for (bio = rq->bio; bio; bio = bio->bi_next) {
750 if ((bio->bi_opf & ff) != ff)
751 break;
752 bytes += bio->bi_iter.bi_size;
753 }
754
755 /* this could lead to infinite loop */
756 BUG_ON(blk_rq_bytes(rq) && !bytes);
757 return bytes;
758 }
759
scsi_cmd_runtime_exceeced(struct scsi_cmnd * cmd)760 static bool scsi_cmd_runtime_exceeced(struct scsi_cmnd *cmd)
761 {
762 struct request *req = scsi_cmd_to_rq(cmd);
763 unsigned long wait_for;
764
765 if (cmd->allowed == SCSI_CMD_RETRIES_NO_LIMIT)
766 return false;
767
768 wait_for = (cmd->allowed + 1) * req->timeout;
769 if (time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
770 scmd_printk(KERN_ERR, cmd, "timing out command, waited %lus\n",
771 wait_for/HZ);
772 return true;
773 }
774 return false;
775 }
776
777 /*
778 * When ALUA transition state is returned, reprep the cmd to
779 * use the ALUA handler's transition timeout. Delay the reprep
780 * 1 sec to avoid aggressive retries of the target in that
781 * state.
782 */
783 #define ALUA_TRANSITION_REPREP_DELAY 1000
784
785 /* Helper for scsi_io_completion() when special action required. */
scsi_io_completion_action(struct scsi_cmnd * cmd,int result)786 static void scsi_io_completion_action(struct scsi_cmnd *cmd, int result)
787 {
788 struct request *req = scsi_cmd_to_rq(cmd);
789 int level = 0;
790 enum {ACTION_FAIL, ACTION_REPREP, ACTION_DELAYED_REPREP,
791 ACTION_RETRY, ACTION_DELAYED_RETRY} action;
792 struct scsi_sense_hdr sshdr;
793 bool sense_valid;
794 bool sense_current = true; /* false implies "deferred sense" */
795 blk_status_t blk_stat;
796
797 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
798 if (sense_valid)
799 sense_current = !scsi_sense_is_deferred(&sshdr);
800
801 blk_stat = scsi_result_to_blk_status(result);
802
803 if (host_byte(result) == DID_RESET) {
804 /* Third party bus reset or reset for error recovery
805 * reasons. Just retry the command and see what
806 * happens.
807 */
808 action = ACTION_RETRY;
809 } else if (sense_valid && sense_current) {
810 switch (sshdr.sense_key) {
811 case UNIT_ATTENTION:
812 if (cmd->device->removable) {
813 /* Detected disc change. Set a bit
814 * and quietly refuse further access.
815 */
816 cmd->device->changed = 1;
817 action = ACTION_FAIL;
818 } else {
819 /* Must have been a power glitch, or a
820 * bus reset. Could not have been a
821 * media change, so we just retry the
822 * command and see what happens.
823 */
824 action = ACTION_RETRY;
825 }
826 break;
827 case ILLEGAL_REQUEST:
828 /* If we had an ILLEGAL REQUEST returned, then
829 * we may have performed an unsupported
830 * command. The only thing this should be
831 * would be a ten byte read where only a six
832 * byte read was supported. Also, on a system
833 * where READ CAPACITY failed, we may have
834 * read past the end of the disk.
835 */
836 if ((cmd->device->use_10_for_rw &&
837 sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
838 (cmd->cmnd[0] == READ_10 ||
839 cmd->cmnd[0] == WRITE_10)) {
840 /* This will issue a new 6-byte command. */
841 cmd->device->use_10_for_rw = 0;
842 action = ACTION_REPREP;
843 } else if (sshdr.asc == 0x10) /* DIX */ {
844 action = ACTION_FAIL;
845 blk_stat = BLK_STS_PROTECTION;
846 /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
847 } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
848 action = ACTION_FAIL;
849 blk_stat = BLK_STS_TARGET;
850 } else
851 action = ACTION_FAIL;
852 break;
853 case ABORTED_COMMAND:
854 action = ACTION_FAIL;
855 if (sshdr.asc == 0x10) /* DIF */
856 blk_stat = BLK_STS_PROTECTION;
857 break;
858 case NOT_READY:
859 /* If the device is in the process of becoming
860 * ready, or has a temporary blockage, retry.
861 */
862 if (sshdr.asc == 0x04) {
863 switch (sshdr.ascq) {
864 case 0x01: /* becoming ready */
865 case 0x04: /* format in progress */
866 case 0x05: /* rebuild in progress */
867 case 0x06: /* recalculation in progress */
868 case 0x07: /* operation in progress */
869 case 0x08: /* Long write in progress */
870 case 0x09: /* self test in progress */
871 case 0x11: /* notify (enable spinup) required */
872 case 0x14: /* space allocation in progress */
873 case 0x1a: /* start stop unit in progress */
874 case 0x1b: /* sanitize in progress */
875 case 0x1d: /* configuration in progress */
876 action = ACTION_DELAYED_RETRY;
877 break;
878 case 0x0a: /* ALUA state transition */
879 action = ACTION_DELAYED_REPREP;
880 break;
881 /*
882 * Depopulation might take many hours,
883 * thus it is not worthwhile to retry.
884 */
885 case 0x24: /* depopulation in progress */
886 case 0x25: /* depopulation restore in progress */
887 fallthrough;
888 default:
889 action = ACTION_FAIL;
890 break;
891 }
892 } else
893 action = ACTION_FAIL;
894 break;
895 case VOLUME_OVERFLOW:
896 /* See SSC3rXX or current. */
897 action = ACTION_FAIL;
898 break;
899 case DATA_PROTECT:
900 action = ACTION_FAIL;
901 if ((sshdr.asc == 0x0C && sshdr.ascq == 0x12) ||
902 (sshdr.asc == 0x55 &&
903 (sshdr.ascq == 0x0E || sshdr.ascq == 0x0F))) {
904 /* Insufficient zone resources */
905 blk_stat = BLK_STS_ZONE_OPEN_RESOURCE;
906 }
907 break;
908 case COMPLETED:
909 fallthrough;
910 default:
911 action = ACTION_FAIL;
912 break;
913 }
914 } else
915 action = ACTION_FAIL;
916
917 if (action != ACTION_FAIL && scsi_cmd_runtime_exceeced(cmd))
918 action = ACTION_FAIL;
919
920 switch (action) {
921 case ACTION_FAIL:
922 /* Give up and fail the remainder of the request */
923 if (!(req->rq_flags & RQF_QUIET)) {
924 static DEFINE_RATELIMIT_STATE(_rs,
925 DEFAULT_RATELIMIT_INTERVAL,
926 DEFAULT_RATELIMIT_BURST);
927
928 if (unlikely(scsi_logging_level))
929 level =
930 SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
931 SCSI_LOG_MLCOMPLETE_BITS);
932
933 /*
934 * if logging is enabled the failure will be printed
935 * in scsi_log_completion(), so avoid duplicate messages
936 */
937 if (!level && __ratelimit(&_rs)) {
938 scsi_print_result(cmd, NULL, FAILED);
939 if (sense_valid)
940 scsi_print_sense(cmd);
941 scsi_print_command(cmd);
942 }
943 }
944 if (!scsi_end_request(req, blk_stat, scsi_rq_err_bytes(req)))
945 return;
946 fallthrough;
947 case ACTION_REPREP:
948 scsi_mq_requeue_cmd(cmd, 0);
949 break;
950 case ACTION_DELAYED_REPREP:
951 scsi_mq_requeue_cmd(cmd, ALUA_TRANSITION_REPREP_DELAY);
952 break;
953 case ACTION_RETRY:
954 /* Retry the same command immediately */
955 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false);
956 break;
957 case ACTION_DELAYED_RETRY:
958 /* Retry the same command after a delay */
959 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false);
960 break;
961 }
962 }
963
964 /*
965 * Helper for scsi_io_completion() when cmd->result is non-zero. Returns a
966 * new result that may suppress further error checking. Also modifies
967 * *blk_statp in some cases.
968 */
scsi_io_completion_nz_result(struct scsi_cmnd * cmd,int result,blk_status_t * blk_statp)969 static int scsi_io_completion_nz_result(struct scsi_cmnd *cmd, int result,
970 blk_status_t *blk_statp)
971 {
972 bool sense_valid;
973 bool sense_current = true; /* false implies "deferred sense" */
974 struct request *req = scsi_cmd_to_rq(cmd);
975 struct scsi_sense_hdr sshdr;
976
977 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
978 if (sense_valid)
979 sense_current = !scsi_sense_is_deferred(&sshdr);
980
981 if (blk_rq_is_passthrough(req)) {
982 if (sense_valid) {
983 /*
984 * SG_IO wants current and deferred errors
985 */
986 cmd->sense_len = min(8 + cmd->sense_buffer[7],
987 SCSI_SENSE_BUFFERSIZE);
988 }
989 if (sense_current)
990 *blk_statp = scsi_result_to_blk_status(result);
991 } else if (blk_rq_bytes(req) == 0 && sense_current) {
992 /*
993 * Flush commands do not transfers any data, and thus cannot use
994 * good_bytes != blk_rq_bytes(req) as the signal for an error.
995 * This sets *blk_statp explicitly for the problem case.
996 */
997 *blk_statp = scsi_result_to_blk_status(result);
998 }
999 /*
1000 * Recovered errors need reporting, but they're always treated as
1001 * success, so fiddle the result code here. For passthrough requests
1002 * we already took a copy of the original into sreq->result which
1003 * is what gets returned to the user
1004 */
1005 if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
1006 bool do_print = true;
1007 /*
1008 * if ATA PASS-THROUGH INFORMATION AVAILABLE [0x0, 0x1d]
1009 * skip print since caller wants ATA registers. Only occurs
1010 * on SCSI ATA PASS_THROUGH commands when CK_COND=1
1011 */
1012 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
1013 do_print = false;
1014 else if (req->rq_flags & RQF_QUIET)
1015 do_print = false;
1016 if (do_print)
1017 scsi_print_sense(cmd);
1018 result = 0;
1019 /* for passthrough, *blk_statp may be set */
1020 *blk_statp = BLK_STS_OK;
1021 }
1022 /*
1023 * Another corner case: the SCSI status byte is non-zero but 'good'.
1024 * Example: PRE-FETCH command returns SAM_STAT_CONDITION_MET when
1025 * it is able to fit nominated LBs in its cache (and SAM_STAT_GOOD
1026 * if it can't fit). Treat SAM_STAT_CONDITION_MET and the related
1027 * intermediate statuses (both obsolete in SAM-4) as good.
1028 */
1029 if ((result & 0xff) && scsi_status_is_good(result)) {
1030 result = 0;
1031 *blk_statp = BLK_STS_OK;
1032 }
1033 return result;
1034 }
1035
1036 /**
1037 * scsi_io_completion - Completion processing for SCSI commands.
1038 * @cmd: command that is finished.
1039 * @good_bytes: number of processed bytes.
1040 *
1041 * We will finish off the specified number of sectors. If we are done, the
1042 * command block will be released and the queue function will be goosed. If we
1043 * are not done then we have to figure out what to do next:
1044 *
1045 * a) We can call scsi_mq_requeue_cmd(). The request will be
1046 * unprepared and put back on the queue. Then a new command will
1047 * be created for it. This should be used if we made forward
1048 * progress, or if we want to switch from READ(10) to READ(6) for
1049 * example.
1050 *
1051 * b) We can call scsi_io_completion_action(). The request will be
1052 * put back on the queue and retried using the same command as
1053 * before, possibly after a delay.
1054 *
1055 * c) We can call scsi_end_request() with blk_stat other than
1056 * BLK_STS_OK, to fail the remainder of the request.
1057 */
scsi_io_completion(struct scsi_cmnd * cmd,unsigned int good_bytes)1058 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
1059 {
1060 int result = cmd->result;
1061 struct request *req = scsi_cmd_to_rq(cmd);
1062 blk_status_t blk_stat = BLK_STS_OK;
1063
1064 if (unlikely(result)) /* a nz result may or may not be an error */
1065 result = scsi_io_completion_nz_result(cmd, result, &blk_stat);
1066
1067 /*
1068 * Next deal with any sectors which we were able to correctly
1069 * handle.
1070 */
1071 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
1072 "%u sectors total, %d bytes done.\n",
1073 blk_rq_sectors(req), good_bytes));
1074
1075 /*
1076 * Failed, zero length commands always need to drop down
1077 * to retry code. Fast path should return in this block.
1078 */
1079 if (likely(blk_rq_bytes(req) > 0 || blk_stat == BLK_STS_OK)) {
1080 if (likely(!scsi_end_request(req, blk_stat, good_bytes)))
1081 return; /* no bytes remaining */
1082 }
1083
1084 /* Kill remainder if no retries. */
1085 if (unlikely(blk_stat && scsi_noretry_cmd(cmd))) {
1086 if (scsi_end_request(req, blk_stat, blk_rq_bytes(req)))
1087 WARN_ONCE(true,
1088 "Bytes remaining after failed, no-retry command");
1089 return;
1090 }
1091
1092 /*
1093 * If there had been no error, but we have leftover bytes in the
1094 * request just queue the command up again.
1095 */
1096 if (likely(result == 0))
1097 scsi_mq_requeue_cmd(cmd, 0);
1098 else
1099 scsi_io_completion_action(cmd, result);
1100 }
1101
scsi_cmd_needs_dma_drain(struct scsi_device * sdev,struct request * rq)1102 static inline bool scsi_cmd_needs_dma_drain(struct scsi_device *sdev,
1103 struct request *rq)
1104 {
1105 return sdev->dma_drain_len && blk_rq_is_passthrough(rq) &&
1106 !op_is_write(req_op(rq)) &&
1107 sdev->host->hostt->dma_need_drain(rq);
1108 }
1109
1110 /**
1111 * scsi_alloc_sgtables - Allocate and initialize data and integrity scatterlists
1112 * @cmd: SCSI command data structure to initialize.
1113 *
1114 * Initializes @cmd->sdb and also @cmd->prot_sdb if data integrity is enabled
1115 * for @cmd.
1116 *
1117 * Returns:
1118 * * BLK_STS_OK - on success
1119 * * BLK_STS_RESOURCE - if the failure is retryable
1120 * * BLK_STS_IOERR - if the failure is fatal
1121 */
scsi_alloc_sgtables(struct scsi_cmnd * cmd)1122 blk_status_t scsi_alloc_sgtables(struct scsi_cmnd *cmd)
1123 {
1124 struct scsi_device *sdev = cmd->device;
1125 struct request *rq = scsi_cmd_to_rq(cmd);
1126 unsigned short nr_segs = blk_rq_nr_phys_segments(rq);
1127 struct scatterlist *last_sg = NULL;
1128 blk_status_t ret;
1129 bool need_drain = scsi_cmd_needs_dma_drain(sdev, rq);
1130 int count;
1131
1132 if (WARN_ON_ONCE(!nr_segs))
1133 return BLK_STS_IOERR;
1134
1135 /*
1136 * Make sure there is space for the drain. The driver must adjust
1137 * max_hw_segments to be prepared for this.
1138 */
1139 if (need_drain)
1140 nr_segs++;
1141
1142 /*
1143 * If sg table allocation fails, requeue request later.
1144 */
1145 if (unlikely(sg_alloc_table_chained(&cmd->sdb.table, nr_segs,
1146 cmd->sdb.table.sgl, SCSI_INLINE_SG_CNT)))
1147 return BLK_STS_RESOURCE;
1148
1149 /*
1150 * Next, walk the list, and fill in the addresses and sizes of
1151 * each segment.
1152 */
1153 count = __blk_rq_map_sg(rq->q, rq, cmd->sdb.table.sgl, &last_sg);
1154
1155 if (blk_rq_bytes(rq) & rq->q->limits.dma_pad_mask) {
1156 unsigned int pad_len =
1157 (rq->q->limits.dma_pad_mask & ~blk_rq_bytes(rq)) + 1;
1158
1159 last_sg->length += pad_len;
1160 cmd->extra_len += pad_len;
1161 }
1162
1163 if (need_drain) {
1164 sg_unmark_end(last_sg);
1165 last_sg = sg_next(last_sg);
1166 sg_set_buf(last_sg, sdev->dma_drain_buf, sdev->dma_drain_len);
1167 sg_mark_end(last_sg);
1168
1169 cmd->extra_len += sdev->dma_drain_len;
1170 count++;
1171 }
1172
1173 BUG_ON(count > cmd->sdb.table.nents);
1174 cmd->sdb.table.nents = count;
1175 cmd->sdb.length = blk_rq_payload_bytes(rq);
1176
1177 if (blk_integrity_rq(rq)) {
1178 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1179
1180 if (WARN_ON_ONCE(!prot_sdb)) {
1181 /*
1182 * This can happen if someone (e.g. multipath)
1183 * queues a command to a device on an adapter
1184 * that does not support DIX.
1185 */
1186 ret = BLK_STS_IOERR;
1187 goto out_free_sgtables;
1188 }
1189
1190 if (sg_alloc_table_chained(&prot_sdb->table,
1191 rq->nr_integrity_segments,
1192 prot_sdb->table.sgl,
1193 SCSI_INLINE_PROT_SG_CNT)) {
1194 ret = BLK_STS_RESOURCE;
1195 goto out_free_sgtables;
1196 }
1197
1198 count = blk_rq_map_integrity_sg(rq, prot_sdb->table.sgl);
1199 cmd->prot_sdb = prot_sdb;
1200 cmd->prot_sdb->table.nents = count;
1201 }
1202
1203 return BLK_STS_OK;
1204 out_free_sgtables:
1205 scsi_free_sgtables(cmd);
1206 return ret;
1207 }
1208 EXPORT_SYMBOL(scsi_alloc_sgtables);
1209
1210 /**
1211 * scsi_initialize_rq - initialize struct scsi_cmnd partially
1212 * @rq: Request associated with the SCSI command to be initialized.
1213 *
1214 * This function initializes the members of struct scsi_cmnd that must be
1215 * initialized before request processing starts and that won't be
1216 * reinitialized if a SCSI command is requeued.
1217 */
scsi_initialize_rq(struct request * rq)1218 static void scsi_initialize_rq(struct request *rq)
1219 {
1220 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1221
1222 memset(cmd->cmnd, 0, sizeof(cmd->cmnd));
1223 cmd->cmd_len = MAX_COMMAND_SIZE;
1224 cmd->sense_len = 0;
1225 init_rcu_head(&cmd->rcu);
1226 cmd->jiffies_at_alloc = jiffies;
1227 cmd->retries = 0;
1228 }
1229
scsi_alloc_request(struct request_queue * q,blk_opf_t opf,blk_mq_req_flags_t flags)1230 struct request *scsi_alloc_request(struct request_queue *q, blk_opf_t opf,
1231 blk_mq_req_flags_t flags)
1232 {
1233 struct request *rq;
1234
1235 rq = blk_mq_alloc_request(q, opf, flags);
1236 if (!IS_ERR(rq))
1237 scsi_initialize_rq(rq);
1238 return rq;
1239 }
1240 EXPORT_SYMBOL_GPL(scsi_alloc_request);
1241
1242 /*
1243 * Only called when the request isn't completed by SCSI, and not freed by
1244 * SCSI
1245 */
scsi_cleanup_rq(struct request * rq)1246 static void scsi_cleanup_rq(struct request *rq)
1247 {
1248 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1249
1250 cmd->flags = 0;
1251
1252 if (rq->rq_flags & RQF_DONTPREP) {
1253 scsi_mq_uninit_cmd(cmd);
1254 rq->rq_flags &= ~RQF_DONTPREP;
1255 }
1256 }
1257
1258 /* Called before a request is prepared. See also scsi_mq_prep_fn(). */
scsi_init_command(struct scsi_device * dev,struct scsi_cmnd * cmd)1259 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd)
1260 {
1261 struct request *rq = scsi_cmd_to_rq(cmd);
1262
1263 if (!blk_rq_is_passthrough(rq) && !(cmd->flags & SCMD_INITIALIZED)) {
1264 cmd->flags |= SCMD_INITIALIZED;
1265 scsi_initialize_rq(rq);
1266 }
1267
1268 cmd->device = dev;
1269 INIT_LIST_HEAD(&cmd->eh_entry);
1270 INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1271 }
1272
scsi_setup_scsi_cmnd(struct scsi_device * sdev,struct request * req)1273 static blk_status_t scsi_setup_scsi_cmnd(struct scsi_device *sdev,
1274 struct request *req)
1275 {
1276 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1277
1278 /*
1279 * Passthrough requests may transfer data, in which case they must
1280 * a bio attached to them. Or they might contain a SCSI command
1281 * that does not transfer data, in which case they may optionally
1282 * submit a request without an attached bio.
1283 */
1284 if (req->bio) {
1285 blk_status_t ret = scsi_alloc_sgtables(cmd);
1286 if (unlikely(ret != BLK_STS_OK))
1287 return ret;
1288 } else {
1289 BUG_ON(blk_rq_bytes(req));
1290
1291 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1292 }
1293
1294 cmd->transfersize = blk_rq_bytes(req);
1295 return BLK_STS_OK;
1296 }
1297
1298 static blk_status_t
scsi_device_state_check(struct scsi_device * sdev,struct request * req)1299 scsi_device_state_check(struct scsi_device *sdev, struct request *req)
1300 {
1301 switch (sdev->sdev_state) {
1302 case SDEV_CREATED:
1303 return BLK_STS_OK;
1304 case SDEV_OFFLINE:
1305 case SDEV_TRANSPORT_OFFLINE:
1306 /*
1307 * If the device is offline we refuse to process any
1308 * commands. The device must be brought online
1309 * before trying any recovery commands.
1310 */
1311 if (!sdev->offline_already) {
1312 sdev->offline_already = true;
1313 sdev_printk(KERN_ERR, sdev,
1314 "rejecting I/O to offline device\n");
1315 }
1316 return BLK_STS_IOERR;
1317 case SDEV_DEL:
1318 /*
1319 * If the device is fully deleted, we refuse to
1320 * process any commands as well.
1321 */
1322 sdev_printk(KERN_ERR, sdev,
1323 "rejecting I/O to dead device\n");
1324 return BLK_STS_IOERR;
1325 case SDEV_BLOCK:
1326 case SDEV_CREATED_BLOCK:
1327 return BLK_STS_RESOURCE;
1328 case SDEV_QUIESCE:
1329 /*
1330 * If the device is blocked we only accept power management
1331 * commands.
1332 */
1333 if (req && WARN_ON_ONCE(!(req->rq_flags & RQF_PM)))
1334 return BLK_STS_RESOURCE;
1335 return BLK_STS_OK;
1336 default:
1337 /*
1338 * For any other not fully online state we only allow
1339 * power management commands.
1340 */
1341 if (req && !(req->rq_flags & RQF_PM))
1342 return BLK_STS_OFFLINE;
1343 return BLK_STS_OK;
1344 }
1345 }
1346
1347 /*
1348 * scsi_dev_queue_ready: if we can send requests to sdev, assign one token
1349 * and return the token else return -1.
1350 */
scsi_dev_queue_ready(struct request_queue * q,struct scsi_device * sdev)1351 static inline int scsi_dev_queue_ready(struct request_queue *q,
1352 struct scsi_device *sdev)
1353 {
1354 int token;
1355
1356 token = sbitmap_get(&sdev->budget_map);
1357 if (token < 0)
1358 return -1;
1359
1360 if (!atomic_read(&sdev->device_blocked))
1361 return token;
1362
1363 /*
1364 * Only unblock if no other commands are pending and
1365 * if device_blocked has decreased to zero
1366 */
1367 if (scsi_device_busy(sdev) > 1 ||
1368 atomic_dec_return(&sdev->device_blocked) > 0) {
1369 sbitmap_put(&sdev->budget_map, token);
1370 return -1;
1371 }
1372
1373 SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1374 "unblocking device at zero depth\n"));
1375
1376 return token;
1377 }
1378
1379 /*
1380 * scsi_target_queue_ready: checks if there we can send commands to target
1381 * @sdev: scsi device on starget to check.
1382 */
scsi_target_queue_ready(struct Scsi_Host * shost,struct scsi_device * sdev)1383 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1384 struct scsi_device *sdev)
1385 {
1386 struct scsi_target *starget = scsi_target(sdev);
1387 unsigned int busy;
1388
1389 if (starget->single_lun) {
1390 spin_lock_irq(shost->host_lock);
1391 if (starget->starget_sdev_user &&
1392 starget->starget_sdev_user != sdev) {
1393 spin_unlock_irq(shost->host_lock);
1394 return 0;
1395 }
1396 starget->starget_sdev_user = sdev;
1397 spin_unlock_irq(shost->host_lock);
1398 }
1399
1400 if (starget->can_queue <= 0)
1401 return 1;
1402
1403 busy = atomic_inc_return(&starget->target_busy) - 1;
1404 if (atomic_read(&starget->target_blocked) > 0) {
1405 if (busy)
1406 goto starved;
1407
1408 /*
1409 * unblock after target_blocked iterates to zero
1410 */
1411 if (atomic_dec_return(&starget->target_blocked) > 0)
1412 goto out_dec;
1413
1414 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1415 "unblocking target at zero depth\n"));
1416 }
1417
1418 if (busy >= starget->can_queue)
1419 goto starved;
1420
1421 return 1;
1422
1423 starved:
1424 spin_lock_irq(shost->host_lock);
1425 list_move_tail(&sdev->starved_entry, &shost->starved_list);
1426 spin_unlock_irq(shost->host_lock);
1427 out_dec:
1428 if (starget->can_queue > 0)
1429 atomic_dec(&starget->target_busy);
1430 return 0;
1431 }
1432
1433 /*
1434 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1435 * return 0. We must end up running the queue again whenever 0 is
1436 * returned, else IO can hang.
1437 */
scsi_host_queue_ready(struct request_queue * q,struct Scsi_Host * shost,struct scsi_device * sdev,struct scsi_cmnd * cmd)1438 static inline int scsi_host_queue_ready(struct request_queue *q,
1439 struct Scsi_Host *shost,
1440 struct scsi_device *sdev,
1441 struct scsi_cmnd *cmd)
1442 {
1443 if (atomic_read(&shost->host_blocked) > 0) {
1444 if (scsi_host_busy(shost) > 0)
1445 goto starved;
1446
1447 /*
1448 * unblock after host_blocked iterates to zero
1449 */
1450 if (atomic_dec_return(&shost->host_blocked) > 0)
1451 goto out_dec;
1452
1453 SCSI_LOG_MLQUEUE(3,
1454 shost_printk(KERN_INFO, shost,
1455 "unblocking host at zero depth\n"));
1456 }
1457
1458 if (shost->host_self_blocked)
1459 goto starved;
1460
1461 /* We're OK to process the command, so we can't be starved */
1462 if (!list_empty(&sdev->starved_entry)) {
1463 spin_lock_irq(shost->host_lock);
1464 if (!list_empty(&sdev->starved_entry))
1465 list_del_init(&sdev->starved_entry);
1466 spin_unlock_irq(shost->host_lock);
1467 }
1468
1469 __set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1470
1471 return 1;
1472
1473 starved:
1474 spin_lock_irq(shost->host_lock);
1475 if (list_empty(&sdev->starved_entry))
1476 list_add_tail(&sdev->starved_entry, &shost->starved_list);
1477 spin_unlock_irq(shost->host_lock);
1478 out_dec:
1479 scsi_dec_host_busy(shost, cmd);
1480 return 0;
1481 }
1482
1483 /*
1484 * Busy state exporting function for request stacking drivers.
1485 *
1486 * For efficiency, no lock is taken to check the busy state of
1487 * shost/starget/sdev, since the returned value is not guaranteed and
1488 * may be changed after request stacking drivers call the function,
1489 * regardless of taking lock or not.
1490 *
1491 * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1492 * needs to return 'not busy'. Otherwise, request stacking drivers
1493 * may hold requests forever.
1494 */
scsi_mq_lld_busy(struct request_queue * q)1495 static bool scsi_mq_lld_busy(struct request_queue *q)
1496 {
1497 struct scsi_device *sdev = q->queuedata;
1498 struct Scsi_Host *shost;
1499
1500 if (blk_queue_dying(q))
1501 return false;
1502
1503 shost = sdev->host;
1504
1505 /*
1506 * Ignore host/starget busy state.
1507 * Since block layer does not have a concept of fairness across
1508 * multiple queues, congestion of host/starget needs to be handled
1509 * in SCSI layer.
1510 */
1511 if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1512 return true;
1513
1514 return false;
1515 }
1516
1517 /*
1518 * Block layer request completion callback. May be called from interrupt
1519 * context.
1520 */
scsi_complete(struct request * rq)1521 static void scsi_complete(struct request *rq)
1522 {
1523 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1524 enum scsi_disposition disposition;
1525
1526 INIT_LIST_HEAD(&cmd->eh_entry);
1527
1528 atomic_inc(&cmd->device->iodone_cnt);
1529 if (cmd->result)
1530 atomic_inc(&cmd->device->ioerr_cnt);
1531
1532 disposition = scsi_decide_disposition(cmd);
1533 if (disposition != SUCCESS && scsi_cmd_runtime_exceeced(cmd))
1534 disposition = SUCCESS;
1535
1536 scsi_log_completion(cmd, disposition);
1537
1538 switch (disposition) {
1539 case SUCCESS:
1540 scsi_finish_command(cmd);
1541 break;
1542 case NEEDS_RETRY:
1543 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1544 break;
1545 case ADD_TO_MLQUEUE:
1546 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1547 break;
1548 default:
1549 scsi_eh_scmd_add(cmd);
1550 break;
1551 }
1552 }
1553
1554 /**
1555 * scsi_dispatch_cmd - Dispatch a command to the low-level driver.
1556 * @cmd: command block we are dispatching.
1557 *
1558 * Return: nonzero return request was rejected and device's queue needs to be
1559 * plugged.
1560 */
scsi_dispatch_cmd(struct scsi_cmnd * cmd)1561 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1562 {
1563 struct Scsi_Host *host = cmd->device->host;
1564 int rtn = 0;
1565
1566 atomic_inc(&cmd->device->iorequest_cnt);
1567
1568 /* check if the device is still usable */
1569 if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1570 /* in SDEV_DEL we error all commands. DID_NO_CONNECT
1571 * returns an immediate error upwards, and signals
1572 * that the device is no longer present */
1573 cmd->result = DID_NO_CONNECT << 16;
1574 goto done;
1575 }
1576
1577 /* Check to see if the scsi lld made this device blocked. */
1578 if (unlikely(scsi_device_blocked(cmd->device))) {
1579 /*
1580 * in blocked state, the command is just put back on
1581 * the device queue. The suspend state has already
1582 * blocked the queue so future requests should not
1583 * occur until the device transitions out of the
1584 * suspend state.
1585 */
1586 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1587 "queuecommand : device blocked\n"));
1588 atomic_dec(&cmd->device->iorequest_cnt);
1589 return SCSI_MLQUEUE_DEVICE_BUSY;
1590 }
1591
1592 /* Store the LUN value in cmnd, if needed. */
1593 if (cmd->device->lun_in_cdb)
1594 cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1595 (cmd->device->lun << 5 & 0xe0);
1596
1597 scsi_log_send(cmd);
1598
1599 /*
1600 * Before we queue this command, check if the command
1601 * length exceeds what the host adapter can handle.
1602 */
1603 if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1604 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1605 "queuecommand : command too long. "
1606 "cdb_size=%d host->max_cmd_len=%d\n",
1607 cmd->cmd_len, cmd->device->host->max_cmd_len));
1608 cmd->result = (DID_ABORT << 16);
1609 goto done;
1610 }
1611
1612 if (unlikely(host->shost_state == SHOST_DEL)) {
1613 cmd->result = (DID_NO_CONNECT << 16);
1614 goto done;
1615
1616 }
1617
1618 trace_scsi_dispatch_cmd_start(cmd);
1619 rtn = host->hostt->queuecommand(host, cmd);
1620 if (rtn) {
1621 atomic_dec(&cmd->device->iorequest_cnt);
1622 trace_scsi_dispatch_cmd_error(cmd, rtn);
1623 if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1624 rtn != SCSI_MLQUEUE_TARGET_BUSY)
1625 rtn = SCSI_MLQUEUE_HOST_BUSY;
1626
1627 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1628 "queuecommand : request rejected\n"));
1629 }
1630
1631 return rtn;
1632 done:
1633 scsi_done(cmd);
1634 return 0;
1635 }
1636
1637 /* Size in bytes of the sg-list stored in the scsi-mq command-private data. */
scsi_mq_inline_sgl_size(struct Scsi_Host * shost)1638 static unsigned int scsi_mq_inline_sgl_size(struct Scsi_Host *shost)
1639 {
1640 return min_t(unsigned int, shost->sg_tablesize, SCSI_INLINE_SG_CNT) *
1641 sizeof(struct scatterlist);
1642 }
1643
scsi_prepare_cmd(struct request * req)1644 static blk_status_t scsi_prepare_cmd(struct request *req)
1645 {
1646 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1647 struct scsi_device *sdev = req->q->queuedata;
1648 struct Scsi_Host *shost = sdev->host;
1649 bool in_flight = test_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1650 struct scatterlist *sg;
1651
1652 scsi_init_command(sdev, cmd);
1653
1654 cmd->eh_eflags = 0;
1655 cmd->prot_type = 0;
1656 cmd->prot_flags = 0;
1657 cmd->submitter = 0;
1658 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1659 cmd->underflow = 0;
1660 cmd->transfersize = 0;
1661 cmd->host_scribble = NULL;
1662 cmd->result = 0;
1663 cmd->extra_len = 0;
1664 cmd->state = 0;
1665 if (in_flight)
1666 __set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1667
1668 cmd->prot_op = SCSI_PROT_NORMAL;
1669 if (blk_rq_bytes(req))
1670 cmd->sc_data_direction = rq_dma_dir(req);
1671 else
1672 cmd->sc_data_direction = DMA_NONE;
1673
1674 sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1675 cmd->sdb.table.sgl = sg;
1676
1677 if (scsi_host_get_prot(shost)) {
1678 memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1679
1680 cmd->prot_sdb->table.sgl =
1681 (struct scatterlist *)(cmd->prot_sdb + 1);
1682 }
1683
1684 /*
1685 * Special handling for passthrough commands, which don't go to the ULP
1686 * at all:
1687 */
1688 if (blk_rq_is_passthrough(req))
1689 return scsi_setup_scsi_cmnd(sdev, req);
1690
1691 if (sdev->handler && sdev->handler->prep_fn) {
1692 blk_status_t ret = sdev->handler->prep_fn(sdev, req);
1693
1694 if (ret != BLK_STS_OK)
1695 return ret;
1696 }
1697
1698 /* Usually overridden by the ULP */
1699 cmd->allowed = 0;
1700 memset(cmd->cmnd, 0, sizeof(cmd->cmnd));
1701 return scsi_cmd_to_driver(cmd)->init_command(cmd);
1702 }
1703
scsi_done_internal(struct scsi_cmnd * cmd,bool complete_directly)1704 static void scsi_done_internal(struct scsi_cmnd *cmd, bool complete_directly)
1705 {
1706 struct request *req = scsi_cmd_to_rq(cmd);
1707
1708 switch (cmd->submitter) {
1709 case SUBMITTED_BY_BLOCK_LAYER:
1710 break;
1711 case SUBMITTED_BY_SCSI_ERROR_HANDLER:
1712 return scsi_eh_done(cmd);
1713 case SUBMITTED_BY_SCSI_RESET_IOCTL:
1714 return;
1715 }
1716
1717 if (unlikely(blk_should_fake_timeout(scsi_cmd_to_rq(cmd)->q)))
1718 return;
1719 if (unlikely(test_and_set_bit(SCMD_STATE_COMPLETE, &cmd->state)))
1720 return;
1721 trace_scsi_dispatch_cmd_done(cmd);
1722
1723 if (complete_directly)
1724 blk_mq_complete_request_direct(req, scsi_complete);
1725 else
1726 blk_mq_complete_request(req);
1727 }
1728
scsi_done(struct scsi_cmnd * cmd)1729 void scsi_done(struct scsi_cmnd *cmd)
1730 {
1731 scsi_done_internal(cmd, false);
1732 }
1733 EXPORT_SYMBOL(scsi_done);
1734
scsi_done_direct(struct scsi_cmnd * cmd)1735 void scsi_done_direct(struct scsi_cmnd *cmd)
1736 {
1737 scsi_done_internal(cmd, true);
1738 }
1739 EXPORT_SYMBOL(scsi_done_direct);
1740
scsi_mq_put_budget(struct request_queue * q,int budget_token)1741 static void scsi_mq_put_budget(struct request_queue *q, int budget_token)
1742 {
1743 struct scsi_device *sdev = q->queuedata;
1744
1745 sbitmap_put(&sdev->budget_map, budget_token);
1746 }
1747
1748 /*
1749 * When to reinvoke queueing after a resource shortage. It's 3 msecs to
1750 * not change behaviour from the previous unplug mechanism, experimentation
1751 * may prove this needs changing.
1752 */
1753 #define SCSI_QUEUE_DELAY 3
1754
scsi_mq_get_budget(struct request_queue * q)1755 static int scsi_mq_get_budget(struct request_queue *q)
1756 {
1757 struct scsi_device *sdev = q->queuedata;
1758 int token = scsi_dev_queue_ready(q, sdev);
1759
1760 if (token >= 0)
1761 return token;
1762
1763 atomic_inc(&sdev->restarts);
1764
1765 /*
1766 * Orders atomic_inc(&sdev->restarts) and atomic_read(&sdev->device_busy).
1767 * .restarts must be incremented before .device_busy is read because the
1768 * code in scsi_run_queue_async() depends on the order of these operations.
1769 */
1770 smp_mb__after_atomic();
1771
1772 /*
1773 * If all in-flight requests originated from this LUN are completed
1774 * before reading .device_busy, sdev->device_busy will be observed as
1775 * zero, then blk_mq_delay_run_hw_queues() will dispatch this request
1776 * soon. Otherwise, completion of one of these requests will observe
1777 * the .restarts flag, and the request queue will be run for handling
1778 * this request, see scsi_end_request().
1779 */
1780 if (unlikely(scsi_device_busy(sdev) == 0 &&
1781 !scsi_device_blocked(sdev)))
1782 blk_mq_delay_run_hw_queues(sdev->request_queue, SCSI_QUEUE_DELAY);
1783 return -1;
1784 }
1785
scsi_mq_set_rq_budget_token(struct request * req,int token)1786 static void scsi_mq_set_rq_budget_token(struct request *req, int token)
1787 {
1788 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1789
1790 cmd->budget_token = token;
1791 }
1792
scsi_mq_get_rq_budget_token(struct request * req)1793 static int scsi_mq_get_rq_budget_token(struct request *req)
1794 {
1795 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1796
1797 return cmd->budget_token;
1798 }
1799
scsi_queue_rq(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * bd)1800 static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
1801 const struct blk_mq_queue_data *bd)
1802 {
1803 struct request *req = bd->rq;
1804 struct request_queue *q = req->q;
1805 struct scsi_device *sdev = q->queuedata;
1806 struct Scsi_Host *shost = sdev->host;
1807 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1808 blk_status_t ret;
1809 int reason;
1810
1811 WARN_ON_ONCE(cmd->budget_token < 0);
1812
1813 /*
1814 * If the device is not in running state we will reject some or all
1815 * commands.
1816 */
1817 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1818 ret = scsi_device_state_check(sdev, req);
1819 if (ret != BLK_STS_OK)
1820 goto out_put_budget;
1821 }
1822
1823 ret = BLK_STS_RESOURCE;
1824 if (!scsi_target_queue_ready(shost, sdev))
1825 goto out_put_budget;
1826 if (unlikely(scsi_host_in_recovery(shost))) {
1827 if (cmd->flags & SCMD_FAIL_IF_RECOVERING)
1828 ret = BLK_STS_OFFLINE;
1829 goto out_dec_target_busy;
1830 }
1831 if (!scsi_host_queue_ready(q, shost, sdev, cmd))
1832 goto out_dec_target_busy;
1833
1834 /*
1835 * Only clear the driver-private command data if the LLD does not supply
1836 * a function to initialize that data.
1837 */
1838 if (shost->hostt->cmd_size && !shost->hostt->init_cmd_priv)
1839 memset(cmd + 1, 0, shost->hostt->cmd_size);
1840
1841 if (!(req->rq_flags & RQF_DONTPREP)) {
1842 ret = scsi_prepare_cmd(req);
1843 if (ret != BLK_STS_OK)
1844 goto out_dec_host_busy;
1845 req->rq_flags |= RQF_DONTPREP;
1846 } else {
1847 clear_bit(SCMD_STATE_COMPLETE, &cmd->state);
1848 }
1849
1850 cmd->flags &= SCMD_PRESERVED_FLAGS;
1851 if (sdev->simple_tags)
1852 cmd->flags |= SCMD_TAGGED;
1853 if (bd->last)
1854 cmd->flags |= SCMD_LAST;
1855
1856 scsi_set_resid(cmd, 0);
1857 memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
1858 cmd->submitter = SUBMITTED_BY_BLOCK_LAYER;
1859
1860 blk_mq_start_request(req);
1861 reason = scsi_dispatch_cmd(cmd);
1862 if (reason) {
1863 scsi_set_blocked(cmd, reason);
1864 ret = BLK_STS_RESOURCE;
1865 goto out_dec_host_busy;
1866 }
1867
1868 return BLK_STS_OK;
1869
1870 out_dec_host_busy:
1871 scsi_dec_host_busy(shost, cmd);
1872 out_dec_target_busy:
1873 if (scsi_target(sdev)->can_queue > 0)
1874 atomic_dec(&scsi_target(sdev)->target_busy);
1875 out_put_budget:
1876 scsi_mq_put_budget(q, cmd->budget_token);
1877 cmd->budget_token = -1;
1878 switch (ret) {
1879 case BLK_STS_OK:
1880 break;
1881 case BLK_STS_RESOURCE:
1882 if (scsi_device_blocked(sdev))
1883 ret = BLK_STS_DEV_RESOURCE;
1884 break;
1885 case BLK_STS_AGAIN:
1886 cmd->result = DID_BUS_BUSY << 16;
1887 if (req->rq_flags & RQF_DONTPREP)
1888 scsi_mq_uninit_cmd(cmd);
1889 break;
1890 default:
1891 if (unlikely(!scsi_device_online(sdev)))
1892 cmd->result = DID_NO_CONNECT << 16;
1893 else
1894 cmd->result = DID_ERROR << 16;
1895 /*
1896 * Make sure to release all allocated resources when
1897 * we hit an error, as we will never see this command
1898 * again.
1899 */
1900 if (req->rq_flags & RQF_DONTPREP)
1901 scsi_mq_uninit_cmd(cmd);
1902 scsi_run_queue_async(sdev);
1903 break;
1904 }
1905 return ret;
1906 }
1907
scsi_mq_init_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx,unsigned int numa_node)1908 static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
1909 unsigned int hctx_idx, unsigned int numa_node)
1910 {
1911 struct Scsi_Host *shost = set->driver_data;
1912 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1913 struct scatterlist *sg;
1914 int ret = 0;
1915
1916 cmd->sense_buffer =
1917 kmem_cache_alloc_node(scsi_sense_cache, GFP_KERNEL, numa_node);
1918 if (!cmd->sense_buffer)
1919 return -ENOMEM;
1920
1921 if (scsi_host_get_prot(shost)) {
1922 sg = (void *)cmd + sizeof(struct scsi_cmnd) +
1923 shost->hostt->cmd_size;
1924 cmd->prot_sdb = (void *)sg + scsi_mq_inline_sgl_size(shost);
1925 }
1926
1927 if (shost->hostt->init_cmd_priv) {
1928 ret = shost->hostt->init_cmd_priv(shost, cmd);
1929 if (ret < 0)
1930 kmem_cache_free(scsi_sense_cache, cmd->sense_buffer);
1931 }
1932
1933 return ret;
1934 }
1935
scsi_mq_exit_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx)1936 static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq,
1937 unsigned int hctx_idx)
1938 {
1939 struct Scsi_Host *shost = set->driver_data;
1940 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1941
1942 if (shost->hostt->exit_cmd_priv)
1943 shost->hostt->exit_cmd_priv(shost, cmd);
1944 kmem_cache_free(scsi_sense_cache, cmd->sense_buffer);
1945 }
1946
1947
scsi_mq_poll(struct blk_mq_hw_ctx * hctx,struct io_comp_batch * iob)1948 static int scsi_mq_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
1949 {
1950 struct Scsi_Host *shost = hctx->driver_data;
1951
1952 if (shost->hostt->mq_poll)
1953 return shost->hostt->mq_poll(shost, hctx->queue_num);
1954
1955 return 0;
1956 }
1957
scsi_init_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)1958 static int scsi_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1959 unsigned int hctx_idx)
1960 {
1961 struct Scsi_Host *shost = data;
1962
1963 hctx->driver_data = shost;
1964 return 0;
1965 }
1966
scsi_map_queues(struct blk_mq_tag_set * set)1967 static void scsi_map_queues(struct blk_mq_tag_set *set)
1968 {
1969 struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set);
1970
1971 if (shost->hostt->map_queues)
1972 return shost->hostt->map_queues(shost);
1973 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
1974 }
1975
scsi_init_limits(struct Scsi_Host * shost,struct queue_limits * lim)1976 void scsi_init_limits(struct Scsi_Host *shost, struct queue_limits *lim)
1977 {
1978 struct device *dev = shost->dma_dev;
1979
1980 memset(lim, 0, sizeof(*lim));
1981 lim->max_segments =
1982 min_t(unsigned short, shost->sg_tablesize, SG_MAX_SEGMENTS);
1983
1984 if (scsi_host_prot_dma(shost)) {
1985 shost->sg_prot_tablesize =
1986 min_not_zero(shost->sg_prot_tablesize,
1987 (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1988 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1989 lim->max_integrity_segments = shost->sg_prot_tablesize;
1990 }
1991
1992 lim->max_hw_sectors = shost->max_sectors;
1993 lim->seg_boundary_mask = shost->dma_boundary;
1994 lim->max_segment_size = shost->max_segment_size;
1995 lim->virt_boundary_mask = shost->virt_boundary_mask;
1996 lim->dma_alignment = max_t(unsigned int,
1997 shost->dma_alignment, dma_get_cache_alignment() - 1);
1998
1999 if (shost->no_highmem)
2000 lim->features |= BLK_FEAT_BOUNCE_HIGH;
2001
2002 /*
2003 * Propagate the DMA formation properties to the dma-mapping layer as
2004 * a courtesy service to the LLDDs. This needs to check that the buses
2005 * actually support the DMA API first, though.
2006 */
2007 if (dev->dma_parms) {
2008 dma_set_seg_boundary(dev, shost->dma_boundary);
2009 dma_set_max_seg_size(dev, shost->max_segment_size);
2010 }
2011 }
2012 EXPORT_SYMBOL_GPL(scsi_init_limits);
2013
2014 static const struct blk_mq_ops scsi_mq_ops_no_commit = {
2015 .get_budget = scsi_mq_get_budget,
2016 .put_budget = scsi_mq_put_budget,
2017 .queue_rq = scsi_queue_rq,
2018 .complete = scsi_complete,
2019 .timeout = scsi_timeout,
2020 #ifdef CONFIG_BLK_DEBUG_FS
2021 .show_rq = scsi_show_rq,
2022 #endif
2023 .init_request = scsi_mq_init_request,
2024 .exit_request = scsi_mq_exit_request,
2025 .cleanup_rq = scsi_cleanup_rq,
2026 .busy = scsi_mq_lld_busy,
2027 .map_queues = scsi_map_queues,
2028 .init_hctx = scsi_init_hctx,
2029 .poll = scsi_mq_poll,
2030 .set_rq_budget_token = scsi_mq_set_rq_budget_token,
2031 .get_rq_budget_token = scsi_mq_get_rq_budget_token,
2032 };
2033
2034
scsi_commit_rqs(struct blk_mq_hw_ctx * hctx)2035 static void scsi_commit_rqs(struct blk_mq_hw_ctx *hctx)
2036 {
2037 struct Scsi_Host *shost = hctx->driver_data;
2038
2039 shost->hostt->commit_rqs(shost, hctx->queue_num);
2040 }
2041
2042 static const struct blk_mq_ops scsi_mq_ops = {
2043 .get_budget = scsi_mq_get_budget,
2044 .put_budget = scsi_mq_put_budget,
2045 .queue_rq = scsi_queue_rq,
2046 .commit_rqs = scsi_commit_rqs,
2047 .complete = scsi_complete,
2048 .timeout = scsi_timeout,
2049 #ifdef CONFIG_BLK_DEBUG_FS
2050 .show_rq = scsi_show_rq,
2051 #endif
2052 .init_request = scsi_mq_init_request,
2053 .exit_request = scsi_mq_exit_request,
2054 .cleanup_rq = scsi_cleanup_rq,
2055 .busy = scsi_mq_lld_busy,
2056 .map_queues = scsi_map_queues,
2057 .init_hctx = scsi_init_hctx,
2058 .poll = scsi_mq_poll,
2059 .set_rq_budget_token = scsi_mq_set_rq_budget_token,
2060 .get_rq_budget_token = scsi_mq_get_rq_budget_token,
2061 };
2062
scsi_mq_setup_tags(struct Scsi_Host * shost)2063 int scsi_mq_setup_tags(struct Scsi_Host *shost)
2064 {
2065 unsigned int cmd_size, sgl_size;
2066 struct blk_mq_tag_set *tag_set = &shost->tag_set;
2067
2068 sgl_size = max_t(unsigned int, sizeof(struct scatterlist),
2069 scsi_mq_inline_sgl_size(shost));
2070 cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
2071 if (scsi_host_get_prot(shost))
2072 cmd_size += sizeof(struct scsi_data_buffer) +
2073 sizeof(struct scatterlist) * SCSI_INLINE_PROT_SG_CNT;
2074
2075 memset(tag_set, 0, sizeof(*tag_set));
2076 if (shost->hostt->commit_rqs)
2077 tag_set->ops = &scsi_mq_ops;
2078 else
2079 tag_set->ops = &scsi_mq_ops_no_commit;
2080 tag_set->nr_hw_queues = shost->nr_hw_queues ? : 1;
2081 tag_set->nr_maps = shost->nr_maps ? : 1;
2082 tag_set->queue_depth = shost->can_queue + shost->nr_reserved_cmds;
2083 tag_set->reserved_tags = shost->nr_reserved_cmds;
2084 tag_set->cmd_size = cmd_size;
2085 tag_set->numa_node = dev_to_node(shost->dma_dev);
2086 tag_set->flags = BLK_MQ_F_SHOULD_MERGE;
2087 tag_set->flags |=
2088 BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
2089 if (shost->queuecommand_may_block)
2090 tag_set->flags |= BLK_MQ_F_BLOCKING;
2091 tag_set->driver_data = shost;
2092 if (shost->host_tagset)
2093 tag_set->flags |= BLK_MQ_F_TAG_HCTX_SHARED;
2094
2095 return blk_mq_alloc_tag_set(tag_set);
2096 }
2097
scsi_mq_free_tags(struct kref * kref)2098 void scsi_mq_free_tags(struct kref *kref)
2099 {
2100 struct Scsi_Host *shost = container_of(kref, typeof(*shost),
2101 tagset_refcnt);
2102
2103 blk_mq_free_tag_set(&shost->tag_set);
2104 complete(&shost->tagset_freed);
2105 }
2106
2107 /**
2108 * scsi_device_from_queue - return sdev associated with a request_queue
2109 * @q: The request queue to return the sdev from
2110 *
2111 * Return the sdev associated with a request queue or NULL if the
2112 * request_queue does not reference a SCSI device.
2113 */
scsi_device_from_queue(struct request_queue * q)2114 struct scsi_device *scsi_device_from_queue(struct request_queue *q)
2115 {
2116 struct scsi_device *sdev = NULL;
2117
2118 if (q->mq_ops == &scsi_mq_ops_no_commit ||
2119 q->mq_ops == &scsi_mq_ops)
2120 sdev = q->queuedata;
2121 if (!sdev || !get_device(&sdev->sdev_gendev))
2122 sdev = NULL;
2123
2124 return sdev;
2125 }
2126 /*
2127 * pktcdvd should have been integrated into the SCSI layers, but for historical
2128 * reasons like the old IDE driver it isn't. This export allows it to safely
2129 * probe if a given device is a SCSI one and only attach to that.
2130 */
2131 #ifdef CONFIG_CDROM_PKTCDVD_MODULE
2132 EXPORT_SYMBOL_GPL(scsi_device_from_queue);
2133 #endif
2134
2135 /**
2136 * scsi_block_requests - Utility function used by low-level drivers to prevent
2137 * further commands from being queued to the device.
2138 * @shost: host in question
2139 *
2140 * There is no timer nor any other means by which the requests get unblocked
2141 * other than the low-level driver calling scsi_unblock_requests().
2142 */
scsi_block_requests(struct Scsi_Host * shost)2143 void scsi_block_requests(struct Scsi_Host *shost)
2144 {
2145 shost->host_self_blocked = 1;
2146 }
2147 EXPORT_SYMBOL(scsi_block_requests);
2148
2149 /**
2150 * scsi_unblock_requests - Utility function used by low-level drivers to allow
2151 * further commands to be queued to the device.
2152 * @shost: host in question
2153 *
2154 * There is no timer nor any other means by which the requests get unblocked
2155 * other than the low-level driver calling scsi_unblock_requests(). This is done
2156 * as an API function so that changes to the internals of the scsi mid-layer
2157 * won't require wholesale changes to drivers that use this feature.
2158 */
scsi_unblock_requests(struct Scsi_Host * shost)2159 void scsi_unblock_requests(struct Scsi_Host *shost)
2160 {
2161 shost->host_self_blocked = 0;
2162 scsi_run_host_queues(shost);
2163 }
2164 EXPORT_SYMBOL(scsi_unblock_requests);
2165
scsi_exit_queue(void)2166 void scsi_exit_queue(void)
2167 {
2168 kmem_cache_destroy(scsi_sense_cache);
2169 }
2170
2171 /**
2172 * scsi_mode_select - issue a mode select
2173 * @sdev: SCSI device to be queried
2174 * @pf: Page format bit (1 == standard, 0 == vendor specific)
2175 * @sp: Save page bit (0 == don't save, 1 == save)
2176 * @buffer: request buffer (may not be smaller than eight bytes)
2177 * @len: length of request buffer.
2178 * @timeout: command timeout
2179 * @retries: number of retries before failing
2180 * @data: returns a structure abstracting the mode header data
2181 * @sshdr: place to put sense data (or NULL if no sense to be collected).
2182 * must be SCSI_SENSE_BUFFERSIZE big.
2183 *
2184 * Returns zero if successful; negative error number or scsi
2185 * status on error
2186 *
2187 */
scsi_mode_select(struct scsi_device * sdev,int pf,int sp,unsigned char * buffer,int len,int timeout,int retries,struct scsi_mode_data * data,struct scsi_sense_hdr * sshdr)2188 int scsi_mode_select(struct scsi_device *sdev, int pf, int sp,
2189 unsigned char *buffer, int len, int timeout, int retries,
2190 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2191 {
2192 unsigned char cmd[10];
2193 unsigned char *real_buffer;
2194 const struct scsi_exec_args exec_args = {
2195 .sshdr = sshdr,
2196 };
2197 int ret;
2198
2199 memset(cmd, 0, sizeof(cmd));
2200 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2201
2202 /*
2203 * Use MODE SELECT(10) if the device asked for it or if the mode page
2204 * and the mode select header cannot fit within the maximumm 255 bytes
2205 * of the MODE SELECT(6) command.
2206 */
2207 if (sdev->use_10_for_ms ||
2208 len + 4 > 255 ||
2209 data->block_descriptor_length > 255) {
2210 if (len > 65535 - 8)
2211 return -EINVAL;
2212 real_buffer = kmalloc(8 + len, GFP_KERNEL);
2213 if (!real_buffer)
2214 return -ENOMEM;
2215 memcpy(real_buffer + 8, buffer, len);
2216 len += 8;
2217 real_buffer[0] = 0;
2218 real_buffer[1] = 0;
2219 real_buffer[2] = data->medium_type;
2220 real_buffer[3] = data->device_specific;
2221 real_buffer[4] = data->longlba ? 0x01 : 0;
2222 real_buffer[5] = 0;
2223 put_unaligned_be16(data->block_descriptor_length,
2224 &real_buffer[6]);
2225
2226 cmd[0] = MODE_SELECT_10;
2227 put_unaligned_be16(len, &cmd[7]);
2228 } else {
2229 if (data->longlba)
2230 return -EINVAL;
2231
2232 real_buffer = kmalloc(4 + len, GFP_KERNEL);
2233 if (!real_buffer)
2234 return -ENOMEM;
2235 memcpy(real_buffer + 4, buffer, len);
2236 len += 4;
2237 real_buffer[0] = 0;
2238 real_buffer[1] = data->medium_type;
2239 real_buffer[2] = data->device_specific;
2240 real_buffer[3] = data->block_descriptor_length;
2241
2242 cmd[0] = MODE_SELECT;
2243 cmd[4] = len;
2244 }
2245
2246 ret = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_OUT, real_buffer, len,
2247 timeout, retries, &exec_args);
2248 kfree(real_buffer);
2249 return ret;
2250 }
2251 EXPORT_SYMBOL_GPL(scsi_mode_select);
2252
2253 /**
2254 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2255 * @sdev: SCSI device to be queried
2256 * @dbd: set to prevent mode sense from returning block descriptors
2257 * @modepage: mode page being requested
2258 * @subpage: sub-page of the mode page being requested
2259 * @buffer: request buffer (may not be smaller than eight bytes)
2260 * @len: length of request buffer.
2261 * @timeout: command timeout
2262 * @retries: number of retries before failing
2263 * @data: returns a structure abstracting the mode header data
2264 * @sshdr: place to put sense data (or NULL if no sense to be collected).
2265 * must be SCSI_SENSE_BUFFERSIZE big.
2266 *
2267 * Returns zero if successful, or a negative error number on failure
2268 */
2269 int
scsi_mode_sense(struct scsi_device * sdev,int dbd,int modepage,int subpage,unsigned char * buffer,int len,int timeout,int retries,struct scsi_mode_data * data,struct scsi_sense_hdr * sshdr)2270 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage, int subpage,
2271 unsigned char *buffer, int len, int timeout, int retries,
2272 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2273 {
2274 unsigned char cmd[12];
2275 int use_10_for_ms;
2276 int header_length;
2277 int result;
2278 struct scsi_sense_hdr my_sshdr;
2279 struct scsi_failure failure_defs[] = {
2280 {
2281 .sense = UNIT_ATTENTION,
2282 .asc = SCMD_FAILURE_ASC_ANY,
2283 .ascq = SCMD_FAILURE_ASCQ_ANY,
2284 .allowed = retries,
2285 .result = SAM_STAT_CHECK_CONDITION,
2286 },
2287 {}
2288 };
2289 struct scsi_failures failures = {
2290 .failure_definitions = failure_defs,
2291 };
2292 const struct scsi_exec_args exec_args = {
2293 /* caller might not be interested in sense, but we need it */
2294 .sshdr = sshdr ? : &my_sshdr,
2295 .failures = &failures,
2296 };
2297
2298 memset(data, 0, sizeof(*data));
2299 memset(&cmd[0], 0, 12);
2300
2301 dbd = sdev->set_dbd_for_ms ? 8 : dbd;
2302 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */
2303 cmd[2] = modepage;
2304 cmd[3] = subpage;
2305
2306 sshdr = exec_args.sshdr;
2307
2308 retry:
2309 use_10_for_ms = sdev->use_10_for_ms || len > 255;
2310
2311 if (use_10_for_ms) {
2312 if (len < 8 || len > 65535)
2313 return -EINVAL;
2314
2315 cmd[0] = MODE_SENSE_10;
2316 put_unaligned_be16(len, &cmd[7]);
2317 header_length = 8;
2318 } else {
2319 if (len < 4)
2320 return -EINVAL;
2321
2322 cmd[0] = MODE_SENSE;
2323 cmd[4] = len;
2324 header_length = 4;
2325 }
2326
2327 memset(buffer, 0, len);
2328
2329 result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_IN, buffer, len,
2330 timeout, retries, &exec_args);
2331 if (result < 0)
2332 return result;
2333
2334 /* This code looks awful: what it's doing is making sure an
2335 * ILLEGAL REQUEST sense return identifies the actual command
2336 * byte as the problem. MODE_SENSE commands can return
2337 * ILLEGAL REQUEST if the code page isn't supported */
2338
2339 if (!scsi_status_is_good(result)) {
2340 if (scsi_sense_valid(sshdr)) {
2341 if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2342 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2343 /*
2344 * Invalid command operation code: retry using
2345 * MODE SENSE(6) if this was a MODE SENSE(10)
2346 * request, except if the request mode page is
2347 * too large for MODE SENSE single byte
2348 * allocation length field.
2349 */
2350 if (use_10_for_ms) {
2351 if (len > 255)
2352 return -EIO;
2353 sdev->use_10_for_ms = 0;
2354 goto retry;
2355 }
2356 }
2357 }
2358 return -EIO;
2359 }
2360 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2361 (modepage == 6 || modepage == 8))) {
2362 /* Initio breakage? */
2363 header_length = 0;
2364 data->length = 13;
2365 data->medium_type = 0;
2366 data->device_specific = 0;
2367 data->longlba = 0;
2368 data->block_descriptor_length = 0;
2369 } else if (use_10_for_ms) {
2370 data->length = get_unaligned_be16(&buffer[0]) + 2;
2371 data->medium_type = buffer[2];
2372 data->device_specific = buffer[3];
2373 data->longlba = buffer[4] & 0x01;
2374 data->block_descriptor_length = get_unaligned_be16(&buffer[6]);
2375 } else {
2376 data->length = buffer[0] + 1;
2377 data->medium_type = buffer[1];
2378 data->device_specific = buffer[2];
2379 data->block_descriptor_length = buffer[3];
2380 }
2381 data->header_length = header_length;
2382
2383 return 0;
2384 }
2385 EXPORT_SYMBOL(scsi_mode_sense);
2386
2387 /**
2388 * scsi_test_unit_ready - test if unit is ready
2389 * @sdev: scsi device to change the state of.
2390 * @timeout: command timeout
2391 * @retries: number of retries before failing
2392 * @sshdr: outpout pointer for decoded sense information.
2393 *
2394 * Returns zero if unsuccessful or an error if TUR failed. For
2395 * removable media, UNIT_ATTENTION sets ->changed flag.
2396 **/
2397 int
scsi_test_unit_ready(struct scsi_device * sdev,int timeout,int retries,struct scsi_sense_hdr * sshdr)2398 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2399 struct scsi_sense_hdr *sshdr)
2400 {
2401 char cmd[] = {
2402 TEST_UNIT_READY, 0, 0, 0, 0, 0,
2403 };
2404 const struct scsi_exec_args exec_args = {
2405 .sshdr = sshdr,
2406 };
2407 int result;
2408
2409 /* try to eat the UNIT_ATTENTION if there are enough retries */
2410 do {
2411 result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_IN, NULL, 0,
2412 timeout, 1, &exec_args);
2413 if (sdev->removable && result > 0 && scsi_sense_valid(sshdr) &&
2414 sshdr->sense_key == UNIT_ATTENTION)
2415 sdev->changed = 1;
2416 } while (result > 0 && scsi_sense_valid(sshdr) &&
2417 sshdr->sense_key == UNIT_ATTENTION && --retries);
2418
2419 return result;
2420 }
2421 EXPORT_SYMBOL(scsi_test_unit_ready);
2422
2423 /**
2424 * scsi_device_set_state - Take the given device through the device state model.
2425 * @sdev: scsi device to change the state of.
2426 * @state: state to change to.
2427 *
2428 * Returns zero if successful or an error if the requested
2429 * transition is illegal.
2430 */
2431 int
scsi_device_set_state(struct scsi_device * sdev,enum scsi_device_state state)2432 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2433 {
2434 enum scsi_device_state oldstate = sdev->sdev_state;
2435
2436 if (state == oldstate)
2437 return 0;
2438
2439 switch (state) {
2440 case SDEV_CREATED:
2441 switch (oldstate) {
2442 case SDEV_CREATED_BLOCK:
2443 break;
2444 default:
2445 goto illegal;
2446 }
2447 break;
2448
2449 case SDEV_RUNNING:
2450 switch (oldstate) {
2451 case SDEV_CREATED:
2452 case SDEV_OFFLINE:
2453 case SDEV_TRANSPORT_OFFLINE:
2454 case SDEV_QUIESCE:
2455 case SDEV_BLOCK:
2456 break;
2457 default:
2458 goto illegal;
2459 }
2460 break;
2461
2462 case SDEV_QUIESCE:
2463 switch (oldstate) {
2464 case SDEV_RUNNING:
2465 case SDEV_OFFLINE:
2466 case SDEV_TRANSPORT_OFFLINE:
2467 break;
2468 default:
2469 goto illegal;
2470 }
2471 break;
2472
2473 case SDEV_OFFLINE:
2474 case SDEV_TRANSPORT_OFFLINE:
2475 switch (oldstate) {
2476 case SDEV_CREATED:
2477 case SDEV_RUNNING:
2478 case SDEV_QUIESCE:
2479 case SDEV_BLOCK:
2480 break;
2481 default:
2482 goto illegal;
2483 }
2484 break;
2485
2486 case SDEV_BLOCK:
2487 switch (oldstate) {
2488 case SDEV_RUNNING:
2489 case SDEV_CREATED_BLOCK:
2490 case SDEV_QUIESCE:
2491 case SDEV_OFFLINE:
2492 break;
2493 default:
2494 goto illegal;
2495 }
2496 break;
2497
2498 case SDEV_CREATED_BLOCK:
2499 switch (oldstate) {
2500 case SDEV_CREATED:
2501 break;
2502 default:
2503 goto illegal;
2504 }
2505 break;
2506
2507 case SDEV_CANCEL:
2508 switch (oldstate) {
2509 case SDEV_CREATED:
2510 case SDEV_RUNNING:
2511 case SDEV_QUIESCE:
2512 case SDEV_OFFLINE:
2513 case SDEV_TRANSPORT_OFFLINE:
2514 break;
2515 default:
2516 goto illegal;
2517 }
2518 break;
2519
2520 case SDEV_DEL:
2521 switch (oldstate) {
2522 case SDEV_CREATED:
2523 case SDEV_RUNNING:
2524 case SDEV_OFFLINE:
2525 case SDEV_TRANSPORT_OFFLINE:
2526 case SDEV_CANCEL:
2527 case SDEV_BLOCK:
2528 case SDEV_CREATED_BLOCK:
2529 break;
2530 default:
2531 goto illegal;
2532 }
2533 break;
2534
2535 }
2536 sdev->offline_already = false;
2537 sdev->sdev_state = state;
2538 return 0;
2539
2540 illegal:
2541 SCSI_LOG_ERROR_RECOVERY(1,
2542 sdev_printk(KERN_ERR, sdev,
2543 "Illegal state transition %s->%s",
2544 scsi_device_state_name(oldstate),
2545 scsi_device_state_name(state))
2546 );
2547 return -EINVAL;
2548 }
2549 EXPORT_SYMBOL(scsi_device_set_state);
2550
2551 /**
2552 * scsi_evt_emit - emit a single SCSI device uevent
2553 * @sdev: associated SCSI device
2554 * @evt: event to emit
2555 *
2556 * Send a single uevent (scsi_event) to the associated scsi_device.
2557 */
scsi_evt_emit(struct scsi_device * sdev,struct scsi_event * evt)2558 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2559 {
2560 int idx = 0;
2561 char *envp[3];
2562
2563 switch (evt->evt_type) {
2564 case SDEV_EVT_MEDIA_CHANGE:
2565 envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2566 break;
2567 case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2568 scsi_rescan_device(sdev);
2569 envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2570 break;
2571 case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2572 envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2573 break;
2574 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2575 envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2576 break;
2577 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2578 envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2579 break;
2580 case SDEV_EVT_LUN_CHANGE_REPORTED:
2581 envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2582 break;
2583 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2584 envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2585 break;
2586 case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2587 envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED";
2588 break;
2589 default:
2590 /* do nothing */
2591 break;
2592 }
2593
2594 envp[idx++] = NULL;
2595
2596 kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2597 }
2598
2599 /**
2600 * scsi_evt_thread - send a uevent for each scsi event
2601 * @work: work struct for scsi_device
2602 *
2603 * Dispatch queued events to their associated scsi_device kobjects
2604 * as uevents.
2605 */
scsi_evt_thread(struct work_struct * work)2606 void scsi_evt_thread(struct work_struct *work)
2607 {
2608 struct scsi_device *sdev;
2609 enum scsi_device_event evt_type;
2610 LIST_HEAD(event_list);
2611
2612 sdev = container_of(work, struct scsi_device, event_work);
2613
2614 for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2615 if (test_and_clear_bit(evt_type, sdev->pending_events))
2616 sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2617
2618 while (1) {
2619 struct scsi_event *evt;
2620 struct list_head *this, *tmp;
2621 unsigned long flags;
2622
2623 spin_lock_irqsave(&sdev->list_lock, flags);
2624 list_splice_init(&sdev->event_list, &event_list);
2625 spin_unlock_irqrestore(&sdev->list_lock, flags);
2626
2627 if (list_empty(&event_list))
2628 break;
2629
2630 list_for_each_safe(this, tmp, &event_list) {
2631 evt = list_entry(this, struct scsi_event, node);
2632 list_del(&evt->node);
2633 scsi_evt_emit(sdev, evt);
2634 kfree(evt);
2635 }
2636 }
2637 }
2638
2639 /**
2640 * sdev_evt_send - send asserted event to uevent thread
2641 * @sdev: scsi_device event occurred on
2642 * @evt: event to send
2643 *
2644 * Assert scsi device event asynchronously.
2645 */
sdev_evt_send(struct scsi_device * sdev,struct scsi_event * evt)2646 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2647 {
2648 unsigned long flags;
2649
2650 #if 0
2651 /* FIXME: currently this check eliminates all media change events
2652 * for polled devices. Need to update to discriminate between AN
2653 * and polled events */
2654 if (!test_bit(evt->evt_type, sdev->supported_events)) {
2655 kfree(evt);
2656 return;
2657 }
2658 #endif
2659
2660 spin_lock_irqsave(&sdev->list_lock, flags);
2661 list_add_tail(&evt->node, &sdev->event_list);
2662 schedule_work(&sdev->event_work);
2663 spin_unlock_irqrestore(&sdev->list_lock, flags);
2664 }
2665 EXPORT_SYMBOL_GPL(sdev_evt_send);
2666
2667 /**
2668 * sdev_evt_alloc - allocate a new scsi event
2669 * @evt_type: type of event to allocate
2670 * @gfpflags: GFP flags for allocation
2671 *
2672 * Allocates and returns a new scsi_event.
2673 */
sdev_evt_alloc(enum scsi_device_event evt_type,gfp_t gfpflags)2674 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2675 gfp_t gfpflags)
2676 {
2677 struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2678 if (!evt)
2679 return NULL;
2680
2681 evt->evt_type = evt_type;
2682 INIT_LIST_HEAD(&evt->node);
2683
2684 /* evt_type-specific initialization, if any */
2685 switch (evt_type) {
2686 case SDEV_EVT_MEDIA_CHANGE:
2687 case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2688 case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2689 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2690 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2691 case SDEV_EVT_LUN_CHANGE_REPORTED:
2692 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2693 case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2694 default:
2695 /* do nothing */
2696 break;
2697 }
2698
2699 return evt;
2700 }
2701 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2702
2703 /**
2704 * sdev_evt_send_simple - send asserted event to uevent thread
2705 * @sdev: scsi_device event occurred on
2706 * @evt_type: type of event to send
2707 * @gfpflags: GFP flags for allocation
2708 *
2709 * Assert scsi device event asynchronously, given an event type.
2710 */
sdev_evt_send_simple(struct scsi_device * sdev,enum scsi_device_event evt_type,gfp_t gfpflags)2711 void sdev_evt_send_simple(struct scsi_device *sdev,
2712 enum scsi_device_event evt_type, gfp_t gfpflags)
2713 {
2714 struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2715 if (!evt) {
2716 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2717 evt_type);
2718 return;
2719 }
2720
2721 sdev_evt_send(sdev, evt);
2722 }
2723 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2724
2725 /**
2726 * scsi_device_quiesce - Block all commands except power management.
2727 * @sdev: scsi device to quiesce.
2728 *
2729 * This works by trying to transition to the SDEV_QUIESCE state
2730 * (which must be a legal transition). When the device is in this
2731 * state, only power management requests will be accepted, all others will
2732 * be deferred.
2733 *
2734 * Must be called with user context, may sleep.
2735 *
2736 * Returns zero if unsuccessful or an error if not.
2737 */
2738 int
scsi_device_quiesce(struct scsi_device * sdev)2739 scsi_device_quiesce(struct scsi_device *sdev)
2740 {
2741 struct request_queue *q = sdev->request_queue;
2742 int err;
2743
2744 /*
2745 * It is allowed to call scsi_device_quiesce() multiple times from
2746 * the same context but concurrent scsi_device_quiesce() calls are
2747 * not allowed.
2748 */
2749 WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current);
2750
2751 if (sdev->quiesced_by == current)
2752 return 0;
2753
2754 blk_set_pm_only(q);
2755
2756 blk_mq_freeze_queue(q);
2757 /*
2758 * Ensure that the effect of blk_set_pm_only() will be visible
2759 * for percpu_ref_tryget() callers that occur after the queue
2760 * unfreeze even if the queue was already frozen before this function
2761 * was called. See also https://lwn.net/Articles/573497/.
2762 */
2763 synchronize_rcu();
2764 blk_mq_unfreeze_queue(q);
2765
2766 mutex_lock(&sdev->state_mutex);
2767 err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2768 if (err == 0)
2769 sdev->quiesced_by = current;
2770 else
2771 blk_clear_pm_only(q);
2772 mutex_unlock(&sdev->state_mutex);
2773
2774 return err;
2775 }
2776 EXPORT_SYMBOL(scsi_device_quiesce);
2777
2778 /**
2779 * scsi_device_resume - Restart user issued commands to a quiesced device.
2780 * @sdev: scsi device to resume.
2781 *
2782 * Moves the device from quiesced back to running and restarts the
2783 * queues.
2784 *
2785 * Must be called with user context, may sleep.
2786 */
scsi_device_resume(struct scsi_device * sdev)2787 void scsi_device_resume(struct scsi_device *sdev)
2788 {
2789 /* check if the device state was mutated prior to resume, and if
2790 * so assume the state is being managed elsewhere (for example
2791 * device deleted during suspend)
2792 */
2793 mutex_lock(&sdev->state_mutex);
2794 if (sdev->sdev_state == SDEV_QUIESCE)
2795 scsi_device_set_state(sdev, SDEV_RUNNING);
2796 if (sdev->quiesced_by) {
2797 sdev->quiesced_by = NULL;
2798 blk_clear_pm_only(sdev->request_queue);
2799 }
2800 mutex_unlock(&sdev->state_mutex);
2801 }
2802 EXPORT_SYMBOL(scsi_device_resume);
2803
2804 static void
device_quiesce_fn(struct scsi_device * sdev,void * data)2805 device_quiesce_fn(struct scsi_device *sdev, void *data)
2806 {
2807 scsi_device_quiesce(sdev);
2808 }
2809
2810 void
scsi_target_quiesce(struct scsi_target * starget)2811 scsi_target_quiesce(struct scsi_target *starget)
2812 {
2813 starget_for_each_device(starget, NULL, device_quiesce_fn);
2814 }
2815 EXPORT_SYMBOL(scsi_target_quiesce);
2816
2817 static void
device_resume_fn(struct scsi_device * sdev,void * data)2818 device_resume_fn(struct scsi_device *sdev, void *data)
2819 {
2820 scsi_device_resume(sdev);
2821 }
2822
2823 void
scsi_target_resume(struct scsi_target * starget)2824 scsi_target_resume(struct scsi_target *starget)
2825 {
2826 starget_for_each_device(starget, NULL, device_resume_fn);
2827 }
2828 EXPORT_SYMBOL(scsi_target_resume);
2829
__scsi_internal_device_block_nowait(struct scsi_device * sdev)2830 static int __scsi_internal_device_block_nowait(struct scsi_device *sdev)
2831 {
2832 if (scsi_device_set_state(sdev, SDEV_BLOCK))
2833 return scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2834
2835 return 0;
2836 }
2837
scsi_start_queue(struct scsi_device * sdev)2838 void scsi_start_queue(struct scsi_device *sdev)
2839 {
2840 if (cmpxchg(&sdev->queue_stopped, 1, 0))
2841 blk_mq_unquiesce_queue(sdev->request_queue);
2842 }
2843
scsi_stop_queue(struct scsi_device * sdev)2844 static void scsi_stop_queue(struct scsi_device *sdev)
2845 {
2846 /*
2847 * The atomic variable of ->queue_stopped covers that
2848 * blk_mq_quiesce_queue* is balanced with blk_mq_unquiesce_queue.
2849 *
2850 * The caller needs to wait until quiesce is done.
2851 */
2852 if (!cmpxchg(&sdev->queue_stopped, 0, 1))
2853 blk_mq_quiesce_queue_nowait(sdev->request_queue);
2854 }
2855
2856 /**
2857 * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state
2858 * @sdev: device to block
2859 *
2860 * Pause SCSI command processing on the specified device. Does not sleep.
2861 *
2862 * Returns zero if successful or a negative error code upon failure.
2863 *
2864 * Notes:
2865 * This routine transitions the device to the SDEV_BLOCK state (which must be
2866 * a legal transition). When the device is in this state, command processing
2867 * is paused until the device leaves the SDEV_BLOCK state. See also
2868 * scsi_internal_device_unblock_nowait().
2869 */
scsi_internal_device_block_nowait(struct scsi_device * sdev)2870 int scsi_internal_device_block_nowait(struct scsi_device *sdev)
2871 {
2872 int ret = __scsi_internal_device_block_nowait(sdev);
2873
2874 /*
2875 * The device has transitioned to SDEV_BLOCK. Stop the
2876 * block layer from calling the midlayer with this device's
2877 * request queue.
2878 */
2879 if (!ret)
2880 scsi_stop_queue(sdev);
2881 return ret;
2882 }
2883 EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait);
2884
2885 /**
2886 * scsi_device_block - try to transition to the SDEV_BLOCK state
2887 * @sdev: device to block
2888 * @data: dummy argument, ignored
2889 *
2890 * Pause SCSI command processing on the specified device. Callers must wait
2891 * until all ongoing scsi_queue_rq() calls have finished after this function
2892 * returns.
2893 *
2894 * Note:
2895 * This routine transitions the device to the SDEV_BLOCK state (which must be
2896 * a legal transition). When the device is in this state, command processing
2897 * is paused until the device leaves the SDEV_BLOCK state. See also
2898 * scsi_internal_device_unblock().
2899 */
scsi_device_block(struct scsi_device * sdev,void * data)2900 static void scsi_device_block(struct scsi_device *sdev, void *data)
2901 {
2902 int err;
2903 enum scsi_device_state state;
2904
2905 mutex_lock(&sdev->state_mutex);
2906 err = __scsi_internal_device_block_nowait(sdev);
2907 state = sdev->sdev_state;
2908 if (err == 0)
2909 /*
2910 * scsi_stop_queue() must be called with the state_mutex
2911 * held. Otherwise a simultaneous scsi_start_queue() call
2912 * might unquiesce the queue before we quiesce it.
2913 */
2914 scsi_stop_queue(sdev);
2915
2916 mutex_unlock(&sdev->state_mutex);
2917
2918 WARN_ONCE(err, "%s: failed to block %s in state %d\n",
2919 __func__, dev_name(&sdev->sdev_gendev), state);
2920 }
2921
2922 /**
2923 * scsi_internal_device_unblock_nowait - resume a device after a block request
2924 * @sdev: device to resume
2925 * @new_state: state to set the device to after unblocking
2926 *
2927 * Restart the device queue for a previously suspended SCSI device. Does not
2928 * sleep.
2929 *
2930 * Returns zero if successful or a negative error code upon failure.
2931 *
2932 * Notes:
2933 * This routine transitions the device to the SDEV_RUNNING state or to one of
2934 * the offline states (which must be a legal transition) allowing the midlayer
2935 * to goose the queue for this device.
2936 */
scsi_internal_device_unblock_nowait(struct scsi_device * sdev,enum scsi_device_state new_state)2937 int scsi_internal_device_unblock_nowait(struct scsi_device *sdev,
2938 enum scsi_device_state new_state)
2939 {
2940 switch (new_state) {
2941 case SDEV_RUNNING:
2942 case SDEV_TRANSPORT_OFFLINE:
2943 break;
2944 default:
2945 return -EINVAL;
2946 }
2947
2948 /*
2949 * Try to transition the scsi device to SDEV_RUNNING or one of the
2950 * offlined states and goose the device queue if successful.
2951 */
2952 switch (sdev->sdev_state) {
2953 case SDEV_BLOCK:
2954 case SDEV_TRANSPORT_OFFLINE:
2955 sdev->sdev_state = new_state;
2956 break;
2957 case SDEV_CREATED_BLOCK:
2958 if (new_state == SDEV_TRANSPORT_OFFLINE ||
2959 new_state == SDEV_OFFLINE)
2960 sdev->sdev_state = new_state;
2961 else
2962 sdev->sdev_state = SDEV_CREATED;
2963 break;
2964 case SDEV_CANCEL:
2965 case SDEV_OFFLINE:
2966 break;
2967 default:
2968 return -EINVAL;
2969 }
2970 scsi_start_queue(sdev);
2971
2972 return 0;
2973 }
2974 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait);
2975
2976 /**
2977 * scsi_internal_device_unblock - resume a device after a block request
2978 * @sdev: device to resume
2979 * @new_state: state to set the device to after unblocking
2980 *
2981 * Restart the device queue for a previously suspended SCSI device. May sleep.
2982 *
2983 * Returns zero if successful or a negative error code upon failure.
2984 *
2985 * Notes:
2986 * This routine transitions the device to the SDEV_RUNNING state or to one of
2987 * the offline states (which must be a legal transition) allowing the midlayer
2988 * to goose the queue for this device.
2989 */
scsi_internal_device_unblock(struct scsi_device * sdev,enum scsi_device_state new_state)2990 static int scsi_internal_device_unblock(struct scsi_device *sdev,
2991 enum scsi_device_state new_state)
2992 {
2993 int ret;
2994
2995 mutex_lock(&sdev->state_mutex);
2996 ret = scsi_internal_device_unblock_nowait(sdev, new_state);
2997 mutex_unlock(&sdev->state_mutex);
2998
2999 return ret;
3000 }
3001
3002 static int
target_block(struct device * dev,void * data)3003 target_block(struct device *dev, void *data)
3004 {
3005 if (scsi_is_target_device(dev))
3006 starget_for_each_device(to_scsi_target(dev), NULL,
3007 scsi_device_block);
3008 return 0;
3009 }
3010
3011 /**
3012 * scsi_block_targets - transition all SCSI child devices to SDEV_BLOCK state
3013 * @dev: a parent device of one or more scsi_target devices
3014 * @shost: the Scsi_Host to which this device belongs
3015 *
3016 * Iterate over all children of @dev, which should be scsi_target devices,
3017 * and switch all subordinate scsi devices to SDEV_BLOCK state. Wait for
3018 * ongoing scsi_queue_rq() calls to finish. May sleep.
3019 *
3020 * Note:
3021 * @dev must not itself be a scsi_target device.
3022 */
3023 void
scsi_block_targets(struct Scsi_Host * shost,struct device * dev)3024 scsi_block_targets(struct Scsi_Host *shost, struct device *dev)
3025 {
3026 WARN_ON_ONCE(scsi_is_target_device(dev));
3027 device_for_each_child(dev, NULL, target_block);
3028 blk_mq_wait_quiesce_done(&shost->tag_set);
3029 }
3030 EXPORT_SYMBOL_GPL(scsi_block_targets);
3031
3032 static void
device_unblock(struct scsi_device * sdev,void * data)3033 device_unblock(struct scsi_device *sdev, void *data)
3034 {
3035 scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
3036 }
3037
3038 static int
target_unblock(struct device * dev,void * data)3039 target_unblock(struct device *dev, void *data)
3040 {
3041 if (scsi_is_target_device(dev))
3042 starget_for_each_device(to_scsi_target(dev), data,
3043 device_unblock);
3044 return 0;
3045 }
3046
3047 void
scsi_target_unblock(struct device * dev,enum scsi_device_state new_state)3048 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
3049 {
3050 if (scsi_is_target_device(dev))
3051 starget_for_each_device(to_scsi_target(dev), &new_state,
3052 device_unblock);
3053 else
3054 device_for_each_child(dev, &new_state, target_unblock);
3055 }
3056 EXPORT_SYMBOL_GPL(scsi_target_unblock);
3057
3058 /**
3059 * scsi_host_block - Try to transition all logical units to the SDEV_BLOCK state
3060 * @shost: device to block
3061 *
3062 * Pause SCSI command processing for all logical units associated with the SCSI
3063 * host and wait until pending scsi_queue_rq() calls have finished.
3064 *
3065 * Returns zero if successful or a negative error code upon failure.
3066 */
3067 int
scsi_host_block(struct Scsi_Host * shost)3068 scsi_host_block(struct Scsi_Host *shost)
3069 {
3070 struct scsi_device *sdev;
3071 int ret;
3072
3073 /*
3074 * Call scsi_internal_device_block_nowait so we can avoid
3075 * calling synchronize_rcu() for each LUN.
3076 */
3077 shost_for_each_device(sdev, shost) {
3078 mutex_lock(&sdev->state_mutex);
3079 ret = scsi_internal_device_block_nowait(sdev);
3080 mutex_unlock(&sdev->state_mutex);
3081 if (ret) {
3082 scsi_device_put(sdev);
3083 return ret;
3084 }
3085 }
3086
3087 /* Wait for ongoing scsi_queue_rq() calls to finish. */
3088 blk_mq_wait_quiesce_done(&shost->tag_set);
3089
3090 return 0;
3091 }
3092 EXPORT_SYMBOL_GPL(scsi_host_block);
3093
3094 int
scsi_host_unblock(struct Scsi_Host * shost,int new_state)3095 scsi_host_unblock(struct Scsi_Host *shost, int new_state)
3096 {
3097 struct scsi_device *sdev;
3098 int ret = 0;
3099
3100 shost_for_each_device(sdev, shost) {
3101 ret = scsi_internal_device_unblock(sdev, new_state);
3102 if (ret) {
3103 scsi_device_put(sdev);
3104 break;
3105 }
3106 }
3107 return ret;
3108 }
3109 EXPORT_SYMBOL_GPL(scsi_host_unblock);
3110
3111 /**
3112 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
3113 * @sgl: scatter-gather list
3114 * @sg_count: number of segments in sg
3115 * @offset: offset in bytes into sg, on return offset into the mapped area
3116 * @len: bytes to map, on return number of bytes mapped
3117 *
3118 * Returns virtual address of the start of the mapped page
3119 */
scsi_kmap_atomic_sg(struct scatterlist * sgl,int sg_count,size_t * offset,size_t * len)3120 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
3121 size_t *offset, size_t *len)
3122 {
3123 int i;
3124 size_t sg_len = 0, len_complete = 0;
3125 struct scatterlist *sg;
3126 struct page *page;
3127
3128 WARN_ON(!irqs_disabled());
3129
3130 for_each_sg(sgl, sg, sg_count, i) {
3131 len_complete = sg_len; /* Complete sg-entries */
3132 sg_len += sg->length;
3133 if (sg_len > *offset)
3134 break;
3135 }
3136
3137 if (unlikely(i == sg_count)) {
3138 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
3139 "elements %d\n",
3140 __func__, sg_len, *offset, sg_count);
3141 WARN_ON(1);
3142 return NULL;
3143 }
3144
3145 /* Offset starting from the beginning of first page in this sg-entry */
3146 *offset = *offset - len_complete + sg->offset;
3147
3148 /* Assumption: contiguous pages can be accessed as "page + i" */
3149 page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
3150 *offset &= ~PAGE_MASK;
3151
3152 /* Bytes in this sg-entry from *offset to the end of the page */
3153 sg_len = PAGE_SIZE - *offset;
3154 if (*len > sg_len)
3155 *len = sg_len;
3156
3157 return kmap_atomic(page);
3158 }
3159 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
3160
3161 /**
3162 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
3163 * @virt: virtual address to be unmapped
3164 */
scsi_kunmap_atomic_sg(void * virt)3165 void scsi_kunmap_atomic_sg(void *virt)
3166 {
3167 kunmap_atomic(virt);
3168 }
3169 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
3170
sdev_disable_disk_events(struct scsi_device * sdev)3171 void sdev_disable_disk_events(struct scsi_device *sdev)
3172 {
3173 atomic_inc(&sdev->disk_events_disable_depth);
3174 }
3175 EXPORT_SYMBOL(sdev_disable_disk_events);
3176
sdev_enable_disk_events(struct scsi_device * sdev)3177 void sdev_enable_disk_events(struct scsi_device *sdev)
3178 {
3179 if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
3180 return;
3181 atomic_dec(&sdev->disk_events_disable_depth);
3182 }
3183 EXPORT_SYMBOL(sdev_enable_disk_events);
3184
designator_prio(const unsigned char * d)3185 static unsigned char designator_prio(const unsigned char *d)
3186 {
3187 if (d[1] & 0x30)
3188 /* not associated with LUN */
3189 return 0;
3190
3191 if (d[3] == 0)
3192 /* invalid length */
3193 return 0;
3194
3195 /*
3196 * Order of preference for lun descriptor:
3197 * - SCSI name string
3198 * - NAA IEEE Registered Extended
3199 * - EUI-64 based 16-byte
3200 * - EUI-64 based 12-byte
3201 * - NAA IEEE Registered
3202 * - NAA IEEE Extended
3203 * - EUI-64 based 8-byte
3204 * - SCSI name string (truncated)
3205 * - T10 Vendor ID
3206 * as longer descriptors reduce the likelyhood
3207 * of identification clashes.
3208 */
3209
3210 switch (d[1] & 0xf) {
3211 case 8:
3212 /* SCSI name string, variable-length UTF-8 */
3213 return 9;
3214 case 3:
3215 switch (d[4] >> 4) {
3216 case 6:
3217 /* NAA registered extended */
3218 return 8;
3219 case 5:
3220 /* NAA registered */
3221 return 5;
3222 case 4:
3223 /* NAA extended */
3224 return 4;
3225 case 3:
3226 /* NAA locally assigned */
3227 return 1;
3228 default:
3229 break;
3230 }
3231 break;
3232 case 2:
3233 switch (d[3]) {
3234 case 16:
3235 /* EUI64-based, 16 byte */
3236 return 7;
3237 case 12:
3238 /* EUI64-based, 12 byte */
3239 return 6;
3240 case 8:
3241 /* EUI64-based, 8 byte */
3242 return 3;
3243 default:
3244 break;
3245 }
3246 break;
3247 case 1:
3248 /* T10 vendor ID */
3249 return 1;
3250 default:
3251 break;
3252 }
3253
3254 return 0;
3255 }
3256
3257 /**
3258 * scsi_vpd_lun_id - return a unique device identification
3259 * @sdev: SCSI device
3260 * @id: buffer for the identification
3261 * @id_len: length of the buffer
3262 *
3263 * Copies a unique device identification into @id based
3264 * on the information in the VPD page 0x83 of the device.
3265 * The string will be formatted as a SCSI name string.
3266 *
3267 * Returns the length of the identification or error on failure.
3268 * If the identifier is longer than the supplied buffer the actual
3269 * identifier length is returned and the buffer is not zero-padded.
3270 */
scsi_vpd_lun_id(struct scsi_device * sdev,char * id,size_t id_len)3271 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len)
3272 {
3273 u8 cur_id_prio = 0;
3274 u8 cur_id_size = 0;
3275 const unsigned char *d, *cur_id_str;
3276 const struct scsi_vpd *vpd_pg83;
3277 int id_size = -EINVAL;
3278
3279 rcu_read_lock();
3280 vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3281 if (!vpd_pg83) {
3282 rcu_read_unlock();
3283 return -ENXIO;
3284 }
3285
3286 /* The id string must be at least 20 bytes + terminating NULL byte */
3287 if (id_len < 21) {
3288 rcu_read_unlock();
3289 return -EINVAL;
3290 }
3291
3292 memset(id, 0, id_len);
3293 for (d = vpd_pg83->data + 4;
3294 d < vpd_pg83->data + vpd_pg83->len;
3295 d += d[3] + 4) {
3296 u8 prio = designator_prio(d);
3297
3298 if (prio == 0 || cur_id_prio > prio)
3299 continue;
3300
3301 switch (d[1] & 0xf) {
3302 case 0x1:
3303 /* T10 Vendor ID */
3304 if (cur_id_size > d[3])
3305 break;
3306 cur_id_prio = prio;
3307 cur_id_size = d[3];
3308 if (cur_id_size + 4 > id_len)
3309 cur_id_size = id_len - 4;
3310 cur_id_str = d + 4;
3311 id_size = snprintf(id, id_len, "t10.%*pE",
3312 cur_id_size, cur_id_str);
3313 break;
3314 case 0x2:
3315 /* EUI-64 */
3316 cur_id_prio = prio;
3317 cur_id_size = d[3];
3318 cur_id_str = d + 4;
3319 switch (cur_id_size) {
3320 case 8:
3321 id_size = snprintf(id, id_len,
3322 "eui.%8phN",
3323 cur_id_str);
3324 break;
3325 case 12:
3326 id_size = snprintf(id, id_len,
3327 "eui.%12phN",
3328 cur_id_str);
3329 break;
3330 case 16:
3331 id_size = snprintf(id, id_len,
3332 "eui.%16phN",
3333 cur_id_str);
3334 break;
3335 default:
3336 break;
3337 }
3338 break;
3339 case 0x3:
3340 /* NAA */
3341 cur_id_prio = prio;
3342 cur_id_size = d[3];
3343 cur_id_str = d + 4;
3344 switch (cur_id_size) {
3345 case 8:
3346 id_size = snprintf(id, id_len,
3347 "naa.%8phN",
3348 cur_id_str);
3349 break;
3350 case 16:
3351 id_size = snprintf(id, id_len,
3352 "naa.%16phN",
3353 cur_id_str);
3354 break;
3355 default:
3356 break;
3357 }
3358 break;
3359 case 0x8:
3360 /* SCSI name string */
3361 if (cur_id_size > d[3])
3362 break;
3363 /* Prefer others for truncated descriptor */
3364 if (d[3] > id_len) {
3365 prio = 2;
3366 if (cur_id_prio > prio)
3367 break;
3368 }
3369 cur_id_prio = prio;
3370 cur_id_size = id_size = d[3];
3371 cur_id_str = d + 4;
3372 if (cur_id_size >= id_len)
3373 cur_id_size = id_len - 1;
3374 memcpy(id, cur_id_str, cur_id_size);
3375 break;
3376 default:
3377 break;
3378 }
3379 }
3380 rcu_read_unlock();
3381
3382 return id_size;
3383 }
3384 EXPORT_SYMBOL(scsi_vpd_lun_id);
3385
3386 /*
3387 * scsi_vpd_tpg_id - return a target port group identifier
3388 * @sdev: SCSI device
3389 *
3390 * Returns the Target Port Group identifier from the information
3391 * froom VPD page 0x83 of the device.
3392 *
3393 * Returns the identifier or error on failure.
3394 */
scsi_vpd_tpg_id(struct scsi_device * sdev,int * rel_id)3395 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id)
3396 {
3397 const unsigned char *d;
3398 const struct scsi_vpd *vpd_pg83;
3399 int group_id = -EAGAIN, rel_port = -1;
3400
3401 rcu_read_lock();
3402 vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3403 if (!vpd_pg83) {
3404 rcu_read_unlock();
3405 return -ENXIO;
3406 }
3407
3408 d = vpd_pg83->data + 4;
3409 while (d < vpd_pg83->data + vpd_pg83->len) {
3410 switch (d[1] & 0xf) {
3411 case 0x4:
3412 /* Relative target port */
3413 rel_port = get_unaligned_be16(&d[6]);
3414 break;
3415 case 0x5:
3416 /* Target port group */
3417 group_id = get_unaligned_be16(&d[6]);
3418 break;
3419 default:
3420 break;
3421 }
3422 d += d[3] + 4;
3423 }
3424 rcu_read_unlock();
3425
3426 if (group_id >= 0 && rel_id && rel_port != -1)
3427 *rel_id = rel_port;
3428
3429 return group_id;
3430 }
3431 EXPORT_SYMBOL(scsi_vpd_tpg_id);
3432
3433 /**
3434 * scsi_build_sense - build sense data for a command
3435 * @scmd: scsi command for which the sense should be formatted
3436 * @desc: Sense format (non-zero == descriptor format,
3437 * 0 == fixed format)
3438 * @key: Sense key
3439 * @asc: Additional sense code
3440 * @ascq: Additional sense code qualifier
3441 *
3442 **/
scsi_build_sense(struct scsi_cmnd * scmd,int desc,u8 key,u8 asc,u8 ascq)3443 void scsi_build_sense(struct scsi_cmnd *scmd, int desc, u8 key, u8 asc, u8 ascq)
3444 {
3445 scsi_build_sense_buffer(desc, scmd->sense_buffer, key, asc, ascq);
3446 scmd->result = SAM_STAT_CHECK_CONDITION;
3447 }
3448 EXPORT_SYMBOL_GPL(scsi_build_sense);
3449
3450 #ifdef CONFIG_SCSI_LIB_KUNIT_TEST
3451 #include "scsi_lib_test.c"
3452 #endif
3453