1 // SPDX-License-Identifier: GPL-2.0-or-later
2 // SPI init/core code
3 //
4 // Copyright (C) 2005 David Brownell
5 // Copyright (C) 2008 Secret Lab Technologies Ltd.
6 
7 #include <linux/acpi.h>
8 #include <linux/cache.h>
9 #include <linux/clk/clk-conf.h>
10 #include <linux/delay.h>
11 #include <linux/device.h>
12 #include <linux/dmaengine.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/export.h>
15 #include <linux/gpio/consumer.h>
16 #include <linux/highmem.h>
17 #include <linux/idr.h>
18 #include <linux/init.h>
19 #include <linux/ioport.h>
20 #include <linux/kernel.h>
21 #include <linux/kthread.h>
22 #include <linux/mod_devicetable.h>
23 #include <linux/mutex.h>
24 #include <linux/of_device.h>
25 #include <linux/of_irq.h>
26 #include <linux/percpu.h>
27 #include <linux/platform_data/x86/apple.h>
28 #include <linux/pm_domain.h>
29 #include <linux/pm_runtime.h>
30 #include <linux/property.h>
31 #include <linux/ptp_clock_kernel.h>
32 #include <linux/sched/rt.h>
33 #include <linux/slab.h>
34 #include <linux/spi/spi.h>
35 #include <linux/spi/spi-mem.h>
36 #include <uapi/linux/sched/types.h>
37 
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/spi.h>
40 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start);
41 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop);
42 
43 #include "internals.h"
44 
45 static DEFINE_IDR(spi_master_idr);
46 
spidev_release(struct device * dev)47 static void spidev_release(struct device *dev)
48 {
49 	struct spi_device	*spi = to_spi_device(dev);
50 
51 	spi_controller_put(spi->controller);
52 	kfree(spi->driver_override);
53 	free_percpu(spi->pcpu_statistics);
54 	kfree(spi);
55 }
56 
57 static ssize_t
modalias_show(struct device * dev,struct device_attribute * a,char * buf)58 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
59 {
60 	const struct spi_device	*spi = to_spi_device(dev);
61 	int len;
62 
63 	len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
64 	if (len != -ENODEV)
65 		return len;
66 
67 	return sysfs_emit(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
68 }
69 static DEVICE_ATTR_RO(modalias);
70 
driver_override_store(struct device * dev,struct device_attribute * a,const char * buf,size_t count)71 static ssize_t driver_override_store(struct device *dev,
72 				     struct device_attribute *a,
73 				     const char *buf, size_t count)
74 {
75 	struct spi_device *spi = to_spi_device(dev);
76 	int ret;
77 
78 	ret = driver_set_override(dev, &spi->driver_override, buf, count);
79 	if (ret)
80 		return ret;
81 
82 	return count;
83 }
84 
driver_override_show(struct device * dev,struct device_attribute * a,char * buf)85 static ssize_t driver_override_show(struct device *dev,
86 				    struct device_attribute *a, char *buf)
87 {
88 	const struct spi_device *spi = to_spi_device(dev);
89 	ssize_t len;
90 
91 	device_lock(dev);
92 	len = sysfs_emit(buf, "%s\n", spi->driver_override ? : "");
93 	device_unlock(dev);
94 	return len;
95 }
96 static DEVICE_ATTR_RW(driver_override);
97 
spi_alloc_pcpu_stats(struct device * dev)98 static struct spi_statistics __percpu *spi_alloc_pcpu_stats(struct device *dev)
99 {
100 	struct spi_statistics __percpu *pcpu_stats;
101 
102 	if (dev)
103 		pcpu_stats = devm_alloc_percpu(dev, struct spi_statistics);
104 	else
105 		pcpu_stats = alloc_percpu_gfp(struct spi_statistics, GFP_KERNEL);
106 
107 	if (pcpu_stats) {
108 		int cpu;
109 
110 		for_each_possible_cpu(cpu) {
111 			struct spi_statistics *stat;
112 
113 			stat = per_cpu_ptr(pcpu_stats, cpu);
114 			u64_stats_init(&stat->syncp);
115 		}
116 	}
117 	return pcpu_stats;
118 }
119 
spi_emit_pcpu_stats(struct spi_statistics __percpu * stat,char * buf,size_t offset)120 static ssize_t spi_emit_pcpu_stats(struct spi_statistics __percpu *stat,
121 				   char *buf, size_t offset)
122 {
123 	u64 val = 0;
124 	int i;
125 
126 	for_each_possible_cpu(i) {
127 		const struct spi_statistics *pcpu_stats;
128 		u64_stats_t *field;
129 		unsigned int start;
130 		u64 inc;
131 
132 		pcpu_stats = per_cpu_ptr(stat, i);
133 		field = (void *)pcpu_stats + offset;
134 		do {
135 			start = u64_stats_fetch_begin(&pcpu_stats->syncp);
136 			inc = u64_stats_read(field);
137 		} while (u64_stats_fetch_retry(&pcpu_stats->syncp, start));
138 		val += inc;
139 	}
140 	return sysfs_emit(buf, "%llu\n", val);
141 }
142 
143 #define SPI_STATISTICS_ATTRS(field, file)				\
144 static ssize_t spi_controller_##field##_show(struct device *dev,	\
145 					     struct device_attribute *attr, \
146 					     char *buf)			\
147 {									\
148 	struct spi_controller *ctlr = container_of(dev,			\
149 					 struct spi_controller, dev);	\
150 	return spi_statistics_##field##_show(ctlr->pcpu_statistics, buf); \
151 }									\
152 static struct device_attribute dev_attr_spi_controller_##field = {	\
153 	.attr = { .name = file, .mode = 0444 },				\
154 	.show = spi_controller_##field##_show,				\
155 };									\
156 static ssize_t spi_device_##field##_show(struct device *dev,		\
157 					 struct device_attribute *attr,	\
158 					char *buf)			\
159 {									\
160 	struct spi_device *spi = to_spi_device(dev);			\
161 	return spi_statistics_##field##_show(spi->pcpu_statistics, buf); \
162 }									\
163 static struct device_attribute dev_attr_spi_device_##field = {		\
164 	.attr = { .name = file, .mode = 0444 },				\
165 	.show = spi_device_##field##_show,				\
166 }
167 
168 #define SPI_STATISTICS_SHOW_NAME(name, file, field)			\
169 static ssize_t spi_statistics_##name##_show(struct spi_statistics __percpu *stat, \
170 					    char *buf)			\
171 {									\
172 	return spi_emit_pcpu_stats(stat, buf,				\
173 			offsetof(struct spi_statistics, field));	\
174 }									\
175 SPI_STATISTICS_ATTRS(name, file)
176 
177 #define SPI_STATISTICS_SHOW(field)					\
178 	SPI_STATISTICS_SHOW_NAME(field, __stringify(field),		\
179 				 field)
180 
181 SPI_STATISTICS_SHOW(messages);
182 SPI_STATISTICS_SHOW(transfers);
183 SPI_STATISTICS_SHOW(errors);
184 SPI_STATISTICS_SHOW(timedout);
185 
186 SPI_STATISTICS_SHOW(spi_sync);
187 SPI_STATISTICS_SHOW(spi_sync_immediate);
188 SPI_STATISTICS_SHOW(spi_async);
189 
190 SPI_STATISTICS_SHOW(bytes);
191 SPI_STATISTICS_SHOW(bytes_rx);
192 SPI_STATISTICS_SHOW(bytes_tx);
193 
194 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number)		\
195 	SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index,		\
196 				 "transfer_bytes_histo_" number,	\
197 				 transfer_bytes_histo[index])
198 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0,  "0-1");
199 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1,  "2-3");
200 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2,  "4-7");
201 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3,  "8-15");
202 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4,  "16-31");
203 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5,  "32-63");
204 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6,  "64-127");
205 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7,  "128-255");
206 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8,  "256-511");
207 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9,  "512-1023");
208 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
209 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
210 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
211 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
212 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
213 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
214 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
215 
216 SPI_STATISTICS_SHOW(transfers_split_maxsize);
217 
218 static struct attribute *spi_dev_attrs[] = {
219 	&dev_attr_modalias.attr,
220 	&dev_attr_driver_override.attr,
221 	NULL,
222 };
223 
224 static const struct attribute_group spi_dev_group = {
225 	.attrs  = spi_dev_attrs,
226 };
227 
228 static struct attribute *spi_device_statistics_attrs[] = {
229 	&dev_attr_spi_device_messages.attr,
230 	&dev_attr_spi_device_transfers.attr,
231 	&dev_attr_spi_device_errors.attr,
232 	&dev_attr_spi_device_timedout.attr,
233 	&dev_attr_spi_device_spi_sync.attr,
234 	&dev_attr_spi_device_spi_sync_immediate.attr,
235 	&dev_attr_spi_device_spi_async.attr,
236 	&dev_attr_spi_device_bytes.attr,
237 	&dev_attr_spi_device_bytes_rx.attr,
238 	&dev_attr_spi_device_bytes_tx.attr,
239 	&dev_attr_spi_device_transfer_bytes_histo0.attr,
240 	&dev_attr_spi_device_transfer_bytes_histo1.attr,
241 	&dev_attr_spi_device_transfer_bytes_histo2.attr,
242 	&dev_attr_spi_device_transfer_bytes_histo3.attr,
243 	&dev_attr_spi_device_transfer_bytes_histo4.attr,
244 	&dev_attr_spi_device_transfer_bytes_histo5.attr,
245 	&dev_attr_spi_device_transfer_bytes_histo6.attr,
246 	&dev_attr_spi_device_transfer_bytes_histo7.attr,
247 	&dev_attr_spi_device_transfer_bytes_histo8.attr,
248 	&dev_attr_spi_device_transfer_bytes_histo9.attr,
249 	&dev_attr_spi_device_transfer_bytes_histo10.attr,
250 	&dev_attr_spi_device_transfer_bytes_histo11.attr,
251 	&dev_attr_spi_device_transfer_bytes_histo12.attr,
252 	&dev_attr_spi_device_transfer_bytes_histo13.attr,
253 	&dev_attr_spi_device_transfer_bytes_histo14.attr,
254 	&dev_attr_spi_device_transfer_bytes_histo15.attr,
255 	&dev_attr_spi_device_transfer_bytes_histo16.attr,
256 	&dev_attr_spi_device_transfers_split_maxsize.attr,
257 	NULL,
258 };
259 
260 static const struct attribute_group spi_device_statistics_group = {
261 	.name  = "statistics",
262 	.attrs  = spi_device_statistics_attrs,
263 };
264 
265 static const struct attribute_group *spi_dev_groups[] = {
266 	&spi_dev_group,
267 	&spi_device_statistics_group,
268 	NULL,
269 };
270 
271 static struct attribute *spi_controller_statistics_attrs[] = {
272 	&dev_attr_spi_controller_messages.attr,
273 	&dev_attr_spi_controller_transfers.attr,
274 	&dev_attr_spi_controller_errors.attr,
275 	&dev_attr_spi_controller_timedout.attr,
276 	&dev_attr_spi_controller_spi_sync.attr,
277 	&dev_attr_spi_controller_spi_sync_immediate.attr,
278 	&dev_attr_spi_controller_spi_async.attr,
279 	&dev_attr_spi_controller_bytes.attr,
280 	&dev_attr_spi_controller_bytes_rx.attr,
281 	&dev_attr_spi_controller_bytes_tx.attr,
282 	&dev_attr_spi_controller_transfer_bytes_histo0.attr,
283 	&dev_attr_spi_controller_transfer_bytes_histo1.attr,
284 	&dev_attr_spi_controller_transfer_bytes_histo2.attr,
285 	&dev_attr_spi_controller_transfer_bytes_histo3.attr,
286 	&dev_attr_spi_controller_transfer_bytes_histo4.attr,
287 	&dev_attr_spi_controller_transfer_bytes_histo5.attr,
288 	&dev_attr_spi_controller_transfer_bytes_histo6.attr,
289 	&dev_attr_spi_controller_transfer_bytes_histo7.attr,
290 	&dev_attr_spi_controller_transfer_bytes_histo8.attr,
291 	&dev_attr_spi_controller_transfer_bytes_histo9.attr,
292 	&dev_attr_spi_controller_transfer_bytes_histo10.attr,
293 	&dev_attr_spi_controller_transfer_bytes_histo11.attr,
294 	&dev_attr_spi_controller_transfer_bytes_histo12.attr,
295 	&dev_attr_spi_controller_transfer_bytes_histo13.attr,
296 	&dev_attr_spi_controller_transfer_bytes_histo14.attr,
297 	&dev_attr_spi_controller_transfer_bytes_histo15.attr,
298 	&dev_attr_spi_controller_transfer_bytes_histo16.attr,
299 	&dev_attr_spi_controller_transfers_split_maxsize.attr,
300 	NULL,
301 };
302 
303 static const struct attribute_group spi_controller_statistics_group = {
304 	.name  = "statistics",
305 	.attrs  = spi_controller_statistics_attrs,
306 };
307 
308 static const struct attribute_group *spi_master_groups[] = {
309 	&spi_controller_statistics_group,
310 	NULL,
311 };
312 
spi_statistics_add_transfer_stats(struct spi_statistics __percpu * pcpu_stats,struct spi_transfer * xfer,struct spi_message * msg)313 static void spi_statistics_add_transfer_stats(struct spi_statistics __percpu *pcpu_stats,
314 					      struct spi_transfer *xfer,
315 					      struct spi_message *msg)
316 {
317 	int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
318 	struct spi_statistics *stats;
319 
320 	if (l2len < 0)
321 		l2len = 0;
322 
323 	get_cpu();
324 	stats = this_cpu_ptr(pcpu_stats);
325 	u64_stats_update_begin(&stats->syncp);
326 
327 	u64_stats_inc(&stats->transfers);
328 	u64_stats_inc(&stats->transfer_bytes_histo[l2len]);
329 
330 	u64_stats_add(&stats->bytes, xfer->len);
331 	if (spi_valid_txbuf(msg, xfer))
332 		u64_stats_add(&stats->bytes_tx, xfer->len);
333 	if (spi_valid_rxbuf(msg, xfer))
334 		u64_stats_add(&stats->bytes_rx, xfer->len);
335 
336 	u64_stats_update_end(&stats->syncp);
337 	put_cpu();
338 }
339 
340 /*
341  * modalias support makes "modprobe $MODALIAS" new-style hotplug work,
342  * and the sysfs version makes coldplug work too.
343  */
spi_match_id(const struct spi_device_id * id,const char * name)344 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id, const char *name)
345 {
346 	while (id->name[0]) {
347 		if (!strcmp(name, id->name))
348 			return id;
349 		id++;
350 	}
351 	return NULL;
352 }
353 
spi_get_device_id(const struct spi_device * sdev)354 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
355 {
356 	const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
357 
358 	return spi_match_id(sdrv->id_table, sdev->modalias);
359 }
360 EXPORT_SYMBOL_GPL(spi_get_device_id);
361 
spi_get_device_match_data(const struct spi_device * sdev)362 const void *spi_get_device_match_data(const struct spi_device *sdev)
363 {
364 	const void *match;
365 
366 	match = device_get_match_data(&sdev->dev);
367 	if (match)
368 		return match;
369 
370 	return (const void *)spi_get_device_id(sdev)->driver_data;
371 }
372 EXPORT_SYMBOL_GPL(spi_get_device_match_data);
373 
spi_match_device(struct device * dev,const struct device_driver * drv)374 static int spi_match_device(struct device *dev, const struct device_driver *drv)
375 {
376 	const struct spi_device	*spi = to_spi_device(dev);
377 	const struct spi_driver	*sdrv = to_spi_driver(drv);
378 
379 	/* Check override first, and if set, only use the named driver */
380 	if (spi->driver_override)
381 		return strcmp(spi->driver_override, drv->name) == 0;
382 
383 	/* Attempt an OF style match */
384 	if (of_driver_match_device(dev, drv))
385 		return 1;
386 
387 	/* Then try ACPI */
388 	if (acpi_driver_match_device(dev, drv))
389 		return 1;
390 
391 	if (sdrv->id_table)
392 		return !!spi_match_id(sdrv->id_table, spi->modalias);
393 
394 	return strcmp(spi->modalias, drv->name) == 0;
395 }
396 
spi_uevent(const struct device * dev,struct kobj_uevent_env * env)397 static int spi_uevent(const struct device *dev, struct kobj_uevent_env *env)
398 {
399 	const struct spi_device		*spi = to_spi_device(dev);
400 	int rc;
401 
402 	rc = acpi_device_uevent_modalias(dev, env);
403 	if (rc != -ENODEV)
404 		return rc;
405 
406 	return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
407 }
408 
spi_probe(struct device * dev)409 static int spi_probe(struct device *dev)
410 {
411 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
412 	struct spi_device		*spi = to_spi_device(dev);
413 	int ret;
414 
415 	ret = of_clk_set_defaults(dev->of_node, false);
416 	if (ret)
417 		return ret;
418 
419 	if (dev->of_node) {
420 		spi->irq = of_irq_get(dev->of_node, 0);
421 		if (spi->irq == -EPROBE_DEFER)
422 			return -EPROBE_DEFER;
423 		if (spi->irq < 0)
424 			spi->irq = 0;
425 	}
426 
427 	if (has_acpi_companion(dev) && spi->irq < 0) {
428 		struct acpi_device *adev = to_acpi_device_node(dev->fwnode);
429 
430 		spi->irq = acpi_dev_gpio_irq_get(adev, 0);
431 		if (spi->irq == -EPROBE_DEFER)
432 			return -EPROBE_DEFER;
433 		if (spi->irq < 0)
434 			spi->irq = 0;
435 	}
436 
437 	ret = dev_pm_domain_attach(dev, true);
438 	if (ret)
439 		return ret;
440 
441 	if (sdrv->probe) {
442 		ret = sdrv->probe(spi);
443 		if (ret)
444 			dev_pm_domain_detach(dev, true);
445 	}
446 
447 	return ret;
448 }
449 
spi_remove(struct device * dev)450 static void spi_remove(struct device *dev)
451 {
452 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
453 
454 	if (sdrv->remove)
455 		sdrv->remove(to_spi_device(dev));
456 
457 	dev_pm_domain_detach(dev, true);
458 }
459 
spi_shutdown(struct device * dev)460 static void spi_shutdown(struct device *dev)
461 {
462 	if (dev->driver) {
463 		const struct spi_driver	*sdrv = to_spi_driver(dev->driver);
464 
465 		if (sdrv->shutdown)
466 			sdrv->shutdown(to_spi_device(dev));
467 	}
468 }
469 
470 const struct bus_type spi_bus_type = {
471 	.name		= "spi",
472 	.dev_groups	= spi_dev_groups,
473 	.match		= spi_match_device,
474 	.uevent		= spi_uevent,
475 	.probe		= spi_probe,
476 	.remove		= spi_remove,
477 	.shutdown	= spi_shutdown,
478 };
479 EXPORT_SYMBOL_GPL(spi_bus_type);
480 
481 /**
482  * __spi_register_driver - register a SPI driver
483  * @owner: owner module of the driver to register
484  * @sdrv: the driver to register
485  * Context: can sleep
486  *
487  * Return: zero on success, else a negative error code.
488  */
__spi_register_driver(struct module * owner,struct spi_driver * sdrv)489 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
490 {
491 	sdrv->driver.owner = owner;
492 	sdrv->driver.bus = &spi_bus_type;
493 
494 	/*
495 	 * For Really Good Reasons we use spi: modaliases not of:
496 	 * modaliases for DT so module autoloading won't work if we
497 	 * don't have a spi_device_id as well as a compatible string.
498 	 */
499 	if (sdrv->driver.of_match_table) {
500 		const struct of_device_id *of_id;
501 
502 		for (of_id = sdrv->driver.of_match_table; of_id->compatible[0];
503 		     of_id++) {
504 			const char *of_name;
505 
506 			/* Strip off any vendor prefix */
507 			of_name = strnchr(of_id->compatible,
508 					  sizeof(of_id->compatible), ',');
509 			if (of_name)
510 				of_name++;
511 			else
512 				of_name = of_id->compatible;
513 
514 			if (sdrv->id_table) {
515 				const struct spi_device_id *spi_id;
516 
517 				spi_id = spi_match_id(sdrv->id_table, of_name);
518 				if (spi_id)
519 					continue;
520 			} else {
521 				if (strcmp(sdrv->driver.name, of_name) == 0)
522 					continue;
523 			}
524 
525 			pr_warn("SPI driver %s has no spi_device_id for %s\n",
526 				sdrv->driver.name, of_id->compatible);
527 		}
528 	}
529 
530 	return driver_register(&sdrv->driver);
531 }
532 EXPORT_SYMBOL_GPL(__spi_register_driver);
533 
534 /*-------------------------------------------------------------------------*/
535 
536 /*
537  * SPI devices should normally not be created by SPI device drivers; that
538  * would make them board-specific.  Similarly with SPI controller drivers.
539  * Device registration normally goes into like arch/.../mach.../board-YYY.c
540  * with other readonly (flashable) information about mainboard devices.
541  */
542 
543 struct boardinfo {
544 	struct list_head	list;
545 	struct spi_board_info	board_info;
546 };
547 
548 static LIST_HEAD(board_list);
549 static LIST_HEAD(spi_controller_list);
550 
551 /*
552  * Used to protect add/del operation for board_info list and
553  * spi_controller list, and their matching process also used
554  * to protect object of type struct idr.
555  */
556 static DEFINE_MUTEX(board_lock);
557 
558 /**
559  * spi_alloc_device - Allocate a new SPI device
560  * @ctlr: Controller to which device is connected
561  * Context: can sleep
562  *
563  * Allows a driver to allocate and initialize a spi_device without
564  * registering it immediately.  This allows a driver to directly
565  * fill the spi_device with device parameters before calling
566  * spi_add_device() on it.
567  *
568  * Caller is responsible to call spi_add_device() on the returned
569  * spi_device structure to add it to the SPI controller.  If the caller
570  * needs to discard the spi_device without adding it, then it should
571  * call spi_dev_put() on it.
572  *
573  * Return: a pointer to the new device, or NULL.
574  */
spi_alloc_device(struct spi_controller * ctlr)575 struct spi_device *spi_alloc_device(struct spi_controller *ctlr)
576 {
577 	struct spi_device	*spi;
578 
579 	if (!spi_controller_get(ctlr))
580 		return NULL;
581 
582 	spi = kzalloc(sizeof(*spi), GFP_KERNEL);
583 	if (!spi) {
584 		spi_controller_put(ctlr);
585 		return NULL;
586 	}
587 
588 	spi->pcpu_statistics = spi_alloc_pcpu_stats(NULL);
589 	if (!spi->pcpu_statistics) {
590 		kfree(spi);
591 		spi_controller_put(ctlr);
592 		return NULL;
593 	}
594 
595 	spi->controller = ctlr;
596 	spi->dev.parent = &ctlr->dev;
597 	spi->dev.bus = &spi_bus_type;
598 	spi->dev.release = spidev_release;
599 	spi->mode = ctlr->buswidth_override_bits;
600 
601 	device_initialize(&spi->dev);
602 	return spi;
603 }
604 EXPORT_SYMBOL_GPL(spi_alloc_device);
605 
spi_dev_set_name(struct spi_device * spi)606 static void spi_dev_set_name(struct spi_device *spi)
607 {
608 	struct device *dev = &spi->dev;
609 	struct fwnode_handle *fwnode = dev_fwnode(dev);
610 
611 	if (is_acpi_device_node(fwnode)) {
612 		dev_set_name(dev, "spi-%s", acpi_dev_name(to_acpi_device_node(fwnode)));
613 		return;
614 	}
615 
616 	if (is_software_node(fwnode)) {
617 		dev_set_name(dev, "spi-%pfwP", fwnode);
618 		return;
619 	}
620 
621 	dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev),
622 		     spi_get_chipselect(spi, 0));
623 }
624 
625 /*
626  * Zero(0) is a valid physical CS value and can be located at any
627  * logical CS in the spi->chip_select[]. If all the physical CS
628  * are initialized to 0 then It would be difficult to differentiate
629  * between a valid physical CS 0 & an unused logical CS whose physical
630  * CS can be 0. As a solution to this issue initialize all the CS to -1.
631  * Now all the unused logical CS will have -1 physical CS value & can be
632  * ignored while performing physical CS validity checks.
633  */
634 #define SPI_INVALID_CS		((s8)-1)
635 
is_valid_cs(s8 chip_select)636 static inline bool is_valid_cs(s8 chip_select)
637 {
638 	return chip_select != SPI_INVALID_CS;
639 }
640 
spi_dev_check_cs(struct device * dev,struct spi_device * spi,u8 idx,struct spi_device * new_spi,u8 new_idx)641 static inline int spi_dev_check_cs(struct device *dev,
642 				   struct spi_device *spi, u8 idx,
643 				   struct spi_device *new_spi, u8 new_idx)
644 {
645 	u8 cs, cs_new;
646 	u8 idx_new;
647 
648 	cs = spi_get_chipselect(spi, idx);
649 	for (idx_new = new_idx; idx_new < SPI_CS_CNT_MAX; idx_new++) {
650 		cs_new = spi_get_chipselect(new_spi, idx_new);
651 		if (is_valid_cs(cs) && is_valid_cs(cs_new) && cs == cs_new) {
652 			dev_err(dev, "chipselect %u already in use\n", cs_new);
653 			return -EBUSY;
654 		}
655 	}
656 	return 0;
657 }
658 
spi_dev_check(struct device * dev,void * data)659 static int spi_dev_check(struct device *dev, void *data)
660 {
661 	struct spi_device *spi = to_spi_device(dev);
662 	struct spi_device *new_spi = data;
663 	int status, idx;
664 
665 	if (spi->controller == new_spi->controller) {
666 		for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) {
667 			status = spi_dev_check_cs(dev, spi, idx, new_spi, 0);
668 			if (status)
669 				return status;
670 		}
671 	}
672 	return 0;
673 }
674 
spi_cleanup(struct spi_device * spi)675 static void spi_cleanup(struct spi_device *spi)
676 {
677 	if (spi->controller->cleanup)
678 		spi->controller->cleanup(spi);
679 }
680 
__spi_add_device(struct spi_device * spi)681 static int __spi_add_device(struct spi_device *spi)
682 {
683 	struct spi_controller *ctlr = spi->controller;
684 	struct device *dev = ctlr->dev.parent;
685 	int status, idx;
686 	u8 cs;
687 
688 	for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) {
689 		/* Chipselects are numbered 0..max; validate. */
690 		cs = spi_get_chipselect(spi, idx);
691 		if (is_valid_cs(cs) && cs >= ctlr->num_chipselect) {
692 			dev_err(dev, "cs%d >= max %d\n", spi_get_chipselect(spi, idx),
693 				ctlr->num_chipselect);
694 			return -EINVAL;
695 		}
696 	}
697 
698 	/*
699 	 * Make sure that multiple logical CS doesn't map to the same physical CS.
700 	 * For example, spi->chip_select[0] != spi->chip_select[1] and so on.
701 	 */
702 	if (!spi_controller_is_target(ctlr)) {
703 		for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) {
704 			status = spi_dev_check_cs(dev, spi, idx, spi, idx + 1);
705 			if (status)
706 				return status;
707 		}
708 	}
709 
710 	/* Set the bus ID string */
711 	spi_dev_set_name(spi);
712 
713 	/*
714 	 * We need to make sure there's no other device with this
715 	 * chipselect **BEFORE** we call setup(), else we'll trash
716 	 * its configuration.
717 	 */
718 	status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
719 	if (status)
720 		return status;
721 
722 	/* Controller may unregister concurrently */
723 	if (IS_ENABLED(CONFIG_SPI_DYNAMIC) &&
724 	    !device_is_registered(&ctlr->dev)) {
725 		return -ENODEV;
726 	}
727 
728 	if (ctlr->cs_gpiods) {
729 		u8 cs;
730 
731 		for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) {
732 			cs = spi_get_chipselect(spi, idx);
733 			if (is_valid_cs(cs))
734 				spi_set_csgpiod(spi, idx, ctlr->cs_gpiods[cs]);
735 		}
736 	}
737 
738 	/*
739 	 * Drivers may modify this initial i/o setup, but will
740 	 * normally rely on the device being setup.  Devices
741 	 * using SPI_CS_HIGH can't coexist well otherwise...
742 	 */
743 	status = spi_setup(spi);
744 	if (status < 0) {
745 		dev_err(dev, "can't setup %s, status %d\n",
746 				dev_name(&spi->dev), status);
747 		return status;
748 	}
749 
750 	/* Device may be bound to an active driver when this returns */
751 	status = device_add(&spi->dev);
752 	if (status < 0) {
753 		dev_err(dev, "can't add %s, status %d\n",
754 				dev_name(&spi->dev), status);
755 		spi_cleanup(spi);
756 	} else {
757 		dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
758 	}
759 
760 	return status;
761 }
762 
763 /**
764  * spi_add_device - Add spi_device allocated with spi_alloc_device
765  * @spi: spi_device to register
766  *
767  * Companion function to spi_alloc_device.  Devices allocated with
768  * spi_alloc_device can be added onto the SPI bus with this function.
769  *
770  * Return: 0 on success; negative errno on failure
771  */
spi_add_device(struct spi_device * spi)772 int spi_add_device(struct spi_device *spi)
773 {
774 	struct spi_controller *ctlr = spi->controller;
775 	int status;
776 
777 	/* Set the bus ID string */
778 	spi_dev_set_name(spi);
779 
780 	mutex_lock(&ctlr->add_lock);
781 	status = __spi_add_device(spi);
782 	mutex_unlock(&ctlr->add_lock);
783 	return status;
784 }
785 EXPORT_SYMBOL_GPL(spi_add_device);
786 
spi_set_all_cs_unused(struct spi_device * spi)787 static void spi_set_all_cs_unused(struct spi_device *spi)
788 {
789 	u8 idx;
790 
791 	for (idx = 0; idx < SPI_CS_CNT_MAX; idx++)
792 		spi_set_chipselect(spi, idx, SPI_INVALID_CS);
793 }
794 
795 /**
796  * spi_new_device - instantiate one new SPI device
797  * @ctlr: Controller to which device is connected
798  * @chip: Describes the SPI device
799  * Context: can sleep
800  *
801  * On typical mainboards, this is purely internal; and it's not needed
802  * after board init creates the hard-wired devices.  Some development
803  * platforms may not be able to use spi_register_board_info though, and
804  * this is exported so that for example a USB or parport based adapter
805  * driver could add devices (which it would learn about out-of-band).
806  *
807  * Return: the new device, or NULL.
808  */
spi_new_device(struct spi_controller * ctlr,struct spi_board_info * chip)809 struct spi_device *spi_new_device(struct spi_controller *ctlr,
810 				  struct spi_board_info *chip)
811 {
812 	struct spi_device	*proxy;
813 	int			status;
814 
815 	/*
816 	 * NOTE:  caller did any chip->bus_num checks necessary.
817 	 *
818 	 * Also, unless we change the return value convention to use
819 	 * error-or-pointer (not NULL-or-pointer), troubleshootability
820 	 * suggests syslogged diagnostics are best here (ugh).
821 	 */
822 
823 	proxy = spi_alloc_device(ctlr);
824 	if (!proxy)
825 		return NULL;
826 
827 	WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
828 
829 	/* Use provided chip-select for proxy device */
830 	spi_set_all_cs_unused(proxy);
831 	spi_set_chipselect(proxy, 0, chip->chip_select);
832 
833 	proxy->max_speed_hz = chip->max_speed_hz;
834 	proxy->mode = chip->mode;
835 	proxy->irq = chip->irq;
836 	strscpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
837 	proxy->dev.platform_data = (void *) chip->platform_data;
838 	proxy->controller_data = chip->controller_data;
839 	proxy->controller_state = NULL;
840 	/*
841 	 * By default spi->chip_select[0] will hold the physical CS number,
842 	 * so set bit 0 in spi->cs_index_mask.
843 	 */
844 	proxy->cs_index_mask = BIT(0);
845 
846 	if (chip->swnode) {
847 		status = device_add_software_node(&proxy->dev, chip->swnode);
848 		if (status) {
849 			dev_err(&ctlr->dev, "failed to add software node to '%s': %d\n",
850 				chip->modalias, status);
851 			goto err_dev_put;
852 		}
853 	}
854 
855 	status = spi_add_device(proxy);
856 	if (status < 0)
857 		goto err_dev_put;
858 
859 	return proxy;
860 
861 err_dev_put:
862 	device_remove_software_node(&proxy->dev);
863 	spi_dev_put(proxy);
864 	return NULL;
865 }
866 EXPORT_SYMBOL_GPL(spi_new_device);
867 
868 /**
869  * spi_unregister_device - unregister a single SPI device
870  * @spi: spi_device to unregister
871  *
872  * Start making the passed SPI device vanish. Normally this would be handled
873  * by spi_unregister_controller().
874  */
spi_unregister_device(struct spi_device * spi)875 void spi_unregister_device(struct spi_device *spi)
876 {
877 	if (!spi)
878 		return;
879 
880 	if (spi->dev.of_node) {
881 		of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
882 		of_node_put(spi->dev.of_node);
883 	}
884 	if (ACPI_COMPANION(&spi->dev))
885 		acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
886 	device_remove_software_node(&spi->dev);
887 	device_del(&spi->dev);
888 	spi_cleanup(spi);
889 	put_device(&spi->dev);
890 }
891 EXPORT_SYMBOL_GPL(spi_unregister_device);
892 
spi_match_controller_to_boardinfo(struct spi_controller * ctlr,struct spi_board_info * bi)893 static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr,
894 					      struct spi_board_info *bi)
895 {
896 	struct spi_device *dev;
897 
898 	if (ctlr->bus_num != bi->bus_num)
899 		return;
900 
901 	dev = spi_new_device(ctlr, bi);
902 	if (!dev)
903 		dev_err(ctlr->dev.parent, "can't create new device for %s\n",
904 			bi->modalias);
905 }
906 
907 /**
908  * spi_register_board_info - register SPI devices for a given board
909  * @info: array of chip descriptors
910  * @n: how many descriptors are provided
911  * Context: can sleep
912  *
913  * Board-specific early init code calls this (probably during arch_initcall)
914  * with segments of the SPI device table.  Any device nodes are created later,
915  * after the relevant parent SPI controller (bus_num) is defined.  We keep
916  * this table of devices forever, so that reloading a controller driver will
917  * not make Linux forget about these hard-wired devices.
918  *
919  * Other code can also call this, e.g. a particular add-on board might provide
920  * SPI devices through its expansion connector, so code initializing that board
921  * would naturally declare its SPI devices.
922  *
923  * The board info passed can safely be __initdata ... but be careful of
924  * any embedded pointers (platform_data, etc), they're copied as-is.
925  *
926  * Return: zero on success, else a negative error code.
927  */
spi_register_board_info(struct spi_board_info const * info,unsigned n)928 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
929 {
930 	struct boardinfo *bi;
931 	int i;
932 
933 	if (!n)
934 		return 0;
935 
936 	bi = kcalloc(n, sizeof(*bi), GFP_KERNEL);
937 	if (!bi)
938 		return -ENOMEM;
939 
940 	for (i = 0; i < n; i++, bi++, info++) {
941 		struct spi_controller *ctlr;
942 
943 		memcpy(&bi->board_info, info, sizeof(*info));
944 
945 		mutex_lock(&board_lock);
946 		list_add_tail(&bi->list, &board_list);
947 		list_for_each_entry(ctlr, &spi_controller_list, list)
948 			spi_match_controller_to_boardinfo(ctlr,
949 							  &bi->board_info);
950 		mutex_unlock(&board_lock);
951 	}
952 
953 	return 0;
954 }
955 
956 /*-------------------------------------------------------------------------*/
957 
958 /* Core methods for SPI resource management */
959 
960 /**
961  * spi_res_alloc - allocate a spi resource that is life-cycle managed
962  *                 during the processing of a spi_message while using
963  *                 spi_transfer_one
964  * @spi:     the SPI device for which we allocate memory
965  * @release: the release code to execute for this resource
966  * @size:    size to alloc and return
967  * @gfp:     GFP allocation flags
968  *
969  * Return: the pointer to the allocated data
970  *
971  * This may get enhanced in the future to allocate from a memory pool
972  * of the @spi_device or @spi_controller to avoid repeated allocations.
973  */
spi_res_alloc(struct spi_device * spi,spi_res_release_t release,size_t size,gfp_t gfp)974 static void *spi_res_alloc(struct spi_device *spi, spi_res_release_t release,
975 			   size_t size, gfp_t gfp)
976 {
977 	struct spi_res *sres;
978 
979 	sres = kzalloc(sizeof(*sres) + size, gfp);
980 	if (!sres)
981 		return NULL;
982 
983 	INIT_LIST_HEAD(&sres->entry);
984 	sres->release = release;
985 
986 	return sres->data;
987 }
988 
989 /**
990  * spi_res_free - free an SPI resource
991  * @res: pointer to the custom data of a resource
992  */
spi_res_free(void * res)993 static void spi_res_free(void *res)
994 {
995 	struct spi_res *sres = container_of(res, struct spi_res, data);
996 
997 	if (!res)
998 		return;
999 
1000 	WARN_ON(!list_empty(&sres->entry));
1001 	kfree(sres);
1002 }
1003 
1004 /**
1005  * spi_res_add - add a spi_res to the spi_message
1006  * @message: the SPI message
1007  * @res:     the spi_resource
1008  */
spi_res_add(struct spi_message * message,void * res)1009 static void spi_res_add(struct spi_message *message, void *res)
1010 {
1011 	struct spi_res *sres = container_of(res, struct spi_res, data);
1012 
1013 	WARN_ON(!list_empty(&sres->entry));
1014 	list_add_tail(&sres->entry, &message->resources);
1015 }
1016 
1017 /**
1018  * spi_res_release - release all SPI resources for this message
1019  * @ctlr:  the @spi_controller
1020  * @message: the @spi_message
1021  */
spi_res_release(struct spi_controller * ctlr,struct spi_message * message)1022 static void spi_res_release(struct spi_controller *ctlr, struct spi_message *message)
1023 {
1024 	struct spi_res *res, *tmp;
1025 
1026 	list_for_each_entry_safe_reverse(res, tmp, &message->resources, entry) {
1027 		if (res->release)
1028 			res->release(ctlr, message, res->data);
1029 
1030 		list_del(&res->entry);
1031 
1032 		kfree(res);
1033 	}
1034 }
1035 
1036 /*-------------------------------------------------------------------------*/
1037 #define spi_for_each_valid_cs(spi, idx)				\
1038 	for (idx = 0; idx < SPI_CS_CNT_MAX; idx++)		\
1039 		if (!(spi->cs_index_mask & BIT(idx))) {} else
1040 
spi_is_last_cs(struct spi_device * spi)1041 static inline bool spi_is_last_cs(struct spi_device *spi)
1042 {
1043 	u8 idx;
1044 	bool last = false;
1045 
1046 	spi_for_each_valid_cs(spi, idx) {
1047 		if (spi->controller->last_cs[idx] == spi_get_chipselect(spi, idx))
1048 			last = true;
1049 	}
1050 	return last;
1051 }
1052 
spi_toggle_csgpiod(struct spi_device * spi,u8 idx,bool enable,bool activate)1053 static void spi_toggle_csgpiod(struct spi_device *spi, u8 idx, bool enable, bool activate)
1054 {
1055 	/*
1056 	 * Historically ACPI has no means of the GPIO polarity and
1057 	 * thus the SPISerialBus() resource defines it on the per-chip
1058 	 * basis. In order to avoid a chain of negations, the GPIO
1059 	 * polarity is considered being Active High. Even for the cases
1060 	 * when _DSD() is involved (in the updated versions of ACPI)
1061 	 * the GPIO CS polarity must be defined Active High to avoid
1062 	 * ambiguity. That's why we use enable, that takes SPI_CS_HIGH
1063 	 * into account.
1064 	 */
1065 	if (has_acpi_companion(&spi->dev))
1066 		gpiod_set_value_cansleep(spi_get_csgpiod(spi, idx), !enable);
1067 	else
1068 		/* Polarity handled by GPIO library */
1069 		gpiod_set_value_cansleep(spi_get_csgpiod(spi, idx), activate);
1070 
1071 	if (activate)
1072 		spi_delay_exec(&spi->cs_setup, NULL);
1073 	else
1074 		spi_delay_exec(&spi->cs_inactive, NULL);
1075 }
1076 
spi_set_cs(struct spi_device * spi,bool enable,bool force)1077 static void spi_set_cs(struct spi_device *spi, bool enable, bool force)
1078 {
1079 	bool activate = enable;
1080 	u8 idx;
1081 
1082 	/*
1083 	 * Avoid calling into the driver (or doing delays) if the chip select
1084 	 * isn't actually changing from the last time this was called.
1085 	 */
1086 	if (!force && ((enable && spi->controller->last_cs_index_mask == spi->cs_index_mask &&
1087 			spi_is_last_cs(spi)) ||
1088 		       (!enable && spi->controller->last_cs_index_mask == spi->cs_index_mask &&
1089 			!spi_is_last_cs(spi))) &&
1090 	    (spi->controller->last_cs_mode_high == (spi->mode & SPI_CS_HIGH)))
1091 		return;
1092 
1093 	trace_spi_set_cs(spi, activate);
1094 
1095 	spi->controller->last_cs_index_mask = spi->cs_index_mask;
1096 	for (idx = 0; idx < SPI_CS_CNT_MAX; idx++)
1097 		spi->controller->last_cs[idx] = enable ? spi_get_chipselect(spi, 0) : SPI_INVALID_CS;
1098 	spi->controller->last_cs_mode_high = spi->mode & SPI_CS_HIGH;
1099 
1100 	if (spi->mode & SPI_CS_HIGH)
1101 		enable = !enable;
1102 
1103 	/*
1104 	 * Handle chip select delays for GPIO based CS or controllers without
1105 	 * programmable chip select timing.
1106 	 */
1107 	if ((spi_is_csgpiod(spi) || !spi->controller->set_cs_timing) && !activate)
1108 		spi_delay_exec(&spi->cs_hold, NULL);
1109 
1110 	if (spi_is_csgpiod(spi)) {
1111 		if (!(spi->mode & SPI_NO_CS)) {
1112 			spi_for_each_valid_cs(spi, idx) {
1113 				if (spi_get_csgpiod(spi, idx))
1114 					spi_toggle_csgpiod(spi, idx, enable, activate);
1115 			}
1116 		}
1117 		/* Some SPI masters need both GPIO CS & slave_select */
1118 		if ((spi->controller->flags & SPI_CONTROLLER_GPIO_SS) &&
1119 		    spi->controller->set_cs)
1120 			spi->controller->set_cs(spi, !enable);
1121 	} else if (spi->controller->set_cs) {
1122 		spi->controller->set_cs(spi, !enable);
1123 	}
1124 
1125 	if (spi_is_csgpiod(spi) || !spi->controller->set_cs_timing) {
1126 		if (activate)
1127 			spi_delay_exec(&spi->cs_setup, NULL);
1128 		else
1129 			spi_delay_exec(&spi->cs_inactive, NULL);
1130 	}
1131 }
1132 
1133 #ifdef CONFIG_HAS_DMA
spi_map_buf_attrs(struct spi_controller * ctlr,struct device * dev,struct sg_table * sgt,void * buf,size_t len,enum dma_data_direction dir,unsigned long attrs)1134 static int spi_map_buf_attrs(struct spi_controller *ctlr, struct device *dev,
1135 			     struct sg_table *sgt, void *buf, size_t len,
1136 			     enum dma_data_direction dir, unsigned long attrs)
1137 {
1138 	const bool vmalloced_buf = is_vmalloc_addr(buf);
1139 	unsigned int max_seg_size = dma_get_max_seg_size(dev);
1140 #ifdef CONFIG_HIGHMEM
1141 	const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
1142 				(unsigned long)buf < (PKMAP_BASE +
1143 					(LAST_PKMAP * PAGE_SIZE)));
1144 #else
1145 	const bool kmap_buf = false;
1146 #endif
1147 	int desc_len;
1148 	int sgs;
1149 	struct page *vm_page;
1150 	struct scatterlist *sg;
1151 	void *sg_buf;
1152 	size_t min;
1153 	int i, ret;
1154 
1155 	if (vmalloced_buf || kmap_buf) {
1156 		desc_len = min_t(unsigned long, max_seg_size, PAGE_SIZE);
1157 		sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
1158 	} else if (virt_addr_valid(buf)) {
1159 		desc_len = min_t(size_t, max_seg_size, ctlr->max_dma_len);
1160 		sgs = DIV_ROUND_UP(len, desc_len);
1161 	} else {
1162 		return -EINVAL;
1163 	}
1164 
1165 	ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
1166 	if (ret != 0)
1167 		return ret;
1168 
1169 	sg = &sgt->sgl[0];
1170 	for (i = 0; i < sgs; i++) {
1171 
1172 		if (vmalloced_buf || kmap_buf) {
1173 			/*
1174 			 * Next scatterlist entry size is the minimum between
1175 			 * the desc_len and the remaining buffer length that
1176 			 * fits in a page.
1177 			 */
1178 			min = min_t(size_t, desc_len,
1179 				    min_t(size_t, len,
1180 					  PAGE_SIZE - offset_in_page(buf)));
1181 			if (vmalloced_buf)
1182 				vm_page = vmalloc_to_page(buf);
1183 			else
1184 				vm_page = kmap_to_page(buf);
1185 			if (!vm_page) {
1186 				sg_free_table(sgt);
1187 				return -ENOMEM;
1188 			}
1189 			sg_set_page(sg, vm_page,
1190 				    min, offset_in_page(buf));
1191 		} else {
1192 			min = min_t(size_t, len, desc_len);
1193 			sg_buf = buf;
1194 			sg_set_buf(sg, sg_buf, min);
1195 		}
1196 
1197 		buf += min;
1198 		len -= min;
1199 		sg = sg_next(sg);
1200 	}
1201 
1202 	ret = dma_map_sgtable(dev, sgt, dir, attrs);
1203 	if (ret < 0) {
1204 		sg_free_table(sgt);
1205 		return ret;
1206 	}
1207 
1208 	return 0;
1209 }
1210 
spi_map_buf(struct spi_controller * ctlr,struct device * dev,struct sg_table * sgt,void * buf,size_t len,enum dma_data_direction dir)1211 int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
1212 		struct sg_table *sgt, void *buf, size_t len,
1213 		enum dma_data_direction dir)
1214 {
1215 	return spi_map_buf_attrs(ctlr, dev, sgt, buf, len, dir, 0);
1216 }
1217 
spi_unmap_buf_attrs(struct spi_controller * ctlr,struct device * dev,struct sg_table * sgt,enum dma_data_direction dir,unsigned long attrs)1218 static void spi_unmap_buf_attrs(struct spi_controller *ctlr,
1219 				struct device *dev, struct sg_table *sgt,
1220 				enum dma_data_direction dir,
1221 				unsigned long attrs)
1222 {
1223 	dma_unmap_sgtable(dev, sgt, dir, attrs);
1224 	sg_free_table(sgt);
1225 	sgt->orig_nents = 0;
1226 	sgt->nents = 0;
1227 }
1228 
spi_unmap_buf(struct spi_controller * ctlr,struct device * dev,struct sg_table * sgt,enum dma_data_direction dir)1229 void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev,
1230 		   struct sg_table *sgt, enum dma_data_direction dir)
1231 {
1232 	spi_unmap_buf_attrs(ctlr, dev, sgt, dir, 0);
1233 }
1234 
__spi_map_msg(struct spi_controller * ctlr,struct spi_message * msg)1235 static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1236 {
1237 	struct device *tx_dev, *rx_dev;
1238 	struct spi_transfer *xfer;
1239 	int ret;
1240 
1241 	if (!ctlr->can_dma)
1242 		return 0;
1243 
1244 	if (ctlr->dma_tx)
1245 		tx_dev = ctlr->dma_tx->device->dev;
1246 	else if (ctlr->dma_map_dev)
1247 		tx_dev = ctlr->dma_map_dev;
1248 	else
1249 		tx_dev = ctlr->dev.parent;
1250 
1251 	if (ctlr->dma_rx)
1252 		rx_dev = ctlr->dma_rx->device->dev;
1253 	else if (ctlr->dma_map_dev)
1254 		rx_dev = ctlr->dma_map_dev;
1255 	else
1256 		rx_dev = ctlr->dev.parent;
1257 
1258 	ret = -ENOMSG;
1259 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1260 		/* The sync is done before each transfer. */
1261 		unsigned long attrs = DMA_ATTR_SKIP_CPU_SYNC;
1262 
1263 		if (!ctlr->can_dma(ctlr, msg->spi, xfer))
1264 			continue;
1265 
1266 		if (xfer->tx_buf != NULL) {
1267 			ret = spi_map_buf_attrs(ctlr, tx_dev, &xfer->tx_sg,
1268 						(void *)xfer->tx_buf,
1269 						xfer->len, DMA_TO_DEVICE,
1270 						attrs);
1271 			if (ret != 0)
1272 				return ret;
1273 
1274 			xfer->tx_sg_mapped = true;
1275 		}
1276 
1277 		if (xfer->rx_buf != NULL) {
1278 			ret = spi_map_buf_attrs(ctlr, rx_dev, &xfer->rx_sg,
1279 						xfer->rx_buf, xfer->len,
1280 						DMA_FROM_DEVICE, attrs);
1281 			if (ret != 0) {
1282 				spi_unmap_buf_attrs(ctlr, tx_dev,
1283 						&xfer->tx_sg, DMA_TO_DEVICE,
1284 						attrs);
1285 
1286 				return ret;
1287 			}
1288 
1289 			xfer->rx_sg_mapped = true;
1290 		}
1291 	}
1292 	/* No transfer has been mapped, bail out with success */
1293 	if (ret)
1294 		return 0;
1295 
1296 	ctlr->cur_rx_dma_dev = rx_dev;
1297 	ctlr->cur_tx_dma_dev = tx_dev;
1298 
1299 	return 0;
1300 }
1301 
__spi_unmap_msg(struct spi_controller * ctlr,struct spi_message * msg)1302 static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg)
1303 {
1304 	struct device *rx_dev = ctlr->cur_rx_dma_dev;
1305 	struct device *tx_dev = ctlr->cur_tx_dma_dev;
1306 	struct spi_transfer *xfer;
1307 
1308 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1309 		/* The sync has already been done after each transfer. */
1310 		unsigned long attrs = DMA_ATTR_SKIP_CPU_SYNC;
1311 
1312 		if (xfer->rx_sg_mapped)
1313 			spi_unmap_buf_attrs(ctlr, rx_dev, &xfer->rx_sg,
1314 					    DMA_FROM_DEVICE, attrs);
1315 		xfer->rx_sg_mapped = false;
1316 
1317 		if (xfer->tx_sg_mapped)
1318 			spi_unmap_buf_attrs(ctlr, tx_dev, &xfer->tx_sg,
1319 					    DMA_TO_DEVICE, attrs);
1320 		xfer->tx_sg_mapped = false;
1321 	}
1322 
1323 	return 0;
1324 }
1325 
spi_dma_sync_for_device(struct spi_controller * ctlr,struct spi_transfer * xfer)1326 static void spi_dma_sync_for_device(struct spi_controller *ctlr,
1327 				    struct spi_transfer *xfer)
1328 {
1329 	struct device *rx_dev = ctlr->cur_rx_dma_dev;
1330 	struct device *tx_dev = ctlr->cur_tx_dma_dev;
1331 
1332 	if (xfer->tx_sg_mapped)
1333 		dma_sync_sgtable_for_device(tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
1334 	if (xfer->rx_sg_mapped)
1335 		dma_sync_sgtable_for_device(rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
1336 }
1337 
spi_dma_sync_for_cpu(struct spi_controller * ctlr,struct spi_transfer * xfer)1338 static void spi_dma_sync_for_cpu(struct spi_controller *ctlr,
1339 				 struct spi_transfer *xfer)
1340 {
1341 	struct device *rx_dev = ctlr->cur_rx_dma_dev;
1342 	struct device *tx_dev = ctlr->cur_tx_dma_dev;
1343 
1344 	if (xfer->rx_sg_mapped)
1345 		dma_sync_sgtable_for_cpu(rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
1346 	if (xfer->tx_sg_mapped)
1347 		dma_sync_sgtable_for_cpu(tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
1348 }
1349 #else /* !CONFIG_HAS_DMA */
__spi_map_msg(struct spi_controller * ctlr,struct spi_message * msg)1350 static inline int __spi_map_msg(struct spi_controller *ctlr,
1351 				struct spi_message *msg)
1352 {
1353 	return 0;
1354 }
1355 
__spi_unmap_msg(struct spi_controller * ctlr,struct spi_message * msg)1356 static inline int __spi_unmap_msg(struct spi_controller *ctlr,
1357 				  struct spi_message *msg)
1358 {
1359 	return 0;
1360 }
1361 
spi_dma_sync_for_device(struct spi_controller * ctrl,struct spi_transfer * xfer)1362 static void spi_dma_sync_for_device(struct spi_controller *ctrl,
1363 				    struct spi_transfer *xfer)
1364 {
1365 }
1366 
spi_dma_sync_for_cpu(struct spi_controller * ctrl,struct spi_transfer * xfer)1367 static void spi_dma_sync_for_cpu(struct spi_controller *ctrl,
1368 				 struct spi_transfer *xfer)
1369 {
1370 }
1371 #endif /* !CONFIG_HAS_DMA */
1372 
spi_unmap_msg(struct spi_controller * ctlr,struct spi_message * msg)1373 static inline int spi_unmap_msg(struct spi_controller *ctlr,
1374 				struct spi_message *msg)
1375 {
1376 	struct spi_transfer *xfer;
1377 
1378 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1379 		/*
1380 		 * Restore the original value of tx_buf or rx_buf if they are
1381 		 * NULL.
1382 		 */
1383 		if (xfer->tx_buf == ctlr->dummy_tx)
1384 			xfer->tx_buf = NULL;
1385 		if (xfer->rx_buf == ctlr->dummy_rx)
1386 			xfer->rx_buf = NULL;
1387 	}
1388 
1389 	return __spi_unmap_msg(ctlr, msg);
1390 }
1391 
spi_map_msg(struct spi_controller * ctlr,struct spi_message * msg)1392 static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1393 {
1394 	struct spi_transfer *xfer;
1395 	void *tmp;
1396 	unsigned int max_tx, max_rx;
1397 
1398 	if ((ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX))
1399 		&& !(msg->spi->mode & SPI_3WIRE)) {
1400 		max_tx = 0;
1401 		max_rx = 0;
1402 
1403 		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1404 			if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) &&
1405 			    !xfer->tx_buf)
1406 				max_tx = max(xfer->len, max_tx);
1407 			if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) &&
1408 			    !xfer->rx_buf)
1409 				max_rx = max(xfer->len, max_rx);
1410 		}
1411 
1412 		if (max_tx) {
1413 			tmp = krealloc(ctlr->dummy_tx, max_tx,
1414 				       GFP_KERNEL | GFP_DMA | __GFP_ZERO);
1415 			if (!tmp)
1416 				return -ENOMEM;
1417 			ctlr->dummy_tx = tmp;
1418 		}
1419 
1420 		if (max_rx) {
1421 			tmp = krealloc(ctlr->dummy_rx, max_rx,
1422 				       GFP_KERNEL | GFP_DMA);
1423 			if (!tmp)
1424 				return -ENOMEM;
1425 			ctlr->dummy_rx = tmp;
1426 		}
1427 
1428 		if (max_tx || max_rx) {
1429 			list_for_each_entry(xfer, &msg->transfers,
1430 					    transfer_list) {
1431 				if (!xfer->len)
1432 					continue;
1433 				if (!xfer->tx_buf)
1434 					xfer->tx_buf = ctlr->dummy_tx;
1435 				if (!xfer->rx_buf)
1436 					xfer->rx_buf = ctlr->dummy_rx;
1437 			}
1438 		}
1439 	}
1440 
1441 	return __spi_map_msg(ctlr, msg);
1442 }
1443 
spi_transfer_wait(struct spi_controller * ctlr,struct spi_message * msg,struct spi_transfer * xfer)1444 static int spi_transfer_wait(struct spi_controller *ctlr,
1445 			     struct spi_message *msg,
1446 			     struct spi_transfer *xfer)
1447 {
1448 	struct spi_statistics __percpu *statm = ctlr->pcpu_statistics;
1449 	struct spi_statistics __percpu *stats = msg->spi->pcpu_statistics;
1450 	u32 speed_hz = xfer->speed_hz;
1451 	unsigned long long ms;
1452 
1453 	if (spi_controller_is_target(ctlr)) {
1454 		if (wait_for_completion_interruptible(&ctlr->xfer_completion)) {
1455 			dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n");
1456 			return -EINTR;
1457 		}
1458 	} else {
1459 		if (!speed_hz)
1460 			speed_hz = 100000;
1461 
1462 		/*
1463 		 * For each byte we wait for 8 cycles of the SPI clock.
1464 		 * Since speed is defined in Hz and we want milliseconds,
1465 		 * use respective multiplier, but before the division,
1466 		 * otherwise we may get 0 for short transfers.
1467 		 */
1468 		ms = 8LL * MSEC_PER_SEC * xfer->len;
1469 		do_div(ms, speed_hz);
1470 
1471 		/*
1472 		 * Increase it twice and add 200 ms tolerance, use
1473 		 * predefined maximum in case of overflow.
1474 		 */
1475 		ms += ms + 200;
1476 		if (ms > UINT_MAX)
1477 			ms = UINT_MAX;
1478 
1479 		ms = wait_for_completion_timeout(&ctlr->xfer_completion,
1480 						 msecs_to_jiffies(ms));
1481 
1482 		if (ms == 0) {
1483 			SPI_STATISTICS_INCREMENT_FIELD(statm, timedout);
1484 			SPI_STATISTICS_INCREMENT_FIELD(stats, timedout);
1485 			dev_err(&msg->spi->dev,
1486 				"SPI transfer timed out\n");
1487 			return -ETIMEDOUT;
1488 		}
1489 
1490 		if (xfer->error & SPI_TRANS_FAIL_IO)
1491 			return -EIO;
1492 	}
1493 
1494 	return 0;
1495 }
1496 
_spi_transfer_delay_ns(u32 ns)1497 static void _spi_transfer_delay_ns(u32 ns)
1498 {
1499 	if (!ns)
1500 		return;
1501 	if (ns <= NSEC_PER_USEC) {
1502 		ndelay(ns);
1503 	} else {
1504 		u32 us = DIV_ROUND_UP(ns, NSEC_PER_USEC);
1505 
1506 		if (us <= 10)
1507 			udelay(us);
1508 		else
1509 			usleep_range(us, us + DIV_ROUND_UP(us, 10));
1510 	}
1511 }
1512 
spi_delay_to_ns(struct spi_delay * _delay,struct spi_transfer * xfer)1513 int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer)
1514 {
1515 	u32 delay = _delay->value;
1516 	u32 unit = _delay->unit;
1517 	u32 hz;
1518 
1519 	if (!delay)
1520 		return 0;
1521 
1522 	switch (unit) {
1523 	case SPI_DELAY_UNIT_USECS:
1524 		delay *= NSEC_PER_USEC;
1525 		break;
1526 	case SPI_DELAY_UNIT_NSECS:
1527 		/* Nothing to do here */
1528 		break;
1529 	case SPI_DELAY_UNIT_SCK:
1530 		/* Clock cycles need to be obtained from spi_transfer */
1531 		if (!xfer)
1532 			return -EINVAL;
1533 		/*
1534 		 * If there is unknown effective speed, approximate it
1535 		 * by underestimating with half of the requested Hz.
1536 		 */
1537 		hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2;
1538 		if (!hz)
1539 			return -EINVAL;
1540 
1541 		/* Convert delay to nanoseconds */
1542 		delay *= DIV_ROUND_UP(NSEC_PER_SEC, hz);
1543 		break;
1544 	default:
1545 		return -EINVAL;
1546 	}
1547 
1548 	return delay;
1549 }
1550 EXPORT_SYMBOL_GPL(spi_delay_to_ns);
1551 
spi_delay_exec(struct spi_delay * _delay,struct spi_transfer * xfer)1552 int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer)
1553 {
1554 	int delay;
1555 
1556 	might_sleep();
1557 
1558 	if (!_delay)
1559 		return -EINVAL;
1560 
1561 	delay = spi_delay_to_ns(_delay, xfer);
1562 	if (delay < 0)
1563 		return delay;
1564 
1565 	_spi_transfer_delay_ns(delay);
1566 
1567 	return 0;
1568 }
1569 EXPORT_SYMBOL_GPL(spi_delay_exec);
1570 
_spi_transfer_cs_change_delay(struct spi_message * msg,struct spi_transfer * xfer)1571 static void _spi_transfer_cs_change_delay(struct spi_message *msg,
1572 					  struct spi_transfer *xfer)
1573 {
1574 	u32 default_delay_ns = 10 * NSEC_PER_USEC;
1575 	u32 delay = xfer->cs_change_delay.value;
1576 	u32 unit = xfer->cs_change_delay.unit;
1577 	int ret;
1578 
1579 	/* Return early on "fast" mode - for everything but USECS */
1580 	if (!delay) {
1581 		if (unit == SPI_DELAY_UNIT_USECS)
1582 			_spi_transfer_delay_ns(default_delay_ns);
1583 		return;
1584 	}
1585 
1586 	ret = spi_delay_exec(&xfer->cs_change_delay, xfer);
1587 	if (ret) {
1588 		dev_err_once(&msg->spi->dev,
1589 			     "Use of unsupported delay unit %i, using default of %luus\n",
1590 			     unit, default_delay_ns / NSEC_PER_USEC);
1591 		_spi_transfer_delay_ns(default_delay_ns);
1592 	}
1593 }
1594 
spi_transfer_cs_change_delay_exec(struct spi_message * msg,struct spi_transfer * xfer)1595 void spi_transfer_cs_change_delay_exec(struct spi_message *msg,
1596 						  struct spi_transfer *xfer)
1597 {
1598 	_spi_transfer_cs_change_delay(msg, xfer);
1599 }
1600 EXPORT_SYMBOL_GPL(spi_transfer_cs_change_delay_exec);
1601 
1602 /*
1603  * spi_transfer_one_message - Default implementation of transfer_one_message()
1604  *
1605  * This is a standard implementation of transfer_one_message() for
1606  * drivers which implement a transfer_one() operation.  It provides
1607  * standard handling of delays and chip select management.
1608  */
spi_transfer_one_message(struct spi_controller * ctlr,struct spi_message * msg)1609 static int spi_transfer_one_message(struct spi_controller *ctlr,
1610 				    struct spi_message *msg)
1611 {
1612 	struct spi_transfer *xfer;
1613 	bool keep_cs = false;
1614 	int ret = 0;
1615 	struct spi_statistics __percpu *statm = ctlr->pcpu_statistics;
1616 	struct spi_statistics __percpu *stats = msg->spi->pcpu_statistics;
1617 
1618 	xfer = list_first_entry(&msg->transfers, struct spi_transfer, transfer_list);
1619 	spi_set_cs(msg->spi, !xfer->cs_off, false);
1620 
1621 	SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
1622 	SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
1623 
1624 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1625 		trace_spi_transfer_start(msg, xfer);
1626 
1627 		spi_statistics_add_transfer_stats(statm, xfer, msg);
1628 		spi_statistics_add_transfer_stats(stats, xfer, msg);
1629 
1630 		if (!ctlr->ptp_sts_supported) {
1631 			xfer->ptp_sts_word_pre = 0;
1632 			ptp_read_system_prets(xfer->ptp_sts);
1633 		}
1634 
1635 		if ((xfer->tx_buf || xfer->rx_buf) && xfer->len) {
1636 			reinit_completion(&ctlr->xfer_completion);
1637 
1638 fallback_pio:
1639 			spi_dma_sync_for_device(ctlr, xfer);
1640 			ret = ctlr->transfer_one(ctlr, msg->spi, xfer);
1641 			if (ret < 0) {
1642 				spi_dma_sync_for_cpu(ctlr, xfer);
1643 
1644 				if ((xfer->tx_sg_mapped || xfer->rx_sg_mapped) &&
1645 				    (xfer->error & SPI_TRANS_FAIL_NO_START)) {
1646 					__spi_unmap_msg(ctlr, msg);
1647 					ctlr->fallback = true;
1648 					xfer->error &= ~SPI_TRANS_FAIL_NO_START;
1649 					goto fallback_pio;
1650 				}
1651 
1652 				SPI_STATISTICS_INCREMENT_FIELD(statm,
1653 							       errors);
1654 				SPI_STATISTICS_INCREMENT_FIELD(stats,
1655 							       errors);
1656 				dev_err(&msg->spi->dev,
1657 					"SPI transfer failed: %d\n", ret);
1658 				goto out;
1659 			}
1660 
1661 			if (ret > 0) {
1662 				ret = spi_transfer_wait(ctlr, msg, xfer);
1663 				if (ret < 0)
1664 					msg->status = ret;
1665 			}
1666 
1667 			spi_dma_sync_for_cpu(ctlr, xfer);
1668 		} else {
1669 			if (xfer->len)
1670 				dev_err(&msg->spi->dev,
1671 					"Bufferless transfer has length %u\n",
1672 					xfer->len);
1673 		}
1674 
1675 		if (!ctlr->ptp_sts_supported) {
1676 			ptp_read_system_postts(xfer->ptp_sts);
1677 			xfer->ptp_sts_word_post = xfer->len;
1678 		}
1679 
1680 		trace_spi_transfer_stop(msg, xfer);
1681 
1682 		if (msg->status != -EINPROGRESS)
1683 			goto out;
1684 
1685 		spi_transfer_delay_exec(xfer);
1686 
1687 		if (xfer->cs_change) {
1688 			if (list_is_last(&xfer->transfer_list,
1689 					 &msg->transfers)) {
1690 				keep_cs = true;
1691 			} else {
1692 				if (!xfer->cs_off)
1693 					spi_set_cs(msg->spi, false, false);
1694 				_spi_transfer_cs_change_delay(msg, xfer);
1695 				if (!list_next_entry(xfer, transfer_list)->cs_off)
1696 					spi_set_cs(msg->spi, true, false);
1697 			}
1698 		} else if (!list_is_last(&xfer->transfer_list, &msg->transfers) &&
1699 			   xfer->cs_off != list_next_entry(xfer, transfer_list)->cs_off) {
1700 			spi_set_cs(msg->spi, xfer->cs_off, false);
1701 		}
1702 
1703 		msg->actual_length += xfer->len;
1704 	}
1705 
1706 out:
1707 	if (ret != 0 || !keep_cs)
1708 		spi_set_cs(msg->spi, false, false);
1709 
1710 	if (msg->status == -EINPROGRESS)
1711 		msg->status = ret;
1712 
1713 	if (msg->status && ctlr->handle_err)
1714 		ctlr->handle_err(ctlr, msg);
1715 
1716 	spi_finalize_current_message(ctlr);
1717 
1718 	return ret;
1719 }
1720 
1721 /**
1722  * spi_finalize_current_transfer - report completion of a transfer
1723  * @ctlr: the controller reporting completion
1724  *
1725  * Called by SPI drivers using the core transfer_one_message()
1726  * implementation to notify it that the current interrupt driven
1727  * transfer has finished and the next one may be scheduled.
1728  */
spi_finalize_current_transfer(struct spi_controller * ctlr)1729 void spi_finalize_current_transfer(struct spi_controller *ctlr)
1730 {
1731 	complete(&ctlr->xfer_completion);
1732 }
1733 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1734 
spi_idle_runtime_pm(struct spi_controller * ctlr)1735 static void spi_idle_runtime_pm(struct spi_controller *ctlr)
1736 {
1737 	if (ctlr->auto_runtime_pm) {
1738 		pm_runtime_mark_last_busy(ctlr->dev.parent);
1739 		pm_runtime_put_autosuspend(ctlr->dev.parent);
1740 	}
1741 }
1742 
__spi_pump_transfer_message(struct spi_controller * ctlr,struct spi_message * msg,bool was_busy)1743 static int __spi_pump_transfer_message(struct spi_controller *ctlr,
1744 		struct spi_message *msg, bool was_busy)
1745 {
1746 	struct spi_transfer *xfer;
1747 	int ret;
1748 
1749 	if (!was_busy && ctlr->auto_runtime_pm) {
1750 		ret = pm_runtime_get_sync(ctlr->dev.parent);
1751 		if (ret < 0) {
1752 			pm_runtime_put_noidle(ctlr->dev.parent);
1753 			dev_err(&ctlr->dev, "Failed to power device: %d\n",
1754 				ret);
1755 
1756 			msg->status = ret;
1757 			spi_finalize_current_message(ctlr);
1758 
1759 			return ret;
1760 		}
1761 	}
1762 
1763 	if (!was_busy)
1764 		trace_spi_controller_busy(ctlr);
1765 
1766 	if (!was_busy && ctlr->prepare_transfer_hardware) {
1767 		ret = ctlr->prepare_transfer_hardware(ctlr);
1768 		if (ret) {
1769 			dev_err(&ctlr->dev,
1770 				"failed to prepare transfer hardware: %d\n",
1771 				ret);
1772 
1773 			if (ctlr->auto_runtime_pm)
1774 				pm_runtime_put(ctlr->dev.parent);
1775 
1776 			msg->status = ret;
1777 			spi_finalize_current_message(ctlr);
1778 
1779 			return ret;
1780 		}
1781 	}
1782 
1783 	trace_spi_message_start(msg);
1784 
1785 	if (ctlr->prepare_message) {
1786 		ret = ctlr->prepare_message(ctlr, msg);
1787 		if (ret) {
1788 			dev_err(&ctlr->dev, "failed to prepare message: %d\n",
1789 				ret);
1790 			msg->status = ret;
1791 			spi_finalize_current_message(ctlr);
1792 			return ret;
1793 		}
1794 		msg->prepared = true;
1795 	}
1796 
1797 	ret = spi_map_msg(ctlr, msg);
1798 	if (ret) {
1799 		msg->status = ret;
1800 		spi_finalize_current_message(ctlr);
1801 		return ret;
1802 	}
1803 
1804 	if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
1805 		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1806 			xfer->ptp_sts_word_pre = 0;
1807 			ptp_read_system_prets(xfer->ptp_sts);
1808 		}
1809 	}
1810 
1811 	/*
1812 	 * Drivers implementation of transfer_one_message() must arrange for
1813 	 * spi_finalize_current_message() to get called. Most drivers will do
1814 	 * this in the calling context, but some don't. For those cases, a
1815 	 * completion is used to guarantee that this function does not return
1816 	 * until spi_finalize_current_message() is done accessing
1817 	 * ctlr->cur_msg.
1818 	 * Use of the following two flags enable to opportunistically skip the
1819 	 * use of the completion since its use involves expensive spin locks.
1820 	 * In case of a race with the context that calls
1821 	 * spi_finalize_current_message() the completion will always be used,
1822 	 * due to strict ordering of these flags using barriers.
1823 	 */
1824 	WRITE_ONCE(ctlr->cur_msg_incomplete, true);
1825 	WRITE_ONCE(ctlr->cur_msg_need_completion, false);
1826 	reinit_completion(&ctlr->cur_msg_completion);
1827 	smp_wmb(); /* Make these available to spi_finalize_current_message() */
1828 
1829 	ret = ctlr->transfer_one_message(ctlr, msg);
1830 	if (ret) {
1831 		dev_err(&ctlr->dev,
1832 			"failed to transfer one message from queue\n");
1833 		return ret;
1834 	}
1835 
1836 	WRITE_ONCE(ctlr->cur_msg_need_completion, true);
1837 	smp_mb(); /* See spi_finalize_current_message()... */
1838 	if (READ_ONCE(ctlr->cur_msg_incomplete))
1839 		wait_for_completion(&ctlr->cur_msg_completion);
1840 
1841 	return 0;
1842 }
1843 
1844 /**
1845  * __spi_pump_messages - function which processes SPI message queue
1846  * @ctlr: controller to process queue for
1847  * @in_kthread: true if we are in the context of the message pump thread
1848  *
1849  * This function checks if there is any SPI message in the queue that
1850  * needs processing and if so call out to the driver to initialize hardware
1851  * and transfer each message.
1852  *
1853  * Note that it is called both from the kthread itself and also from
1854  * inside spi_sync(); the queue extraction handling at the top of the
1855  * function should deal with this safely.
1856  */
__spi_pump_messages(struct spi_controller * ctlr,bool in_kthread)1857 static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
1858 {
1859 	struct spi_message *msg;
1860 	bool was_busy = false;
1861 	unsigned long flags;
1862 	int ret;
1863 
1864 	/* Take the I/O mutex */
1865 	mutex_lock(&ctlr->io_mutex);
1866 
1867 	/* Lock queue */
1868 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1869 
1870 	/* Make sure we are not already running a message */
1871 	if (ctlr->cur_msg)
1872 		goto out_unlock;
1873 
1874 	/* Check if the queue is idle */
1875 	if (list_empty(&ctlr->queue) || !ctlr->running) {
1876 		if (!ctlr->busy)
1877 			goto out_unlock;
1878 
1879 		/* Defer any non-atomic teardown to the thread */
1880 		if (!in_kthread) {
1881 			if (!ctlr->dummy_rx && !ctlr->dummy_tx &&
1882 			    !ctlr->unprepare_transfer_hardware) {
1883 				spi_idle_runtime_pm(ctlr);
1884 				ctlr->busy = false;
1885 				ctlr->queue_empty = true;
1886 				trace_spi_controller_idle(ctlr);
1887 			} else {
1888 				kthread_queue_work(ctlr->kworker,
1889 						   &ctlr->pump_messages);
1890 			}
1891 			goto out_unlock;
1892 		}
1893 
1894 		ctlr->busy = false;
1895 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1896 
1897 		kfree(ctlr->dummy_rx);
1898 		ctlr->dummy_rx = NULL;
1899 		kfree(ctlr->dummy_tx);
1900 		ctlr->dummy_tx = NULL;
1901 		if (ctlr->unprepare_transfer_hardware &&
1902 		    ctlr->unprepare_transfer_hardware(ctlr))
1903 			dev_err(&ctlr->dev,
1904 				"failed to unprepare transfer hardware\n");
1905 		spi_idle_runtime_pm(ctlr);
1906 		trace_spi_controller_idle(ctlr);
1907 
1908 		spin_lock_irqsave(&ctlr->queue_lock, flags);
1909 		ctlr->queue_empty = true;
1910 		goto out_unlock;
1911 	}
1912 
1913 	/* Extract head of queue */
1914 	msg = list_first_entry(&ctlr->queue, struct spi_message, queue);
1915 	ctlr->cur_msg = msg;
1916 
1917 	list_del_init(&msg->queue);
1918 	if (ctlr->busy)
1919 		was_busy = true;
1920 	else
1921 		ctlr->busy = true;
1922 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1923 
1924 	ret = __spi_pump_transfer_message(ctlr, msg, was_busy);
1925 	kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1926 
1927 	ctlr->cur_msg = NULL;
1928 	ctlr->fallback = false;
1929 
1930 	mutex_unlock(&ctlr->io_mutex);
1931 
1932 	/* Prod the scheduler in case transfer_one() was busy waiting */
1933 	if (!ret)
1934 		cond_resched();
1935 	return;
1936 
1937 out_unlock:
1938 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1939 	mutex_unlock(&ctlr->io_mutex);
1940 }
1941 
1942 /**
1943  * spi_pump_messages - kthread work function which processes spi message queue
1944  * @work: pointer to kthread work struct contained in the controller struct
1945  */
spi_pump_messages(struct kthread_work * work)1946 static void spi_pump_messages(struct kthread_work *work)
1947 {
1948 	struct spi_controller *ctlr =
1949 		container_of(work, struct spi_controller, pump_messages);
1950 
1951 	__spi_pump_messages(ctlr, true);
1952 }
1953 
1954 /**
1955  * spi_take_timestamp_pre - helper to collect the beginning of the TX timestamp
1956  * @ctlr: Pointer to the spi_controller structure of the driver
1957  * @xfer: Pointer to the transfer being timestamped
1958  * @progress: How many words (not bytes) have been transferred so far
1959  * @irqs_off: If true, will disable IRQs and preemption for the duration of the
1960  *	      transfer, for less jitter in time measurement. Only compatible
1961  *	      with PIO drivers. If true, must follow up with
1962  *	      spi_take_timestamp_post or otherwise system will crash.
1963  *	      WARNING: for fully predictable results, the CPU frequency must
1964  *	      also be under control (governor).
1965  *
1966  * This is a helper for drivers to collect the beginning of the TX timestamp
1967  * for the requested byte from the SPI transfer. The frequency with which this
1968  * function must be called (once per word, once for the whole transfer, once
1969  * per batch of words etc) is arbitrary as long as the @tx buffer offset is
1970  * greater than or equal to the requested byte at the time of the call. The
1971  * timestamp is only taken once, at the first such call. It is assumed that
1972  * the driver advances its @tx buffer pointer monotonically.
1973  */
spi_take_timestamp_pre(struct spi_controller * ctlr,struct spi_transfer * xfer,size_t progress,bool irqs_off)1974 void spi_take_timestamp_pre(struct spi_controller *ctlr,
1975 			    struct spi_transfer *xfer,
1976 			    size_t progress, bool irqs_off)
1977 {
1978 	if (!xfer->ptp_sts)
1979 		return;
1980 
1981 	if (xfer->timestamped)
1982 		return;
1983 
1984 	if (progress > xfer->ptp_sts_word_pre)
1985 		return;
1986 
1987 	/* Capture the resolution of the timestamp */
1988 	xfer->ptp_sts_word_pre = progress;
1989 
1990 	if (irqs_off) {
1991 		local_irq_save(ctlr->irq_flags);
1992 		preempt_disable();
1993 	}
1994 
1995 	ptp_read_system_prets(xfer->ptp_sts);
1996 }
1997 EXPORT_SYMBOL_GPL(spi_take_timestamp_pre);
1998 
1999 /**
2000  * spi_take_timestamp_post - helper to collect the end of the TX timestamp
2001  * @ctlr: Pointer to the spi_controller structure of the driver
2002  * @xfer: Pointer to the transfer being timestamped
2003  * @progress: How many words (not bytes) have been transferred so far
2004  * @irqs_off: If true, will re-enable IRQs and preemption for the local CPU.
2005  *
2006  * This is a helper for drivers to collect the end of the TX timestamp for
2007  * the requested byte from the SPI transfer. Can be called with an arbitrary
2008  * frequency: only the first call where @tx exceeds or is equal to the
2009  * requested word will be timestamped.
2010  */
spi_take_timestamp_post(struct spi_controller * ctlr,struct spi_transfer * xfer,size_t progress,bool irqs_off)2011 void spi_take_timestamp_post(struct spi_controller *ctlr,
2012 			     struct spi_transfer *xfer,
2013 			     size_t progress, bool irqs_off)
2014 {
2015 	if (!xfer->ptp_sts)
2016 		return;
2017 
2018 	if (xfer->timestamped)
2019 		return;
2020 
2021 	if (progress < xfer->ptp_sts_word_post)
2022 		return;
2023 
2024 	ptp_read_system_postts(xfer->ptp_sts);
2025 
2026 	if (irqs_off) {
2027 		local_irq_restore(ctlr->irq_flags);
2028 		preempt_enable();
2029 	}
2030 
2031 	/* Capture the resolution of the timestamp */
2032 	xfer->ptp_sts_word_post = progress;
2033 
2034 	xfer->timestamped = 1;
2035 }
2036 EXPORT_SYMBOL_GPL(spi_take_timestamp_post);
2037 
2038 /**
2039  * spi_set_thread_rt - set the controller to pump at realtime priority
2040  * @ctlr: controller to boost priority of
2041  *
2042  * This can be called because the controller requested realtime priority
2043  * (by setting the ->rt value before calling spi_register_controller()) or
2044  * because a device on the bus said that its transfers needed realtime
2045  * priority.
2046  *
2047  * NOTE: at the moment if any device on a bus says it needs realtime then
2048  * the thread will be at realtime priority for all transfers on that
2049  * controller.  If this eventually becomes a problem we may see if we can
2050  * find a way to boost the priority only temporarily during relevant
2051  * transfers.
2052  */
spi_set_thread_rt(struct spi_controller * ctlr)2053 static void spi_set_thread_rt(struct spi_controller *ctlr)
2054 {
2055 	dev_info(&ctlr->dev,
2056 		"will run message pump with realtime priority\n");
2057 	sched_set_fifo(ctlr->kworker->task);
2058 }
2059 
spi_init_queue(struct spi_controller * ctlr)2060 static int spi_init_queue(struct spi_controller *ctlr)
2061 {
2062 	ctlr->running = false;
2063 	ctlr->busy = false;
2064 	ctlr->queue_empty = true;
2065 
2066 	ctlr->kworker = kthread_create_worker(0, dev_name(&ctlr->dev));
2067 	if (IS_ERR(ctlr->kworker)) {
2068 		dev_err(&ctlr->dev, "failed to create message pump kworker\n");
2069 		return PTR_ERR(ctlr->kworker);
2070 	}
2071 
2072 	kthread_init_work(&ctlr->pump_messages, spi_pump_messages);
2073 
2074 	/*
2075 	 * Controller config will indicate if this controller should run the
2076 	 * message pump with high (realtime) priority to reduce the transfer
2077 	 * latency on the bus by minimising the delay between a transfer
2078 	 * request and the scheduling of the message pump thread. Without this
2079 	 * setting the message pump thread will remain at default priority.
2080 	 */
2081 	if (ctlr->rt)
2082 		spi_set_thread_rt(ctlr);
2083 
2084 	return 0;
2085 }
2086 
2087 /**
2088  * spi_get_next_queued_message() - called by driver to check for queued
2089  * messages
2090  * @ctlr: the controller to check for queued messages
2091  *
2092  * If there are more messages in the queue, the next message is returned from
2093  * this call.
2094  *
2095  * Return: the next message in the queue, else NULL if the queue is empty.
2096  */
spi_get_next_queued_message(struct spi_controller * ctlr)2097 struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr)
2098 {
2099 	struct spi_message *next;
2100 	unsigned long flags;
2101 
2102 	/* Get a pointer to the next message, if any */
2103 	spin_lock_irqsave(&ctlr->queue_lock, flags);
2104 	next = list_first_entry_or_null(&ctlr->queue, struct spi_message,
2105 					queue);
2106 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2107 
2108 	return next;
2109 }
2110 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
2111 
2112 /*
2113  * __spi_unoptimize_message - shared implementation of spi_unoptimize_message()
2114  *                            and spi_maybe_unoptimize_message()
2115  * @msg: the message to unoptimize
2116  *
2117  * Peripheral drivers should use spi_unoptimize_message() and callers inside
2118  * core should use spi_maybe_unoptimize_message() rather than calling this
2119  * function directly.
2120  *
2121  * It is not valid to call this on a message that is not currently optimized.
2122  */
__spi_unoptimize_message(struct spi_message * msg)2123 static void __spi_unoptimize_message(struct spi_message *msg)
2124 {
2125 	struct spi_controller *ctlr = msg->spi->controller;
2126 
2127 	if (ctlr->unoptimize_message)
2128 		ctlr->unoptimize_message(msg);
2129 
2130 	spi_res_release(ctlr, msg);
2131 
2132 	msg->optimized = false;
2133 	msg->opt_state = NULL;
2134 }
2135 
2136 /*
2137  * spi_maybe_unoptimize_message - unoptimize msg not managed by a peripheral
2138  * @msg: the message to unoptimize
2139  *
2140  * This function is used to unoptimize a message if and only if it was
2141  * optimized by the core (via spi_maybe_optimize_message()).
2142  */
spi_maybe_unoptimize_message(struct spi_message * msg)2143 static void spi_maybe_unoptimize_message(struct spi_message *msg)
2144 {
2145 	if (!msg->pre_optimized && msg->optimized &&
2146 	    !msg->spi->controller->defer_optimize_message)
2147 		__spi_unoptimize_message(msg);
2148 }
2149 
2150 /**
2151  * spi_finalize_current_message() - the current message is complete
2152  * @ctlr: the controller to return the message to
2153  *
2154  * Called by the driver to notify the core that the message in the front of the
2155  * queue is complete and can be removed from the queue.
2156  */
spi_finalize_current_message(struct spi_controller * ctlr)2157 void spi_finalize_current_message(struct spi_controller *ctlr)
2158 {
2159 	struct spi_transfer *xfer;
2160 	struct spi_message *mesg;
2161 	int ret;
2162 
2163 	mesg = ctlr->cur_msg;
2164 
2165 	if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
2166 		list_for_each_entry(xfer, &mesg->transfers, transfer_list) {
2167 			ptp_read_system_postts(xfer->ptp_sts);
2168 			xfer->ptp_sts_word_post = xfer->len;
2169 		}
2170 	}
2171 
2172 	if (unlikely(ctlr->ptp_sts_supported))
2173 		list_for_each_entry(xfer, &mesg->transfers, transfer_list)
2174 			WARN_ON_ONCE(xfer->ptp_sts && !xfer->timestamped);
2175 
2176 	spi_unmap_msg(ctlr, mesg);
2177 
2178 	if (mesg->prepared && ctlr->unprepare_message) {
2179 		ret = ctlr->unprepare_message(ctlr, mesg);
2180 		if (ret) {
2181 			dev_err(&ctlr->dev, "failed to unprepare message: %d\n",
2182 				ret);
2183 		}
2184 	}
2185 
2186 	mesg->prepared = false;
2187 
2188 	spi_maybe_unoptimize_message(mesg);
2189 
2190 	WRITE_ONCE(ctlr->cur_msg_incomplete, false);
2191 	smp_mb(); /* See __spi_pump_transfer_message()... */
2192 	if (READ_ONCE(ctlr->cur_msg_need_completion))
2193 		complete(&ctlr->cur_msg_completion);
2194 
2195 	trace_spi_message_done(mesg);
2196 
2197 	mesg->state = NULL;
2198 	if (mesg->complete)
2199 		mesg->complete(mesg->context);
2200 }
2201 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
2202 
spi_start_queue(struct spi_controller * ctlr)2203 static int spi_start_queue(struct spi_controller *ctlr)
2204 {
2205 	unsigned long flags;
2206 
2207 	spin_lock_irqsave(&ctlr->queue_lock, flags);
2208 
2209 	if (ctlr->running || ctlr->busy) {
2210 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2211 		return -EBUSY;
2212 	}
2213 
2214 	ctlr->running = true;
2215 	ctlr->cur_msg = NULL;
2216 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2217 
2218 	kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
2219 
2220 	return 0;
2221 }
2222 
spi_stop_queue(struct spi_controller * ctlr)2223 static int spi_stop_queue(struct spi_controller *ctlr)
2224 {
2225 	unsigned int limit = 500;
2226 	unsigned long flags;
2227 
2228 	/*
2229 	 * This is a bit lame, but is optimized for the common execution path.
2230 	 * A wait_queue on the ctlr->busy could be used, but then the common
2231 	 * execution path (pump_messages) would be required to call wake_up or
2232 	 * friends on every SPI message. Do this instead.
2233 	 */
2234 	do {
2235 		spin_lock_irqsave(&ctlr->queue_lock, flags);
2236 		if (list_empty(&ctlr->queue) && !ctlr->busy) {
2237 			ctlr->running = false;
2238 			spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2239 			return 0;
2240 		}
2241 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2242 		usleep_range(10000, 11000);
2243 	} while (--limit);
2244 
2245 	return -EBUSY;
2246 }
2247 
spi_destroy_queue(struct spi_controller * ctlr)2248 static int spi_destroy_queue(struct spi_controller *ctlr)
2249 {
2250 	int ret;
2251 
2252 	ret = spi_stop_queue(ctlr);
2253 
2254 	/*
2255 	 * kthread_flush_worker will block until all work is done.
2256 	 * If the reason that stop_queue timed out is that the work will never
2257 	 * finish, then it does no good to call flush/stop thread, so
2258 	 * return anyway.
2259 	 */
2260 	if (ret) {
2261 		dev_err(&ctlr->dev, "problem destroying queue\n");
2262 		return ret;
2263 	}
2264 
2265 	kthread_destroy_worker(ctlr->kworker);
2266 
2267 	return 0;
2268 }
2269 
__spi_queued_transfer(struct spi_device * spi,struct spi_message * msg,bool need_pump)2270 static int __spi_queued_transfer(struct spi_device *spi,
2271 				 struct spi_message *msg,
2272 				 bool need_pump)
2273 {
2274 	struct spi_controller *ctlr = spi->controller;
2275 	unsigned long flags;
2276 
2277 	spin_lock_irqsave(&ctlr->queue_lock, flags);
2278 
2279 	if (!ctlr->running) {
2280 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2281 		return -ESHUTDOWN;
2282 	}
2283 	msg->actual_length = 0;
2284 	msg->status = -EINPROGRESS;
2285 
2286 	list_add_tail(&msg->queue, &ctlr->queue);
2287 	ctlr->queue_empty = false;
2288 	if (!ctlr->busy && need_pump)
2289 		kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
2290 
2291 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2292 	return 0;
2293 }
2294 
2295 /**
2296  * spi_queued_transfer - transfer function for queued transfers
2297  * @spi: SPI device which is requesting transfer
2298  * @msg: SPI message which is to handled is queued to driver queue
2299  *
2300  * Return: zero on success, else a negative error code.
2301  */
spi_queued_transfer(struct spi_device * spi,struct spi_message * msg)2302 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
2303 {
2304 	return __spi_queued_transfer(spi, msg, true);
2305 }
2306 
spi_controller_initialize_queue(struct spi_controller * ctlr)2307 static int spi_controller_initialize_queue(struct spi_controller *ctlr)
2308 {
2309 	int ret;
2310 
2311 	ctlr->transfer = spi_queued_transfer;
2312 	if (!ctlr->transfer_one_message)
2313 		ctlr->transfer_one_message = spi_transfer_one_message;
2314 
2315 	/* Initialize and start queue */
2316 	ret = spi_init_queue(ctlr);
2317 	if (ret) {
2318 		dev_err(&ctlr->dev, "problem initializing queue\n");
2319 		goto err_init_queue;
2320 	}
2321 	ctlr->queued = true;
2322 	ret = spi_start_queue(ctlr);
2323 	if (ret) {
2324 		dev_err(&ctlr->dev, "problem starting queue\n");
2325 		goto err_start_queue;
2326 	}
2327 
2328 	return 0;
2329 
2330 err_start_queue:
2331 	spi_destroy_queue(ctlr);
2332 err_init_queue:
2333 	return ret;
2334 }
2335 
2336 /**
2337  * spi_flush_queue - Send all pending messages in the queue from the callers'
2338  *		     context
2339  * @ctlr: controller to process queue for
2340  *
2341  * This should be used when one wants to ensure all pending messages have been
2342  * sent before doing something. Is used by the spi-mem code to make sure SPI
2343  * memory operations do not preempt regular SPI transfers that have been queued
2344  * before the spi-mem operation.
2345  */
spi_flush_queue(struct spi_controller * ctlr)2346 void spi_flush_queue(struct spi_controller *ctlr)
2347 {
2348 	if (ctlr->transfer == spi_queued_transfer)
2349 		__spi_pump_messages(ctlr, false);
2350 }
2351 
2352 /*-------------------------------------------------------------------------*/
2353 
2354 #if defined(CONFIG_OF)
of_spi_parse_dt_cs_delay(struct device_node * nc,struct spi_delay * delay,const char * prop)2355 static void of_spi_parse_dt_cs_delay(struct device_node *nc,
2356 				     struct spi_delay *delay, const char *prop)
2357 {
2358 	u32 value;
2359 
2360 	if (!of_property_read_u32(nc, prop, &value)) {
2361 		if (value > U16_MAX) {
2362 			delay->value = DIV_ROUND_UP(value, 1000);
2363 			delay->unit = SPI_DELAY_UNIT_USECS;
2364 		} else {
2365 			delay->value = value;
2366 			delay->unit = SPI_DELAY_UNIT_NSECS;
2367 		}
2368 	}
2369 }
2370 
of_spi_parse_dt(struct spi_controller * ctlr,struct spi_device * spi,struct device_node * nc)2371 static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi,
2372 			   struct device_node *nc)
2373 {
2374 	u32 value, cs[SPI_CS_CNT_MAX];
2375 	int rc, idx;
2376 
2377 	/* Mode (clock phase/polarity/etc.) */
2378 	if (of_property_read_bool(nc, "spi-cpha"))
2379 		spi->mode |= SPI_CPHA;
2380 	if (of_property_read_bool(nc, "spi-cpol"))
2381 		spi->mode |= SPI_CPOL;
2382 	if (of_property_read_bool(nc, "spi-3wire"))
2383 		spi->mode |= SPI_3WIRE;
2384 	if (of_property_read_bool(nc, "spi-lsb-first"))
2385 		spi->mode |= SPI_LSB_FIRST;
2386 	if (of_property_read_bool(nc, "spi-cs-high"))
2387 		spi->mode |= SPI_CS_HIGH;
2388 
2389 	/* Device DUAL/QUAD mode */
2390 	if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
2391 		switch (value) {
2392 		case 0:
2393 			spi->mode |= SPI_NO_TX;
2394 			break;
2395 		case 1:
2396 			break;
2397 		case 2:
2398 			spi->mode |= SPI_TX_DUAL;
2399 			break;
2400 		case 4:
2401 			spi->mode |= SPI_TX_QUAD;
2402 			break;
2403 		case 8:
2404 			spi->mode |= SPI_TX_OCTAL;
2405 			break;
2406 		default:
2407 			dev_warn(&ctlr->dev,
2408 				"spi-tx-bus-width %d not supported\n",
2409 				value);
2410 			break;
2411 		}
2412 	}
2413 
2414 	if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
2415 		switch (value) {
2416 		case 0:
2417 			spi->mode |= SPI_NO_RX;
2418 			break;
2419 		case 1:
2420 			break;
2421 		case 2:
2422 			spi->mode |= SPI_RX_DUAL;
2423 			break;
2424 		case 4:
2425 			spi->mode |= SPI_RX_QUAD;
2426 			break;
2427 		case 8:
2428 			spi->mode |= SPI_RX_OCTAL;
2429 			break;
2430 		default:
2431 			dev_warn(&ctlr->dev,
2432 				"spi-rx-bus-width %d not supported\n",
2433 				value);
2434 			break;
2435 		}
2436 	}
2437 
2438 	if (spi_controller_is_target(ctlr)) {
2439 		if (!of_node_name_eq(nc, "slave")) {
2440 			dev_err(&ctlr->dev, "%pOF is not called 'slave'\n",
2441 				nc);
2442 			return -EINVAL;
2443 		}
2444 		return 0;
2445 	}
2446 
2447 	if (ctlr->num_chipselect > SPI_CS_CNT_MAX) {
2448 		dev_err(&ctlr->dev, "No. of CS is more than max. no. of supported CS\n");
2449 		return -EINVAL;
2450 	}
2451 
2452 	spi_set_all_cs_unused(spi);
2453 
2454 	/* Device address */
2455 	rc = of_property_read_variable_u32_array(nc, "reg", &cs[0], 1,
2456 						 SPI_CS_CNT_MAX);
2457 	if (rc < 0) {
2458 		dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n",
2459 			nc, rc);
2460 		return rc;
2461 	}
2462 	if (rc > ctlr->num_chipselect) {
2463 		dev_err(&ctlr->dev, "%pOF has number of CS > ctlr->num_chipselect (%d)\n",
2464 			nc, rc);
2465 		return rc;
2466 	}
2467 	if ((of_property_read_bool(nc, "parallel-memories")) &&
2468 	    (!(ctlr->flags & SPI_CONTROLLER_MULTI_CS))) {
2469 		dev_err(&ctlr->dev, "SPI controller doesn't support multi CS\n");
2470 		return -EINVAL;
2471 	}
2472 	for (idx = 0; idx < rc; idx++)
2473 		spi_set_chipselect(spi, idx, cs[idx]);
2474 
2475 	/*
2476 	 * By default spi->chip_select[0] will hold the physical CS number,
2477 	 * so set bit 0 in spi->cs_index_mask.
2478 	 */
2479 	spi->cs_index_mask = BIT(0);
2480 
2481 	/* Device speed */
2482 	if (!of_property_read_u32(nc, "spi-max-frequency", &value))
2483 		spi->max_speed_hz = value;
2484 
2485 	/* Device CS delays */
2486 	of_spi_parse_dt_cs_delay(nc, &spi->cs_setup, "spi-cs-setup-delay-ns");
2487 	of_spi_parse_dt_cs_delay(nc, &spi->cs_hold, "spi-cs-hold-delay-ns");
2488 	of_spi_parse_dt_cs_delay(nc, &spi->cs_inactive, "spi-cs-inactive-delay-ns");
2489 
2490 	return 0;
2491 }
2492 
2493 static struct spi_device *
of_register_spi_device(struct spi_controller * ctlr,struct device_node * nc)2494 of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc)
2495 {
2496 	struct spi_device *spi;
2497 	int rc;
2498 
2499 	/* Alloc an spi_device */
2500 	spi = spi_alloc_device(ctlr);
2501 	if (!spi) {
2502 		dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc);
2503 		rc = -ENOMEM;
2504 		goto err_out;
2505 	}
2506 
2507 	/* Select device driver */
2508 	rc = of_alias_from_compatible(nc, spi->modalias,
2509 				      sizeof(spi->modalias));
2510 	if (rc < 0) {
2511 		dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc);
2512 		goto err_out;
2513 	}
2514 
2515 	rc = of_spi_parse_dt(ctlr, spi, nc);
2516 	if (rc)
2517 		goto err_out;
2518 
2519 	/* Store a pointer to the node in the device structure */
2520 	of_node_get(nc);
2521 
2522 	device_set_node(&spi->dev, of_fwnode_handle(nc));
2523 
2524 	/* Register the new device */
2525 	rc = spi_add_device(spi);
2526 	if (rc) {
2527 		dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc);
2528 		goto err_of_node_put;
2529 	}
2530 
2531 	return spi;
2532 
2533 err_of_node_put:
2534 	of_node_put(nc);
2535 err_out:
2536 	spi_dev_put(spi);
2537 	return ERR_PTR(rc);
2538 }
2539 
2540 /**
2541  * of_register_spi_devices() - Register child devices onto the SPI bus
2542  * @ctlr:	Pointer to spi_controller device
2543  *
2544  * Registers an spi_device for each child node of controller node which
2545  * represents a valid SPI slave.
2546  */
of_register_spi_devices(struct spi_controller * ctlr)2547 static void of_register_spi_devices(struct spi_controller *ctlr)
2548 {
2549 	struct spi_device *spi;
2550 	struct device_node *nc;
2551 
2552 	for_each_available_child_of_node(ctlr->dev.of_node, nc) {
2553 		if (of_node_test_and_set_flag(nc, OF_POPULATED))
2554 			continue;
2555 		spi = of_register_spi_device(ctlr, nc);
2556 		if (IS_ERR(spi)) {
2557 			dev_warn(&ctlr->dev,
2558 				 "Failed to create SPI device for %pOF\n", nc);
2559 			of_node_clear_flag(nc, OF_POPULATED);
2560 		}
2561 	}
2562 }
2563 #else
of_register_spi_devices(struct spi_controller * ctlr)2564 static void of_register_spi_devices(struct spi_controller *ctlr) { }
2565 #endif
2566 
2567 /**
2568  * spi_new_ancillary_device() - Register ancillary SPI device
2569  * @spi:         Pointer to the main SPI device registering the ancillary device
2570  * @chip_select: Chip Select of the ancillary device
2571  *
2572  * Register an ancillary SPI device; for example some chips have a chip-select
2573  * for normal device usage and another one for setup/firmware upload.
2574  *
2575  * This may only be called from main SPI device's probe routine.
2576  *
2577  * Return: 0 on success; negative errno on failure
2578  */
spi_new_ancillary_device(struct spi_device * spi,u8 chip_select)2579 struct spi_device *spi_new_ancillary_device(struct spi_device *spi,
2580 					     u8 chip_select)
2581 {
2582 	struct spi_controller *ctlr = spi->controller;
2583 	struct spi_device *ancillary;
2584 	int rc;
2585 
2586 	/* Alloc an spi_device */
2587 	ancillary = spi_alloc_device(ctlr);
2588 	if (!ancillary) {
2589 		rc = -ENOMEM;
2590 		goto err_out;
2591 	}
2592 
2593 	strscpy(ancillary->modalias, "dummy", sizeof(ancillary->modalias));
2594 
2595 	/* Use provided chip-select for ancillary device */
2596 	spi_set_all_cs_unused(ancillary);
2597 	spi_set_chipselect(ancillary, 0, chip_select);
2598 
2599 	/* Take over SPI mode/speed from SPI main device */
2600 	ancillary->max_speed_hz = spi->max_speed_hz;
2601 	ancillary->mode = spi->mode;
2602 	/*
2603 	 * By default spi->chip_select[0] will hold the physical CS number,
2604 	 * so set bit 0 in spi->cs_index_mask.
2605 	 */
2606 	ancillary->cs_index_mask = BIT(0);
2607 
2608 	WARN_ON(!mutex_is_locked(&ctlr->add_lock));
2609 
2610 	/* Register the new device */
2611 	rc = __spi_add_device(ancillary);
2612 	if (rc) {
2613 		dev_err(&spi->dev, "failed to register ancillary device\n");
2614 		goto err_out;
2615 	}
2616 
2617 	return ancillary;
2618 
2619 err_out:
2620 	spi_dev_put(ancillary);
2621 	return ERR_PTR(rc);
2622 }
2623 EXPORT_SYMBOL_GPL(spi_new_ancillary_device);
2624 
2625 #ifdef CONFIG_ACPI
2626 struct acpi_spi_lookup {
2627 	struct spi_controller 	*ctlr;
2628 	u32			max_speed_hz;
2629 	u32			mode;
2630 	int			irq;
2631 	u8			bits_per_word;
2632 	u8			chip_select;
2633 	int			n;
2634 	int			index;
2635 };
2636 
acpi_spi_count(struct acpi_resource * ares,void * data)2637 static int acpi_spi_count(struct acpi_resource *ares, void *data)
2638 {
2639 	struct acpi_resource_spi_serialbus *sb;
2640 	int *count = data;
2641 
2642 	if (ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS)
2643 		return 1;
2644 
2645 	sb = &ares->data.spi_serial_bus;
2646 	if (sb->type != ACPI_RESOURCE_SERIAL_TYPE_SPI)
2647 		return 1;
2648 
2649 	*count = *count + 1;
2650 
2651 	return 1;
2652 }
2653 
2654 /**
2655  * acpi_spi_count_resources - Count the number of SpiSerialBus resources
2656  * @adev:	ACPI device
2657  *
2658  * Return: the number of SpiSerialBus resources in the ACPI-device's
2659  * resource-list; or a negative error code.
2660  */
acpi_spi_count_resources(struct acpi_device * adev)2661 int acpi_spi_count_resources(struct acpi_device *adev)
2662 {
2663 	LIST_HEAD(r);
2664 	int count = 0;
2665 	int ret;
2666 
2667 	ret = acpi_dev_get_resources(adev, &r, acpi_spi_count, &count);
2668 	if (ret < 0)
2669 		return ret;
2670 
2671 	acpi_dev_free_resource_list(&r);
2672 
2673 	return count;
2674 }
2675 EXPORT_SYMBOL_GPL(acpi_spi_count_resources);
2676 
acpi_spi_parse_apple_properties(struct acpi_device * dev,struct acpi_spi_lookup * lookup)2677 static void acpi_spi_parse_apple_properties(struct acpi_device *dev,
2678 					    struct acpi_spi_lookup *lookup)
2679 {
2680 	const union acpi_object *obj;
2681 
2682 	if (!x86_apple_machine)
2683 		return;
2684 
2685 	if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj)
2686 	    && obj->buffer.length >= 4)
2687 		lookup->max_speed_hz  = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer;
2688 
2689 	if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj)
2690 	    && obj->buffer.length == 8)
2691 		lookup->bits_per_word = *(u64 *)obj->buffer.pointer;
2692 
2693 	if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj)
2694 	    && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer)
2695 		lookup->mode |= SPI_LSB_FIRST;
2696 
2697 	if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj)
2698 	    && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2699 		lookup->mode |= SPI_CPOL;
2700 
2701 	if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj)
2702 	    && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2703 		lookup->mode |= SPI_CPHA;
2704 }
2705 
acpi_spi_add_resource(struct acpi_resource * ares,void * data)2706 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
2707 {
2708 	struct acpi_spi_lookup *lookup = data;
2709 	struct spi_controller *ctlr = lookup->ctlr;
2710 
2711 	if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
2712 		struct acpi_resource_spi_serialbus *sb;
2713 		acpi_handle parent_handle;
2714 		acpi_status status;
2715 
2716 		sb = &ares->data.spi_serial_bus;
2717 		if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
2718 
2719 			if (lookup->index != -1 && lookup->n++ != lookup->index)
2720 				return 1;
2721 
2722 			status = acpi_get_handle(NULL,
2723 						 sb->resource_source.string_ptr,
2724 						 &parent_handle);
2725 
2726 			if (ACPI_FAILURE(status))
2727 				return -ENODEV;
2728 
2729 			if (ctlr) {
2730 				if (!device_match_acpi_handle(ctlr->dev.parent, parent_handle))
2731 					return -ENODEV;
2732 			} else {
2733 				struct acpi_device *adev;
2734 
2735 				adev = acpi_fetch_acpi_dev(parent_handle);
2736 				if (!adev)
2737 					return -ENODEV;
2738 
2739 				ctlr = acpi_spi_find_controller_by_adev(adev);
2740 				if (!ctlr)
2741 					return -EPROBE_DEFER;
2742 
2743 				lookup->ctlr = ctlr;
2744 			}
2745 
2746 			/*
2747 			 * ACPI DeviceSelection numbering is handled by the
2748 			 * host controller driver in Windows and can vary
2749 			 * from driver to driver. In Linux we always expect
2750 			 * 0 .. max - 1 so we need to ask the driver to
2751 			 * translate between the two schemes.
2752 			 */
2753 			if (ctlr->fw_translate_cs) {
2754 				int cs = ctlr->fw_translate_cs(ctlr,
2755 						sb->device_selection);
2756 				if (cs < 0)
2757 					return cs;
2758 				lookup->chip_select = cs;
2759 			} else {
2760 				lookup->chip_select = sb->device_selection;
2761 			}
2762 
2763 			lookup->max_speed_hz = sb->connection_speed;
2764 			lookup->bits_per_word = sb->data_bit_length;
2765 
2766 			if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
2767 				lookup->mode |= SPI_CPHA;
2768 			if (sb->clock_polarity == ACPI_SPI_START_HIGH)
2769 				lookup->mode |= SPI_CPOL;
2770 			if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
2771 				lookup->mode |= SPI_CS_HIGH;
2772 		}
2773 	} else if (lookup->irq < 0) {
2774 		struct resource r;
2775 
2776 		if (acpi_dev_resource_interrupt(ares, 0, &r))
2777 			lookup->irq = r.start;
2778 	}
2779 
2780 	/* Always tell the ACPI core to skip this resource */
2781 	return 1;
2782 }
2783 
2784 /**
2785  * acpi_spi_device_alloc - Allocate a spi device, and fill it in with ACPI information
2786  * @ctlr: controller to which the spi device belongs
2787  * @adev: ACPI Device for the spi device
2788  * @index: Index of the spi resource inside the ACPI Node
2789  *
2790  * This should be used to allocate a new SPI device from and ACPI Device node.
2791  * The caller is responsible for calling spi_add_device to register the SPI device.
2792  *
2793  * If ctlr is set to NULL, the Controller for the SPI device will be looked up
2794  * using the resource.
2795  * If index is set to -1, index is not used.
2796  * Note: If index is -1, ctlr must be set.
2797  *
2798  * Return: a pointer to the new device, or ERR_PTR on error.
2799  */
acpi_spi_device_alloc(struct spi_controller * ctlr,struct acpi_device * adev,int index)2800 struct spi_device *acpi_spi_device_alloc(struct spi_controller *ctlr,
2801 					 struct acpi_device *adev,
2802 					 int index)
2803 {
2804 	acpi_handle parent_handle = NULL;
2805 	struct list_head resource_list;
2806 	struct acpi_spi_lookup lookup = {};
2807 	struct spi_device *spi;
2808 	int ret;
2809 
2810 	if (!ctlr && index == -1)
2811 		return ERR_PTR(-EINVAL);
2812 
2813 	lookup.ctlr		= ctlr;
2814 	lookup.irq		= -1;
2815 	lookup.index		= index;
2816 	lookup.n		= 0;
2817 
2818 	INIT_LIST_HEAD(&resource_list);
2819 	ret = acpi_dev_get_resources(adev, &resource_list,
2820 				     acpi_spi_add_resource, &lookup);
2821 	acpi_dev_free_resource_list(&resource_list);
2822 
2823 	if (ret < 0)
2824 		/* Found SPI in _CRS but it points to another controller */
2825 		return ERR_PTR(ret);
2826 
2827 	if (!lookup.max_speed_hz &&
2828 	    ACPI_SUCCESS(acpi_get_parent(adev->handle, &parent_handle)) &&
2829 	    device_match_acpi_handle(lookup.ctlr->dev.parent, parent_handle)) {
2830 		/* Apple does not use _CRS but nested devices for SPI slaves */
2831 		acpi_spi_parse_apple_properties(adev, &lookup);
2832 	}
2833 
2834 	if (!lookup.max_speed_hz)
2835 		return ERR_PTR(-ENODEV);
2836 
2837 	spi = spi_alloc_device(lookup.ctlr);
2838 	if (!spi) {
2839 		dev_err(&lookup.ctlr->dev, "failed to allocate SPI device for %s\n",
2840 			dev_name(&adev->dev));
2841 		return ERR_PTR(-ENOMEM);
2842 	}
2843 
2844 	spi_set_all_cs_unused(spi);
2845 	spi_set_chipselect(spi, 0, lookup.chip_select);
2846 
2847 	ACPI_COMPANION_SET(&spi->dev, adev);
2848 	spi->max_speed_hz	= lookup.max_speed_hz;
2849 	spi->mode		|= lookup.mode;
2850 	spi->irq		= lookup.irq;
2851 	spi->bits_per_word	= lookup.bits_per_word;
2852 	/*
2853 	 * By default spi->chip_select[0] will hold the physical CS number,
2854 	 * so set bit 0 in spi->cs_index_mask.
2855 	 */
2856 	spi->cs_index_mask	= BIT(0);
2857 
2858 	return spi;
2859 }
2860 EXPORT_SYMBOL_GPL(acpi_spi_device_alloc);
2861 
acpi_register_spi_device(struct spi_controller * ctlr,struct acpi_device * adev)2862 static acpi_status acpi_register_spi_device(struct spi_controller *ctlr,
2863 					    struct acpi_device *adev)
2864 {
2865 	struct spi_device *spi;
2866 
2867 	if (acpi_bus_get_status(adev) || !adev->status.present ||
2868 	    acpi_device_enumerated(adev))
2869 		return AE_OK;
2870 
2871 	spi = acpi_spi_device_alloc(ctlr, adev, -1);
2872 	if (IS_ERR(spi)) {
2873 		if (PTR_ERR(spi) == -ENOMEM)
2874 			return AE_NO_MEMORY;
2875 		else
2876 			return AE_OK;
2877 	}
2878 
2879 	acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias,
2880 			  sizeof(spi->modalias));
2881 
2882 	acpi_device_set_enumerated(adev);
2883 
2884 	adev->power.flags.ignore_parent = true;
2885 	if (spi_add_device(spi)) {
2886 		adev->power.flags.ignore_parent = false;
2887 		dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n",
2888 			dev_name(&adev->dev));
2889 		spi_dev_put(spi);
2890 	}
2891 
2892 	return AE_OK;
2893 }
2894 
acpi_spi_add_device(acpi_handle handle,u32 level,void * data,void ** return_value)2895 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
2896 				       void *data, void **return_value)
2897 {
2898 	struct acpi_device *adev = acpi_fetch_acpi_dev(handle);
2899 	struct spi_controller *ctlr = data;
2900 
2901 	if (!adev)
2902 		return AE_OK;
2903 
2904 	return acpi_register_spi_device(ctlr, adev);
2905 }
2906 
2907 #define SPI_ACPI_ENUMERATE_MAX_DEPTH		32
2908 
acpi_register_spi_devices(struct spi_controller * ctlr)2909 static void acpi_register_spi_devices(struct spi_controller *ctlr)
2910 {
2911 	acpi_status status;
2912 	acpi_handle handle;
2913 
2914 	handle = ACPI_HANDLE(ctlr->dev.parent);
2915 	if (!handle)
2916 		return;
2917 
2918 	status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT,
2919 				     SPI_ACPI_ENUMERATE_MAX_DEPTH,
2920 				     acpi_spi_add_device, NULL, ctlr, NULL);
2921 	if (ACPI_FAILURE(status))
2922 		dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n");
2923 }
2924 #else
acpi_register_spi_devices(struct spi_controller * ctlr)2925 static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {}
2926 #endif /* CONFIG_ACPI */
2927 
spi_controller_release(struct device * dev)2928 static void spi_controller_release(struct device *dev)
2929 {
2930 	struct spi_controller *ctlr;
2931 
2932 	ctlr = container_of(dev, struct spi_controller, dev);
2933 	kfree(ctlr);
2934 }
2935 
2936 static struct class spi_master_class = {
2937 	.name		= "spi_master",
2938 	.dev_release	= spi_controller_release,
2939 	.dev_groups	= spi_master_groups,
2940 };
2941 
2942 #ifdef CONFIG_SPI_SLAVE
2943 /**
2944  * spi_target_abort - abort the ongoing transfer request on an SPI slave
2945  *		     controller
2946  * @spi: device used for the current transfer
2947  */
spi_target_abort(struct spi_device * spi)2948 int spi_target_abort(struct spi_device *spi)
2949 {
2950 	struct spi_controller *ctlr = spi->controller;
2951 
2952 	if (spi_controller_is_target(ctlr) && ctlr->target_abort)
2953 		return ctlr->target_abort(ctlr);
2954 
2955 	return -ENOTSUPP;
2956 }
2957 EXPORT_SYMBOL_GPL(spi_target_abort);
2958 
slave_show(struct device * dev,struct device_attribute * attr,char * buf)2959 static ssize_t slave_show(struct device *dev, struct device_attribute *attr,
2960 			  char *buf)
2961 {
2962 	struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2963 						   dev);
2964 	struct device *child;
2965 
2966 	child = device_find_any_child(&ctlr->dev);
2967 	return sysfs_emit(buf, "%s\n", child ? to_spi_device(child)->modalias : NULL);
2968 }
2969 
slave_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2970 static ssize_t slave_store(struct device *dev, struct device_attribute *attr,
2971 			   const char *buf, size_t count)
2972 {
2973 	struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2974 						   dev);
2975 	struct spi_device *spi;
2976 	struct device *child;
2977 	char name[32];
2978 	int rc;
2979 
2980 	rc = sscanf(buf, "%31s", name);
2981 	if (rc != 1 || !name[0])
2982 		return -EINVAL;
2983 
2984 	child = device_find_any_child(&ctlr->dev);
2985 	if (child) {
2986 		/* Remove registered slave */
2987 		device_unregister(child);
2988 		put_device(child);
2989 	}
2990 
2991 	if (strcmp(name, "(null)")) {
2992 		/* Register new slave */
2993 		spi = spi_alloc_device(ctlr);
2994 		if (!spi)
2995 			return -ENOMEM;
2996 
2997 		strscpy(spi->modalias, name, sizeof(spi->modalias));
2998 
2999 		rc = spi_add_device(spi);
3000 		if (rc) {
3001 			spi_dev_put(spi);
3002 			return rc;
3003 		}
3004 	}
3005 
3006 	return count;
3007 }
3008 
3009 static DEVICE_ATTR_RW(slave);
3010 
3011 static struct attribute *spi_slave_attrs[] = {
3012 	&dev_attr_slave.attr,
3013 	NULL,
3014 };
3015 
3016 static const struct attribute_group spi_slave_group = {
3017 	.attrs = spi_slave_attrs,
3018 };
3019 
3020 static const struct attribute_group *spi_slave_groups[] = {
3021 	&spi_controller_statistics_group,
3022 	&spi_slave_group,
3023 	NULL,
3024 };
3025 
3026 static struct class spi_slave_class = {
3027 	.name		= "spi_slave",
3028 	.dev_release	= spi_controller_release,
3029 	.dev_groups	= spi_slave_groups,
3030 };
3031 #else
3032 extern struct class spi_slave_class;	/* dummy */
3033 #endif
3034 
3035 /**
3036  * __spi_alloc_controller - allocate an SPI master or slave controller
3037  * @dev: the controller, possibly using the platform_bus
3038  * @size: how much zeroed driver-private data to allocate; the pointer to this
3039  *	memory is in the driver_data field of the returned device, accessible
3040  *	with spi_controller_get_devdata(); the memory is cacheline aligned;
3041  *	drivers granting DMA access to portions of their private data need to
3042  *	round up @size using ALIGN(size, dma_get_cache_alignment()).
3043  * @slave: flag indicating whether to allocate an SPI master (false) or SPI
3044  *	slave (true) controller
3045  * Context: can sleep
3046  *
3047  * This call is used only by SPI controller drivers, which are the
3048  * only ones directly touching chip registers.  It's how they allocate
3049  * an spi_controller structure, prior to calling spi_register_controller().
3050  *
3051  * This must be called from context that can sleep.
3052  *
3053  * The caller is responsible for assigning the bus number and initializing the
3054  * controller's methods before calling spi_register_controller(); and (after
3055  * errors adding the device) calling spi_controller_put() to prevent a memory
3056  * leak.
3057  *
3058  * Return: the SPI controller structure on success, else NULL.
3059  */
__spi_alloc_controller(struct device * dev,unsigned int size,bool slave)3060 struct spi_controller *__spi_alloc_controller(struct device *dev,
3061 					      unsigned int size, bool slave)
3062 {
3063 	struct spi_controller	*ctlr;
3064 	size_t ctlr_size = ALIGN(sizeof(*ctlr), dma_get_cache_alignment());
3065 
3066 	if (!dev)
3067 		return NULL;
3068 
3069 	ctlr = kzalloc(size + ctlr_size, GFP_KERNEL);
3070 	if (!ctlr)
3071 		return NULL;
3072 
3073 	device_initialize(&ctlr->dev);
3074 	INIT_LIST_HEAD(&ctlr->queue);
3075 	spin_lock_init(&ctlr->queue_lock);
3076 	spin_lock_init(&ctlr->bus_lock_spinlock);
3077 	mutex_init(&ctlr->bus_lock_mutex);
3078 	mutex_init(&ctlr->io_mutex);
3079 	mutex_init(&ctlr->add_lock);
3080 	ctlr->bus_num = -1;
3081 	ctlr->num_chipselect = 1;
3082 	ctlr->slave = slave;
3083 	if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave)
3084 		ctlr->dev.class = &spi_slave_class;
3085 	else
3086 		ctlr->dev.class = &spi_master_class;
3087 	ctlr->dev.parent = dev;
3088 	pm_suspend_ignore_children(&ctlr->dev, true);
3089 	spi_controller_set_devdata(ctlr, (void *)ctlr + ctlr_size);
3090 
3091 	return ctlr;
3092 }
3093 EXPORT_SYMBOL_GPL(__spi_alloc_controller);
3094 
devm_spi_release_controller(struct device * dev,void * ctlr)3095 static void devm_spi_release_controller(struct device *dev, void *ctlr)
3096 {
3097 	spi_controller_put(*(struct spi_controller **)ctlr);
3098 }
3099 
3100 /**
3101  * __devm_spi_alloc_controller - resource-managed __spi_alloc_controller()
3102  * @dev: physical device of SPI controller
3103  * @size: how much zeroed driver-private data to allocate
3104  * @slave: whether to allocate an SPI master (false) or SPI slave (true)
3105  * Context: can sleep
3106  *
3107  * Allocate an SPI controller and automatically release a reference on it
3108  * when @dev is unbound from its driver.  Drivers are thus relieved from
3109  * having to call spi_controller_put().
3110  *
3111  * The arguments to this function are identical to __spi_alloc_controller().
3112  *
3113  * Return: the SPI controller structure on success, else NULL.
3114  */
__devm_spi_alloc_controller(struct device * dev,unsigned int size,bool slave)3115 struct spi_controller *__devm_spi_alloc_controller(struct device *dev,
3116 						   unsigned int size,
3117 						   bool slave)
3118 {
3119 	struct spi_controller **ptr, *ctlr;
3120 
3121 	ptr = devres_alloc(devm_spi_release_controller, sizeof(*ptr),
3122 			   GFP_KERNEL);
3123 	if (!ptr)
3124 		return NULL;
3125 
3126 	ctlr = __spi_alloc_controller(dev, size, slave);
3127 	if (ctlr) {
3128 		ctlr->devm_allocated = true;
3129 		*ptr = ctlr;
3130 		devres_add(dev, ptr);
3131 	} else {
3132 		devres_free(ptr);
3133 	}
3134 
3135 	return ctlr;
3136 }
3137 EXPORT_SYMBOL_GPL(__devm_spi_alloc_controller);
3138 
3139 /**
3140  * spi_get_gpio_descs() - grab chip select GPIOs for the master
3141  * @ctlr: The SPI master to grab GPIO descriptors for
3142  */
spi_get_gpio_descs(struct spi_controller * ctlr)3143 static int spi_get_gpio_descs(struct spi_controller *ctlr)
3144 {
3145 	int nb, i;
3146 	struct gpio_desc **cs;
3147 	struct device *dev = &ctlr->dev;
3148 	unsigned long native_cs_mask = 0;
3149 	unsigned int num_cs_gpios = 0;
3150 
3151 	nb = gpiod_count(dev, "cs");
3152 	if (nb < 0) {
3153 		/* No GPIOs at all is fine, else return the error */
3154 		if (nb == -ENOENT)
3155 			return 0;
3156 		return nb;
3157 	}
3158 
3159 	ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
3160 
3161 	cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs),
3162 			  GFP_KERNEL);
3163 	if (!cs)
3164 		return -ENOMEM;
3165 	ctlr->cs_gpiods = cs;
3166 
3167 	for (i = 0; i < nb; i++) {
3168 		/*
3169 		 * Most chipselects are active low, the inverted
3170 		 * semantics are handled by special quirks in gpiolib,
3171 		 * so initializing them GPIOD_OUT_LOW here means
3172 		 * "unasserted", in most cases this will drive the physical
3173 		 * line high.
3174 		 */
3175 		cs[i] = devm_gpiod_get_index_optional(dev, "cs", i,
3176 						      GPIOD_OUT_LOW);
3177 		if (IS_ERR(cs[i]))
3178 			return PTR_ERR(cs[i]);
3179 
3180 		if (cs[i]) {
3181 			/*
3182 			 * If we find a CS GPIO, name it after the device and
3183 			 * chip select line.
3184 			 */
3185 			char *gpioname;
3186 
3187 			gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d",
3188 						  dev_name(dev), i);
3189 			if (!gpioname)
3190 				return -ENOMEM;
3191 			gpiod_set_consumer_name(cs[i], gpioname);
3192 			num_cs_gpios++;
3193 			continue;
3194 		}
3195 
3196 		if (ctlr->max_native_cs && i >= ctlr->max_native_cs) {
3197 			dev_err(dev, "Invalid native chip select %d\n", i);
3198 			return -EINVAL;
3199 		}
3200 		native_cs_mask |= BIT(i);
3201 	}
3202 
3203 	ctlr->unused_native_cs = ffs(~native_cs_mask) - 1;
3204 
3205 	if ((ctlr->flags & SPI_CONTROLLER_GPIO_SS) && num_cs_gpios &&
3206 	    ctlr->max_native_cs && ctlr->unused_native_cs >= ctlr->max_native_cs) {
3207 		dev_err(dev, "No unused native chip select available\n");
3208 		return -EINVAL;
3209 	}
3210 
3211 	return 0;
3212 }
3213 
spi_controller_check_ops(struct spi_controller * ctlr)3214 static int spi_controller_check_ops(struct spi_controller *ctlr)
3215 {
3216 	/*
3217 	 * The controller may implement only the high-level SPI-memory like
3218 	 * operations if it does not support regular SPI transfers, and this is
3219 	 * valid use case.
3220 	 * If ->mem_ops or ->mem_ops->exec_op is NULL, we request that at least
3221 	 * one of the ->transfer_xxx() method be implemented.
3222 	 */
3223 	if (!ctlr->mem_ops || !ctlr->mem_ops->exec_op) {
3224 		if (!ctlr->transfer && !ctlr->transfer_one &&
3225 		   !ctlr->transfer_one_message) {
3226 			return -EINVAL;
3227 		}
3228 	}
3229 
3230 	return 0;
3231 }
3232 
3233 /* Allocate dynamic bus number using Linux idr */
spi_controller_id_alloc(struct spi_controller * ctlr,int start,int end)3234 static int spi_controller_id_alloc(struct spi_controller *ctlr, int start, int end)
3235 {
3236 	int id;
3237 
3238 	mutex_lock(&board_lock);
3239 	id = idr_alloc(&spi_master_idr, ctlr, start, end, GFP_KERNEL);
3240 	mutex_unlock(&board_lock);
3241 	if (WARN(id < 0, "couldn't get idr"))
3242 		return id == -ENOSPC ? -EBUSY : id;
3243 	ctlr->bus_num = id;
3244 	return 0;
3245 }
3246 
3247 /**
3248  * spi_register_controller - register SPI master or slave controller
3249  * @ctlr: initialized master, originally from spi_alloc_master() or
3250  *	spi_alloc_slave()
3251  * Context: can sleep
3252  *
3253  * SPI controllers connect to their drivers using some non-SPI bus,
3254  * such as the platform bus.  The final stage of probe() in that code
3255  * includes calling spi_register_controller() to hook up to this SPI bus glue.
3256  *
3257  * SPI controllers use board specific (often SOC specific) bus numbers,
3258  * and board-specific addressing for SPI devices combines those numbers
3259  * with chip select numbers.  Since SPI does not directly support dynamic
3260  * device identification, boards need configuration tables telling which
3261  * chip is at which address.
3262  *
3263  * This must be called from context that can sleep.  It returns zero on
3264  * success, else a negative error code (dropping the controller's refcount).
3265  * After a successful return, the caller is responsible for calling
3266  * spi_unregister_controller().
3267  *
3268  * Return: zero on success, else a negative error code.
3269  */
spi_register_controller(struct spi_controller * ctlr)3270 int spi_register_controller(struct spi_controller *ctlr)
3271 {
3272 	struct device		*dev = ctlr->dev.parent;
3273 	struct boardinfo	*bi;
3274 	int			first_dynamic;
3275 	int			status;
3276 	int			idx;
3277 
3278 	if (!dev)
3279 		return -ENODEV;
3280 
3281 	/*
3282 	 * Make sure all necessary hooks are implemented before registering
3283 	 * the SPI controller.
3284 	 */
3285 	status = spi_controller_check_ops(ctlr);
3286 	if (status)
3287 		return status;
3288 
3289 	if (ctlr->bus_num < 0)
3290 		ctlr->bus_num = of_alias_get_id(ctlr->dev.of_node, "spi");
3291 	if (ctlr->bus_num >= 0) {
3292 		/* Devices with a fixed bus num must check-in with the num */
3293 		status = spi_controller_id_alloc(ctlr, ctlr->bus_num, ctlr->bus_num + 1);
3294 		if (status)
3295 			return status;
3296 	}
3297 	if (ctlr->bus_num < 0) {
3298 		first_dynamic = of_alias_get_highest_id("spi");
3299 		if (first_dynamic < 0)
3300 			first_dynamic = 0;
3301 		else
3302 			first_dynamic++;
3303 
3304 		status = spi_controller_id_alloc(ctlr, first_dynamic, 0);
3305 		if (status)
3306 			return status;
3307 	}
3308 	ctlr->bus_lock_flag = 0;
3309 	init_completion(&ctlr->xfer_completion);
3310 	init_completion(&ctlr->cur_msg_completion);
3311 	if (!ctlr->max_dma_len)
3312 		ctlr->max_dma_len = INT_MAX;
3313 
3314 	/*
3315 	 * Register the device, then userspace will see it.
3316 	 * Registration fails if the bus ID is in use.
3317 	 */
3318 	dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num);
3319 
3320 	if (!spi_controller_is_target(ctlr) && ctlr->use_gpio_descriptors) {
3321 		status = spi_get_gpio_descs(ctlr);
3322 		if (status)
3323 			goto free_bus_id;
3324 		/*
3325 		 * A controller using GPIO descriptors always
3326 		 * supports SPI_CS_HIGH if need be.
3327 		 */
3328 		ctlr->mode_bits |= SPI_CS_HIGH;
3329 	}
3330 
3331 	/*
3332 	 * Even if it's just one always-selected device, there must
3333 	 * be at least one chipselect.
3334 	 */
3335 	if (!ctlr->num_chipselect) {
3336 		status = -EINVAL;
3337 		goto free_bus_id;
3338 	}
3339 
3340 	/* Setting last_cs to SPI_INVALID_CS means no chip selected */
3341 	for (idx = 0; idx < SPI_CS_CNT_MAX; idx++)
3342 		ctlr->last_cs[idx] = SPI_INVALID_CS;
3343 
3344 	status = device_add(&ctlr->dev);
3345 	if (status < 0)
3346 		goto free_bus_id;
3347 	dev_dbg(dev, "registered %s %s\n",
3348 			spi_controller_is_target(ctlr) ? "target" : "host",
3349 			dev_name(&ctlr->dev));
3350 
3351 	/*
3352 	 * If we're using a queued driver, start the queue. Note that we don't
3353 	 * need the queueing logic if the driver is only supporting high-level
3354 	 * memory operations.
3355 	 */
3356 	if (ctlr->transfer) {
3357 		dev_info(dev, "controller is unqueued, this is deprecated\n");
3358 	} else if (ctlr->transfer_one || ctlr->transfer_one_message) {
3359 		status = spi_controller_initialize_queue(ctlr);
3360 		if (status) {
3361 			device_del(&ctlr->dev);
3362 			goto free_bus_id;
3363 		}
3364 	}
3365 	/* Add statistics */
3366 	ctlr->pcpu_statistics = spi_alloc_pcpu_stats(dev);
3367 	if (!ctlr->pcpu_statistics) {
3368 		dev_err(dev, "Error allocating per-cpu statistics\n");
3369 		status = -ENOMEM;
3370 		goto destroy_queue;
3371 	}
3372 
3373 	mutex_lock(&board_lock);
3374 	list_add_tail(&ctlr->list, &spi_controller_list);
3375 	list_for_each_entry(bi, &board_list, list)
3376 		spi_match_controller_to_boardinfo(ctlr, &bi->board_info);
3377 	mutex_unlock(&board_lock);
3378 
3379 	/* Register devices from the device tree and ACPI */
3380 	of_register_spi_devices(ctlr);
3381 	acpi_register_spi_devices(ctlr);
3382 	return status;
3383 
3384 destroy_queue:
3385 	spi_destroy_queue(ctlr);
3386 free_bus_id:
3387 	mutex_lock(&board_lock);
3388 	idr_remove(&spi_master_idr, ctlr->bus_num);
3389 	mutex_unlock(&board_lock);
3390 	return status;
3391 }
3392 EXPORT_SYMBOL_GPL(spi_register_controller);
3393 
devm_spi_unregister(struct device * dev,void * res)3394 static void devm_spi_unregister(struct device *dev, void *res)
3395 {
3396 	spi_unregister_controller(*(struct spi_controller **)res);
3397 }
3398 
3399 /**
3400  * devm_spi_register_controller - register managed SPI master or slave
3401  *	controller
3402  * @dev:    device managing SPI controller
3403  * @ctlr: initialized controller, originally from spi_alloc_master() or
3404  *	spi_alloc_slave()
3405  * Context: can sleep
3406  *
3407  * Register a SPI device as with spi_register_controller() which will
3408  * automatically be unregistered and freed.
3409  *
3410  * Return: zero on success, else a negative error code.
3411  */
devm_spi_register_controller(struct device * dev,struct spi_controller * ctlr)3412 int devm_spi_register_controller(struct device *dev,
3413 				 struct spi_controller *ctlr)
3414 {
3415 	struct spi_controller **ptr;
3416 	int ret;
3417 
3418 	ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
3419 	if (!ptr)
3420 		return -ENOMEM;
3421 
3422 	ret = spi_register_controller(ctlr);
3423 	if (!ret) {
3424 		*ptr = ctlr;
3425 		devres_add(dev, ptr);
3426 	} else {
3427 		devres_free(ptr);
3428 	}
3429 
3430 	return ret;
3431 }
3432 EXPORT_SYMBOL_GPL(devm_spi_register_controller);
3433 
__unregister(struct device * dev,void * null)3434 static int __unregister(struct device *dev, void *null)
3435 {
3436 	spi_unregister_device(to_spi_device(dev));
3437 	return 0;
3438 }
3439 
3440 /**
3441  * spi_unregister_controller - unregister SPI master or slave controller
3442  * @ctlr: the controller being unregistered
3443  * Context: can sleep
3444  *
3445  * This call is used only by SPI controller drivers, which are the
3446  * only ones directly touching chip registers.
3447  *
3448  * This must be called from context that can sleep.
3449  *
3450  * Note that this function also drops a reference to the controller.
3451  */
spi_unregister_controller(struct spi_controller * ctlr)3452 void spi_unregister_controller(struct spi_controller *ctlr)
3453 {
3454 	struct spi_controller *found;
3455 	int id = ctlr->bus_num;
3456 
3457 	/* Prevent addition of new devices, unregister existing ones */
3458 	if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
3459 		mutex_lock(&ctlr->add_lock);
3460 
3461 	device_for_each_child(&ctlr->dev, NULL, __unregister);
3462 
3463 	/* First make sure that this controller was ever added */
3464 	mutex_lock(&board_lock);
3465 	found = idr_find(&spi_master_idr, id);
3466 	mutex_unlock(&board_lock);
3467 	if (ctlr->queued) {
3468 		if (spi_destroy_queue(ctlr))
3469 			dev_err(&ctlr->dev, "queue remove failed\n");
3470 	}
3471 	mutex_lock(&board_lock);
3472 	list_del(&ctlr->list);
3473 	mutex_unlock(&board_lock);
3474 
3475 	device_del(&ctlr->dev);
3476 
3477 	/* Free bus id */
3478 	mutex_lock(&board_lock);
3479 	if (found == ctlr)
3480 		idr_remove(&spi_master_idr, id);
3481 	mutex_unlock(&board_lock);
3482 
3483 	if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
3484 		mutex_unlock(&ctlr->add_lock);
3485 
3486 	/*
3487 	 * Release the last reference on the controller if its driver
3488 	 * has not yet been converted to devm_spi_alloc_master/slave().
3489 	 */
3490 	if (!ctlr->devm_allocated)
3491 		put_device(&ctlr->dev);
3492 }
3493 EXPORT_SYMBOL_GPL(spi_unregister_controller);
3494 
__spi_check_suspended(const struct spi_controller * ctlr)3495 static inline int __spi_check_suspended(const struct spi_controller *ctlr)
3496 {
3497 	return ctlr->flags & SPI_CONTROLLER_SUSPENDED ? -ESHUTDOWN : 0;
3498 }
3499 
__spi_mark_suspended(struct spi_controller * ctlr)3500 static inline void __spi_mark_suspended(struct spi_controller *ctlr)
3501 {
3502 	mutex_lock(&ctlr->bus_lock_mutex);
3503 	ctlr->flags |= SPI_CONTROLLER_SUSPENDED;
3504 	mutex_unlock(&ctlr->bus_lock_mutex);
3505 }
3506 
__spi_mark_resumed(struct spi_controller * ctlr)3507 static inline void __spi_mark_resumed(struct spi_controller *ctlr)
3508 {
3509 	mutex_lock(&ctlr->bus_lock_mutex);
3510 	ctlr->flags &= ~SPI_CONTROLLER_SUSPENDED;
3511 	mutex_unlock(&ctlr->bus_lock_mutex);
3512 }
3513 
spi_controller_suspend(struct spi_controller * ctlr)3514 int spi_controller_suspend(struct spi_controller *ctlr)
3515 {
3516 	int ret = 0;
3517 
3518 	/* Basically no-ops for non-queued controllers */
3519 	if (ctlr->queued) {
3520 		ret = spi_stop_queue(ctlr);
3521 		if (ret)
3522 			dev_err(&ctlr->dev, "queue stop failed\n");
3523 	}
3524 
3525 	__spi_mark_suspended(ctlr);
3526 	return ret;
3527 }
3528 EXPORT_SYMBOL_GPL(spi_controller_suspend);
3529 
spi_controller_resume(struct spi_controller * ctlr)3530 int spi_controller_resume(struct spi_controller *ctlr)
3531 {
3532 	int ret = 0;
3533 
3534 	__spi_mark_resumed(ctlr);
3535 
3536 	if (ctlr->queued) {
3537 		ret = spi_start_queue(ctlr);
3538 		if (ret)
3539 			dev_err(&ctlr->dev, "queue restart failed\n");
3540 	}
3541 	return ret;
3542 }
3543 EXPORT_SYMBOL_GPL(spi_controller_resume);
3544 
3545 /*-------------------------------------------------------------------------*/
3546 
3547 /* Core methods for spi_message alterations */
3548 
__spi_replace_transfers_release(struct spi_controller * ctlr,struct spi_message * msg,void * res)3549 static void __spi_replace_transfers_release(struct spi_controller *ctlr,
3550 					    struct spi_message *msg,
3551 					    void *res)
3552 {
3553 	struct spi_replaced_transfers *rxfer = res;
3554 	size_t i;
3555 
3556 	/* Call extra callback if requested */
3557 	if (rxfer->release)
3558 		rxfer->release(ctlr, msg, res);
3559 
3560 	/* Insert replaced transfers back into the message */
3561 	list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
3562 
3563 	/* Remove the formerly inserted entries */
3564 	for (i = 0; i < rxfer->inserted; i++)
3565 		list_del(&rxfer->inserted_transfers[i].transfer_list);
3566 }
3567 
3568 /**
3569  * spi_replace_transfers - replace transfers with several transfers
3570  *                         and register change with spi_message.resources
3571  * @msg:           the spi_message we work upon
3572  * @xfer_first:    the first spi_transfer we want to replace
3573  * @remove:        number of transfers to remove
3574  * @insert:        the number of transfers we want to insert instead
3575  * @release:       extra release code necessary in some circumstances
3576  * @extradatasize: extra data to allocate (with alignment guarantees
3577  *                 of struct @spi_transfer)
3578  * @gfp:           gfp flags
3579  *
3580  * Returns: pointer to @spi_replaced_transfers,
3581  *          PTR_ERR(...) in case of errors.
3582  */
spi_replace_transfers(struct spi_message * msg,struct spi_transfer * xfer_first,size_t remove,size_t insert,spi_replaced_release_t release,size_t extradatasize,gfp_t gfp)3583 static struct spi_replaced_transfers *spi_replace_transfers(
3584 	struct spi_message *msg,
3585 	struct spi_transfer *xfer_first,
3586 	size_t remove,
3587 	size_t insert,
3588 	spi_replaced_release_t release,
3589 	size_t extradatasize,
3590 	gfp_t gfp)
3591 {
3592 	struct spi_replaced_transfers *rxfer;
3593 	struct spi_transfer *xfer;
3594 	size_t i;
3595 
3596 	/* Allocate the structure using spi_res */
3597 	rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
3598 			      struct_size(rxfer, inserted_transfers, insert)
3599 			      + extradatasize,
3600 			      gfp);
3601 	if (!rxfer)
3602 		return ERR_PTR(-ENOMEM);
3603 
3604 	/* The release code to invoke before running the generic release */
3605 	rxfer->release = release;
3606 
3607 	/* Assign extradata */
3608 	if (extradatasize)
3609 		rxfer->extradata =
3610 			&rxfer->inserted_transfers[insert];
3611 
3612 	/* Init the replaced_transfers list */
3613 	INIT_LIST_HEAD(&rxfer->replaced_transfers);
3614 
3615 	/*
3616 	 * Assign the list_entry after which we should reinsert
3617 	 * the @replaced_transfers - it may be spi_message.messages!
3618 	 */
3619 	rxfer->replaced_after = xfer_first->transfer_list.prev;
3620 
3621 	/* Remove the requested number of transfers */
3622 	for (i = 0; i < remove; i++) {
3623 		/*
3624 		 * If the entry after replaced_after it is msg->transfers
3625 		 * then we have been requested to remove more transfers
3626 		 * than are in the list.
3627 		 */
3628 		if (rxfer->replaced_after->next == &msg->transfers) {
3629 			dev_err(&msg->spi->dev,
3630 				"requested to remove more spi_transfers than are available\n");
3631 			/* Insert replaced transfers back into the message */
3632 			list_splice(&rxfer->replaced_transfers,
3633 				    rxfer->replaced_after);
3634 
3635 			/* Free the spi_replace_transfer structure... */
3636 			spi_res_free(rxfer);
3637 
3638 			/* ...and return with an error */
3639 			return ERR_PTR(-EINVAL);
3640 		}
3641 
3642 		/*
3643 		 * Remove the entry after replaced_after from list of
3644 		 * transfers and add it to list of replaced_transfers.
3645 		 */
3646 		list_move_tail(rxfer->replaced_after->next,
3647 			       &rxfer->replaced_transfers);
3648 	}
3649 
3650 	/*
3651 	 * Create copy of the given xfer with identical settings
3652 	 * based on the first transfer to get removed.
3653 	 */
3654 	for (i = 0; i < insert; i++) {
3655 		/* We need to run in reverse order */
3656 		xfer = &rxfer->inserted_transfers[insert - 1 - i];
3657 
3658 		/* Copy all spi_transfer data */
3659 		memcpy(xfer, xfer_first, sizeof(*xfer));
3660 
3661 		/* Add to list */
3662 		list_add(&xfer->transfer_list, rxfer->replaced_after);
3663 
3664 		/* Clear cs_change and delay for all but the last */
3665 		if (i) {
3666 			xfer->cs_change = false;
3667 			xfer->delay.value = 0;
3668 		}
3669 	}
3670 
3671 	/* Set up inserted... */
3672 	rxfer->inserted = insert;
3673 
3674 	/* ...and register it with spi_res/spi_message */
3675 	spi_res_add(msg, rxfer);
3676 
3677 	return rxfer;
3678 }
3679 
__spi_split_transfer_maxsize(struct spi_controller * ctlr,struct spi_message * msg,struct spi_transfer ** xferp,size_t maxsize)3680 static int __spi_split_transfer_maxsize(struct spi_controller *ctlr,
3681 					struct spi_message *msg,
3682 					struct spi_transfer **xferp,
3683 					size_t maxsize)
3684 {
3685 	struct spi_transfer *xfer = *xferp, *xfers;
3686 	struct spi_replaced_transfers *srt;
3687 	size_t offset;
3688 	size_t count, i;
3689 
3690 	/* Calculate how many we have to replace */
3691 	count = DIV_ROUND_UP(xfer->len, maxsize);
3692 
3693 	/* Create replacement */
3694 	srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, GFP_KERNEL);
3695 	if (IS_ERR(srt))
3696 		return PTR_ERR(srt);
3697 	xfers = srt->inserted_transfers;
3698 
3699 	/*
3700 	 * Now handle each of those newly inserted spi_transfers.
3701 	 * Note that the replacements spi_transfers all are preset
3702 	 * to the same values as *xferp, so tx_buf, rx_buf and len
3703 	 * are all identical (as well as most others)
3704 	 * so we just have to fix up len and the pointers.
3705 	 */
3706 
3707 	/*
3708 	 * The first transfer just needs the length modified, so we
3709 	 * run it outside the loop.
3710 	 */
3711 	xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
3712 
3713 	/* All the others need rx_buf/tx_buf also set */
3714 	for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
3715 		/* Update rx_buf, tx_buf and DMA */
3716 		if (xfers[i].rx_buf)
3717 			xfers[i].rx_buf += offset;
3718 		if (xfers[i].tx_buf)
3719 			xfers[i].tx_buf += offset;
3720 
3721 		/* Update length */
3722 		xfers[i].len = min(maxsize, xfers[i].len - offset);
3723 	}
3724 
3725 	/*
3726 	 * We set up xferp to the last entry we have inserted,
3727 	 * so that we skip those already split transfers.
3728 	 */
3729 	*xferp = &xfers[count - 1];
3730 
3731 	/* Increment statistics counters */
3732 	SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics,
3733 				       transfers_split_maxsize);
3734 	SPI_STATISTICS_INCREMENT_FIELD(msg->spi->pcpu_statistics,
3735 				       transfers_split_maxsize);
3736 
3737 	return 0;
3738 }
3739 
3740 /**
3741  * spi_split_transfers_maxsize - split spi transfers into multiple transfers
3742  *                               when an individual transfer exceeds a
3743  *                               certain size
3744  * @ctlr:    the @spi_controller for this transfer
3745  * @msg:   the @spi_message to transform
3746  * @maxsize:  the maximum when to apply this
3747  *
3748  * This function allocates resources that are automatically freed during the
3749  * spi message unoptimize phase so this function should only be called from
3750  * optimize_message callbacks.
3751  *
3752  * Return: status of transformation
3753  */
spi_split_transfers_maxsize(struct spi_controller * ctlr,struct spi_message * msg,size_t maxsize)3754 int spi_split_transfers_maxsize(struct spi_controller *ctlr,
3755 				struct spi_message *msg,
3756 				size_t maxsize)
3757 {
3758 	struct spi_transfer *xfer;
3759 	int ret;
3760 
3761 	/*
3762 	 * Iterate over the transfer_list,
3763 	 * but note that xfer is advanced to the last transfer inserted
3764 	 * to avoid checking sizes again unnecessarily (also xfer does
3765 	 * potentially belong to a different list by the time the
3766 	 * replacement has happened).
3767 	 */
3768 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
3769 		if (xfer->len > maxsize) {
3770 			ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
3771 							   maxsize);
3772 			if (ret)
3773 				return ret;
3774 		}
3775 	}
3776 
3777 	return 0;
3778 }
3779 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
3780 
3781 
3782 /**
3783  * spi_split_transfers_maxwords - split SPI transfers into multiple transfers
3784  *                                when an individual transfer exceeds a
3785  *                                certain number of SPI words
3786  * @ctlr:     the @spi_controller for this transfer
3787  * @msg:      the @spi_message to transform
3788  * @maxwords: the number of words to limit each transfer to
3789  *
3790  * This function allocates resources that are automatically freed during the
3791  * spi message unoptimize phase so this function should only be called from
3792  * optimize_message callbacks.
3793  *
3794  * Return: status of transformation
3795  */
spi_split_transfers_maxwords(struct spi_controller * ctlr,struct spi_message * msg,size_t maxwords)3796 int spi_split_transfers_maxwords(struct spi_controller *ctlr,
3797 				 struct spi_message *msg,
3798 				 size_t maxwords)
3799 {
3800 	struct spi_transfer *xfer;
3801 
3802 	/*
3803 	 * Iterate over the transfer_list,
3804 	 * but note that xfer is advanced to the last transfer inserted
3805 	 * to avoid checking sizes again unnecessarily (also xfer does
3806 	 * potentially belong to a different list by the time the
3807 	 * replacement has happened).
3808 	 */
3809 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
3810 		size_t maxsize;
3811 		int ret;
3812 
3813 		maxsize = maxwords * roundup_pow_of_two(BITS_TO_BYTES(xfer->bits_per_word));
3814 		if (xfer->len > maxsize) {
3815 			ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
3816 							   maxsize);
3817 			if (ret)
3818 				return ret;
3819 		}
3820 	}
3821 
3822 	return 0;
3823 }
3824 EXPORT_SYMBOL_GPL(spi_split_transfers_maxwords);
3825 
3826 /*-------------------------------------------------------------------------*/
3827 
3828 /*
3829  * Core methods for SPI controller protocol drivers. Some of the
3830  * other core methods are currently defined as inline functions.
3831  */
3832 
__spi_validate_bits_per_word(struct spi_controller * ctlr,u8 bits_per_word)3833 static int __spi_validate_bits_per_word(struct spi_controller *ctlr,
3834 					u8 bits_per_word)
3835 {
3836 	if (ctlr->bits_per_word_mask) {
3837 		/* Only 32 bits fit in the mask */
3838 		if (bits_per_word > 32)
3839 			return -EINVAL;
3840 		if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word)))
3841 			return -EINVAL;
3842 	}
3843 
3844 	return 0;
3845 }
3846 
3847 /**
3848  * spi_set_cs_timing - configure CS setup, hold, and inactive delays
3849  * @spi: the device that requires specific CS timing configuration
3850  *
3851  * Return: zero on success, else a negative error code.
3852  */
spi_set_cs_timing(struct spi_device * spi)3853 static int spi_set_cs_timing(struct spi_device *spi)
3854 {
3855 	struct device *parent = spi->controller->dev.parent;
3856 	int status = 0;
3857 
3858 	if (spi->controller->set_cs_timing && !spi_get_csgpiod(spi, 0)) {
3859 		if (spi->controller->auto_runtime_pm) {
3860 			status = pm_runtime_get_sync(parent);
3861 			if (status < 0) {
3862 				pm_runtime_put_noidle(parent);
3863 				dev_err(&spi->controller->dev, "Failed to power device: %d\n",
3864 					status);
3865 				return status;
3866 			}
3867 
3868 			status = spi->controller->set_cs_timing(spi);
3869 			pm_runtime_mark_last_busy(parent);
3870 			pm_runtime_put_autosuspend(parent);
3871 		} else {
3872 			status = spi->controller->set_cs_timing(spi);
3873 		}
3874 	}
3875 	return status;
3876 }
3877 
3878 /**
3879  * spi_setup - setup SPI mode and clock rate
3880  * @spi: the device whose settings are being modified
3881  * Context: can sleep, and no requests are queued to the device
3882  *
3883  * SPI protocol drivers may need to update the transfer mode if the
3884  * device doesn't work with its default.  They may likewise need
3885  * to update clock rates or word sizes from initial values.  This function
3886  * changes those settings, and must be called from a context that can sleep.
3887  * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
3888  * effect the next time the device is selected and data is transferred to
3889  * or from it.  When this function returns, the SPI device is deselected.
3890  *
3891  * Note that this call will fail if the protocol driver specifies an option
3892  * that the underlying controller or its driver does not support.  For
3893  * example, not all hardware supports wire transfers using nine bit words,
3894  * LSB-first wire encoding, or active-high chipselects.
3895  *
3896  * Return: zero on success, else a negative error code.
3897  */
spi_setup(struct spi_device * spi)3898 int spi_setup(struct spi_device *spi)
3899 {
3900 	unsigned	bad_bits, ugly_bits;
3901 	int		status;
3902 
3903 	/*
3904 	 * Check mode to prevent that any two of DUAL, QUAD and NO_MOSI/MISO
3905 	 * are set at the same time.
3906 	 */
3907 	if ((hweight_long(spi->mode &
3908 		(SPI_TX_DUAL | SPI_TX_QUAD | SPI_NO_TX)) > 1) ||
3909 	    (hweight_long(spi->mode &
3910 		(SPI_RX_DUAL | SPI_RX_QUAD | SPI_NO_RX)) > 1)) {
3911 		dev_err(&spi->dev,
3912 		"setup: can not select any two of dual, quad and no-rx/tx at the same time\n");
3913 		return -EINVAL;
3914 	}
3915 	/* If it is SPI_3WIRE mode, DUAL and QUAD should be forbidden */
3916 	if ((spi->mode & SPI_3WIRE) && (spi->mode &
3917 		(SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3918 		 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL)))
3919 		return -EINVAL;
3920 	/* Check against conflicting MOSI idle configuration */
3921 	if ((spi->mode & SPI_MOSI_IDLE_LOW) && (spi->mode & SPI_MOSI_IDLE_HIGH)) {
3922 		dev_err(&spi->dev,
3923 			"setup: MOSI configured to idle low and high at the same time.\n");
3924 		return -EINVAL;
3925 	}
3926 	/*
3927 	 * Help drivers fail *cleanly* when they need options
3928 	 * that aren't supported with their current controller.
3929 	 * SPI_CS_WORD has a fallback software implementation,
3930 	 * so it is ignored here.
3931 	 */
3932 	bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD |
3933 				 SPI_NO_TX | SPI_NO_RX);
3934 	ugly_bits = bad_bits &
3935 		    (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3936 		     SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL);
3937 	if (ugly_bits) {
3938 		dev_warn(&spi->dev,
3939 			 "setup: ignoring unsupported mode bits %x\n",
3940 			 ugly_bits);
3941 		spi->mode &= ~ugly_bits;
3942 		bad_bits &= ~ugly_bits;
3943 	}
3944 	if (bad_bits) {
3945 		dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
3946 			bad_bits);
3947 		return -EINVAL;
3948 	}
3949 
3950 	if (!spi->bits_per_word) {
3951 		spi->bits_per_word = 8;
3952 	} else {
3953 		/*
3954 		 * Some controllers may not support the default 8 bits-per-word
3955 		 * so only perform the check when this is explicitly provided.
3956 		 */
3957 		status = __spi_validate_bits_per_word(spi->controller,
3958 						      spi->bits_per_word);
3959 		if (status)
3960 			return status;
3961 	}
3962 
3963 	if (spi->controller->max_speed_hz &&
3964 	    (!spi->max_speed_hz ||
3965 	     spi->max_speed_hz > spi->controller->max_speed_hz))
3966 		spi->max_speed_hz = spi->controller->max_speed_hz;
3967 
3968 	mutex_lock(&spi->controller->io_mutex);
3969 
3970 	if (spi->controller->setup) {
3971 		status = spi->controller->setup(spi);
3972 		if (status) {
3973 			mutex_unlock(&spi->controller->io_mutex);
3974 			dev_err(&spi->controller->dev, "Failed to setup device: %d\n",
3975 				status);
3976 			return status;
3977 		}
3978 	}
3979 
3980 	status = spi_set_cs_timing(spi);
3981 	if (status) {
3982 		mutex_unlock(&spi->controller->io_mutex);
3983 		return status;
3984 	}
3985 
3986 	if (spi->controller->auto_runtime_pm && spi->controller->set_cs) {
3987 		status = pm_runtime_resume_and_get(spi->controller->dev.parent);
3988 		if (status < 0) {
3989 			mutex_unlock(&spi->controller->io_mutex);
3990 			dev_err(&spi->controller->dev, "Failed to power device: %d\n",
3991 				status);
3992 			return status;
3993 		}
3994 
3995 		/*
3996 		 * We do not want to return positive value from pm_runtime_get,
3997 		 * there are many instances of devices calling spi_setup() and
3998 		 * checking for a non-zero return value instead of a negative
3999 		 * return value.
4000 		 */
4001 		status = 0;
4002 
4003 		spi_set_cs(spi, false, true);
4004 		pm_runtime_mark_last_busy(spi->controller->dev.parent);
4005 		pm_runtime_put_autosuspend(spi->controller->dev.parent);
4006 	} else {
4007 		spi_set_cs(spi, false, true);
4008 	}
4009 
4010 	mutex_unlock(&spi->controller->io_mutex);
4011 
4012 	if (spi->rt && !spi->controller->rt) {
4013 		spi->controller->rt = true;
4014 		spi_set_thread_rt(spi->controller);
4015 	}
4016 
4017 	trace_spi_setup(spi, status);
4018 
4019 	dev_dbg(&spi->dev, "setup mode %lu, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
4020 			spi->mode & SPI_MODE_X_MASK,
4021 			(spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
4022 			(spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
4023 			(spi->mode & SPI_3WIRE) ? "3wire, " : "",
4024 			(spi->mode & SPI_LOOP) ? "loopback, " : "",
4025 			spi->bits_per_word, spi->max_speed_hz,
4026 			status);
4027 
4028 	return status;
4029 }
4030 EXPORT_SYMBOL_GPL(spi_setup);
4031 
_spi_xfer_word_delay_update(struct spi_transfer * xfer,struct spi_device * spi)4032 static int _spi_xfer_word_delay_update(struct spi_transfer *xfer,
4033 				       struct spi_device *spi)
4034 {
4035 	int delay1, delay2;
4036 
4037 	delay1 = spi_delay_to_ns(&xfer->word_delay, xfer);
4038 	if (delay1 < 0)
4039 		return delay1;
4040 
4041 	delay2 = spi_delay_to_ns(&spi->word_delay, xfer);
4042 	if (delay2 < 0)
4043 		return delay2;
4044 
4045 	if (delay1 < delay2)
4046 		memcpy(&xfer->word_delay, &spi->word_delay,
4047 		       sizeof(xfer->word_delay));
4048 
4049 	return 0;
4050 }
4051 
__spi_validate(struct spi_device * spi,struct spi_message * message)4052 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
4053 {
4054 	struct spi_controller *ctlr = spi->controller;
4055 	struct spi_transfer *xfer;
4056 	int w_size;
4057 
4058 	if (list_empty(&message->transfers))
4059 		return -EINVAL;
4060 
4061 	message->spi = spi;
4062 
4063 	/*
4064 	 * Half-duplex links include original MicroWire, and ones with
4065 	 * only one data pin like SPI_3WIRE (switches direction) or where
4066 	 * either MOSI or MISO is missing.  They can also be caused by
4067 	 * software limitations.
4068 	 */
4069 	if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) ||
4070 	    (spi->mode & SPI_3WIRE)) {
4071 		unsigned flags = ctlr->flags;
4072 
4073 		list_for_each_entry(xfer, &message->transfers, transfer_list) {
4074 			if (xfer->rx_buf && xfer->tx_buf)
4075 				return -EINVAL;
4076 			if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf)
4077 				return -EINVAL;
4078 			if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf)
4079 				return -EINVAL;
4080 		}
4081 	}
4082 
4083 	/*
4084 	 * Set transfer bits_per_word and max speed as spi device default if
4085 	 * it is not set for this transfer.
4086 	 * Set transfer tx_nbits and rx_nbits as single transfer default
4087 	 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
4088 	 * Ensure transfer word_delay is at least as long as that required by
4089 	 * device itself.
4090 	 */
4091 	message->frame_length = 0;
4092 	list_for_each_entry(xfer, &message->transfers, transfer_list) {
4093 		xfer->effective_speed_hz = 0;
4094 		message->frame_length += xfer->len;
4095 		if (!xfer->bits_per_word)
4096 			xfer->bits_per_word = spi->bits_per_word;
4097 
4098 		if (!xfer->speed_hz)
4099 			xfer->speed_hz = spi->max_speed_hz;
4100 
4101 		if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz)
4102 			xfer->speed_hz = ctlr->max_speed_hz;
4103 
4104 		if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word))
4105 			return -EINVAL;
4106 
4107 		/*
4108 		 * SPI transfer length should be multiple of SPI word size
4109 		 * where SPI word size should be power-of-two multiple.
4110 		 */
4111 		if (xfer->bits_per_word <= 8)
4112 			w_size = 1;
4113 		else if (xfer->bits_per_word <= 16)
4114 			w_size = 2;
4115 		else
4116 			w_size = 4;
4117 
4118 		/* No partial transfers accepted */
4119 		if (xfer->len % w_size)
4120 			return -EINVAL;
4121 
4122 		if (xfer->speed_hz && ctlr->min_speed_hz &&
4123 		    xfer->speed_hz < ctlr->min_speed_hz)
4124 			return -EINVAL;
4125 
4126 		if (xfer->tx_buf && !xfer->tx_nbits)
4127 			xfer->tx_nbits = SPI_NBITS_SINGLE;
4128 		if (xfer->rx_buf && !xfer->rx_nbits)
4129 			xfer->rx_nbits = SPI_NBITS_SINGLE;
4130 		/*
4131 		 * Check transfer tx/rx_nbits:
4132 		 * 1. check the value matches one of single, dual and quad
4133 		 * 2. check tx/rx_nbits match the mode in spi_device
4134 		 */
4135 		if (xfer->tx_buf) {
4136 			if (spi->mode & SPI_NO_TX)
4137 				return -EINVAL;
4138 			if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
4139 				xfer->tx_nbits != SPI_NBITS_DUAL &&
4140 				xfer->tx_nbits != SPI_NBITS_QUAD &&
4141 				xfer->tx_nbits != SPI_NBITS_OCTAL)
4142 				return -EINVAL;
4143 			if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
4144 				!(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL)))
4145 				return -EINVAL;
4146 			if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
4147 				!(spi->mode & (SPI_TX_QUAD | SPI_TX_OCTAL)))
4148 				return -EINVAL;
4149 			if ((xfer->tx_nbits == SPI_NBITS_OCTAL) &&
4150 				!(spi->mode & SPI_TX_OCTAL))
4151 				return -EINVAL;
4152 		}
4153 		/* Check transfer rx_nbits */
4154 		if (xfer->rx_buf) {
4155 			if (spi->mode & SPI_NO_RX)
4156 				return -EINVAL;
4157 			if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
4158 				xfer->rx_nbits != SPI_NBITS_DUAL &&
4159 				xfer->rx_nbits != SPI_NBITS_QUAD &&
4160 				xfer->rx_nbits != SPI_NBITS_OCTAL)
4161 				return -EINVAL;
4162 			if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
4163 				!(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL)))
4164 				return -EINVAL;
4165 			if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
4166 				!(spi->mode & (SPI_RX_QUAD | SPI_RX_OCTAL)))
4167 				return -EINVAL;
4168 			if ((xfer->rx_nbits == SPI_NBITS_OCTAL) &&
4169 				!(spi->mode & SPI_RX_OCTAL))
4170 				return -EINVAL;
4171 		}
4172 
4173 		if (_spi_xfer_word_delay_update(xfer, spi))
4174 			return -EINVAL;
4175 	}
4176 
4177 	message->status = -EINPROGRESS;
4178 
4179 	return 0;
4180 }
4181 
4182 /*
4183  * spi_split_transfers - generic handling of transfer splitting
4184  * @msg: the message to split
4185  *
4186  * Under certain conditions, a SPI controller may not support arbitrary
4187  * transfer sizes or other features required by a peripheral. This function
4188  * will split the transfers in the message into smaller transfers that are
4189  * supported by the controller.
4190  *
4191  * Controllers with special requirements not covered here can also split
4192  * transfers in the optimize_message() callback.
4193  *
4194  * Context: can sleep
4195  * Return: zero on success, else a negative error code
4196  */
spi_split_transfers(struct spi_message * msg)4197 static int spi_split_transfers(struct spi_message *msg)
4198 {
4199 	struct spi_controller *ctlr = msg->spi->controller;
4200 	struct spi_transfer *xfer;
4201 	int ret;
4202 
4203 	/*
4204 	 * If an SPI controller does not support toggling the CS line on each
4205 	 * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO
4206 	 * for the CS line, we can emulate the CS-per-word hardware function by
4207 	 * splitting transfers into one-word transfers and ensuring that
4208 	 * cs_change is set for each transfer.
4209 	 */
4210 	if ((msg->spi->mode & SPI_CS_WORD) &&
4211 	    (!(ctlr->mode_bits & SPI_CS_WORD) || spi_is_csgpiod(msg->spi))) {
4212 		ret = spi_split_transfers_maxwords(ctlr, msg, 1);
4213 		if (ret)
4214 			return ret;
4215 
4216 		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
4217 			/* Don't change cs_change on the last entry in the list */
4218 			if (list_is_last(&xfer->transfer_list, &msg->transfers))
4219 				break;
4220 
4221 			xfer->cs_change = 1;
4222 		}
4223 	} else {
4224 		ret = spi_split_transfers_maxsize(ctlr, msg,
4225 						  spi_max_transfer_size(msg->spi));
4226 		if (ret)
4227 			return ret;
4228 	}
4229 
4230 	return 0;
4231 }
4232 
4233 /*
4234  * __spi_optimize_message - shared implementation for spi_optimize_message()
4235  *                          and spi_maybe_optimize_message()
4236  * @spi: the device that will be used for the message
4237  * @msg: the message to optimize
4238  *
4239  * Peripheral drivers will call spi_optimize_message() and the spi core will
4240  * call spi_maybe_optimize_message() instead of calling this directly.
4241  *
4242  * It is not valid to call this on a message that has already been optimized.
4243  *
4244  * Return: zero on success, else a negative error code
4245  */
__spi_optimize_message(struct spi_device * spi,struct spi_message * msg)4246 static int __spi_optimize_message(struct spi_device *spi,
4247 				  struct spi_message *msg)
4248 {
4249 	struct spi_controller *ctlr = spi->controller;
4250 	int ret;
4251 
4252 	ret = __spi_validate(spi, msg);
4253 	if (ret)
4254 		return ret;
4255 
4256 	ret = spi_split_transfers(msg);
4257 	if (ret)
4258 		return ret;
4259 
4260 	if (ctlr->optimize_message) {
4261 		ret = ctlr->optimize_message(msg);
4262 		if (ret) {
4263 			spi_res_release(ctlr, msg);
4264 			return ret;
4265 		}
4266 	}
4267 
4268 	msg->optimized = true;
4269 
4270 	return 0;
4271 }
4272 
4273 /*
4274  * spi_maybe_optimize_message - optimize message if it isn't already pre-optimized
4275  * @spi: the device that will be used for the message
4276  * @msg: the message to optimize
4277  * Return: zero on success, else a negative error code
4278  */
spi_maybe_optimize_message(struct spi_device * spi,struct spi_message * msg)4279 static int spi_maybe_optimize_message(struct spi_device *spi,
4280 				      struct spi_message *msg)
4281 {
4282 	if (spi->controller->defer_optimize_message) {
4283 		msg->spi = spi;
4284 		return 0;
4285 	}
4286 
4287 	if (msg->pre_optimized)
4288 		return 0;
4289 
4290 	return __spi_optimize_message(spi, msg);
4291 }
4292 
4293 /**
4294  * spi_optimize_message - do any one-time validation and setup for a SPI message
4295  * @spi: the device that will be used for the message
4296  * @msg: the message to optimize
4297  *
4298  * Peripheral drivers that reuse the same message repeatedly may call this to
4299  * perform as much message prep as possible once, rather than repeating it each
4300  * time a message transfer is performed to improve throughput and reduce CPU
4301  * usage.
4302  *
4303  * Once a message has been optimized, it cannot be modified with the exception
4304  * of updating the contents of any xfer->tx_buf (the pointer can't be changed,
4305  * only the data in the memory it points to).
4306  *
4307  * Calls to this function must be balanced with calls to spi_unoptimize_message()
4308  * to avoid leaking resources.
4309  *
4310  * Context: can sleep
4311  * Return: zero on success, else a negative error code
4312  */
spi_optimize_message(struct spi_device * spi,struct spi_message * msg)4313 int spi_optimize_message(struct spi_device *spi, struct spi_message *msg)
4314 {
4315 	int ret;
4316 
4317 	/*
4318 	 * Pre-optimization is not supported and optimization is deferred e.g.
4319 	 * when using spi-mux.
4320 	 */
4321 	if (spi->controller->defer_optimize_message)
4322 		return 0;
4323 
4324 	ret = __spi_optimize_message(spi, msg);
4325 	if (ret)
4326 		return ret;
4327 
4328 	/*
4329 	 * This flag indicates that the peripheral driver called spi_optimize_message()
4330 	 * and therefore we shouldn't unoptimize message automatically when finalizing
4331 	 * the message but rather wait until spi_unoptimize_message() is called
4332 	 * by the peripheral driver.
4333 	 */
4334 	msg->pre_optimized = true;
4335 
4336 	return 0;
4337 }
4338 EXPORT_SYMBOL_GPL(spi_optimize_message);
4339 
4340 /**
4341  * spi_unoptimize_message - releases any resources allocated by spi_optimize_message()
4342  * @msg: the message to unoptimize
4343  *
4344  * Calls to this function must be balanced with calls to spi_optimize_message().
4345  *
4346  * Context: can sleep
4347  */
spi_unoptimize_message(struct spi_message * msg)4348 void spi_unoptimize_message(struct spi_message *msg)
4349 {
4350 	if (msg->spi->controller->defer_optimize_message)
4351 		return;
4352 
4353 	__spi_unoptimize_message(msg);
4354 	msg->pre_optimized = false;
4355 }
4356 EXPORT_SYMBOL_GPL(spi_unoptimize_message);
4357 
__spi_async(struct spi_device * spi,struct spi_message * message)4358 static int __spi_async(struct spi_device *spi, struct spi_message *message)
4359 {
4360 	struct spi_controller *ctlr = spi->controller;
4361 	struct spi_transfer *xfer;
4362 
4363 	/*
4364 	 * Some controllers do not support doing regular SPI transfers. Return
4365 	 * ENOTSUPP when this is the case.
4366 	 */
4367 	if (!ctlr->transfer)
4368 		return -ENOTSUPP;
4369 
4370 	SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_async);
4371 	SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_async);
4372 
4373 	trace_spi_message_submit(message);
4374 
4375 	if (!ctlr->ptp_sts_supported) {
4376 		list_for_each_entry(xfer, &message->transfers, transfer_list) {
4377 			xfer->ptp_sts_word_pre = 0;
4378 			ptp_read_system_prets(xfer->ptp_sts);
4379 		}
4380 	}
4381 
4382 	return ctlr->transfer(spi, message);
4383 }
4384 
devm_spi_unoptimize_message(void * msg)4385 static void devm_spi_unoptimize_message(void *msg)
4386 {
4387 	spi_unoptimize_message(msg);
4388 }
4389 
4390 /**
4391  * devm_spi_optimize_message - managed version of spi_optimize_message()
4392  * @dev: the device that manages @msg (usually @spi->dev)
4393  * @spi: the device that will be used for the message
4394  * @msg: the message to optimize
4395  * Return: zero on success, else a negative error code
4396  *
4397  * spi_unoptimize_message() will automatically be called when the device is
4398  * removed.
4399  */
devm_spi_optimize_message(struct device * dev,struct spi_device * spi,struct spi_message * msg)4400 int devm_spi_optimize_message(struct device *dev, struct spi_device *spi,
4401 			      struct spi_message *msg)
4402 {
4403 	int ret;
4404 
4405 	ret = spi_optimize_message(spi, msg);
4406 	if (ret)
4407 		return ret;
4408 
4409 	return devm_add_action_or_reset(dev, devm_spi_unoptimize_message, msg);
4410 }
4411 EXPORT_SYMBOL_GPL(devm_spi_optimize_message);
4412 
4413 /**
4414  * spi_async - asynchronous SPI transfer
4415  * @spi: device with which data will be exchanged
4416  * @message: describes the data transfers, including completion callback
4417  * Context: any (IRQs may be blocked, etc)
4418  *
4419  * This call may be used in_irq and other contexts which can't sleep,
4420  * as well as from task contexts which can sleep.
4421  *
4422  * The completion callback is invoked in a context which can't sleep.
4423  * Before that invocation, the value of message->status is undefined.
4424  * When the callback is issued, message->status holds either zero (to
4425  * indicate complete success) or a negative error code.  After that
4426  * callback returns, the driver which issued the transfer request may
4427  * deallocate the associated memory; it's no longer in use by any SPI
4428  * core or controller driver code.
4429  *
4430  * Note that although all messages to a spi_device are handled in
4431  * FIFO order, messages may go to different devices in other orders.
4432  * Some device might be higher priority, or have various "hard" access
4433  * time requirements, for example.
4434  *
4435  * On detection of any fault during the transfer, processing of
4436  * the entire message is aborted, and the device is deselected.
4437  * Until returning from the associated message completion callback,
4438  * no other spi_message queued to that device will be processed.
4439  * (This rule applies equally to all the synchronous transfer calls,
4440  * which are wrappers around this core asynchronous primitive.)
4441  *
4442  * Return: zero on success, else a negative error code.
4443  */
spi_async(struct spi_device * spi,struct spi_message * message)4444 int spi_async(struct spi_device *spi, struct spi_message *message)
4445 {
4446 	struct spi_controller *ctlr = spi->controller;
4447 	int ret;
4448 	unsigned long flags;
4449 
4450 	ret = spi_maybe_optimize_message(spi, message);
4451 	if (ret)
4452 		return ret;
4453 
4454 	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4455 
4456 	if (ctlr->bus_lock_flag)
4457 		ret = -EBUSY;
4458 	else
4459 		ret = __spi_async(spi, message);
4460 
4461 	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4462 
4463 	return ret;
4464 }
4465 EXPORT_SYMBOL_GPL(spi_async);
4466 
__spi_transfer_message_noqueue(struct spi_controller * ctlr,struct spi_message * msg)4467 static void __spi_transfer_message_noqueue(struct spi_controller *ctlr, struct spi_message *msg)
4468 {
4469 	bool was_busy;
4470 	int ret;
4471 
4472 	mutex_lock(&ctlr->io_mutex);
4473 
4474 	was_busy = ctlr->busy;
4475 
4476 	ctlr->cur_msg = msg;
4477 	ret = __spi_pump_transfer_message(ctlr, msg, was_busy);
4478 	if (ret)
4479 		dev_err(&ctlr->dev, "noqueue transfer failed\n");
4480 	ctlr->cur_msg = NULL;
4481 	ctlr->fallback = false;
4482 
4483 	if (!was_busy) {
4484 		kfree(ctlr->dummy_rx);
4485 		ctlr->dummy_rx = NULL;
4486 		kfree(ctlr->dummy_tx);
4487 		ctlr->dummy_tx = NULL;
4488 		if (ctlr->unprepare_transfer_hardware &&
4489 		    ctlr->unprepare_transfer_hardware(ctlr))
4490 			dev_err(&ctlr->dev,
4491 				"failed to unprepare transfer hardware\n");
4492 		spi_idle_runtime_pm(ctlr);
4493 	}
4494 
4495 	mutex_unlock(&ctlr->io_mutex);
4496 }
4497 
4498 /*-------------------------------------------------------------------------*/
4499 
4500 /*
4501  * Utility methods for SPI protocol drivers, layered on
4502  * top of the core.  Some other utility methods are defined as
4503  * inline functions.
4504  */
4505 
spi_complete(void * arg)4506 static void spi_complete(void *arg)
4507 {
4508 	complete(arg);
4509 }
4510 
__spi_sync(struct spi_device * spi,struct spi_message * message)4511 static int __spi_sync(struct spi_device *spi, struct spi_message *message)
4512 {
4513 	DECLARE_COMPLETION_ONSTACK(done);
4514 	unsigned long flags;
4515 	int status;
4516 	struct spi_controller *ctlr = spi->controller;
4517 
4518 	if (__spi_check_suspended(ctlr)) {
4519 		dev_warn_once(&spi->dev, "Attempted to sync while suspend\n");
4520 		return -ESHUTDOWN;
4521 	}
4522 
4523 	status = spi_maybe_optimize_message(spi, message);
4524 	if (status)
4525 		return status;
4526 
4527 	SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync);
4528 	SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync);
4529 
4530 	/*
4531 	 * Checking queue_empty here only guarantees async/sync message
4532 	 * ordering when coming from the same context. It does not need to
4533 	 * guard against reentrancy from a different context. The io_mutex
4534 	 * will catch those cases.
4535 	 */
4536 	if (READ_ONCE(ctlr->queue_empty) && !ctlr->must_async) {
4537 		message->actual_length = 0;
4538 		message->status = -EINPROGRESS;
4539 
4540 		trace_spi_message_submit(message);
4541 
4542 		SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync_immediate);
4543 		SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync_immediate);
4544 
4545 		__spi_transfer_message_noqueue(ctlr, message);
4546 
4547 		return message->status;
4548 	}
4549 
4550 	/*
4551 	 * There are messages in the async queue that could have originated
4552 	 * from the same context, so we need to preserve ordering.
4553 	 * Therefor we send the message to the async queue and wait until they
4554 	 * are completed.
4555 	 */
4556 	message->complete = spi_complete;
4557 	message->context = &done;
4558 
4559 	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4560 	status = __spi_async(spi, message);
4561 	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4562 
4563 	if (status == 0) {
4564 		wait_for_completion(&done);
4565 		status = message->status;
4566 	}
4567 	message->complete = NULL;
4568 	message->context = NULL;
4569 
4570 	return status;
4571 }
4572 
4573 /**
4574  * spi_sync - blocking/synchronous SPI data transfers
4575  * @spi: device with which data will be exchanged
4576  * @message: describes the data transfers
4577  * Context: can sleep
4578  *
4579  * This call may only be used from a context that may sleep.  The sleep
4580  * is non-interruptible, and has no timeout.  Low-overhead controller
4581  * drivers may DMA directly into and out of the message buffers.
4582  *
4583  * Note that the SPI device's chip select is active during the message,
4584  * and then is normally disabled between messages.  Drivers for some
4585  * frequently-used devices may want to minimize costs of selecting a chip,
4586  * by leaving it selected in anticipation that the next message will go
4587  * to the same chip.  (That may increase power usage.)
4588  *
4589  * Also, the caller is guaranteeing that the memory associated with the
4590  * message will not be freed before this call returns.
4591  *
4592  * Return: zero on success, else a negative error code.
4593  */
spi_sync(struct spi_device * spi,struct spi_message * message)4594 int spi_sync(struct spi_device *spi, struct spi_message *message)
4595 {
4596 	int ret;
4597 
4598 	mutex_lock(&spi->controller->bus_lock_mutex);
4599 	ret = __spi_sync(spi, message);
4600 	mutex_unlock(&spi->controller->bus_lock_mutex);
4601 
4602 	return ret;
4603 }
4604 EXPORT_SYMBOL_GPL(spi_sync);
4605 
4606 /**
4607  * spi_sync_locked - version of spi_sync with exclusive bus usage
4608  * @spi: device with which data will be exchanged
4609  * @message: describes the data transfers
4610  * Context: can sleep
4611  *
4612  * This call may only be used from a context that may sleep.  The sleep
4613  * is non-interruptible, and has no timeout.  Low-overhead controller
4614  * drivers may DMA directly into and out of the message buffers.
4615  *
4616  * This call should be used by drivers that require exclusive access to the
4617  * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
4618  * be released by a spi_bus_unlock call when the exclusive access is over.
4619  *
4620  * Return: zero on success, else a negative error code.
4621  */
spi_sync_locked(struct spi_device * spi,struct spi_message * message)4622 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
4623 {
4624 	return __spi_sync(spi, message);
4625 }
4626 EXPORT_SYMBOL_GPL(spi_sync_locked);
4627 
4628 /**
4629  * spi_bus_lock - obtain a lock for exclusive SPI bus usage
4630  * @ctlr: SPI bus master that should be locked for exclusive bus access
4631  * Context: can sleep
4632  *
4633  * This call may only be used from a context that may sleep.  The sleep
4634  * is non-interruptible, and has no timeout.
4635  *
4636  * This call should be used by drivers that require exclusive access to the
4637  * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
4638  * exclusive access is over. Data transfer must be done by spi_sync_locked
4639  * and spi_async_locked calls when the SPI bus lock is held.
4640  *
4641  * Return: always zero.
4642  */
spi_bus_lock(struct spi_controller * ctlr)4643 int spi_bus_lock(struct spi_controller *ctlr)
4644 {
4645 	unsigned long flags;
4646 
4647 	mutex_lock(&ctlr->bus_lock_mutex);
4648 
4649 	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4650 	ctlr->bus_lock_flag = 1;
4651 	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4652 
4653 	/* Mutex remains locked until spi_bus_unlock() is called */
4654 
4655 	return 0;
4656 }
4657 EXPORT_SYMBOL_GPL(spi_bus_lock);
4658 
4659 /**
4660  * spi_bus_unlock - release the lock for exclusive SPI bus usage
4661  * @ctlr: SPI bus master that was locked for exclusive bus access
4662  * Context: can sleep
4663  *
4664  * This call may only be used from a context that may sleep.  The sleep
4665  * is non-interruptible, and has no timeout.
4666  *
4667  * This call releases an SPI bus lock previously obtained by an spi_bus_lock
4668  * call.
4669  *
4670  * Return: always zero.
4671  */
spi_bus_unlock(struct spi_controller * ctlr)4672 int spi_bus_unlock(struct spi_controller *ctlr)
4673 {
4674 	ctlr->bus_lock_flag = 0;
4675 
4676 	mutex_unlock(&ctlr->bus_lock_mutex);
4677 
4678 	return 0;
4679 }
4680 EXPORT_SYMBOL_GPL(spi_bus_unlock);
4681 
4682 /* Portable code must never pass more than 32 bytes */
4683 #define	SPI_BUFSIZ	max(32, SMP_CACHE_BYTES)
4684 
4685 static u8	*buf;
4686 
4687 /**
4688  * spi_write_then_read - SPI synchronous write followed by read
4689  * @spi: device with which data will be exchanged
4690  * @txbuf: data to be written (need not be DMA-safe)
4691  * @n_tx: size of txbuf, in bytes
4692  * @rxbuf: buffer into which data will be read (need not be DMA-safe)
4693  * @n_rx: size of rxbuf, in bytes
4694  * Context: can sleep
4695  *
4696  * This performs a half duplex MicroWire style transaction with the
4697  * device, sending txbuf and then reading rxbuf.  The return value
4698  * is zero for success, else a negative errno status code.
4699  * This call may only be used from a context that may sleep.
4700  *
4701  * Parameters to this routine are always copied using a small buffer.
4702  * Performance-sensitive or bulk transfer code should instead use
4703  * spi_{async,sync}() calls with DMA-safe buffers.
4704  *
4705  * Return: zero on success, else a negative error code.
4706  */
spi_write_then_read(struct spi_device * spi,const void * txbuf,unsigned n_tx,void * rxbuf,unsigned n_rx)4707 int spi_write_then_read(struct spi_device *spi,
4708 		const void *txbuf, unsigned n_tx,
4709 		void *rxbuf, unsigned n_rx)
4710 {
4711 	static DEFINE_MUTEX(lock);
4712 
4713 	int			status;
4714 	struct spi_message	message;
4715 	struct spi_transfer	x[2];
4716 	u8			*local_buf;
4717 
4718 	/*
4719 	 * Use preallocated DMA-safe buffer if we can. We can't avoid
4720 	 * copying here, (as a pure convenience thing), but we can
4721 	 * keep heap costs out of the hot path unless someone else is
4722 	 * using the pre-allocated buffer or the transfer is too large.
4723 	 */
4724 	if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
4725 		local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
4726 				    GFP_KERNEL | GFP_DMA);
4727 		if (!local_buf)
4728 			return -ENOMEM;
4729 	} else {
4730 		local_buf = buf;
4731 	}
4732 
4733 	spi_message_init(&message);
4734 	memset(x, 0, sizeof(x));
4735 	if (n_tx) {
4736 		x[0].len = n_tx;
4737 		spi_message_add_tail(&x[0], &message);
4738 	}
4739 	if (n_rx) {
4740 		x[1].len = n_rx;
4741 		spi_message_add_tail(&x[1], &message);
4742 	}
4743 
4744 	memcpy(local_buf, txbuf, n_tx);
4745 	x[0].tx_buf = local_buf;
4746 	x[1].rx_buf = local_buf + n_tx;
4747 
4748 	/* Do the I/O */
4749 	status = spi_sync(spi, &message);
4750 	if (status == 0)
4751 		memcpy(rxbuf, x[1].rx_buf, n_rx);
4752 
4753 	if (x[0].tx_buf == buf)
4754 		mutex_unlock(&lock);
4755 	else
4756 		kfree(local_buf);
4757 
4758 	return status;
4759 }
4760 EXPORT_SYMBOL_GPL(spi_write_then_read);
4761 
4762 /*-------------------------------------------------------------------------*/
4763 
4764 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
4765 /* Must call put_device() when done with returned spi_device device */
of_find_spi_device_by_node(struct device_node * node)4766 static struct spi_device *of_find_spi_device_by_node(struct device_node *node)
4767 {
4768 	struct device *dev = bus_find_device_by_of_node(&spi_bus_type, node);
4769 
4770 	return dev ? to_spi_device(dev) : NULL;
4771 }
4772 
4773 /* The spi controllers are not using spi_bus, so we find it with another way */
of_find_spi_controller_by_node(struct device_node * node)4774 static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node)
4775 {
4776 	struct device *dev;
4777 
4778 	dev = class_find_device_by_of_node(&spi_master_class, node);
4779 	if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4780 		dev = class_find_device_by_of_node(&spi_slave_class, node);
4781 	if (!dev)
4782 		return NULL;
4783 
4784 	/* Reference got in class_find_device */
4785 	return container_of(dev, struct spi_controller, dev);
4786 }
4787 
of_spi_notify(struct notifier_block * nb,unsigned long action,void * arg)4788 static int of_spi_notify(struct notifier_block *nb, unsigned long action,
4789 			 void *arg)
4790 {
4791 	struct of_reconfig_data *rd = arg;
4792 	struct spi_controller *ctlr;
4793 	struct spi_device *spi;
4794 
4795 	switch (of_reconfig_get_state_change(action, arg)) {
4796 	case OF_RECONFIG_CHANGE_ADD:
4797 		ctlr = of_find_spi_controller_by_node(rd->dn->parent);
4798 		if (ctlr == NULL)
4799 			return NOTIFY_OK;	/* Not for us */
4800 
4801 		if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
4802 			put_device(&ctlr->dev);
4803 			return NOTIFY_OK;
4804 		}
4805 
4806 		/*
4807 		 * Clear the flag before adding the device so that fw_devlink
4808 		 * doesn't skip adding consumers to this device.
4809 		 */
4810 		rd->dn->fwnode.flags &= ~FWNODE_FLAG_NOT_DEVICE;
4811 		spi = of_register_spi_device(ctlr, rd->dn);
4812 		put_device(&ctlr->dev);
4813 
4814 		if (IS_ERR(spi)) {
4815 			pr_err("%s: failed to create for '%pOF'\n",
4816 					__func__, rd->dn);
4817 			of_node_clear_flag(rd->dn, OF_POPULATED);
4818 			return notifier_from_errno(PTR_ERR(spi));
4819 		}
4820 		break;
4821 
4822 	case OF_RECONFIG_CHANGE_REMOVE:
4823 		/* Already depopulated? */
4824 		if (!of_node_check_flag(rd->dn, OF_POPULATED))
4825 			return NOTIFY_OK;
4826 
4827 		/* Find our device by node */
4828 		spi = of_find_spi_device_by_node(rd->dn);
4829 		if (spi == NULL)
4830 			return NOTIFY_OK;	/* No? not meant for us */
4831 
4832 		/* Unregister takes one ref away */
4833 		spi_unregister_device(spi);
4834 
4835 		/* And put the reference of the find */
4836 		put_device(&spi->dev);
4837 		break;
4838 	}
4839 
4840 	return NOTIFY_OK;
4841 }
4842 
4843 static struct notifier_block spi_of_notifier = {
4844 	.notifier_call = of_spi_notify,
4845 };
4846 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4847 extern struct notifier_block spi_of_notifier;
4848 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4849 
4850 #if IS_ENABLED(CONFIG_ACPI)
spi_acpi_controller_match(struct device * dev,const void * data)4851 static int spi_acpi_controller_match(struct device *dev, const void *data)
4852 {
4853 	return ACPI_COMPANION(dev->parent) == data;
4854 }
4855 
acpi_spi_find_controller_by_adev(struct acpi_device * adev)4856 struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev)
4857 {
4858 	struct device *dev;
4859 
4860 	dev = class_find_device(&spi_master_class, NULL, adev,
4861 				spi_acpi_controller_match);
4862 	if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4863 		dev = class_find_device(&spi_slave_class, NULL, adev,
4864 					spi_acpi_controller_match);
4865 	if (!dev)
4866 		return NULL;
4867 
4868 	return container_of(dev, struct spi_controller, dev);
4869 }
4870 EXPORT_SYMBOL_GPL(acpi_spi_find_controller_by_adev);
4871 
acpi_spi_find_device_by_adev(struct acpi_device * adev)4872 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
4873 {
4874 	struct device *dev;
4875 
4876 	dev = bus_find_device_by_acpi_dev(&spi_bus_type, adev);
4877 	return to_spi_device(dev);
4878 }
4879 
acpi_spi_notify(struct notifier_block * nb,unsigned long value,void * arg)4880 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
4881 			   void *arg)
4882 {
4883 	struct acpi_device *adev = arg;
4884 	struct spi_controller *ctlr;
4885 	struct spi_device *spi;
4886 
4887 	switch (value) {
4888 	case ACPI_RECONFIG_DEVICE_ADD:
4889 		ctlr = acpi_spi_find_controller_by_adev(acpi_dev_parent(adev));
4890 		if (!ctlr)
4891 			break;
4892 
4893 		acpi_register_spi_device(ctlr, adev);
4894 		put_device(&ctlr->dev);
4895 		break;
4896 	case ACPI_RECONFIG_DEVICE_REMOVE:
4897 		if (!acpi_device_enumerated(adev))
4898 			break;
4899 
4900 		spi = acpi_spi_find_device_by_adev(adev);
4901 		if (!spi)
4902 			break;
4903 
4904 		spi_unregister_device(spi);
4905 		put_device(&spi->dev);
4906 		break;
4907 	}
4908 
4909 	return NOTIFY_OK;
4910 }
4911 
4912 static struct notifier_block spi_acpi_notifier = {
4913 	.notifier_call = acpi_spi_notify,
4914 };
4915 #else
4916 extern struct notifier_block spi_acpi_notifier;
4917 #endif
4918 
spi_init(void)4919 static int __init spi_init(void)
4920 {
4921 	int	status;
4922 
4923 	buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
4924 	if (!buf) {
4925 		status = -ENOMEM;
4926 		goto err0;
4927 	}
4928 
4929 	status = bus_register(&spi_bus_type);
4930 	if (status < 0)
4931 		goto err1;
4932 
4933 	status = class_register(&spi_master_class);
4934 	if (status < 0)
4935 		goto err2;
4936 
4937 	if (IS_ENABLED(CONFIG_SPI_SLAVE)) {
4938 		status = class_register(&spi_slave_class);
4939 		if (status < 0)
4940 			goto err3;
4941 	}
4942 
4943 	if (IS_ENABLED(CONFIG_OF_DYNAMIC))
4944 		WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
4945 	if (IS_ENABLED(CONFIG_ACPI))
4946 		WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
4947 
4948 	return 0;
4949 
4950 err3:
4951 	class_unregister(&spi_master_class);
4952 err2:
4953 	bus_unregister(&spi_bus_type);
4954 err1:
4955 	kfree(buf);
4956 	buf = NULL;
4957 err0:
4958 	return status;
4959 }
4960 
4961 /*
4962  * A board_info is normally registered in arch_initcall(),
4963  * but even essential drivers wait till later.
4964  *
4965  * REVISIT only boardinfo really needs static linking. The rest (device and
4966  * driver registration) _could_ be dynamically linked (modular) ... Costs
4967  * include needing to have boardinfo data structures be much more public.
4968  */
4969 postcore_initcall(spi_init);
4970