1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Implementation of the security services.
4 *
5 * Authors : Stephen Smalley, <stephen.smalley.work@gmail.com>
6 * James Morris <jmorris@redhat.com>
7 *
8 * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
9 *
10 * Support for enhanced MLS infrastructure.
11 * Support for context based audit filters.
12 *
13 * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
14 *
15 * Added conditional policy language extensions
16 *
17 * Updated: Hewlett-Packard <paul@paul-moore.com>
18 *
19 * Added support for NetLabel
20 * Added support for the policy capability bitmap
21 *
22 * Updated: Chad Sellers <csellers@tresys.com>
23 *
24 * Added validation of kernel classes and permissions
25 *
26 * Updated: KaiGai Kohei <kaigai@ak.jp.nec.com>
27 *
28 * Added support for bounds domain and audit messaged on masked permissions
29 *
30 * Updated: Guido Trentalancia <guido@trentalancia.com>
31 *
32 * Added support for runtime switching of the policy type
33 *
34 * Copyright (C) 2008, 2009 NEC Corporation
35 * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
36 * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
37 * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
38 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
39 */
40 #include <linux/kernel.h>
41 #include <linux/slab.h>
42 #include <linux/string.h>
43 #include <linux/spinlock.h>
44 #include <linux/rcupdate.h>
45 #include <linux/errno.h>
46 #include <linux/in.h>
47 #include <linux/sched.h>
48 #include <linux/audit.h>
49 #include <linux/vmalloc.h>
50 #include <linux/lsm_hooks.h>
51 #include <net/netlabel.h>
52
53 #include "flask.h"
54 #include "avc.h"
55 #include "avc_ss.h"
56 #include "security.h"
57 #include "context.h"
58 #include "policydb.h"
59 #include "sidtab.h"
60 #include "services.h"
61 #include "conditional.h"
62 #include "mls.h"
63 #include "objsec.h"
64 #include "netlabel.h"
65 #include "xfrm.h"
66 #include "ebitmap.h"
67 #include "audit.h"
68 #include "policycap_names.h"
69 #include "ima.h"
70
71 #include <trace/hooks/selinux.h>
72
73 struct selinux_policy_convert_data {
74 struct convert_context_args args;
75 struct sidtab_convert_params sidtab_params;
76 };
77
78 /* Forward declaration. */
79 static int context_struct_to_string(struct policydb *policydb,
80 struct context *context,
81 char **scontext,
82 u32 *scontext_len);
83
84 static int sidtab_entry_to_string(struct policydb *policydb,
85 struct sidtab *sidtab,
86 struct sidtab_entry *entry,
87 char **scontext,
88 u32 *scontext_len);
89
90 static void context_struct_compute_av(struct policydb *policydb,
91 struct context *scontext,
92 struct context *tcontext,
93 u16 tclass,
94 struct av_decision *avd,
95 struct extended_perms *xperms);
96
selinux_set_mapping(struct policydb * pol,const struct security_class_mapping * map,struct selinux_map * out_map)97 static int selinux_set_mapping(struct policydb *pol,
98 const struct security_class_mapping *map,
99 struct selinux_map *out_map)
100 {
101 u16 i, j;
102 bool print_unknown_handle = false;
103
104 /* Find number of classes in the input mapping */
105 if (!map)
106 return -EINVAL;
107 i = 0;
108 while (map[i].name)
109 i++;
110
111 /* Allocate space for the class records, plus one for class zero */
112 out_map->mapping = kcalloc(++i, sizeof(*out_map->mapping), GFP_ATOMIC);
113 if (!out_map->mapping)
114 return -ENOMEM;
115
116 /* Store the raw class and permission values */
117 j = 0;
118 while (map[j].name) {
119 const struct security_class_mapping *p_in = map + (j++);
120 struct selinux_mapping *p_out = out_map->mapping + j;
121 u16 k;
122
123 /* An empty class string skips ahead */
124 if (!strcmp(p_in->name, "")) {
125 p_out->num_perms = 0;
126 continue;
127 }
128
129 p_out->value = string_to_security_class(pol, p_in->name);
130 if (!p_out->value) {
131 pr_info("SELinux: Class %s not defined in policy.\n",
132 p_in->name);
133 if (pol->reject_unknown)
134 goto err;
135 p_out->num_perms = 0;
136 print_unknown_handle = true;
137 continue;
138 }
139
140 k = 0;
141 while (p_in->perms[k]) {
142 /* An empty permission string skips ahead */
143 if (!*p_in->perms[k]) {
144 k++;
145 continue;
146 }
147 p_out->perms[k] = string_to_av_perm(pol, p_out->value,
148 p_in->perms[k]);
149 if (!p_out->perms[k]) {
150 pr_info("SELinux: Permission %s in class %s not defined in policy.\n",
151 p_in->perms[k], p_in->name);
152 if (pol->reject_unknown)
153 goto err;
154 print_unknown_handle = true;
155 }
156
157 k++;
158 }
159 p_out->num_perms = k;
160 }
161
162 if (print_unknown_handle)
163 pr_info("SELinux: the above unknown classes and permissions will be %s\n",
164 pol->allow_unknown ? "allowed" : "denied");
165
166 out_map->size = i;
167 return 0;
168 err:
169 kfree(out_map->mapping);
170 out_map->mapping = NULL;
171 return -EINVAL;
172 }
173
174 /*
175 * Get real, policy values from mapped values
176 */
177
unmap_class(struct selinux_map * map,u16 tclass)178 static u16 unmap_class(struct selinux_map *map, u16 tclass)
179 {
180 if (tclass < map->size)
181 return map->mapping[tclass].value;
182
183 return tclass;
184 }
185
186 /*
187 * Get kernel value for class from its policy value
188 */
map_class(struct selinux_map * map,u16 pol_value)189 static u16 map_class(struct selinux_map *map, u16 pol_value)
190 {
191 u16 i;
192
193 for (i = 1; i < map->size; i++) {
194 if (map->mapping[i].value == pol_value)
195 return i;
196 }
197
198 return SECCLASS_NULL;
199 }
200
map_decision(struct selinux_map * map,u16 tclass,struct av_decision * avd,int allow_unknown)201 static void map_decision(struct selinux_map *map,
202 u16 tclass, struct av_decision *avd,
203 int allow_unknown)
204 {
205 if (tclass < map->size) {
206 struct selinux_mapping *mapping = &map->mapping[tclass];
207 unsigned int i, n = mapping->num_perms;
208 u32 result;
209
210 for (i = 0, result = 0; i < n; i++) {
211 if (avd->allowed & mapping->perms[i])
212 result |= (u32)1<<i;
213 if (allow_unknown && !mapping->perms[i])
214 result |= (u32)1<<i;
215 }
216 avd->allowed = result;
217
218 for (i = 0, result = 0; i < n; i++)
219 if (avd->auditallow & mapping->perms[i])
220 result |= (u32)1<<i;
221 avd->auditallow = result;
222
223 for (i = 0, result = 0; i < n; i++) {
224 if (avd->auditdeny & mapping->perms[i])
225 result |= (u32)1<<i;
226 if (!allow_unknown && !mapping->perms[i])
227 result |= (u32)1<<i;
228 }
229 /*
230 * In case the kernel has a bug and requests a permission
231 * between num_perms and the maximum permission number, we
232 * should audit that denial
233 */
234 for (; i < (sizeof(u32)*8); i++)
235 result |= (u32)1<<i;
236 avd->auditdeny = result;
237 }
238 }
239
security_mls_enabled(void)240 int security_mls_enabled(void)
241 {
242 int mls_enabled;
243 struct selinux_policy *policy;
244
245 if (!selinux_initialized())
246 return 0;
247
248 rcu_read_lock();
249 policy = rcu_dereference(selinux_state.policy);
250 mls_enabled = policy->policydb.mls_enabled;
251 rcu_read_unlock();
252 return mls_enabled;
253 }
254
255 /*
256 * Return the boolean value of a constraint expression
257 * when it is applied to the specified source and target
258 * security contexts.
259 *
260 * xcontext is a special beast... It is used by the validatetrans rules
261 * only. For these rules, scontext is the context before the transition,
262 * tcontext is the context after the transition, and xcontext is the context
263 * of the process performing the transition. All other callers of
264 * constraint_expr_eval should pass in NULL for xcontext.
265 */
constraint_expr_eval(struct policydb * policydb,struct context * scontext,struct context * tcontext,struct context * xcontext,struct constraint_expr * cexpr)266 static int constraint_expr_eval(struct policydb *policydb,
267 struct context *scontext,
268 struct context *tcontext,
269 struct context *xcontext,
270 struct constraint_expr *cexpr)
271 {
272 u32 val1, val2;
273 struct context *c;
274 struct role_datum *r1, *r2;
275 struct mls_level *l1, *l2;
276 struct constraint_expr *e;
277 int s[CEXPR_MAXDEPTH];
278 int sp = -1;
279
280 for (e = cexpr; e; e = e->next) {
281 switch (e->expr_type) {
282 case CEXPR_NOT:
283 BUG_ON(sp < 0);
284 s[sp] = !s[sp];
285 break;
286 case CEXPR_AND:
287 BUG_ON(sp < 1);
288 sp--;
289 s[sp] &= s[sp + 1];
290 break;
291 case CEXPR_OR:
292 BUG_ON(sp < 1);
293 sp--;
294 s[sp] |= s[sp + 1];
295 break;
296 case CEXPR_ATTR:
297 if (sp == (CEXPR_MAXDEPTH - 1))
298 return 0;
299 switch (e->attr) {
300 case CEXPR_USER:
301 val1 = scontext->user;
302 val2 = tcontext->user;
303 break;
304 case CEXPR_TYPE:
305 val1 = scontext->type;
306 val2 = tcontext->type;
307 break;
308 case CEXPR_ROLE:
309 val1 = scontext->role;
310 val2 = tcontext->role;
311 r1 = policydb->role_val_to_struct[val1 - 1];
312 r2 = policydb->role_val_to_struct[val2 - 1];
313 switch (e->op) {
314 case CEXPR_DOM:
315 s[++sp] = ebitmap_get_bit(&r1->dominates,
316 val2 - 1);
317 continue;
318 case CEXPR_DOMBY:
319 s[++sp] = ebitmap_get_bit(&r2->dominates,
320 val1 - 1);
321 continue;
322 case CEXPR_INCOMP:
323 s[++sp] = (!ebitmap_get_bit(&r1->dominates,
324 val2 - 1) &&
325 !ebitmap_get_bit(&r2->dominates,
326 val1 - 1));
327 continue;
328 default:
329 break;
330 }
331 break;
332 case CEXPR_L1L2:
333 l1 = &(scontext->range.level[0]);
334 l2 = &(tcontext->range.level[0]);
335 goto mls_ops;
336 case CEXPR_L1H2:
337 l1 = &(scontext->range.level[0]);
338 l2 = &(tcontext->range.level[1]);
339 goto mls_ops;
340 case CEXPR_H1L2:
341 l1 = &(scontext->range.level[1]);
342 l2 = &(tcontext->range.level[0]);
343 goto mls_ops;
344 case CEXPR_H1H2:
345 l1 = &(scontext->range.level[1]);
346 l2 = &(tcontext->range.level[1]);
347 goto mls_ops;
348 case CEXPR_L1H1:
349 l1 = &(scontext->range.level[0]);
350 l2 = &(scontext->range.level[1]);
351 goto mls_ops;
352 case CEXPR_L2H2:
353 l1 = &(tcontext->range.level[0]);
354 l2 = &(tcontext->range.level[1]);
355 goto mls_ops;
356 mls_ops:
357 switch (e->op) {
358 case CEXPR_EQ:
359 s[++sp] = mls_level_eq(l1, l2);
360 continue;
361 case CEXPR_NEQ:
362 s[++sp] = !mls_level_eq(l1, l2);
363 continue;
364 case CEXPR_DOM:
365 s[++sp] = mls_level_dom(l1, l2);
366 continue;
367 case CEXPR_DOMBY:
368 s[++sp] = mls_level_dom(l2, l1);
369 continue;
370 case CEXPR_INCOMP:
371 s[++sp] = mls_level_incomp(l2, l1);
372 continue;
373 default:
374 BUG();
375 return 0;
376 }
377 break;
378 default:
379 BUG();
380 return 0;
381 }
382
383 switch (e->op) {
384 case CEXPR_EQ:
385 s[++sp] = (val1 == val2);
386 break;
387 case CEXPR_NEQ:
388 s[++sp] = (val1 != val2);
389 break;
390 default:
391 BUG();
392 return 0;
393 }
394 break;
395 case CEXPR_NAMES:
396 if (sp == (CEXPR_MAXDEPTH-1))
397 return 0;
398 c = scontext;
399 if (e->attr & CEXPR_TARGET)
400 c = tcontext;
401 else if (e->attr & CEXPR_XTARGET) {
402 c = xcontext;
403 if (!c) {
404 BUG();
405 return 0;
406 }
407 }
408 if (e->attr & CEXPR_USER)
409 val1 = c->user;
410 else if (e->attr & CEXPR_ROLE)
411 val1 = c->role;
412 else if (e->attr & CEXPR_TYPE)
413 val1 = c->type;
414 else {
415 BUG();
416 return 0;
417 }
418
419 switch (e->op) {
420 case CEXPR_EQ:
421 s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
422 break;
423 case CEXPR_NEQ:
424 s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
425 break;
426 default:
427 BUG();
428 return 0;
429 }
430 break;
431 default:
432 BUG();
433 return 0;
434 }
435 }
436
437 BUG_ON(sp != 0);
438 return s[0];
439 }
440
441 /*
442 * security_dump_masked_av - dumps masked permissions during
443 * security_compute_av due to RBAC, MLS/Constraint and Type bounds.
444 */
dump_masked_av_helper(void * k,void * d,void * args)445 static int dump_masked_av_helper(void *k, void *d, void *args)
446 {
447 struct perm_datum *pdatum = d;
448 char **permission_names = args;
449
450 BUG_ON(pdatum->value < 1 || pdatum->value > 32);
451
452 permission_names[pdatum->value - 1] = (char *)k;
453
454 return 0;
455 }
456
security_dump_masked_av(struct policydb * policydb,struct context * scontext,struct context * tcontext,u16 tclass,u32 permissions,const char * reason)457 static void security_dump_masked_av(struct policydb *policydb,
458 struct context *scontext,
459 struct context *tcontext,
460 u16 tclass,
461 u32 permissions,
462 const char *reason)
463 {
464 struct common_datum *common_dat;
465 struct class_datum *tclass_dat;
466 struct audit_buffer *ab;
467 char *tclass_name;
468 char *scontext_name = NULL;
469 char *tcontext_name = NULL;
470 char *permission_names[32];
471 int index;
472 u32 length;
473 bool need_comma = false;
474
475 if (!permissions)
476 return;
477
478 tclass_name = sym_name(policydb, SYM_CLASSES, tclass - 1);
479 tclass_dat = policydb->class_val_to_struct[tclass - 1];
480 common_dat = tclass_dat->comdatum;
481
482 /* init permission_names */
483 if (common_dat &&
484 hashtab_map(&common_dat->permissions.table,
485 dump_masked_av_helper, permission_names) < 0)
486 goto out;
487
488 if (hashtab_map(&tclass_dat->permissions.table,
489 dump_masked_av_helper, permission_names) < 0)
490 goto out;
491
492 /* get scontext/tcontext in text form */
493 if (context_struct_to_string(policydb, scontext,
494 &scontext_name, &length) < 0)
495 goto out;
496
497 if (context_struct_to_string(policydb, tcontext,
498 &tcontext_name, &length) < 0)
499 goto out;
500
501 /* audit a message */
502 ab = audit_log_start(audit_context(),
503 GFP_ATOMIC, AUDIT_SELINUX_ERR);
504 if (!ab)
505 goto out;
506
507 audit_log_format(ab, "op=security_compute_av reason=%s "
508 "scontext=%s tcontext=%s tclass=%s perms=",
509 reason, scontext_name, tcontext_name, tclass_name);
510
511 for (index = 0; index < 32; index++) {
512 u32 mask = (1 << index);
513
514 if ((mask & permissions) == 0)
515 continue;
516
517 audit_log_format(ab, "%s%s",
518 need_comma ? "," : "",
519 permission_names[index]
520 ? permission_names[index] : "????");
521 need_comma = true;
522 }
523 audit_log_end(ab);
524 out:
525 /* release scontext/tcontext */
526 kfree(tcontext_name);
527 kfree(scontext_name);
528 }
529
530 /*
531 * security_boundary_permission - drops violated permissions
532 * on boundary constraint.
533 */
type_attribute_bounds_av(struct policydb * policydb,struct context * scontext,struct context * tcontext,u16 tclass,struct av_decision * avd)534 static void type_attribute_bounds_av(struct policydb *policydb,
535 struct context *scontext,
536 struct context *tcontext,
537 u16 tclass,
538 struct av_decision *avd)
539 {
540 struct context lo_scontext;
541 struct context lo_tcontext, *tcontextp = tcontext;
542 struct av_decision lo_avd;
543 struct type_datum *source;
544 struct type_datum *target;
545 u32 masked = 0;
546
547 source = policydb->type_val_to_struct[scontext->type - 1];
548 BUG_ON(!source);
549
550 if (!source->bounds)
551 return;
552
553 target = policydb->type_val_to_struct[tcontext->type - 1];
554 BUG_ON(!target);
555
556 memset(&lo_avd, 0, sizeof(lo_avd));
557
558 memcpy(&lo_scontext, scontext, sizeof(lo_scontext));
559 lo_scontext.type = source->bounds;
560
561 if (target->bounds) {
562 memcpy(&lo_tcontext, tcontext, sizeof(lo_tcontext));
563 lo_tcontext.type = target->bounds;
564 tcontextp = &lo_tcontext;
565 }
566
567 context_struct_compute_av(policydb, &lo_scontext,
568 tcontextp,
569 tclass,
570 &lo_avd,
571 NULL);
572
573 masked = ~lo_avd.allowed & avd->allowed;
574
575 if (likely(!masked))
576 return; /* no masked permission */
577
578 /* mask violated permissions */
579 avd->allowed &= ~masked;
580
581 /* audit masked permissions */
582 security_dump_masked_av(policydb, scontext, tcontext,
583 tclass, masked, "bounds");
584 }
585
586 /*
587 * flag which drivers have permissions
588 * only looking for ioctl based extended permissions
589 */
services_compute_xperms_drivers(struct extended_perms * xperms,struct avtab_node * node)590 void services_compute_xperms_drivers(
591 struct extended_perms *xperms,
592 struct avtab_node *node)
593 {
594 unsigned int i;
595
596 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
597 /* if one or more driver has all permissions allowed */
598 for (i = 0; i < ARRAY_SIZE(xperms->drivers.p); i++)
599 xperms->drivers.p[i] |= node->datum.u.xperms->perms.p[i];
600 } else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
601 /* if allowing permissions within a driver */
602 security_xperm_set(xperms->drivers.p,
603 node->datum.u.xperms->driver);
604 }
605
606 xperms->len = 1;
607 }
608
609 /*
610 * Compute access vectors and extended permissions based on a context
611 * structure pair for the permissions in a particular class.
612 */
context_struct_compute_av(struct policydb * policydb,struct context * scontext,struct context * tcontext,u16 tclass,struct av_decision * avd,struct extended_perms * xperms)613 static void context_struct_compute_av(struct policydb *policydb,
614 struct context *scontext,
615 struct context *tcontext,
616 u16 tclass,
617 struct av_decision *avd,
618 struct extended_perms *xperms)
619 {
620 struct constraint_node *constraint;
621 struct role_allow *ra;
622 struct avtab_key avkey;
623 struct avtab_node *node;
624 struct class_datum *tclass_datum;
625 struct ebitmap *sattr, *tattr;
626 struct ebitmap_node *snode, *tnode;
627 unsigned int i, j;
628
629 avd->allowed = 0;
630 avd->auditallow = 0;
631 avd->auditdeny = 0xffffffff;
632 if (xperms) {
633 memset(&xperms->drivers, 0, sizeof(xperms->drivers));
634 xperms->len = 0;
635 }
636
637 if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
638 pr_warn_ratelimited("SELinux: Invalid class %u\n", tclass);
639 return;
640 }
641
642 tclass_datum = policydb->class_val_to_struct[tclass - 1];
643
644 /*
645 * If a specific type enforcement rule was defined for
646 * this permission check, then use it.
647 */
648 avkey.target_class = tclass;
649 avkey.specified = AVTAB_AV | AVTAB_XPERMS;
650 sattr = &policydb->type_attr_map_array[scontext->type - 1];
651 tattr = &policydb->type_attr_map_array[tcontext->type - 1];
652 ebitmap_for_each_positive_bit(sattr, snode, i) {
653 ebitmap_for_each_positive_bit(tattr, tnode, j) {
654 avkey.source_type = i + 1;
655 avkey.target_type = j + 1;
656 for (node = avtab_search_node(&policydb->te_avtab,
657 &avkey);
658 node;
659 node = avtab_search_node_next(node, avkey.specified)) {
660 if (node->key.specified == AVTAB_ALLOWED)
661 avd->allowed |= node->datum.u.data;
662 else if (node->key.specified == AVTAB_AUDITALLOW)
663 avd->auditallow |= node->datum.u.data;
664 else if (node->key.specified == AVTAB_AUDITDENY)
665 avd->auditdeny &= node->datum.u.data;
666 else if (xperms && (node->key.specified & AVTAB_XPERMS))
667 services_compute_xperms_drivers(xperms, node);
668 }
669
670 /* Check conditional av table for additional permissions */
671 cond_compute_av(&policydb->te_cond_avtab, &avkey,
672 avd, xperms);
673
674 }
675 }
676
677 /*
678 * Remove any permissions prohibited by a constraint (this includes
679 * the MLS policy).
680 */
681 constraint = tclass_datum->constraints;
682 while (constraint) {
683 if ((constraint->permissions & (avd->allowed)) &&
684 !constraint_expr_eval(policydb, scontext, tcontext, NULL,
685 constraint->expr)) {
686 avd->allowed &= ~(constraint->permissions);
687 }
688 constraint = constraint->next;
689 }
690
691 /*
692 * If checking process transition permission and the
693 * role is changing, then check the (current_role, new_role)
694 * pair.
695 */
696 if (tclass == policydb->process_class &&
697 (avd->allowed & policydb->process_trans_perms) &&
698 scontext->role != tcontext->role) {
699 for (ra = policydb->role_allow; ra; ra = ra->next) {
700 if (scontext->role == ra->role &&
701 tcontext->role == ra->new_role)
702 break;
703 }
704 if (!ra)
705 avd->allowed &= ~policydb->process_trans_perms;
706 }
707
708 /*
709 * If the given source and target types have boundary
710 * constraint, lazy checks have to mask any violated
711 * permission and notice it to userspace via audit.
712 */
713 type_attribute_bounds_av(policydb, scontext, tcontext,
714 tclass, avd);
715 }
716
security_validtrans_handle_fail(struct selinux_policy * policy,struct sidtab_entry * oentry,struct sidtab_entry * nentry,struct sidtab_entry * tentry,u16 tclass)717 static int security_validtrans_handle_fail(struct selinux_policy *policy,
718 struct sidtab_entry *oentry,
719 struct sidtab_entry *nentry,
720 struct sidtab_entry *tentry,
721 u16 tclass)
722 {
723 struct policydb *p = &policy->policydb;
724 struct sidtab *sidtab = policy->sidtab;
725 char *o = NULL, *n = NULL, *t = NULL;
726 u32 olen, nlen, tlen;
727
728 if (sidtab_entry_to_string(p, sidtab, oentry, &o, &olen))
729 goto out;
730 if (sidtab_entry_to_string(p, sidtab, nentry, &n, &nlen))
731 goto out;
732 if (sidtab_entry_to_string(p, sidtab, tentry, &t, &tlen))
733 goto out;
734 audit_log(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR,
735 "op=security_validate_transition seresult=denied"
736 " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
737 o, n, t, sym_name(p, SYM_CLASSES, tclass-1));
738 out:
739 kfree(o);
740 kfree(n);
741 kfree(t);
742
743 if (!enforcing_enabled())
744 return 0;
745 return -EPERM;
746 }
747
security_compute_validatetrans(u32 oldsid,u32 newsid,u32 tasksid,u16 orig_tclass,bool user)748 static int security_compute_validatetrans(u32 oldsid, u32 newsid, u32 tasksid,
749 u16 orig_tclass, bool user)
750 {
751 struct selinux_policy *policy;
752 struct policydb *policydb;
753 struct sidtab *sidtab;
754 struct sidtab_entry *oentry;
755 struct sidtab_entry *nentry;
756 struct sidtab_entry *tentry;
757 struct class_datum *tclass_datum;
758 struct constraint_node *constraint;
759 u16 tclass;
760 int rc = 0;
761
762
763 if (!selinux_initialized())
764 return 0;
765
766 rcu_read_lock();
767
768 policy = rcu_dereference(selinux_state.policy);
769 policydb = &policy->policydb;
770 sidtab = policy->sidtab;
771
772 if (!user)
773 tclass = unmap_class(&policy->map, orig_tclass);
774 else
775 tclass = orig_tclass;
776
777 if (!tclass || tclass > policydb->p_classes.nprim) {
778 rc = -EINVAL;
779 goto out;
780 }
781 tclass_datum = policydb->class_val_to_struct[tclass - 1];
782
783 oentry = sidtab_search_entry(sidtab, oldsid);
784 if (!oentry) {
785 pr_err("SELinux: %s: unrecognized SID %d\n",
786 __func__, oldsid);
787 rc = -EINVAL;
788 goto out;
789 }
790
791 nentry = sidtab_search_entry(sidtab, newsid);
792 if (!nentry) {
793 pr_err("SELinux: %s: unrecognized SID %d\n",
794 __func__, newsid);
795 rc = -EINVAL;
796 goto out;
797 }
798
799 tentry = sidtab_search_entry(sidtab, tasksid);
800 if (!tentry) {
801 pr_err("SELinux: %s: unrecognized SID %d\n",
802 __func__, tasksid);
803 rc = -EINVAL;
804 goto out;
805 }
806
807 constraint = tclass_datum->validatetrans;
808 while (constraint) {
809 if (!constraint_expr_eval(policydb, &oentry->context,
810 &nentry->context, &tentry->context,
811 constraint->expr)) {
812 if (user)
813 rc = -EPERM;
814 else
815 rc = security_validtrans_handle_fail(policy,
816 oentry,
817 nentry,
818 tentry,
819 tclass);
820 goto out;
821 }
822 constraint = constraint->next;
823 }
824
825 out:
826 rcu_read_unlock();
827 return rc;
828 }
829
security_validate_transition_user(u32 oldsid,u32 newsid,u32 tasksid,u16 tclass)830 int security_validate_transition_user(u32 oldsid, u32 newsid, u32 tasksid,
831 u16 tclass)
832 {
833 return security_compute_validatetrans(oldsid, newsid, tasksid,
834 tclass, true);
835 }
836
security_validate_transition(u32 oldsid,u32 newsid,u32 tasksid,u16 orig_tclass)837 int security_validate_transition(u32 oldsid, u32 newsid, u32 tasksid,
838 u16 orig_tclass)
839 {
840 return security_compute_validatetrans(oldsid, newsid, tasksid,
841 orig_tclass, false);
842 }
843
844 /*
845 * security_bounded_transition - check whether the given
846 * transition is directed to bounded, or not.
847 * It returns 0, if @newsid is bounded by @oldsid.
848 * Otherwise, it returns error code.
849 *
850 * @oldsid : current security identifier
851 * @newsid : destinated security identifier
852 */
security_bounded_transition(u32 old_sid,u32 new_sid)853 int security_bounded_transition(u32 old_sid, u32 new_sid)
854 {
855 struct selinux_policy *policy;
856 struct policydb *policydb;
857 struct sidtab *sidtab;
858 struct sidtab_entry *old_entry, *new_entry;
859 struct type_datum *type;
860 u32 index;
861 int rc;
862
863 if (!selinux_initialized())
864 return 0;
865
866 rcu_read_lock();
867 policy = rcu_dereference(selinux_state.policy);
868 policydb = &policy->policydb;
869 sidtab = policy->sidtab;
870
871 rc = -EINVAL;
872 old_entry = sidtab_search_entry(sidtab, old_sid);
873 if (!old_entry) {
874 pr_err("SELinux: %s: unrecognized SID %u\n",
875 __func__, old_sid);
876 goto out;
877 }
878
879 rc = -EINVAL;
880 new_entry = sidtab_search_entry(sidtab, new_sid);
881 if (!new_entry) {
882 pr_err("SELinux: %s: unrecognized SID %u\n",
883 __func__, new_sid);
884 goto out;
885 }
886
887 rc = 0;
888 /* type/domain unchanged */
889 if (old_entry->context.type == new_entry->context.type)
890 goto out;
891
892 index = new_entry->context.type;
893 while (true) {
894 type = policydb->type_val_to_struct[index - 1];
895 BUG_ON(!type);
896
897 /* not bounded anymore */
898 rc = -EPERM;
899 if (!type->bounds)
900 break;
901
902 /* @newsid is bounded by @oldsid */
903 rc = 0;
904 if (type->bounds == old_entry->context.type)
905 break;
906
907 index = type->bounds;
908 }
909
910 if (rc) {
911 char *old_name = NULL;
912 char *new_name = NULL;
913 u32 length;
914
915 if (!sidtab_entry_to_string(policydb, sidtab, old_entry,
916 &old_name, &length) &&
917 !sidtab_entry_to_string(policydb, sidtab, new_entry,
918 &new_name, &length)) {
919 audit_log(audit_context(),
920 GFP_ATOMIC, AUDIT_SELINUX_ERR,
921 "op=security_bounded_transition "
922 "seresult=denied "
923 "oldcontext=%s newcontext=%s",
924 old_name, new_name);
925 }
926 kfree(new_name);
927 kfree(old_name);
928 }
929 out:
930 rcu_read_unlock();
931
932 return rc;
933 }
934
avd_init(struct selinux_policy * policy,struct av_decision * avd)935 static void avd_init(struct selinux_policy *policy, struct av_decision *avd)
936 {
937 avd->allowed = 0;
938 avd->auditallow = 0;
939 avd->auditdeny = 0xffffffff;
940 if (policy)
941 avd->seqno = policy->latest_granting;
942 else
943 avd->seqno = 0;
944 avd->flags = 0;
945 }
946
services_compute_xperms_decision(struct extended_perms_decision * xpermd,struct avtab_node * node)947 void services_compute_xperms_decision(struct extended_perms_decision *xpermd,
948 struct avtab_node *node)
949 {
950 unsigned int i;
951
952 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
953 if (xpermd->driver != node->datum.u.xperms->driver)
954 return;
955 } else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
956 if (!security_xperm_test(node->datum.u.xperms->perms.p,
957 xpermd->driver))
958 return;
959 } else {
960 pr_warn_once(
961 "SELinux: unknown extended permission (%u) will be ignored\n",
962 node->datum.u.xperms->specified);
963 return;
964 }
965
966 if (node->key.specified == AVTAB_XPERMS_ALLOWED) {
967 xpermd->used |= XPERMS_ALLOWED;
968 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
969 memset(xpermd->allowed->p, 0xff,
970 sizeof(xpermd->allowed->p));
971 }
972 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
973 for (i = 0; i < ARRAY_SIZE(xpermd->allowed->p); i++)
974 xpermd->allowed->p[i] |=
975 node->datum.u.xperms->perms.p[i];
976 }
977 } else if (node->key.specified == AVTAB_XPERMS_AUDITALLOW) {
978 xpermd->used |= XPERMS_AUDITALLOW;
979 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
980 memset(xpermd->auditallow->p, 0xff,
981 sizeof(xpermd->auditallow->p));
982 }
983 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
984 for (i = 0; i < ARRAY_SIZE(xpermd->auditallow->p); i++)
985 xpermd->auditallow->p[i] |=
986 node->datum.u.xperms->perms.p[i];
987 }
988 } else if (node->key.specified == AVTAB_XPERMS_DONTAUDIT) {
989 xpermd->used |= XPERMS_DONTAUDIT;
990 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
991 memset(xpermd->dontaudit->p, 0xff,
992 sizeof(xpermd->dontaudit->p));
993 }
994 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
995 for (i = 0; i < ARRAY_SIZE(xpermd->dontaudit->p); i++)
996 xpermd->dontaudit->p[i] |=
997 node->datum.u.xperms->perms.p[i];
998 }
999 } else {
1000 pr_warn_once("SELinux: unknown specified key (%u)\n",
1001 node->key.specified);
1002 }
1003 }
1004
security_compute_xperms_decision(u32 ssid,u32 tsid,u16 orig_tclass,u8 driver,struct extended_perms_decision * xpermd)1005 void security_compute_xperms_decision(u32 ssid,
1006 u32 tsid,
1007 u16 orig_tclass,
1008 u8 driver,
1009 struct extended_perms_decision *xpermd)
1010 {
1011 struct selinux_policy *policy;
1012 struct policydb *policydb;
1013 struct sidtab *sidtab;
1014 u16 tclass;
1015 struct context *scontext, *tcontext;
1016 struct avtab_key avkey;
1017 struct avtab_node *node;
1018 struct ebitmap *sattr, *tattr;
1019 struct ebitmap_node *snode, *tnode;
1020 unsigned int i, j;
1021
1022 xpermd->driver = driver;
1023 xpermd->used = 0;
1024 memset(xpermd->allowed->p, 0, sizeof(xpermd->allowed->p));
1025 memset(xpermd->auditallow->p, 0, sizeof(xpermd->auditallow->p));
1026 memset(xpermd->dontaudit->p, 0, sizeof(xpermd->dontaudit->p));
1027
1028 rcu_read_lock();
1029 if (!selinux_initialized())
1030 goto allow;
1031
1032 policy = rcu_dereference(selinux_state.policy);
1033 policydb = &policy->policydb;
1034 sidtab = policy->sidtab;
1035
1036 scontext = sidtab_search(sidtab, ssid);
1037 if (!scontext) {
1038 pr_err("SELinux: %s: unrecognized SID %d\n",
1039 __func__, ssid);
1040 goto out;
1041 }
1042
1043 tcontext = sidtab_search(sidtab, tsid);
1044 if (!tcontext) {
1045 pr_err("SELinux: %s: unrecognized SID %d\n",
1046 __func__, tsid);
1047 goto out;
1048 }
1049
1050 tclass = unmap_class(&policy->map, orig_tclass);
1051 if (unlikely(orig_tclass && !tclass)) {
1052 if (policydb->allow_unknown)
1053 goto allow;
1054 goto out;
1055 }
1056
1057
1058 if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
1059 pr_warn_ratelimited("SELinux: Invalid class %hu\n", tclass);
1060 goto out;
1061 }
1062
1063 avkey.target_class = tclass;
1064 avkey.specified = AVTAB_XPERMS;
1065 sattr = &policydb->type_attr_map_array[scontext->type - 1];
1066 tattr = &policydb->type_attr_map_array[tcontext->type - 1];
1067 ebitmap_for_each_positive_bit(sattr, snode, i) {
1068 ebitmap_for_each_positive_bit(tattr, tnode, j) {
1069 avkey.source_type = i + 1;
1070 avkey.target_type = j + 1;
1071 for (node = avtab_search_node(&policydb->te_avtab,
1072 &avkey);
1073 node;
1074 node = avtab_search_node_next(node, avkey.specified))
1075 services_compute_xperms_decision(xpermd, node);
1076
1077 cond_compute_xperms(&policydb->te_cond_avtab,
1078 &avkey, xpermd);
1079 }
1080 }
1081 out:
1082 rcu_read_unlock();
1083 return;
1084 allow:
1085 memset(xpermd->allowed->p, 0xff, sizeof(xpermd->allowed->p));
1086 goto out;
1087 }
1088
1089 /**
1090 * security_compute_av - Compute access vector decisions.
1091 * @ssid: source security identifier
1092 * @tsid: target security identifier
1093 * @orig_tclass: target security class
1094 * @avd: access vector decisions
1095 * @xperms: extended permissions
1096 *
1097 * Compute a set of access vector decisions based on the
1098 * SID pair (@ssid, @tsid) for the permissions in @tclass.
1099 */
security_compute_av(u32 ssid,u32 tsid,u16 orig_tclass,struct av_decision * avd,struct extended_perms * xperms)1100 void security_compute_av(u32 ssid,
1101 u32 tsid,
1102 u16 orig_tclass,
1103 struct av_decision *avd,
1104 struct extended_perms *xperms)
1105 {
1106 struct selinux_policy *policy;
1107 struct policydb *policydb;
1108 struct sidtab *sidtab;
1109 u16 tclass;
1110 struct context *scontext = NULL, *tcontext = NULL;
1111
1112 rcu_read_lock();
1113 policy = rcu_dereference(selinux_state.policy);
1114 avd_init(policy, avd);
1115 xperms->len = 0;
1116 if (!selinux_initialized())
1117 goto allow;
1118
1119 policydb = &policy->policydb;
1120 sidtab = policy->sidtab;
1121
1122 scontext = sidtab_search(sidtab, ssid);
1123 if (!scontext) {
1124 pr_err("SELinux: %s: unrecognized SID %d\n",
1125 __func__, ssid);
1126 goto out;
1127 }
1128
1129 /* permissive domain? */
1130 if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1131 avd->flags |= AVD_FLAGS_PERMISSIVE;
1132
1133 tcontext = sidtab_search(sidtab, tsid);
1134 if (!tcontext) {
1135 pr_err("SELinux: %s: unrecognized SID %d\n",
1136 __func__, tsid);
1137 goto out;
1138 }
1139
1140 tclass = unmap_class(&policy->map, orig_tclass);
1141 if (unlikely(orig_tclass && !tclass)) {
1142 if (policydb->allow_unknown)
1143 goto allow;
1144 goto out;
1145 }
1146 context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1147 xperms);
1148 map_decision(&policy->map, orig_tclass, avd,
1149 policydb->allow_unknown);
1150 out:
1151 rcu_read_unlock();
1152 return;
1153 allow:
1154 avd->allowed = 0xffffffff;
1155 goto out;
1156 }
1157
security_compute_av_user(u32 ssid,u32 tsid,u16 tclass,struct av_decision * avd)1158 void security_compute_av_user(u32 ssid,
1159 u32 tsid,
1160 u16 tclass,
1161 struct av_decision *avd)
1162 {
1163 struct selinux_policy *policy;
1164 struct policydb *policydb;
1165 struct sidtab *sidtab;
1166 struct context *scontext = NULL, *tcontext = NULL;
1167
1168 rcu_read_lock();
1169 policy = rcu_dereference(selinux_state.policy);
1170 avd_init(policy, avd);
1171 if (!selinux_initialized())
1172 goto allow;
1173
1174 policydb = &policy->policydb;
1175 sidtab = policy->sidtab;
1176
1177 scontext = sidtab_search(sidtab, ssid);
1178 if (!scontext) {
1179 pr_err("SELinux: %s: unrecognized SID %d\n",
1180 __func__, ssid);
1181 goto out;
1182 }
1183
1184 /* permissive domain? */
1185 if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1186 avd->flags |= AVD_FLAGS_PERMISSIVE;
1187
1188 tcontext = sidtab_search(sidtab, tsid);
1189 if (!tcontext) {
1190 pr_err("SELinux: %s: unrecognized SID %d\n",
1191 __func__, tsid);
1192 goto out;
1193 }
1194
1195 if (unlikely(!tclass)) {
1196 if (policydb->allow_unknown)
1197 goto allow;
1198 goto out;
1199 }
1200
1201 context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1202 NULL);
1203 out:
1204 rcu_read_unlock();
1205 return;
1206 allow:
1207 avd->allowed = 0xffffffff;
1208 goto out;
1209 }
1210
1211 /*
1212 * Write the security context string representation of
1213 * the context structure `context' into a dynamically
1214 * allocated string of the correct size. Set `*scontext'
1215 * to point to this string and set `*scontext_len' to
1216 * the length of the string.
1217 */
context_struct_to_string(struct policydb * p,struct context * context,char ** scontext,u32 * scontext_len)1218 static int context_struct_to_string(struct policydb *p,
1219 struct context *context,
1220 char **scontext, u32 *scontext_len)
1221 {
1222 char *scontextp;
1223
1224 if (scontext)
1225 *scontext = NULL;
1226 *scontext_len = 0;
1227
1228 if (context->len) {
1229 *scontext_len = context->len;
1230 if (scontext) {
1231 *scontext = kstrdup(context->str, GFP_ATOMIC);
1232 if (!(*scontext))
1233 return -ENOMEM;
1234 }
1235 return 0;
1236 }
1237
1238 /* Compute the size of the context. */
1239 *scontext_len += strlen(sym_name(p, SYM_USERS, context->user - 1)) + 1;
1240 *scontext_len += strlen(sym_name(p, SYM_ROLES, context->role - 1)) + 1;
1241 *scontext_len += strlen(sym_name(p, SYM_TYPES, context->type - 1)) + 1;
1242 *scontext_len += mls_compute_context_len(p, context);
1243
1244 if (!scontext)
1245 return 0;
1246
1247 /* Allocate space for the context; caller must free this space. */
1248 scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
1249 if (!scontextp)
1250 return -ENOMEM;
1251 *scontext = scontextp;
1252
1253 /*
1254 * Copy the user name, role name and type name into the context.
1255 */
1256 scontextp += sprintf(scontextp, "%s:%s:%s",
1257 sym_name(p, SYM_USERS, context->user - 1),
1258 sym_name(p, SYM_ROLES, context->role - 1),
1259 sym_name(p, SYM_TYPES, context->type - 1));
1260
1261 mls_sid_to_context(p, context, &scontextp);
1262
1263 *scontextp = 0;
1264
1265 return 0;
1266 }
1267
sidtab_entry_to_string(struct policydb * p,struct sidtab * sidtab,struct sidtab_entry * entry,char ** scontext,u32 * scontext_len)1268 static int sidtab_entry_to_string(struct policydb *p,
1269 struct sidtab *sidtab,
1270 struct sidtab_entry *entry,
1271 char **scontext, u32 *scontext_len)
1272 {
1273 int rc = sidtab_sid2str_get(sidtab, entry, scontext, scontext_len);
1274
1275 if (rc != -ENOENT)
1276 return rc;
1277
1278 rc = context_struct_to_string(p, &entry->context, scontext,
1279 scontext_len);
1280 if (!rc && scontext)
1281 sidtab_sid2str_put(sidtab, entry, *scontext, *scontext_len);
1282 return rc;
1283 }
1284
1285 #include "initial_sid_to_string.h"
1286
security_sidtab_hash_stats(char * page)1287 int security_sidtab_hash_stats(char *page)
1288 {
1289 struct selinux_policy *policy;
1290 int rc;
1291
1292 if (!selinux_initialized()) {
1293 pr_err("SELinux: %s: called before initial load_policy\n",
1294 __func__);
1295 return -EINVAL;
1296 }
1297
1298 rcu_read_lock();
1299 policy = rcu_dereference(selinux_state.policy);
1300 rc = sidtab_hash_stats(policy->sidtab, page);
1301 rcu_read_unlock();
1302
1303 return rc;
1304 }
1305
security_get_initial_sid_context(u32 sid)1306 const char *security_get_initial_sid_context(u32 sid)
1307 {
1308 if (unlikely(sid > SECINITSID_NUM))
1309 return NULL;
1310 return initial_sid_to_string[sid];
1311 }
1312
security_sid_to_context_core(u32 sid,char ** scontext,u32 * scontext_len,int force,int only_invalid)1313 static int security_sid_to_context_core(u32 sid, char **scontext,
1314 u32 *scontext_len, int force,
1315 int only_invalid)
1316 {
1317 struct selinux_policy *policy;
1318 struct policydb *policydb;
1319 struct sidtab *sidtab;
1320 struct sidtab_entry *entry;
1321 int rc = 0;
1322
1323 if (scontext)
1324 *scontext = NULL;
1325 *scontext_len = 0;
1326
1327 if (!selinux_initialized()) {
1328 if (sid <= SECINITSID_NUM) {
1329 char *scontextp;
1330 const char *s;
1331
1332 /*
1333 * Before the policy is loaded, translate
1334 * SECINITSID_INIT to "kernel", because systemd and
1335 * libselinux < 2.6 take a getcon_raw() result that is
1336 * both non-null and not "kernel" to mean that a policy
1337 * is already loaded.
1338 */
1339 if (sid == SECINITSID_INIT)
1340 sid = SECINITSID_KERNEL;
1341
1342 s = initial_sid_to_string[sid];
1343 if (!s)
1344 return -EINVAL;
1345 *scontext_len = strlen(s) + 1;
1346 if (!scontext)
1347 return 0;
1348 scontextp = kmemdup(s, *scontext_len, GFP_ATOMIC);
1349 if (!scontextp)
1350 return -ENOMEM;
1351 *scontext = scontextp;
1352 return 0;
1353 }
1354 pr_err("SELinux: %s: called before initial "
1355 "load_policy on unknown SID %d\n", __func__, sid);
1356 return -EINVAL;
1357 }
1358 rcu_read_lock();
1359 policy = rcu_dereference(selinux_state.policy);
1360 policydb = &policy->policydb;
1361 sidtab = policy->sidtab;
1362
1363 if (force)
1364 entry = sidtab_search_entry_force(sidtab, sid);
1365 else
1366 entry = sidtab_search_entry(sidtab, sid);
1367 if (!entry) {
1368 pr_err("SELinux: %s: unrecognized SID %d\n",
1369 __func__, sid);
1370 rc = -EINVAL;
1371 goto out_unlock;
1372 }
1373 if (only_invalid && !entry->context.len)
1374 goto out_unlock;
1375
1376 rc = sidtab_entry_to_string(policydb, sidtab, entry, scontext,
1377 scontext_len);
1378
1379 out_unlock:
1380 rcu_read_unlock();
1381 return rc;
1382
1383 }
1384
1385 /**
1386 * security_sid_to_context - Obtain a context for a given SID.
1387 * @sid: security identifier, SID
1388 * @scontext: security context
1389 * @scontext_len: length in bytes
1390 *
1391 * Write the string representation of the context associated with @sid
1392 * into a dynamically allocated string of the correct size. Set @scontext
1393 * to point to this string and set @scontext_len to the length of the string.
1394 */
security_sid_to_context(u32 sid,char ** scontext,u32 * scontext_len)1395 int security_sid_to_context(u32 sid, char **scontext, u32 *scontext_len)
1396 {
1397 return security_sid_to_context_core(sid, scontext,
1398 scontext_len, 0, 0);
1399 }
1400
security_sid_to_context_force(u32 sid,char ** scontext,u32 * scontext_len)1401 int security_sid_to_context_force(u32 sid,
1402 char **scontext, u32 *scontext_len)
1403 {
1404 return security_sid_to_context_core(sid, scontext,
1405 scontext_len, 1, 0);
1406 }
1407
1408 /**
1409 * security_sid_to_context_inval - Obtain a context for a given SID if it
1410 * is invalid.
1411 * @sid: security identifier, SID
1412 * @scontext: security context
1413 * @scontext_len: length in bytes
1414 *
1415 * Write the string representation of the context associated with @sid
1416 * into a dynamically allocated string of the correct size, but only if the
1417 * context is invalid in the current policy. Set @scontext to point to
1418 * this string (or NULL if the context is valid) and set @scontext_len to
1419 * the length of the string (or 0 if the context is valid).
1420 */
security_sid_to_context_inval(u32 sid,char ** scontext,u32 * scontext_len)1421 int security_sid_to_context_inval(u32 sid,
1422 char **scontext, u32 *scontext_len)
1423 {
1424 return security_sid_to_context_core(sid, scontext,
1425 scontext_len, 1, 1);
1426 }
1427
1428 /*
1429 * Caveat: Mutates scontext.
1430 */
string_to_context_struct(struct policydb * pol,struct sidtab * sidtabp,char * scontext,struct context * ctx,u32 def_sid)1431 static int string_to_context_struct(struct policydb *pol,
1432 struct sidtab *sidtabp,
1433 char *scontext,
1434 struct context *ctx,
1435 u32 def_sid)
1436 {
1437 struct role_datum *role;
1438 struct type_datum *typdatum;
1439 struct user_datum *usrdatum;
1440 char *scontextp, *p, oldc;
1441 int rc = 0;
1442
1443 context_init(ctx);
1444
1445 /* Parse the security context. */
1446
1447 rc = -EINVAL;
1448 scontextp = scontext;
1449
1450 /* Extract the user. */
1451 p = scontextp;
1452 while (*p && *p != ':')
1453 p++;
1454
1455 if (*p == 0)
1456 goto out;
1457
1458 *p++ = 0;
1459
1460 usrdatum = symtab_search(&pol->p_users, scontextp);
1461 if (!usrdatum)
1462 goto out;
1463
1464 ctx->user = usrdatum->value;
1465
1466 /* Extract role. */
1467 scontextp = p;
1468 while (*p && *p != ':')
1469 p++;
1470
1471 if (*p == 0)
1472 goto out;
1473
1474 *p++ = 0;
1475
1476 role = symtab_search(&pol->p_roles, scontextp);
1477 if (!role)
1478 goto out;
1479 ctx->role = role->value;
1480
1481 /* Extract type. */
1482 scontextp = p;
1483 while (*p && *p != ':')
1484 p++;
1485 oldc = *p;
1486 *p++ = 0;
1487
1488 typdatum = symtab_search(&pol->p_types, scontextp);
1489 if (!typdatum || typdatum->attribute)
1490 goto out;
1491
1492 ctx->type = typdatum->value;
1493
1494 rc = mls_context_to_sid(pol, oldc, p, ctx, sidtabp, def_sid);
1495 if (rc)
1496 goto out;
1497
1498 /* Check the validity of the new context. */
1499 rc = -EINVAL;
1500 if (!policydb_context_isvalid(pol, ctx))
1501 goto out;
1502 rc = 0;
1503 out:
1504 if (rc)
1505 context_destroy(ctx);
1506 return rc;
1507 }
1508
security_context_to_sid_core(const char * scontext,u32 scontext_len,u32 * sid,u32 def_sid,gfp_t gfp_flags,int force)1509 static int security_context_to_sid_core(const char *scontext, u32 scontext_len,
1510 u32 *sid, u32 def_sid, gfp_t gfp_flags,
1511 int force)
1512 {
1513 struct selinux_policy *policy;
1514 struct policydb *policydb;
1515 struct sidtab *sidtab;
1516 char *scontext2, *str = NULL;
1517 struct context context;
1518 int rc = 0;
1519
1520 /* An empty security context is never valid. */
1521 if (!scontext_len)
1522 return -EINVAL;
1523
1524 /* Copy the string to allow changes and ensure a NUL terminator */
1525 scontext2 = kmemdup_nul(scontext, scontext_len, gfp_flags);
1526 if (!scontext2)
1527 return -ENOMEM;
1528
1529 if (!selinux_initialized()) {
1530 u32 i;
1531
1532 for (i = 1; i < SECINITSID_NUM; i++) {
1533 const char *s = initial_sid_to_string[i];
1534
1535 if (s && !strcmp(s, scontext2)) {
1536 *sid = i;
1537 goto out;
1538 }
1539 }
1540 *sid = SECINITSID_KERNEL;
1541 goto out;
1542 }
1543 *sid = SECSID_NULL;
1544
1545 if (force) {
1546 /* Save another copy for storing in uninterpreted form */
1547 rc = -ENOMEM;
1548 str = kstrdup(scontext2, gfp_flags);
1549 if (!str)
1550 goto out;
1551 }
1552 retry:
1553 rcu_read_lock();
1554 policy = rcu_dereference(selinux_state.policy);
1555 policydb = &policy->policydb;
1556 sidtab = policy->sidtab;
1557 rc = string_to_context_struct(policydb, sidtab, scontext2,
1558 &context, def_sid);
1559 if (rc == -EINVAL && force) {
1560 context.str = str;
1561 context.len = strlen(str) + 1;
1562 str = NULL;
1563 } else if (rc)
1564 goto out_unlock;
1565 rc = sidtab_context_to_sid(sidtab, &context, sid);
1566 if (rc == -ESTALE) {
1567 rcu_read_unlock();
1568 if (context.str) {
1569 str = context.str;
1570 context.str = NULL;
1571 }
1572 context_destroy(&context);
1573 goto retry;
1574 }
1575 context_destroy(&context);
1576 out_unlock:
1577 rcu_read_unlock();
1578 out:
1579 kfree(scontext2);
1580 kfree(str);
1581 return rc;
1582 }
1583
1584 /**
1585 * security_context_to_sid - Obtain a SID for a given security context.
1586 * @scontext: security context
1587 * @scontext_len: length in bytes
1588 * @sid: security identifier, SID
1589 * @gfp: context for the allocation
1590 *
1591 * Obtains a SID associated with the security context that
1592 * has the string representation specified by @scontext.
1593 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1594 * memory is available, or 0 on success.
1595 */
security_context_to_sid(const char * scontext,u32 scontext_len,u32 * sid,gfp_t gfp)1596 int security_context_to_sid(const char *scontext, u32 scontext_len, u32 *sid,
1597 gfp_t gfp)
1598 {
1599 return security_context_to_sid_core(scontext, scontext_len,
1600 sid, SECSID_NULL, gfp, 0);
1601 }
1602
security_context_str_to_sid(const char * scontext,u32 * sid,gfp_t gfp)1603 int security_context_str_to_sid(const char *scontext, u32 *sid, gfp_t gfp)
1604 {
1605 return security_context_to_sid(scontext, strlen(scontext),
1606 sid, gfp);
1607 }
1608
1609 /**
1610 * security_context_to_sid_default - Obtain a SID for a given security context,
1611 * falling back to specified default if needed.
1612 *
1613 * @scontext: security context
1614 * @scontext_len: length in bytes
1615 * @sid: security identifier, SID
1616 * @def_sid: default SID to assign on error
1617 * @gfp_flags: the allocator get-free-page (GFP) flags
1618 *
1619 * Obtains a SID associated with the security context that
1620 * has the string representation specified by @scontext.
1621 * The default SID is passed to the MLS layer to be used to allow
1622 * kernel labeling of the MLS field if the MLS field is not present
1623 * (for upgrading to MLS without full relabel).
1624 * Implicitly forces adding of the context even if it cannot be mapped yet.
1625 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1626 * memory is available, or 0 on success.
1627 */
security_context_to_sid_default(const char * scontext,u32 scontext_len,u32 * sid,u32 def_sid,gfp_t gfp_flags)1628 int security_context_to_sid_default(const char *scontext, u32 scontext_len,
1629 u32 *sid, u32 def_sid, gfp_t gfp_flags)
1630 {
1631 return security_context_to_sid_core(scontext, scontext_len,
1632 sid, def_sid, gfp_flags, 1);
1633 }
1634
security_context_to_sid_force(const char * scontext,u32 scontext_len,u32 * sid)1635 int security_context_to_sid_force(const char *scontext, u32 scontext_len,
1636 u32 *sid)
1637 {
1638 return security_context_to_sid_core(scontext, scontext_len,
1639 sid, SECSID_NULL, GFP_KERNEL, 1);
1640 }
1641
compute_sid_handle_invalid_context(struct selinux_policy * policy,struct sidtab_entry * sentry,struct sidtab_entry * tentry,u16 tclass,struct context * newcontext)1642 static int compute_sid_handle_invalid_context(
1643 struct selinux_policy *policy,
1644 struct sidtab_entry *sentry,
1645 struct sidtab_entry *tentry,
1646 u16 tclass,
1647 struct context *newcontext)
1648 {
1649 struct policydb *policydb = &policy->policydb;
1650 struct sidtab *sidtab = policy->sidtab;
1651 char *s = NULL, *t = NULL, *n = NULL;
1652 u32 slen, tlen, nlen;
1653 struct audit_buffer *ab;
1654
1655 if (sidtab_entry_to_string(policydb, sidtab, sentry, &s, &slen))
1656 goto out;
1657 if (sidtab_entry_to_string(policydb, sidtab, tentry, &t, &tlen))
1658 goto out;
1659 if (context_struct_to_string(policydb, newcontext, &n, &nlen))
1660 goto out;
1661 ab = audit_log_start(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR);
1662 if (!ab)
1663 goto out;
1664 audit_log_format(ab,
1665 "op=security_compute_sid invalid_context=");
1666 /* no need to record the NUL with untrusted strings */
1667 audit_log_n_untrustedstring(ab, n, nlen - 1);
1668 audit_log_format(ab, " scontext=%s tcontext=%s tclass=%s",
1669 s, t, sym_name(policydb, SYM_CLASSES, tclass-1));
1670 audit_log_end(ab);
1671 out:
1672 kfree(s);
1673 kfree(t);
1674 kfree(n);
1675 if (!enforcing_enabled())
1676 return 0;
1677 return -EACCES;
1678 }
1679
filename_compute_type(struct policydb * policydb,struct context * newcontext,u32 stype,u32 ttype,u16 tclass,const char * objname)1680 static void filename_compute_type(struct policydb *policydb,
1681 struct context *newcontext,
1682 u32 stype, u32 ttype, u16 tclass,
1683 const char *objname)
1684 {
1685 struct filename_trans_key ft;
1686 struct filename_trans_datum *datum;
1687
1688 /*
1689 * Most filename trans rules are going to live in specific directories
1690 * like /dev or /var/run. This bitmap will quickly skip rule searches
1691 * if the ttype does not contain any rules.
1692 */
1693 if (!ebitmap_get_bit(&policydb->filename_trans_ttypes, ttype))
1694 return;
1695
1696 ft.ttype = ttype;
1697 ft.tclass = tclass;
1698 ft.name = objname;
1699
1700 datum = policydb_filenametr_search(policydb, &ft);
1701 while (datum) {
1702 if (ebitmap_get_bit(&datum->stypes, stype - 1)) {
1703 newcontext->type = datum->otype;
1704 return;
1705 }
1706 datum = datum->next;
1707 }
1708 }
1709
security_compute_sid(u32 ssid,u32 tsid,u16 orig_tclass,u16 specified,const char * objname,u32 * out_sid,bool kern)1710 static int security_compute_sid(u32 ssid,
1711 u32 tsid,
1712 u16 orig_tclass,
1713 u16 specified,
1714 const char *objname,
1715 u32 *out_sid,
1716 bool kern)
1717 {
1718 struct selinux_policy *policy;
1719 struct policydb *policydb;
1720 struct sidtab *sidtab;
1721 struct class_datum *cladatum;
1722 struct context *scontext, *tcontext, newcontext;
1723 struct sidtab_entry *sentry, *tentry;
1724 struct avtab_key avkey;
1725 struct avtab_node *avnode, *node;
1726 u16 tclass;
1727 int rc = 0;
1728 bool sock;
1729
1730 if (!selinux_initialized()) {
1731 switch (orig_tclass) {
1732 case SECCLASS_PROCESS: /* kernel value */
1733 *out_sid = ssid;
1734 break;
1735 default:
1736 *out_sid = tsid;
1737 break;
1738 }
1739 goto out;
1740 }
1741
1742 retry:
1743 cladatum = NULL;
1744 context_init(&newcontext);
1745
1746 rcu_read_lock();
1747
1748 policy = rcu_dereference(selinux_state.policy);
1749
1750 if (kern) {
1751 tclass = unmap_class(&policy->map, orig_tclass);
1752 sock = security_is_socket_class(orig_tclass);
1753 } else {
1754 tclass = orig_tclass;
1755 sock = security_is_socket_class(map_class(&policy->map,
1756 tclass));
1757 }
1758
1759 policydb = &policy->policydb;
1760 sidtab = policy->sidtab;
1761
1762 sentry = sidtab_search_entry(sidtab, ssid);
1763 if (!sentry) {
1764 pr_err("SELinux: %s: unrecognized SID %d\n",
1765 __func__, ssid);
1766 rc = -EINVAL;
1767 goto out_unlock;
1768 }
1769 tentry = sidtab_search_entry(sidtab, tsid);
1770 if (!tentry) {
1771 pr_err("SELinux: %s: unrecognized SID %d\n",
1772 __func__, tsid);
1773 rc = -EINVAL;
1774 goto out_unlock;
1775 }
1776
1777 scontext = &sentry->context;
1778 tcontext = &tentry->context;
1779
1780 if (tclass && tclass <= policydb->p_classes.nprim)
1781 cladatum = policydb->class_val_to_struct[tclass - 1];
1782
1783 /* Set the user identity. */
1784 switch (specified) {
1785 case AVTAB_TRANSITION:
1786 case AVTAB_CHANGE:
1787 if (cladatum && cladatum->default_user == DEFAULT_TARGET) {
1788 newcontext.user = tcontext->user;
1789 } else {
1790 /* notice this gets both DEFAULT_SOURCE and unset */
1791 /* Use the process user identity. */
1792 newcontext.user = scontext->user;
1793 }
1794 break;
1795 case AVTAB_MEMBER:
1796 /* Use the related object owner. */
1797 newcontext.user = tcontext->user;
1798 break;
1799 }
1800
1801 /* Set the role to default values. */
1802 if (cladatum && cladatum->default_role == DEFAULT_SOURCE) {
1803 newcontext.role = scontext->role;
1804 } else if (cladatum && cladatum->default_role == DEFAULT_TARGET) {
1805 newcontext.role = tcontext->role;
1806 } else {
1807 if ((tclass == policydb->process_class) || sock)
1808 newcontext.role = scontext->role;
1809 else
1810 newcontext.role = OBJECT_R_VAL;
1811 }
1812
1813 /* Set the type.
1814 * Look for a type transition/member/change rule.
1815 */
1816 avkey.source_type = scontext->type;
1817 avkey.target_type = tcontext->type;
1818 avkey.target_class = tclass;
1819 avkey.specified = specified;
1820 avnode = avtab_search_node(&policydb->te_avtab, &avkey);
1821
1822 /* If no permanent rule, also check for enabled conditional rules */
1823 if (!avnode) {
1824 node = avtab_search_node(&policydb->te_cond_avtab, &avkey);
1825 for (; node; node = avtab_search_node_next(node, specified)) {
1826 if (node->key.specified & AVTAB_ENABLED) {
1827 avnode = node;
1828 break;
1829 }
1830 }
1831 }
1832
1833 /* If a permanent rule is found, use the type from
1834 * the type transition/member/change rule. Otherwise,
1835 * set the type to its default values.
1836 */
1837 if (avnode) {
1838 newcontext.type = avnode->datum.u.data;
1839 } else if (cladatum && cladatum->default_type == DEFAULT_SOURCE) {
1840 newcontext.type = scontext->type;
1841 } else if (cladatum && cladatum->default_type == DEFAULT_TARGET) {
1842 newcontext.type = tcontext->type;
1843 } else {
1844 if ((tclass == policydb->process_class) || sock) {
1845 /* Use the type of process. */
1846 newcontext.type = scontext->type;
1847 } else {
1848 /* Use the type of the related object. */
1849 newcontext.type = tcontext->type;
1850 }
1851 }
1852
1853 /* if we have a objname this is a file trans check so check those rules */
1854 if (objname)
1855 filename_compute_type(policydb, &newcontext, scontext->type,
1856 tcontext->type, tclass, objname);
1857
1858 /* Check for class-specific changes. */
1859 if (specified & AVTAB_TRANSITION) {
1860 /* Look for a role transition rule. */
1861 struct role_trans_datum *rtd;
1862 struct role_trans_key rtk = {
1863 .role = scontext->role,
1864 .type = tcontext->type,
1865 .tclass = tclass,
1866 };
1867
1868 rtd = policydb_roletr_search(policydb, &rtk);
1869 if (rtd)
1870 newcontext.role = rtd->new_role;
1871 }
1872
1873 /* Set the MLS attributes.
1874 This is done last because it may allocate memory. */
1875 rc = mls_compute_sid(policydb, scontext, tcontext, tclass, specified,
1876 &newcontext, sock);
1877 if (rc)
1878 goto out_unlock;
1879
1880 /* Check the validity of the context. */
1881 if (!policydb_context_isvalid(policydb, &newcontext)) {
1882 rc = compute_sid_handle_invalid_context(policy, sentry,
1883 tentry, tclass,
1884 &newcontext);
1885 if (rc)
1886 goto out_unlock;
1887 }
1888 /* Obtain the sid for the context. */
1889 if (context_cmp(scontext, &newcontext))
1890 *out_sid = ssid;
1891 else if (context_cmp(tcontext, &newcontext))
1892 *out_sid = tsid;
1893 else {
1894 rc = sidtab_context_to_sid(sidtab, &newcontext, out_sid);
1895 if (rc == -ESTALE) {
1896 rcu_read_unlock();
1897 context_destroy(&newcontext);
1898 goto retry;
1899 }
1900 }
1901 out_unlock:
1902 rcu_read_unlock();
1903 context_destroy(&newcontext);
1904 out:
1905 return rc;
1906 }
1907
1908 /**
1909 * security_transition_sid - Compute the SID for a new subject/object.
1910 * @ssid: source security identifier
1911 * @tsid: target security identifier
1912 * @tclass: target security class
1913 * @qstr: object name
1914 * @out_sid: security identifier for new subject/object
1915 *
1916 * Compute a SID to use for labeling a new subject or object in the
1917 * class @tclass based on a SID pair (@ssid, @tsid).
1918 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1919 * if insufficient memory is available, or %0 if the new SID was
1920 * computed successfully.
1921 */
security_transition_sid(u32 ssid,u32 tsid,u16 tclass,const struct qstr * qstr,u32 * out_sid)1922 int security_transition_sid(u32 ssid, u32 tsid, u16 tclass,
1923 const struct qstr *qstr, u32 *out_sid)
1924 {
1925 return security_compute_sid(ssid, tsid, tclass,
1926 AVTAB_TRANSITION,
1927 qstr ? qstr->name : NULL, out_sid, true);
1928 }
1929
security_transition_sid_user(u32 ssid,u32 tsid,u16 tclass,const char * objname,u32 * out_sid)1930 int security_transition_sid_user(u32 ssid, u32 tsid, u16 tclass,
1931 const char *objname, u32 *out_sid)
1932 {
1933 return security_compute_sid(ssid, tsid, tclass,
1934 AVTAB_TRANSITION,
1935 objname, out_sid, false);
1936 }
1937
1938 /**
1939 * security_member_sid - Compute the SID for member selection.
1940 * @ssid: source security identifier
1941 * @tsid: target security identifier
1942 * @tclass: target security class
1943 * @out_sid: security identifier for selected member
1944 *
1945 * Compute a SID to use when selecting a member of a polyinstantiated
1946 * object of class @tclass based on a SID pair (@ssid, @tsid).
1947 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1948 * if insufficient memory is available, or %0 if the SID was
1949 * computed successfully.
1950 */
security_member_sid(u32 ssid,u32 tsid,u16 tclass,u32 * out_sid)1951 int security_member_sid(u32 ssid,
1952 u32 tsid,
1953 u16 tclass,
1954 u32 *out_sid)
1955 {
1956 return security_compute_sid(ssid, tsid, tclass,
1957 AVTAB_MEMBER, NULL,
1958 out_sid, false);
1959 }
1960
1961 /**
1962 * security_change_sid - Compute the SID for object relabeling.
1963 * @ssid: source security identifier
1964 * @tsid: target security identifier
1965 * @tclass: target security class
1966 * @out_sid: security identifier for selected member
1967 *
1968 * Compute a SID to use for relabeling an object of class @tclass
1969 * based on a SID pair (@ssid, @tsid).
1970 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1971 * if insufficient memory is available, or %0 if the SID was
1972 * computed successfully.
1973 */
security_change_sid(u32 ssid,u32 tsid,u16 tclass,u32 * out_sid)1974 int security_change_sid(u32 ssid,
1975 u32 tsid,
1976 u16 tclass,
1977 u32 *out_sid)
1978 {
1979 return security_compute_sid(ssid, tsid, tclass, AVTAB_CHANGE, NULL,
1980 out_sid, false);
1981 }
1982
convert_context_handle_invalid_context(struct policydb * policydb,struct context * context)1983 static inline int convert_context_handle_invalid_context(
1984 struct policydb *policydb,
1985 struct context *context)
1986 {
1987 char *s;
1988 u32 len;
1989
1990 if (enforcing_enabled())
1991 return -EINVAL;
1992
1993 if (!context_struct_to_string(policydb, context, &s, &len)) {
1994 pr_warn("SELinux: Context %s would be invalid if enforcing\n",
1995 s);
1996 kfree(s);
1997 }
1998 return 0;
1999 }
2000
2001 /**
2002 * services_convert_context - Convert a security context across policies.
2003 * @args: populated convert_context_args struct
2004 * @oldc: original context
2005 * @newc: converted context
2006 * @gfp_flags: allocation flags
2007 *
2008 * Convert the values in the security context structure @oldc from the values
2009 * specified in the policy @args->oldp to the values specified in the policy
2010 * @args->newp, storing the new context in @newc, and verifying that the
2011 * context is valid under the new policy.
2012 */
services_convert_context(struct convert_context_args * args,struct context * oldc,struct context * newc,gfp_t gfp_flags)2013 int services_convert_context(struct convert_context_args *args,
2014 struct context *oldc, struct context *newc,
2015 gfp_t gfp_flags)
2016 {
2017 struct ocontext *oc;
2018 struct role_datum *role;
2019 struct type_datum *typdatum;
2020 struct user_datum *usrdatum;
2021 char *s;
2022 u32 len;
2023 int rc;
2024
2025 if (oldc->str) {
2026 s = kstrdup(oldc->str, gfp_flags);
2027 if (!s)
2028 return -ENOMEM;
2029
2030 rc = string_to_context_struct(args->newp, NULL, s, newc, SECSID_NULL);
2031 if (rc == -EINVAL) {
2032 /*
2033 * Retain string representation for later mapping.
2034 *
2035 * IMPORTANT: We need to copy the contents of oldc->str
2036 * back into s again because string_to_context_struct()
2037 * may have garbled it.
2038 */
2039 memcpy(s, oldc->str, oldc->len);
2040 context_init(newc);
2041 newc->str = s;
2042 newc->len = oldc->len;
2043 return 0;
2044 }
2045 kfree(s);
2046 if (rc) {
2047 /* Other error condition, e.g. ENOMEM. */
2048 pr_err("SELinux: Unable to map context %s, rc = %d.\n",
2049 oldc->str, -rc);
2050 return rc;
2051 }
2052 pr_info("SELinux: Context %s became valid (mapped).\n",
2053 oldc->str);
2054 return 0;
2055 }
2056
2057 context_init(newc);
2058
2059 /* Convert the user. */
2060 usrdatum = symtab_search(&args->newp->p_users,
2061 sym_name(args->oldp, SYM_USERS, oldc->user - 1));
2062 if (!usrdatum)
2063 goto bad;
2064 newc->user = usrdatum->value;
2065
2066 /* Convert the role. */
2067 role = symtab_search(&args->newp->p_roles,
2068 sym_name(args->oldp, SYM_ROLES, oldc->role - 1));
2069 if (!role)
2070 goto bad;
2071 newc->role = role->value;
2072
2073 /* Convert the type. */
2074 typdatum = symtab_search(&args->newp->p_types,
2075 sym_name(args->oldp, SYM_TYPES, oldc->type - 1));
2076 if (!typdatum)
2077 goto bad;
2078 newc->type = typdatum->value;
2079
2080 /* Convert the MLS fields if dealing with MLS policies */
2081 if (args->oldp->mls_enabled && args->newp->mls_enabled) {
2082 rc = mls_convert_context(args->oldp, args->newp, oldc, newc);
2083 if (rc)
2084 goto bad;
2085 } else if (!args->oldp->mls_enabled && args->newp->mls_enabled) {
2086 /*
2087 * Switching between non-MLS and MLS policy:
2088 * ensure that the MLS fields of the context for all
2089 * existing entries in the sidtab are filled in with a
2090 * suitable default value, likely taken from one of the
2091 * initial SIDs.
2092 */
2093 oc = args->newp->ocontexts[OCON_ISID];
2094 while (oc && oc->sid[0] != SECINITSID_UNLABELED)
2095 oc = oc->next;
2096 if (!oc) {
2097 pr_err("SELinux: unable to look up"
2098 " the initial SIDs list\n");
2099 goto bad;
2100 }
2101 rc = mls_range_set(newc, &oc->context[0].range);
2102 if (rc)
2103 goto bad;
2104 }
2105
2106 /* Check the validity of the new context. */
2107 if (!policydb_context_isvalid(args->newp, newc)) {
2108 rc = convert_context_handle_invalid_context(args->oldp, oldc);
2109 if (rc)
2110 goto bad;
2111 }
2112
2113 return 0;
2114 bad:
2115 /* Map old representation to string and save it. */
2116 rc = context_struct_to_string(args->oldp, oldc, &s, &len);
2117 if (rc)
2118 return rc;
2119 context_destroy(newc);
2120 newc->str = s;
2121 newc->len = len;
2122 pr_info("SELinux: Context %s became invalid (unmapped).\n",
2123 newc->str);
2124 return 0;
2125 }
2126
security_load_policycaps(struct selinux_policy * policy)2127 static void security_load_policycaps(struct selinux_policy *policy)
2128 {
2129 struct policydb *p;
2130 unsigned int i;
2131 struct ebitmap_node *node;
2132
2133 p = &policy->policydb;
2134
2135 for (i = 0; i < ARRAY_SIZE(selinux_state.policycap); i++)
2136 WRITE_ONCE(selinux_state.policycap[i],
2137 ebitmap_get_bit(&p->policycaps, i));
2138
2139 for (i = 0; i < ARRAY_SIZE(selinux_policycap_names); i++)
2140 pr_info("SELinux: policy capability %s=%d\n",
2141 selinux_policycap_names[i],
2142 ebitmap_get_bit(&p->policycaps, i));
2143
2144 ebitmap_for_each_positive_bit(&p->policycaps, node, i) {
2145 if (i >= ARRAY_SIZE(selinux_policycap_names))
2146 pr_info("SELinux: unknown policy capability %u\n",
2147 i);
2148 }
2149
2150 selinux_state.android_netlink_route = p->android_netlink_route;
2151 selinux_state.android_netlink_getneigh = p->android_netlink_getneigh;
2152 selinux_nlmsg_init();
2153 }
2154
2155 static int security_preserve_bools(struct selinux_policy *oldpolicy,
2156 struct selinux_policy *newpolicy);
2157
selinux_policy_free(struct selinux_policy * policy)2158 static void selinux_policy_free(struct selinux_policy *policy)
2159 {
2160 if (!policy)
2161 return;
2162
2163 sidtab_destroy(policy->sidtab);
2164 kfree(policy->map.mapping);
2165 policydb_destroy(&policy->policydb);
2166 kfree(policy->sidtab);
2167 kfree(policy);
2168 }
2169
selinux_policy_cond_free(struct selinux_policy * policy)2170 static void selinux_policy_cond_free(struct selinux_policy *policy)
2171 {
2172 cond_policydb_destroy_dup(&policy->policydb);
2173 kfree(policy);
2174 }
2175
selinux_policy_cancel(struct selinux_load_state * load_state)2176 void selinux_policy_cancel(struct selinux_load_state *load_state)
2177 {
2178 struct selinux_state *state = &selinux_state;
2179 struct selinux_policy *oldpolicy;
2180
2181 oldpolicy = rcu_dereference_protected(state->policy,
2182 lockdep_is_held(&state->policy_mutex));
2183
2184 sidtab_cancel_convert(oldpolicy->sidtab);
2185 selinux_policy_free(load_state->policy);
2186 kfree(load_state->convert_data);
2187 }
2188
selinux_notify_policy_change(u32 seqno)2189 static void selinux_notify_policy_change(u32 seqno)
2190 {
2191 /* Flush external caches and notify userspace of policy load */
2192 avc_ss_reset(seqno);
2193 selnl_notify_policyload(seqno);
2194 selinux_status_update_policyload(seqno);
2195 selinux_netlbl_cache_invalidate();
2196 selinux_xfrm_notify_policyload();
2197 selinux_ima_measure_state_locked();
2198 }
2199
selinux_policy_commit(struct selinux_load_state * load_state)2200 void selinux_policy_commit(struct selinux_load_state *load_state)
2201 {
2202 struct selinux_state *state = &selinux_state;
2203 struct selinux_policy *oldpolicy, *newpolicy = load_state->policy;
2204 unsigned long flags;
2205 u32 seqno;
2206
2207 oldpolicy = rcu_dereference_protected(state->policy,
2208 lockdep_is_held(&state->policy_mutex));
2209
2210 /* If switching between different policy types, log MLS status */
2211 if (oldpolicy) {
2212 if (oldpolicy->policydb.mls_enabled && !newpolicy->policydb.mls_enabled)
2213 pr_info("SELinux: Disabling MLS support...\n");
2214 else if (!oldpolicy->policydb.mls_enabled && newpolicy->policydb.mls_enabled)
2215 pr_info("SELinux: Enabling MLS support...\n");
2216 }
2217
2218 /* Set latest granting seqno for new policy. */
2219 if (oldpolicy)
2220 newpolicy->latest_granting = oldpolicy->latest_granting + 1;
2221 else
2222 newpolicy->latest_granting = 1;
2223 seqno = newpolicy->latest_granting;
2224
2225 /* Install the new policy. */
2226 if (oldpolicy) {
2227 sidtab_freeze_begin(oldpolicy->sidtab, &flags);
2228 rcu_assign_pointer(state->policy, newpolicy);
2229 sidtab_freeze_end(oldpolicy->sidtab, &flags);
2230 } else {
2231 rcu_assign_pointer(state->policy, newpolicy);
2232 }
2233
2234 /* Load the policycaps from the new policy */
2235 security_load_policycaps(newpolicy);
2236
2237 if (!selinux_initialized()) {
2238 /*
2239 * After first policy load, the security server is
2240 * marked as initialized and ready to handle requests and
2241 * any objects created prior to policy load are then labeled.
2242 */
2243 selinux_mark_initialized();
2244 selinux_complete_init();
2245 trace_android_rvh_selinux_is_initialized(state);
2246 }
2247
2248 /* Free the old policy */
2249 synchronize_rcu();
2250 selinux_policy_free(oldpolicy);
2251 kfree(load_state->convert_data);
2252
2253 /* Notify others of the policy change */
2254 selinux_notify_policy_change(seqno);
2255 }
2256
2257 /**
2258 * security_load_policy - Load a security policy configuration.
2259 * @data: binary policy data
2260 * @len: length of data in bytes
2261 * @load_state: policy load state
2262 *
2263 * Load a new set of security policy configuration data,
2264 * validate it and convert the SID table as necessary.
2265 * This function will flush the access vector cache after
2266 * loading the new policy.
2267 */
security_load_policy(void * data,size_t len,struct selinux_load_state * load_state)2268 int security_load_policy(void *data, size_t len,
2269 struct selinux_load_state *load_state)
2270 {
2271 struct selinux_state *state = &selinux_state;
2272 struct selinux_policy *newpolicy, *oldpolicy;
2273 struct selinux_policy_convert_data *convert_data;
2274 int rc = 0;
2275 struct policy_file file = { data, len }, *fp = &file;
2276
2277 newpolicy = kzalloc(sizeof(*newpolicy), GFP_KERNEL);
2278 if (!newpolicy)
2279 return -ENOMEM;
2280
2281 newpolicy->sidtab = kzalloc(sizeof(*newpolicy->sidtab), GFP_KERNEL);
2282 if (!newpolicy->sidtab) {
2283 rc = -ENOMEM;
2284 goto err_policy;
2285 }
2286
2287 rc = policydb_read(&newpolicy->policydb, fp);
2288 if (rc)
2289 goto err_sidtab;
2290
2291 newpolicy->policydb.len = len;
2292 rc = selinux_set_mapping(&newpolicy->policydb, secclass_map,
2293 &newpolicy->map);
2294 if (rc)
2295 goto err_policydb;
2296
2297 rc = policydb_load_isids(&newpolicy->policydb, newpolicy->sidtab);
2298 if (rc) {
2299 pr_err("SELinux: unable to load the initial SIDs\n");
2300 goto err_mapping;
2301 }
2302
2303 if (!selinux_initialized()) {
2304 /* First policy load, so no need to preserve state from old policy */
2305 load_state->policy = newpolicy;
2306 load_state->convert_data = NULL;
2307 return 0;
2308 }
2309
2310 oldpolicy = rcu_dereference_protected(state->policy,
2311 lockdep_is_held(&state->policy_mutex));
2312
2313 /* Preserve active boolean values from the old policy */
2314 rc = security_preserve_bools(oldpolicy, newpolicy);
2315 if (rc) {
2316 pr_err("SELinux: unable to preserve booleans\n");
2317 goto err_free_isids;
2318 }
2319
2320 /*
2321 * Convert the internal representations of contexts
2322 * in the new SID table.
2323 */
2324
2325 convert_data = kmalloc(sizeof(*convert_data), GFP_KERNEL);
2326 if (!convert_data) {
2327 rc = -ENOMEM;
2328 goto err_free_isids;
2329 }
2330
2331 convert_data->args.oldp = &oldpolicy->policydb;
2332 convert_data->args.newp = &newpolicy->policydb;
2333
2334 convert_data->sidtab_params.args = &convert_data->args;
2335 convert_data->sidtab_params.target = newpolicy->sidtab;
2336
2337 rc = sidtab_convert(oldpolicy->sidtab, &convert_data->sidtab_params);
2338 if (rc) {
2339 pr_err("SELinux: unable to convert the internal"
2340 " representation of contexts in the new SID"
2341 " table\n");
2342 goto err_free_convert_data;
2343 }
2344
2345 load_state->policy = newpolicy;
2346 load_state->convert_data = convert_data;
2347 return 0;
2348
2349 err_free_convert_data:
2350 kfree(convert_data);
2351 err_free_isids:
2352 sidtab_destroy(newpolicy->sidtab);
2353 err_mapping:
2354 kfree(newpolicy->map.mapping);
2355 err_policydb:
2356 policydb_destroy(&newpolicy->policydb);
2357 err_sidtab:
2358 kfree(newpolicy->sidtab);
2359 err_policy:
2360 kfree(newpolicy);
2361
2362 return rc;
2363 }
2364
2365 /**
2366 * ocontext_to_sid - Helper to safely get sid for an ocontext
2367 * @sidtab: SID table
2368 * @c: ocontext structure
2369 * @index: index of the context entry (0 or 1)
2370 * @out_sid: pointer to the resulting SID value
2371 *
2372 * For all ocontexts except OCON_ISID the SID fields are populated
2373 * on-demand when needed. Since updating the SID value is an SMP-sensitive
2374 * operation, this helper must be used to do that safely.
2375 *
2376 * WARNING: This function may return -ESTALE, indicating that the caller
2377 * must retry the operation after re-acquiring the policy pointer!
2378 */
ocontext_to_sid(struct sidtab * sidtab,struct ocontext * c,size_t index,u32 * out_sid)2379 static int ocontext_to_sid(struct sidtab *sidtab, struct ocontext *c,
2380 size_t index, u32 *out_sid)
2381 {
2382 int rc;
2383 u32 sid;
2384
2385 /* Ensure the associated sidtab entry is visible to this thread. */
2386 sid = smp_load_acquire(&c->sid[index]);
2387 if (!sid) {
2388 rc = sidtab_context_to_sid(sidtab, &c->context[index], &sid);
2389 if (rc)
2390 return rc;
2391
2392 /*
2393 * Ensure the new sidtab entry is visible to other threads
2394 * when they see the SID.
2395 */
2396 smp_store_release(&c->sid[index], sid);
2397 }
2398 *out_sid = sid;
2399 return 0;
2400 }
2401
2402 /**
2403 * security_port_sid - Obtain the SID for a port.
2404 * @protocol: protocol number
2405 * @port: port number
2406 * @out_sid: security identifier
2407 */
security_port_sid(u8 protocol,u16 port,u32 * out_sid)2408 int security_port_sid(u8 protocol, u16 port, u32 *out_sid)
2409 {
2410 struct selinux_policy *policy;
2411 struct policydb *policydb;
2412 struct sidtab *sidtab;
2413 struct ocontext *c;
2414 int rc;
2415
2416 if (!selinux_initialized()) {
2417 *out_sid = SECINITSID_PORT;
2418 return 0;
2419 }
2420
2421 retry:
2422 rc = 0;
2423 rcu_read_lock();
2424 policy = rcu_dereference(selinux_state.policy);
2425 policydb = &policy->policydb;
2426 sidtab = policy->sidtab;
2427
2428 c = policydb->ocontexts[OCON_PORT];
2429 while (c) {
2430 if (c->u.port.protocol == protocol &&
2431 c->u.port.low_port <= port &&
2432 c->u.port.high_port >= port)
2433 break;
2434 c = c->next;
2435 }
2436
2437 if (c) {
2438 rc = ocontext_to_sid(sidtab, c, 0, out_sid);
2439 if (rc == -ESTALE) {
2440 rcu_read_unlock();
2441 goto retry;
2442 }
2443 if (rc)
2444 goto out;
2445 } else {
2446 *out_sid = SECINITSID_PORT;
2447 }
2448
2449 out:
2450 rcu_read_unlock();
2451 return rc;
2452 }
2453
2454 /**
2455 * security_ib_pkey_sid - Obtain the SID for a pkey.
2456 * @subnet_prefix: Subnet Prefix
2457 * @pkey_num: pkey number
2458 * @out_sid: security identifier
2459 */
security_ib_pkey_sid(u64 subnet_prefix,u16 pkey_num,u32 * out_sid)2460 int security_ib_pkey_sid(u64 subnet_prefix, u16 pkey_num, u32 *out_sid)
2461 {
2462 struct selinux_policy *policy;
2463 struct policydb *policydb;
2464 struct sidtab *sidtab;
2465 struct ocontext *c;
2466 int rc;
2467
2468 if (!selinux_initialized()) {
2469 *out_sid = SECINITSID_UNLABELED;
2470 return 0;
2471 }
2472
2473 retry:
2474 rc = 0;
2475 rcu_read_lock();
2476 policy = rcu_dereference(selinux_state.policy);
2477 policydb = &policy->policydb;
2478 sidtab = policy->sidtab;
2479
2480 c = policydb->ocontexts[OCON_IBPKEY];
2481 while (c) {
2482 if (c->u.ibpkey.low_pkey <= pkey_num &&
2483 c->u.ibpkey.high_pkey >= pkey_num &&
2484 c->u.ibpkey.subnet_prefix == subnet_prefix)
2485 break;
2486
2487 c = c->next;
2488 }
2489
2490 if (c) {
2491 rc = ocontext_to_sid(sidtab, c, 0, out_sid);
2492 if (rc == -ESTALE) {
2493 rcu_read_unlock();
2494 goto retry;
2495 }
2496 if (rc)
2497 goto out;
2498 } else
2499 *out_sid = SECINITSID_UNLABELED;
2500
2501 out:
2502 rcu_read_unlock();
2503 return rc;
2504 }
2505
2506 /**
2507 * security_ib_endport_sid - Obtain the SID for a subnet management interface.
2508 * @dev_name: device name
2509 * @port_num: port number
2510 * @out_sid: security identifier
2511 */
security_ib_endport_sid(const char * dev_name,u8 port_num,u32 * out_sid)2512 int security_ib_endport_sid(const char *dev_name, u8 port_num, u32 *out_sid)
2513 {
2514 struct selinux_policy *policy;
2515 struct policydb *policydb;
2516 struct sidtab *sidtab;
2517 struct ocontext *c;
2518 int rc;
2519
2520 if (!selinux_initialized()) {
2521 *out_sid = SECINITSID_UNLABELED;
2522 return 0;
2523 }
2524
2525 retry:
2526 rc = 0;
2527 rcu_read_lock();
2528 policy = rcu_dereference(selinux_state.policy);
2529 policydb = &policy->policydb;
2530 sidtab = policy->sidtab;
2531
2532 c = policydb->ocontexts[OCON_IBENDPORT];
2533 while (c) {
2534 if (c->u.ibendport.port == port_num &&
2535 !strncmp(c->u.ibendport.dev_name,
2536 dev_name,
2537 IB_DEVICE_NAME_MAX))
2538 break;
2539
2540 c = c->next;
2541 }
2542
2543 if (c) {
2544 rc = ocontext_to_sid(sidtab, c, 0, out_sid);
2545 if (rc == -ESTALE) {
2546 rcu_read_unlock();
2547 goto retry;
2548 }
2549 if (rc)
2550 goto out;
2551 } else
2552 *out_sid = SECINITSID_UNLABELED;
2553
2554 out:
2555 rcu_read_unlock();
2556 return rc;
2557 }
2558
2559 /**
2560 * security_netif_sid - Obtain the SID for a network interface.
2561 * @name: interface name
2562 * @if_sid: interface SID
2563 */
security_netif_sid(char * name,u32 * if_sid)2564 int security_netif_sid(char *name, u32 *if_sid)
2565 {
2566 struct selinux_policy *policy;
2567 struct policydb *policydb;
2568 struct sidtab *sidtab;
2569 int rc;
2570 struct ocontext *c;
2571
2572 if (!selinux_initialized()) {
2573 *if_sid = SECINITSID_NETIF;
2574 return 0;
2575 }
2576
2577 retry:
2578 rc = 0;
2579 rcu_read_lock();
2580 policy = rcu_dereference(selinux_state.policy);
2581 policydb = &policy->policydb;
2582 sidtab = policy->sidtab;
2583
2584 c = policydb->ocontexts[OCON_NETIF];
2585 while (c) {
2586 if (strcmp(name, c->u.name) == 0)
2587 break;
2588 c = c->next;
2589 }
2590
2591 if (c) {
2592 rc = ocontext_to_sid(sidtab, c, 0, if_sid);
2593 if (rc == -ESTALE) {
2594 rcu_read_unlock();
2595 goto retry;
2596 }
2597 if (rc)
2598 goto out;
2599 } else
2600 *if_sid = SECINITSID_NETIF;
2601
2602 out:
2603 rcu_read_unlock();
2604 return rc;
2605 }
2606
match_ipv6_addrmask(u32 * input,u32 * addr,u32 * mask)2607 static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask)
2608 {
2609 int i, fail = 0;
2610
2611 for (i = 0; i < 4; i++)
2612 if (addr[i] != (input[i] & mask[i])) {
2613 fail = 1;
2614 break;
2615 }
2616
2617 return !fail;
2618 }
2619
2620 /**
2621 * security_node_sid - Obtain the SID for a node (host).
2622 * @domain: communication domain aka address family
2623 * @addrp: address
2624 * @addrlen: address length in bytes
2625 * @out_sid: security identifier
2626 */
security_node_sid(u16 domain,void * addrp,u32 addrlen,u32 * out_sid)2627 int security_node_sid(u16 domain,
2628 void *addrp,
2629 u32 addrlen,
2630 u32 *out_sid)
2631 {
2632 struct selinux_policy *policy;
2633 struct policydb *policydb;
2634 struct sidtab *sidtab;
2635 int rc;
2636 struct ocontext *c;
2637
2638 if (!selinux_initialized()) {
2639 *out_sid = SECINITSID_NODE;
2640 return 0;
2641 }
2642
2643 retry:
2644 rcu_read_lock();
2645 policy = rcu_dereference(selinux_state.policy);
2646 policydb = &policy->policydb;
2647 sidtab = policy->sidtab;
2648
2649 switch (domain) {
2650 case AF_INET: {
2651 u32 addr;
2652
2653 rc = -EINVAL;
2654 if (addrlen != sizeof(u32))
2655 goto out;
2656
2657 addr = *((u32 *)addrp);
2658
2659 c = policydb->ocontexts[OCON_NODE];
2660 while (c) {
2661 if (c->u.node.addr == (addr & c->u.node.mask))
2662 break;
2663 c = c->next;
2664 }
2665 break;
2666 }
2667
2668 case AF_INET6:
2669 rc = -EINVAL;
2670 if (addrlen != sizeof(u64) * 2)
2671 goto out;
2672 c = policydb->ocontexts[OCON_NODE6];
2673 while (c) {
2674 if (match_ipv6_addrmask(addrp, c->u.node6.addr,
2675 c->u.node6.mask))
2676 break;
2677 c = c->next;
2678 }
2679 break;
2680
2681 default:
2682 rc = 0;
2683 *out_sid = SECINITSID_NODE;
2684 goto out;
2685 }
2686
2687 if (c) {
2688 rc = ocontext_to_sid(sidtab, c, 0, out_sid);
2689 if (rc == -ESTALE) {
2690 rcu_read_unlock();
2691 goto retry;
2692 }
2693 if (rc)
2694 goto out;
2695 } else {
2696 *out_sid = SECINITSID_NODE;
2697 }
2698
2699 rc = 0;
2700 out:
2701 rcu_read_unlock();
2702 return rc;
2703 }
2704
2705 #define SIDS_NEL 25
2706
2707 /**
2708 * security_get_user_sids - Obtain reachable SIDs for a user.
2709 * @fromsid: starting SID
2710 * @username: username
2711 * @sids: array of reachable SIDs for user
2712 * @nel: number of elements in @sids
2713 *
2714 * Generate the set of SIDs for legal security contexts
2715 * for a given user that can be reached by @fromsid.
2716 * Set *@sids to point to a dynamically allocated
2717 * array containing the set of SIDs. Set *@nel to the
2718 * number of elements in the array.
2719 */
2720
security_get_user_sids(u32 fromsid,char * username,u32 ** sids,u32 * nel)2721 int security_get_user_sids(u32 fromsid,
2722 char *username,
2723 u32 **sids,
2724 u32 *nel)
2725 {
2726 struct selinux_policy *policy;
2727 struct policydb *policydb;
2728 struct sidtab *sidtab;
2729 struct context *fromcon, usercon;
2730 u32 *mysids = NULL, *mysids2, sid;
2731 u32 i, j, mynel, maxnel = SIDS_NEL;
2732 struct user_datum *user;
2733 struct role_datum *role;
2734 struct ebitmap_node *rnode, *tnode;
2735 int rc;
2736
2737 *sids = NULL;
2738 *nel = 0;
2739
2740 if (!selinux_initialized())
2741 return 0;
2742
2743 mysids = kcalloc(maxnel, sizeof(*mysids), GFP_KERNEL);
2744 if (!mysids)
2745 return -ENOMEM;
2746
2747 retry:
2748 mynel = 0;
2749 rcu_read_lock();
2750 policy = rcu_dereference(selinux_state.policy);
2751 policydb = &policy->policydb;
2752 sidtab = policy->sidtab;
2753
2754 context_init(&usercon);
2755
2756 rc = -EINVAL;
2757 fromcon = sidtab_search(sidtab, fromsid);
2758 if (!fromcon)
2759 goto out_unlock;
2760
2761 rc = -EINVAL;
2762 user = symtab_search(&policydb->p_users, username);
2763 if (!user)
2764 goto out_unlock;
2765
2766 usercon.user = user->value;
2767
2768 ebitmap_for_each_positive_bit(&user->roles, rnode, i) {
2769 role = policydb->role_val_to_struct[i];
2770 usercon.role = i + 1;
2771 ebitmap_for_each_positive_bit(&role->types, tnode, j) {
2772 usercon.type = j + 1;
2773
2774 if (mls_setup_user_range(policydb, fromcon, user,
2775 &usercon))
2776 continue;
2777
2778 rc = sidtab_context_to_sid(sidtab, &usercon, &sid);
2779 if (rc == -ESTALE) {
2780 rcu_read_unlock();
2781 goto retry;
2782 }
2783 if (rc)
2784 goto out_unlock;
2785 if (mynel < maxnel) {
2786 mysids[mynel++] = sid;
2787 } else {
2788 rc = -ENOMEM;
2789 maxnel += SIDS_NEL;
2790 mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC);
2791 if (!mysids2)
2792 goto out_unlock;
2793 memcpy(mysids2, mysids, mynel * sizeof(*mysids2));
2794 kfree(mysids);
2795 mysids = mysids2;
2796 mysids[mynel++] = sid;
2797 }
2798 }
2799 }
2800 rc = 0;
2801 out_unlock:
2802 rcu_read_unlock();
2803 if (rc || !mynel) {
2804 kfree(mysids);
2805 return rc;
2806 }
2807
2808 rc = -ENOMEM;
2809 mysids2 = kcalloc(mynel, sizeof(*mysids2), GFP_KERNEL);
2810 if (!mysids2) {
2811 kfree(mysids);
2812 return rc;
2813 }
2814 for (i = 0, j = 0; i < mynel; i++) {
2815 struct av_decision dummy_avd;
2816 rc = avc_has_perm_noaudit(fromsid, mysids[i],
2817 SECCLASS_PROCESS, /* kernel value */
2818 PROCESS__TRANSITION, AVC_STRICT,
2819 &dummy_avd);
2820 if (!rc)
2821 mysids2[j++] = mysids[i];
2822 cond_resched();
2823 }
2824 kfree(mysids);
2825 *sids = mysids2;
2826 *nel = j;
2827 return 0;
2828 }
2829
2830 /**
2831 * __security_genfs_sid - Helper to obtain a SID for a file in a filesystem
2832 * @policy: policy
2833 * @fstype: filesystem type
2834 * @path: path from root of mount
2835 * @orig_sclass: file security class
2836 * @sid: SID for path
2837 *
2838 * Obtain a SID to use for a file in a filesystem that
2839 * cannot support xattr or use a fixed labeling behavior like
2840 * transition SIDs or task SIDs.
2841 *
2842 * WARNING: This function may return -ESTALE, indicating that the caller
2843 * must retry the operation after re-acquiring the policy pointer!
2844 */
__security_genfs_sid(struct selinux_policy * policy,const char * fstype,const char * path,u16 orig_sclass,u32 * sid)2845 static inline int __security_genfs_sid(struct selinux_policy *policy,
2846 const char *fstype,
2847 const char *path,
2848 u16 orig_sclass,
2849 u32 *sid)
2850 {
2851 struct policydb *policydb = &policy->policydb;
2852 struct sidtab *sidtab = policy->sidtab;
2853 u16 sclass;
2854 struct genfs *genfs;
2855 struct ocontext *c;
2856 int cmp = 0;
2857
2858 while (path[0] == '/' && path[1] == '/')
2859 path++;
2860
2861 sclass = unmap_class(&policy->map, orig_sclass);
2862 *sid = SECINITSID_UNLABELED;
2863
2864 for (genfs = policydb->genfs; genfs; genfs = genfs->next) {
2865 cmp = strcmp(fstype, genfs->fstype);
2866 if (cmp <= 0)
2867 break;
2868 }
2869
2870 if (!genfs || cmp)
2871 return -ENOENT;
2872
2873 for (c = genfs->head; c; c = c->next) {
2874 size_t len = strlen(c->u.name);
2875 if ((!c->v.sclass || sclass == c->v.sclass) &&
2876 (strncmp(c->u.name, path, len) == 0))
2877 break;
2878 }
2879
2880 if (!c)
2881 return -ENOENT;
2882
2883 return ocontext_to_sid(sidtab, c, 0, sid);
2884 }
2885
2886 /**
2887 * security_genfs_sid - Obtain a SID for a file in a filesystem
2888 * @fstype: filesystem type
2889 * @path: path from root of mount
2890 * @orig_sclass: file security class
2891 * @sid: SID for path
2892 *
2893 * Acquire policy_rwlock before calling __security_genfs_sid() and release
2894 * it afterward.
2895 */
security_genfs_sid(const char * fstype,const char * path,u16 orig_sclass,u32 * sid)2896 int security_genfs_sid(const char *fstype,
2897 const char *path,
2898 u16 orig_sclass,
2899 u32 *sid)
2900 {
2901 struct selinux_policy *policy;
2902 int retval;
2903
2904 if (!selinux_initialized()) {
2905 *sid = SECINITSID_UNLABELED;
2906 return 0;
2907 }
2908
2909 do {
2910 rcu_read_lock();
2911 policy = rcu_dereference(selinux_state.policy);
2912 retval = __security_genfs_sid(policy, fstype, path,
2913 orig_sclass, sid);
2914 rcu_read_unlock();
2915 } while (retval == -ESTALE);
2916 return retval;
2917 }
2918
selinux_policy_genfs_sid(struct selinux_policy * policy,const char * fstype,const char * path,u16 orig_sclass,u32 * sid)2919 int selinux_policy_genfs_sid(struct selinux_policy *policy,
2920 const char *fstype,
2921 const char *path,
2922 u16 orig_sclass,
2923 u32 *sid)
2924 {
2925 /* no lock required, policy is not yet accessible by other threads */
2926 return __security_genfs_sid(policy, fstype, path, orig_sclass, sid);
2927 }
2928
2929 /**
2930 * security_fs_use - Determine how to handle labeling for a filesystem.
2931 * @sb: superblock in question
2932 */
security_fs_use(struct super_block * sb)2933 int security_fs_use(struct super_block *sb)
2934 {
2935 struct selinux_policy *policy;
2936 struct policydb *policydb;
2937 struct sidtab *sidtab;
2938 int rc;
2939 struct ocontext *c;
2940 struct superblock_security_struct *sbsec = selinux_superblock(sb);
2941 const char *fstype = sb->s_type->name;
2942
2943 if (!selinux_initialized()) {
2944 sbsec->behavior = SECURITY_FS_USE_NONE;
2945 sbsec->sid = SECINITSID_UNLABELED;
2946 return 0;
2947 }
2948
2949 retry:
2950 rcu_read_lock();
2951 policy = rcu_dereference(selinux_state.policy);
2952 policydb = &policy->policydb;
2953 sidtab = policy->sidtab;
2954
2955 c = policydb->ocontexts[OCON_FSUSE];
2956 while (c) {
2957 if (strcmp(fstype, c->u.name) == 0)
2958 break;
2959 c = c->next;
2960 }
2961
2962 if (c) {
2963 sbsec->behavior = c->v.behavior;
2964 rc = ocontext_to_sid(sidtab, c, 0, &sbsec->sid);
2965 if (rc == -ESTALE) {
2966 rcu_read_unlock();
2967 goto retry;
2968 }
2969 if (rc)
2970 goto out;
2971 } else {
2972 rc = __security_genfs_sid(policy, fstype, "/",
2973 SECCLASS_DIR, &sbsec->sid);
2974 if (rc == -ESTALE) {
2975 rcu_read_unlock();
2976 goto retry;
2977 }
2978 if (rc) {
2979 sbsec->behavior = SECURITY_FS_USE_NONE;
2980 rc = 0;
2981 } else {
2982 sbsec->behavior = SECURITY_FS_USE_GENFS;
2983 }
2984 }
2985
2986 out:
2987 rcu_read_unlock();
2988 return rc;
2989 }
2990
security_get_bools(struct selinux_policy * policy,u32 * len,char *** names,int ** values)2991 int security_get_bools(struct selinux_policy *policy,
2992 u32 *len, char ***names, int **values)
2993 {
2994 struct policydb *policydb;
2995 u32 i;
2996 int rc;
2997
2998 policydb = &policy->policydb;
2999
3000 *names = NULL;
3001 *values = NULL;
3002
3003 rc = 0;
3004 *len = policydb->p_bools.nprim;
3005 if (!*len)
3006 goto out;
3007
3008 rc = -ENOMEM;
3009 *names = kcalloc(*len, sizeof(char *), GFP_ATOMIC);
3010 if (!*names)
3011 goto err;
3012
3013 rc = -ENOMEM;
3014 *values = kcalloc(*len, sizeof(int), GFP_ATOMIC);
3015 if (!*values)
3016 goto err;
3017
3018 for (i = 0; i < *len; i++) {
3019 (*values)[i] = policydb->bool_val_to_struct[i]->state;
3020
3021 rc = -ENOMEM;
3022 (*names)[i] = kstrdup(sym_name(policydb, SYM_BOOLS, i),
3023 GFP_ATOMIC);
3024 if (!(*names)[i])
3025 goto err;
3026 }
3027 rc = 0;
3028 out:
3029 return rc;
3030 err:
3031 if (*names) {
3032 for (i = 0; i < *len; i++)
3033 kfree((*names)[i]);
3034 kfree(*names);
3035 }
3036 kfree(*values);
3037 *len = 0;
3038 *names = NULL;
3039 *values = NULL;
3040 goto out;
3041 }
3042
3043
security_set_bools(u32 len,int * values)3044 int security_set_bools(u32 len, int *values)
3045 {
3046 struct selinux_state *state = &selinux_state;
3047 struct selinux_policy *newpolicy, *oldpolicy;
3048 int rc;
3049 u32 i, seqno = 0;
3050
3051 if (!selinux_initialized())
3052 return -EINVAL;
3053
3054 oldpolicy = rcu_dereference_protected(state->policy,
3055 lockdep_is_held(&state->policy_mutex));
3056
3057 /* Consistency check on number of booleans, should never fail */
3058 if (WARN_ON(len != oldpolicy->policydb.p_bools.nprim))
3059 return -EINVAL;
3060
3061 newpolicy = kmemdup(oldpolicy, sizeof(*newpolicy), GFP_KERNEL);
3062 if (!newpolicy)
3063 return -ENOMEM;
3064
3065 /*
3066 * Deep copy only the parts of the policydb that might be
3067 * modified as a result of changing booleans.
3068 */
3069 rc = cond_policydb_dup(&newpolicy->policydb, &oldpolicy->policydb);
3070 if (rc) {
3071 kfree(newpolicy);
3072 return -ENOMEM;
3073 }
3074
3075 /* Update the boolean states in the copy */
3076 for (i = 0; i < len; i++) {
3077 int new_state = !!values[i];
3078 int old_state = newpolicy->policydb.bool_val_to_struct[i]->state;
3079
3080 if (new_state != old_state) {
3081 audit_log(audit_context(), GFP_ATOMIC,
3082 AUDIT_MAC_CONFIG_CHANGE,
3083 "bool=%s val=%d old_val=%d auid=%u ses=%u",
3084 sym_name(&newpolicy->policydb, SYM_BOOLS, i),
3085 new_state,
3086 old_state,
3087 from_kuid(&init_user_ns, audit_get_loginuid(current)),
3088 audit_get_sessionid(current));
3089 newpolicy->policydb.bool_val_to_struct[i]->state = new_state;
3090 }
3091 }
3092
3093 /* Re-evaluate the conditional rules in the copy */
3094 evaluate_cond_nodes(&newpolicy->policydb);
3095
3096 /* Set latest granting seqno for new policy */
3097 newpolicy->latest_granting = oldpolicy->latest_granting + 1;
3098 seqno = newpolicy->latest_granting;
3099
3100 /* Install the new policy */
3101 rcu_assign_pointer(state->policy, newpolicy);
3102
3103 /*
3104 * Free the conditional portions of the old policydb
3105 * that were copied for the new policy, and the oldpolicy
3106 * structure itself but not what it references.
3107 */
3108 synchronize_rcu();
3109 selinux_policy_cond_free(oldpolicy);
3110
3111 /* Notify others of the policy change */
3112 selinux_notify_policy_change(seqno);
3113 return 0;
3114 }
3115
security_get_bool_value(u32 index)3116 int security_get_bool_value(u32 index)
3117 {
3118 struct selinux_policy *policy;
3119 struct policydb *policydb;
3120 int rc;
3121 u32 len;
3122
3123 if (!selinux_initialized())
3124 return 0;
3125
3126 rcu_read_lock();
3127 policy = rcu_dereference(selinux_state.policy);
3128 policydb = &policy->policydb;
3129
3130 rc = -EFAULT;
3131 len = policydb->p_bools.nprim;
3132 if (index >= len)
3133 goto out;
3134
3135 rc = policydb->bool_val_to_struct[index]->state;
3136 out:
3137 rcu_read_unlock();
3138 return rc;
3139 }
3140
security_preserve_bools(struct selinux_policy * oldpolicy,struct selinux_policy * newpolicy)3141 static int security_preserve_bools(struct selinux_policy *oldpolicy,
3142 struct selinux_policy *newpolicy)
3143 {
3144 int rc, *bvalues = NULL;
3145 char **bnames = NULL;
3146 struct cond_bool_datum *booldatum;
3147 u32 i, nbools = 0;
3148
3149 rc = security_get_bools(oldpolicy, &nbools, &bnames, &bvalues);
3150 if (rc)
3151 goto out;
3152 for (i = 0; i < nbools; i++) {
3153 booldatum = symtab_search(&newpolicy->policydb.p_bools,
3154 bnames[i]);
3155 if (booldatum)
3156 booldatum->state = bvalues[i];
3157 }
3158 evaluate_cond_nodes(&newpolicy->policydb);
3159
3160 out:
3161 if (bnames) {
3162 for (i = 0; i < nbools; i++)
3163 kfree(bnames[i]);
3164 }
3165 kfree(bnames);
3166 kfree(bvalues);
3167 return rc;
3168 }
3169
3170 /*
3171 * security_sid_mls_copy() - computes a new sid based on the given
3172 * sid and the mls portion of mls_sid.
3173 */
security_sid_mls_copy(u32 sid,u32 mls_sid,u32 * new_sid)3174 int security_sid_mls_copy(u32 sid, u32 mls_sid, u32 *new_sid)
3175 {
3176 struct selinux_policy *policy;
3177 struct policydb *policydb;
3178 struct sidtab *sidtab;
3179 struct context *context1;
3180 struct context *context2;
3181 struct context newcon;
3182 char *s;
3183 u32 len;
3184 int rc;
3185
3186 if (!selinux_initialized()) {
3187 *new_sid = sid;
3188 return 0;
3189 }
3190
3191 retry:
3192 rc = 0;
3193 context_init(&newcon);
3194
3195 rcu_read_lock();
3196 policy = rcu_dereference(selinux_state.policy);
3197 policydb = &policy->policydb;
3198 sidtab = policy->sidtab;
3199
3200 if (!policydb->mls_enabled) {
3201 *new_sid = sid;
3202 goto out_unlock;
3203 }
3204
3205 rc = -EINVAL;
3206 context1 = sidtab_search(sidtab, sid);
3207 if (!context1) {
3208 pr_err("SELinux: %s: unrecognized SID %d\n",
3209 __func__, sid);
3210 goto out_unlock;
3211 }
3212
3213 rc = -EINVAL;
3214 context2 = sidtab_search(sidtab, mls_sid);
3215 if (!context2) {
3216 pr_err("SELinux: %s: unrecognized SID %d\n",
3217 __func__, mls_sid);
3218 goto out_unlock;
3219 }
3220
3221 newcon.user = context1->user;
3222 newcon.role = context1->role;
3223 newcon.type = context1->type;
3224 rc = mls_context_cpy(&newcon, context2);
3225 if (rc)
3226 goto out_unlock;
3227
3228 /* Check the validity of the new context. */
3229 if (!policydb_context_isvalid(policydb, &newcon)) {
3230 rc = convert_context_handle_invalid_context(policydb,
3231 &newcon);
3232 if (rc) {
3233 if (!context_struct_to_string(policydb, &newcon, &s,
3234 &len)) {
3235 struct audit_buffer *ab;
3236
3237 ab = audit_log_start(audit_context(),
3238 GFP_ATOMIC,
3239 AUDIT_SELINUX_ERR);
3240 audit_log_format(ab,
3241 "op=security_sid_mls_copy invalid_context=");
3242 /* don't record NUL with untrusted strings */
3243 audit_log_n_untrustedstring(ab, s, len - 1);
3244 audit_log_end(ab);
3245 kfree(s);
3246 }
3247 goto out_unlock;
3248 }
3249 }
3250 rc = sidtab_context_to_sid(sidtab, &newcon, new_sid);
3251 if (rc == -ESTALE) {
3252 rcu_read_unlock();
3253 context_destroy(&newcon);
3254 goto retry;
3255 }
3256 out_unlock:
3257 rcu_read_unlock();
3258 context_destroy(&newcon);
3259 return rc;
3260 }
3261
3262 /**
3263 * security_net_peersid_resolve - Compare and resolve two network peer SIDs
3264 * @nlbl_sid: NetLabel SID
3265 * @nlbl_type: NetLabel labeling protocol type
3266 * @xfrm_sid: XFRM SID
3267 * @peer_sid: network peer sid
3268 *
3269 * Description:
3270 * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
3271 * resolved into a single SID it is returned via @peer_sid and the function
3272 * returns zero. Otherwise @peer_sid is set to SECSID_NULL and the function
3273 * returns a negative value. A table summarizing the behavior is below:
3274 *
3275 * | function return | @sid
3276 * ------------------------------+-----------------+-----------------
3277 * no peer labels | 0 | SECSID_NULL
3278 * single peer label | 0 | <peer_label>
3279 * multiple, consistent labels | 0 | <peer_label>
3280 * multiple, inconsistent labels | -<errno> | SECSID_NULL
3281 *
3282 */
security_net_peersid_resolve(u32 nlbl_sid,u32 nlbl_type,u32 xfrm_sid,u32 * peer_sid)3283 int security_net_peersid_resolve(u32 nlbl_sid, u32 nlbl_type,
3284 u32 xfrm_sid,
3285 u32 *peer_sid)
3286 {
3287 struct selinux_policy *policy;
3288 struct policydb *policydb;
3289 struct sidtab *sidtab;
3290 int rc;
3291 struct context *nlbl_ctx;
3292 struct context *xfrm_ctx;
3293
3294 *peer_sid = SECSID_NULL;
3295
3296 /* handle the common (which also happens to be the set of easy) cases
3297 * right away, these two if statements catch everything involving a
3298 * single or absent peer SID/label */
3299 if (xfrm_sid == SECSID_NULL) {
3300 *peer_sid = nlbl_sid;
3301 return 0;
3302 }
3303 /* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
3304 * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
3305 * is present */
3306 if (nlbl_sid == SECSID_NULL || nlbl_type == NETLBL_NLTYPE_UNLABELED) {
3307 *peer_sid = xfrm_sid;
3308 return 0;
3309 }
3310
3311 if (!selinux_initialized())
3312 return 0;
3313
3314 rcu_read_lock();
3315 policy = rcu_dereference(selinux_state.policy);
3316 policydb = &policy->policydb;
3317 sidtab = policy->sidtab;
3318
3319 /*
3320 * We don't need to check initialized here since the only way both
3321 * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
3322 * security server was initialized and state->initialized was true.
3323 */
3324 if (!policydb->mls_enabled) {
3325 rc = 0;
3326 goto out;
3327 }
3328
3329 rc = -EINVAL;
3330 nlbl_ctx = sidtab_search(sidtab, nlbl_sid);
3331 if (!nlbl_ctx) {
3332 pr_err("SELinux: %s: unrecognized SID %d\n",
3333 __func__, nlbl_sid);
3334 goto out;
3335 }
3336 rc = -EINVAL;
3337 xfrm_ctx = sidtab_search(sidtab, xfrm_sid);
3338 if (!xfrm_ctx) {
3339 pr_err("SELinux: %s: unrecognized SID %d\n",
3340 __func__, xfrm_sid);
3341 goto out;
3342 }
3343 rc = (mls_context_cmp(nlbl_ctx, xfrm_ctx) ? 0 : -EACCES);
3344 if (rc)
3345 goto out;
3346
3347 /* at present NetLabel SIDs/labels really only carry MLS
3348 * information so if the MLS portion of the NetLabel SID
3349 * matches the MLS portion of the labeled XFRM SID/label
3350 * then pass along the XFRM SID as it is the most
3351 * expressive */
3352 *peer_sid = xfrm_sid;
3353 out:
3354 rcu_read_unlock();
3355 return rc;
3356 }
3357
get_classes_callback(void * k,void * d,void * args)3358 static int get_classes_callback(void *k, void *d, void *args)
3359 {
3360 struct class_datum *datum = d;
3361 char *name = k, **classes = args;
3362 u32 value = datum->value - 1;
3363
3364 classes[value] = kstrdup(name, GFP_ATOMIC);
3365 if (!classes[value])
3366 return -ENOMEM;
3367
3368 return 0;
3369 }
3370
security_get_classes(struct selinux_policy * policy,char *** classes,u32 * nclasses)3371 int security_get_classes(struct selinux_policy *policy,
3372 char ***classes, u32 *nclasses)
3373 {
3374 struct policydb *policydb;
3375 int rc;
3376
3377 policydb = &policy->policydb;
3378
3379 rc = -ENOMEM;
3380 *nclasses = policydb->p_classes.nprim;
3381 *classes = kcalloc(*nclasses, sizeof(**classes), GFP_ATOMIC);
3382 if (!*classes)
3383 goto out;
3384
3385 rc = hashtab_map(&policydb->p_classes.table, get_classes_callback,
3386 *classes);
3387 if (rc) {
3388 u32 i;
3389
3390 for (i = 0; i < *nclasses; i++)
3391 kfree((*classes)[i]);
3392 kfree(*classes);
3393 }
3394
3395 out:
3396 return rc;
3397 }
3398
get_permissions_callback(void * k,void * d,void * args)3399 static int get_permissions_callback(void *k, void *d, void *args)
3400 {
3401 struct perm_datum *datum = d;
3402 char *name = k, **perms = args;
3403 u32 value = datum->value - 1;
3404
3405 perms[value] = kstrdup(name, GFP_ATOMIC);
3406 if (!perms[value])
3407 return -ENOMEM;
3408
3409 return 0;
3410 }
3411
security_get_permissions(struct selinux_policy * policy,const char * class,char *** perms,u32 * nperms)3412 int security_get_permissions(struct selinux_policy *policy,
3413 const char *class, char ***perms, u32 *nperms)
3414 {
3415 struct policydb *policydb;
3416 u32 i;
3417 int rc;
3418 struct class_datum *match;
3419
3420 policydb = &policy->policydb;
3421
3422 rc = -EINVAL;
3423 match = symtab_search(&policydb->p_classes, class);
3424 if (!match) {
3425 pr_err("SELinux: %s: unrecognized class %s\n",
3426 __func__, class);
3427 goto out;
3428 }
3429
3430 rc = -ENOMEM;
3431 *nperms = match->permissions.nprim;
3432 *perms = kcalloc(*nperms, sizeof(**perms), GFP_ATOMIC);
3433 if (!*perms)
3434 goto out;
3435
3436 if (match->comdatum) {
3437 rc = hashtab_map(&match->comdatum->permissions.table,
3438 get_permissions_callback, *perms);
3439 if (rc)
3440 goto err;
3441 }
3442
3443 rc = hashtab_map(&match->permissions.table, get_permissions_callback,
3444 *perms);
3445 if (rc)
3446 goto err;
3447
3448 out:
3449 return rc;
3450
3451 err:
3452 for (i = 0; i < *nperms; i++)
3453 kfree((*perms)[i]);
3454 kfree(*perms);
3455 return rc;
3456 }
3457
security_get_reject_unknown(void)3458 int security_get_reject_unknown(void)
3459 {
3460 struct selinux_policy *policy;
3461 int value;
3462
3463 if (!selinux_initialized())
3464 return 0;
3465
3466 rcu_read_lock();
3467 policy = rcu_dereference(selinux_state.policy);
3468 value = policy->policydb.reject_unknown;
3469 rcu_read_unlock();
3470 return value;
3471 }
3472
security_get_allow_unknown(void)3473 int security_get_allow_unknown(void)
3474 {
3475 struct selinux_policy *policy;
3476 int value;
3477
3478 if (!selinux_initialized())
3479 return 0;
3480
3481 rcu_read_lock();
3482 policy = rcu_dereference(selinux_state.policy);
3483 value = policy->policydb.allow_unknown;
3484 rcu_read_unlock();
3485 return value;
3486 }
3487
3488 /**
3489 * security_policycap_supported - Check for a specific policy capability
3490 * @req_cap: capability
3491 *
3492 * Description:
3493 * This function queries the currently loaded policy to see if it supports the
3494 * capability specified by @req_cap. Returns true (1) if the capability is
3495 * supported, false (0) if it isn't supported.
3496 *
3497 */
security_policycap_supported(unsigned int req_cap)3498 int security_policycap_supported(unsigned int req_cap)
3499 {
3500 struct selinux_policy *policy;
3501 int rc;
3502
3503 if (!selinux_initialized())
3504 return 0;
3505
3506 rcu_read_lock();
3507 policy = rcu_dereference(selinux_state.policy);
3508 rc = ebitmap_get_bit(&policy->policydb.policycaps, req_cap);
3509 rcu_read_unlock();
3510
3511 return rc;
3512 }
3513
3514 struct selinux_audit_rule {
3515 u32 au_seqno;
3516 struct context au_ctxt;
3517 };
3518
selinux_audit_rule_free(void * vrule)3519 void selinux_audit_rule_free(void *vrule)
3520 {
3521 struct selinux_audit_rule *rule = vrule;
3522
3523 if (rule) {
3524 context_destroy(&rule->au_ctxt);
3525 kfree(rule);
3526 }
3527 }
3528
selinux_audit_rule_init(u32 field,u32 op,char * rulestr,void ** vrule,gfp_t gfp)3529 int selinux_audit_rule_init(u32 field, u32 op, char *rulestr, void **vrule,
3530 gfp_t gfp)
3531 {
3532 struct selinux_state *state = &selinux_state;
3533 struct selinux_policy *policy;
3534 struct policydb *policydb;
3535 struct selinux_audit_rule *tmprule;
3536 struct role_datum *roledatum;
3537 struct type_datum *typedatum;
3538 struct user_datum *userdatum;
3539 struct selinux_audit_rule **rule = (struct selinux_audit_rule **)vrule;
3540 int rc = 0;
3541
3542 *rule = NULL;
3543
3544 if (!selinux_initialized())
3545 return -EOPNOTSUPP;
3546
3547 switch (field) {
3548 case AUDIT_SUBJ_USER:
3549 case AUDIT_SUBJ_ROLE:
3550 case AUDIT_SUBJ_TYPE:
3551 case AUDIT_OBJ_USER:
3552 case AUDIT_OBJ_ROLE:
3553 case AUDIT_OBJ_TYPE:
3554 /* only 'equals' and 'not equals' fit user, role, and type */
3555 if (op != Audit_equal && op != Audit_not_equal)
3556 return -EINVAL;
3557 break;
3558 case AUDIT_SUBJ_SEN:
3559 case AUDIT_SUBJ_CLR:
3560 case AUDIT_OBJ_LEV_LOW:
3561 case AUDIT_OBJ_LEV_HIGH:
3562 /* we do not allow a range, indicated by the presence of '-' */
3563 if (strchr(rulestr, '-'))
3564 return -EINVAL;
3565 break;
3566 default:
3567 /* only the above fields are valid */
3568 return -EINVAL;
3569 }
3570
3571 tmprule = kzalloc(sizeof(struct selinux_audit_rule), gfp);
3572 if (!tmprule)
3573 return -ENOMEM;
3574 context_init(&tmprule->au_ctxt);
3575
3576 rcu_read_lock();
3577 policy = rcu_dereference(state->policy);
3578 policydb = &policy->policydb;
3579 tmprule->au_seqno = policy->latest_granting;
3580 switch (field) {
3581 case AUDIT_SUBJ_USER:
3582 case AUDIT_OBJ_USER:
3583 userdatum = symtab_search(&policydb->p_users, rulestr);
3584 if (!userdatum) {
3585 rc = -EINVAL;
3586 goto err;
3587 }
3588 tmprule->au_ctxt.user = userdatum->value;
3589 break;
3590 case AUDIT_SUBJ_ROLE:
3591 case AUDIT_OBJ_ROLE:
3592 roledatum = symtab_search(&policydb->p_roles, rulestr);
3593 if (!roledatum) {
3594 rc = -EINVAL;
3595 goto err;
3596 }
3597 tmprule->au_ctxt.role = roledatum->value;
3598 break;
3599 case AUDIT_SUBJ_TYPE:
3600 case AUDIT_OBJ_TYPE:
3601 typedatum = symtab_search(&policydb->p_types, rulestr);
3602 if (!typedatum) {
3603 rc = -EINVAL;
3604 goto err;
3605 }
3606 tmprule->au_ctxt.type = typedatum->value;
3607 break;
3608 case AUDIT_SUBJ_SEN:
3609 case AUDIT_SUBJ_CLR:
3610 case AUDIT_OBJ_LEV_LOW:
3611 case AUDIT_OBJ_LEV_HIGH:
3612 rc = mls_from_string(policydb, rulestr, &tmprule->au_ctxt,
3613 GFP_ATOMIC);
3614 if (rc)
3615 goto err;
3616 break;
3617 }
3618 rcu_read_unlock();
3619
3620 *rule = tmprule;
3621 return 0;
3622
3623 err:
3624 rcu_read_unlock();
3625 selinux_audit_rule_free(tmprule);
3626 *rule = NULL;
3627 return rc;
3628 }
3629
3630 /* Check to see if the rule contains any selinux fields */
selinux_audit_rule_known(struct audit_krule * rule)3631 int selinux_audit_rule_known(struct audit_krule *rule)
3632 {
3633 u32 i;
3634
3635 for (i = 0; i < rule->field_count; i++) {
3636 struct audit_field *f = &rule->fields[i];
3637 switch (f->type) {
3638 case AUDIT_SUBJ_USER:
3639 case AUDIT_SUBJ_ROLE:
3640 case AUDIT_SUBJ_TYPE:
3641 case AUDIT_SUBJ_SEN:
3642 case AUDIT_SUBJ_CLR:
3643 case AUDIT_OBJ_USER:
3644 case AUDIT_OBJ_ROLE:
3645 case AUDIT_OBJ_TYPE:
3646 case AUDIT_OBJ_LEV_LOW:
3647 case AUDIT_OBJ_LEV_HIGH:
3648 return 1;
3649 }
3650 }
3651
3652 return 0;
3653 }
3654
selinux_audit_rule_match(u32 sid,u32 field,u32 op,void * vrule)3655 int selinux_audit_rule_match(u32 sid, u32 field, u32 op, void *vrule)
3656 {
3657 struct selinux_state *state = &selinux_state;
3658 struct selinux_policy *policy;
3659 struct context *ctxt;
3660 struct mls_level *level;
3661 struct selinux_audit_rule *rule = vrule;
3662 int match = 0;
3663
3664 if (unlikely(!rule)) {
3665 WARN_ONCE(1, "selinux_audit_rule_match: missing rule\n");
3666 return -ENOENT;
3667 }
3668
3669 if (!selinux_initialized())
3670 return 0;
3671
3672 rcu_read_lock();
3673
3674 policy = rcu_dereference(state->policy);
3675
3676 if (rule->au_seqno < policy->latest_granting) {
3677 match = -ESTALE;
3678 goto out;
3679 }
3680
3681 ctxt = sidtab_search(policy->sidtab, sid);
3682 if (unlikely(!ctxt)) {
3683 WARN_ONCE(1, "selinux_audit_rule_match: unrecognized SID %d\n",
3684 sid);
3685 match = -ENOENT;
3686 goto out;
3687 }
3688
3689 /* a field/op pair that is not caught here will simply fall through
3690 without a match */
3691 switch (field) {
3692 case AUDIT_SUBJ_USER:
3693 case AUDIT_OBJ_USER:
3694 switch (op) {
3695 case Audit_equal:
3696 match = (ctxt->user == rule->au_ctxt.user);
3697 break;
3698 case Audit_not_equal:
3699 match = (ctxt->user != rule->au_ctxt.user);
3700 break;
3701 }
3702 break;
3703 case AUDIT_SUBJ_ROLE:
3704 case AUDIT_OBJ_ROLE:
3705 switch (op) {
3706 case Audit_equal:
3707 match = (ctxt->role == rule->au_ctxt.role);
3708 break;
3709 case Audit_not_equal:
3710 match = (ctxt->role != rule->au_ctxt.role);
3711 break;
3712 }
3713 break;
3714 case AUDIT_SUBJ_TYPE:
3715 case AUDIT_OBJ_TYPE:
3716 switch (op) {
3717 case Audit_equal:
3718 match = (ctxt->type == rule->au_ctxt.type);
3719 break;
3720 case Audit_not_equal:
3721 match = (ctxt->type != rule->au_ctxt.type);
3722 break;
3723 }
3724 break;
3725 case AUDIT_SUBJ_SEN:
3726 case AUDIT_SUBJ_CLR:
3727 case AUDIT_OBJ_LEV_LOW:
3728 case AUDIT_OBJ_LEV_HIGH:
3729 level = ((field == AUDIT_SUBJ_SEN ||
3730 field == AUDIT_OBJ_LEV_LOW) ?
3731 &ctxt->range.level[0] : &ctxt->range.level[1]);
3732 switch (op) {
3733 case Audit_equal:
3734 match = mls_level_eq(&rule->au_ctxt.range.level[0],
3735 level);
3736 break;
3737 case Audit_not_equal:
3738 match = !mls_level_eq(&rule->au_ctxt.range.level[0],
3739 level);
3740 break;
3741 case Audit_lt:
3742 match = (mls_level_dom(&rule->au_ctxt.range.level[0],
3743 level) &&
3744 !mls_level_eq(&rule->au_ctxt.range.level[0],
3745 level));
3746 break;
3747 case Audit_le:
3748 match = mls_level_dom(&rule->au_ctxt.range.level[0],
3749 level);
3750 break;
3751 case Audit_gt:
3752 match = (mls_level_dom(level,
3753 &rule->au_ctxt.range.level[0]) &&
3754 !mls_level_eq(level,
3755 &rule->au_ctxt.range.level[0]));
3756 break;
3757 case Audit_ge:
3758 match = mls_level_dom(level,
3759 &rule->au_ctxt.range.level[0]);
3760 break;
3761 }
3762 }
3763
3764 out:
3765 rcu_read_unlock();
3766 return match;
3767 }
3768
aurule_avc_callback(u32 event)3769 static int aurule_avc_callback(u32 event)
3770 {
3771 if (event == AVC_CALLBACK_RESET)
3772 return audit_update_lsm_rules();
3773 return 0;
3774 }
3775
aurule_init(void)3776 static int __init aurule_init(void)
3777 {
3778 int err;
3779
3780 err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET);
3781 if (err)
3782 panic("avc_add_callback() failed, error %d\n", err);
3783
3784 return err;
3785 }
3786 __initcall(aurule_init);
3787
3788 #ifdef CONFIG_NETLABEL
3789 /**
3790 * security_netlbl_cache_add - Add an entry to the NetLabel cache
3791 * @secattr: the NetLabel packet security attributes
3792 * @sid: the SELinux SID
3793 *
3794 * Description:
3795 * Attempt to cache the context in @ctx, which was derived from the packet in
3796 * @skb, in the NetLabel subsystem cache. This function assumes @secattr has
3797 * already been initialized.
3798 *
3799 */
security_netlbl_cache_add(struct netlbl_lsm_secattr * secattr,u32 sid)3800 static void security_netlbl_cache_add(struct netlbl_lsm_secattr *secattr,
3801 u32 sid)
3802 {
3803 u32 *sid_cache;
3804
3805 sid_cache = kmalloc(sizeof(*sid_cache), GFP_ATOMIC);
3806 if (sid_cache == NULL)
3807 return;
3808 secattr->cache = netlbl_secattr_cache_alloc(GFP_ATOMIC);
3809 if (secattr->cache == NULL) {
3810 kfree(sid_cache);
3811 return;
3812 }
3813
3814 *sid_cache = sid;
3815 secattr->cache->free = kfree;
3816 secattr->cache->data = sid_cache;
3817 secattr->flags |= NETLBL_SECATTR_CACHE;
3818 }
3819
3820 /**
3821 * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
3822 * @secattr: the NetLabel packet security attributes
3823 * @sid: the SELinux SID
3824 *
3825 * Description:
3826 * Convert the given NetLabel security attributes in @secattr into a
3827 * SELinux SID. If the @secattr field does not contain a full SELinux
3828 * SID/context then use SECINITSID_NETMSG as the foundation. If possible the
3829 * 'cache' field of @secattr is set and the CACHE flag is set; this is to
3830 * allow the @secattr to be used by NetLabel to cache the secattr to SID
3831 * conversion for future lookups. Returns zero on success, negative values on
3832 * failure.
3833 *
3834 */
security_netlbl_secattr_to_sid(struct netlbl_lsm_secattr * secattr,u32 * sid)3835 int security_netlbl_secattr_to_sid(struct netlbl_lsm_secattr *secattr,
3836 u32 *sid)
3837 {
3838 struct selinux_policy *policy;
3839 struct policydb *policydb;
3840 struct sidtab *sidtab;
3841 int rc;
3842 struct context *ctx;
3843 struct context ctx_new;
3844
3845 if (!selinux_initialized()) {
3846 *sid = SECSID_NULL;
3847 return 0;
3848 }
3849
3850 retry:
3851 rc = 0;
3852 rcu_read_lock();
3853 policy = rcu_dereference(selinux_state.policy);
3854 policydb = &policy->policydb;
3855 sidtab = policy->sidtab;
3856
3857 if (secattr->flags & NETLBL_SECATTR_CACHE)
3858 *sid = *(u32 *)secattr->cache->data;
3859 else if (secattr->flags & NETLBL_SECATTR_SECID)
3860 *sid = secattr->attr.secid;
3861 else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) {
3862 rc = -EIDRM;
3863 ctx = sidtab_search(sidtab, SECINITSID_NETMSG);
3864 if (ctx == NULL)
3865 goto out;
3866
3867 context_init(&ctx_new);
3868 ctx_new.user = ctx->user;
3869 ctx_new.role = ctx->role;
3870 ctx_new.type = ctx->type;
3871 mls_import_netlbl_lvl(policydb, &ctx_new, secattr);
3872 if (secattr->flags & NETLBL_SECATTR_MLS_CAT) {
3873 rc = mls_import_netlbl_cat(policydb, &ctx_new, secattr);
3874 if (rc)
3875 goto out;
3876 }
3877 rc = -EIDRM;
3878 if (!mls_context_isvalid(policydb, &ctx_new)) {
3879 ebitmap_destroy(&ctx_new.range.level[0].cat);
3880 goto out;
3881 }
3882
3883 rc = sidtab_context_to_sid(sidtab, &ctx_new, sid);
3884 ebitmap_destroy(&ctx_new.range.level[0].cat);
3885 if (rc == -ESTALE) {
3886 rcu_read_unlock();
3887 goto retry;
3888 }
3889 if (rc)
3890 goto out;
3891
3892 security_netlbl_cache_add(secattr, *sid);
3893 } else
3894 *sid = SECSID_NULL;
3895
3896 out:
3897 rcu_read_unlock();
3898 return rc;
3899 }
3900
3901 /**
3902 * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
3903 * @sid: the SELinux SID
3904 * @secattr: the NetLabel packet security attributes
3905 *
3906 * Description:
3907 * Convert the given SELinux SID in @sid into a NetLabel security attribute.
3908 * Returns zero on success, negative values on failure.
3909 *
3910 */
security_netlbl_sid_to_secattr(u32 sid,struct netlbl_lsm_secattr * secattr)3911 int security_netlbl_sid_to_secattr(u32 sid, struct netlbl_lsm_secattr *secattr)
3912 {
3913 struct selinux_policy *policy;
3914 struct policydb *policydb;
3915 int rc;
3916 struct context *ctx;
3917
3918 if (!selinux_initialized())
3919 return 0;
3920
3921 rcu_read_lock();
3922 policy = rcu_dereference(selinux_state.policy);
3923 policydb = &policy->policydb;
3924
3925 rc = -ENOENT;
3926 ctx = sidtab_search(policy->sidtab, sid);
3927 if (ctx == NULL)
3928 goto out;
3929
3930 rc = -ENOMEM;
3931 secattr->domain = kstrdup(sym_name(policydb, SYM_TYPES, ctx->type - 1),
3932 GFP_ATOMIC);
3933 if (secattr->domain == NULL)
3934 goto out;
3935
3936 secattr->attr.secid = sid;
3937 secattr->flags |= NETLBL_SECATTR_DOMAIN_CPY | NETLBL_SECATTR_SECID;
3938 mls_export_netlbl_lvl(policydb, ctx, secattr);
3939 rc = mls_export_netlbl_cat(policydb, ctx, secattr);
3940 out:
3941 rcu_read_unlock();
3942 return rc;
3943 }
3944 #endif /* CONFIG_NETLABEL */
3945
3946 /**
3947 * __security_read_policy - read the policy.
3948 * @policy: SELinux policy
3949 * @data: binary policy data
3950 * @len: length of data in bytes
3951 *
3952 */
__security_read_policy(struct selinux_policy * policy,void * data,size_t * len)3953 static int __security_read_policy(struct selinux_policy *policy,
3954 void *data, size_t *len)
3955 {
3956 int rc;
3957 struct policy_file fp;
3958
3959 fp.data = data;
3960 fp.len = *len;
3961
3962 rc = policydb_write(&policy->policydb, &fp);
3963 if (rc)
3964 return rc;
3965
3966 *len = (unsigned long)fp.data - (unsigned long)data;
3967 return 0;
3968 }
3969
3970 /**
3971 * security_read_policy - read the policy.
3972 * @data: binary policy data
3973 * @len: length of data in bytes
3974 *
3975 */
security_read_policy(void ** data,size_t * len)3976 int security_read_policy(void **data, size_t *len)
3977 {
3978 struct selinux_state *state = &selinux_state;
3979 struct selinux_policy *policy;
3980
3981 policy = rcu_dereference_protected(
3982 state->policy, lockdep_is_held(&state->policy_mutex));
3983 if (!policy)
3984 return -EINVAL;
3985
3986 *len = policy->policydb.len;
3987 *data = vmalloc_user(*len);
3988 if (!*data)
3989 return -ENOMEM;
3990
3991 return __security_read_policy(policy, *data, len);
3992 }
3993
3994 /**
3995 * security_read_state_kernel - read the policy.
3996 * @data: binary policy data
3997 * @len: length of data in bytes
3998 *
3999 * Allocates kernel memory for reading SELinux policy.
4000 * This function is for internal use only and should not
4001 * be used for returning data to user space.
4002 *
4003 * This function must be called with policy_mutex held.
4004 */
security_read_state_kernel(void ** data,size_t * len)4005 int security_read_state_kernel(void **data, size_t *len)
4006 {
4007 int err;
4008 struct selinux_state *state = &selinux_state;
4009 struct selinux_policy *policy;
4010
4011 policy = rcu_dereference_protected(
4012 state->policy, lockdep_is_held(&state->policy_mutex));
4013 if (!policy)
4014 return -EINVAL;
4015
4016 *len = policy->policydb.len;
4017 *data = vmalloc(*len);
4018 if (!*data)
4019 return -ENOMEM;
4020
4021 err = __security_read_policy(policy, *data, len);
4022 if (err) {
4023 vfree(*data);
4024 *data = NULL;
4025 *len = 0;
4026 }
4027 return err;
4028 }
4029