1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the AF_INET socket handler.
8  *
9  * Version:	@(#)sock.h	1.0.4	05/13/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
14  *		Florian La Roche <flla@stud.uni-sb.de>
15  *
16  * Fixes:
17  *		Alan Cox	:	Volatiles in skbuff pointers. See
18  *					skbuff comments. May be overdone,
19  *					better to prove they can be removed
20  *					than the reverse.
21  *		Alan Cox	:	Added a zapped field for tcp to note
22  *					a socket is reset and must stay shut up
23  *		Alan Cox	:	New fields for options
24  *	Pauline Middelink	:	identd support
25  *		Alan Cox	:	Eliminate low level recv/recvfrom
26  *		David S. Miller	:	New socket lookup architecture.
27  *              Steve Whitehouse:       Default routines for sock_ops
28  *              Arnaldo C. Melo :	removed net_pinfo, tp_pinfo and made
29  *              			protinfo be just a void pointer, as the
30  *              			protocol specific parts were moved to
31  *              			respective headers and ipv4/v6, etc now
32  *              			use private slabcaches for its socks
33  *              Pedro Hortas	:	New flags field for socket options
34  */
35 #ifndef _SOCK_H
36 #define _SOCK_H
37 
38 #include <linux/hardirq.h>
39 #include <linux/kernel.h>
40 #include <linux/list.h>
41 #include <linux/list_nulls.h>
42 #include <linux/timer.h>
43 #include <linux/cache.h>
44 #include <linux/bitops.h>
45 #include <linux/lockdep.h>
46 #include <linux/netdevice.h>
47 #include <linux/skbuff.h>	/* struct sk_buff */
48 #include <linux/mm.h>
49 #include <linux/security.h>
50 #include <linux/slab.h>
51 #include <linux/uaccess.h>
52 #include <linux/page_counter.h>
53 #include <linux/memcontrol.h>
54 #include <linux/static_key.h>
55 #include <linux/sched.h>
56 #include <linux/wait.h>
57 #include <linux/cgroup-defs.h>
58 #include <linux/rbtree.h>
59 #include <linux/rculist_nulls.h>
60 #include <linux/poll.h>
61 #include <linux/sockptr.h>
62 #include <linux/indirect_call_wrapper.h>
63 #include <linux/atomic.h>
64 #include <linux/refcount.h>
65 #include <linux/llist.h>
66 #include <net/dst.h>
67 #include <net/checksum.h>
68 #include <net/tcp_states.h>
69 #include <linux/net_tstamp.h>
70 #include <net/l3mdev.h>
71 #include <uapi/linux/socket.h>
72 #include <linux/android_vendor.h>
73 #include <linux/android_kabi.h>
74 
75 /*
76  * This structure really needs to be cleaned up.
77  * Most of it is for TCP, and not used by any of
78  * the other protocols.
79  */
80 
81 /* This is the per-socket lock.  The spinlock provides a synchronization
82  * between user contexts and software interrupt processing, whereas the
83  * mini-semaphore synchronizes multiple users amongst themselves.
84  */
85 typedef struct {
86 	spinlock_t		slock;
87 	int			owned;
88 	wait_queue_head_t	wq;
89 	/*
90 	 * We express the mutex-alike socket_lock semantics
91 	 * to the lock validator by explicitly managing
92 	 * the slock as a lock variant (in addition to
93 	 * the slock itself):
94 	 */
95 #ifdef CONFIG_DEBUG_LOCK_ALLOC
96 	struct lockdep_map dep_map;
97 #endif
98 } socket_lock_t;
99 
100 struct sock;
101 struct proto;
102 struct net;
103 
104 typedef __u32 __bitwise __portpair;
105 typedef __u64 __bitwise __addrpair;
106 
107 /**
108  *	struct sock_common - minimal network layer representation of sockets
109  *	@skc_daddr: Foreign IPv4 addr
110  *	@skc_rcv_saddr: Bound local IPv4 addr
111  *	@skc_addrpair: 8-byte-aligned __u64 union of @skc_daddr & @skc_rcv_saddr
112  *	@skc_hash: hash value used with various protocol lookup tables
113  *	@skc_u16hashes: two u16 hash values used by UDP lookup tables
114  *	@skc_dport: placeholder for inet_dport/tw_dport
115  *	@skc_num: placeholder for inet_num/tw_num
116  *	@skc_portpair: __u32 union of @skc_dport & @skc_num
117  *	@skc_family: network address family
118  *	@skc_state: Connection state
119  *	@skc_reuse: %SO_REUSEADDR setting
120  *	@skc_reuseport: %SO_REUSEPORT setting
121  *	@skc_ipv6only: socket is IPV6 only
122  *	@skc_net_refcnt: socket is using net ref counting
123  *	@skc_bound_dev_if: bound device index if != 0
124  *	@skc_bind_node: bind hash linkage for various protocol lookup tables
125  *	@skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
126  *	@skc_prot: protocol handlers inside a network family
127  *	@skc_net: reference to the network namespace of this socket
128  *	@skc_v6_daddr: IPV6 destination address
129  *	@skc_v6_rcv_saddr: IPV6 source address
130  *	@skc_cookie: socket's cookie value
131  *	@skc_node: main hash linkage for various protocol lookup tables
132  *	@skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
133  *	@skc_tx_queue_mapping: tx queue number for this connection
134  *	@skc_rx_queue_mapping: rx queue number for this connection
135  *	@skc_flags: place holder for sk_flags
136  *		%SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
137  *		%SO_OOBINLINE settings, %SO_TIMESTAMPING settings
138  *	@skc_listener: connection request listener socket (aka rsk_listener)
139  *		[union with @skc_flags]
140  *	@skc_tw_dr: (aka tw_dr) ptr to &struct inet_timewait_death_row
141  *		[union with @skc_flags]
142  *	@skc_incoming_cpu: record/match cpu processing incoming packets
143  *	@skc_rcv_wnd: (aka rsk_rcv_wnd) TCP receive window size (possibly scaled)
144  *		[union with @skc_incoming_cpu]
145  *	@skc_tw_rcv_nxt: (aka tw_rcv_nxt) TCP window next expected seq number
146  *		[union with @skc_incoming_cpu]
147  *	@skc_refcnt: reference count
148  *
149  *	This is the minimal network layer representation of sockets, the header
150  *	for struct sock and struct inet_timewait_sock.
151  */
152 struct sock_common {
153 	union {
154 		__addrpair	skc_addrpair;
155 		struct {
156 			__be32	skc_daddr;
157 			__be32	skc_rcv_saddr;
158 		};
159 	};
160 	union  {
161 		unsigned int	skc_hash;
162 		__u16		skc_u16hashes[2];
163 	};
164 	/* skc_dport && skc_num must be grouped as well */
165 	union {
166 		__portpair	skc_portpair;
167 		struct {
168 			__be16	skc_dport;
169 			__u16	skc_num;
170 		};
171 	};
172 
173 	unsigned short		skc_family;
174 	volatile unsigned char	skc_state;
175 	unsigned char		skc_reuse:4;
176 	unsigned char		skc_reuseport:1;
177 	unsigned char		skc_ipv6only:1;
178 	unsigned char		skc_net_refcnt:1;
179 	int			skc_bound_dev_if;
180 	union {
181 		struct hlist_node	skc_bind_node;
182 		struct hlist_node	skc_portaddr_node;
183 	};
184 	struct proto		*skc_prot;
185 	possible_net_t		skc_net;
186 
187 #if IS_ENABLED(CONFIG_IPV6)
188 	struct in6_addr		skc_v6_daddr;
189 	struct in6_addr		skc_v6_rcv_saddr;
190 #endif
191 
192 	atomic64_t		skc_cookie;
193 
194 	/* following fields are padding to force
195 	 * offset(struct sock, sk_refcnt) == 128 on 64bit arches
196 	 * assuming IPV6 is enabled. We use this padding differently
197 	 * for different kind of 'sockets'
198 	 */
199 	union {
200 		unsigned long	skc_flags;
201 		struct sock	*skc_listener; /* request_sock */
202 		struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */
203 	};
204 	/*
205 	 * fields between dontcopy_begin/dontcopy_end
206 	 * are not copied in sock_copy()
207 	 */
208 	/* private: */
209 	int			skc_dontcopy_begin[0];
210 	/* public: */
211 	union {
212 		struct hlist_node	skc_node;
213 		struct hlist_nulls_node skc_nulls_node;
214 	};
215 	unsigned short		skc_tx_queue_mapping;
216 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
217 	unsigned short		skc_rx_queue_mapping;
218 #endif
219 	union {
220 		int		skc_incoming_cpu;
221 		u32		skc_rcv_wnd;
222 		u32		skc_tw_rcv_nxt; /* struct tcp_timewait_sock  */
223 	};
224 
225 	refcount_t		skc_refcnt;
226 	/* private: */
227 	int                     skc_dontcopy_end[0];
228 	union {
229 		u32		skc_rxhash;
230 		u32		skc_window_clamp;
231 		u32		skc_tw_snd_nxt; /* struct tcp_timewait_sock */
232 	};
233 	/* public: */
234 };
235 
236 struct bpf_local_storage;
237 struct sk_filter;
238 
239 /**
240   *	struct sock - network layer representation of sockets
241   *	@__sk_common: shared layout with inet_timewait_sock
242   *	@sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
243   *	@sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
244   *	@sk_lock:	synchronizer
245   *	@sk_kern_sock: True if sock is using kernel lock classes
246   *	@sk_rcvbuf: size of receive buffer in bytes
247   *	@sk_wq: sock wait queue and async head
248   *	@sk_rx_dst: receive input route used by early demux
249   *	@sk_rx_dst_ifindex: ifindex for @sk_rx_dst
250   *	@sk_rx_dst_cookie: cookie for @sk_rx_dst
251   *	@sk_dst_cache: destination cache
252   *	@sk_dst_pending_confirm: need to confirm neighbour
253   *	@sk_policy: flow policy
254   *	@sk_receive_queue: incoming packets
255   *	@sk_wmem_alloc: transmit queue bytes committed
256   *	@sk_tsq_flags: TCP Small Queues flags
257   *	@sk_write_queue: Packet sending queue
258   *	@sk_omem_alloc: "o" is "option" or "other"
259   *	@sk_wmem_queued: persistent queue size
260   *	@sk_forward_alloc: space allocated forward
261   *	@sk_reserved_mem: space reserved and non-reclaimable for the socket
262   *	@sk_napi_id: id of the last napi context to receive data for sk
263   *	@sk_ll_usec: usecs to busypoll when there is no data
264   *	@sk_allocation: allocation mode
265   *	@sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
266   *	@sk_pacing_status: Pacing status (requested, handled by sch_fq)
267   *	@sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
268   *	@sk_sndbuf: size of send buffer in bytes
269   *	@sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
270   *	@sk_no_check_rx: allow zero checksum in RX packets
271   *	@sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
272   *	@sk_gso_disabled: if set, NETIF_F_GSO_MASK is forbidden.
273   *	@sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
274   *	@sk_gso_max_size: Maximum GSO segment size to build
275   *	@sk_gso_max_segs: Maximum number of GSO segments
276   *	@sk_pacing_shift: scaling factor for TCP Small Queues
277   *	@sk_lingertime: %SO_LINGER l_linger setting
278   *	@sk_backlog: always used with the per-socket spinlock held
279   *	@sk_callback_lock: used with the callbacks in the end of this struct
280   *	@sk_error_queue: rarely used
281   *	@sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
282   *			  IPV6_ADDRFORM for instance)
283   *	@sk_err: last error
284   *	@sk_err_soft: errors that don't cause failure but are the cause of a
285   *		      persistent failure not just 'timed out'
286   *	@sk_drops: raw/udp drops counter
287   *	@sk_ack_backlog: current listen backlog
288   *	@sk_max_ack_backlog: listen backlog set in listen()
289   *	@sk_uid: user id of owner
290   *	@sk_prefer_busy_poll: prefer busypolling over softirq processing
291   *	@sk_busy_poll_budget: napi processing budget when busypolling
292   *	@sk_priority: %SO_PRIORITY setting
293   *	@sk_type: socket type (%SOCK_STREAM, etc)
294   *	@sk_protocol: which protocol this socket belongs in this network family
295   *	@sk_peer_lock: lock protecting @sk_peer_pid and @sk_peer_cred
296   *	@sk_peer_pid: &struct pid for this socket's peer
297   *	@sk_peer_cred: %SO_PEERCRED setting
298   *	@sk_rcvlowat: %SO_RCVLOWAT setting
299   *	@sk_rcvtimeo: %SO_RCVTIMEO setting
300   *	@sk_sndtimeo: %SO_SNDTIMEO setting
301   *	@sk_txhash: computed flow hash for use on transmit
302   *	@sk_txrehash: enable TX hash rethink
303   *	@sk_filter: socket filtering instructions
304   *	@sk_timer: sock cleanup timer
305   *	@sk_stamp: time stamp of last packet received
306   *	@sk_stamp_seq: lock for accessing sk_stamp on 32 bit architectures only
307   *	@sk_tsflags: SO_TIMESTAMPING flags
308   *	@sk_use_task_frag: allow sk_page_frag() to use current->task_frag.
309   *			   Sockets that can be used under memory reclaim should
310   *			   set this to false.
311   *	@sk_bind_phc: SO_TIMESTAMPING bind PHC index of PTP virtual clock
312   *	              for timestamping
313   *	@sk_tskey: counter to disambiguate concurrent tstamp requests
314   *	@sk_zckey: counter to order MSG_ZEROCOPY notifications
315   *	@sk_socket: Identd and reporting IO signals
316   *	@sk_user_data: RPC layer private data. Write-protected by @sk_callback_lock.
317   *	@sk_frag: cached page frag
318   *	@sk_peek_off: current peek_offset value
319   *	@sk_send_head: front of stuff to transmit
320   *	@tcp_rtx_queue: TCP re-transmit queue [union with @sk_send_head]
321   *	@sk_security: used by security modules
322   *	@sk_mark: generic packet mark
323   *	@sk_cgrp_data: cgroup data for this cgroup
324   *	@sk_memcg: this socket's memory cgroup association
325   *	@sk_write_pending: a write to stream socket waits to start
326   *	@sk_disconnects: number of disconnect operations performed on this sock
327   *	@sk_state_change: callback to indicate change in the state of the sock
328   *	@sk_data_ready: callback to indicate there is data to be processed
329   *	@sk_write_space: callback to indicate there is bf sending space available
330   *	@sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
331   *	@sk_backlog_rcv: callback to process the backlog
332   *	@sk_validate_xmit_skb: ptr to an optional validate function
333   *	@sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
334   *	@sk_reuseport_cb: reuseport group container
335   *	@sk_bpf_storage: ptr to cache and control for bpf_sk_storage
336   *	@sk_rcu: used during RCU grace period
337   *	@sk_clockid: clockid used by time-based scheduling (SO_TXTIME)
338   *	@sk_txtime_deadline_mode: set deadline mode for SO_TXTIME
339   *	@sk_txtime_report_errors: set report errors mode for SO_TXTIME
340   *	@sk_txtime_unused: unused txtime flags
341   *	@ns_tracker: tracker for netns reference
342   *	@sk_user_frags: xarray of pages the user is holding a reference on.
343   *	@sk_owner: reference to the real owner of the socket that calls
344   *		   sock_lock_init_class_and_name().
345   */
346 struct sock {
347 	/*
348 	 * Now struct inet_timewait_sock also uses sock_common, so please just
349 	 * don't add nothing before this first member (__sk_common) --acme
350 	 */
351 	struct sock_common	__sk_common;
352 #define sk_node			__sk_common.skc_node
353 #define sk_nulls_node		__sk_common.skc_nulls_node
354 #define sk_refcnt		__sk_common.skc_refcnt
355 #define sk_tx_queue_mapping	__sk_common.skc_tx_queue_mapping
356 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
357 #define sk_rx_queue_mapping	__sk_common.skc_rx_queue_mapping
358 #endif
359 
360 #define sk_dontcopy_begin	__sk_common.skc_dontcopy_begin
361 #define sk_dontcopy_end		__sk_common.skc_dontcopy_end
362 #define sk_hash			__sk_common.skc_hash
363 #define sk_portpair		__sk_common.skc_portpair
364 #define sk_num			__sk_common.skc_num
365 #define sk_dport		__sk_common.skc_dport
366 #define sk_addrpair		__sk_common.skc_addrpair
367 #define sk_daddr		__sk_common.skc_daddr
368 #define sk_rcv_saddr		__sk_common.skc_rcv_saddr
369 #define sk_family		__sk_common.skc_family
370 #define sk_state		__sk_common.skc_state
371 #define sk_reuse		__sk_common.skc_reuse
372 #define sk_reuseport		__sk_common.skc_reuseport
373 #define sk_ipv6only		__sk_common.skc_ipv6only
374 #define sk_net_refcnt		__sk_common.skc_net_refcnt
375 #define sk_bound_dev_if		__sk_common.skc_bound_dev_if
376 #define sk_bind_node		__sk_common.skc_bind_node
377 #define sk_prot			__sk_common.skc_prot
378 #define sk_net			__sk_common.skc_net
379 #define sk_v6_daddr		__sk_common.skc_v6_daddr
380 #define sk_v6_rcv_saddr	__sk_common.skc_v6_rcv_saddr
381 #define sk_cookie		__sk_common.skc_cookie
382 #define sk_incoming_cpu		__sk_common.skc_incoming_cpu
383 #define sk_flags		__sk_common.skc_flags
384 #define sk_rxhash		__sk_common.skc_rxhash
385 
386 	__cacheline_group_begin(sock_write_rx);
387 
388 	atomic_t		sk_drops;
389 	__s32			sk_peek_off;
390 	struct sk_buff_head	sk_error_queue;
391 	struct sk_buff_head	sk_receive_queue;
392 	/*
393 	 * The backlog queue is special, it is always used with
394 	 * the per-socket spinlock held and requires low latency
395 	 * access. Therefore we special case it's implementation.
396 	 * Note : rmem_alloc is in this structure to fill a hole
397 	 * on 64bit arches, not because its logically part of
398 	 * backlog.
399 	 */
400 	struct {
401 		atomic_t	rmem_alloc;
402 		int		len;
403 		struct sk_buff	*head;
404 		struct sk_buff	*tail;
405 	} sk_backlog;
406 #define sk_rmem_alloc sk_backlog.rmem_alloc
407 
408 	__cacheline_group_end(sock_write_rx);
409 
410 	__cacheline_group_begin(sock_read_rx);
411 	/* early demux fields */
412 	struct dst_entry __rcu	*sk_rx_dst;
413 	int			sk_rx_dst_ifindex;
414 	u32			sk_rx_dst_cookie;
415 
416 #ifdef CONFIG_NET_RX_BUSY_POLL
417 	unsigned int		sk_ll_usec;
418 	unsigned int		sk_napi_id;
419 	u16			sk_busy_poll_budget;
420 	u8			sk_prefer_busy_poll;
421 #endif
422 	u8			sk_userlocks;
423 	int			sk_rcvbuf;
424 
425 	struct sk_filter __rcu	*sk_filter;
426 	union {
427 		struct socket_wq __rcu	*sk_wq;
428 		/* private: */
429 		struct socket_wq	*sk_wq_raw;
430 		/* public: */
431 	};
432 
433 	void			(*sk_data_ready)(struct sock *sk);
434 	long			sk_rcvtimeo;
435 	int			sk_rcvlowat;
436 	__cacheline_group_end(sock_read_rx);
437 
438 	__cacheline_group_begin(sock_read_rxtx);
439 	int			sk_err;
440 	struct socket		*sk_socket;
441 	struct mem_cgroup	*sk_memcg;
442 #ifdef CONFIG_XFRM
443 	struct xfrm_policy __rcu *sk_policy[2];
444 #endif
445 	__cacheline_group_end(sock_read_rxtx);
446 
447 	__cacheline_group_begin(sock_write_rxtx);
448 	socket_lock_t		sk_lock;
449 	u32			sk_reserved_mem;
450 	int			sk_forward_alloc;
451 	u32			sk_tsflags;
452 	__cacheline_group_end(sock_write_rxtx);
453 
454 	__cacheline_group_begin(sock_write_tx);
455 	int			sk_write_pending;
456 	atomic_t		sk_omem_alloc;
457 	int			sk_sndbuf;
458 
459 	int			sk_wmem_queued;
460 	refcount_t		sk_wmem_alloc;
461 	unsigned long		sk_tsq_flags;
462 	union {
463 		struct sk_buff	*sk_send_head;
464 		struct rb_root	tcp_rtx_queue;
465 	};
466 	struct sk_buff_head	sk_write_queue;
467 	u32			sk_dst_pending_confirm;
468 	u32			sk_pacing_status; /* see enum sk_pacing */
469 	struct page_frag	sk_frag;
470 	struct timer_list	sk_timer;
471 
472 	unsigned long		sk_pacing_rate; /* bytes per second */
473 	atomic_t		sk_zckey;
474 	atomic_t		sk_tskey;
475 	__cacheline_group_end(sock_write_tx);
476 
477 	__cacheline_group_begin(sock_read_tx);
478 	unsigned long		sk_max_pacing_rate;
479 	long			sk_sndtimeo;
480 	u32			sk_priority;
481 	u32			sk_mark;
482 	struct dst_entry __rcu	*sk_dst_cache;
483 	netdev_features_t	sk_route_caps;
484 #ifdef CONFIG_SOCK_VALIDATE_XMIT
485 	struct sk_buff*		(*sk_validate_xmit_skb)(struct sock *sk,
486 							struct net_device *dev,
487 							struct sk_buff *skb);
488 #endif
489 	u16			sk_gso_type;
490 	u16			sk_gso_max_segs;
491 	unsigned int		sk_gso_max_size;
492 	gfp_t			sk_allocation;
493 	u32			sk_txhash;
494 	u8			sk_pacing_shift;
495 	bool			sk_use_task_frag;
496 	__cacheline_group_end(sock_read_tx);
497 
498 	/*
499 	 * Because of non atomicity rules, all
500 	 * changes are protected by socket lock.
501 	 */
502 	u8			sk_gso_disabled : 1,
503 				sk_kern_sock : 1,
504 				sk_no_check_tx : 1,
505 				sk_no_check_rx : 1;
506 	u8			sk_shutdown;
507 	u16			sk_type;
508 	u16			sk_protocol;
509 	unsigned long	        sk_lingertime;
510 	struct proto		*sk_prot_creator;
511 	rwlock_t		sk_callback_lock;
512 	int			sk_err_soft;
513 	u32			sk_ack_backlog;
514 	u32			sk_max_ack_backlog;
515 	kuid_t			sk_uid;
516 	spinlock_t		sk_peer_lock;
517 	int			sk_bind_phc;
518 	struct pid		*sk_peer_pid;
519 	const struct cred	*sk_peer_cred;
520 
521 	ktime_t			sk_stamp;
522 #if BITS_PER_LONG==32
523 	seqlock_t		sk_stamp_seq;
524 #endif
525 	int			sk_disconnects;
526 
527 	u8			sk_txrehash;
528 	u8			sk_clockid;
529 	u8			sk_txtime_deadline_mode : 1,
530 				sk_txtime_report_errors : 1,
531 				sk_txtime_unused : 6;
532 
533 	void			*sk_user_data;
534 #ifdef CONFIG_SECURITY
535 	void			*sk_security;
536 #endif
537 	struct sock_cgroup_data	sk_cgrp_data;
538 	void			(*sk_state_change)(struct sock *sk);
539 	void			(*sk_write_space)(struct sock *sk);
540 	void			(*sk_error_report)(struct sock *sk);
541 	int			(*sk_backlog_rcv)(struct sock *sk,
542 						  struct sk_buff *skb);
543 	void                    (*sk_destruct)(struct sock *sk);
544 	struct sock_reuseport __rcu	*sk_reuseport_cb;
545 #ifdef CONFIG_BPF_SYSCALL
546 	struct bpf_local_storage __rcu	*sk_bpf_storage;
547 #endif
548 	struct rcu_head		sk_rcu;
549 	netns_tracker		ns_tracker;
550 	struct xarray		sk_user_frags;
551 
552 #if IS_ENABLED(CONFIG_PROVE_LOCKING) && IS_ENABLED(CONFIG_MODULES)
553 	struct module		*sk_owner;
554 #endif
555 
556 	ANDROID_KABI_RESERVE(1);
557 	ANDROID_KABI_RESERVE(2);
558 	ANDROID_KABI_RESERVE(3);
559 	ANDROID_KABI_RESERVE(4);
560 	ANDROID_KABI_RESERVE(5);
561 	ANDROID_KABI_RESERVE(6);
562 	ANDROID_KABI_RESERVE(7);
563 	ANDROID_KABI_RESERVE(8);
564 	ANDROID_OEM_DATA(1);
565 };
566 
567 struct sock_bh_locked {
568 	struct sock *sock;
569 	local_lock_t bh_lock;
570 };
571 
572 enum sk_pacing {
573 	SK_PACING_NONE		= 0,
574 	SK_PACING_NEEDED	= 1,
575 	SK_PACING_FQ		= 2,
576 };
577 
578 /* flag bits in sk_user_data
579  *
580  * - SK_USER_DATA_NOCOPY:      Pointer stored in sk_user_data might
581  *   not be suitable for copying when cloning the socket. For instance,
582  *   it can point to a reference counted object. sk_user_data bottom
583  *   bit is set if pointer must not be copied.
584  *
585  * - SK_USER_DATA_BPF:         Mark whether sk_user_data field is
586  *   managed/owned by a BPF reuseport array. This bit should be set
587  *   when sk_user_data's sk is added to the bpf's reuseport_array.
588  *
589  * - SK_USER_DATA_PSOCK:       Mark whether pointer stored in
590  *   sk_user_data points to psock type. This bit should be set
591  *   when sk_user_data is assigned to a psock object.
592  */
593 #define SK_USER_DATA_NOCOPY	1UL
594 #define SK_USER_DATA_BPF	2UL
595 #define SK_USER_DATA_PSOCK	4UL
596 #define SK_USER_DATA_PTRMASK	~(SK_USER_DATA_NOCOPY | SK_USER_DATA_BPF |\
597 				  SK_USER_DATA_PSOCK)
598 
599 /**
600  * sk_user_data_is_nocopy - Test if sk_user_data pointer must not be copied
601  * @sk: socket
602  */
sk_user_data_is_nocopy(const struct sock * sk)603 static inline bool sk_user_data_is_nocopy(const struct sock *sk)
604 {
605 	return ((uintptr_t)sk->sk_user_data & SK_USER_DATA_NOCOPY);
606 }
607 
608 #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
609 
610 /**
611  * __locked_read_sk_user_data_with_flags - return the pointer
612  * only if argument flags all has been set in sk_user_data. Otherwise
613  * return NULL
614  *
615  * @sk: socket
616  * @flags: flag bits
617  *
618  * The caller must be holding sk->sk_callback_lock.
619  */
620 static inline void *
__locked_read_sk_user_data_with_flags(const struct sock * sk,uintptr_t flags)621 __locked_read_sk_user_data_with_flags(const struct sock *sk,
622 				      uintptr_t flags)
623 {
624 	uintptr_t sk_user_data =
625 		(uintptr_t)rcu_dereference_check(__sk_user_data(sk),
626 						 lockdep_is_held(&sk->sk_callback_lock));
627 
628 	WARN_ON_ONCE(flags & SK_USER_DATA_PTRMASK);
629 
630 	if ((sk_user_data & flags) == flags)
631 		return (void *)(sk_user_data & SK_USER_DATA_PTRMASK);
632 	return NULL;
633 }
634 
635 /**
636  * __rcu_dereference_sk_user_data_with_flags - return the pointer
637  * only if argument flags all has been set in sk_user_data. Otherwise
638  * return NULL
639  *
640  * @sk: socket
641  * @flags: flag bits
642  */
643 static inline void *
__rcu_dereference_sk_user_data_with_flags(const struct sock * sk,uintptr_t flags)644 __rcu_dereference_sk_user_data_with_flags(const struct sock *sk,
645 					  uintptr_t flags)
646 {
647 	uintptr_t sk_user_data = (uintptr_t)rcu_dereference(__sk_user_data(sk));
648 
649 	WARN_ON_ONCE(flags & SK_USER_DATA_PTRMASK);
650 
651 	if ((sk_user_data & flags) == flags)
652 		return (void *)(sk_user_data & SK_USER_DATA_PTRMASK);
653 	return NULL;
654 }
655 
656 #define rcu_dereference_sk_user_data(sk)				\
657 	__rcu_dereference_sk_user_data_with_flags(sk, 0)
658 #define __rcu_assign_sk_user_data_with_flags(sk, ptr, flags)		\
659 ({									\
660 	uintptr_t __tmp1 = (uintptr_t)(ptr),				\
661 		  __tmp2 = (uintptr_t)(flags);				\
662 	WARN_ON_ONCE(__tmp1 & ~SK_USER_DATA_PTRMASK);			\
663 	WARN_ON_ONCE(__tmp2 & SK_USER_DATA_PTRMASK);			\
664 	rcu_assign_pointer(__sk_user_data((sk)),			\
665 			   __tmp1 | __tmp2);				\
666 })
667 #define rcu_assign_sk_user_data(sk, ptr)				\
668 	__rcu_assign_sk_user_data_with_flags(sk, ptr, 0)
669 
670 static inline
sock_net(const struct sock * sk)671 struct net *sock_net(const struct sock *sk)
672 {
673 	return read_pnet(&sk->sk_net);
674 }
675 
676 static inline
sock_net_set(struct sock * sk,struct net * net)677 void sock_net_set(struct sock *sk, struct net *net)
678 {
679 	write_pnet(&sk->sk_net, net);
680 }
681 
682 /*
683  * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
684  * or not whether his port will be reused by someone else. SK_FORCE_REUSE
685  * on a socket means that the socket will reuse everybody else's port
686  * without looking at the other's sk_reuse value.
687  */
688 
689 #define SK_NO_REUSE	0
690 #define SK_CAN_REUSE	1
691 #define SK_FORCE_REUSE	2
692 
693 int sk_set_peek_off(struct sock *sk, int val);
694 
sk_peek_offset(const struct sock * sk,int flags)695 static inline int sk_peek_offset(const struct sock *sk, int flags)
696 {
697 	if (unlikely(flags & MSG_PEEK)) {
698 		return READ_ONCE(sk->sk_peek_off);
699 	}
700 
701 	return 0;
702 }
703 
sk_peek_offset_bwd(struct sock * sk,int val)704 static inline void sk_peek_offset_bwd(struct sock *sk, int val)
705 {
706 	s32 off = READ_ONCE(sk->sk_peek_off);
707 
708 	if (unlikely(off >= 0)) {
709 		off = max_t(s32, off - val, 0);
710 		WRITE_ONCE(sk->sk_peek_off, off);
711 	}
712 }
713 
sk_peek_offset_fwd(struct sock * sk,int val)714 static inline void sk_peek_offset_fwd(struct sock *sk, int val)
715 {
716 	sk_peek_offset_bwd(sk, -val);
717 }
718 
719 /*
720  * Hashed lists helper routines
721  */
sk_entry(const struct hlist_node * node)722 static inline struct sock *sk_entry(const struct hlist_node *node)
723 {
724 	return hlist_entry(node, struct sock, sk_node);
725 }
726 
__sk_head(const struct hlist_head * head)727 static inline struct sock *__sk_head(const struct hlist_head *head)
728 {
729 	return hlist_entry(head->first, struct sock, sk_node);
730 }
731 
sk_head(const struct hlist_head * head)732 static inline struct sock *sk_head(const struct hlist_head *head)
733 {
734 	return hlist_empty(head) ? NULL : __sk_head(head);
735 }
736 
__sk_nulls_head(const struct hlist_nulls_head * head)737 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
738 {
739 	return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
740 }
741 
sk_nulls_head(const struct hlist_nulls_head * head)742 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
743 {
744 	return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
745 }
746 
sk_next(const struct sock * sk)747 static inline struct sock *sk_next(const struct sock *sk)
748 {
749 	return hlist_entry_safe(sk->sk_node.next, struct sock, sk_node);
750 }
751 
sk_nulls_next(const struct sock * sk)752 static inline struct sock *sk_nulls_next(const struct sock *sk)
753 {
754 	return (!is_a_nulls(sk->sk_nulls_node.next)) ?
755 		hlist_nulls_entry(sk->sk_nulls_node.next,
756 				  struct sock, sk_nulls_node) :
757 		NULL;
758 }
759 
sk_unhashed(const struct sock * sk)760 static inline bool sk_unhashed(const struct sock *sk)
761 {
762 	return hlist_unhashed(&sk->sk_node);
763 }
764 
sk_hashed(const struct sock * sk)765 static inline bool sk_hashed(const struct sock *sk)
766 {
767 	return !sk_unhashed(sk);
768 }
769 
sk_node_init(struct hlist_node * node)770 static inline void sk_node_init(struct hlist_node *node)
771 {
772 	node->pprev = NULL;
773 }
774 
__sk_del_node(struct sock * sk)775 static inline void __sk_del_node(struct sock *sk)
776 {
777 	__hlist_del(&sk->sk_node);
778 }
779 
780 /* NB: equivalent to hlist_del_init_rcu */
__sk_del_node_init(struct sock * sk)781 static inline bool __sk_del_node_init(struct sock *sk)
782 {
783 	if (sk_hashed(sk)) {
784 		__sk_del_node(sk);
785 		sk_node_init(&sk->sk_node);
786 		return true;
787 	}
788 	return false;
789 }
790 
791 /* Grab socket reference count. This operation is valid only
792    when sk is ALREADY grabbed f.e. it is found in hash table
793    or a list and the lookup is made under lock preventing hash table
794    modifications.
795  */
796 
sock_hold(struct sock * sk)797 static __always_inline void sock_hold(struct sock *sk)
798 {
799 	refcount_inc(&sk->sk_refcnt);
800 }
801 
802 /* Ungrab socket in the context, which assumes that socket refcnt
803    cannot hit zero, f.e. it is true in context of any socketcall.
804  */
__sock_put(struct sock * sk)805 static __always_inline void __sock_put(struct sock *sk)
806 {
807 	refcount_dec(&sk->sk_refcnt);
808 }
809 
sk_del_node_init(struct sock * sk)810 static inline bool sk_del_node_init(struct sock *sk)
811 {
812 	bool rc = __sk_del_node_init(sk);
813 
814 	if (rc) {
815 		/* paranoid for a while -acme */
816 		WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
817 		__sock_put(sk);
818 	}
819 	return rc;
820 }
821 #define sk_del_node_init_rcu(sk)	sk_del_node_init(sk)
822 
__sk_nulls_del_node_init_rcu(struct sock * sk)823 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
824 {
825 	if (sk_hashed(sk)) {
826 		hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
827 		return true;
828 	}
829 	return false;
830 }
831 
sk_nulls_del_node_init_rcu(struct sock * sk)832 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
833 {
834 	bool rc = __sk_nulls_del_node_init_rcu(sk);
835 
836 	if (rc) {
837 		/* paranoid for a while -acme */
838 		WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
839 		__sock_put(sk);
840 	}
841 	return rc;
842 }
843 
__sk_add_node(struct sock * sk,struct hlist_head * list)844 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
845 {
846 	hlist_add_head(&sk->sk_node, list);
847 }
848 
sk_add_node(struct sock * sk,struct hlist_head * list)849 static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
850 {
851 	sock_hold(sk);
852 	__sk_add_node(sk, list);
853 }
854 
sk_add_node_rcu(struct sock * sk,struct hlist_head * list)855 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
856 {
857 	sock_hold(sk);
858 	if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
859 	    sk->sk_family == AF_INET6)
860 		hlist_add_tail_rcu(&sk->sk_node, list);
861 	else
862 		hlist_add_head_rcu(&sk->sk_node, list);
863 }
864 
sk_add_node_tail_rcu(struct sock * sk,struct hlist_head * list)865 static inline void sk_add_node_tail_rcu(struct sock *sk, struct hlist_head *list)
866 {
867 	sock_hold(sk);
868 	hlist_add_tail_rcu(&sk->sk_node, list);
869 }
870 
__sk_nulls_add_node_rcu(struct sock * sk,struct hlist_nulls_head * list)871 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
872 {
873 	hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
874 }
875 
__sk_nulls_add_node_tail_rcu(struct sock * sk,struct hlist_nulls_head * list)876 static inline void __sk_nulls_add_node_tail_rcu(struct sock *sk, struct hlist_nulls_head *list)
877 {
878 	hlist_nulls_add_tail_rcu(&sk->sk_nulls_node, list);
879 }
880 
sk_nulls_add_node_rcu(struct sock * sk,struct hlist_nulls_head * list)881 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
882 {
883 	sock_hold(sk);
884 	__sk_nulls_add_node_rcu(sk, list);
885 }
886 
__sk_del_bind_node(struct sock * sk)887 static inline void __sk_del_bind_node(struct sock *sk)
888 {
889 	__hlist_del(&sk->sk_bind_node);
890 }
891 
sk_add_bind_node(struct sock * sk,struct hlist_head * list)892 static inline void sk_add_bind_node(struct sock *sk,
893 					struct hlist_head *list)
894 {
895 	hlist_add_head(&sk->sk_bind_node, list);
896 }
897 
898 #define sk_for_each(__sk, list) \
899 	hlist_for_each_entry(__sk, list, sk_node)
900 #define sk_for_each_rcu(__sk, list) \
901 	hlist_for_each_entry_rcu(__sk, list, sk_node)
902 #define sk_nulls_for_each(__sk, node, list) \
903 	hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
904 #define sk_nulls_for_each_rcu(__sk, node, list) \
905 	hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
906 #define sk_for_each_from(__sk) \
907 	hlist_for_each_entry_from(__sk, sk_node)
908 #define sk_nulls_for_each_from(__sk, node) \
909 	if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
910 		hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
911 #define sk_for_each_safe(__sk, tmp, list) \
912 	hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
913 #define sk_for_each_bound(__sk, list) \
914 	hlist_for_each_entry(__sk, list, sk_bind_node)
915 #define sk_for_each_bound_safe(__sk, tmp, list) \
916 	hlist_for_each_entry_safe(__sk, tmp, list, sk_bind_node)
917 
918 /**
919  * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset
920  * @tpos:	the type * to use as a loop cursor.
921  * @pos:	the &struct hlist_node to use as a loop cursor.
922  * @head:	the head for your list.
923  * @offset:	offset of hlist_node within the struct.
924  *
925  */
926 #define sk_for_each_entry_offset_rcu(tpos, pos, head, offset)		       \
927 	for (pos = rcu_dereference(hlist_first_rcu(head));		       \
928 	     pos != NULL &&						       \
929 		({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;});       \
930 	     pos = rcu_dereference(hlist_next_rcu(pos)))
931 
sk_user_ns(const struct sock * sk)932 static inline struct user_namespace *sk_user_ns(const struct sock *sk)
933 {
934 	/* Careful only use this in a context where these parameters
935 	 * can not change and must all be valid, such as recvmsg from
936 	 * userspace.
937 	 */
938 	return sk->sk_socket->file->f_cred->user_ns;
939 }
940 
941 /* Sock flags */
942 enum sock_flags {
943 	SOCK_DEAD,
944 	SOCK_DONE,
945 	SOCK_URGINLINE,
946 	SOCK_KEEPOPEN,
947 	SOCK_LINGER,
948 	SOCK_DESTROY,
949 	SOCK_BROADCAST,
950 	SOCK_TIMESTAMP,
951 	SOCK_ZAPPED,
952 	SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
953 	SOCK_DBG, /* %SO_DEBUG setting */
954 	SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
955 	SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
956 	SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
957 	SOCK_MEMALLOC, /* VM depends on this socket for swapping */
958 	SOCK_TIMESTAMPING_RX_SOFTWARE,  /* %SOF_TIMESTAMPING_RX_SOFTWARE */
959 	SOCK_FASYNC, /* fasync() active */
960 	SOCK_RXQ_OVFL,
961 	SOCK_ZEROCOPY, /* buffers from userspace */
962 	SOCK_WIFI_STATUS, /* push wifi status to userspace */
963 	SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
964 		     * Will use last 4 bytes of packet sent from
965 		     * user-space instead.
966 		     */
967 	SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
968 	SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
969 	SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */
970 	SOCK_TXTIME,
971 	SOCK_XDP, /* XDP is attached */
972 	SOCK_TSTAMP_NEW, /* Indicates 64 bit timestamps always */
973 	SOCK_RCVMARK, /* Receive SO_MARK  ancillary data with packet */
974 };
975 
976 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
977 
sock_copy_flags(struct sock * nsk,const struct sock * osk)978 static inline void sock_copy_flags(struct sock *nsk, const struct sock *osk)
979 {
980 	nsk->sk_flags = osk->sk_flags;
981 }
982 
sock_set_flag(struct sock * sk,enum sock_flags flag)983 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
984 {
985 	__set_bit(flag, &sk->sk_flags);
986 }
987 
sock_reset_flag(struct sock * sk,enum sock_flags flag)988 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
989 {
990 	__clear_bit(flag, &sk->sk_flags);
991 }
992 
sock_valbool_flag(struct sock * sk,enum sock_flags bit,int valbool)993 static inline void sock_valbool_flag(struct sock *sk, enum sock_flags bit,
994 				     int valbool)
995 {
996 	if (valbool)
997 		sock_set_flag(sk, bit);
998 	else
999 		sock_reset_flag(sk, bit);
1000 }
1001 
sock_flag(const struct sock * sk,enum sock_flags flag)1002 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
1003 {
1004 	return test_bit(flag, &sk->sk_flags);
1005 }
1006 
1007 #ifdef CONFIG_NET
1008 DECLARE_STATIC_KEY_FALSE(memalloc_socks_key);
sk_memalloc_socks(void)1009 static inline int sk_memalloc_socks(void)
1010 {
1011 	return static_branch_unlikely(&memalloc_socks_key);
1012 }
1013 
1014 void __receive_sock(struct file *file);
1015 #else
1016 
sk_memalloc_socks(void)1017 static inline int sk_memalloc_socks(void)
1018 {
1019 	return 0;
1020 }
1021 
__receive_sock(struct file * file)1022 static inline void __receive_sock(struct file *file)
1023 { }
1024 #endif
1025 
sk_gfp_mask(const struct sock * sk,gfp_t gfp_mask)1026 static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask)
1027 {
1028 	return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC);
1029 }
1030 
sk_acceptq_removed(struct sock * sk)1031 static inline void sk_acceptq_removed(struct sock *sk)
1032 {
1033 	WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog - 1);
1034 }
1035 
sk_acceptq_added(struct sock * sk)1036 static inline void sk_acceptq_added(struct sock *sk)
1037 {
1038 	WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog + 1);
1039 }
1040 
1041 /* Note: If you think the test should be:
1042  *	return READ_ONCE(sk->sk_ack_backlog) >= READ_ONCE(sk->sk_max_ack_backlog);
1043  * Then please take a look at commit 64a146513f8f ("[NET]: Revert incorrect accept queue backlog changes.")
1044  */
sk_acceptq_is_full(const struct sock * sk)1045 static inline bool sk_acceptq_is_full(const struct sock *sk)
1046 {
1047 	return READ_ONCE(sk->sk_ack_backlog) > READ_ONCE(sk->sk_max_ack_backlog);
1048 }
1049 
1050 /*
1051  * Compute minimal free write space needed to queue new packets.
1052  */
sk_stream_min_wspace(const struct sock * sk)1053 static inline int sk_stream_min_wspace(const struct sock *sk)
1054 {
1055 	return READ_ONCE(sk->sk_wmem_queued) >> 1;
1056 }
1057 
sk_stream_wspace(const struct sock * sk)1058 static inline int sk_stream_wspace(const struct sock *sk)
1059 {
1060 	return READ_ONCE(sk->sk_sndbuf) - READ_ONCE(sk->sk_wmem_queued);
1061 }
1062 
sk_wmem_queued_add(struct sock * sk,int val)1063 static inline void sk_wmem_queued_add(struct sock *sk, int val)
1064 {
1065 	WRITE_ONCE(sk->sk_wmem_queued, sk->sk_wmem_queued + val);
1066 }
1067 
sk_forward_alloc_add(struct sock * sk,int val)1068 static inline void sk_forward_alloc_add(struct sock *sk, int val)
1069 {
1070 	/* Paired with lockless reads of sk->sk_forward_alloc */
1071 	WRITE_ONCE(sk->sk_forward_alloc, sk->sk_forward_alloc + val);
1072 }
1073 
1074 void sk_stream_write_space(struct sock *sk);
1075 
1076 /* OOB backlog add */
__sk_add_backlog(struct sock * sk,struct sk_buff * skb)1077 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
1078 {
1079 	/* dont let skb dst not refcounted, we are going to leave rcu lock */
1080 	skb_dst_force(skb);
1081 
1082 	if (!sk->sk_backlog.tail)
1083 		WRITE_ONCE(sk->sk_backlog.head, skb);
1084 	else
1085 		sk->sk_backlog.tail->next = skb;
1086 
1087 	WRITE_ONCE(sk->sk_backlog.tail, skb);
1088 	skb->next = NULL;
1089 }
1090 
1091 /*
1092  * Take into account size of receive queue and backlog queue
1093  * Do not take into account this skb truesize,
1094  * to allow even a single big packet to come.
1095  */
sk_rcvqueues_full(const struct sock * sk,unsigned int limit)1096 static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit)
1097 {
1098 	unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
1099 
1100 	return qsize > limit;
1101 }
1102 
1103 /* The per-socket spinlock must be held here. */
sk_add_backlog(struct sock * sk,struct sk_buff * skb,unsigned int limit)1104 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
1105 					      unsigned int limit)
1106 {
1107 	if (sk_rcvqueues_full(sk, limit))
1108 		return -ENOBUFS;
1109 
1110 	/*
1111 	 * If the skb was allocated from pfmemalloc reserves, only
1112 	 * allow SOCK_MEMALLOC sockets to use it as this socket is
1113 	 * helping free memory
1114 	 */
1115 	if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
1116 		return -ENOMEM;
1117 
1118 	__sk_add_backlog(sk, skb);
1119 	sk->sk_backlog.len += skb->truesize;
1120 	return 0;
1121 }
1122 
1123 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
1124 
1125 INDIRECT_CALLABLE_DECLARE(int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb));
1126 INDIRECT_CALLABLE_DECLARE(int tcp_v6_do_rcv(struct sock *sk, struct sk_buff *skb));
1127 
sk_backlog_rcv(struct sock * sk,struct sk_buff * skb)1128 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
1129 {
1130 	if (sk_memalloc_socks() && skb_pfmemalloc(skb))
1131 		return __sk_backlog_rcv(sk, skb);
1132 
1133 	return INDIRECT_CALL_INET(sk->sk_backlog_rcv,
1134 				  tcp_v6_do_rcv,
1135 				  tcp_v4_do_rcv,
1136 				  sk, skb);
1137 }
1138 
sk_incoming_cpu_update(struct sock * sk)1139 static inline void sk_incoming_cpu_update(struct sock *sk)
1140 {
1141 	int cpu = raw_smp_processor_id();
1142 
1143 	if (unlikely(READ_ONCE(sk->sk_incoming_cpu) != cpu))
1144 		WRITE_ONCE(sk->sk_incoming_cpu, cpu);
1145 }
1146 
1147 
sock_rps_save_rxhash(struct sock * sk,const struct sk_buff * skb)1148 static inline void sock_rps_save_rxhash(struct sock *sk,
1149 					const struct sk_buff *skb)
1150 {
1151 #ifdef CONFIG_RPS
1152 	/* The following WRITE_ONCE() is paired with the READ_ONCE()
1153 	 * here, and another one in sock_rps_record_flow().
1154 	 */
1155 	if (unlikely(READ_ONCE(sk->sk_rxhash) != skb->hash))
1156 		WRITE_ONCE(sk->sk_rxhash, skb->hash);
1157 #endif
1158 }
1159 
sock_rps_reset_rxhash(struct sock * sk)1160 static inline void sock_rps_reset_rxhash(struct sock *sk)
1161 {
1162 #ifdef CONFIG_RPS
1163 	/* Paired with READ_ONCE() in sock_rps_record_flow() */
1164 	WRITE_ONCE(sk->sk_rxhash, 0);
1165 #endif
1166 }
1167 
1168 #define sk_wait_event(__sk, __timeo, __condition, __wait)		\
1169 	({	int __rc, __dis = __sk->sk_disconnects;			\
1170 		release_sock(__sk);					\
1171 		__rc = __condition;					\
1172 		if (!__rc) {						\
1173 			*(__timeo) = wait_woken(__wait,			\
1174 						TASK_INTERRUPTIBLE,	\
1175 						*(__timeo));		\
1176 		}							\
1177 		sched_annotate_sleep();					\
1178 		lock_sock(__sk);					\
1179 		__rc = __dis == __sk->sk_disconnects ? __condition : -EPIPE; \
1180 		__rc;							\
1181 	})
1182 
1183 int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
1184 int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
1185 void sk_stream_wait_close(struct sock *sk, long timeo_p);
1186 int sk_stream_error(struct sock *sk, int flags, int err);
1187 void sk_stream_kill_queues(struct sock *sk);
1188 void sk_set_memalloc(struct sock *sk);
1189 void sk_clear_memalloc(struct sock *sk);
1190 
1191 void __sk_flush_backlog(struct sock *sk);
1192 
sk_flush_backlog(struct sock * sk)1193 static inline bool sk_flush_backlog(struct sock *sk)
1194 {
1195 	if (unlikely(READ_ONCE(sk->sk_backlog.tail))) {
1196 		__sk_flush_backlog(sk);
1197 		return true;
1198 	}
1199 	return false;
1200 }
1201 
1202 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb);
1203 
1204 struct request_sock_ops;
1205 struct timewait_sock_ops;
1206 struct inet_hashinfo;
1207 struct raw_hashinfo;
1208 struct smc_hashinfo;
1209 struct module;
1210 struct sk_psock;
1211 
1212 /*
1213  * caches using SLAB_TYPESAFE_BY_RCU should let .next pointer from nulls nodes
1214  * un-modified. Special care is taken when initializing object to zero.
1215  */
sk_prot_clear_nulls(struct sock * sk,int size)1216 static inline void sk_prot_clear_nulls(struct sock *sk, int size)
1217 {
1218 	if (offsetof(struct sock, sk_node.next) != 0)
1219 		memset(sk, 0, offsetof(struct sock, sk_node.next));
1220 	memset(&sk->sk_node.pprev, 0,
1221 	       size - offsetof(struct sock, sk_node.pprev));
1222 }
1223 
1224 struct proto_accept_arg {
1225 	int flags;
1226 	int err;
1227 	int is_empty;
1228 	bool kern;
1229 };
1230 
1231 /* Networking protocol blocks we attach to sockets.
1232  * socket layer -> transport layer interface
1233  */
1234 struct proto {
1235 	void			(*close)(struct sock *sk,
1236 					long timeout);
1237 	int			(*pre_connect)(struct sock *sk,
1238 					struct sockaddr *uaddr,
1239 					int addr_len);
1240 	int			(*connect)(struct sock *sk,
1241 					struct sockaddr *uaddr,
1242 					int addr_len);
1243 	int			(*disconnect)(struct sock *sk, int flags);
1244 
1245 	struct sock *		(*accept)(struct sock *sk,
1246 					  struct proto_accept_arg *arg);
1247 
1248 	int			(*ioctl)(struct sock *sk, int cmd,
1249 					 int *karg);
1250 	int			(*init)(struct sock *sk);
1251 	void			(*destroy)(struct sock *sk);
1252 	void			(*shutdown)(struct sock *sk, int how);
1253 	int			(*setsockopt)(struct sock *sk, int level,
1254 					int optname, sockptr_t optval,
1255 					unsigned int optlen);
1256 	int			(*getsockopt)(struct sock *sk, int level,
1257 					int optname, char __user *optval,
1258 					int __user *option);
1259 	void			(*keepalive)(struct sock *sk, int valbool);
1260 #ifdef CONFIG_COMPAT
1261 	int			(*compat_ioctl)(struct sock *sk,
1262 					unsigned int cmd, unsigned long arg);
1263 #endif
1264 	int			(*sendmsg)(struct sock *sk, struct msghdr *msg,
1265 					   size_t len);
1266 	int			(*recvmsg)(struct sock *sk, struct msghdr *msg,
1267 					   size_t len, int flags, int *addr_len);
1268 	void			(*splice_eof)(struct socket *sock);
1269 	int			(*bind)(struct sock *sk,
1270 					struct sockaddr *addr, int addr_len);
1271 	int			(*bind_add)(struct sock *sk,
1272 					struct sockaddr *addr, int addr_len);
1273 
1274 	int			(*backlog_rcv) (struct sock *sk,
1275 						struct sk_buff *skb);
1276 	bool			(*bpf_bypass_getsockopt)(int level,
1277 							 int optname);
1278 
1279 	void		(*release_cb)(struct sock *sk);
1280 
1281 	/* Keeping track of sk's, looking them up, and port selection methods. */
1282 	int			(*hash)(struct sock *sk);
1283 	void			(*unhash)(struct sock *sk);
1284 	void			(*rehash)(struct sock *sk);
1285 	int			(*get_port)(struct sock *sk, unsigned short snum);
1286 	void			(*put_port)(struct sock *sk);
1287 #ifdef CONFIG_BPF_SYSCALL
1288 	int			(*psock_update_sk_prot)(struct sock *sk,
1289 							struct sk_psock *psock,
1290 							bool restore);
1291 #endif
1292 
1293 	/* Keeping track of sockets in use */
1294 #ifdef CONFIG_PROC_FS
1295 	unsigned int		inuse_idx;
1296 #endif
1297 
1298 #if IS_ENABLED(CONFIG_MPTCP)
1299 	int			(*forward_alloc_get)(const struct sock *sk);
1300 #endif
1301 
1302 	bool			(*stream_memory_free)(const struct sock *sk, int wake);
1303 	bool			(*sock_is_readable)(struct sock *sk);
1304 	/* Memory pressure */
1305 	void			(*enter_memory_pressure)(struct sock *sk);
1306 	void			(*leave_memory_pressure)(struct sock *sk);
1307 	atomic_long_t		*memory_allocated;	/* Current allocated memory. */
1308 	int  __percpu		*per_cpu_fw_alloc;
1309 	struct percpu_counter	*sockets_allocated;	/* Current number of sockets. */
1310 
1311 	/*
1312 	 * Pressure flag: try to collapse.
1313 	 * Technical note: it is used by multiple contexts non atomically.
1314 	 * Make sure to use READ_ONCE()/WRITE_ONCE() for all reads/writes.
1315 	 * All the __sk_mem_schedule() is of this nature: accounting
1316 	 * is strict, actions are advisory and have some latency.
1317 	 */
1318 	unsigned long		*memory_pressure;
1319 	long			*sysctl_mem;
1320 
1321 	int			*sysctl_wmem;
1322 	int			*sysctl_rmem;
1323 	u32			sysctl_wmem_offset;
1324 	u32			sysctl_rmem_offset;
1325 
1326 	int			max_header;
1327 	bool			no_autobind;
1328 
1329 	struct kmem_cache	*slab;
1330 	unsigned int		obj_size;
1331 	unsigned int		ipv6_pinfo_offset;
1332 	slab_flags_t		slab_flags;
1333 	unsigned int		useroffset;	/* Usercopy region offset */
1334 	unsigned int		usersize;	/* Usercopy region size */
1335 
1336 	unsigned int __percpu	*orphan_count;
1337 
1338 	struct request_sock_ops	*rsk_prot;
1339 	struct timewait_sock_ops *twsk_prot;
1340 
1341 	union {
1342 		struct inet_hashinfo	*hashinfo;
1343 		struct udp_table	*udp_table;
1344 		struct raw_hashinfo	*raw_hash;
1345 		struct smc_hashinfo	*smc_hash;
1346 	} h;
1347 
1348 	struct module		*owner;
1349 
1350 	char			name[32];
1351 
1352 	struct list_head	node;
1353 	int			(*diag_destroy)(struct sock *sk, int err);
1354 } __randomize_layout;
1355 
1356 int proto_register(struct proto *prot, int alloc_slab);
1357 void proto_unregister(struct proto *prot);
1358 int sock_load_diag_module(int family, int protocol);
1359 
1360 INDIRECT_CALLABLE_DECLARE(bool tcp_stream_memory_free(const struct sock *sk, int wake));
1361 
sk_forward_alloc_get(const struct sock * sk)1362 static inline int sk_forward_alloc_get(const struct sock *sk)
1363 {
1364 #if IS_ENABLED(CONFIG_MPTCP)
1365 	if (sk->sk_prot->forward_alloc_get)
1366 		return sk->sk_prot->forward_alloc_get(sk);
1367 #endif
1368 	return READ_ONCE(sk->sk_forward_alloc);
1369 }
1370 
__sk_stream_memory_free(const struct sock * sk,int wake)1371 static inline bool __sk_stream_memory_free(const struct sock *sk, int wake)
1372 {
1373 	if (READ_ONCE(sk->sk_wmem_queued) >= READ_ONCE(sk->sk_sndbuf))
1374 		return false;
1375 
1376 	return sk->sk_prot->stream_memory_free ?
1377 		INDIRECT_CALL_INET_1(sk->sk_prot->stream_memory_free,
1378 				     tcp_stream_memory_free, sk, wake) : true;
1379 }
1380 
sk_stream_memory_free(const struct sock * sk)1381 static inline bool sk_stream_memory_free(const struct sock *sk)
1382 {
1383 	return __sk_stream_memory_free(sk, 0);
1384 }
1385 
__sk_stream_is_writeable(const struct sock * sk,int wake)1386 static inline bool __sk_stream_is_writeable(const struct sock *sk, int wake)
1387 {
1388 	return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1389 	       __sk_stream_memory_free(sk, wake);
1390 }
1391 
sk_stream_is_writeable(const struct sock * sk)1392 static inline bool sk_stream_is_writeable(const struct sock *sk)
1393 {
1394 	return __sk_stream_is_writeable(sk, 0);
1395 }
1396 
sk_under_cgroup_hierarchy(struct sock * sk,struct cgroup * ancestor)1397 static inline int sk_under_cgroup_hierarchy(struct sock *sk,
1398 					    struct cgroup *ancestor)
1399 {
1400 #ifdef CONFIG_SOCK_CGROUP_DATA
1401 	return cgroup_is_descendant(sock_cgroup_ptr(&sk->sk_cgrp_data),
1402 				    ancestor);
1403 #else
1404 	return -ENOTSUPP;
1405 #endif
1406 }
1407 
1408 #define SK_ALLOC_PERCPU_COUNTER_BATCH 16
1409 
sk_sockets_allocated_dec(struct sock * sk)1410 static inline void sk_sockets_allocated_dec(struct sock *sk)
1411 {
1412 	percpu_counter_add_batch(sk->sk_prot->sockets_allocated, -1,
1413 				 SK_ALLOC_PERCPU_COUNTER_BATCH);
1414 }
1415 
sk_sockets_allocated_inc(struct sock * sk)1416 static inline void sk_sockets_allocated_inc(struct sock *sk)
1417 {
1418 	percpu_counter_add_batch(sk->sk_prot->sockets_allocated, 1,
1419 				 SK_ALLOC_PERCPU_COUNTER_BATCH);
1420 }
1421 
1422 static inline u64
sk_sockets_allocated_read_positive(struct sock * sk)1423 sk_sockets_allocated_read_positive(struct sock *sk)
1424 {
1425 	return percpu_counter_read_positive(sk->sk_prot->sockets_allocated);
1426 }
1427 
1428 static inline int
proto_sockets_allocated_sum_positive(struct proto * prot)1429 proto_sockets_allocated_sum_positive(struct proto *prot)
1430 {
1431 	return percpu_counter_sum_positive(prot->sockets_allocated);
1432 }
1433 
1434 #ifdef CONFIG_PROC_FS
1435 #define PROTO_INUSE_NR	64	/* should be enough for the first time */
1436 struct prot_inuse {
1437 	int all;
1438 	int val[PROTO_INUSE_NR];
1439 };
1440 
sock_prot_inuse_add(const struct net * net,const struct proto * prot,int val)1441 static inline void sock_prot_inuse_add(const struct net *net,
1442 				       const struct proto *prot, int val)
1443 {
1444 	this_cpu_add(net->core.prot_inuse->val[prot->inuse_idx], val);
1445 }
1446 
sock_inuse_add(const struct net * net,int val)1447 static inline void sock_inuse_add(const struct net *net, int val)
1448 {
1449 	this_cpu_add(net->core.prot_inuse->all, val);
1450 }
1451 
1452 int sock_prot_inuse_get(struct net *net, struct proto *proto);
1453 int sock_inuse_get(struct net *net);
1454 #else
sock_prot_inuse_add(const struct net * net,const struct proto * prot,int val)1455 static inline void sock_prot_inuse_add(const struct net *net,
1456 				       const struct proto *prot, int val)
1457 {
1458 }
1459 
sock_inuse_add(const struct net * net,int val)1460 static inline void sock_inuse_add(const struct net *net, int val)
1461 {
1462 }
1463 #endif
1464 
1465 
1466 /* With per-bucket locks this operation is not-atomic, so that
1467  * this version is not worse.
1468  */
__sk_prot_rehash(struct sock * sk)1469 static inline int __sk_prot_rehash(struct sock *sk)
1470 {
1471 	sk->sk_prot->unhash(sk);
1472 	return sk->sk_prot->hash(sk);
1473 }
1474 
1475 /* About 10 seconds */
1476 #define SOCK_DESTROY_TIME (10*HZ)
1477 
1478 /* Sockets 0-1023 can't be bound to unless you are superuser */
1479 #define PROT_SOCK	1024
1480 
1481 #define SHUTDOWN_MASK	3
1482 #define RCV_SHUTDOWN	1
1483 #define SEND_SHUTDOWN	2
1484 
1485 #define SOCK_BINDADDR_LOCK	4
1486 #define SOCK_BINDPORT_LOCK	8
1487 
1488 struct socket_alloc {
1489 	struct socket socket;
1490 	struct inode vfs_inode;
1491 };
1492 
SOCKET_I(struct inode * inode)1493 static inline struct socket *SOCKET_I(struct inode *inode)
1494 {
1495 	return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1496 }
1497 
SOCK_INODE(struct socket * socket)1498 static inline struct inode *SOCK_INODE(struct socket *socket)
1499 {
1500 	return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1501 }
1502 
1503 /*
1504  * Functions for memory accounting
1505  */
1506 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind);
1507 int __sk_mem_schedule(struct sock *sk, int size, int kind);
1508 void __sk_mem_reduce_allocated(struct sock *sk, int amount);
1509 void __sk_mem_reclaim(struct sock *sk, int amount);
1510 
1511 #define SK_MEM_SEND	0
1512 #define SK_MEM_RECV	1
1513 
1514 /* sysctl_mem values are in pages */
sk_prot_mem_limits(const struct sock * sk,int index)1515 static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1516 {
1517 	return READ_ONCE(sk->sk_prot->sysctl_mem[index]);
1518 }
1519 
sk_mem_pages(int amt)1520 static inline int sk_mem_pages(int amt)
1521 {
1522 	return (amt + PAGE_SIZE - 1) >> PAGE_SHIFT;
1523 }
1524 
sk_has_account(struct sock * sk)1525 static inline bool sk_has_account(struct sock *sk)
1526 {
1527 	/* return true if protocol supports memory accounting */
1528 	return !!sk->sk_prot->memory_allocated;
1529 }
1530 
sk_wmem_schedule(struct sock * sk,int size)1531 static inline bool sk_wmem_schedule(struct sock *sk, int size)
1532 {
1533 	int delta;
1534 
1535 	if (!sk_has_account(sk))
1536 		return true;
1537 	delta = size - sk->sk_forward_alloc;
1538 	return delta <= 0 || __sk_mem_schedule(sk, delta, SK_MEM_SEND);
1539 }
1540 
1541 static inline bool
__sk_rmem_schedule(struct sock * sk,int size,bool pfmemalloc)1542 __sk_rmem_schedule(struct sock *sk, int size, bool pfmemalloc)
1543 {
1544 	int delta;
1545 
1546 	if (!sk_has_account(sk))
1547 		return true;
1548 	delta = size - sk->sk_forward_alloc;
1549 	return delta <= 0 || __sk_mem_schedule(sk, delta, SK_MEM_RECV) ||
1550 	       pfmemalloc;
1551 }
1552 
1553 static inline bool
sk_rmem_schedule(struct sock * sk,struct sk_buff * skb,int size)1554 sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1555 {
1556 	return __sk_rmem_schedule(sk, size, skb_pfmemalloc(skb));
1557 }
1558 
sk_unused_reserved_mem(const struct sock * sk)1559 static inline int sk_unused_reserved_mem(const struct sock *sk)
1560 {
1561 	int unused_mem;
1562 
1563 	if (likely(!sk->sk_reserved_mem))
1564 		return 0;
1565 
1566 	unused_mem = sk->sk_reserved_mem - sk->sk_wmem_queued -
1567 			atomic_read(&sk->sk_rmem_alloc);
1568 
1569 	return unused_mem > 0 ? unused_mem : 0;
1570 }
1571 
sk_mem_reclaim(struct sock * sk)1572 static inline void sk_mem_reclaim(struct sock *sk)
1573 {
1574 	int reclaimable;
1575 
1576 	if (!sk_has_account(sk))
1577 		return;
1578 
1579 	reclaimable = sk->sk_forward_alloc - sk_unused_reserved_mem(sk);
1580 
1581 	if (reclaimable >= (int)PAGE_SIZE)
1582 		__sk_mem_reclaim(sk, reclaimable);
1583 }
1584 
sk_mem_reclaim_final(struct sock * sk)1585 static inline void sk_mem_reclaim_final(struct sock *sk)
1586 {
1587 	sk->sk_reserved_mem = 0;
1588 	sk_mem_reclaim(sk);
1589 }
1590 
sk_mem_charge(struct sock * sk,int size)1591 static inline void sk_mem_charge(struct sock *sk, int size)
1592 {
1593 	if (!sk_has_account(sk))
1594 		return;
1595 	sk_forward_alloc_add(sk, -size);
1596 }
1597 
sk_mem_uncharge(struct sock * sk,int size)1598 static inline void sk_mem_uncharge(struct sock *sk, int size)
1599 {
1600 	if (!sk_has_account(sk))
1601 		return;
1602 	sk_forward_alloc_add(sk, size);
1603 	sk_mem_reclaim(sk);
1604 }
1605 
1606 #if IS_ENABLED(CONFIG_PROVE_LOCKING) && IS_ENABLED(CONFIG_MODULES)
sk_owner_set(struct sock * sk,struct module * owner)1607 static inline void sk_owner_set(struct sock *sk, struct module *owner)
1608 {
1609 	__module_get(owner);
1610 	sk->sk_owner = owner;
1611 }
1612 
sk_owner_clear(struct sock * sk)1613 static inline void sk_owner_clear(struct sock *sk)
1614 {
1615 	sk->sk_owner = NULL;
1616 }
1617 
sk_owner_put(struct sock * sk)1618 static inline void sk_owner_put(struct sock *sk)
1619 {
1620 	module_put(sk->sk_owner);
1621 }
1622 #else
sk_owner_set(struct sock * sk,struct module * owner)1623 static inline void sk_owner_set(struct sock *sk, struct module *owner)
1624 {
1625 }
1626 
sk_owner_clear(struct sock * sk)1627 static inline void sk_owner_clear(struct sock *sk)
1628 {
1629 }
1630 
sk_owner_put(struct sock * sk)1631 static inline void sk_owner_put(struct sock *sk)
1632 {
1633 }
1634 #endif
1635 /*
1636  * Macro so as to not evaluate some arguments when
1637  * lockdep is not enabled.
1638  *
1639  * Mark both the sk_lock and the sk_lock.slock as a
1640  * per-address-family lock class.
1641  */
1642 #define sock_lock_init_class_and_name(sk, sname, skey, name, key)	\
1643 do {									\
1644 	sk_owner_set(sk, THIS_MODULE);					\
1645 	sk->sk_lock.owned = 0;						\
1646 	init_waitqueue_head(&sk->sk_lock.wq);				\
1647 	spin_lock_init(&(sk)->sk_lock.slock);				\
1648 	debug_check_no_locks_freed((void *)&(sk)->sk_lock,		\
1649 				   sizeof((sk)->sk_lock));		\
1650 	lockdep_set_class_and_name(&(sk)->sk_lock.slock,		\
1651 				   (skey), (sname));			\
1652 	lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0);	\
1653 } while (0)
1654 
lockdep_sock_is_held(const struct sock * sk)1655 static inline bool lockdep_sock_is_held(const struct sock *sk)
1656 {
1657 	return lockdep_is_held(&sk->sk_lock) ||
1658 	       lockdep_is_held(&sk->sk_lock.slock);
1659 }
1660 
1661 void lock_sock_nested(struct sock *sk, int subclass);
1662 
lock_sock(struct sock * sk)1663 static inline void lock_sock(struct sock *sk)
1664 {
1665 	lock_sock_nested(sk, 0);
1666 }
1667 
1668 void __lock_sock(struct sock *sk);
1669 void __release_sock(struct sock *sk);
1670 void release_sock(struct sock *sk);
1671 
1672 /* BH context may only use the following locking interface. */
1673 #define bh_lock_sock(__sk)	spin_lock(&((__sk)->sk_lock.slock))
1674 #define bh_lock_sock_nested(__sk) \
1675 				spin_lock_nested(&((__sk)->sk_lock.slock), \
1676 				SINGLE_DEPTH_NESTING)
1677 #define bh_unlock_sock(__sk)	spin_unlock(&((__sk)->sk_lock.slock))
1678 
1679 bool __lock_sock_fast(struct sock *sk) __acquires(&sk->sk_lock.slock);
1680 
1681 /**
1682  * lock_sock_fast - fast version of lock_sock
1683  * @sk: socket
1684  *
1685  * This version should be used for very small section, where process won't block
1686  * return false if fast path is taken:
1687  *
1688  *   sk_lock.slock locked, owned = 0, BH disabled
1689  *
1690  * return true if slow path is taken:
1691  *
1692  *   sk_lock.slock unlocked, owned = 1, BH enabled
1693  */
lock_sock_fast(struct sock * sk)1694 static inline bool lock_sock_fast(struct sock *sk)
1695 {
1696 	/* The sk_lock has mutex_lock() semantics here. */
1697 	mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
1698 
1699 	return __lock_sock_fast(sk);
1700 }
1701 
1702 /* fast socket lock variant for caller already holding a [different] socket lock */
lock_sock_fast_nested(struct sock * sk)1703 static inline bool lock_sock_fast_nested(struct sock *sk)
1704 {
1705 	mutex_acquire(&sk->sk_lock.dep_map, SINGLE_DEPTH_NESTING, 0, _RET_IP_);
1706 
1707 	return __lock_sock_fast(sk);
1708 }
1709 
1710 /**
1711  * unlock_sock_fast - complement of lock_sock_fast
1712  * @sk: socket
1713  * @slow: slow mode
1714  *
1715  * fast unlock socket for user context.
1716  * If slow mode is on, we call regular release_sock()
1717  */
unlock_sock_fast(struct sock * sk,bool slow)1718 static inline void unlock_sock_fast(struct sock *sk, bool slow)
1719 	__releases(&sk->sk_lock.slock)
1720 {
1721 	if (slow) {
1722 		release_sock(sk);
1723 		__release(&sk->sk_lock.slock);
1724 	} else {
1725 		mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
1726 		spin_unlock_bh(&sk->sk_lock.slock);
1727 	}
1728 }
1729 
1730 void sockopt_lock_sock(struct sock *sk);
1731 void sockopt_release_sock(struct sock *sk);
1732 bool sockopt_ns_capable(struct user_namespace *ns, int cap);
1733 bool sockopt_capable(int cap);
1734 
1735 /* Used by processes to "lock" a socket state, so that
1736  * interrupts and bottom half handlers won't change it
1737  * from under us. It essentially blocks any incoming
1738  * packets, so that we won't get any new data or any
1739  * packets that change the state of the socket.
1740  *
1741  * While locked, BH processing will add new packets to
1742  * the backlog queue.  This queue is processed by the
1743  * owner of the socket lock right before it is released.
1744  *
1745  * Since ~2.3.5 it is also exclusive sleep lock serializing
1746  * accesses from user process context.
1747  */
1748 
sock_owned_by_me(const struct sock * sk)1749 static inline void sock_owned_by_me(const struct sock *sk)
1750 {
1751 #ifdef CONFIG_LOCKDEP
1752 	WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks);
1753 #endif
1754 }
1755 
sock_not_owned_by_me(const struct sock * sk)1756 static inline void sock_not_owned_by_me(const struct sock *sk)
1757 {
1758 #ifdef CONFIG_LOCKDEP
1759 	WARN_ON_ONCE(lockdep_sock_is_held(sk) && debug_locks);
1760 #endif
1761 }
1762 
sock_owned_by_user(const struct sock * sk)1763 static inline bool sock_owned_by_user(const struct sock *sk)
1764 {
1765 	sock_owned_by_me(sk);
1766 	return sk->sk_lock.owned;
1767 }
1768 
sock_owned_by_user_nocheck(const struct sock * sk)1769 static inline bool sock_owned_by_user_nocheck(const struct sock *sk)
1770 {
1771 	return sk->sk_lock.owned;
1772 }
1773 
sock_release_ownership(struct sock * sk)1774 static inline void sock_release_ownership(struct sock *sk)
1775 {
1776 	DEBUG_NET_WARN_ON_ONCE(!sock_owned_by_user_nocheck(sk));
1777 	sk->sk_lock.owned = 0;
1778 
1779 	/* The sk_lock has mutex_unlock() semantics: */
1780 	mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
1781 }
1782 
1783 /* no reclassification while locks are held */
sock_allow_reclassification(const struct sock * csk)1784 static inline bool sock_allow_reclassification(const struct sock *csk)
1785 {
1786 	struct sock *sk = (struct sock *)csk;
1787 
1788 	return !sock_owned_by_user_nocheck(sk) &&
1789 		!spin_is_locked(&sk->sk_lock.slock);
1790 }
1791 
1792 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1793 		      struct proto *prot, int kern);
1794 void sk_free(struct sock *sk);
1795 void sk_net_refcnt_upgrade(struct sock *sk);
1796 void sk_destruct(struct sock *sk);
1797 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
1798 void sk_free_unlock_clone(struct sock *sk);
1799 
1800 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1801 			     gfp_t priority);
1802 void __sock_wfree(struct sk_buff *skb);
1803 void sock_wfree(struct sk_buff *skb);
1804 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
1805 			     gfp_t priority);
1806 void skb_orphan_partial(struct sk_buff *skb);
1807 void sock_rfree(struct sk_buff *skb);
1808 void sock_efree(struct sk_buff *skb);
1809 #ifdef CONFIG_INET
1810 void sock_edemux(struct sk_buff *skb);
1811 void sock_pfree(struct sk_buff *skb);
1812 #else
1813 #define sock_edemux sock_efree
1814 #endif
1815 
1816 int sk_setsockopt(struct sock *sk, int level, int optname,
1817 		  sockptr_t optval, unsigned int optlen);
1818 int sock_setsockopt(struct socket *sock, int level, int op,
1819 		    sockptr_t optval, unsigned int optlen);
1820 int do_sock_setsockopt(struct socket *sock, bool compat, int level,
1821 		       int optname, sockptr_t optval, int optlen);
1822 int do_sock_getsockopt(struct socket *sock, bool compat, int level,
1823 		       int optname, sockptr_t optval, sockptr_t optlen);
1824 
1825 int sk_getsockopt(struct sock *sk, int level, int optname,
1826 		  sockptr_t optval, sockptr_t optlen);
1827 int sock_gettstamp(struct socket *sock, void __user *userstamp,
1828 		   bool timeval, bool time32);
1829 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1830 				     unsigned long data_len, int noblock,
1831 				     int *errcode, int max_page_order);
1832 
sock_alloc_send_skb(struct sock * sk,unsigned long size,int noblock,int * errcode)1833 static inline struct sk_buff *sock_alloc_send_skb(struct sock *sk,
1834 						  unsigned long size,
1835 						  int noblock, int *errcode)
1836 {
1837 	return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0);
1838 }
1839 
1840 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
1841 void sock_kfree_s(struct sock *sk, void *mem, int size);
1842 void sock_kzfree_s(struct sock *sk, void *mem, int size);
1843 void sk_send_sigurg(struct sock *sk);
1844 
sock_replace_proto(struct sock * sk,struct proto * proto)1845 static inline void sock_replace_proto(struct sock *sk, struct proto *proto)
1846 {
1847 	if (sk->sk_socket)
1848 		clear_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags);
1849 	WRITE_ONCE(sk->sk_prot, proto);
1850 }
1851 
1852 struct sockcm_cookie {
1853 	u64 transmit_time;
1854 	u32 mark;
1855 	u32 tsflags;
1856 };
1857 
sockcm_init(struct sockcm_cookie * sockc,const struct sock * sk)1858 static inline void sockcm_init(struct sockcm_cookie *sockc,
1859 			       const struct sock *sk)
1860 {
1861 	*sockc = (struct sockcm_cookie) {
1862 		.tsflags = READ_ONCE(sk->sk_tsflags)
1863 	};
1864 }
1865 
1866 int __sock_cmsg_send(struct sock *sk, struct cmsghdr *cmsg,
1867 		     struct sockcm_cookie *sockc);
1868 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
1869 		   struct sockcm_cookie *sockc);
1870 
1871 /*
1872  * Functions to fill in entries in struct proto_ops when a protocol
1873  * does not implement a particular function.
1874  */
1875 int sock_no_bind(struct socket *, struct sockaddr *, int);
1876 int sock_no_connect(struct socket *, struct sockaddr *, int, int);
1877 int sock_no_socketpair(struct socket *, struct socket *);
1878 int sock_no_accept(struct socket *, struct socket *, struct proto_accept_arg *);
1879 int sock_no_getname(struct socket *, struct sockaddr *, int);
1880 int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
1881 int sock_no_listen(struct socket *, int);
1882 int sock_no_shutdown(struct socket *, int);
1883 int sock_no_sendmsg(struct socket *, struct msghdr *, size_t);
1884 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t len);
1885 int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int);
1886 int sock_no_mmap(struct file *file, struct socket *sock,
1887 		 struct vm_area_struct *vma);
1888 
1889 /*
1890  * Functions to fill in entries in struct proto_ops when a protocol
1891  * uses the inet style.
1892  */
1893 int sock_common_getsockopt(struct socket *sock, int level, int optname,
1894 				  char __user *optval, int __user *optlen);
1895 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1896 			int flags);
1897 int sock_common_setsockopt(struct socket *sock, int level, int optname,
1898 			   sockptr_t optval, unsigned int optlen);
1899 
1900 void sk_common_release(struct sock *sk);
1901 
1902 /*
1903  *	Default socket callbacks and setup code
1904  */
1905 
1906 /* Initialise core socket variables using an explicit uid. */
1907 void sock_init_data_uid(struct socket *sock, struct sock *sk, kuid_t uid);
1908 
1909 /* Initialise core socket variables.
1910  * Assumes struct socket *sock is embedded in a struct socket_alloc.
1911  */
1912 void sock_init_data(struct socket *sock, struct sock *sk);
1913 
1914 /*
1915  * Socket reference counting postulates.
1916  *
1917  * * Each user of socket SHOULD hold a reference count.
1918  * * Each access point to socket (an hash table bucket, reference from a list,
1919  *   running timer, skb in flight MUST hold a reference count.
1920  * * When reference count hits 0, it means it will never increase back.
1921  * * When reference count hits 0, it means that no references from
1922  *   outside exist to this socket and current process on current CPU
1923  *   is last user and may/should destroy this socket.
1924  * * sk_free is called from any context: process, BH, IRQ. When
1925  *   it is called, socket has no references from outside -> sk_free
1926  *   may release descendant resources allocated by the socket, but
1927  *   to the time when it is called, socket is NOT referenced by any
1928  *   hash tables, lists etc.
1929  * * Packets, delivered from outside (from network or from another process)
1930  *   and enqueued on receive/error queues SHOULD NOT grab reference count,
1931  *   when they sit in queue. Otherwise, packets will leak to hole, when
1932  *   socket is looked up by one cpu and unhasing is made by another CPU.
1933  *   It is true for udp/raw, netlink (leak to receive and error queues), tcp
1934  *   (leak to backlog). Packet socket does all the processing inside
1935  *   BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1936  *   use separate SMP lock, so that they are prone too.
1937  */
1938 
1939 /* Ungrab socket and destroy it, if it was the last reference. */
sock_put(struct sock * sk)1940 static inline void sock_put(struct sock *sk)
1941 {
1942 	if (refcount_dec_and_test(&sk->sk_refcnt))
1943 		sk_free(sk);
1944 }
1945 /* Generic version of sock_put(), dealing with all sockets
1946  * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...)
1947  */
1948 void sock_gen_put(struct sock *sk);
1949 
1950 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested,
1951 		     unsigned int trim_cap, bool refcounted);
sk_receive_skb(struct sock * sk,struct sk_buff * skb,const int nested)1952 static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1953 				 const int nested)
1954 {
1955 	return __sk_receive_skb(sk, skb, nested, 1, true);
1956 }
1957 
sk_tx_queue_set(struct sock * sk,int tx_queue)1958 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1959 {
1960 	/* sk_tx_queue_mapping accept only upto a 16-bit value */
1961 	if (WARN_ON_ONCE((unsigned short)tx_queue >= USHRT_MAX))
1962 		return;
1963 	/* Paired with READ_ONCE() in sk_tx_queue_get() and
1964 	 * other WRITE_ONCE() because socket lock might be not held.
1965 	 */
1966 	WRITE_ONCE(sk->sk_tx_queue_mapping, tx_queue);
1967 }
1968 
1969 #define NO_QUEUE_MAPPING	USHRT_MAX
1970 
sk_tx_queue_clear(struct sock * sk)1971 static inline void sk_tx_queue_clear(struct sock *sk)
1972 {
1973 	/* Paired with READ_ONCE() in sk_tx_queue_get() and
1974 	 * other WRITE_ONCE() because socket lock might be not held.
1975 	 */
1976 	WRITE_ONCE(sk->sk_tx_queue_mapping, NO_QUEUE_MAPPING);
1977 }
1978 
sk_tx_queue_get(const struct sock * sk)1979 static inline int sk_tx_queue_get(const struct sock *sk)
1980 {
1981 	if (sk) {
1982 		/* Paired with WRITE_ONCE() in sk_tx_queue_clear()
1983 		 * and sk_tx_queue_set().
1984 		 */
1985 		int val = READ_ONCE(sk->sk_tx_queue_mapping);
1986 
1987 		if (val != NO_QUEUE_MAPPING)
1988 			return val;
1989 	}
1990 	return -1;
1991 }
1992 
__sk_rx_queue_set(struct sock * sk,const struct sk_buff * skb,bool force_set)1993 static inline void __sk_rx_queue_set(struct sock *sk,
1994 				     const struct sk_buff *skb,
1995 				     bool force_set)
1996 {
1997 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
1998 	if (skb_rx_queue_recorded(skb)) {
1999 		u16 rx_queue = skb_get_rx_queue(skb);
2000 
2001 		if (force_set ||
2002 		    unlikely(READ_ONCE(sk->sk_rx_queue_mapping) != rx_queue))
2003 			WRITE_ONCE(sk->sk_rx_queue_mapping, rx_queue);
2004 	}
2005 #endif
2006 }
2007 
sk_rx_queue_set(struct sock * sk,const struct sk_buff * skb)2008 static inline void sk_rx_queue_set(struct sock *sk, const struct sk_buff *skb)
2009 {
2010 	__sk_rx_queue_set(sk, skb, true);
2011 }
2012 
sk_rx_queue_update(struct sock * sk,const struct sk_buff * skb)2013 static inline void sk_rx_queue_update(struct sock *sk, const struct sk_buff *skb)
2014 {
2015 	__sk_rx_queue_set(sk, skb, false);
2016 }
2017 
sk_rx_queue_clear(struct sock * sk)2018 static inline void sk_rx_queue_clear(struct sock *sk)
2019 {
2020 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
2021 	WRITE_ONCE(sk->sk_rx_queue_mapping, NO_QUEUE_MAPPING);
2022 #endif
2023 }
2024 
sk_rx_queue_get(const struct sock * sk)2025 static inline int sk_rx_queue_get(const struct sock *sk)
2026 {
2027 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
2028 	if (sk) {
2029 		int res = READ_ONCE(sk->sk_rx_queue_mapping);
2030 
2031 		if (res != NO_QUEUE_MAPPING)
2032 			return res;
2033 	}
2034 #endif
2035 
2036 	return -1;
2037 }
2038 
sk_set_socket(struct sock * sk,struct socket * sock)2039 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
2040 {
2041 	sk->sk_socket = sock;
2042 }
2043 
sk_sleep(struct sock * sk)2044 static inline wait_queue_head_t *sk_sleep(struct sock *sk)
2045 {
2046 	BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
2047 	return &rcu_dereference_raw(sk->sk_wq)->wait;
2048 }
2049 /* Detach socket from process context.
2050  * Announce socket dead, detach it from wait queue and inode.
2051  * Note that parent inode held reference count on this struct sock,
2052  * we do not release it in this function, because protocol
2053  * probably wants some additional cleanups or even continuing
2054  * to work with this socket (TCP).
2055  */
sock_orphan(struct sock * sk)2056 static inline void sock_orphan(struct sock *sk)
2057 {
2058 	write_lock_bh(&sk->sk_callback_lock);
2059 	sock_set_flag(sk, SOCK_DEAD);
2060 	sk_set_socket(sk, NULL);
2061 	sk->sk_wq  = NULL;
2062 	write_unlock_bh(&sk->sk_callback_lock);
2063 }
2064 
sock_graft(struct sock * sk,struct socket * parent)2065 static inline void sock_graft(struct sock *sk, struct socket *parent)
2066 {
2067 	WARN_ON(parent->sk);
2068 	write_lock_bh(&sk->sk_callback_lock);
2069 	rcu_assign_pointer(sk->sk_wq, &parent->wq);
2070 	parent->sk = sk;
2071 	sk_set_socket(sk, parent);
2072 	sk->sk_uid = SOCK_INODE(parent)->i_uid;
2073 	security_sock_graft(sk, parent);
2074 	write_unlock_bh(&sk->sk_callback_lock);
2075 }
2076 
2077 kuid_t sock_i_uid(struct sock *sk);
2078 unsigned long __sock_i_ino(struct sock *sk);
2079 unsigned long sock_i_ino(struct sock *sk);
2080 
sock_net_uid(const struct net * net,const struct sock * sk)2081 static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk)
2082 {
2083 	return sk ? sk->sk_uid : make_kuid(net->user_ns, 0);
2084 }
2085 
net_tx_rndhash(void)2086 static inline u32 net_tx_rndhash(void)
2087 {
2088 	u32 v = get_random_u32();
2089 
2090 	return v ?: 1;
2091 }
2092 
sk_set_txhash(struct sock * sk)2093 static inline void sk_set_txhash(struct sock *sk)
2094 {
2095 	/* This pairs with READ_ONCE() in skb_set_hash_from_sk() */
2096 	WRITE_ONCE(sk->sk_txhash, net_tx_rndhash());
2097 }
2098 
sk_rethink_txhash(struct sock * sk)2099 static inline bool sk_rethink_txhash(struct sock *sk)
2100 {
2101 	if (sk->sk_txhash && sk->sk_txrehash == SOCK_TXREHASH_ENABLED) {
2102 		sk_set_txhash(sk);
2103 		return true;
2104 	}
2105 	return false;
2106 }
2107 
2108 static inline struct dst_entry *
__sk_dst_get(const struct sock * sk)2109 __sk_dst_get(const struct sock *sk)
2110 {
2111 	return rcu_dereference_check(sk->sk_dst_cache,
2112 				     lockdep_sock_is_held(sk));
2113 }
2114 
2115 static inline struct dst_entry *
sk_dst_get(const struct sock * sk)2116 sk_dst_get(const struct sock *sk)
2117 {
2118 	struct dst_entry *dst;
2119 
2120 	rcu_read_lock();
2121 	dst = rcu_dereference(sk->sk_dst_cache);
2122 	if (dst && !rcuref_get(&dst->__rcuref))
2123 		dst = NULL;
2124 	rcu_read_unlock();
2125 	return dst;
2126 }
2127 
__dst_negative_advice(struct sock * sk)2128 static inline void __dst_negative_advice(struct sock *sk)
2129 {
2130 	struct dst_entry *dst = __sk_dst_get(sk);
2131 
2132 	if (dst && dst->ops->negative_advice)
2133 		dst->ops->negative_advice(sk, dst);
2134 }
2135 
dst_negative_advice(struct sock * sk)2136 static inline void dst_negative_advice(struct sock *sk)
2137 {
2138 	sk_rethink_txhash(sk);
2139 	__dst_negative_advice(sk);
2140 }
2141 
2142 static inline void
__sk_dst_set(struct sock * sk,struct dst_entry * dst)2143 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
2144 {
2145 	struct dst_entry *old_dst;
2146 
2147 	sk_tx_queue_clear(sk);
2148 	WRITE_ONCE(sk->sk_dst_pending_confirm, 0);
2149 	old_dst = rcu_dereference_protected(sk->sk_dst_cache,
2150 					    lockdep_sock_is_held(sk));
2151 	rcu_assign_pointer(sk->sk_dst_cache, dst);
2152 	dst_release(old_dst);
2153 }
2154 
2155 static inline void
sk_dst_set(struct sock * sk,struct dst_entry * dst)2156 sk_dst_set(struct sock *sk, struct dst_entry *dst)
2157 {
2158 	struct dst_entry *old_dst;
2159 
2160 	sk_tx_queue_clear(sk);
2161 	WRITE_ONCE(sk->sk_dst_pending_confirm, 0);
2162 	old_dst = unrcu_pointer(xchg(&sk->sk_dst_cache, RCU_INITIALIZER(dst)));
2163 	dst_release(old_dst);
2164 }
2165 
2166 static inline void
__sk_dst_reset(struct sock * sk)2167 __sk_dst_reset(struct sock *sk)
2168 {
2169 	__sk_dst_set(sk, NULL);
2170 }
2171 
2172 static inline void
sk_dst_reset(struct sock * sk)2173 sk_dst_reset(struct sock *sk)
2174 {
2175 	sk_dst_set(sk, NULL);
2176 }
2177 
2178 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
2179 
2180 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
2181 
sk_dst_confirm(struct sock * sk)2182 static inline void sk_dst_confirm(struct sock *sk)
2183 {
2184 	if (!READ_ONCE(sk->sk_dst_pending_confirm))
2185 		WRITE_ONCE(sk->sk_dst_pending_confirm, 1);
2186 }
2187 
sock_confirm_neigh(struct sk_buff * skb,struct neighbour * n)2188 static inline void sock_confirm_neigh(struct sk_buff *skb, struct neighbour *n)
2189 {
2190 	if (skb_get_dst_pending_confirm(skb)) {
2191 		struct sock *sk = skb->sk;
2192 
2193 		if (sk && READ_ONCE(sk->sk_dst_pending_confirm))
2194 			WRITE_ONCE(sk->sk_dst_pending_confirm, 0);
2195 		neigh_confirm(n);
2196 	}
2197 }
2198 
2199 bool sk_mc_loop(const struct sock *sk);
2200 
sk_can_gso(const struct sock * sk)2201 static inline bool sk_can_gso(const struct sock *sk)
2202 {
2203 	return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
2204 }
2205 
2206 void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
2207 
sk_gso_disable(struct sock * sk)2208 static inline void sk_gso_disable(struct sock *sk)
2209 {
2210 	sk->sk_gso_disabled = 1;
2211 	sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
2212 }
2213 
skb_do_copy_data_nocache(struct sock * sk,struct sk_buff * skb,struct iov_iter * from,char * to,int copy,int offset)2214 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
2215 					   struct iov_iter *from, char *to,
2216 					   int copy, int offset)
2217 {
2218 	if (skb->ip_summed == CHECKSUM_NONE) {
2219 		__wsum csum = 0;
2220 		if (!csum_and_copy_from_iter_full(to, copy, &csum, from))
2221 			return -EFAULT;
2222 		skb->csum = csum_block_add(skb->csum, csum, offset);
2223 	} else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
2224 		if (!copy_from_iter_full_nocache(to, copy, from))
2225 			return -EFAULT;
2226 	} else if (!copy_from_iter_full(to, copy, from))
2227 		return -EFAULT;
2228 
2229 	return 0;
2230 }
2231 
skb_add_data_nocache(struct sock * sk,struct sk_buff * skb,struct iov_iter * from,int copy)2232 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
2233 				       struct iov_iter *from, int copy)
2234 {
2235 	int err, offset = skb->len;
2236 
2237 	err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
2238 				       copy, offset);
2239 	if (err)
2240 		__skb_trim(skb, offset);
2241 
2242 	return err;
2243 }
2244 
skb_copy_to_page_nocache(struct sock * sk,struct iov_iter * from,struct sk_buff * skb,struct page * page,int off,int copy)2245 static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from,
2246 					   struct sk_buff *skb,
2247 					   struct page *page,
2248 					   int off, int copy)
2249 {
2250 	int err;
2251 
2252 	err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
2253 				       copy, skb->len);
2254 	if (err)
2255 		return err;
2256 
2257 	skb_len_add(skb, copy);
2258 	sk_wmem_queued_add(sk, copy);
2259 	sk_mem_charge(sk, copy);
2260 	return 0;
2261 }
2262 
2263 /**
2264  * sk_wmem_alloc_get - returns write allocations
2265  * @sk: socket
2266  *
2267  * Return: sk_wmem_alloc minus initial offset of one
2268  */
sk_wmem_alloc_get(const struct sock * sk)2269 static inline int sk_wmem_alloc_get(const struct sock *sk)
2270 {
2271 	return refcount_read(&sk->sk_wmem_alloc) - 1;
2272 }
2273 
2274 /**
2275  * sk_rmem_alloc_get - returns read allocations
2276  * @sk: socket
2277  *
2278  * Return: sk_rmem_alloc
2279  */
sk_rmem_alloc_get(const struct sock * sk)2280 static inline int sk_rmem_alloc_get(const struct sock *sk)
2281 {
2282 	return atomic_read(&sk->sk_rmem_alloc);
2283 }
2284 
2285 /**
2286  * sk_has_allocations - check if allocations are outstanding
2287  * @sk: socket
2288  *
2289  * Return: true if socket has write or read allocations
2290  */
sk_has_allocations(const struct sock * sk)2291 static inline bool sk_has_allocations(const struct sock *sk)
2292 {
2293 	return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
2294 }
2295 
2296 /**
2297  * skwq_has_sleeper - check if there are any waiting processes
2298  * @wq: struct socket_wq
2299  *
2300  * Return: true if socket_wq has waiting processes
2301  *
2302  * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory
2303  * barrier call. They were added due to the race found within the tcp code.
2304  *
2305  * Consider following tcp code paths::
2306  *
2307  *   CPU1                CPU2
2308  *   sys_select          receive packet
2309  *   ...                 ...
2310  *   __add_wait_queue    update tp->rcv_nxt
2311  *   ...                 ...
2312  *   tp->rcv_nxt check   sock_def_readable
2313  *   ...                 {
2314  *   schedule               rcu_read_lock();
2315  *                          wq = rcu_dereference(sk->sk_wq);
2316  *                          if (wq && waitqueue_active(&wq->wait))
2317  *                              wake_up_interruptible(&wq->wait)
2318  *                          ...
2319  *                       }
2320  *
2321  * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
2322  * in its cache, and so does the tp->rcv_nxt update on CPU2 side.  The CPU1
2323  * could then endup calling schedule and sleep forever if there are no more
2324  * data on the socket.
2325  *
2326  */
skwq_has_sleeper(struct socket_wq * wq)2327 static inline bool skwq_has_sleeper(struct socket_wq *wq)
2328 {
2329 	return wq && wq_has_sleeper(&wq->wait);
2330 }
2331 
2332 /**
2333  * sock_poll_wait - place memory barrier behind the poll_wait call.
2334  * @filp:           file
2335  * @sock:           socket to wait on
2336  * @p:              poll_table
2337  *
2338  * See the comments in the wq_has_sleeper function.
2339  */
sock_poll_wait(struct file * filp,struct socket * sock,poll_table * p)2340 static inline void sock_poll_wait(struct file *filp, struct socket *sock,
2341 				  poll_table *p)
2342 {
2343 	if (!poll_does_not_wait(p)) {
2344 		poll_wait(filp, &sock->wq.wait, p);
2345 		/* We need to be sure we are in sync with the
2346 		 * socket flags modification.
2347 		 *
2348 		 * This memory barrier is paired in the wq_has_sleeper.
2349 		 */
2350 		smp_mb();
2351 	}
2352 }
2353 
skb_set_hash_from_sk(struct sk_buff * skb,struct sock * sk)2354 static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk)
2355 {
2356 	/* This pairs with WRITE_ONCE() in sk_set_txhash() */
2357 	u32 txhash = READ_ONCE(sk->sk_txhash);
2358 
2359 	if (txhash) {
2360 		skb->l4_hash = 1;
2361 		skb->hash = txhash;
2362 	}
2363 }
2364 
2365 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk);
2366 
2367 /*
2368  *	Queue a received datagram if it will fit. Stream and sequenced
2369  *	protocols can't normally use this as they need to fit buffers in
2370  *	and play with them.
2371  *
2372  *	Inlined as it's very short and called for pretty much every
2373  *	packet ever received.
2374  */
skb_set_owner_r(struct sk_buff * skb,struct sock * sk)2375 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
2376 {
2377 	skb_orphan(skb);
2378 	skb->sk = sk;
2379 	skb->destructor = sock_rfree;
2380 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
2381 	sk_mem_charge(sk, skb->truesize);
2382 }
2383 
skb_set_owner_sk_safe(struct sk_buff * skb,struct sock * sk)2384 static inline __must_check bool skb_set_owner_sk_safe(struct sk_buff *skb, struct sock *sk)
2385 {
2386 	if (sk && refcount_inc_not_zero(&sk->sk_refcnt)) {
2387 		skb_orphan(skb);
2388 		skb->destructor = sock_efree;
2389 		skb->sk = sk;
2390 		return true;
2391 	}
2392 	return false;
2393 }
2394 
skb_clone_and_charge_r(struct sk_buff * skb,struct sock * sk)2395 static inline struct sk_buff *skb_clone_and_charge_r(struct sk_buff *skb, struct sock *sk)
2396 {
2397 	skb = skb_clone(skb, sk_gfp_mask(sk, GFP_ATOMIC));
2398 	if (skb) {
2399 		if (sk_rmem_schedule(sk, skb, skb->truesize)) {
2400 			skb_set_owner_r(skb, sk);
2401 			return skb;
2402 		}
2403 		__kfree_skb(skb);
2404 	}
2405 	return NULL;
2406 }
2407 
skb_prepare_for_gro(struct sk_buff * skb)2408 static inline void skb_prepare_for_gro(struct sk_buff *skb)
2409 {
2410 	if (skb->destructor != sock_wfree) {
2411 		skb_orphan(skb);
2412 		return;
2413 	}
2414 	skb->slow_gro = 1;
2415 }
2416 
2417 void sk_reset_timer(struct sock *sk, struct timer_list *timer,
2418 		    unsigned long expires);
2419 
2420 void sk_stop_timer(struct sock *sk, struct timer_list *timer);
2421 
2422 void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer);
2423 
2424 int __sk_queue_drop_skb(struct sock *sk, struct sk_buff_head *sk_queue,
2425 			struct sk_buff *skb, unsigned int flags,
2426 			void (*destructor)(struct sock *sk,
2427 					   struct sk_buff *skb));
2428 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2429 
2430 int sock_queue_rcv_skb_reason(struct sock *sk, struct sk_buff *skb,
2431 			      enum skb_drop_reason *reason);
2432 
sock_queue_rcv_skb(struct sock * sk,struct sk_buff * skb)2433 static inline int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2434 {
2435 	return sock_queue_rcv_skb_reason(sk, skb, NULL);
2436 }
2437 
2438 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
2439 struct sk_buff *sock_dequeue_err_skb(struct sock *sk);
2440 
2441 /*
2442  *	Recover an error report and clear atomically
2443  */
2444 
sock_error(struct sock * sk)2445 static inline int sock_error(struct sock *sk)
2446 {
2447 	int err;
2448 
2449 	/* Avoid an atomic operation for the common case.
2450 	 * This is racy since another cpu/thread can change sk_err under us.
2451 	 */
2452 	if (likely(data_race(!sk->sk_err)))
2453 		return 0;
2454 
2455 	err = xchg(&sk->sk_err, 0);
2456 	return -err;
2457 }
2458 
2459 void sk_error_report(struct sock *sk);
2460 
sock_wspace(struct sock * sk)2461 static inline unsigned long sock_wspace(struct sock *sk)
2462 {
2463 	int amt = 0;
2464 
2465 	if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
2466 		amt = sk->sk_sndbuf - refcount_read(&sk->sk_wmem_alloc);
2467 		if (amt < 0)
2468 			amt = 0;
2469 	}
2470 	return amt;
2471 }
2472 
2473 /* Note:
2474  *  We use sk->sk_wq_raw, from contexts knowing this
2475  *  pointer is not NULL and cannot disappear/change.
2476  */
sk_set_bit(int nr,struct sock * sk)2477 static inline void sk_set_bit(int nr, struct sock *sk)
2478 {
2479 	if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2480 	    !sock_flag(sk, SOCK_FASYNC))
2481 		return;
2482 
2483 	set_bit(nr, &sk->sk_wq_raw->flags);
2484 }
2485 
sk_clear_bit(int nr,struct sock * sk)2486 static inline void sk_clear_bit(int nr, struct sock *sk)
2487 {
2488 	if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2489 	    !sock_flag(sk, SOCK_FASYNC))
2490 		return;
2491 
2492 	clear_bit(nr, &sk->sk_wq_raw->flags);
2493 }
2494 
sk_wake_async(const struct sock * sk,int how,int band)2495 static inline void sk_wake_async(const struct sock *sk, int how, int band)
2496 {
2497 	if (sock_flag(sk, SOCK_FASYNC)) {
2498 		rcu_read_lock();
2499 		sock_wake_async(rcu_dereference(sk->sk_wq), how, band);
2500 		rcu_read_unlock();
2501 	}
2502 }
2503 
sk_wake_async_rcu(const struct sock * sk,int how,int band)2504 static inline void sk_wake_async_rcu(const struct sock *sk, int how, int band)
2505 {
2506 	if (unlikely(sock_flag(sk, SOCK_FASYNC)))
2507 		sock_wake_async(rcu_dereference(sk->sk_wq), how, band);
2508 }
2509 
2510 /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
2511  * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
2512  * Note: for send buffers, TCP works better if we can build two skbs at
2513  * minimum.
2514  */
2515 #define TCP_SKB_MIN_TRUESIZE	(2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
2516 
2517 #define SOCK_MIN_SNDBUF		(TCP_SKB_MIN_TRUESIZE * 2)
2518 #define SOCK_MIN_RCVBUF		 TCP_SKB_MIN_TRUESIZE
2519 
sk_stream_moderate_sndbuf(struct sock * sk)2520 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2521 {
2522 	u32 val;
2523 
2524 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
2525 		return;
2526 
2527 	val = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2528 	val = max_t(u32, val, sk_unused_reserved_mem(sk));
2529 
2530 	WRITE_ONCE(sk->sk_sndbuf, max_t(u32, val, SOCK_MIN_SNDBUF));
2531 }
2532 
2533 /**
2534  * sk_page_frag - return an appropriate page_frag
2535  * @sk: socket
2536  *
2537  * Use the per task page_frag instead of the per socket one for
2538  * optimization when we know that we're in process context and own
2539  * everything that's associated with %current.
2540  *
2541  * Both direct reclaim and page faults can nest inside other
2542  * socket operations and end up recursing into sk_page_frag()
2543  * while it's already in use: explicitly avoid task page_frag
2544  * when users disable sk_use_task_frag.
2545  *
2546  * Return: a per task page_frag if context allows that,
2547  * otherwise a per socket one.
2548  */
sk_page_frag(struct sock * sk)2549 static inline struct page_frag *sk_page_frag(struct sock *sk)
2550 {
2551 	if (sk->sk_use_task_frag)
2552 		return ¤t->task_frag;
2553 
2554 	return &sk->sk_frag;
2555 }
2556 
2557 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2558 
2559 /*
2560  *	Default write policy as shown to user space via poll/select/SIGIO
2561  */
sock_writeable(const struct sock * sk)2562 static inline bool sock_writeable(const struct sock *sk)
2563 {
2564 	return refcount_read(&sk->sk_wmem_alloc) < (READ_ONCE(sk->sk_sndbuf) >> 1);
2565 }
2566 
gfp_any(void)2567 static inline gfp_t gfp_any(void)
2568 {
2569 	return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2570 }
2571 
gfp_memcg_charge(void)2572 static inline gfp_t gfp_memcg_charge(void)
2573 {
2574 	return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2575 }
2576 
sock_rcvtimeo(const struct sock * sk,bool noblock)2577 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2578 {
2579 	return noblock ? 0 : sk->sk_rcvtimeo;
2580 }
2581 
sock_sndtimeo(const struct sock * sk,bool noblock)2582 static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2583 {
2584 	return noblock ? 0 : sk->sk_sndtimeo;
2585 }
2586 
sock_rcvlowat(const struct sock * sk,int waitall,int len)2587 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2588 {
2589 	int v = waitall ? len : min_t(int, READ_ONCE(sk->sk_rcvlowat), len);
2590 
2591 	return v ?: 1;
2592 }
2593 
2594 /* Alas, with timeout socket operations are not restartable.
2595  * Compare this to poll().
2596  */
sock_intr_errno(long timeo)2597 static inline int sock_intr_errno(long timeo)
2598 {
2599 	return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2600 }
2601 
2602 struct sock_skb_cb {
2603 	u32 dropcount;
2604 };
2605 
2606 /* Store sock_skb_cb at the end of skb->cb[] so protocol families
2607  * using skb->cb[] would keep using it directly and utilize its
2608  * alignment guarantee.
2609  */
2610 #define SOCK_SKB_CB_OFFSET ((sizeof_field(struct sk_buff, cb) - \
2611 			    sizeof(struct sock_skb_cb)))
2612 
2613 #define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \
2614 			    SOCK_SKB_CB_OFFSET))
2615 
2616 #define sock_skb_cb_check_size(size) \
2617 	BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET)
2618 
2619 static inline void
sock_skb_set_dropcount(const struct sock * sk,struct sk_buff * skb)2620 sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb)
2621 {
2622 	SOCK_SKB_CB(skb)->dropcount = sock_flag(sk, SOCK_RXQ_OVFL) ?
2623 						atomic_read(&sk->sk_drops) : 0;
2624 }
2625 
sk_drops_add(struct sock * sk,const struct sk_buff * skb)2626 static inline void sk_drops_add(struct sock *sk, const struct sk_buff *skb)
2627 {
2628 	int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2629 
2630 	atomic_add(segs, &sk->sk_drops);
2631 }
2632 
sock_read_timestamp(struct sock * sk)2633 static inline ktime_t sock_read_timestamp(struct sock *sk)
2634 {
2635 #if BITS_PER_LONG==32
2636 	unsigned int seq;
2637 	ktime_t kt;
2638 
2639 	do {
2640 		seq = read_seqbegin(&sk->sk_stamp_seq);
2641 		kt = sk->sk_stamp;
2642 	} while (read_seqretry(&sk->sk_stamp_seq, seq));
2643 
2644 	return kt;
2645 #else
2646 	return READ_ONCE(sk->sk_stamp);
2647 #endif
2648 }
2649 
sock_write_timestamp(struct sock * sk,ktime_t kt)2650 static inline void sock_write_timestamp(struct sock *sk, ktime_t kt)
2651 {
2652 #if BITS_PER_LONG==32
2653 	write_seqlock(&sk->sk_stamp_seq);
2654 	sk->sk_stamp = kt;
2655 	write_sequnlock(&sk->sk_stamp_seq);
2656 #else
2657 	WRITE_ONCE(sk->sk_stamp, kt);
2658 #endif
2659 }
2660 
2661 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2662 			   struct sk_buff *skb);
2663 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2664 			     struct sk_buff *skb);
2665 
2666 static inline void
sock_recv_timestamp(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)2667 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2668 {
2669 	struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2670 	u32 tsflags = READ_ONCE(sk->sk_tsflags);
2671 	ktime_t kt = skb->tstamp;
2672 	/*
2673 	 * generate control messages if
2674 	 * - receive time stamping in software requested
2675 	 * - software time stamp available and wanted
2676 	 * - hardware time stamps available and wanted
2677 	 */
2678 	if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2679 	    (tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) ||
2680 	    (kt && tsflags & SOF_TIMESTAMPING_SOFTWARE) ||
2681 	    (hwtstamps->hwtstamp &&
2682 	     (tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)))
2683 		__sock_recv_timestamp(msg, sk, skb);
2684 	else
2685 		sock_write_timestamp(sk, kt);
2686 
2687 	if (sock_flag(sk, SOCK_WIFI_STATUS) && skb_wifi_acked_valid(skb))
2688 		__sock_recv_wifi_status(msg, sk, skb);
2689 }
2690 
2691 void __sock_recv_cmsgs(struct msghdr *msg, struct sock *sk,
2692 		       struct sk_buff *skb);
2693 
2694 #define SK_DEFAULT_STAMP (-1L * NSEC_PER_SEC)
sock_recv_cmsgs(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)2695 static inline void sock_recv_cmsgs(struct msghdr *msg, struct sock *sk,
2696 				   struct sk_buff *skb)
2697 {
2698 #define FLAGS_RECV_CMSGS ((1UL << SOCK_RXQ_OVFL)			| \
2699 			   (1UL << SOCK_RCVTSTAMP)			| \
2700 			   (1UL << SOCK_RCVMARK))
2701 #define TSFLAGS_ANY	  (SOF_TIMESTAMPING_SOFTWARE			| \
2702 			   SOF_TIMESTAMPING_RAW_HARDWARE)
2703 
2704 	if (sk->sk_flags & FLAGS_RECV_CMSGS ||
2705 	    READ_ONCE(sk->sk_tsflags) & TSFLAGS_ANY)
2706 		__sock_recv_cmsgs(msg, sk, skb);
2707 	else if (unlikely(sock_flag(sk, SOCK_TIMESTAMP)))
2708 		sock_write_timestamp(sk, skb->tstamp);
2709 	else if (unlikely(sock_read_timestamp(sk) == SK_DEFAULT_STAMP))
2710 		sock_write_timestamp(sk, 0);
2711 }
2712 
2713 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags);
2714 
2715 /**
2716  * _sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2717  * @sk:		socket sending this packet
2718  * @tsflags:	timestamping flags to use
2719  * @tx_flags:	completed with instructions for time stamping
2720  * @tskey:      filled in with next sk_tskey (not for TCP, which uses seqno)
2721  *
2722  * Note: callers should take care of initial ``*tx_flags`` value (usually 0)
2723  */
_sock_tx_timestamp(struct sock * sk,__u16 tsflags,__u8 * tx_flags,__u32 * tskey)2724 static inline void _sock_tx_timestamp(struct sock *sk, __u16 tsflags,
2725 				      __u8 *tx_flags, __u32 *tskey)
2726 {
2727 	if (unlikely(tsflags)) {
2728 		__sock_tx_timestamp(tsflags, tx_flags);
2729 		if (tsflags & SOF_TIMESTAMPING_OPT_ID && tskey &&
2730 		    tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
2731 			*tskey = atomic_inc_return(&sk->sk_tskey) - 1;
2732 	}
2733 	if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS)))
2734 		*tx_flags |= SKBTX_WIFI_STATUS;
2735 }
2736 
sock_tx_timestamp(struct sock * sk,__u16 tsflags,__u8 * tx_flags)2737 static inline void sock_tx_timestamp(struct sock *sk, __u16 tsflags,
2738 				     __u8 *tx_flags)
2739 {
2740 	_sock_tx_timestamp(sk, tsflags, tx_flags, NULL);
2741 }
2742 
skb_setup_tx_timestamp(struct sk_buff * skb,__u16 tsflags)2743 static inline void skb_setup_tx_timestamp(struct sk_buff *skb, __u16 tsflags)
2744 {
2745 	_sock_tx_timestamp(skb->sk, tsflags, &skb_shinfo(skb)->tx_flags,
2746 			   &skb_shinfo(skb)->tskey);
2747 }
2748 
sk_is_inet(const struct sock * sk)2749 static inline bool sk_is_inet(const struct sock *sk)
2750 {
2751 	int family = READ_ONCE(sk->sk_family);
2752 
2753 	return family == AF_INET || family == AF_INET6;
2754 }
2755 
sk_is_tcp(const struct sock * sk)2756 static inline bool sk_is_tcp(const struct sock *sk)
2757 {
2758 	return sk_is_inet(sk) &&
2759 	       sk->sk_type == SOCK_STREAM &&
2760 	       sk->sk_protocol == IPPROTO_TCP;
2761 }
2762 
sk_is_udp(const struct sock * sk)2763 static inline bool sk_is_udp(const struct sock *sk)
2764 {
2765 	return sk_is_inet(sk) &&
2766 	       sk->sk_type == SOCK_DGRAM &&
2767 	       sk->sk_protocol == IPPROTO_UDP;
2768 }
2769 
sk_is_stream_unix(const struct sock * sk)2770 static inline bool sk_is_stream_unix(const struct sock *sk)
2771 {
2772 	return sk->sk_family == AF_UNIX && sk->sk_type == SOCK_STREAM;
2773 }
2774 
sk_is_vsock(const struct sock * sk)2775 static inline bool sk_is_vsock(const struct sock *sk)
2776 {
2777 	return sk->sk_family == AF_VSOCK;
2778 }
2779 
2780 /**
2781  * sk_eat_skb - Release a skb if it is no longer needed
2782  * @sk: socket to eat this skb from
2783  * @skb: socket buffer to eat
2784  *
2785  * This routine must be called with interrupts disabled or with the socket
2786  * locked so that the sk_buff queue operation is ok.
2787 */
sk_eat_skb(struct sock * sk,struct sk_buff * skb)2788 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
2789 {
2790 	__skb_unlink(skb, &sk->sk_receive_queue);
2791 	__kfree_skb(skb);
2792 }
2793 
2794 static inline bool
skb_sk_is_prefetched(struct sk_buff * skb)2795 skb_sk_is_prefetched(struct sk_buff *skb)
2796 {
2797 #ifdef CONFIG_INET
2798 	return skb->destructor == sock_pfree;
2799 #else
2800 	return false;
2801 #endif /* CONFIG_INET */
2802 }
2803 
2804 /* This helper checks if a socket is a full socket,
2805  * ie _not_ a timewait or request socket.
2806  */
sk_fullsock(const struct sock * sk)2807 static inline bool sk_fullsock(const struct sock *sk)
2808 {
2809 	return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV);
2810 }
2811 
2812 static inline bool
sk_is_refcounted(struct sock * sk)2813 sk_is_refcounted(struct sock *sk)
2814 {
2815 	/* Only full sockets have sk->sk_flags. */
2816 	return !sk_fullsock(sk) || !sock_flag(sk, SOCK_RCU_FREE);
2817 }
2818 
2819 /* Checks if this SKB belongs to an HW offloaded socket
2820  * and whether any SW fallbacks are required based on dev.
2821  * Check decrypted mark in case skb_orphan() cleared socket.
2822  */
sk_validate_xmit_skb(struct sk_buff * skb,struct net_device * dev)2823 static inline struct sk_buff *sk_validate_xmit_skb(struct sk_buff *skb,
2824 						   struct net_device *dev)
2825 {
2826 #ifdef CONFIG_SOCK_VALIDATE_XMIT
2827 	struct sock *sk = skb->sk;
2828 
2829 	if (sk && sk_fullsock(sk) && sk->sk_validate_xmit_skb) {
2830 		skb = sk->sk_validate_xmit_skb(sk, dev, skb);
2831 	} else if (unlikely(skb_is_decrypted(skb))) {
2832 		pr_warn_ratelimited("unencrypted skb with no associated socket - dropping\n");
2833 		kfree_skb(skb);
2834 		skb = NULL;
2835 	}
2836 #endif
2837 
2838 	return skb;
2839 }
2840 
2841 /* This helper checks if a socket is a LISTEN or NEW_SYN_RECV
2842  * SYNACK messages can be attached to either ones (depending on SYNCOOKIE)
2843  */
sk_listener(const struct sock * sk)2844 static inline bool sk_listener(const struct sock *sk)
2845 {
2846 	return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV);
2847 }
2848 
2849 void sock_enable_timestamp(struct sock *sk, enum sock_flags flag);
2850 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
2851 		       int type);
2852 
2853 bool sk_ns_capable(const struct sock *sk,
2854 		   struct user_namespace *user_ns, int cap);
2855 bool sk_capable(const struct sock *sk, int cap);
2856 bool sk_net_capable(const struct sock *sk, int cap);
2857 
2858 void sk_get_meminfo(const struct sock *sk, u32 *meminfo);
2859 
2860 /* Take into consideration the size of the struct sk_buff overhead in the
2861  * determination of these values, since that is non-constant across
2862  * platforms.  This makes socket queueing behavior and performance
2863  * not depend upon such differences.
2864  */
2865 #define _SK_MEM_PACKETS		256
2866 #define _SK_MEM_OVERHEAD	SKB_TRUESIZE(256)
2867 #define SK_WMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2868 #define SK_RMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2869 
2870 extern __u32 sysctl_wmem_max;
2871 extern __u32 sysctl_rmem_max;
2872 
2873 extern int sysctl_tstamp_allow_data;
2874 
2875 extern __u32 sysctl_wmem_default;
2876 extern __u32 sysctl_rmem_default;
2877 
2878 #define SKB_FRAG_PAGE_ORDER	get_order(32768)
2879 DECLARE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key);
2880 
sk_get_wmem0(const struct sock * sk,const struct proto * proto)2881 static inline int sk_get_wmem0(const struct sock *sk, const struct proto *proto)
2882 {
2883 	/* Does this proto have per netns sysctl_wmem ? */
2884 	if (proto->sysctl_wmem_offset)
2885 		return READ_ONCE(*(int *)((void *)sock_net(sk) + proto->sysctl_wmem_offset));
2886 
2887 	return READ_ONCE(*proto->sysctl_wmem);
2888 }
2889 
sk_get_rmem0(const struct sock * sk,const struct proto * proto)2890 static inline int sk_get_rmem0(const struct sock *sk, const struct proto *proto)
2891 {
2892 	/* Does this proto have per netns sysctl_rmem ? */
2893 	if (proto->sysctl_rmem_offset)
2894 		return READ_ONCE(*(int *)((void *)sock_net(sk) + proto->sysctl_rmem_offset));
2895 
2896 	return READ_ONCE(*proto->sysctl_rmem);
2897 }
2898 
2899 /* Default TCP Small queue budget is ~1 ms of data (1sec >> 10)
2900  * Some wifi drivers need to tweak it to get more chunks.
2901  * They can use this helper from their ndo_start_xmit()
2902  */
sk_pacing_shift_update(struct sock * sk,int val)2903 static inline void sk_pacing_shift_update(struct sock *sk, int val)
2904 {
2905 	if (!sk || !sk_fullsock(sk) || READ_ONCE(sk->sk_pacing_shift) == val)
2906 		return;
2907 	WRITE_ONCE(sk->sk_pacing_shift, val);
2908 }
2909 
2910 /* if a socket is bound to a device, check that the given device
2911  * index is either the same or that the socket is bound to an L3
2912  * master device and the given device index is also enslaved to
2913  * that L3 master
2914  */
sk_dev_equal_l3scope(struct sock * sk,int dif)2915 static inline bool sk_dev_equal_l3scope(struct sock *sk, int dif)
2916 {
2917 	int bound_dev_if = READ_ONCE(sk->sk_bound_dev_if);
2918 	int mdif;
2919 
2920 	if (!bound_dev_if || bound_dev_if == dif)
2921 		return true;
2922 
2923 	mdif = l3mdev_master_ifindex_by_index(sock_net(sk), dif);
2924 	if (mdif && mdif == bound_dev_if)
2925 		return true;
2926 
2927 	return false;
2928 }
2929 
2930 void sock_def_readable(struct sock *sk);
2931 
2932 int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk);
2933 void sock_set_timestamp(struct sock *sk, int optname, bool valbool);
2934 int sock_set_timestamping(struct sock *sk, int optname,
2935 			  struct so_timestamping timestamping);
2936 
2937 void sock_enable_timestamps(struct sock *sk);
2938 void sock_no_linger(struct sock *sk);
2939 void sock_set_keepalive(struct sock *sk);
2940 void sock_set_priority(struct sock *sk, u32 priority);
2941 void sock_set_rcvbuf(struct sock *sk, int val);
2942 void sock_set_mark(struct sock *sk, u32 val);
2943 void sock_set_reuseaddr(struct sock *sk);
2944 void sock_set_reuseport(struct sock *sk);
2945 void sock_set_sndtimeo(struct sock *sk, s64 secs);
2946 
2947 int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len);
2948 
2949 int sock_get_timeout(long timeo, void *optval, bool old_timeval);
2950 int sock_copy_user_timeval(struct __kernel_sock_timeval *tv,
2951 			   sockptr_t optval, int optlen, bool old_timeval);
2952 
2953 int sock_ioctl_inout(struct sock *sk, unsigned int cmd,
2954 		     void __user *arg, void *karg, size_t size);
2955 int sk_ioctl(struct sock *sk, unsigned int cmd, void __user *arg);
sk_is_readable(struct sock * sk)2956 static inline bool sk_is_readable(struct sock *sk)
2957 {
2958 	const struct proto *prot = READ_ONCE(sk->sk_prot);
2959 
2960 	if (prot->sock_is_readable)
2961 		return prot->sock_is_readable(sk);
2962 
2963 	return false;
2964 }
2965 #endif	/* _SOCK_H */
2966