• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/printk.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  *
7  * Modified to make sys_syslog() more flexible: added commands to
8  * return the last 4k of kernel messages, regardless of whether
9  * they've been read or not.  Added option to suppress kernel printk's
10  * to the console.  Added hook for sending the console messages
11  * elsewhere, in preparation for a serial line console (someday).
12  * Ted Ts'o, 2/11/93.
13  * Modified for sysctl support, 1/8/97, Chris Horn.
14  * Fixed SMP synchronization, 08/08/99, Manfred Spraul
15  *     manfred@colorfullife.com
16  * Rewrote bits to get rid of console_lock
17  *	01Mar01 Andrew Morton
18  */
19 
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21 
22 #include <linux/kernel.h>
23 #include <linux/mm.h>
24 #include <linux/tty.h>
25 #include <linux/tty_driver.h>
26 #include <linux/console.h>
27 #include <linux/init.h>
28 #include <linux/jiffies.h>
29 #include <linux/nmi.h>
30 #include <linux/module.h>
31 #include <linux/moduleparam.h>
32 #include <linux/delay.h>
33 #include <linux/smp.h>
34 #include <linux/security.h>
35 #include <linux/memblock.h>
36 #include <linux/syscalls.h>
37 #include <linux/syscore_ops.h>
38 #include <linux/vmcore_info.h>
39 #include <linux/ratelimit.h>
40 #include <linux/kmsg_dump.h>
41 #include <linux/syslog.h>
42 #include <linux/cpu.h>
43 #include <linux/rculist.h>
44 #include <linux/poll.h>
45 #include <linux/irq_work.h>
46 #include <linux/ctype.h>
47 #include <linux/uio.h>
48 #include <linux/sched/clock.h>
49 #include <linux/sched/debug.h>
50 #include <linux/sched/task_stack.h>
51 
52 #include <linux/uaccess.h>
53 #include <asm/sections.h>
54 
55 #include <trace/events/initcall.h>
56 #define CREATE_TRACE_POINTS
57 #include <trace/events/printk.h>
58 #undef CREATE_TRACE_POINTS
59 #include <trace/hooks/printk.h>
60 #include <trace/hooks/logbuf.h>
61 
62 #include "printk_ringbuffer.h"
63 #include "console_cmdline.h"
64 #include "braille.h"
65 #include "internal.h"
66 
67 int console_printk[4] = {
68 	CONSOLE_LOGLEVEL_DEFAULT,	/* console_loglevel */
69 	MESSAGE_LOGLEVEL_DEFAULT,	/* default_message_loglevel */
70 	CONSOLE_LOGLEVEL_MIN,		/* minimum_console_loglevel */
71 	CONSOLE_LOGLEVEL_DEFAULT,	/* default_console_loglevel */
72 };
73 EXPORT_SYMBOL_GPL(console_printk);
74 
75 atomic_t ignore_console_lock_warning __read_mostly = ATOMIC_INIT(0);
76 EXPORT_SYMBOL(ignore_console_lock_warning);
77 
78 EXPORT_TRACEPOINT_SYMBOL_GPL(console);
79 
80 /*
81  * Low level drivers may need that to know if they can schedule in
82  * their unblank() callback or not. So let's export it.
83  */
84 int oops_in_progress;
85 EXPORT_SYMBOL(oops_in_progress);
86 
87 /*
88  * console_mutex protects console_list updates and console->flags updates.
89  * The flags are synchronized only for consoles that are registered, i.e.
90  * accessible via the console list.
91  */
92 static DEFINE_MUTEX(console_mutex);
93 
94 /*
95  * console_sem protects updates to console->seq
96  * and also provides serialization for console printing.
97  */
98 static DEFINE_SEMAPHORE(console_sem, 1);
99 HLIST_HEAD(console_list);
100 EXPORT_SYMBOL_GPL(console_list);
101 DEFINE_STATIC_SRCU(console_srcu);
102 
103 /*
104  * System may need to suppress printk message under certain
105  * circumstances, like after kernel panic happens.
106  */
107 int __read_mostly suppress_printk;
108 
109 #ifdef CONFIG_LOCKDEP
110 static struct lockdep_map console_lock_dep_map = {
111 	.name = "console_lock"
112 };
113 
lockdep_assert_console_list_lock_held(void)114 void lockdep_assert_console_list_lock_held(void)
115 {
116 	lockdep_assert_held(&console_mutex);
117 }
118 EXPORT_SYMBOL(lockdep_assert_console_list_lock_held);
119 #endif
120 
121 #ifdef CONFIG_DEBUG_LOCK_ALLOC
console_srcu_read_lock_is_held(void)122 bool console_srcu_read_lock_is_held(void)
123 {
124 	return srcu_read_lock_held(&console_srcu);
125 }
126 EXPORT_SYMBOL(console_srcu_read_lock_is_held);
127 #endif
128 
129 enum devkmsg_log_bits {
130 	__DEVKMSG_LOG_BIT_ON = 0,
131 	__DEVKMSG_LOG_BIT_OFF,
132 	__DEVKMSG_LOG_BIT_LOCK,
133 };
134 
135 enum devkmsg_log_masks {
136 	DEVKMSG_LOG_MASK_ON             = BIT(__DEVKMSG_LOG_BIT_ON),
137 	DEVKMSG_LOG_MASK_OFF            = BIT(__DEVKMSG_LOG_BIT_OFF),
138 	DEVKMSG_LOG_MASK_LOCK           = BIT(__DEVKMSG_LOG_BIT_LOCK),
139 };
140 
141 /* Keep both the 'on' and 'off' bits clear, i.e. ratelimit by default: */
142 #define DEVKMSG_LOG_MASK_DEFAULT	0
143 
144 static unsigned int __read_mostly devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
145 
__control_devkmsg(char * str)146 static int __control_devkmsg(char *str)
147 {
148 	size_t len;
149 
150 	if (!str)
151 		return -EINVAL;
152 
153 	len = str_has_prefix(str, "on");
154 	if (len) {
155 		devkmsg_log = DEVKMSG_LOG_MASK_ON;
156 		return len;
157 	}
158 
159 	len = str_has_prefix(str, "off");
160 	if (len) {
161 		devkmsg_log = DEVKMSG_LOG_MASK_OFF;
162 		return len;
163 	}
164 
165 	len = str_has_prefix(str, "ratelimit");
166 	if (len) {
167 		devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
168 		return len;
169 	}
170 
171 	return -EINVAL;
172 }
173 
control_devkmsg(char * str)174 static int __init control_devkmsg(char *str)
175 {
176 	if (__control_devkmsg(str) < 0) {
177 		pr_warn("printk.devkmsg: bad option string '%s'\n", str);
178 		return 1;
179 	}
180 
181 	/*
182 	 * Set sysctl string accordingly:
183 	 */
184 	if (devkmsg_log == DEVKMSG_LOG_MASK_ON)
185 		strscpy(devkmsg_log_str, "on");
186 	else if (devkmsg_log == DEVKMSG_LOG_MASK_OFF)
187 		strscpy(devkmsg_log_str, "off");
188 	/* else "ratelimit" which is set by default. */
189 
190 	/*
191 	 * Sysctl cannot change it anymore. The kernel command line setting of
192 	 * this parameter is to force the setting to be permanent throughout the
193 	 * runtime of the system. This is a precation measure against userspace
194 	 * trying to be a smarta** and attempting to change it up on us.
195 	 */
196 	devkmsg_log |= DEVKMSG_LOG_MASK_LOCK;
197 
198 	return 1;
199 }
200 __setup("printk.devkmsg=", control_devkmsg);
201 
202 char devkmsg_log_str[DEVKMSG_STR_MAX_SIZE] = "ratelimit";
203 #if defined(CONFIG_PRINTK) && defined(CONFIG_SYSCTL)
devkmsg_sysctl_set_loglvl(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)204 int devkmsg_sysctl_set_loglvl(const struct ctl_table *table, int write,
205 			      void *buffer, size_t *lenp, loff_t *ppos)
206 {
207 	char old_str[DEVKMSG_STR_MAX_SIZE];
208 	unsigned int old;
209 	int err;
210 
211 	if (write) {
212 		if (devkmsg_log & DEVKMSG_LOG_MASK_LOCK)
213 			return -EINVAL;
214 
215 		old = devkmsg_log;
216 		strscpy(old_str, devkmsg_log_str);
217 	}
218 
219 	err = proc_dostring(table, write, buffer, lenp, ppos);
220 	if (err)
221 		return err;
222 
223 	if (write) {
224 		err = __control_devkmsg(devkmsg_log_str);
225 
226 		/*
227 		 * Do not accept an unknown string OR a known string with
228 		 * trailing crap...
229 		 */
230 		if (err < 0 || (err + 1 != *lenp)) {
231 
232 			/* ... and restore old setting. */
233 			devkmsg_log = old;
234 			strscpy(devkmsg_log_str, old_str);
235 
236 			return -EINVAL;
237 		}
238 	}
239 
240 	return 0;
241 }
242 #endif /* CONFIG_PRINTK && CONFIG_SYSCTL */
243 
244 /**
245  * console_list_lock - Lock the console list
246  *
247  * For console list or console->flags updates
248  */
console_list_lock(void)249 void console_list_lock(void)
250 {
251 	/*
252 	 * In unregister_console() and console_force_preferred_locked(),
253 	 * synchronize_srcu() is called with the console_list_lock held.
254 	 * Therefore it is not allowed that the console_list_lock is taken
255 	 * with the srcu_lock held.
256 	 *
257 	 * Detecting if this context is really in the read-side critical
258 	 * section is only possible if the appropriate debug options are
259 	 * enabled.
260 	 */
261 	WARN_ON_ONCE(debug_lockdep_rcu_enabled() &&
262 		     srcu_read_lock_held(&console_srcu));
263 
264 	mutex_lock(&console_mutex);
265 }
266 EXPORT_SYMBOL(console_list_lock);
267 
268 /**
269  * console_list_unlock - Unlock the console list
270  *
271  * Counterpart to console_list_lock()
272  */
console_list_unlock(void)273 void console_list_unlock(void)
274 {
275 	mutex_unlock(&console_mutex);
276 }
277 EXPORT_SYMBOL(console_list_unlock);
278 
279 /**
280  * console_srcu_read_lock - Register a new reader for the
281  *	SRCU-protected console list
282  *
283  * Use for_each_console_srcu() to iterate the console list
284  *
285  * Context: Any context.
286  * Return: A cookie to pass to console_srcu_read_unlock().
287  */
console_srcu_read_lock(void)288 int console_srcu_read_lock(void)
289 	__acquires(&console_srcu)
290 {
291 	return srcu_read_lock_nmisafe(&console_srcu);
292 }
293 EXPORT_SYMBOL(console_srcu_read_lock);
294 
295 /**
296  * console_srcu_read_unlock - Unregister an old reader from
297  *	the SRCU-protected console list
298  * @cookie: cookie returned from console_srcu_read_lock()
299  *
300  * Counterpart to console_srcu_read_lock()
301  */
console_srcu_read_unlock(int cookie)302 void console_srcu_read_unlock(int cookie)
303 	__releases(&console_srcu)
304 {
305 	srcu_read_unlock_nmisafe(&console_srcu, cookie);
306 }
307 EXPORT_SYMBOL(console_srcu_read_unlock);
308 
309 /*
310  * Helper macros to handle lockdep when locking/unlocking console_sem. We use
311  * macros instead of functions so that _RET_IP_ contains useful information.
312  */
313 #define down_console_sem() do { \
314 	down(&console_sem);\
315 	mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\
316 } while (0)
317 
__down_trylock_console_sem(unsigned long ip)318 static int __down_trylock_console_sem(unsigned long ip)
319 {
320 	int lock_failed;
321 	unsigned long flags;
322 
323 	/*
324 	 * Here and in __up_console_sem() we need to be in safe mode,
325 	 * because spindump/WARN/etc from under console ->lock will
326 	 * deadlock in printk()->down_trylock_console_sem() otherwise.
327 	 */
328 	printk_safe_enter_irqsave(flags);
329 	lock_failed = down_trylock(&console_sem);
330 	printk_safe_exit_irqrestore(flags);
331 
332 	if (lock_failed)
333 		return 1;
334 	mutex_acquire(&console_lock_dep_map, 0, 1, ip);
335 	return 0;
336 }
337 #define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_)
338 
__up_console_sem(unsigned long ip)339 static void __up_console_sem(unsigned long ip)
340 {
341 	unsigned long flags;
342 
343 	mutex_release(&console_lock_dep_map, ip);
344 
345 	printk_safe_enter_irqsave(flags);
346 	up(&console_sem);
347 	printk_safe_exit_irqrestore(flags);
348 }
349 #define up_console_sem() __up_console_sem(_RET_IP_)
350 
panic_in_progress(void)351 static bool panic_in_progress(void)
352 {
353 	return unlikely(atomic_read(&panic_cpu) != PANIC_CPU_INVALID);
354 }
355 
356 /* Return true if a panic is in progress on the current CPU. */
this_cpu_in_panic(void)357 bool this_cpu_in_panic(void)
358 {
359 	/*
360 	 * We can use raw_smp_processor_id() here because it is impossible for
361 	 * the task to be migrated to the panic_cpu, or away from it. If
362 	 * panic_cpu has already been set, and we're not currently executing on
363 	 * that CPU, then we never will be.
364 	 */
365 	return unlikely(atomic_read(&panic_cpu) == raw_smp_processor_id());
366 }
367 
368 /*
369  * Return true if a panic is in progress on a remote CPU.
370  *
371  * On true, the local CPU should immediately release any printing resources
372  * that may be needed by the panic CPU.
373  */
other_cpu_in_panic(void)374 bool other_cpu_in_panic(void)
375 {
376 	return (panic_in_progress() && !this_cpu_in_panic());
377 }
378 
379 /*
380  * This is used for debugging the mess that is the VT code by
381  * keeping track if we have the console semaphore held. It's
382  * definitely not the perfect debug tool (we don't know if _WE_
383  * hold it and are racing, but it helps tracking those weird code
384  * paths in the console code where we end up in places I want
385  * locked without the console semaphore held).
386  */
387 static int console_locked;
388 
389 /*
390  *	Array of consoles built from command line options (console=)
391  */
392 
393 #define MAX_CMDLINECONSOLES 8
394 
395 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES];
396 
397 static int preferred_console = -1;
398 int console_set_on_cmdline;
399 EXPORT_SYMBOL(console_set_on_cmdline);
400 
401 /* Flag: console code may call schedule() */
402 static int console_may_schedule;
403 
404 enum con_msg_format_flags {
405 	MSG_FORMAT_DEFAULT	= 0,
406 	MSG_FORMAT_SYSLOG	= (1 << 0),
407 };
408 
409 static int console_msg_format = MSG_FORMAT_DEFAULT;
410 
411 /*
412  * The printk log buffer consists of a sequenced collection of records, each
413  * containing variable length message text. Every record also contains its
414  * own meta-data (@info).
415  *
416  * Every record meta-data carries the timestamp in microseconds, as well as
417  * the standard userspace syslog level and syslog facility. The usual kernel
418  * messages use LOG_KERN; userspace-injected messages always carry a matching
419  * syslog facility, by default LOG_USER. The origin of every message can be
420  * reliably determined that way.
421  *
422  * The human readable log message of a record is available in @text, the
423  * length of the message text in @text_len. The stored message is not
424  * terminated.
425  *
426  * Optionally, a record can carry a dictionary of properties (key/value
427  * pairs), to provide userspace with a machine-readable message context.
428  *
429  * Examples for well-defined, commonly used property names are:
430  *   DEVICE=b12:8               device identifier
431  *                                b12:8         block dev_t
432  *                                c127:3        char dev_t
433  *                                n8            netdev ifindex
434  *                                +sound:card0  subsystem:devname
435  *   SUBSYSTEM=pci              driver-core subsystem name
436  *
437  * Valid characters in property names are [a-zA-Z0-9.-_]. Property names
438  * and values are terminated by a '\0' character.
439  *
440  * Example of record values:
441  *   record.text_buf                = "it's a line" (unterminated)
442  *   record.info.seq                = 56
443  *   record.info.ts_nsec            = 36863
444  *   record.info.text_len           = 11
445  *   record.info.facility           = 0 (LOG_KERN)
446  *   record.info.flags              = 0
447  *   record.info.level              = 3 (LOG_ERR)
448  *   record.info.caller_id          = 299 (task 299)
449  *   record.info.dev_info.subsystem = "pci" (terminated)
450  *   record.info.dev_info.device    = "+pci:0000:00:01.0" (terminated)
451  *
452  * The 'struct printk_info' buffer must never be directly exported to
453  * userspace, it is a kernel-private implementation detail that might
454  * need to be changed in the future, when the requirements change.
455  *
456  * /dev/kmsg exports the structured data in the following line format:
457  *   "<level>,<sequnum>,<timestamp>,<contflag>[,additional_values, ... ];<message text>\n"
458  *
459  * Users of the export format should ignore possible additional values
460  * separated by ',', and find the message after the ';' character.
461  *
462  * The optional key/value pairs are attached as continuation lines starting
463  * with a space character and terminated by a newline. All possible
464  * non-prinatable characters are escaped in the "\xff" notation.
465  */
466 
467 /* syslog_lock protects syslog_* variables and write access to clear_seq. */
468 static DEFINE_MUTEX(syslog_lock);
469 
470 /*
471  * Specifies if a legacy console is registered. If legacy consoles are
472  * present, it is necessary to perform the console lock/unlock dance
473  * whenever console flushing should occur.
474  */
475 bool have_legacy_console;
476 
477 /*
478  * Specifies if an nbcon console is registered. If nbcon consoles are present,
479  * synchronous printing of legacy consoles will not occur during panic until
480  * the backtrace has been stored to the ringbuffer.
481  */
482 bool have_nbcon_console;
483 
484 /*
485  * Specifies if a boot console is registered. If boot consoles are present,
486  * nbcon consoles cannot print simultaneously and must be synchronized by
487  * the console lock. This is because boot consoles and nbcon consoles may
488  * have mapped the same hardware.
489  */
490 bool have_boot_console;
491 
492 /* See printk_legacy_allow_panic_sync() for details. */
493 bool legacy_allow_panic_sync;
494 
495 #ifdef CONFIG_PRINTK
496 DECLARE_WAIT_QUEUE_HEAD(log_wait);
497 static DECLARE_WAIT_QUEUE_HEAD(legacy_wait);
498 /* All 3 protected by @syslog_lock. */
499 /* the next printk record to read by syslog(READ) or /proc/kmsg */
500 static u64 syslog_seq;
501 static size_t syslog_partial;
502 static bool syslog_time;
503 
504 /* True when _all_ printer threads are available for printing. */
505 bool printk_kthreads_running;
506 
507 struct latched_seq {
508 	seqcount_latch_t	latch;
509 	u64			val[2];
510 };
511 
512 /*
513  * The next printk record to read after the last 'clear' command. There are
514  * two copies (updated with seqcount_latch) so that reads can locklessly
515  * access a valid value. Writers are synchronized by @syslog_lock.
516  */
517 static struct latched_seq clear_seq = {
518 	.latch		= SEQCNT_LATCH_ZERO(clear_seq.latch),
519 	.val[0]		= 0,
520 	.val[1]		= 0,
521 };
522 
523 #define LOG_LEVEL(v)		((v) & 0x07)
524 #define LOG_FACILITY(v)		((v) >> 3 & 0xff)
525 
526 /* record buffer */
527 #define LOG_ALIGN __alignof__(unsigned long)
528 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT)
529 #define LOG_BUF_LEN_MAX ((u32)1 << 31)
530 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN);
531 static char *log_buf = __log_buf;
532 static u32 log_buf_len = __LOG_BUF_LEN;
533 
534 /*
535  * Define the average message size. This only affects the number of
536  * descriptors that will be available. Underestimating is better than
537  * overestimating (too many available descriptors is better than not enough).
538  */
539 #define PRB_AVGBITS 5	/* 32 character average length */
540 
541 #if CONFIG_LOG_BUF_SHIFT <= PRB_AVGBITS
542 #error CONFIG_LOG_BUF_SHIFT value too small.
543 #endif
544 _DEFINE_PRINTKRB(printk_rb_static, CONFIG_LOG_BUF_SHIFT - PRB_AVGBITS,
545 		 PRB_AVGBITS, &__log_buf[0]);
546 
547 static struct printk_ringbuffer printk_rb_dynamic;
548 
549 struct printk_ringbuffer *prb = &printk_rb_static;
550 
551 /*
552  * We cannot access per-CPU data (e.g. per-CPU flush irq_work) before
553  * per_cpu_areas are initialised. This variable is set to true when
554  * it's safe to access per-CPU data.
555  */
556 static bool __printk_percpu_data_ready __ro_after_init;
557 
printk_percpu_data_ready(void)558 bool printk_percpu_data_ready(void)
559 {
560 	return __printk_percpu_data_ready;
561 }
562 
563 /* Must be called under syslog_lock. */
latched_seq_write(struct latched_seq * ls,u64 val)564 static void latched_seq_write(struct latched_seq *ls, u64 val)
565 {
566 	raw_write_seqcount_latch(&ls->latch);
567 	ls->val[0] = val;
568 	raw_write_seqcount_latch(&ls->latch);
569 	ls->val[1] = val;
570 }
571 
572 /* Can be called from any context. */
latched_seq_read_nolock(struct latched_seq * ls)573 static u64 latched_seq_read_nolock(struct latched_seq *ls)
574 {
575 	unsigned int seq;
576 	unsigned int idx;
577 	u64 val;
578 
579 	do {
580 		seq = raw_read_seqcount_latch(&ls->latch);
581 		idx = seq & 0x1;
582 		val = ls->val[idx];
583 	} while (raw_read_seqcount_latch_retry(&ls->latch, seq));
584 
585 	return val;
586 }
587 
588 /* Return log buffer address */
log_buf_addr_get(void)589 char *log_buf_addr_get(void)
590 {
591 	return log_buf;
592 }
593 
594 /* Return log buffer size */
log_buf_len_get(void)595 u32 log_buf_len_get(void)
596 {
597 	return log_buf_len;
598 }
599 
600 /*
601  * Define how much of the log buffer we could take at maximum. The value
602  * must be greater than two. Note that only half of the buffer is available
603  * when the index points to the middle.
604  */
605 #define MAX_LOG_TAKE_PART 4
606 static const char trunc_msg[] = "<truncated>";
607 
truncate_msg(u16 * text_len,u16 * trunc_msg_len)608 static void truncate_msg(u16 *text_len, u16 *trunc_msg_len)
609 {
610 	/*
611 	 * The message should not take the whole buffer. Otherwise, it might
612 	 * get removed too soon.
613 	 */
614 	u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART;
615 
616 	if (*text_len > max_text_len)
617 		*text_len = max_text_len;
618 
619 	/* enable the warning message (if there is room) */
620 	*trunc_msg_len = strlen(trunc_msg);
621 	if (*text_len >= *trunc_msg_len)
622 		*text_len -= *trunc_msg_len;
623 	else
624 		*trunc_msg_len = 0;
625 }
626 
627 int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT);
628 
syslog_action_restricted(int type)629 static int syslog_action_restricted(int type)
630 {
631 	if (dmesg_restrict)
632 		return 1;
633 	/*
634 	 * Unless restricted, we allow "read all" and "get buffer size"
635 	 * for everybody.
636 	 */
637 	return type != SYSLOG_ACTION_READ_ALL &&
638 	       type != SYSLOG_ACTION_SIZE_BUFFER;
639 }
640 
check_syslog_permissions(int type,int source)641 static int check_syslog_permissions(int type, int source)
642 {
643 	/*
644 	 * If this is from /proc/kmsg and we've already opened it, then we've
645 	 * already done the capabilities checks at open time.
646 	 */
647 	if (source == SYSLOG_FROM_PROC && type != SYSLOG_ACTION_OPEN)
648 		goto ok;
649 
650 	if (syslog_action_restricted(type)) {
651 		if (capable(CAP_SYSLOG))
652 			goto ok;
653 		return -EPERM;
654 	}
655 ok:
656 	return security_syslog(type);
657 }
658 
append_char(char ** pp,char * e,char c)659 static void append_char(char **pp, char *e, char c)
660 {
661 	if (*pp < e)
662 		*(*pp)++ = c;
663 }
664 
info_print_ext_header(char * buf,size_t size,struct printk_info * info)665 static ssize_t info_print_ext_header(char *buf, size_t size,
666 				     struct printk_info *info)
667 {
668 	u64 ts_usec = info->ts_nsec;
669 	char caller[20];
670 #ifdef CONFIG_PRINTK_CALLER
671 	int vh_ret = 0;
672 	u32 id = info->caller_id;
673 
674 	trace_android_vh_printk_ext_header(caller, sizeof(caller), id, &vh_ret);
675 
676 	if (!vh_ret)
677 		snprintf(caller, sizeof(caller), ",caller=%c%u",
678 			 id & 0x80000000 ? 'C' : 'T', id & ~0x80000000);
679 #else
680 	caller[0] = '\0';
681 #endif
682 
683 	do_div(ts_usec, 1000);
684 
685 	return scnprintf(buf, size, "%u,%llu,%llu,%c%s;",
686 			 (info->facility << 3) | info->level, info->seq,
687 			 ts_usec, info->flags & LOG_CONT ? 'c' : '-', caller);
688 }
689 
msg_add_ext_text(char * buf,size_t size,const char * text,size_t text_len,unsigned char endc)690 static ssize_t msg_add_ext_text(char *buf, size_t size,
691 				const char *text, size_t text_len,
692 				unsigned char endc)
693 {
694 	char *p = buf, *e = buf + size;
695 	size_t i;
696 
697 	/* escape non-printable characters */
698 	for (i = 0; i < text_len; i++) {
699 		unsigned char c = text[i];
700 
701 		if (c < ' ' || c >= 127 || c == '\\')
702 			p += scnprintf(p, e - p, "\\x%02x", c);
703 		else
704 			append_char(&p, e, c);
705 	}
706 	append_char(&p, e, endc);
707 
708 	return p - buf;
709 }
710 
msg_add_dict_text(char * buf,size_t size,const char * key,const char * val)711 static ssize_t msg_add_dict_text(char *buf, size_t size,
712 				 const char *key, const char *val)
713 {
714 	size_t val_len = strlen(val);
715 	ssize_t len;
716 
717 	if (!val_len)
718 		return 0;
719 
720 	len = msg_add_ext_text(buf, size, "", 0, ' ');	/* dict prefix */
721 	len += msg_add_ext_text(buf + len, size - len, key, strlen(key), '=');
722 	len += msg_add_ext_text(buf + len, size - len, val, val_len, '\n');
723 
724 	return len;
725 }
726 
msg_print_ext_body(char * buf,size_t size,char * text,size_t text_len,struct dev_printk_info * dev_info)727 static ssize_t msg_print_ext_body(char *buf, size_t size,
728 				  char *text, size_t text_len,
729 				  struct dev_printk_info *dev_info)
730 {
731 	ssize_t len;
732 
733 	len = msg_add_ext_text(buf, size, text, text_len, '\n');
734 
735 	if (!dev_info)
736 		goto out;
737 
738 	len += msg_add_dict_text(buf + len, size - len, "SUBSYSTEM",
739 				 dev_info->subsystem);
740 	len += msg_add_dict_text(buf + len, size - len, "DEVICE",
741 				 dev_info->device);
742 out:
743 	return len;
744 }
745 
746 /* /dev/kmsg - userspace message inject/listen interface */
747 struct devkmsg_user {
748 	atomic64_t seq;
749 	struct ratelimit_state rs;
750 	struct mutex lock;
751 	struct printk_buffers pbufs;
752 };
753 
754 static __printf(3, 4) __cold
devkmsg_emit(int facility,int level,const char * fmt,...)755 int devkmsg_emit(int facility, int level, const char *fmt, ...)
756 {
757 	va_list args;
758 	int r;
759 
760 	va_start(args, fmt);
761 	r = vprintk_emit(facility, level, NULL, fmt, args);
762 	va_end(args);
763 
764 	return r;
765 }
766 
devkmsg_write(struct kiocb * iocb,struct iov_iter * from)767 static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from)
768 {
769 	char *buf, *line;
770 	int level = default_message_loglevel;
771 	int facility = 1;	/* LOG_USER */
772 	struct file *file = iocb->ki_filp;
773 	struct devkmsg_user *user = file->private_data;
774 	size_t len = iov_iter_count(from);
775 	ssize_t ret = len;
776 
777 	if (len > PRINTKRB_RECORD_MAX)
778 		return -EINVAL;
779 
780 	/* Ignore when user logging is disabled. */
781 	if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
782 		return len;
783 
784 	/* Ratelimit when not explicitly enabled. */
785 	if (!(devkmsg_log & DEVKMSG_LOG_MASK_ON)) {
786 		if (!___ratelimit(&user->rs, current->comm))
787 			return ret;
788 	}
789 
790 	buf = kmalloc(len+1, GFP_KERNEL);
791 	if (buf == NULL)
792 		return -ENOMEM;
793 
794 	buf[len] = '\0';
795 	if (!copy_from_iter_full(buf, len, from)) {
796 		kfree(buf);
797 		return -EFAULT;
798 	}
799 
800 	/*
801 	 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace
802 	 * the decimal value represents 32bit, the lower 3 bit are the log
803 	 * level, the rest are the log facility.
804 	 *
805 	 * If no prefix or no userspace facility is specified, we
806 	 * enforce LOG_USER, to be able to reliably distinguish
807 	 * kernel-generated messages from userspace-injected ones.
808 	 */
809 	line = buf;
810 	if (line[0] == '<') {
811 		char *endp = NULL;
812 		unsigned int u;
813 
814 		u = simple_strtoul(line + 1, &endp, 10);
815 		if (endp && endp[0] == '>') {
816 			level = LOG_LEVEL(u);
817 			if (LOG_FACILITY(u) != 0)
818 				facility = LOG_FACILITY(u);
819 			endp++;
820 			line = endp;
821 		}
822 	}
823 
824 	devkmsg_emit(facility, level, "%s", line);
825 	kfree(buf);
826 	return ret;
827 }
828 
devkmsg_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)829 static ssize_t devkmsg_read(struct file *file, char __user *buf,
830 			    size_t count, loff_t *ppos)
831 {
832 	struct devkmsg_user *user = file->private_data;
833 	char *outbuf = &user->pbufs.outbuf[0];
834 	struct printk_message pmsg = {
835 		.pbufs = &user->pbufs,
836 	};
837 	ssize_t ret;
838 
839 	ret = mutex_lock_interruptible(&user->lock);
840 	if (ret)
841 		return ret;
842 
843 	if (!printk_get_next_message(&pmsg, atomic64_read(&user->seq), true, false)) {
844 		if (file->f_flags & O_NONBLOCK) {
845 			ret = -EAGAIN;
846 			goto out;
847 		}
848 
849 		/*
850 		 * Guarantee this task is visible on the waitqueue before
851 		 * checking the wake condition.
852 		 *
853 		 * The full memory barrier within set_current_state() of
854 		 * prepare_to_wait_event() pairs with the full memory barrier
855 		 * within wq_has_sleeper().
856 		 *
857 		 * This pairs with __wake_up_klogd:A.
858 		 */
859 		ret = wait_event_interruptible(log_wait,
860 				printk_get_next_message(&pmsg, atomic64_read(&user->seq), true,
861 							false)); /* LMM(devkmsg_read:A) */
862 		if (ret)
863 			goto out;
864 	}
865 
866 	if (pmsg.dropped) {
867 		/* our last seen message is gone, return error and reset */
868 		atomic64_set(&user->seq, pmsg.seq);
869 		ret = -EPIPE;
870 		goto out;
871 	}
872 
873 	atomic64_set(&user->seq, pmsg.seq + 1);
874 
875 	if (pmsg.outbuf_len > count) {
876 		ret = -EINVAL;
877 		goto out;
878 	}
879 
880 	if (copy_to_user(buf, outbuf, pmsg.outbuf_len)) {
881 		ret = -EFAULT;
882 		goto out;
883 	}
884 	ret = pmsg.outbuf_len;
885 out:
886 	mutex_unlock(&user->lock);
887 	return ret;
888 }
889 
890 /*
891  * Be careful when modifying this function!!!
892  *
893  * Only few operations are supported because the device works only with the
894  * entire variable length messages (records). Non-standard values are
895  * returned in the other cases and has been this way for quite some time.
896  * User space applications might depend on this behavior.
897  */
devkmsg_llseek(struct file * file,loff_t offset,int whence)898 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence)
899 {
900 	struct devkmsg_user *user = file->private_data;
901 	loff_t ret = 0;
902 
903 	if (offset)
904 		return -ESPIPE;
905 
906 	switch (whence) {
907 	case SEEK_SET:
908 		/* the first record */
909 		atomic64_set(&user->seq, prb_first_valid_seq(prb));
910 		break;
911 	case SEEK_DATA:
912 		/*
913 		 * The first record after the last SYSLOG_ACTION_CLEAR,
914 		 * like issued by 'dmesg -c'. Reading /dev/kmsg itself
915 		 * changes no global state, and does not clear anything.
916 		 */
917 		atomic64_set(&user->seq, latched_seq_read_nolock(&clear_seq));
918 		break;
919 	case SEEK_END:
920 		/* after the last record */
921 		atomic64_set(&user->seq, prb_next_seq(prb));
922 		break;
923 	default:
924 		ret = -EINVAL;
925 	}
926 	return ret;
927 }
928 
devkmsg_poll(struct file * file,poll_table * wait)929 static __poll_t devkmsg_poll(struct file *file, poll_table *wait)
930 {
931 	struct devkmsg_user *user = file->private_data;
932 	struct printk_info info;
933 	__poll_t ret = 0;
934 
935 	poll_wait(file, &log_wait, wait);
936 
937 	if (prb_read_valid_info(prb, atomic64_read(&user->seq), &info, NULL)) {
938 		/* return error when data has vanished underneath us */
939 		if (info.seq != atomic64_read(&user->seq))
940 			ret = EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI;
941 		else
942 			ret = EPOLLIN|EPOLLRDNORM;
943 	}
944 
945 	return ret;
946 }
947 
devkmsg_open(struct inode * inode,struct file * file)948 static int devkmsg_open(struct inode *inode, struct file *file)
949 {
950 	struct devkmsg_user *user;
951 	int err;
952 
953 	if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
954 		return -EPERM;
955 
956 	/* write-only does not need any file context */
957 	if ((file->f_flags & O_ACCMODE) != O_WRONLY) {
958 		err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL,
959 					       SYSLOG_FROM_READER);
960 		if (err)
961 			return err;
962 	}
963 
964 	user = kvmalloc(sizeof(struct devkmsg_user), GFP_KERNEL);
965 	if (!user)
966 		return -ENOMEM;
967 
968 	ratelimit_default_init(&user->rs);
969 	ratelimit_set_flags(&user->rs, RATELIMIT_MSG_ON_RELEASE);
970 
971 	mutex_init(&user->lock);
972 
973 	atomic64_set(&user->seq, prb_first_valid_seq(prb));
974 
975 	file->private_data = user;
976 	return 0;
977 }
978 
devkmsg_release(struct inode * inode,struct file * file)979 static int devkmsg_release(struct inode *inode, struct file *file)
980 {
981 	struct devkmsg_user *user = file->private_data;
982 
983 	ratelimit_state_exit(&user->rs);
984 
985 	mutex_destroy(&user->lock);
986 	kvfree(user);
987 	return 0;
988 }
989 
990 const struct file_operations kmsg_fops = {
991 	.open = devkmsg_open,
992 	.read = devkmsg_read,
993 	.write_iter = devkmsg_write,
994 	.llseek = devkmsg_llseek,
995 	.poll = devkmsg_poll,
996 	.release = devkmsg_release,
997 };
998 
999 #ifdef CONFIG_VMCORE_INFO
1000 /*
1001  * This appends the listed symbols to /proc/vmcore
1002  *
1003  * /proc/vmcore is used by various utilities, like crash and makedumpfile to
1004  * obtain access to symbols that are otherwise very difficult to locate.  These
1005  * symbols are specifically used so that utilities can access and extract the
1006  * dmesg log from a vmcore file after a crash.
1007  */
log_buf_vmcoreinfo_setup(void)1008 void log_buf_vmcoreinfo_setup(void)
1009 {
1010 	struct dev_printk_info *dev_info = NULL;
1011 
1012 	VMCOREINFO_SYMBOL(prb);
1013 	VMCOREINFO_SYMBOL(printk_rb_static);
1014 	VMCOREINFO_SYMBOL(clear_seq);
1015 
1016 	/*
1017 	 * Export struct size and field offsets. User space tools can
1018 	 * parse it and detect any changes to structure down the line.
1019 	 */
1020 
1021 	VMCOREINFO_STRUCT_SIZE(printk_ringbuffer);
1022 	VMCOREINFO_OFFSET(printk_ringbuffer, desc_ring);
1023 	VMCOREINFO_OFFSET(printk_ringbuffer, text_data_ring);
1024 	VMCOREINFO_OFFSET(printk_ringbuffer, fail);
1025 
1026 	VMCOREINFO_STRUCT_SIZE(prb_desc_ring);
1027 	VMCOREINFO_OFFSET(prb_desc_ring, count_bits);
1028 	VMCOREINFO_OFFSET(prb_desc_ring, descs);
1029 	VMCOREINFO_OFFSET(prb_desc_ring, infos);
1030 	VMCOREINFO_OFFSET(prb_desc_ring, head_id);
1031 	VMCOREINFO_OFFSET(prb_desc_ring, tail_id);
1032 
1033 	VMCOREINFO_STRUCT_SIZE(prb_desc);
1034 	VMCOREINFO_OFFSET(prb_desc, state_var);
1035 	VMCOREINFO_OFFSET(prb_desc, text_blk_lpos);
1036 
1037 	VMCOREINFO_STRUCT_SIZE(prb_data_blk_lpos);
1038 	VMCOREINFO_OFFSET(prb_data_blk_lpos, begin);
1039 	VMCOREINFO_OFFSET(prb_data_blk_lpos, next);
1040 
1041 	VMCOREINFO_STRUCT_SIZE(printk_info);
1042 	VMCOREINFO_OFFSET(printk_info, seq);
1043 	VMCOREINFO_OFFSET(printk_info, ts_nsec);
1044 	VMCOREINFO_OFFSET(printk_info, text_len);
1045 	VMCOREINFO_OFFSET(printk_info, caller_id);
1046 	VMCOREINFO_OFFSET(printk_info, dev_info);
1047 
1048 	VMCOREINFO_STRUCT_SIZE(dev_printk_info);
1049 	VMCOREINFO_OFFSET(dev_printk_info, subsystem);
1050 	VMCOREINFO_LENGTH(printk_info_subsystem, sizeof(dev_info->subsystem));
1051 	VMCOREINFO_OFFSET(dev_printk_info, device);
1052 	VMCOREINFO_LENGTH(printk_info_device, sizeof(dev_info->device));
1053 
1054 	VMCOREINFO_STRUCT_SIZE(prb_data_ring);
1055 	VMCOREINFO_OFFSET(prb_data_ring, size_bits);
1056 	VMCOREINFO_OFFSET(prb_data_ring, data);
1057 	VMCOREINFO_OFFSET(prb_data_ring, head_lpos);
1058 	VMCOREINFO_OFFSET(prb_data_ring, tail_lpos);
1059 
1060 	VMCOREINFO_SIZE(atomic_long_t);
1061 	VMCOREINFO_TYPE_OFFSET(atomic_long_t, counter);
1062 
1063 	VMCOREINFO_STRUCT_SIZE(latched_seq);
1064 	VMCOREINFO_OFFSET(latched_seq, val);
1065 }
1066 #endif
1067 
1068 /* requested log_buf_len from kernel cmdline */
1069 static unsigned long __initdata new_log_buf_len;
1070 
1071 /* we practice scaling the ring buffer by powers of 2 */
log_buf_len_update(u64 size)1072 static void __init log_buf_len_update(u64 size)
1073 {
1074 	if (size > (u64)LOG_BUF_LEN_MAX) {
1075 		size = (u64)LOG_BUF_LEN_MAX;
1076 		pr_err("log_buf over 2G is not supported.\n");
1077 	}
1078 
1079 	if (size)
1080 		size = roundup_pow_of_two(size);
1081 	if (size > log_buf_len)
1082 		new_log_buf_len = (unsigned long)size;
1083 }
1084 
1085 /* save requested log_buf_len since it's too early to process it */
log_buf_len_setup(char * str)1086 static int __init log_buf_len_setup(char *str)
1087 {
1088 	u64 size;
1089 
1090 	if (!str)
1091 		return -EINVAL;
1092 
1093 	size = memparse(str, &str);
1094 
1095 	log_buf_len_update(size);
1096 
1097 	return 0;
1098 }
1099 early_param("log_buf_len", log_buf_len_setup);
1100 
1101 #ifdef CONFIG_SMP
1102 #define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT)
1103 
log_buf_add_cpu(void)1104 static void __init log_buf_add_cpu(void)
1105 {
1106 	unsigned int cpu_extra;
1107 
1108 	/*
1109 	 * archs should set up cpu_possible_bits properly with
1110 	 * set_cpu_possible() after setup_arch() but just in
1111 	 * case lets ensure this is valid.
1112 	 */
1113 	if (num_possible_cpus() == 1)
1114 		return;
1115 
1116 	cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN;
1117 
1118 	/* by default this will only continue through for large > 64 CPUs */
1119 	if (cpu_extra <= __LOG_BUF_LEN / 2)
1120 		return;
1121 
1122 	pr_info("log_buf_len individual max cpu contribution: %d bytes\n",
1123 		__LOG_CPU_MAX_BUF_LEN);
1124 	pr_info("log_buf_len total cpu_extra contributions: %d bytes\n",
1125 		cpu_extra);
1126 	pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN);
1127 
1128 	log_buf_len_update(cpu_extra + __LOG_BUF_LEN);
1129 }
1130 #else /* !CONFIG_SMP */
log_buf_add_cpu(void)1131 static inline void log_buf_add_cpu(void) {}
1132 #endif /* CONFIG_SMP */
1133 
set_percpu_data_ready(void)1134 static void __init set_percpu_data_ready(void)
1135 {
1136 	__printk_percpu_data_ready = true;
1137 }
1138 
add_to_rb(struct printk_ringbuffer * rb,struct printk_record * r)1139 static unsigned int __init add_to_rb(struct printk_ringbuffer *rb,
1140 				     struct printk_record *r)
1141 {
1142 	struct prb_reserved_entry e;
1143 	struct printk_record dest_r;
1144 
1145 	prb_rec_init_wr(&dest_r, r->info->text_len);
1146 
1147 	if (!prb_reserve(&e, rb, &dest_r))
1148 		return 0;
1149 
1150 	memcpy(&dest_r.text_buf[0], &r->text_buf[0], r->info->text_len);
1151 	dest_r.info->text_len = r->info->text_len;
1152 	dest_r.info->facility = r->info->facility;
1153 	dest_r.info->level = r->info->level;
1154 	dest_r.info->flags = r->info->flags;
1155 	dest_r.info->ts_nsec = r->info->ts_nsec;
1156 	dest_r.info->caller_id = r->info->caller_id;
1157 	memcpy(&dest_r.info->dev_info, &r->info->dev_info, sizeof(dest_r.info->dev_info));
1158 
1159 	prb_final_commit(&e);
1160 
1161 	return prb_record_text_space(&e);
1162 }
1163 
1164 static char setup_text_buf[PRINTKRB_RECORD_MAX] __initdata;
1165 
print_log_buf_usage_stats(void)1166 static void print_log_buf_usage_stats(void)
1167 {
1168 	unsigned int descs_count = log_buf_len >> PRB_AVGBITS;
1169 	size_t meta_data_size;
1170 
1171 	meta_data_size = descs_count * (sizeof(struct prb_desc) + sizeof(struct printk_info));
1172 
1173 	pr_info("log buffer data + meta data: %u + %zu = %zu bytes\n",
1174 		log_buf_len, meta_data_size, log_buf_len + meta_data_size);
1175 }
1176 
setup_log_buf(int early)1177 void __init setup_log_buf(int early)
1178 {
1179 	struct printk_info *new_infos;
1180 	unsigned int new_descs_count;
1181 	struct prb_desc *new_descs;
1182 	struct printk_info info;
1183 	struct printk_record r;
1184 	unsigned int text_size;
1185 	size_t new_descs_size;
1186 	size_t new_infos_size;
1187 	unsigned long flags;
1188 	char *new_log_buf;
1189 	unsigned int free;
1190 	u64 seq;
1191 
1192 	/*
1193 	 * Some archs call setup_log_buf() multiple times - first is very
1194 	 * early, e.g. from setup_arch(), and second - when percpu_areas
1195 	 * are initialised.
1196 	 */
1197 	if (!early)
1198 		set_percpu_data_ready();
1199 
1200 	if (log_buf != __log_buf)
1201 		return;
1202 
1203 	if (!early && !new_log_buf_len)
1204 		log_buf_add_cpu();
1205 
1206 	if (!new_log_buf_len) {
1207 		/* Show the memory stats only once. */
1208 		if (!early)
1209 			goto out;
1210 
1211 		return;
1212 	}
1213 
1214 	new_descs_count = new_log_buf_len >> PRB_AVGBITS;
1215 	if (new_descs_count == 0) {
1216 		pr_err("new_log_buf_len: %lu too small\n", new_log_buf_len);
1217 		goto out;
1218 	}
1219 
1220 	new_log_buf = memblock_alloc(new_log_buf_len, LOG_ALIGN);
1221 	if (unlikely(!new_log_buf)) {
1222 		pr_err("log_buf_len: %lu text bytes not available\n",
1223 		       new_log_buf_len);
1224 		goto out;
1225 	}
1226 
1227 	new_descs_size = new_descs_count * sizeof(struct prb_desc);
1228 	new_descs = memblock_alloc(new_descs_size, LOG_ALIGN);
1229 	if (unlikely(!new_descs)) {
1230 		pr_err("log_buf_len: %zu desc bytes not available\n",
1231 		       new_descs_size);
1232 		goto err_free_log_buf;
1233 	}
1234 
1235 	new_infos_size = new_descs_count * sizeof(struct printk_info);
1236 	new_infos = memblock_alloc(new_infos_size, LOG_ALIGN);
1237 	if (unlikely(!new_infos)) {
1238 		pr_err("log_buf_len: %zu info bytes not available\n",
1239 		       new_infos_size);
1240 		goto err_free_descs;
1241 	}
1242 
1243 	prb_rec_init_rd(&r, &info, &setup_text_buf[0], sizeof(setup_text_buf));
1244 
1245 	prb_init(&printk_rb_dynamic,
1246 		 new_log_buf, ilog2(new_log_buf_len),
1247 		 new_descs, ilog2(new_descs_count),
1248 		 new_infos);
1249 
1250 	local_irq_save(flags);
1251 
1252 	log_buf_len = new_log_buf_len;
1253 	log_buf = new_log_buf;
1254 	new_log_buf_len = 0;
1255 
1256 	free = __LOG_BUF_LEN;
1257 	prb_for_each_record(0, &printk_rb_static, seq, &r) {
1258 		text_size = add_to_rb(&printk_rb_dynamic, &r);
1259 		if (text_size > free)
1260 			free = 0;
1261 		else
1262 			free -= text_size;
1263 	}
1264 
1265 	prb = &printk_rb_dynamic;
1266 
1267 	local_irq_restore(flags);
1268 
1269 	/*
1270 	 * Copy any remaining messages that might have appeared from
1271 	 * NMI context after copying but before switching to the
1272 	 * dynamic buffer.
1273 	 */
1274 	prb_for_each_record(seq, &printk_rb_static, seq, &r) {
1275 		text_size = add_to_rb(&printk_rb_dynamic, &r);
1276 		if (text_size > free)
1277 			free = 0;
1278 		else
1279 			free -= text_size;
1280 	}
1281 
1282 	if (seq != prb_next_seq(&printk_rb_static)) {
1283 		pr_err("dropped %llu messages\n",
1284 		       prb_next_seq(&printk_rb_static) - seq);
1285 	}
1286 
1287 	print_log_buf_usage_stats();
1288 	pr_info("early log buf free: %u(%u%%)\n",
1289 		free, (free * 100) / __LOG_BUF_LEN);
1290 	return;
1291 
1292 err_free_descs:
1293 	memblock_free(new_descs, new_descs_size);
1294 err_free_log_buf:
1295 	memblock_free(new_log_buf, new_log_buf_len);
1296 out:
1297 	print_log_buf_usage_stats();
1298 }
1299 
1300 static bool __read_mostly ignore_loglevel;
1301 
ignore_loglevel_setup(char * str)1302 static int __init ignore_loglevel_setup(char *str)
1303 {
1304 	ignore_loglevel = true;
1305 	pr_info("debug: ignoring loglevel setting.\n");
1306 
1307 	return 0;
1308 }
1309 
1310 early_param("ignore_loglevel", ignore_loglevel_setup);
1311 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR);
1312 MODULE_PARM_DESC(ignore_loglevel,
1313 		 "ignore loglevel setting (prints all kernel messages to the console)");
1314 
suppress_message_printing(int level)1315 static bool suppress_message_printing(int level)
1316 {
1317 	return (level >= console_loglevel && !ignore_loglevel);
1318 }
1319 
1320 #ifdef CONFIG_BOOT_PRINTK_DELAY
1321 
1322 static int boot_delay; /* msecs delay after each printk during bootup */
1323 static unsigned long long loops_per_msec;	/* based on boot_delay */
1324 
boot_delay_setup(char * str)1325 static int __init boot_delay_setup(char *str)
1326 {
1327 	unsigned long lpj;
1328 
1329 	lpj = preset_lpj ? preset_lpj : 1000000;	/* some guess */
1330 	loops_per_msec = (unsigned long long)lpj / 1000 * HZ;
1331 
1332 	get_option(&str, &boot_delay);
1333 	if (boot_delay > 10 * 1000)
1334 		boot_delay = 0;
1335 
1336 	pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, "
1337 		"HZ: %d, loops_per_msec: %llu\n",
1338 		boot_delay, preset_lpj, lpj, HZ, loops_per_msec);
1339 	return 0;
1340 }
1341 early_param("boot_delay", boot_delay_setup);
1342 
boot_delay_msec(int level)1343 static void boot_delay_msec(int level)
1344 {
1345 	unsigned long long k;
1346 	unsigned long timeout;
1347 
1348 	if ((boot_delay == 0 || system_state >= SYSTEM_RUNNING)
1349 		|| suppress_message_printing(level)) {
1350 		return;
1351 	}
1352 
1353 	k = (unsigned long long)loops_per_msec * boot_delay;
1354 
1355 	timeout = jiffies + msecs_to_jiffies(boot_delay);
1356 	while (k) {
1357 		k--;
1358 		cpu_relax();
1359 		/*
1360 		 * use (volatile) jiffies to prevent
1361 		 * compiler reduction; loop termination via jiffies
1362 		 * is secondary and may or may not happen.
1363 		 */
1364 		if (time_after(jiffies, timeout))
1365 			break;
1366 		touch_nmi_watchdog();
1367 	}
1368 }
1369 #else
boot_delay_msec(int level)1370 static inline void boot_delay_msec(int level)
1371 {
1372 }
1373 #endif
1374 
1375 static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME);
1376 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR);
1377 
print_syslog(unsigned int level,char * buf)1378 static size_t print_syslog(unsigned int level, char *buf)
1379 {
1380 	return sprintf(buf, "<%u>", level);
1381 }
1382 
print_time(u64 ts,char * buf)1383 static size_t print_time(u64 ts, char *buf)
1384 {
1385 	unsigned long rem_nsec = do_div(ts, 1000000000);
1386 
1387 	return sprintf(buf, "[%5lu.%06lu]",
1388 		       (unsigned long)ts, rem_nsec / 1000);
1389 }
1390 
1391 #ifdef CONFIG_PRINTK_CALLER
print_caller(u32 id,char * buf)1392 static size_t print_caller(u32 id, char *buf)
1393 {
1394 	char caller[12];
1395 	int vh_ret = 0;
1396 
1397 	trace_android_vh_printk_caller(caller, sizeof(caller), id, &vh_ret);
1398 	if (!vh_ret)
1399 		snprintf(caller, sizeof(caller), "%c%u",
1400 			 id & 0x80000000 ? 'C' : 'T', id & ~0x80000000);
1401 	return sprintf(buf, "[%6s]", caller);
1402 }
1403 #else
1404 #define print_caller(id, buf) 0
1405 #endif
1406 
info_print_prefix(const struct printk_info * info,bool syslog,bool time,char * buf)1407 static size_t info_print_prefix(const struct printk_info  *info, bool syslog,
1408 				bool time, char *buf)
1409 {
1410 	size_t len = 0;
1411 
1412 	if (syslog)
1413 		len = print_syslog((info->facility << 3) | info->level, buf);
1414 
1415 	if (time)
1416 		len += print_time(info->ts_nsec, buf + len);
1417 
1418 	len += print_caller(info->caller_id, buf + len);
1419 
1420 	if (IS_ENABLED(CONFIG_PRINTK_CALLER) || time) {
1421 		buf[len++] = ' ';
1422 		buf[len] = '\0';
1423 	}
1424 
1425 	return len;
1426 }
1427 
1428 /*
1429  * Prepare the record for printing. The text is shifted within the given
1430  * buffer to avoid a need for another one. The following operations are
1431  * done:
1432  *
1433  *   - Add prefix for each line.
1434  *   - Drop truncated lines that no longer fit into the buffer.
1435  *   - Add the trailing newline that has been removed in vprintk_store().
1436  *   - Add a string terminator.
1437  *
1438  * Since the produced string is always terminated, the maximum possible
1439  * return value is @r->text_buf_size - 1;
1440  *
1441  * Return: The length of the updated/prepared text, including the added
1442  * prefixes and the newline. The terminator is not counted. The dropped
1443  * line(s) are not counted.
1444  */
record_print_text(struct printk_record * r,bool syslog,bool time)1445 static size_t record_print_text(struct printk_record *r, bool syslog,
1446 				bool time)
1447 {
1448 	size_t text_len = r->info->text_len;
1449 	size_t buf_size = r->text_buf_size;
1450 	char *text = r->text_buf;
1451 	char prefix[PRINTK_PREFIX_MAX];
1452 	bool truncated = false;
1453 	size_t prefix_len;
1454 	size_t line_len;
1455 	size_t len = 0;
1456 	char *next;
1457 
1458 	/*
1459 	 * If the message was truncated because the buffer was not large
1460 	 * enough, treat the available text as if it were the full text.
1461 	 */
1462 	if (text_len > buf_size)
1463 		text_len = buf_size;
1464 
1465 	prefix_len = info_print_prefix(r->info, syslog, time, prefix);
1466 
1467 	/*
1468 	 * @text_len: bytes of unprocessed text
1469 	 * @line_len: bytes of current line _without_ newline
1470 	 * @text:     pointer to beginning of current line
1471 	 * @len:      number of bytes prepared in r->text_buf
1472 	 */
1473 	for (;;) {
1474 		next = memchr(text, '\n', text_len);
1475 		if (next) {
1476 			line_len = next - text;
1477 		} else {
1478 			/* Drop truncated line(s). */
1479 			if (truncated)
1480 				break;
1481 			line_len = text_len;
1482 		}
1483 
1484 		/*
1485 		 * Truncate the text if there is not enough space to add the
1486 		 * prefix and a trailing newline and a terminator.
1487 		 */
1488 		if (len + prefix_len + text_len + 1 + 1 > buf_size) {
1489 			/* Drop even the current line if no space. */
1490 			if (len + prefix_len + line_len + 1 + 1 > buf_size)
1491 				break;
1492 
1493 			text_len = buf_size - len - prefix_len - 1 - 1;
1494 			truncated = true;
1495 		}
1496 
1497 		memmove(text + prefix_len, text, text_len);
1498 		memcpy(text, prefix, prefix_len);
1499 
1500 		/*
1501 		 * Increment the prepared length to include the text and
1502 		 * prefix that were just moved+copied. Also increment for the
1503 		 * newline at the end of this line. If this is the last line,
1504 		 * there is no newline, but it will be added immediately below.
1505 		 */
1506 		len += prefix_len + line_len + 1;
1507 		if (text_len == line_len) {
1508 			/*
1509 			 * This is the last line. Add the trailing newline
1510 			 * removed in vprintk_store().
1511 			 */
1512 			text[prefix_len + line_len] = '\n';
1513 			break;
1514 		}
1515 
1516 		/*
1517 		 * Advance beyond the added prefix and the related line with
1518 		 * its newline.
1519 		 */
1520 		text += prefix_len + line_len + 1;
1521 
1522 		/*
1523 		 * The remaining text has only decreased by the line with its
1524 		 * newline.
1525 		 *
1526 		 * Note that @text_len can become zero. It happens when @text
1527 		 * ended with a newline (either due to truncation or the
1528 		 * original string ending with "\n\n"). The loop is correctly
1529 		 * repeated and (if not truncated) an empty line with a prefix
1530 		 * will be prepared.
1531 		 */
1532 		text_len -= line_len + 1;
1533 	}
1534 
1535 	/*
1536 	 * If a buffer was provided, it will be terminated. Space for the
1537 	 * string terminator is guaranteed to be available. The terminator is
1538 	 * not counted in the return value.
1539 	 */
1540 	if (buf_size > 0)
1541 		r->text_buf[len] = 0;
1542 
1543 	return len;
1544 }
1545 
get_record_print_text_size(struct printk_info * info,unsigned int line_count,bool syslog,bool time)1546 static size_t get_record_print_text_size(struct printk_info *info,
1547 					 unsigned int line_count,
1548 					 bool syslog, bool time)
1549 {
1550 	char prefix[PRINTK_PREFIX_MAX];
1551 	size_t prefix_len;
1552 
1553 	prefix_len = info_print_prefix(info, syslog, time, prefix);
1554 
1555 	/*
1556 	 * Each line will be preceded with a prefix. The intermediate
1557 	 * newlines are already within the text, but a final trailing
1558 	 * newline will be added.
1559 	 */
1560 	return ((prefix_len * line_count) + info->text_len + 1);
1561 }
1562 
1563 /*
1564  * Beginning with @start_seq, find the first record where it and all following
1565  * records up to (but not including) @max_seq fit into @size.
1566  *
1567  * @max_seq is simply an upper bound and does not need to exist. If the caller
1568  * does not require an upper bound, -1 can be used for @max_seq.
1569  */
find_first_fitting_seq(u64 start_seq,u64 max_seq,size_t size,bool syslog,bool time)1570 static u64 find_first_fitting_seq(u64 start_seq, u64 max_seq, size_t size,
1571 				  bool syslog, bool time)
1572 {
1573 	struct printk_info info;
1574 	unsigned int line_count;
1575 	size_t len = 0;
1576 	u64 seq;
1577 
1578 	/* Determine the size of the records up to @max_seq. */
1579 	prb_for_each_info(start_seq, prb, seq, &info, &line_count) {
1580 		if (info.seq >= max_seq)
1581 			break;
1582 		len += get_record_print_text_size(&info, line_count, syslog, time);
1583 	}
1584 
1585 	/*
1586 	 * Adjust the upper bound for the next loop to avoid subtracting
1587 	 * lengths that were never added.
1588 	 */
1589 	if (seq < max_seq)
1590 		max_seq = seq;
1591 
1592 	/*
1593 	 * Move first record forward until length fits into the buffer. Ignore
1594 	 * newest messages that were not counted in the above cycle. Messages
1595 	 * might appear and get lost in the meantime. This is a best effort
1596 	 * that prevents an infinite loop that could occur with a retry.
1597 	 */
1598 	prb_for_each_info(start_seq, prb, seq, &info, &line_count) {
1599 		if (len <= size || info.seq >= max_seq)
1600 			break;
1601 		len -= get_record_print_text_size(&info, line_count, syslog, time);
1602 	}
1603 
1604 	return seq;
1605 }
1606 
1607 /* The caller is responsible for making sure @size is greater than 0. */
syslog_print(char __user * buf,int size)1608 static int syslog_print(char __user *buf, int size)
1609 {
1610 	struct printk_info info;
1611 	struct printk_record r;
1612 	char *text;
1613 	int len = 0;
1614 	u64 seq;
1615 
1616 	text = kmalloc(PRINTK_MESSAGE_MAX, GFP_KERNEL);
1617 	if (!text)
1618 		return -ENOMEM;
1619 
1620 	prb_rec_init_rd(&r, &info, text, PRINTK_MESSAGE_MAX);
1621 
1622 	mutex_lock(&syslog_lock);
1623 
1624 	/*
1625 	 * Wait for the @syslog_seq record to be available. @syslog_seq may
1626 	 * change while waiting.
1627 	 */
1628 	do {
1629 		seq = syslog_seq;
1630 
1631 		mutex_unlock(&syslog_lock);
1632 		/*
1633 		 * Guarantee this task is visible on the waitqueue before
1634 		 * checking the wake condition.
1635 		 *
1636 		 * The full memory barrier within set_current_state() of
1637 		 * prepare_to_wait_event() pairs with the full memory barrier
1638 		 * within wq_has_sleeper().
1639 		 *
1640 		 * This pairs with __wake_up_klogd:A.
1641 		 */
1642 		len = wait_event_interruptible(log_wait,
1643 				prb_read_valid(prb, seq, NULL)); /* LMM(syslog_print:A) */
1644 		mutex_lock(&syslog_lock);
1645 
1646 		if (len)
1647 			goto out;
1648 	} while (syslog_seq != seq);
1649 
1650 	/*
1651 	 * Copy records that fit into the buffer. The above cycle makes sure
1652 	 * that the first record is always available.
1653 	 */
1654 	do {
1655 		size_t n;
1656 		size_t skip;
1657 		int err;
1658 
1659 		if (!prb_read_valid(prb, syslog_seq, &r))
1660 			break;
1661 
1662 		if (r.info->seq != syslog_seq) {
1663 			/* message is gone, move to next valid one */
1664 			syslog_seq = r.info->seq;
1665 			syslog_partial = 0;
1666 		}
1667 
1668 		/*
1669 		 * To keep reading/counting partial line consistent,
1670 		 * use printk_time value as of the beginning of a line.
1671 		 */
1672 		if (!syslog_partial)
1673 			syslog_time = printk_time;
1674 
1675 		skip = syslog_partial;
1676 		n = record_print_text(&r, true, syslog_time);
1677 		if (n - syslog_partial <= size) {
1678 			/* message fits into buffer, move forward */
1679 			syslog_seq = r.info->seq + 1;
1680 			n -= syslog_partial;
1681 			syslog_partial = 0;
1682 		} else if (!len){
1683 			/* partial read(), remember position */
1684 			n = size;
1685 			syslog_partial += n;
1686 		} else
1687 			n = 0;
1688 
1689 		if (!n)
1690 			break;
1691 
1692 		mutex_unlock(&syslog_lock);
1693 		err = copy_to_user(buf, text + skip, n);
1694 		mutex_lock(&syslog_lock);
1695 
1696 		if (err) {
1697 			if (!len)
1698 				len = -EFAULT;
1699 			break;
1700 		}
1701 
1702 		len += n;
1703 		size -= n;
1704 		buf += n;
1705 	} while (size);
1706 out:
1707 	mutex_unlock(&syslog_lock);
1708 	kfree(text);
1709 	return len;
1710 }
1711 
syslog_print_all(char __user * buf,int size,bool clear)1712 static int syslog_print_all(char __user *buf, int size, bool clear)
1713 {
1714 	struct printk_info info;
1715 	struct printk_record r;
1716 	char *text;
1717 	int len = 0;
1718 	u64 seq;
1719 	bool time;
1720 
1721 	text = kmalloc(PRINTK_MESSAGE_MAX, GFP_KERNEL);
1722 	if (!text)
1723 		return -ENOMEM;
1724 
1725 	time = printk_time;
1726 	/*
1727 	 * Find first record that fits, including all following records,
1728 	 * into the user-provided buffer for this dump.
1729 	 */
1730 	seq = find_first_fitting_seq(latched_seq_read_nolock(&clear_seq), -1,
1731 				     size, true, time);
1732 
1733 	prb_rec_init_rd(&r, &info, text, PRINTK_MESSAGE_MAX);
1734 
1735 	prb_for_each_record(seq, prb, seq, &r) {
1736 		int textlen;
1737 
1738 		textlen = record_print_text(&r, true, time);
1739 
1740 		if (len + textlen > size) {
1741 			seq--;
1742 			break;
1743 		}
1744 
1745 		if (copy_to_user(buf + len, text, textlen))
1746 			len = -EFAULT;
1747 		else
1748 			len += textlen;
1749 
1750 		if (len < 0)
1751 			break;
1752 	}
1753 
1754 	if (clear) {
1755 		mutex_lock(&syslog_lock);
1756 		latched_seq_write(&clear_seq, seq);
1757 		mutex_unlock(&syslog_lock);
1758 	}
1759 
1760 	kfree(text);
1761 	return len;
1762 }
1763 
syslog_clear(void)1764 static void syslog_clear(void)
1765 {
1766 	mutex_lock(&syslog_lock);
1767 	latched_seq_write(&clear_seq, prb_next_seq(prb));
1768 	mutex_unlock(&syslog_lock);
1769 }
1770 
do_syslog(int type,char __user * buf,int len,int source)1771 int do_syslog(int type, char __user *buf, int len, int source)
1772 {
1773 	struct printk_info info;
1774 	bool clear = false;
1775 	static int saved_console_loglevel = LOGLEVEL_DEFAULT;
1776 	int error;
1777 
1778 	error = check_syslog_permissions(type, source);
1779 	if (error)
1780 		return error;
1781 
1782 	switch (type) {
1783 	case SYSLOG_ACTION_CLOSE:	/* Close log */
1784 		break;
1785 	case SYSLOG_ACTION_OPEN:	/* Open log */
1786 		break;
1787 	case SYSLOG_ACTION_READ:	/* Read from log */
1788 		if (!buf || len < 0)
1789 			return -EINVAL;
1790 		if (!len)
1791 			return 0;
1792 		if (!access_ok(buf, len))
1793 			return -EFAULT;
1794 		error = syslog_print(buf, len);
1795 		break;
1796 	/* Read/clear last kernel messages */
1797 	case SYSLOG_ACTION_READ_CLEAR:
1798 		clear = true;
1799 		fallthrough;
1800 	/* Read last kernel messages */
1801 	case SYSLOG_ACTION_READ_ALL:
1802 		if (!buf || len < 0)
1803 			return -EINVAL;
1804 		if (!len)
1805 			return 0;
1806 		if (!access_ok(buf, len))
1807 			return -EFAULT;
1808 		error = syslog_print_all(buf, len, clear);
1809 		break;
1810 	/* Clear ring buffer */
1811 	case SYSLOG_ACTION_CLEAR:
1812 		syslog_clear();
1813 		break;
1814 	/* Disable logging to console */
1815 	case SYSLOG_ACTION_CONSOLE_OFF:
1816 		if (saved_console_loglevel == LOGLEVEL_DEFAULT)
1817 			saved_console_loglevel = console_loglevel;
1818 		console_loglevel = minimum_console_loglevel;
1819 		break;
1820 	/* Enable logging to console */
1821 	case SYSLOG_ACTION_CONSOLE_ON:
1822 		if (saved_console_loglevel != LOGLEVEL_DEFAULT) {
1823 			console_loglevel = saved_console_loglevel;
1824 			saved_console_loglevel = LOGLEVEL_DEFAULT;
1825 		}
1826 		break;
1827 	/* Set level of messages printed to console */
1828 	case SYSLOG_ACTION_CONSOLE_LEVEL:
1829 		if (len < 1 || len > 8)
1830 			return -EINVAL;
1831 		if (len < minimum_console_loglevel)
1832 			len = minimum_console_loglevel;
1833 		console_loglevel = len;
1834 		/* Implicitly re-enable logging to console */
1835 		saved_console_loglevel = LOGLEVEL_DEFAULT;
1836 		break;
1837 	/* Number of chars in the log buffer */
1838 	case SYSLOG_ACTION_SIZE_UNREAD:
1839 		mutex_lock(&syslog_lock);
1840 		if (!prb_read_valid_info(prb, syslog_seq, &info, NULL)) {
1841 			/* No unread messages. */
1842 			mutex_unlock(&syslog_lock);
1843 			return 0;
1844 		}
1845 		if (info.seq != syslog_seq) {
1846 			/* messages are gone, move to first one */
1847 			syslog_seq = info.seq;
1848 			syslog_partial = 0;
1849 		}
1850 		if (source == SYSLOG_FROM_PROC) {
1851 			/*
1852 			 * Short-cut for poll(/"proc/kmsg") which simply checks
1853 			 * for pending data, not the size; return the count of
1854 			 * records, not the length.
1855 			 */
1856 			error = prb_next_seq(prb) - syslog_seq;
1857 		} else {
1858 			bool time = syslog_partial ? syslog_time : printk_time;
1859 			unsigned int line_count;
1860 			u64 seq;
1861 
1862 			prb_for_each_info(syslog_seq, prb, seq, &info,
1863 					  &line_count) {
1864 				error += get_record_print_text_size(&info, line_count,
1865 								    true, time);
1866 				time = printk_time;
1867 			}
1868 			error -= syslog_partial;
1869 		}
1870 		mutex_unlock(&syslog_lock);
1871 		break;
1872 	/* Size of the log buffer */
1873 	case SYSLOG_ACTION_SIZE_BUFFER:
1874 		error = log_buf_len;
1875 		break;
1876 	default:
1877 		error = -EINVAL;
1878 		break;
1879 	}
1880 
1881 	return error;
1882 }
1883 
SYSCALL_DEFINE3(syslog,int,type,char __user *,buf,int,len)1884 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len)
1885 {
1886 	return do_syslog(type, buf, len, SYSLOG_FROM_READER);
1887 }
1888 
1889 /*
1890  * Special console_lock variants that help to reduce the risk of soft-lockups.
1891  * They allow to pass console_lock to another printk() call using a busy wait.
1892  */
1893 
1894 #ifdef CONFIG_LOCKDEP
1895 static struct lockdep_map console_owner_dep_map = {
1896 	.name = "console_owner"
1897 };
1898 #endif
1899 
1900 static DEFINE_RAW_SPINLOCK(console_owner_lock);
1901 static struct task_struct *console_owner;
1902 static bool console_waiter;
1903 
1904 /**
1905  * console_lock_spinning_enable - mark beginning of code where another
1906  *	thread might safely busy wait
1907  *
1908  * This basically converts console_lock into a spinlock. This marks
1909  * the section where the console_lock owner can not sleep, because
1910  * there may be a waiter spinning (like a spinlock). Also it must be
1911  * ready to hand over the lock at the end of the section.
1912  */
console_lock_spinning_enable(void)1913 void console_lock_spinning_enable(void)
1914 {
1915 	/*
1916 	 * Do not use spinning in panic(). The panic CPU wants to keep the lock.
1917 	 * Non-panic CPUs abandon the flush anyway.
1918 	 *
1919 	 * Just keep the lockdep annotation. The panic-CPU should avoid
1920 	 * taking console_owner_lock because it might cause a deadlock.
1921 	 * This looks like the easiest way how to prevent false lockdep
1922 	 * reports without handling races a lockless way.
1923 	 */
1924 	if (panic_in_progress())
1925 		goto lockdep;
1926 
1927 	raw_spin_lock(&console_owner_lock);
1928 	console_owner = current;
1929 	raw_spin_unlock(&console_owner_lock);
1930 
1931 lockdep:
1932 	/* The waiter may spin on us after setting console_owner */
1933 	spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_);
1934 }
1935 
1936 /**
1937  * console_lock_spinning_disable_and_check - mark end of code where another
1938  *	thread was able to busy wait and check if there is a waiter
1939  * @cookie: cookie returned from console_srcu_read_lock()
1940  *
1941  * This is called at the end of the section where spinning is allowed.
1942  * It has two functions. First, it is a signal that it is no longer
1943  * safe to start busy waiting for the lock. Second, it checks if
1944  * there is a busy waiter and passes the lock rights to her.
1945  *
1946  * Important: Callers lose both the console_lock and the SRCU read lock if
1947  *	there was a busy waiter. They must not touch items synchronized by
1948  *	console_lock or SRCU read lock in this case.
1949  *
1950  * Return: 1 if the lock rights were passed, 0 otherwise.
1951  */
console_lock_spinning_disable_and_check(int cookie)1952 int console_lock_spinning_disable_and_check(int cookie)
1953 {
1954 	int waiter;
1955 
1956 	/*
1957 	 * Ignore spinning waiters during panic() because they might get stopped
1958 	 * or blocked at any time,
1959 	 *
1960 	 * It is safe because nobody is allowed to start spinning during panic
1961 	 * in the first place. If there has been a waiter then non panic CPUs
1962 	 * might stay spinning. They would get stopped anyway. The panic context
1963 	 * will never start spinning and an interrupted spin on panic CPU will
1964 	 * never continue.
1965 	 */
1966 	if (panic_in_progress()) {
1967 		/* Keep lockdep happy. */
1968 		spin_release(&console_owner_dep_map, _THIS_IP_);
1969 		return 0;
1970 	}
1971 
1972 	raw_spin_lock(&console_owner_lock);
1973 	waiter = READ_ONCE(console_waiter);
1974 	console_owner = NULL;
1975 	raw_spin_unlock(&console_owner_lock);
1976 
1977 	if (!waiter) {
1978 		spin_release(&console_owner_dep_map, _THIS_IP_);
1979 		return 0;
1980 	}
1981 
1982 	/* The waiter is now free to continue */
1983 	WRITE_ONCE(console_waiter, false);
1984 
1985 	spin_release(&console_owner_dep_map, _THIS_IP_);
1986 
1987 	/*
1988 	 * Preserve lockdep lock ordering. Release the SRCU read lock before
1989 	 * releasing the console_lock.
1990 	 */
1991 	console_srcu_read_unlock(cookie);
1992 
1993 	/*
1994 	 * Hand off console_lock to waiter. The waiter will perform
1995 	 * the up(). After this, the waiter is the console_lock owner.
1996 	 */
1997 	mutex_release(&console_lock_dep_map, _THIS_IP_);
1998 	return 1;
1999 }
2000 
2001 /**
2002  * console_trylock_spinning - try to get console_lock by busy waiting
2003  *
2004  * This allows to busy wait for the console_lock when the current
2005  * owner is running in specially marked sections. It means that
2006  * the current owner is running and cannot reschedule until it
2007  * is ready to lose the lock.
2008  *
2009  * Return: 1 if we got the lock, 0 othrewise
2010  */
console_trylock_spinning(void)2011 static int console_trylock_spinning(void)
2012 {
2013 	struct task_struct *owner = NULL;
2014 	bool waiter;
2015 	bool spin = false;
2016 	unsigned long flags;
2017 
2018 	if (console_trylock())
2019 		return 1;
2020 
2021 	/*
2022 	 * It's unsafe to spin once a panic has begun. If we are the
2023 	 * panic CPU, we may have already halted the owner of the
2024 	 * console_sem. If we are not the panic CPU, then we should
2025 	 * avoid taking console_sem, so the panic CPU has a better
2026 	 * chance of cleanly acquiring it later.
2027 	 */
2028 	if (panic_in_progress())
2029 		return 0;
2030 
2031 	printk_safe_enter_irqsave(flags);
2032 
2033 	raw_spin_lock(&console_owner_lock);
2034 	owner = READ_ONCE(console_owner);
2035 	waiter = READ_ONCE(console_waiter);
2036 	if (!waiter && owner && owner != current) {
2037 		WRITE_ONCE(console_waiter, true);
2038 		spin = true;
2039 	}
2040 	raw_spin_unlock(&console_owner_lock);
2041 
2042 	/*
2043 	 * If there is an active printk() writing to the
2044 	 * consoles, instead of having it write our data too,
2045 	 * see if we can offload that load from the active
2046 	 * printer, and do some printing ourselves.
2047 	 * Go into a spin only if there isn't already a waiter
2048 	 * spinning, and there is an active printer, and
2049 	 * that active printer isn't us (recursive printk?).
2050 	 */
2051 	if (!spin) {
2052 		printk_safe_exit_irqrestore(flags);
2053 		return 0;
2054 	}
2055 
2056 	/* We spin waiting for the owner to release us */
2057 	spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_);
2058 	/* Owner will clear console_waiter on hand off */
2059 	while (READ_ONCE(console_waiter))
2060 		cpu_relax();
2061 	spin_release(&console_owner_dep_map, _THIS_IP_);
2062 
2063 	printk_safe_exit_irqrestore(flags);
2064 	/*
2065 	 * The owner passed the console lock to us.
2066 	 * Since we did not spin on console lock, annotate
2067 	 * this as a trylock. Otherwise lockdep will
2068 	 * complain.
2069 	 */
2070 	mutex_acquire(&console_lock_dep_map, 0, 1, _THIS_IP_);
2071 
2072 	/*
2073 	 * Update @console_may_schedule for trylock because the previous
2074 	 * owner may have been schedulable.
2075 	 */
2076 	console_may_schedule = 0;
2077 
2078 	return 1;
2079 }
2080 
2081 /*
2082  * Recursion is tracked separately on each CPU. If NMIs are supported, an
2083  * additional NMI context per CPU is also separately tracked. Until per-CPU
2084  * is available, a separate "early tracking" is performed.
2085  */
2086 static DEFINE_PER_CPU(u8, printk_count);
2087 static u8 printk_count_early;
2088 #ifdef CONFIG_HAVE_NMI
2089 static DEFINE_PER_CPU(u8, printk_count_nmi);
2090 static u8 printk_count_nmi_early;
2091 #endif
2092 
2093 /*
2094  * Recursion is limited to keep the output sane. printk() should not require
2095  * more than 1 level of recursion (allowing, for example, printk() to trigger
2096  * a WARN), but a higher value is used in case some printk-internal errors
2097  * exist, such as the ringbuffer validation checks failing.
2098  */
2099 #define PRINTK_MAX_RECURSION 3
2100 
2101 /*
2102  * Return a pointer to the dedicated counter for the CPU+context of the
2103  * caller.
2104  */
__printk_recursion_counter(void)2105 static u8 *__printk_recursion_counter(void)
2106 {
2107 #ifdef CONFIG_HAVE_NMI
2108 	if (in_nmi()) {
2109 		if (printk_percpu_data_ready())
2110 			return this_cpu_ptr(&printk_count_nmi);
2111 		return &printk_count_nmi_early;
2112 	}
2113 #endif
2114 	if (printk_percpu_data_ready())
2115 		return this_cpu_ptr(&printk_count);
2116 	return &printk_count_early;
2117 }
2118 
2119 /*
2120  * Enter recursion tracking. Interrupts are disabled to simplify tracking.
2121  * The caller must check the boolean return value to see if the recursion is
2122  * allowed. On failure, interrupts are not disabled.
2123  *
2124  * @recursion_ptr must be a variable of type (u8 *) and is the same variable
2125  * that is passed to printk_exit_irqrestore().
2126  */
2127 #define printk_enter_irqsave(recursion_ptr, flags)	\
2128 ({							\
2129 	bool success = true;				\
2130 							\
2131 	typecheck(u8 *, recursion_ptr);			\
2132 	local_irq_save(flags);				\
2133 	(recursion_ptr) = __printk_recursion_counter();	\
2134 	if (*(recursion_ptr) > PRINTK_MAX_RECURSION) {	\
2135 		local_irq_restore(flags);		\
2136 		success = false;			\
2137 	} else {					\
2138 		(*(recursion_ptr))++;			\
2139 	}						\
2140 	success;					\
2141 })
2142 
2143 /* Exit recursion tracking, restoring interrupts. */
2144 #define printk_exit_irqrestore(recursion_ptr, flags)	\
2145 	do {						\
2146 		typecheck(u8 *, recursion_ptr);		\
2147 		(*(recursion_ptr))--;			\
2148 		local_irq_restore(flags);		\
2149 	} while (0)
2150 
2151 int printk_delay_msec __read_mostly;
2152 
printk_delay(int level)2153 static inline void printk_delay(int level)
2154 {
2155 	boot_delay_msec(level);
2156 
2157 	if (unlikely(printk_delay_msec)) {
2158 		int m = printk_delay_msec;
2159 
2160 		while (m--) {
2161 			mdelay(1);
2162 			touch_nmi_watchdog();
2163 		}
2164 	}
2165 }
2166 
printk_caller_id(void)2167 static inline u32 printk_caller_id(void)
2168 {
2169 	u32 caller_id = 0;
2170 
2171 	trace_android_vh_printk_caller_id(&caller_id);
2172 	if (caller_id)
2173 		return caller_id;
2174 
2175 	return in_task() ? task_pid_nr(current) :
2176 		0x80000000 + smp_processor_id();
2177 }
2178 
2179 /**
2180  * printk_parse_prefix - Parse level and control flags.
2181  *
2182  * @text:     The terminated text message.
2183  * @level:    A pointer to the current level value, will be updated.
2184  * @flags:    A pointer to the current printk_info flags, will be updated.
2185  *
2186  * @level may be NULL if the caller is not interested in the parsed value.
2187  * Otherwise the variable pointed to by @level must be set to
2188  * LOGLEVEL_DEFAULT in order to be updated with the parsed value.
2189  *
2190  * @flags may be NULL if the caller is not interested in the parsed value.
2191  * Otherwise the variable pointed to by @flags will be OR'd with the parsed
2192  * value.
2193  *
2194  * Return: The length of the parsed level and control flags.
2195  */
printk_parse_prefix(const char * text,int * level,enum printk_info_flags * flags)2196 u16 printk_parse_prefix(const char *text, int *level,
2197 			enum printk_info_flags *flags)
2198 {
2199 	u16 prefix_len = 0;
2200 	int kern_level;
2201 
2202 	while (*text) {
2203 		kern_level = printk_get_level(text);
2204 		if (!kern_level)
2205 			break;
2206 
2207 		switch (kern_level) {
2208 		case '0' ... '7':
2209 			if (level && *level == LOGLEVEL_DEFAULT)
2210 				*level = kern_level - '0';
2211 			break;
2212 		case 'c':	/* KERN_CONT */
2213 			if (flags)
2214 				*flags |= LOG_CONT;
2215 		}
2216 
2217 		prefix_len += 2;
2218 		text += 2;
2219 	}
2220 
2221 	return prefix_len;
2222 }
2223 
2224 __printf(5, 0)
printk_sprint(char * text,u16 size,int facility,enum printk_info_flags * flags,const char * fmt,va_list args)2225 static u16 printk_sprint(char *text, u16 size, int facility,
2226 			 enum printk_info_flags *flags, const char *fmt,
2227 			 va_list args)
2228 {
2229 	u16 text_len;
2230 
2231 	text_len = vscnprintf(text, size, fmt, args);
2232 
2233 	/* Mark and strip a trailing newline. */
2234 	if (text_len && text[text_len - 1] == '\n') {
2235 		text_len--;
2236 		*flags |= LOG_NEWLINE;
2237 	}
2238 
2239 	/* Strip log level and control flags. */
2240 	if (facility == 0) {
2241 		u16 prefix_len;
2242 
2243 		prefix_len = printk_parse_prefix(text, NULL, NULL);
2244 		if (prefix_len) {
2245 			text_len -= prefix_len;
2246 			memmove(text, text + prefix_len, text_len);
2247 		}
2248 	}
2249 
2250 	trace_console(text, text_len);
2251 
2252 	return text_len;
2253 }
2254 
2255 __printf(4, 0)
vprintk_store(int facility,int level,const struct dev_printk_info * dev_info,const char * fmt,va_list args)2256 int vprintk_store(int facility, int level,
2257 		  const struct dev_printk_info *dev_info,
2258 		  const char *fmt, va_list args)
2259 {
2260 	struct prb_reserved_entry e;
2261 	enum printk_info_flags flags = 0;
2262 	struct printk_record r;
2263 	unsigned long irqflags;
2264 	u16 trunc_msg_len = 0;
2265 	char prefix_buf[8];
2266 	u8 *recursion_ptr;
2267 	u16 reserve_size;
2268 	va_list args2;
2269 	u32 caller_id;
2270 	u16 text_len;
2271 	int ret = 0;
2272 	u64 ts_nsec;
2273 
2274 	if (!printk_enter_irqsave(recursion_ptr, irqflags))
2275 		return 0;
2276 
2277 	/*
2278 	 * Since the duration of printk() can vary depending on the message
2279 	 * and state of the ringbuffer, grab the timestamp now so that it is
2280 	 * close to the call of printk(). This provides a more deterministic
2281 	 * timestamp with respect to the caller.
2282 	 */
2283 	ts_nsec = local_clock();
2284 
2285 	caller_id = printk_caller_id();
2286 	trace_android_vh_printk_save_irq(&caller_id, irqflags);
2287 
2288 	/*
2289 	 * The sprintf needs to come first since the syslog prefix might be
2290 	 * passed in as a parameter. An extra byte must be reserved so that
2291 	 * later the vscnprintf() into the reserved buffer has room for the
2292 	 * terminating '\0', which is not counted by vsnprintf().
2293 	 */
2294 	va_copy(args2, args);
2295 	reserve_size = vsnprintf(&prefix_buf[0], sizeof(prefix_buf), fmt, args2) + 1;
2296 	va_end(args2);
2297 
2298 	if (reserve_size > PRINTKRB_RECORD_MAX)
2299 		reserve_size = PRINTKRB_RECORD_MAX;
2300 
2301 	/* Extract log level or control flags. */
2302 	if (facility == 0)
2303 		printk_parse_prefix(&prefix_buf[0], &level, &flags);
2304 
2305 	if (level == LOGLEVEL_DEFAULT)
2306 		level = default_message_loglevel;
2307 
2308 	if (dev_info)
2309 		flags |= LOG_NEWLINE;
2310 
2311 	if (flags & LOG_CONT) {
2312 		prb_rec_init_wr(&r, reserve_size);
2313 		if (prb_reserve_in_last(&e, prb, &r, caller_id, PRINTKRB_RECORD_MAX)) {
2314 			text_len = printk_sprint(&r.text_buf[r.info->text_len], reserve_size,
2315 						 facility, &flags, fmt, args);
2316 			r.info->text_len += text_len;
2317 
2318 			if (flags & LOG_NEWLINE) {
2319 				r.info->flags |= LOG_NEWLINE;
2320 				prb_final_commit(&e);
2321 			} else {
2322 				prb_commit(&e);
2323 			}
2324 
2325 			trace_android_vh_logbuf_pr_cont(&r, text_len);
2326 			ret = text_len;
2327 			goto out;
2328 		}
2329 	}
2330 
2331 	/*
2332 	 * Explicitly initialize the record before every prb_reserve() call.
2333 	 * prb_reserve_in_last() and prb_reserve() purposely invalidate the
2334 	 * structure when they fail.
2335 	 */
2336 	prb_rec_init_wr(&r, reserve_size);
2337 	if (!prb_reserve(&e, prb, &r)) {
2338 		/* truncate the message if it is too long for empty buffer */
2339 		truncate_msg(&reserve_size, &trunc_msg_len);
2340 
2341 		prb_rec_init_wr(&r, reserve_size + trunc_msg_len);
2342 		if (!prb_reserve(&e, prb, &r))
2343 			goto out;
2344 	}
2345 
2346 	/* fill message */
2347 	text_len = printk_sprint(&r.text_buf[0], reserve_size, facility, &flags, fmt, args);
2348 	if (trunc_msg_len)
2349 		memcpy(&r.text_buf[text_len], trunc_msg, trunc_msg_len);
2350 	r.info->text_len = text_len + trunc_msg_len;
2351 	r.info->facility = facility;
2352 	r.info->level = level & 7;
2353 	r.info->flags = flags & 0x1f;
2354 	r.info->ts_nsec = ts_nsec;
2355 	r.info->caller_id = caller_id;
2356 	if (dev_info)
2357 		memcpy(&r.info->dev_info, dev_info, sizeof(r.info->dev_info));
2358 
2359 	/* A message without a trailing newline can be continued. */
2360 	if (!(flags & LOG_NEWLINE))
2361 		prb_commit(&e);
2362 	else
2363 		prb_final_commit(&e);
2364 
2365 	trace_android_rvh_logbuf(prb, &r);
2366 	trace_android_vh_logbuf(prb, &r);
2367 	ret = text_len + trunc_msg_len;
2368 out:
2369 	printk_exit_irqrestore(recursion_ptr, irqflags);
2370 	return ret;
2371 }
2372 
2373 /*
2374  * This acts as a one-way switch to allow legacy consoles to print from
2375  * the printk() caller context on a panic CPU. It also attempts to flush
2376  * the legacy consoles in this context.
2377  */
printk_legacy_allow_panic_sync(void)2378 void printk_legacy_allow_panic_sync(void)
2379 {
2380 	struct console_flush_type ft;
2381 
2382 	legacy_allow_panic_sync = true;
2383 
2384 	printk_get_console_flush_type(&ft);
2385 	if (ft.legacy_direct) {
2386 		if (console_trylock())
2387 			console_unlock();
2388 	}
2389 }
2390 
2391 bool __read_mostly debug_non_panic_cpus;
2392 
2393 #ifdef CONFIG_PRINTK_CALLER
debug_non_panic_cpus_setup(char * str)2394 static int __init debug_non_panic_cpus_setup(char *str)
2395 {
2396 	debug_non_panic_cpus = true;
2397 	pr_info("allow messages from non-panic CPUs in panic()\n");
2398 
2399 	return 0;
2400 }
2401 early_param("debug_non_panic_cpus", debug_non_panic_cpus_setup);
2402 module_param(debug_non_panic_cpus, bool, 0644);
2403 MODULE_PARM_DESC(debug_non_panic_cpus,
2404 		 "allow messages from non-panic CPUs in panic()");
2405 #endif
2406 
vprintk_emit(int facility,int level,const struct dev_printk_info * dev_info,const char * fmt,va_list args)2407 asmlinkage int vprintk_emit(int facility, int level,
2408 			    const struct dev_printk_info *dev_info,
2409 			    const char *fmt, va_list args)
2410 {
2411 	struct console_flush_type ft;
2412 	int printed_len;
2413 
2414 	/* Suppress unimportant messages after panic happens */
2415 	if (unlikely(suppress_printk))
2416 		return 0;
2417 
2418 	/*
2419 	 * The messages on the panic CPU are the most important. If
2420 	 * non-panic CPUs are generating any messages, they will be
2421 	 * silently dropped.
2422 	 */
2423 	if (other_cpu_in_panic() &&
2424 	    !debug_non_panic_cpus &&
2425 	    !panic_triggering_all_cpu_backtrace)
2426 		return 0;
2427 
2428 	printk_get_console_flush_type(&ft);
2429 
2430 	/* If called from the scheduler, we can not call up(). */
2431 	if (level == LOGLEVEL_SCHED) {
2432 		level = LOGLEVEL_DEFAULT;
2433 		ft.legacy_offload |= ft.legacy_direct;
2434 		ft.legacy_direct = false;
2435 	}
2436 
2437 	printk_delay(level);
2438 
2439 	printed_len = vprintk_store(facility, level, dev_info, fmt, args);
2440 
2441 	if (ft.nbcon_atomic)
2442 		nbcon_atomic_flush_pending();
2443 
2444 	if (ft.nbcon_offload)
2445 		nbcon_kthreads_wake();
2446 
2447 	if (ft.legacy_direct) {
2448 		/*
2449 		 * The caller may be holding system-critical or
2450 		 * timing-sensitive locks. Disable preemption during
2451 		 * printing of all remaining records to all consoles so that
2452 		 * this context can return as soon as possible. Hopefully
2453 		 * another printk() caller will take over the printing.
2454 		 */
2455 		preempt_disable();
2456 		/*
2457 		 * Try to acquire and then immediately release the console
2458 		 * semaphore. The release will print out buffers. With the
2459 		 * spinning variant, this context tries to take over the
2460 		 * printing from another printing context.
2461 		 */
2462 		if (console_trylock_spinning())
2463 			console_unlock();
2464 		preempt_enable();
2465 	}
2466 
2467 	if (ft.legacy_offload)
2468 		defer_console_output();
2469 	else
2470 		wake_up_klogd();
2471 
2472 	return printed_len;
2473 }
2474 EXPORT_SYMBOL(vprintk_emit);
2475 
vprintk_default(const char * fmt,va_list args)2476 int vprintk_default(const char *fmt, va_list args)
2477 {
2478 	return vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, fmt, args);
2479 }
2480 EXPORT_SYMBOL_GPL(vprintk_default);
2481 
_printk(const char * fmt,...)2482 asmlinkage __visible int _printk(const char *fmt, ...)
2483 {
2484 	va_list args;
2485 	int r;
2486 
2487 	va_start(args, fmt);
2488 	r = vprintk(fmt, args);
2489 	va_end(args);
2490 
2491 	return r;
2492 }
2493 EXPORT_SYMBOL(_printk);
2494 
2495 static bool __pr_flush(struct console *con, int timeout_ms, bool reset_on_progress);
2496 
2497 #else /* CONFIG_PRINTK */
2498 
2499 #define printk_time		false
2500 
2501 #define prb_read_valid(rb, seq, r)	false
2502 #define prb_first_valid_seq(rb)		0
2503 #define prb_next_seq(rb)		0
2504 
2505 static u64 syslog_seq;
2506 
__pr_flush(struct console * con,int timeout_ms,bool reset_on_progress)2507 static bool __pr_flush(struct console *con, int timeout_ms, bool reset_on_progress) { return true; }
2508 
2509 #endif /* CONFIG_PRINTK */
2510 
2511 #ifdef CONFIG_EARLY_PRINTK
2512 struct console *early_console;
2513 
early_printk(const char * fmt,...)2514 asmlinkage __visible void early_printk(const char *fmt, ...)
2515 {
2516 	va_list ap;
2517 	char buf[512];
2518 	int n;
2519 
2520 	if (!early_console)
2521 		return;
2522 
2523 	va_start(ap, fmt);
2524 	n = vscnprintf(buf, sizeof(buf), fmt, ap);
2525 	va_end(ap);
2526 
2527 	early_console->write(early_console, buf, n);
2528 }
2529 #endif
2530 
set_user_specified(struct console_cmdline * c,bool user_specified)2531 static void set_user_specified(struct console_cmdline *c, bool user_specified)
2532 {
2533 	if (!user_specified)
2534 		return;
2535 
2536 	/*
2537 	 * @c console was defined by the user on the command line.
2538 	 * Do not clear when added twice also by SPCR or the device tree.
2539 	 */
2540 	c->user_specified = true;
2541 	/* At least one console defined by the user on the command line. */
2542 	console_set_on_cmdline = 1;
2543 }
2544 
__add_preferred_console(const char * name,const short idx,const char * devname,char * options,char * brl_options,bool user_specified)2545 static int __add_preferred_console(const char *name, const short idx,
2546 				   const char *devname, char *options,
2547 				   char *brl_options, bool user_specified)
2548 {
2549 	struct console_cmdline *c;
2550 	int i;
2551 
2552 	if (!name && !devname)
2553 		return -EINVAL;
2554 
2555 	/*
2556 	 * We use a signed short index for struct console for device drivers to
2557 	 * indicate a not yet assigned index or port. However, a negative index
2558 	 * value is not valid when the console name and index are defined on
2559 	 * the command line.
2560 	 */
2561 	if (name && idx < 0)
2562 		return -EINVAL;
2563 
2564 	/*
2565 	 *	See if this tty is not yet registered, and
2566 	 *	if we have a slot free.
2567 	 */
2568 	for (i = 0, c = console_cmdline;
2569 	     i < MAX_CMDLINECONSOLES && (c->name[0] || c->devname[0]);
2570 	     i++, c++) {
2571 		if ((name && strcmp(c->name, name) == 0 && c->index == idx) ||
2572 		    (devname && strcmp(c->devname, devname) == 0)) {
2573 			if (!brl_options)
2574 				preferred_console = i;
2575 			set_user_specified(c, user_specified);
2576 			return 0;
2577 		}
2578 	}
2579 	if (i == MAX_CMDLINECONSOLES)
2580 		return -E2BIG;
2581 	if (!brl_options)
2582 		preferred_console = i;
2583 	if (name)
2584 		strscpy(c->name, name);
2585 	if (devname)
2586 		strscpy(c->devname, devname);
2587 	c->options = options;
2588 	set_user_specified(c, user_specified);
2589 	braille_set_options(c, brl_options);
2590 
2591 	c->index = idx;
2592 	return 0;
2593 }
2594 
console_msg_format_setup(char * str)2595 static int __init console_msg_format_setup(char *str)
2596 {
2597 	if (!strcmp(str, "syslog"))
2598 		console_msg_format = MSG_FORMAT_SYSLOG;
2599 	if (!strcmp(str, "default"))
2600 		console_msg_format = MSG_FORMAT_DEFAULT;
2601 	return 1;
2602 }
2603 __setup("console_msg_format=", console_msg_format_setup);
2604 
2605 /*
2606  * Set up a console.  Called via do_early_param() in init/main.c
2607  * for each "console=" parameter in the boot command line.
2608  */
console_setup(char * str)2609 static int __init console_setup(char *str)
2610 {
2611 	static_assert(sizeof(console_cmdline[0].devname) >= sizeof(console_cmdline[0].name) + 4);
2612 	char buf[sizeof(console_cmdline[0].devname)];
2613 	char *brl_options = NULL;
2614 	char *ttyname = NULL;
2615 	char *devname = NULL;
2616 	char *options;
2617 	char *s;
2618 	int idx;
2619 
2620 	/*
2621 	 * console="" or console=null have been suggested as a way to
2622 	 * disable console output. Use ttynull that has been created
2623 	 * for exactly this purpose.
2624 	 */
2625 	if (str[0] == 0 || strcmp(str, "null") == 0) {
2626 		__add_preferred_console("ttynull", 0, NULL, NULL, NULL, true);
2627 		return 1;
2628 	}
2629 
2630 	if (_braille_console_setup(&str, &brl_options))
2631 		return 1;
2632 
2633 	/* For a DEVNAME:0.0 style console the character device is unknown early */
2634 	if (strchr(str, ':'))
2635 		devname = buf;
2636 	else
2637 		ttyname = buf;
2638 
2639 	/*
2640 	 * Decode str into name, index, options.
2641 	 */
2642 	if (ttyname && isdigit(str[0]))
2643 		scnprintf(buf, sizeof(buf), "ttyS%s", str);
2644 	else
2645 		strscpy(buf, str);
2646 
2647 	options = strchr(str, ',');
2648 	if (options)
2649 		*(options++) = 0;
2650 
2651 #ifdef __sparc__
2652 	if (!strcmp(str, "ttya"))
2653 		strscpy(buf, "ttyS0");
2654 	if (!strcmp(str, "ttyb"))
2655 		strscpy(buf, "ttyS1");
2656 #endif
2657 
2658 	for (s = buf; *s; s++)
2659 		if ((ttyname && isdigit(*s)) || *s == ',')
2660 			break;
2661 
2662 	/* @idx will get defined when devname matches. */
2663 	if (devname)
2664 		idx = -1;
2665 	else
2666 		idx = simple_strtoul(s, NULL, 10);
2667 
2668 	*s = 0;
2669 
2670 	__add_preferred_console(ttyname, idx, devname, options, brl_options, true);
2671 	return 1;
2672 }
2673 __setup("console=", console_setup);
2674 
2675 /**
2676  * add_preferred_console - add a device to the list of preferred consoles.
2677  * @name: device name
2678  * @idx: device index
2679  * @options: options for this console
2680  *
2681  * The last preferred console added will be used for kernel messages
2682  * and stdin/out/err for init.  Normally this is used by console_setup
2683  * above to handle user-supplied console arguments; however it can also
2684  * be used by arch-specific code either to override the user or more
2685  * commonly to provide a default console (ie from PROM variables) when
2686  * the user has not supplied one.
2687  */
add_preferred_console(const char * name,const short idx,char * options)2688 int add_preferred_console(const char *name, const short idx, char *options)
2689 {
2690 	return __add_preferred_console(name, idx, NULL, options, NULL, false);
2691 }
2692 
2693 /**
2694  * match_devname_and_update_preferred_console - Update a preferred console
2695  *	when matching devname is found.
2696  * @devname: DEVNAME:0.0 style device name
2697  * @name: Name of the corresponding console driver, e.g. "ttyS"
2698  * @idx: Console index, e.g. port number.
2699  *
2700  * The function checks whether a device with the given @devname is
2701  * preferred via the console=DEVNAME:0.0 command line option.
2702  * It fills the missing console driver name and console index
2703  * so that a later register_console() call could find (match)
2704  * and enable this device.
2705  *
2706  * It might be used when a driver subsystem initializes particular
2707  * devices with already known DEVNAME:0.0 style names. And it
2708  * could predict which console driver name and index this device
2709  * would later get associated with.
2710  *
2711  * Return: 0 on success, negative error code on failure.
2712  */
match_devname_and_update_preferred_console(const char * devname,const char * name,const short idx)2713 int match_devname_and_update_preferred_console(const char *devname,
2714 					       const char *name,
2715 					       const short idx)
2716 {
2717 	struct console_cmdline *c = console_cmdline;
2718 	int i;
2719 
2720 	if (!devname || !strlen(devname) || !name || !strlen(name) || idx < 0)
2721 		return -EINVAL;
2722 
2723 	for (i = 0; i < MAX_CMDLINECONSOLES && (c->name[0] || c->devname[0]);
2724 	     i++, c++) {
2725 		if (!strcmp(devname, c->devname)) {
2726 			pr_info("associate the preferred console \"%s\" with \"%s%d\"\n",
2727 				devname, name, idx);
2728 			strscpy(c->name, name);
2729 			c->index = idx;
2730 			return 0;
2731 		}
2732 	}
2733 
2734 	return -ENOENT;
2735 }
2736 EXPORT_SYMBOL_GPL(match_devname_and_update_preferred_console);
2737 
2738 bool console_suspend_enabled = true;
2739 EXPORT_SYMBOL(console_suspend_enabled);
2740 
console_suspend_disable(char * str)2741 static int __init console_suspend_disable(char *str)
2742 {
2743 	console_suspend_enabled = false;
2744 	return 1;
2745 }
2746 __setup("no_console_suspend", console_suspend_disable);
2747 module_param_named(console_suspend, console_suspend_enabled,
2748 		bool, S_IRUGO | S_IWUSR);
2749 MODULE_PARM_DESC(console_suspend, "suspend console during suspend"
2750 	" and hibernate operations");
2751 
2752 static bool printk_console_no_auto_verbose;
2753 
console_verbose(void)2754 void console_verbose(void)
2755 {
2756 	if (console_loglevel && !printk_console_no_auto_verbose)
2757 		console_loglevel = CONSOLE_LOGLEVEL_MOTORMOUTH;
2758 }
2759 EXPORT_SYMBOL_GPL(console_verbose);
2760 
2761 module_param_named(console_no_auto_verbose, printk_console_no_auto_verbose, bool, 0644);
2762 MODULE_PARM_DESC(console_no_auto_verbose, "Disable console loglevel raise to highest on oops/panic/etc");
2763 
2764 /**
2765  * suspend_console - suspend the console subsystem
2766  *
2767  * This disables printk() while we go into suspend states
2768  */
suspend_console(void)2769 void suspend_console(void)
2770 {
2771 	struct console *con;
2772 
2773 	if (!console_suspend_enabled)
2774 		return;
2775 	pr_info("Suspending console(s) (use no_console_suspend to debug)\n");
2776 	pr_flush(1000, true);
2777 
2778 	console_list_lock();
2779 	for_each_console(con)
2780 		console_srcu_write_flags(con, con->flags | CON_SUSPENDED);
2781 	console_list_unlock();
2782 
2783 	/*
2784 	 * Ensure that all SRCU list walks have completed. All printing
2785 	 * contexts must be able to see that they are suspended so that it
2786 	 * is guaranteed that all printing has stopped when this function
2787 	 * completes.
2788 	 */
2789 	synchronize_srcu(&console_srcu);
2790 }
2791 
resume_console(void)2792 void resume_console(void)
2793 {
2794 	struct console_flush_type ft;
2795 	struct console *con;
2796 
2797 	if (!console_suspend_enabled)
2798 		return;
2799 
2800 	console_list_lock();
2801 	for_each_console(con)
2802 		console_srcu_write_flags(con, con->flags & ~CON_SUSPENDED);
2803 	console_list_unlock();
2804 
2805 	/*
2806 	 * Ensure that all SRCU list walks have completed. All printing
2807 	 * contexts must be able to see they are no longer suspended so
2808 	 * that they are guaranteed to wake up and resume printing.
2809 	 */
2810 	synchronize_srcu(&console_srcu);
2811 
2812 	printk_get_console_flush_type(&ft);
2813 	if (ft.nbcon_offload)
2814 		nbcon_kthreads_wake();
2815 	if (ft.legacy_offload)
2816 		defer_console_output();
2817 
2818 	pr_flush(1000, true);
2819 }
2820 
2821 /**
2822  * console_cpu_notify - print deferred console messages after CPU hotplug
2823  * @cpu: unused
2824  *
2825  * If printk() is called from a CPU that is not online yet, the messages
2826  * will be printed on the console only if there are CON_ANYTIME consoles.
2827  * This function is called when a new CPU comes online (or fails to come
2828  * up) or goes offline.
2829  */
console_cpu_notify(unsigned int cpu)2830 static int console_cpu_notify(unsigned int cpu)
2831 {
2832 	int flag = 0;
2833 
2834 	trace_android_vh_printk_hotplug(&flag);
2835 	if (flag)
2836 		return 0;
2837 
2838 	struct console_flush_type ft;
2839 
2840 	if (!cpuhp_tasks_frozen) {
2841 		printk_get_console_flush_type(&ft);
2842 		if (ft.nbcon_atomic)
2843 			nbcon_atomic_flush_pending();
2844 		if (ft.legacy_direct) {
2845 			if (console_trylock())
2846 				console_unlock();
2847 		}
2848 	}
2849 	return 0;
2850 }
2851 
2852 /**
2853  * console_lock - block the console subsystem from printing
2854  *
2855  * Acquires a lock which guarantees that no consoles will
2856  * be in or enter their write() callback.
2857  *
2858  * Can sleep, returns nothing.
2859  */
console_lock(void)2860 void console_lock(void)
2861 {
2862 	might_sleep();
2863 
2864 	/* On panic, the console_lock must be left to the panic cpu. */
2865 	while (other_cpu_in_panic())
2866 		msleep(1000);
2867 
2868 	down_console_sem();
2869 	console_locked = 1;
2870 	console_may_schedule = 1;
2871 }
2872 EXPORT_SYMBOL(console_lock);
2873 
2874 /**
2875  * console_trylock - try to block the console subsystem from printing
2876  *
2877  * Try to acquire a lock which guarantees that no consoles will
2878  * be in or enter their write() callback.
2879  *
2880  * returns 1 on success, and 0 on failure to acquire the lock.
2881  */
console_trylock(void)2882 int console_trylock(void)
2883 {
2884 	/* On panic, the console_lock must be left to the panic cpu. */
2885 	if (other_cpu_in_panic())
2886 		return 0;
2887 	if (down_trylock_console_sem())
2888 		return 0;
2889 	console_locked = 1;
2890 	console_may_schedule = 0;
2891 	return 1;
2892 }
2893 EXPORT_SYMBOL(console_trylock);
2894 
is_console_locked(void)2895 int is_console_locked(void)
2896 {
2897 	return console_locked;
2898 }
2899 EXPORT_SYMBOL(is_console_locked);
2900 
__console_unlock(void)2901 static void __console_unlock(void)
2902 {
2903 	console_locked = 0;
2904 	up_console_sem();
2905 }
2906 
2907 #ifdef CONFIG_PRINTK
2908 
2909 /*
2910  * Prepend the message in @pmsg->pbufs->outbuf. This is achieved by shifting
2911  * the existing message over and inserting the scratchbuf message.
2912  *
2913  * @pmsg is the original printk message.
2914  * @fmt is the printf format of the message which will prepend the existing one.
2915  *
2916  * If there is not enough space in @pmsg->pbufs->outbuf, the existing
2917  * message text will be sufficiently truncated.
2918  *
2919  * If @pmsg->pbufs->outbuf is modified, @pmsg->outbuf_len is updated.
2920  */
2921 __printf(2, 3)
console_prepend_message(struct printk_message * pmsg,const char * fmt,...)2922 static void console_prepend_message(struct printk_message *pmsg, const char *fmt, ...)
2923 {
2924 	struct printk_buffers *pbufs = pmsg->pbufs;
2925 	const size_t scratchbuf_sz = sizeof(pbufs->scratchbuf);
2926 	const size_t outbuf_sz = sizeof(pbufs->outbuf);
2927 	char *scratchbuf = &pbufs->scratchbuf[0];
2928 	char *outbuf = &pbufs->outbuf[0];
2929 	va_list args;
2930 	size_t len;
2931 
2932 	va_start(args, fmt);
2933 	len = vscnprintf(scratchbuf, scratchbuf_sz, fmt, args);
2934 	va_end(args);
2935 
2936 	/*
2937 	 * Make sure outbuf is sufficiently large before prepending.
2938 	 * Keep at least the prefix when the message must be truncated.
2939 	 * It is a rather theoretical problem when someone tries to
2940 	 * use a minimalist buffer.
2941 	 */
2942 	if (WARN_ON_ONCE(len + PRINTK_PREFIX_MAX >= outbuf_sz))
2943 		return;
2944 
2945 	if (pmsg->outbuf_len + len >= outbuf_sz) {
2946 		/* Truncate the message, but keep it terminated. */
2947 		pmsg->outbuf_len = outbuf_sz - (len + 1);
2948 		outbuf[pmsg->outbuf_len] = 0;
2949 	}
2950 
2951 	memmove(outbuf + len, outbuf, pmsg->outbuf_len + 1);
2952 	memcpy(outbuf, scratchbuf, len);
2953 	pmsg->outbuf_len += len;
2954 }
2955 
2956 /*
2957  * Prepend the message in @pmsg->pbufs->outbuf with a "dropped message".
2958  * @pmsg->outbuf_len is updated appropriately.
2959  *
2960  * @pmsg is the printk message to prepend.
2961  *
2962  * @dropped is the dropped count to report in the dropped message.
2963  */
console_prepend_dropped(struct printk_message * pmsg,unsigned long dropped)2964 void console_prepend_dropped(struct printk_message *pmsg, unsigned long dropped)
2965 {
2966 	console_prepend_message(pmsg, "** %lu printk messages dropped **\n", dropped);
2967 }
2968 
2969 /*
2970  * Prepend the message in @pmsg->pbufs->outbuf with a "replay message".
2971  * @pmsg->outbuf_len is updated appropriately.
2972  *
2973  * @pmsg is the printk message to prepend.
2974  */
console_prepend_replay(struct printk_message * pmsg)2975 void console_prepend_replay(struct printk_message *pmsg)
2976 {
2977 	console_prepend_message(pmsg, "** replaying previous printk message **\n");
2978 }
2979 
2980 /*
2981  * Read and format the specified record (or a later record if the specified
2982  * record is not available).
2983  *
2984  * @pmsg will contain the formatted result. @pmsg->pbufs must point to a
2985  * struct printk_buffers.
2986  *
2987  * @seq is the record to read and format. If it is not available, the next
2988  * valid record is read.
2989  *
2990  * @is_extended specifies if the message should be formatted for extended
2991  * console output.
2992  *
2993  * @may_supress specifies if records may be skipped based on loglevel.
2994  *
2995  * Returns false if no record is available. Otherwise true and all fields
2996  * of @pmsg are valid. (See the documentation of struct printk_message
2997  * for information about the @pmsg fields.)
2998  */
printk_get_next_message(struct printk_message * pmsg,u64 seq,bool is_extended,bool may_suppress)2999 bool printk_get_next_message(struct printk_message *pmsg, u64 seq,
3000 			     bool is_extended, bool may_suppress)
3001 {
3002 	struct printk_buffers *pbufs = pmsg->pbufs;
3003 	const size_t scratchbuf_sz = sizeof(pbufs->scratchbuf);
3004 	const size_t outbuf_sz = sizeof(pbufs->outbuf);
3005 	char *scratchbuf = &pbufs->scratchbuf[0];
3006 	char *outbuf = &pbufs->outbuf[0];
3007 	struct printk_info info;
3008 	struct printk_record r;
3009 	size_t len = 0;
3010 
3011 	/*
3012 	 * Formatting extended messages requires a separate buffer, so use the
3013 	 * scratch buffer to read in the ringbuffer text.
3014 	 *
3015 	 * Formatting normal messages is done in-place, so read the ringbuffer
3016 	 * text directly into the output buffer.
3017 	 */
3018 	if (is_extended)
3019 		prb_rec_init_rd(&r, &info, scratchbuf, scratchbuf_sz);
3020 	else
3021 		prb_rec_init_rd(&r, &info, outbuf, outbuf_sz);
3022 
3023 	if (!prb_read_valid(prb, seq, &r))
3024 		return false;
3025 
3026 	pmsg->seq = r.info->seq;
3027 	pmsg->dropped = r.info->seq - seq;
3028 
3029 	/* Skip record that has level above the console loglevel. */
3030 	if (may_suppress && suppress_message_printing(r.info->level))
3031 		goto out;
3032 
3033 	if (is_extended) {
3034 		len = info_print_ext_header(outbuf, outbuf_sz, r.info);
3035 		len += msg_print_ext_body(outbuf + len, outbuf_sz - len,
3036 					  &r.text_buf[0], r.info->text_len, &r.info->dev_info);
3037 	} else {
3038 		len = record_print_text(&r, console_msg_format & MSG_FORMAT_SYSLOG, printk_time);
3039 	}
3040 out:
3041 	pmsg->outbuf_len = len;
3042 	return true;
3043 }
3044 
3045 /*
3046  * Legacy console printing from printk() caller context does not respect
3047  * raw_spinlock/spinlock nesting. For !PREEMPT_RT the lockdep warning is a
3048  * false positive. For PREEMPT_RT the false positive condition does not
3049  * occur.
3050  *
3051  * This map is used to temporarily establish LD_WAIT_SLEEP context for the
3052  * console write() callback when legacy printing to avoid false positive
3053  * lockdep complaints, thus allowing lockdep to continue to function for
3054  * real issues.
3055  */
3056 #ifdef CONFIG_PREEMPT_RT
printk_legacy_allow_spinlock_enter(void)3057 static inline void printk_legacy_allow_spinlock_enter(void) { }
printk_legacy_allow_spinlock_exit(void)3058 static inline void printk_legacy_allow_spinlock_exit(void) { }
3059 #else
3060 static DEFINE_WAIT_OVERRIDE_MAP(printk_legacy_map, LD_WAIT_SLEEP);
3061 
printk_legacy_allow_spinlock_enter(void)3062 static inline void printk_legacy_allow_spinlock_enter(void)
3063 {
3064 	lock_map_acquire_try(&printk_legacy_map);
3065 }
3066 
printk_legacy_allow_spinlock_exit(void)3067 static inline void printk_legacy_allow_spinlock_exit(void)
3068 {
3069 	lock_map_release(&printk_legacy_map);
3070 }
3071 #endif /* CONFIG_PREEMPT_RT */
3072 
3073 /*
3074  * Used as the printk buffers for non-panic, serialized console printing.
3075  * This is for legacy (!CON_NBCON) as well as all boot (CON_BOOT) consoles.
3076  * Its usage requires the console_lock held.
3077  */
3078 struct printk_buffers printk_shared_pbufs;
3079 
3080 /*
3081  * Print one record for the given console. The record printed is whatever
3082  * record is the next available record for the given console.
3083  *
3084  * @handover will be set to true if a printk waiter has taken over the
3085  * console_lock, in which case the caller is no longer holding both the
3086  * console_lock and the SRCU read lock. Otherwise it is set to false.
3087  *
3088  * @cookie is the cookie from the SRCU read lock.
3089  *
3090  * Returns false if the given console has no next record to print, otherwise
3091  * true.
3092  *
3093  * Requires the console_lock and the SRCU read lock.
3094  */
console_emit_next_record(struct console * con,bool * handover,int cookie)3095 static bool console_emit_next_record(struct console *con, bool *handover, int cookie)
3096 {
3097 	bool is_extended = console_srcu_read_flags(con) & CON_EXTENDED;
3098 	char *outbuf = &printk_shared_pbufs.outbuf[0];
3099 	struct printk_message pmsg = {
3100 		.pbufs = &printk_shared_pbufs,
3101 	};
3102 	unsigned long flags;
3103 
3104 	*handover = false;
3105 
3106 	if (!printk_get_next_message(&pmsg, con->seq, is_extended, true))
3107 		return false;
3108 
3109 	con->dropped += pmsg.dropped;
3110 
3111 	/* Skip messages of formatted length 0. */
3112 	if (pmsg.outbuf_len == 0) {
3113 		con->seq = pmsg.seq + 1;
3114 		goto skip;
3115 	}
3116 
3117 	if (con->dropped && !is_extended) {
3118 		console_prepend_dropped(&pmsg, con->dropped);
3119 		con->dropped = 0;
3120 	}
3121 
3122 	/* Write everything out to the hardware. */
3123 
3124 	if (force_legacy_kthread() && !panic_in_progress()) {
3125 		/*
3126 		 * With forced threading this function is in a task context
3127 		 * (either legacy kthread or get_init_console_seq()). There
3128 		 * is no need for concern about printk reentrance, handovers,
3129 		 * or lockdep complaints.
3130 		 */
3131 
3132 		con->write(con, outbuf, pmsg.outbuf_len);
3133 		con->seq = pmsg.seq + 1;
3134 	} else {
3135 		/*
3136 		 * While actively printing out messages, if another printk()
3137 		 * were to occur on another CPU, it may wait for this one to
3138 		 * finish. This task can not be preempted if there is a
3139 		 * waiter waiting to take over.
3140 		 *
3141 		 * Interrupts are disabled because the hand over to a waiter
3142 		 * must not be interrupted until the hand over is completed
3143 		 * (@console_waiter is cleared).
3144 		 */
3145 		printk_safe_enter_irqsave(flags);
3146 		console_lock_spinning_enable();
3147 
3148 		/* Do not trace print latency. */
3149 		stop_critical_timings();
3150 
3151 		printk_legacy_allow_spinlock_enter();
3152 		con->write(con, outbuf, pmsg.outbuf_len);
3153 		printk_legacy_allow_spinlock_exit();
3154 
3155 		start_critical_timings();
3156 
3157 		con->seq = pmsg.seq + 1;
3158 
3159 		*handover = console_lock_spinning_disable_and_check(cookie);
3160 		printk_safe_exit_irqrestore(flags);
3161 	}
3162 skip:
3163 	return true;
3164 }
3165 
3166 #else
3167 
console_emit_next_record(struct console * con,bool * handover,int cookie)3168 static bool console_emit_next_record(struct console *con, bool *handover, int cookie)
3169 {
3170 	*handover = false;
3171 	return false;
3172 }
3173 
printk_kthreads_check_locked(void)3174 static inline void printk_kthreads_check_locked(void) { }
3175 
3176 #endif /* CONFIG_PRINTK */
3177 
3178 /*
3179  * Print out all remaining records to all consoles.
3180  *
3181  * @do_cond_resched is set by the caller. It can be true only in schedulable
3182  * context.
3183  *
3184  * @next_seq is set to the sequence number after the last available record.
3185  * The value is valid only when this function returns true. It means that all
3186  * usable consoles are completely flushed.
3187  *
3188  * @handover will be set to true if a printk waiter has taken over the
3189  * console_lock, in which case the caller is no longer holding the
3190  * console_lock. Otherwise it is set to false.
3191  *
3192  * Returns true when there was at least one usable console and all messages
3193  * were flushed to all usable consoles. A returned false informs the caller
3194  * that everything was not flushed (either there were no usable consoles or
3195  * another context has taken over printing or it is a panic situation and this
3196  * is not the panic CPU). Regardless the reason, the caller should assume it
3197  * is not useful to immediately try again.
3198  *
3199  * Requires the console_lock.
3200  */
console_flush_all(bool do_cond_resched,u64 * next_seq,bool * handover)3201 static bool console_flush_all(bool do_cond_resched, u64 *next_seq, bool *handover)
3202 {
3203 	struct console_flush_type ft;
3204 	bool any_usable = false;
3205 	struct console *con;
3206 	bool any_progress;
3207 	int cookie;
3208 
3209 	*next_seq = 0;
3210 	*handover = false;
3211 
3212 	do {
3213 		any_progress = false;
3214 
3215 		printk_get_console_flush_type(&ft);
3216 
3217 		cookie = console_srcu_read_lock();
3218 		for_each_console_srcu(con) {
3219 			short flags = console_srcu_read_flags(con);
3220 			u64 printk_seq;
3221 			bool progress;
3222 
3223 			/*
3224 			 * console_flush_all() is only responsible for nbcon
3225 			 * consoles when the nbcon consoles cannot print via
3226 			 * their atomic or threaded flushing.
3227 			 */
3228 			if ((flags & CON_NBCON) && (ft.nbcon_atomic || ft.nbcon_offload))
3229 				continue;
3230 
3231 			if (!console_is_usable(con, flags, !do_cond_resched))
3232 				continue;
3233 			any_usable = true;
3234 
3235 			if (flags & CON_NBCON) {
3236 				progress = nbcon_legacy_emit_next_record(con, handover, cookie,
3237 									 !do_cond_resched);
3238 				printk_seq = nbcon_seq_read(con);
3239 			} else {
3240 				progress = console_emit_next_record(con, handover, cookie);
3241 				printk_seq = con->seq;
3242 			}
3243 
3244 			/*
3245 			 * If a handover has occurred, the SRCU read lock
3246 			 * is already released.
3247 			 */
3248 			if (*handover)
3249 				return false;
3250 
3251 			/* Track the next of the highest seq flushed. */
3252 			if (printk_seq > *next_seq)
3253 				*next_seq = printk_seq;
3254 
3255 			if (!progress)
3256 				continue;
3257 			any_progress = true;
3258 
3259 			/* Allow panic_cpu to take over the consoles safely. */
3260 			if (other_cpu_in_panic())
3261 				goto abandon;
3262 
3263 			if (do_cond_resched)
3264 				cond_resched();
3265 		}
3266 		console_srcu_read_unlock(cookie);
3267 	} while (any_progress);
3268 
3269 	return any_usable;
3270 
3271 abandon:
3272 	console_srcu_read_unlock(cookie);
3273 	return false;
3274 }
3275 
__console_flush_and_unlock(void)3276 static void __console_flush_and_unlock(void)
3277 {
3278 	bool do_cond_resched;
3279 	bool handover;
3280 	bool flushed;
3281 	u64 next_seq;
3282 
3283 	/*
3284 	 * Console drivers are called with interrupts disabled, so
3285 	 * @console_may_schedule should be cleared before; however, we may
3286 	 * end up dumping a lot of lines, for example, if called from
3287 	 * console registration path, and should invoke cond_resched()
3288 	 * between lines if allowable.  Not doing so can cause a very long
3289 	 * scheduling stall on a slow console leading to RCU stall and
3290 	 * softlockup warnings which exacerbate the issue with more
3291 	 * messages practically incapacitating the system. Therefore, create
3292 	 * a local to use for the printing loop.
3293 	 */
3294 	do_cond_resched = console_may_schedule;
3295 
3296 	do {
3297 		console_may_schedule = 0;
3298 
3299 		flushed = console_flush_all(do_cond_resched, &next_seq, &handover);
3300 		if (!handover)
3301 			__console_unlock();
3302 
3303 		/*
3304 		 * Abort if there was a failure to flush all messages to all
3305 		 * usable consoles. Either it is not possible to flush (in
3306 		 * which case it would be an infinite loop of retrying) or
3307 		 * another context has taken over printing.
3308 		 */
3309 		if (!flushed)
3310 			break;
3311 
3312 		/*
3313 		 * Some context may have added new records after
3314 		 * console_flush_all() but before unlocking the console.
3315 		 * Re-check if there is a new record to flush. If the trylock
3316 		 * fails, another context is already handling the printing.
3317 		 */
3318 	} while (prb_read_valid(prb, next_seq, NULL) && console_trylock());
3319 }
3320 
3321 /**
3322  * console_unlock - unblock the legacy console subsystem from printing
3323  *
3324  * Releases the console_lock which the caller holds to block printing of
3325  * the legacy console subsystem.
3326  *
3327  * While the console_lock was held, console output may have been buffered
3328  * by printk(). If this is the case, console_unlock() emits the output on
3329  * legacy consoles prior to releasing the lock.
3330  *
3331  * console_unlock(); may be called from any context.
3332  */
console_unlock(void)3333 void console_unlock(void)
3334 {
3335 	struct console_flush_type ft;
3336 
3337 	printk_get_console_flush_type(&ft);
3338 	if (ft.legacy_direct)
3339 		__console_flush_and_unlock();
3340 	else
3341 		__console_unlock();
3342 }
3343 EXPORT_SYMBOL(console_unlock);
3344 
3345 /**
3346  * console_conditional_schedule - yield the CPU if required
3347  *
3348  * If the console code is currently allowed to sleep, and
3349  * if this CPU should yield the CPU to another task, do
3350  * so here.
3351  *
3352  * Must be called within console_lock();.
3353  */
console_conditional_schedule(void)3354 void __sched console_conditional_schedule(void)
3355 {
3356 	if (console_may_schedule)
3357 		cond_resched();
3358 }
3359 EXPORT_SYMBOL(console_conditional_schedule);
3360 
console_unblank(void)3361 void console_unblank(void)
3362 {
3363 	bool found_unblank = false;
3364 	struct console *c;
3365 	int cookie;
3366 
3367 	/*
3368 	 * First check if there are any consoles implementing the unblank()
3369 	 * callback. If not, there is no reason to continue and take the
3370 	 * console lock, which in particular can be dangerous if
3371 	 * @oops_in_progress is set.
3372 	 */
3373 	cookie = console_srcu_read_lock();
3374 	for_each_console_srcu(c) {
3375 		short flags = console_srcu_read_flags(c);
3376 
3377 		if (flags & CON_SUSPENDED)
3378 			continue;
3379 
3380 		if ((flags & CON_ENABLED) && c->unblank) {
3381 			found_unblank = true;
3382 			break;
3383 		}
3384 	}
3385 	console_srcu_read_unlock(cookie);
3386 	if (!found_unblank)
3387 		return;
3388 
3389 	/*
3390 	 * Stop console printing because the unblank() callback may
3391 	 * assume the console is not within its write() callback.
3392 	 *
3393 	 * If @oops_in_progress is set, this may be an atomic context.
3394 	 * In that case, attempt a trylock as best-effort.
3395 	 */
3396 	if (oops_in_progress) {
3397 		/* Semaphores are not NMI-safe. */
3398 		if (in_nmi())
3399 			return;
3400 
3401 		/*
3402 		 * Attempting to trylock the console lock can deadlock
3403 		 * if another CPU was stopped while modifying the
3404 		 * semaphore. "Hope and pray" that this is not the
3405 		 * current situation.
3406 		 */
3407 		if (down_trylock_console_sem() != 0)
3408 			return;
3409 	} else
3410 		console_lock();
3411 
3412 	console_locked = 1;
3413 	console_may_schedule = 0;
3414 
3415 	cookie = console_srcu_read_lock();
3416 	for_each_console_srcu(c) {
3417 		short flags = console_srcu_read_flags(c);
3418 
3419 		if (flags & CON_SUSPENDED)
3420 			continue;
3421 
3422 		if ((flags & CON_ENABLED) && c->unblank)
3423 			c->unblank();
3424 	}
3425 	console_srcu_read_unlock(cookie);
3426 
3427 	console_unlock();
3428 
3429 	if (!oops_in_progress)
3430 		pr_flush(1000, true);
3431 }
3432 
3433 /*
3434  * Rewind all consoles to the oldest available record.
3435  *
3436  * IMPORTANT: The function is safe only when called under
3437  *            console_lock(). It is not enforced because
3438  *            it is used as a best effort in panic().
3439  */
__console_rewind_all(void)3440 static void __console_rewind_all(void)
3441 {
3442 	struct console *c;
3443 	short flags;
3444 	int cookie;
3445 	u64 seq;
3446 
3447 	seq = prb_first_valid_seq(prb);
3448 
3449 	cookie = console_srcu_read_lock();
3450 	for_each_console_srcu(c) {
3451 		flags = console_srcu_read_flags(c);
3452 
3453 		if (flags & CON_NBCON) {
3454 			nbcon_seq_force(c, seq);
3455 		} else {
3456 			/*
3457 			 * This assignment is safe only when called under
3458 			 * console_lock(). On panic, legacy consoles are
3459 			 * only best effort.
3460 			 */
3461 			c->seq = seq;
3462 		}
3463 	}
3464 	console_srcu_read_unlock(cookie);
3465 }
3466 
3467 /**
3468  * console_flush_on_panic - flush console content on panic
3469  * @mode: flush all messages in buffer or just the pending ones
3470  *
3471  * Immediately output all pending messages no matter what.
3472  */
console_flush_on_panic(enum con_flush_mode mode)3473 void console_flush_on_panic(enum con_flush_mode mode)
3474 {
3475 	struct console_flush_type ft;
3476 	bool handover;
3477 	u64 next_seq;
3478 
3479 	/*
3480 	 * Ignore the console lock and flush out the messages. Attempting a
3481 	 * trylock would not be useful because:
3482 	 *
3483 	 *   - if it is contended, it must be ignored anyway
3484 	 *   - console_lock() and console_trylock() block and fail
3485 	 *     respectively in panic for non-panic CPUs
3486 	 *   - semaphores are not NMI-safe
3487 	 */
3488 
3489 	/*
3490 	 * If another context is holding the console lock,
3491 	 * @console_may_schedule might be set. Clear it so that
3492 	 * this context does not call cond_resched() while flushing.
3493 	 */
3494 	console_may_schedule = 0;
3495 
3496 	if (mode == CONSOLE_REPLAY_ALL)
3497 		__console_rewind_all();
3498 
3499 	printk_get_console_flush_type(&ft);
3500 	if (ft.nbcon_atomic)
3501 		nbcon_atomic_flush_pending();
3502 
3503 	/* Flush legacy consoles once allowed, even when dangerous. */
3504 	if (legacy_allow_panic_sync)
3505 		console_flush_all(false, &next_seq, &handover);
3506 }
3507 
3508 /*
3509  * Return the console tty driver structure and its associated index
3510  */
console_device(int * index)3511 struct tty_driver *console_device(int *index)
3512 {
3513 	struct console *c;
3514 	struct tty_driver *driver = NULL;
3515 	int cookie;
3516 
3517 	/*
3518 	 * Take console_lock to serialize device() callback with
3519 	 * other console operations. For example, fg_console is
3520 	 * modified under console_lock when switching vt.
3521 	 */
3522 	console_lock();
3523 
3524 	cookie = console_srcu_read_lock();
3525 	for_each_console_srcu(c) {
3526 		if (!c->device)
3527 			continue;
3528 		driver = c->device(c, index);
3529 		if (driver)
3530 			break;
3531 	}
3532 	console_srcu_read_unlock(cookie);
3533 
3534 	console_unlock();
3535 	return driver;
3536 }
3537 
3538 /*
3539  * Prevent further output on the passed console device so that (for example)
3540  * serial drivers can disable console output before suspending a port, and can
3541  * re-enable output afterwards.
3542  */
console_stop(struct console * console)3543 void console_stop(struct console *console)
3544 {
3545 	__pr_flush(console, 1000, true);
3546 	console_list_lock();
3547 	console_srcu_write_flags(console, console->flags & ~CON_ENABLED);
3548 	console_list_unlock();
3549 
3550 	/*
3551 	 * Ensure that all SRCU list walks have completed. All contexts must
3552 	 * be able to see that this console is disabled so that (for example)
3553 	 * the caller can suspend the port without risk of another context
3554 	 * using the port.
3555 	 */
3556 	synchronize_srcu(&console_srcu);
3557 }
3558 EXPORT_SYMBOL(console_stop);
3559 
console_start(struct console * console)3560 void console_start(struct console *console)
3561 {
3562 	struct console_flush_type ft;
3563 	bool is_nbcon;
3564 
3565 	console_list_lock();
3566 	console_srcu_write_flags(console, console->flags | CON_ENABLED);
3567 	is_nbcon = console->flags & CON_NBCON;
3568 	console_list_unlock();
3569 
3570 	/*
3571 	 * Ensure that all SRCU list walks have completed. The related
3572 	 * printing context must be able to see it is enabled so that
3573 	 * it is guaranteed to wake up and resume printing.
3574 	 */
3575 	synchronize_srcu(&console_srcu);
3576 
3577 	printk_get_console_flush_type(&ft);
3578 	if (is_nbcon && ft.nbcon_offload)
3579 		nbcon_kthread_wake(console);
3580 	else if (ft.legacy_offload)
3581 		defer_console_output();
3582 
3583 	__pr_flush(console, 1000, true);
3584 }
3585 EXPORT_SYMBOL(console_start);
3586 
3587 #ifdef CONFIG_PRINTK
3588 static int unregister_console_locked(struct console *console);
3589 
3590 /* True when system boot is far enough to create printer threads. */
3591 static bool printk_kthreads_ready __ro_after_init;
3592 
3593 static struct task_struct *printk_legacy_kthread;
3594 
legacy_kthread_should_wakeup(void)3595 static bool legacy_kthread_should_wakeup(void)
3596 {
3597 	struct console_flush_type ft;
3598 	struct console *con;
3599 	bool ret = false;
3600 	int cookie;
3601 
3602 	if (kthread_should_stop())
3603 		return true;
3604 
3605 	printk_get_console_flush_type(&ft);
3606 
3607 	cookie = console_srcu_read_lock();
3608 	for_each_console_srcu(con) {
3609 		short flags = console_srcu_read_flags(con);
3610 		u64 printk_seq;
3611 
3612 		/*
3613 		 * The legacy printer thread is only responsible for nbcon
3614 		 * consoles when the nbcon consoles cannot print via their
3615 		 * atomic or threaded flushing.
3616 		 */
3617 		if ((flags & CON_NBCON) && (ft.nbcon_atomic || ft.nbcon_offload))
3618 			continue;
3619 
3620 		if (!console_is_usable(con, flags, false))
3621 			continue;
3622 
3623 		if (flags & CON_NBCON) {
3624 			printk_seq = nbcon_seq_read(con);
3625 		} else {
3626 			/*
3627 			 * It is safe to read @seq because only this
3628 			 * thread context updates @seq.
3629 			 */
3630 			printk_seq = con->seq;
3631 		}
3632 
3633 		if (prb_read_valid(prb, printk_seq, NULL)) {
3634 			ret = true;
3635 			break;
3636 		}
3637 	}
3638 	console_srcu_read_unlock(cookie);
3639 
3640 	return ret;
3641 }
3642 
legacy_kthread_func(void * unused)3643 static int legacy_kthread_func(void *unused)
3644 {
3645 	for (;;) {
3646 		wait_event_interruptible(legacy_wait, legacy_kthread_should_wakeup());
3647 
3648 		if (kthread_should_stop())
3649 			break;
3650 
3651 		console_lock();
3652 		__console_flush_and_unlock();
3653 	}
3654 
3655 	return 0;
3656 }
3657 
legacy_kthread_create(void)3658 static bool legacy_kthread_create(void)
3659 {
3660 	struct task_struct *kt;
3661 
3662 	lockdep_assert_console_list_lock_held();
3663 
3664 	kt = kthread_run(legacy_kthread_func, NULL, "pr/legacy");
3665 	if (WARN_ON(IS_ERR(kt))) {
3666 		pr_err("failed to start legacy printing thread\n");
3667 		return false;
3668 	}
3669 
3670 	printk_legacy_kthread = kt;
3671 
3672 	/*
3673 	 * It is important that console printing threads are scheduled
3674 	 * shortly after a printk call and with generous runtime budgets.
3675 	 */
3676 	sched_set_normal(printk_legacy_kthread, -20);
3677 
3678 	return true;
3679 }
3680 
3681 /**
3682  * printk_kthreads_shutdown - shutdown all threaded printers
3683  *
3684  * On system shutdown all threaded printers are stopped. This allows printk
3685  * to transition back to atomic printing, thus providing a robust mechanism
3686  * for the final shutdown/reboot messages to be output.
3687  */
printk_kthreads_shutdown(void)3688 static void printk_kthreads_shutdown(void)
3689 {
3690 	struct console *con;
3691 
3692 	console_list_lock();
3693 	if (printk_kthreads_running) {
3694 		printk_kthreads_running = false;
3695 
3696 		for_each_console(con) {
3697 			if (con->flags & CON_NBCON)
3698 				nbcon_kthread_stop(con);
3699 		}
3700 
3701 		/*
3702 		 * The threads may have been stopped while printing a
3703 		 * backlog. Flush any records left over.
3704 		 */
3705 		nbcon_atomic_flush_pending();
3706 	}
3707 	console_list_unlock();
3708 }
3709 
3710 static struct syscore_ops printk_syscore_ops = {
3711 	.shutdown = printk_kthreads_shutdown,
3712 };
3713 
3714 /*
3715  * If appropriate, start nbcon kthreads and set @printk_kthreads_running.
3716  * If any kthreads fail to start, those consoles are unregistered.
3717  *
3718  * Must be called under console_list_lock().
3719  */
printk_kthreads_check_locked(void)3720 static void printk_kthreads_check_locked(void)
3721 {
3722 	struct hlist_node *tmp;
3723 	struct console *con;
3724 
3725 	lockdep_assert_console_list_lock_held();
3726 
3727 	if (!printk_kthreads_ready)
3728 		return;
3729 
3730 	if (have_legacy_console || have_boot_console) {
3731 		if (!printk_legacy_kthread &&
3732 		    force_legacy_kthread() &&
3733 		    !legacy_kthread_create()) {
3734 			/*
3735 			 * All legacy consoles must be unregistered. If there
3736 			 * are any nbcon consoles, they will set up their own
3737 			 * kthread.
3738 			 */
3739 			hlist_for_each_entry_safe(con, tmp, &console_list, node) {
3740 				if (con->flags & CON_NBCON)
3741 					continue;
3742 
3743 				unregister_console_locked(con);
3744 			}
3745 		}
3746 	} else if (printk_legacy_kthread) {
3747 		kthread_stop(printk_legacy_kthread);
3748 		printk_legacy_kthread = NULL;
3749 	}
3750 
3751 	/*
3752 	 * Printer threads cannot be started as long as any boot console is
3753 	 * registered because there is no way to synchronize the hardware
3754 	 * registers between boot console code and regular console code.
3755 	 * It can only be known that there will be no new boot consoles when
3756 	 * an nbcon console is registered.
3757 	 */
3758 	if (have_boot_console || !have_nbcon_console) {
3759 		/* Clear flag in case all nbcon consoles unregistered. */
3760 		printk_kthreads_running = false;
3761 		return;
3762 	}
3763 
3764 	if (printk_kthreads_running)
3765 		return;
3766 
3767 	hlist_for_each_entry_safe(con, tmp, &console_list, node) {
3768 		if (!(con->flags & CON_NBCON))
3769 			continue;
3770 
3771 		if (!nbcon_kthread_create(con))
3772 			unregister_console_locked(con);
3773 	}
3774 
3775 	printk_kthreads_running = true;
3776 }
3777 
printk_set_kthreads_ready(void)3778 static int __init printk_set_kthreads_ready(void)
3779 {
3780 	register_syscore_ops(&printk_syscore_ops);
3781 
3782 	console_list_lock();
3783 	printk_kthreads_ready = true;
3784 	printk_kthreads_check_locked();
3785 	console_list_unlock();
3786 
3787 	return 0;
3788 }
3789 early_initcall(printk_set_kthreads_ready);
3790 #endif /* CONFIG_PRINTK */
3791 
3792 static int __read_mostly keep_bootcon;
3793 
keep_bootcon_setup(char * str)3794 static int __init keep_bootcon_setup(char *str)
3795 {
3796 	keep_bootcon = 1;
3797 	pr_info("debug: skip boot console de-registration.\n");
3798 
3799 	return 0;
3800 }
3801 
3802 early_param("keep_bootcon", keep_bootcon_setup);
3803 
console_call_setup(struct console * newcon,char * options)3804 static int console_call_setup(struct console *newcon, char *options)
3805 {
3806 	int err;
3807 
3808 	if (!newcon->setup)
3809 		return 0;
3810 
3811 	/* Synchronize with possible boot console. */
3812 	console_lock();
3813 	err = newcon->setup(newcon, options);
3814 	console_unlock();
3815 
3816 	return err;
3817 }
3818 
3819 /*
3820  * This is called by register_console() to try to match
3821  * the newly registered console with any of the ones selected
3822  * by either the command line or add_preferred_console() and
3823  * setup/enable it.
3824  *
3825  * Care need to be taken with consoles that are statically
3826  * enabled such as netconsole
3827  */
try_enable_preferred_console(struct console * newcon,bool user_specified)3828 static int try_enable_preferred_console(struct console *newcon,
3829 					bool user_specified)
3830 {
3831 	struct console_cmdline *c;
3832 	int i, err;
3833 
3834 	for (i = 0, c = console_cmdline;
3835 	     i < MAX_CMDLINECONSOLES && (c->name[0] || c->devname[0]);
3836 	     i++, c++) {
3837 		/* Console not yet initialized? */
3838 		if (!c->name[0])
3839 			continue;
3840 		if (c->user_specified != user_specified)
3841 			continue;
3842 		if (!newcon->match ||
3843 		    newcon->match(newcon, c->name, c->index, c->options) != 0) {
3844 			/* default matching */
3845 			BUILD_BUG_ON(sizeof(c->name) != sizeof(newcon->name));
3846 			if (strcmp(c->name, newcon->name) != 0)
3847 				continue;
3848 			if (newcon->index >= 0 &&
3849 			    newcon->index != c->index)
3850 				continue;
3851 			if (newcon->index < 0)
3852 				newcon->index = c->index;
3853 
3854 			if (_braille_register_console(newcon, c))
3855 				return 0;
3856 
3857 			err = console_call_setup(newcon, c->options);
3858 			if (err)
3859 				return err;
3860 		}
3861 		newcon->flags |= CON_ENABLED;
3862 		if (i == preferred_console)
3863 			newcon->flags |= CON_CONSDEV;
3864 		return 0;
3865 	}
3866 
3867 	/*
3868 	 * Some consoles, such as pstore and netconsole, can be enabled even
3869 	 * without matching. Accept the pre-enabled consoles only when match()
3870 	 * and setup() had a chance to be called.
3871 	 */
3872 	if (newcon->flags & CON_ENABLED && c->user_specified ==	user_specified)
3873 		return 0;
3874 
3875 	return -ENOENT;
3876 }
3877 
3878 /* Try to enable the console unconditionally */
try_enable_default_console(struct console * newcon)3879 static void try_enable_default_console(struct console *newcon)
3880 {
3881 	if (newcon->index < 0)
3882 		newcon->index = 0;
3883 
3884 	if (console_call_setup(newcon, NULL) != 0)
3885 		return;
3886 
3887 	newcon->flags |= CON_ENABLED;
3888 
3889 	if (newcon->device)
3890 		newcon->flags |= CON_CONSDEV;
3891 }
3892 
3893 /* Return the starting sequence number for a newly registered console. */
get_init_console_seq(struct console * newcon,bool bootcon_registered)3894 static u64 get_init_console_seq(struct console *newcon, bool bootcon_registered)
3895 {
3896 	struct console *con;
3897 	bool handover;
3898 	u64 init_seq;
3899 
3900 	if (newcon->flags & (CON_PRINTBUFFER | CON_BOOT)) {
3901 		/* Get a consistent copy of @syslog_seq. */
3902 		mutex_lock(&syslog_lock);
3903 		init_seq = syslog_seq;
3904 		mutex_unlock(&syslog_lock);
3905 	} else {
3906 		/* Begin with next message added to ringbuffer. */
3907 		init_seq = prb_next_seq(prb);
3908 
3909 		/*
3910 		 * If any enabled boot consoles are due to be unregistered
3911 		 * shortly, some may not be caught up and may be the same
3912 		 * device as @newcon. Since it is not known which boot console
3913 		 * is the same device, flush all consoles and, if necessary,
3914 		 * start with the message of the enabled boot console that is
3915 		 * the furthest behind.
3916 		 */
3917 		if (bootcon_registered && !keep_bootcon) {
3918 			/*
3919 			 * Hold the console_lock to stop console printing and
3920 			 * guarantee safe access to console->seq.
3921 			 */
3922 			console_lock();
3923 
3924 			/*
3925 			 * Flush all consoles and set the console to start at
3926 			 * the next unprinted sequence number.
3927 			 */
3928 			if (!console_flush_all(true, &init_seq, &handover)) {
3929 				/*
3930 				 * Flushing failed. Just choose the lowest
3931 				 * sequence of the enabled boot consoles.
3932 				 */
3933 
3934 				/*
3935 				 * If there was a handover, this context no
3936 				 * longer holds the console_lock.
3937 				 */
3938 				if (handover)
3939 					console_lock();
3940 
3941 				init_seq = prb_next_seq(prb);
3942 				for_each_console(con) {
3943 					u64 seq;
3944 
3945 					if (!(con->flags & CON_BOOT) ||
3946 					    !(con->flags & CON_ENABLED)) {
3947 						continue;
3948 					}
3949 
3950 					if (con->flags & CON_NBCON)
3951 						seq = nbcon_seq_read(con);
3952 					else
3953 						seq = con->seq;
3954 
3955 					if (seq < init_seq)
3956 						init_seq = seq;
3957 				}
3958 			}
3959 
3960 			console_unlock();
3961 		}
3962 	}
3963 
3964 	return init_seq;
3965 }
3966 
3967 #define console_first()				\
3968 	hlist_entry(console_list.first, struct console, node)
3969 
3970 static int unregister_console_locked(struct console *console);
3971 
3972 /*
3973  * The console driver calls this routine during kernel initialization
3974  * to register the console printing procedure with printk() and to
3975  * print any messages that were printed by the kernel before the
3976  * console driver was initialized.
3977  *
3978  * This can happen pretty early during the boot process (because of
3979  * early_printk) - sometimes before setup_arch() completes - be careful
3980  * of what kernel features are used - they may not be initialised yet.
3981  *
3982  * There are two types of consoles - bootconsoles (early_printk) and
3983  * "real" consoles (everything which is not a bootconsole) which are
3984  * handled differently.
3985  *  - Any number of bootconsoles can be registered at any time.
3986  *  - As soon as a "real" console is registered, all bootconsoles
3987  *    will be unregistered automatically.
3988  *  - Once a "real" console is registered, any attempt to register a
3989  *    bootconsoles will be rejected
3990  */
register_console(struct console * newcon)3991 void register_console(struct console *newcon)
3992 {
3993 	bool use_device_lock = (newcon->flags & CON_NBCON) && newcon->write_atomic;
3994 	bool bootcon_registered = false;
3995 	bool realcon_registered = false;
3996 	struct console *con;
3997 	unsigned long flags;
3998 	u64 init_seq;
3999 	int err;
4000 
4001 	console_list_lock();
4002 
4003 	for_each_console(con) {
4004 		if (WARN(con == newcon, "console '%s%d' already registered\n",
4005 					 con->name, con->index)) {
4006 			goto unlock;
4007 		}
4008 
4009 		if (con->flags & CON_BOOT)
4010 			bootcon_registered = true;
4011 		else
4012 			realcon_registered = true;
4013 	}
4014 
4015 	/* Do not register boot consoles when there already is a real one. */
4016 	if ((newcon->flags & CON_BOOT) && realcon_registered) {
4017 		pr_info("Too late to register bootconsole %s%d\n",
4018 			newcon->name, newcon->index);
4019 		goto unlock;
4020 	}
4021 
4022 	if (newcon->flags & CON_NBCON) {
4023 		/*
4024 		 * Ensure the nbcon console buffers can be allocated
4025 		 * before modifying any global data.
4026 		 */
4027 		if (!nbcon_alloc(newcon))
4028 			goto unlock;
4029 	}
4030 
4031 	/*
4032 	 * See if we want to enable this console driver by default.
4033 	 *
4034 	 * Nope when a console is preferred by the command line, device
4035 	 * tree, or SPCR.
4036 	 *
4037 	 * The first real console with tty binding (driver) wins. More
4038 	 * consoles might get enabled before the right one is found.
4039 	 *
4040 	 * Note that a console with tty binding will have CON_CONSDEV
4041 	 * flag set and will be first in the list.
4042 	 */
4043 	if (preferred_console < 0) {
4044 		if (hlist_empty(&console_list) || !console_first()->device ||
4045 		    console_first()->flags & CON_BOOT) {
4046 			try_enable_default_console(newcon);
4047 		}
4048 	}
4049 
4050 	/* See if this console matches one we selected on the command line */
4051 	err = try_enable_preferred_console(newcon, true);
4052 
4053 	/* If not, try to match against the platform default(s) */
4054 	if (err == -ENOENT)
4055 		err = try_enable_preferred_console(newcon, false);
4056 
4057 	/* printk() messages are not printed to the Braille console. */
4058 	if (err || newcon->flags & CON_BRL) {
4059 		if (newcon->flags & CON_NBCON)
4060 			nbcon_free(newcon);
4061 		goto unlock;
4062 	}
4063 
4064 	/*
4065 	 * If we have a bootconsole, and are switching to a real console,
4066 	 * don't print everything out again, since when the boot console, and
4067 	 * the real console are the same physical device, it's annoying to
4068 	 * see the beginning boot messages twice
4069 	 */
4070 	if (bootcon_registered &&
4071 	    ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV)) {
4072 		newcon->flags &= ~CON_PRINTBUFFER;
4073 	}
4074 
4075 	newcon->dropped = 0;
4076 	init_seq = get_init_console_seq(newcon, bootcon_registered);
4077 
4078 	if (newcon->flags & CON_NBCON) {
4079 		have_nbcon_console = true;
4080 		nbcon_seq_force(newcon, init_seq);
4081 	} else {
4082 		have_legacy_console = true;
4083 		newcon->seq = init_seq;
4084 	}
4085 
4086 	if (newcon->flags & CON_BOOT)
4087 		have_boot_console = true;
4088 
4089 	/*
4090 	 * If another context is actively using the hardware of this new
4091 	 * console, it will not be aware of the nbcon synchronization. This
4092 	 * is a risk that two contexts could access the hardware
4093 	 * simultaneously if this new console is used for atomic printing
4094 	 * and the other context is still using the hardware.
4095 	 *
4096 	 * Use the driver synchronization to ensure that the hardware is not
4097 	 * in use while this new console transitions to being registered.
4098 	 */
4099 	if (use_device_lock)
4100 		newcon->device_lock(newcon, &flags);
4101 
4102 	/*
4103 	 * Put this console in the list - keep the
4104 	 * preferred driver at the head of the list.
4105 	 */
4106 	if (hlist_empty(&console_list)) {
4107 		/* Ensure CON_CONSDEV is always set for the head. */
4108 		newcon->flags |= CON_CONSDEV;
4109 		hlist_add_head_rcu(&newcon->node, &console_list);
4110 
4111 	} else if (newcon->flags & CON_CONSDEV) {
4112 		/* Only the new head can have CON_CONSDEV set. */
4113 		console_srcu_write_flags(console_first(), console_first()->flags & ~CON_CONSDEV);
4114 		hlist_add_head_rcu(&newcon->node, &console_list);
4115 
4116 	} else {
4117 		hlist_add_behind_rcu(&newcon->node, console_list.first);
4118 	}
4119 
4120 	/*
4121 	 * No need to synchronize SRCU here! The caller does not rely
4122 	 * on all contexts being able to see the new console before
4123 	 * register_console() completes.
4124 	 */
4125 
4126 	/* This new console is now registered. */
4127 	if (use_device_lock)
4128 		newcon->device_unlock(newcon, flags);
4129 
4130 	console_sysfs_notify();
4131 
4132 	/*
4133 	 * By unregistering the bootconsoles after we enable the real console
4134 	 * we get the "console xxx enabled" message on all the consoles -
4135 	 * boot consoles, real consoles, etc - this is to ensure that end
4136 	 * users know there might be something in the kernel's log buffer that
4137 	 * went to the bootconsole (that they do not see on the real console)
4138 	 */
4139 	con_printk(KERN_INFO, newcon, "enabled\n");
4140 	if (bootcon_registered &&
4141 	    ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) &&
4142 	    !keep_bootcon) {
4143 		struct hlist_node *tmp;
4144 
4145 		hlist_for_each_entry_safe(con, tmp, &console_list, node) {
4146 			if (con->flags & CON_BOOT)
4147 				unregister_console_locked(con);
4148 		}
4149 	}
4150 
4151 	/* Changed console list, may require printer threads to start/stop. */
4152 	printk_kthreads_check_locked();
4153 unlock:
4154 	console_list_unlock();
4155 }
4156 EXPORT_SYMBOL(register_console);
4157 
4158 /* Must be called under console_list_lock(). */
unregister_console_locked(struct console * console)4159 static int unregister_console_locked(struct console *console)
4160 {
4161 	bool use_device_lock = (console->flags & CON_NBCON) && console->write_atomic;
4162 	bool found_legacy_con = false;
4163 	bool found_nbcon_con = false;
4164 	bool found_boot_con = false;
4165 	unsigned long flags;
4166 	struct console *c;
4167 	int res;
4168 
4169 	lockdep_assert_console_list_lock_held();
4170 
4171 	con_printk(KERN_INFO, console, "disabled\n");
4172 
4173 	res = _braille_unregister_console(console);
4174 	if (res < 0)
4175 		return res;
4176 	if (res > 0)
4177 		return 0;
4178 
4179 	if (!console_is_registered_locked(console))
4180 		res = -ENODEV;
4181 	else if (console_is_usable(console, console->flags, true))
4182 		__pr_flush(console, 1000, true);
4183 
4184 	/* Disable it unconditionally */
4185 	console_srcu_write_flags(console, console->flags & ~CON_ENABLED);
4186 
4187 	if (res < 0)
4188 		return res;
4189 
4190 	/*
4191 	 * Use the driver synchronization to ensure that the hardware is not
4192 	 * in use while this console transitions to being unregistered.
4193 	 */
4194 	if (use_device_lock)
4195 		console->device_lock(console, &flags);
4196 
4197 	hlist_del_init_rcu(&console->node);
4198 
4199 	if (use_device_lock)
4200 		console->device_unlock(console, flags);
4201 
4202 	/*
4203 	 * <HISTORICAL>
4204 	 * If this isn't the last console and it has CON_CONSDEV set, we
4205 	 * need to set it on the next preferred console.
4206 	 * </HISTORICAL>
4207 	 *
4208 	 * The above makes no sense as there is no guarantee that the next
4209 	 * console has any device attached. Oh well....
4210 	 */
4211 	if (!hlist_empty(&console_list) && console->flags & CON_CONSDEV)
4212 		console_srcu_write_flags(console_first(), console_first()->flags | CON_CONSDEV);
4213 
4214 	/*
4215 	 * Ensure that all SRCU list walks have completed. All contexts
4216 	 * must not be able to see this console in the list so that any
4217 	 * exit/cleanup routines can be performed safely.
4218 	 */
4219 	synchronize_srcu(&console_srcu);
4220 
4221 	if (console->flags & CON_NBCON)
4222 		nbcon_free(console);
4223 
4224 	console_sysfs_notify();
4225 
4226 	if (console->exit)
4227 		res = console->exit(console);
4228 
4229 	/*
4230 	 * With this console gone, the global flags tracking registered
4231 	 * console types may have changed. Update them.
4232 	 */
4233 	for_each_console(c) {
4234 		if (c->flags & CON_BOOT)
4235 			found_boot_con = true;
4236 
4237 		if (c->flags & CON_NBCON)
4238 			found_nbcon_con = true;
4239 		else
4240 			found_legacy_con = true;
4241 	}
4242 	if (!found_boot_con)
4243 		have_boot_console = found_boot_con;
4244 	if (!found_legacy_con)
4245 		have_legacy_console = found_legacy_con;
4246 	if (!found_nbcon_con)
4247 		have_nbcon_console = found_nbcon_con;
4248 
4249 	/* Changed console list, may require printer threads to start/stop. */
4250 	printk_kthreads_check_locked();
4251 
4252 	return res;
4253 }
4254 
unregister_console(struct console * console)4255 int unregister_console(struct console *console)
4256 {
4257 	int res;
4258 
4259 	console_list_lock();
4260 	res = unregister_console_locked(console);
4261 	console_list_unlock();
4262 	return res;
4263 }
4264 EXPORT_SYMBOL(unregister_console);
4265 
4266 /**
4267  * console_force_preferred_locked - force a registered console preferred
4268  * @con: The registered console to force preferred.
4269  *
4270  * Must be called under console_list_lock().
4271  */
console_force_preferred_locked(struct console * con)4272 void console_force_preferred_locked(struct console *con)
4273 {
4274 	struct console *cur_pref_con;
4275 
4276 	if (!console_is_registered_locked(con))
4277 		return;
4278 
4279 	cur_pref_con = console_first();
4280 
4281 	/* Already preferred? */
4282 	if (cur_pref_con == con)
4283 		return;
4284 
4285 	/*
4286 	 * Delete, but do not re-initialize the entry. This allows the console
4287 	 * to continue to appear registered (via any hlist_unhashed_lockless()
4288 	 * checks), even though it was briefly removed from the console list.
4289 	 */
4290 	hlist_del_rcu(&con->node);
4291 
4292 	/*
4293 	 * Ensure that all SRCU list walks have completed so that the console
4294 	 * can be added to the beginning of the console list and its forward
4295 	 * list pointer can be re-initialized.
4296 	 */
4297 	synchronize_srcu(&console_srcu);
4298 
4299 	con->flags |= CON_CONSDEV;
4300 	WARN_ON(!con->device);
4301 
4302 	/* Only the new head can have CON_CONSDEV set. */
4303 	console_srcu_write_flags(cur_pref_con, cur_pref_con->flags & ~CON_CONSDEV);
4304 	hlist_add_head_rcu(&con->node, &console_list);
4305 }
4306 EXPORT_SYMBOL(console_force_preferred_locked);
4307 
4308 /*
4309  * Initialize the console device. This is called *early*, so
4310  * we can't necessarily depend on lots of kernel help here.
4311  * Just do some early initializations, and do the complex setup
4312  * later.
4313  */
console_init(void)4314 void __init console_init(void)
4315 {
4316 	int ret;
4317 	initcall_t call;
4318 	initcall_entry_t *ce;
4319 
4320 	/* Setup the default TTY line discipline. */
4321 	n_tty_init();
4322 
4323 	/*
4324 	 * set up the console device so that later boot sequences can
4325 	 * inform about problems etc..
4326 	 */
4327 	ce = __con_initcall_start;
4328 	trace_initcall_level("console");
4329 	while (ce < __con_initcall_end) {
4330 		call = initcall_from_entry(ce);
4331 		trace_initcall_start(call);
4332 		ret = call();
4333 		trace_initcall_finish(call, ret);
4334 		ce++;
4335 	}
4336 }
4337 
4338 /*
4339  * Some boot consoles access data that is in the init section and which will
4340  * be discarded after the initcalls have been run. To make sure that no code
4341  * will access this data, unregister the boot consoles in a late initcall.
4342  *
4343  * If for some reason, such as deferred probe or the driver being a loadable
4344  * module, the real console hasn't registered yet at this point, there will
4345  * be a brief interval in which no messages are logged to the console, which
4346  * makes it difficult to diagnose problems that occur during this time.
4347  *
4348  * To mitigate this problem somewhat, only unregister consoles whose memory
4349  * intersects with the init section. Note that all other boot consoles will
4350  * get unregistered when the real preferred console is registered.
4351  */
printk_late_init(void)4352 static int __init printk_late_init(void)
4353 {
4354 	struct hlist_node *tmp;
4355 	struct console *con;
4356 	int ret;
4357 
4358 	console_list_lock();
4359 	hlist_for_each_entry_safe(con, tmp, &console_list, node) {
4360 		if (!(con->flags & CON_BOOT))
4361 			continue;
4362 
4363 		/* Check addresses that might be used for enabled consoles. */
4364 		if (init_section_intersects(con, sizeof(*con)) ||
4365 		    init_section_contains(con->write, 0) ||
4366 		    init_section_contains(con->read, 0) ||
4367 		    init_section_contains(con->device, 0) ||
4368 		    init_section_contains(con->unblank, 0) ||
4369 		    init_section_contains(con->data, 0)) {
4370 			/*
4371 			 * Please, consider moving the reported consoles out
4372 			 * of the init section.
4373 			 */
4374 			pr_warn("bootconsole [%s%d] uses init memory and must be disabled even before the real one is ready\n",
4375 				con->name, con->index);
4376 			unregister_console_locked(con);
4377 		}
4378 	}
4379 	console_list_unlock();
4380 
4381 	ret = cpuhp_setup_state_nocalls(CPUHP_PRINTK_DEAD, "printk:dead", NULL,
4382 					console_cpu_notify);
4383 	WARN_ON(ret < 0);
4384 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "printk:online",
4385 					console_cpu_notify, NULL);
4386 	WARN_ON(ret < 0);
4387 	printk_sysctl_init();
4388 	return 0;
4389 }
4390 late_initcall(printk_late_init);
4391 
4392 #if defined CONFIG_PRINTK
4393 /* If @con is specified, only wait for that console. Otherwise wait for all. */
__pr_flush(struct console * con,int timeout_ms,bool reset_on_progress)4394 static bool __pr_flush(struct console *con, int timeout_ms, bool reset_on_progress)
4395 {
4396 	unsigned long timeout_jiffies = msecs_to_jiffies(timeout_ms);
4397 	unsigned long remaining_jiffies = timeout_jiffies;
4398 	struct console_flush_type ft;
4399 	struct console *c;
4400 	u64 last_diff = 0;
4401 	u64 printk_seq;
4402 	short flags;
4403 	int cookie;
4404 	u64 diff;
4405 	u64 seq;
4406 
4407 	/* Sorry, pr_flush() will not work this early. */
4408 	if (system_state < SYSTEM_SCHEDULING)
4409 		return false;
4410 
4411 	might_sleep();
4412 
4413 	seq = prb_next_reserve_seq(prb);
4414 
4415 	/* Flush the consoles so that records up to @seq are printed. */
4416 	printk_get_console_flush_type(&ft);
4417 	if (ft.nbcon_atomic)
4418 		nbcon_atomic_flush_pending();
4419 	if (ft.legacy_direct) {
4420 		console_lock();
4421 		console_unlock();
4422 	}
4423 
4424 	for (;;) {
4425 		unsigned long begin_jiffies;
4426 		unsigned long slept_jiffies;
4427 
4428 		diff = 0;
4429 
4430 		/*
4431 		 * Hold the console_lock to guarantee safe access to
4432 		 * console->seq. Releasing console_lock flushes more
4433 		 * records in case @seq is still not printed on all
4434 		 * usable consoles.
4435 		 *
4436 		 * Holding the console_lock is not necessary if there
4437 		 * are no legacy or boot consoles. However, such a
4438 		 * console could register at any time. Always hold the
4439 		 * console_lock as a precaution rather than
4440 		 * synchronizing against register_console().
4441 		 */
4442 		console_lock();
4443 
4444 		cookie = console_srcu_read_lock();
4445 		for_each_console_srcu(c) {
4446 			if (con && con != c)
4447 				continue;
4448 
4449 			flags = console_srcu_read_flags(c);
4450 
4451 			/*
4452 			 * If consoles are not usable, it cannot be expected
4453 			 * that they make forward progress, so only increment
4454 			 * @diff for usable consoles.
4455 			 */
4456 			if (!console_is_usable(c, flags, true) &&
4457 			    !console_is_usable(c, flags, false)) {
4458 				continue;
4459 			}
4460 
4461 			if (flags & CON_NBCON) {
4462 				printk_seq = nbcon_seq_read(c);
4463 			} else {
4464 				printk_seq = c->seq;
4465 			}
4466 
4467 			if (printk_seq < seq)
4468 				diff += seq - printk_seq;
4469 		}
4470 		console_srcu_read_unlock(cookie);
4471 
4472 		if (diff != last_diff && reset_on_progress)
4473 			remaining_jiffies = timeout_jiffies;
4474 
4475 		console_unlock();
4476 
4477 		/* Note: @diff is 0 if there are no usable consoles. */
4478 		if (diff == 0 || remaining_jiffies == 0)
4479 			break;
4480 
4481 		/* msleep(1) might sleep much longer. Check time by jiffies. */
4482 		begin_jiffies = jiffies;
4483 		msleep(1);
4484 		slept_jiffies = jiffies - begin_jiffies;
4485 
4486 		remaining_jiffies -= min(slept_jiffies, remaining_jiffies);
4487 
4488 		last_diff = diff;
4489 	}
4490 
4491 	return (diff == 0);
4492 }
4493 
4494 /**
4495  * pr_flush() - Wait for printing threads to catch up.
4496  *
4497  * @timeout_ms:        The maximum time (in ms) to wait.
4498  * @reset_on_progress: Reset the timeout if forward progress is seen.
4499  *
4500  * A value of 0 for @timeout_ms means no waiting will occur. A value of -1
4501  * represents infinite waiting.
4502  *
4503  * If @reset_on_progress is true, the timeout will be reset whenever any
4504  * printer has been seen to make some forward progress.
4505  *
4506  * Context: Process context. May sleep while acquiring console lock.
4507  * Return: true if all usable printers are caught up.
4508  */
pr_flush(int timeout_ms,bool reset_on_progress)4509 bool pr_flush(int timeout_ms, bool reset_on_progress)
4510 {
4511 	return __pr_flush(NULL, timeout_ms, reset_on_progress);
4512 }
4513 
4514 /*
4515  * Delayed printk version, for scheduler-internal messages:
4516  */
4517 #define PRINTK_PENDING_WAKEUP	0x01
4518 #define PRINTK_PENDING_OUTPUT	0x02
4519 
4520 static DEFINE_PER_CPU(int, printk_pending);
4521 
wake_up_klogd_work_func(struct irq_work * irq_work)4522 static void wake_up_klogd_work_func(struct irq_work *irq_work)
4523 {
4524 	int pending = this_cpu_xchg(printk_pending, 0);
4525 
4526 	if (pending & PRINTK_PENDING_OUTPUT) {
4527 		if (force_legacy_kthread()) {
4528 			if (printk_legacy_kthread)
4529 				wake_up_interruptible(&legacy_wait);
4530 		} else {
4531 			if (console_trylock())
4532 				console_unlock();
4533 		}
4534 	}
4535 
4536 	if (pending & PRINTK_PENDING_WAKEUP)
4537 		wake_up_interruptible(&log_wait);
4538 }
4539 
4540 static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) =
4541 	IRQ_WORK_INIT_LAZY(wake_up_klogd_work_func);
4542 
__wake_up_klogd(int val)4543 static void __wake_up_klogd(int val)
4544 {
4545 	if (!printk_percpu_data_ready())
4546 		return;
4547 
4548 	preempt_disable();
4549 	/*
4550 	 * Guarantee any new records can be seen by tasks preparing to wait
4551 	 * before this context checks if the wait queue is empty.
4552 	 *
4553 	 * The full memory barrier within wq_has_sleeper() pairs with the full
4554 	 * memory barrier within set_current_state() of
4555 	 * prepare_to_wait_event(), which is called after ___wait_event() adds
4556 	 * the waiter but before it has checked the wait condition.
4557 	 *
4558 	 * This pairs with devkmsg_read:A and syslog_print:A.
4559 	 */
4560 	if (wq_has_sleeper(&log_wait) || /* LMM(__wake_up_klogd:A) */
4561 	    (val & PRINTK_PENDING_OUTPUT)) {
4562 		this_cpu_or(printk_pending, val);
4563 		irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
4564 	}
4565 	preempt_enable();
4566 }
4567 
4568 /**
4569  * wake_up_klogd - Wake kernel logging daemon
4570  *
4571  * Use this function when new records have been added to the ringbuffer
4572  * and the console printing of those records has already occurred or is
4573  * known to be handled by some other context. This function will only
4574  * wake the logging daemon.
4575  *
4576  * Context: Any context.
4577  */
wake_up_klogd(void)4578 void wake_up_klogd(void)
4579 {
4580 	__wake_up_klogd(PRINTK_PENDING_WAKEUP);
4581 }
4582 
4583 /**
4584  * defer_console_output - Wake kernel logging daemon and trigger
4585  *	console printing in a deferred context
4586  *
4587  * Use this function when new records have been added to the ringbuffer,
4588  * this context is responsible for console printing those records, but
4589  * the current context is not allowed to perform the console printing.
4590  * Trigger an irq_work context to perform the console printing. This
4591  * function also wakes the logging daemon.
4592  *
4593  * Context: Any context.
4594  */
defer_console_output(void)4595 void defer_console_output(void)
4596 {
4597 	/*
4598 	 * New messages may have been added directly to the ringbuffer
4599 	 * using vprintk_store(), so wake any waiters as well.
4600 	 */
4601 	__wake_up_klogd(PRINTK_PENDING_WAKEUP | PRINTK_PENDING_OUTPUT);
4602 }
4603 
printk_trigger_flush(void)4604 void printk_trigger_flush(void)
4605 {
4606 	defer_console_output();
4607 }
4608 
vprintk_deferred(const char * fmt,va_list args)4609 int vprintk_deferred(const char *fmt, va_list args)
4610 {
4611 	return vprintk_emit(0, LOGLEVEL_SCHED, NULL, fmt, args);
4612 }
4613 
_printk_deferred(const char * fmt,...)4614 int _printk_deferred(const char *fmt, ...)
4615 {
4616 	va_list args;
4617 	int r;
4618 
4619 	va_start(args, fmt);
4620 	r = vprintk_deferred(fmt, args);
4621 	va_end(args);
4622 
4623 	return r;
4624 }
4625 EXPORT_SYMBOL_GPL(_printk_deferred);
4626 
4627 /*
4628  * printk rate limiting, lifted from the networking subsystem.
4629  *
4630  * This enforces a rate limit: not more than 10 kernel messages
4631  * every 5s to make a denial-of-service attack impossible.
4632  */
4633 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10);
4634 
__printk_ratelimit(const char * func)4635 int __printk_ratelimit(const char *func)
4636 {
4637 	return ___ratelimit(&printk_ratelimit_state, func);
4638 }
4639 EXPORT_SYMBOL(__printk_ratelimit);
4640 
4641 /**
4642  * printk_timed_ratelimit - caller-controlled printk ratelimiting
4643  * @caller_jiffies: pointer to caller's state
4644  * @interval_msecs: minimum interval between prints
4645  *
4646  * printk_timed_ratelimit() returns true if more than @interval_msecs
4647  * milliseconds have elapsed since the last time printk_timed_ratelimit()
4648  * returned true.
4649  */
printk_timed_ratelimit(unsigned long * caller_jiffies,unsigned int interval_msecs)4650 bool printk_timed_ratelimit(unsigned long *caller_jiffies,
4651 			unsigned int interval_msecs)
4652 {
4653 	unsigned long elapsed = jiffies - *caller_jiffies;
4654 
4655 	if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs))
4656 		return false;
4657 
4658 	*caller_jiffies = jiffies;
4659 	return true;
4660 }
4661 EXPORT_SYMBOL(printk_timed_ratelimit);
4662 
4663 static DEFINE_SPINLOCK(dump_list_lock);
4664 static LIST_HEAD(dump_list);
4665 
4666 /**
4667  * kmsg_dump_register - register a kernel log dumper.
4668  * @dumper: pointer to the kmsg_dumper structure
4669  *
4670  * Adds a kernel log dumper to the system. The dump callback in the
4671  * structure will be called when the kernel oopses or panics and must be
4672  * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise.
4673  */
kmsg_dump_register(struct kmsg_dumper * dumper)4674 int kmsg_dump_register(struct kmsg_dumper *dumper)
4675 {
4676 	unsigned long flags;
4677 	int err = -EBUSY;
4678 
4679 	/* The dump callback needs to be set */
4680 	if (!dumper->dump)
4681 		return -EINVAL;
4682 
4683 	spin_lock_irqsave(&dump_list_lock, flags);
4684 	/* Don't allow registering multiple times */
4685 	if (!dumper->registered) {
4686 		dumper->registered = 1;
4687 		list_add_tail_rcu(&dumper->list, &dump_list);
4688 		err = 0;
4689 	}
4690 	spin_unlock_irqrestore(&dump_list_lock, flags);
4691 
4692 	return err;
4693 }
4694 EXPORT_SYMBOL_GPL(kmsg_dump_register);
4695 
4696 /**
4697  * kmsg_dump_unregister - unregister a kmsg dumper.
4698  * @dumper: pointer to the kmsg_dumper structure
4699  *
4700  * Removes a dump device from the system. Returns zero on success and
4701  * %-EINVAL otherwise.
4702  */
kmsg_dump_unregister(struct kmsg_dumper * dumper)4703 int kmsg_dump_unregister(struct kmsg_dumper *dumper)
4704 {
4705 	unsigned long flags;
4706 	int err = -EINVAL;
4707 
4708 	spin_lock_irqsave(&dump_list_lock, flags);
4709 	if (dumper->registered) {
4710 		dumper->registered = 0;
4711 		list_del_rcu(&dumper->list);
4712 		err = 0;
4713 	}
4714 	spin_unlock_irqrestore(&dump_list_lock, flags);
4715 	synchronize_rcu();
4716 
4717 	return err;
4718 }
4719 EXPORT_SYMBOL_GPL(kmsg_dump_unregister);
4720 
4721 static bool always_kmsg_dump;
4722 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR);
4723 
kmsg_dump_reason_str(enum kmsg_dump_reason reason)4724 const char *kmsg_dump_reason_str(enum kmsg_dump_reason reason)
4725 {
4726 	switch (reason) {
4727 	case KMSG_DUMP_PANIC:
4728 		return "Panic";
4729 	case KMSG_DUMP_OOPS:
4730 		return "Oops";
4731 	case KMSG_DUMP_EMERG:
4732 		return "Emergency";
4733 	case KMSG_DUMP_SHUTDOWN:
4734 		return "Shutdown";
4735 	default:
4736 		return "Unknown";
4737 	}
4738 }
4739 EXPORT_SYMBOL_GPL(kmsg_dump_reason_str);
4740 
4741 /**
4742  * kmsg_dump_desc - dump kernel log to kernel message dumpers.
4743  * @reason: the reason (oops, panic etc) for dumping
4744  * @desc: a short string to describe what caused the panic or oops. Can be NULL
4745  * if no additional description is available.
4746  *
4747  * Call each of the registered dumper's dump() callback, which can
4748  * retrieve the kmsg records with kmsg_dump_get_line() or
4749  * kmsg_dump_get_buffer().
4750  */
kmsg_dump_desc(enum kmsg_dump_reason reason,const char * desc)4751 void kmsg_dump_desc(enum kmsg_dump_reason reason, const char *desc)
4752 {
4753 	struct kmsg_dumper *dumper;
4754 	struct kmsg_dump_detail detail = {
4755 		.reason = reason,
4756 		.description = desc};
4757 
4758 	rcu_read_lock();
4759 	list_for_each_entry_rcu(dumper, &dump_list, list) {
4760 		enum kmsg_dump_reason max_reason = dumper->max_reason;
4761 
4762 		/*
4763 		 * If client has not provided a specific max_reason, default
4764 		 * to KMSG_DUMP_OOPS, unless always_kmsg_dump was set.
4765 		 */
4766 		if (max_reason == KMSG_DUMP_UNDEF) {
4767 			max_reason = always_kmsg_dump ? KMSG_DUMP_MAX :
4768 							KMSG_DUMP_OOPS;
4769 		}
4770 		if (reason > max_reason)
4771 			continue;
4772 
4773 		/* invoke dumper which will iterate over records */
4774 		dumper->dump(dumper, &detail);
4775 	}
4776 	rcu_read_unlock();
4777 }
4778 
4779 /**
4780  * kmsg_dump_get_line - retrieve one kmsg log line
4781  * @iter: kmsg dump iterator
4782  * @syslog: include the "<4>" prefixes
4783  * @line: buffer to copy the line to
4784  * @size: maximum size of the buffer
4785  * @len: length of line placed into buffer
4786  *
4787  * Start at the beginning of the kmsg buffer, with the oldest kmsg
4788  * record, and copy one record into the provided buffer.
4789  *
4790  * Consecutive calls will return the next available record moving
4791  * towards the end of the buffer with the youngest messages.
4792  *
4793  * A return value of FALSE indicates that there are no more records to
4794  * read.
4795  */
kmsg_dump_get_line(struct kmsg_dump_iter * iter,bool syslog,char * line,size_t size,size_t * len)4796 bool kmsg_dump_get_line(struct kmsg_dump_iter *iter, bool syslog,
4797 			char *line, size_t size, size_t *len)
4798 {
4799 	u64 min_seq = latched_seq_read_nolock(&clear_seq);
4800 	struct printk_info info;
4801 	unsigned int line_count;
4802 	struct printk_record r;
4803 	size_t l = 0;
4804 	bool ret = false;
4805 
4806 	if (iter->cur_seq < min_seq)
4807 		iter->cur_seq = min_seq;
4808 
4809 	prb_rec_init_rd(&r, &info, line, size);
4810 
4811 	/* Read text or count text lines? */
4812 	if (line) {
4813 		if (!prb_read_valid(prb, iter->cur_seq, &r))
4814 			goto out;
4815 		l = record_print_text(&r, syslog, printk_time);
4816 	} else {
4817 		if (!prb_read_valid_info(prb, iter->cur_seq,
4818 					 &info, &line_count)) {
4819 			goto out;
4820 		}
4821 		l = get_record_print_text_size(&info, line_count, syslog,
4822 					       printk_time);
4823 
4824 	}
4825 
4826 	iter->cur_seq = r.info->seq + 1;
4827 	ret = true;
4828 out:
4829 	if (len)
4830 		*len = l;
4831 	return ret;
4832 }
4833 EXPORT_SYMBOL_GPL(kmsg_dump_get_line);
4834 
4835 /**
4836  * kmsg_dump_get_buffer - copy kmsg log lines
4837  * @iter: kmsg dump iterator
4838  * @syslog: include the "<4>" prefixes
4839  * @buf: buffer to copy the line to
4840  * @size: maximum size of the buffer
4841  * @len_out: length of line placed into buffer
4842  *
4843  * Start at the end of the kmsg buffer and fill the provided buffer
4844  * with as many of the *youngest* kmsg records that fit into it.
4845  * If the buffer is large enough, all available kmsg records will be
4846  * copied with a single call.
4847  *
4848  * Consecutive calls will fill the buffer with the next block of
4849  * available older records, not including the earlier retrieved ones.
4850  *
4851  * A return value of FALSE indicates that there are no more records to
4852  * read.
4853  */
kmsg_dump_get_buffer(struct kmsg_dump_iter * iter,bool syslog,char * buf,size_t size,size_t * len_out)4854 bool kmsg_dump_get_buffer(struct kmsg_dump_iter *iter, bool syslog,
4855 			  char *buf, size_t size, size_t *len_out)
4856 {
4857 	u64 min_seq = latched_seq_read_nolock(&clear_seq);
4858 	struct printk_info info;
4859 	struct printk_record r;
4860 	u64 seq;
4861 	u64 next_seq;
4862 	size_t len = 0;
4863 	bool ret = false;
4864 	bool time = printk_time;
4865 
4866 	if (!buf || !size)
4867 		goto out;
4868 
4869 	if (iter->cur_seq < min_seq)
4870 		iter->cur_seq = min_seq;
4871 
4872 	if (prb_read_valid_info(prb, iter->cur_seq, &info, NULL)) {
4873 		if (info.seq != iter->cur_seq) {
4874 			/* messages are gone, move to first available one */
4875 			iter->cur_seq = info.seq;
4876 		}
4877 	}
4878 
4879 	/* last entry */
4880 	if (iter->cur_seq >= iter->next_seq)
4881 		goto out;
4882 
4883 	/*
4884 	 * Find first record that fits, including all following records,
4885 	 * into the user-provided buffer for this dump. Pass in size-1
4886 	 * because this function (by way of record_print_text()) will
4887 	 * not write more than size-1 bytes of text into @buf.
4888 	 */
4889 	seq = find_first_fitting_seq(iter->cur_seq, iter->next_seq,
4890 				     size - 1, syslog, time);
4891 
4892 	/*
4893 	 * Next kmsg_dump_get_buffer() invocation will dump block of
4894 	 * older records stored right before this one.
4895 	 */
4896 	next_seq = seq;
4897 
4898 	prb_rec_init_rd(&r, &info, buf, size);
4899 
4900 	prb_for_each_record(seq, prb, seq, &r) {
4901 		if (r.info->seq >= iter->next_seq)
4902 			break;
4903 
4904 		len += record_print_text(&r, syslog, time);
4905 
4906 		/* Adjust record to store to remaining buffer space. */
4907 		prb_rec_init_rd(&r, &info, buf + len, size - len);
4908 	}
4909 
4910 	iter->next_seq = next_seq;
4911 	ret = true;
4912 out:
4913 	if (len_out)
4914 		*len_out = len;
4915 	return ret;
4916 }
4917 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer);
4918 
4919 /**
4920  * kmsg_dump_rewind - reset the iterator
4921  * @iter: kmsg dump iterator
4922  *
4923  * Reset the dumper's iterator so that kmsg_dump_get_line() and
4924  * kmsg_dump_get_buffer() can be called again and used multiple
4925  * times within the same dumper.dump() callback.
4926  */
kmsg_dump_rewind(struct kmsg_dump_iter * iter)4927 void kmsg_dump_rewind(struct kmsg_dump_iter *iter)
4928 {
4929 	iter->cur_seq = latched_seq_read_nolock(&clear_seq);
4930 	iter->next_seq = prb_next_seq(prb);
4931 }
4932 EXPORT_SYMBOL_GPL(kmsg_dump_rewind);
4933 
4934 /**
4935  * console_try_replay_all - try to replay kernel log on consoles
4936  *
4937  * Try to obtain lock on console subsystem and replay all
4938  * available records in printk buffer on the consoles.
4939  * Does nothing if lock is not obtained.
4940  *
4941  * Context: Any, except for NMI.
4942  */
console_try_replay_all(void)4943 void console_try_replay_all(void)
4944 {
4945 	struct console_flush_type ft;
4946 
4947 	printk_get_console_flush_type(&ft);
4948 	if (console_trylock()) {
4949 		__console_rewind_all();
4950 		if (ft.nbcon_atomic)
4951 			nbcon_atomic_flush_pending();
4952 		if (ft.nbcon_offload)
4953 			nbcon_kthreads_wake();
4954 		if (ft.legacy_offload)
4955 			defer_console_output();
4956 		/* Consoles are flushed as part of console_unlock(). */
4957 		console_unlock();
4958 	}
4959 }
4960 #endif
4961 
4962 #ifdef CONFIG_SMP
4963 static atomic_t printk_cpu_sync_owner = ATOMIC_INIT(-1);
4964 static atomic_t printk_cpu_sync_nested = ATOMIC_INIT(0);
4965 
is_printk_cpu_sync_owner(void)4966 bool is_printk_cpu_sync_owner(void)
4967 {
4968 	return (atomic_read(&printk_cpu_sync_owner) == raw_smp_processor_id());
4969 }
4970 
4971 /**
4972  * __printk_cpu_sync_wait() - Busy wait until the printk cpu-reentrant
4973  *                            spinning lock is not owned by any CPU.
4974  *
4975  * Context: Any context.
4976  */
__printk_cpu_sync_wait(void)4977 void __printk_cpu_sync_wait(void)
4978 {
4979 	do {
4980 		cpu_relax();
4981 	} while (atomic_read(&printk_cpu_sync_owner) != -1);
4982 }
4983 EXPORT_SYMBOL(__printk_cpu_sync_wait);
4984 
4985 /**
4986  * __printk_cpu_sync_try_get() - Try to acquire the printk cpu-reentrant
4987  *                               spinning lock.
4988  *
4989  * If no processor has the lock, the calling processor takes the lock and
4990  * becomes the owner. If the calling processor is already the owner of the
4991  * lock, this function succeeds immediately.
4992  *
4993  * Context: Any context. Expects interrupts to be disabled.
4994  * Return: 1 on success, otherwise 0.
4995  */
__printk_cpu_sync_try_get(void)4996 int __printk_cpu_sync_try_get(void)
4997 {
4998 	int cpu;
4999 	int old;
5000 
5001 	cpu = smp_processor_id();
5002 
5003 	/*
5004 	 * Guarantee loads and stores from this CPU when it is the lock owner
5005 	 * are _not_ visible to the previous lock owner. This pairs with
5006 	 * __printk_cpu_sync_put:B.
5007 	 *
5008 	 * Memory barrier involvement:
5009 	 *
5010 	 * If __printk_cpu_sync_try_get:A reads from __printk_cpu_sync_put:B,
5011 	 * then __printk_cpu_sync_put:A can never read from
5012 	 * __printk_cpu_sync_try_get:B.
5013 	 *
5014 	 * Relies on:
5015 	 *
5016 	 * RELEASE from __printk_cpu_sync_put:A to __printk_cpu_sync_put:B
5017 	 * of the previous CPU
5018 	 *    matching
5019 	 * ACQUIRE from __printk_cpu_sync_try_get:A to
5020 	 * __printk_cpu_sync_try_get:B of this CPU
5021 	 */
5022 	old = atomic_cmpxchg_acquire(&printk_cpu_sync_owner, -1,
5023 				     cpu); /* LMM(__printk_cpu_sync_try_get:A) */
5024 	if (old == -1) {
5025 		/*
5026 		 * This CPU is now the owner and begins loading/storing
5027 		 * data: LMM(__printk_cpu_sync_try_get:B)
5028 		 */
5029 		return 1;
5030 
5031 	} else if (old == cpu) {
5032 		/* This CPU is already the owner. */
5033 		atomic_inc(&printk_cpu_sync_nested);
5034 		return 1;
5035 	}
5036 
5037 	return 0;
5038 }
5039 EXPORT_SYMBOL(__printk_cpu_sync_try_get);
5040 
5041 /**
5042  * __printk_cpu_sync_put() - Release the printk cpu-reentrant spinning lock.
5043  *
5044  * The calling processor must be the owner of the lock.
5045  *
5046  * Context: Any context. Expects interrupts to be disabled.
5047  */
__printk_cpu_sync_put(void)5048 void __printk_cpu_sync_put(void)
5049 {
5050 	if (atomic_read(&printk_cpu_sync_nested)) {
5051 		atomic_dec(&printk_cpu_sync_nested);
5052 		return;
5053 	}
5054 
5055 	/*
5056 	 * This CPU is finished loading/storing data:
5057 	 * LMM(__printk_cpu_sync_put:A)
5058 	 */
5059 
5060 	/*
5061 	 * Guarantee loads and stores from this CPU when it was the
5062 	 * lock owner are visible to the next lock owner. This pairs
5063 	 * with __printk_cpu_sync_try_get:A.
5064 	 *
5065 	 * Memory barrier involvement:
5066 	 *
5067 	 * If __printk_cpu_sync_try_get:A reads from __printk_cpu_sync_put:B,
5068 	 * then __printk_cpu_sync_try_get:B reads from __printk_cpu_sync_put:A.
5069 	 *
5070 	 * Relies on:
5071 	 *
5072 	 * RELEASE from __printk_cpu_sync_put:A to __printk_cpu_sync_put:B
5073 	 * of this CPU
5074 	 *    matching
5075 	 * ACQUIRE from __printk_cpu_sync_try_get:A to
5076 	 * __printk_cpu_sync_try_get:B of the next CPU
5077 	 */
5078 	atomic_set_release(&printk_cpu_sync_owner,
5079 			   -1); /* LMM(__printk_cpu_sync_put:B) */
5080 }
5081 EXPORT_SYMBOL(__printk_cpu_sync_put);
5082 #endif /* CONFIG_SMP */
5083