• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/exit.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 #include <linux/mm.h>
9 #include <linux/slab.h>
10 #include <linux/sched/autogroup.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/stat.h>
13 #include <linux/sched/task.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/sched/cputime.h>
16 #include <linux/interrupt.h>
17 #include <linux/module.h>
18 #include <linux/capability.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/tty.h>
22 #include <linux/iocontext.h>
23 #include <linux/key.h>
24 #include <linux/cpu.h>
25 #include <linux/acct.h>
26 #include <linux/tsacct_kern.h>
27 #include <linux/file.h>
28 #include <linux/fdtable.h>
29 #include <linux/freezer.h>
30 #include <linux/binfmts.h>
31 #include <linux/nsproxy.h>
32 #include <linux/pid_namespace.h>
33 #include <linux/ptrace.h>
34 #include <linux/profile.h>
35 #include <linux/mount.h>
36 #include <linux/proc_fs.h>
37 #include <linux/kthread.h>
38 #include <linux/mempolicy.h>
39 #include <linux/taskstats_kern.h>
40 #include <linux/delayacct.h>
41 #include <linux/cgroup.h>
42 #include <linux/syscalls.h>
43 #include <linux/signal.h>
44 #include <linux/posix-timers.h>
45 #include <linux/cn_proc.h>
46 #include <linux/mutex.h>
47 #include <linux/futex.h>
48 #include <linux/pipe_fs_i.h>
49 #include <linux/audit.h> /* for audit_free() */
50 #include <linux/resource.h>
51 #include <linux/task_io_accounting_ops.h>
52 #include <linux/blkdev.h>
53 #include <linux/task_work.h>
54 #include <linux/fs_struct.h>
55 #include <linux/init_task.h>
56 #include <linux/perf_event.h>
57 #include <trace/events/sched.h>
58 #include <linux/hw_breakpoint.h>
59 #include <linux/oom.h>
60 #include <linux/writeback.h>
61 #include <linux/shm.h>
62 #include <linux/kcov.h>
63 #include <linux/kmsan.h>
64 #include <linux/random.h>
65 #include <linux/rcuwait.h>
66 #include <linux/compat.h>
67 #include <linux/io_uring.h>
68 #include <linux/kprobes.h>
69 #include <linux/rethook.h>
70 #include <linux/sysfs.h>
71 #include <linux/user_events.h>
72 #include <linux/uaccess.h>
73 
74 #include <uapi/linux/wait.h>
75 
76 #include <asm/unistd.h>
77 #include <asm/mmu_context.h>
78 #include <trace/hooks/dtask.h>
79 #include <trace/hooks/mm.h>
80 
81 #include "exit.h"
82 
83 /*
84  * The default value should be high enough to not crash a system that randomly
85  * crashes its kernel from time to time, but low enough to at least not permit
86  * overflowing 32-bit refcounts or the ldsem writer count.
87  */
88 static unsigned int oops_limit = 10000;
89 
90 #ifdef CONFIG_SYSCTL
91 static struct ctl_table kern_exit_table[] = {
92 	{
93 		.procname       = "oops_limit",
94 		.data           = &oops_limit,
95 		.maxlen         = sizeof(oops_limit),
96 		.mode           = 0644,
97 		.proc_handler   = proc_douintvec,
98 	},
99 };
100 
kernel_exit_sysctls_init(void)101 static __init int kernel_exit_sysctls_init(void)
102 {
103 	register_sysctl_init("kernel", kern_exit_table);
104 	return 0;
105 }
106 late_initcall(kernel_exit_sysctls_init);
107 #endif
108 
109 static atomic_t oops_count = ATOMIC_INIT(0);
110 
111 #ifdef CONFIG_SYSFS
oops_count_show(struct kobject * kobj,struct kobj_attribute * attr,char * page)112 static ssize_t oops_count_show(struct kobject *kobj, struct kobj_attribute *attr,
113 			       char *page)
114 {
115 	return sysfs_emit(page, "%d\n", atomic_read(&oops_count));
116 }
117 
118 static struct kobj_attribute oops_count_attr = __ATTR_RO(oops_count);
119 
kernel_exit_sysfs_init(void)120 static __init int kernel_exit_sysfs_init(void)
121 {
122 	sysfs_add_file_to_group(kernel_kobj, &oops_count_attr.attr, NULL);
123 	return 0;
124 }
125 late_initcall(kernel_exit_sysfs_init);
126 #endif
127 
__unhash_process(struct task_struct * p,bool group_dead)128 static void __unhash_process(struct task_struct *p, bool group_dead)
129 {
130 	nr_threads--;
131 	detach_pid(p, PIDTYPE_PID);
132 	if (group_dead) {
133 		detach_pid(p, PIDTYPE_TGID);
134 		detach_pid(p, PIDTYPE_PGID);
135 		detach_pid(p, PIDTYPE_SID);
136 
137 		list_del_rcu(&p->tasks);
138 		list_del_init(&p->sibling);
139 		__this_cpu_dec(process_counts);
140 	}
141 	list_del_rcu(&p->thread_node);
142 }
143 
144 /*
145  * This function expects the tasklist_lock write-locked.
146  */
__exit_signal(struct task_struct * tsk)147 static void __exit_signal(struct task_struct *tsk)
148 {
149 	struct signal_struct *sig = tsk->signal;
150 	bool group_dead = thread_group_leader(tsk);
151 	struct sighand_struct *sighand;
152 	struct tty_struct *tty;
153 	u64 utime, stime;
154 
155 	sighand = rcu_dereference_check(tsk->sighand,
156 					lockdep_tasklist_lock_is_held());
157 	spin_lock(&sighand->siglock);
158 
159 #ifdef CONFIG_POSIX_TIMERS
160 	posix_cpu_timers_exit(tsk);
161 	if (group_dead)
162 		posix_cpu_timers_exit_group(tsk);
163 #endif
164 
165 	if (group_dead) {
166 		tty = sig->tty;
167 		sig->tty = NULL;
168 	} else {
169 		/*
170 		 * If there is any task waiting for the group exit
171 		 * then notify it:
172 		 */
173 		if (sig->notify_count > 0 && !--sig->notify_count)
174 			wake_up_process(sig->group_exec_task);
175 
176 		if (tsk == sig->curr_target)
177 			sig->curr_target = next_thread(tsk);
178 	}
179 
180 	add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
181 			      sizeof(unsigned long long));
182 
183 	/*
184 	 * Accumulate here the counters for all threads as they die. We could
185 	 * skip the group leader because it is the last user of signal_struct,
186 	 * but we want to avoid the race with thread_group_cputime() which can
187 	 * see the empty ->thread_head list.
188 	 */
189 	task_cputime(tsk, &utime, &stime);
190 	write_seqlock(&sig->stats_lock);
191 	sig->utime += utime;
192 	sig->stime += stime;
193 	sig->gtime += task_gtime(tsk);
194 	sig->min_flt += tsk->min_flt;
195 	sig->maj_flt += tsk->maj_flt;
196 	sig->nvcsw += tsk->nvcsw;
197 	sig->nivcsw += tsk->nivcsw;
198 	sig->inblock += task_io_get_inblock(tsk);
199 	sig->oublock += task_io_get_oublock(tsk);
200 	task_io_accounting_add(&sig->ioac, &tsk->ioac);
201 	sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
202 	sig->nr_threads--;
203 	__unhash_process(tsk, group_dead);
204 	write_sequnlock(&sig->stats_lock);
205 
206 	/*
207 	 * Do this under ->siglock, we can race with another thread
208 	 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
209 	 */
210 	flush_sigqueue(&tsk->pending);
211 	tsk->sighand = NULL;
212 	spin_unlock(&sighand->siglock);
213 
214 	__cleanup_sighand(sighand);
215 	clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
216 	if (group_dead) {
217 		flush_sigqueue(&sig->shared_pending);
218 		tty_kref_put(tty);
219 	}
220 }
221 
delayed_put_task_struct(struct rcu_head * rhp)222 static void delayed_put_task_struct(struct rcu_head *rhp)
223 {
224 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
225 
226 	kprobe_flush_task(tsk);
227 	rethook_flush_task(tsk);
228 	perf_event_delayed_put(tsk);
229 	trace_sched_process_free(tsk);
230 	put_task_struct(tsk);
231 }
232 
put_task_struct_rcu_user(struct task_struct * task)233 void put_task_struct_rcu_user(struct task_struct *task)
234 {
235 	if (refcount_dec_and_test(&task->rcu_users))
236 		call_rcu(&task->rcu, delayed_put_task_struct);
237 }
238 
release_thread(struct task_struct * dead_task)239 void __weak release_thread(struct task_struct *dead_task)
240 {
241 }
242 
release_task(struct task_struct * p)243 void release_task(struct task_struct *p)
244 {
245 	struct task_struct *leader;
246 	struct pid *thread_pid;
247 	int zap_leader;
248 repeat:
249 	/* don't need to get the RCU readlock here - the process is dead and
250 	 * can't be modifying its own credentials. But shut RCU-lockdep up */
251 	rcu_read_lock();
252 	dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
253 	rcu_read_unlock();
254 
255 	cgroup_release(p);
256 
257 	write_lock_irq(&tasklist_lock);
258 	ptrace_release_task(p);
259 	thread_pid = get_pid(p->thread_pid);
260 	__exit_signal(p);
261 
262 	/*
263 	 * If we are the last non-leader member of the thread
264 	 * group, and the leader is zombie, then notify the
265 	 * group leader's parent process. (if it wants notification.)
266 	 */
267 	zap_leader = 0;
268 	leader = p->group_leader;
269 	if (leader != p && thread_group_empty(leader)
270 			&& leader->exit_state == EXIT_ZOMBIE) {
271 		/*
272 		 * If we were the last child thread and the leader has
273 		 * exited already, and the leader's parent ignores SIGCHLD,
274 		 * then we are the one who should release the leader.
275 		 */
276 		zap_leader = do_notify_parent(leader, leader->exit_signal);
277 		if (zap_leader)
278 			leader->exit_state = EXIT_DEAD;
279 	}
280 
281 	write_unlock_irq(&tasklist_lock);
282 	proc_flush_pid(thread_pid);
283 	put_pid(thread_pid);
284 	release_thread(p);
285 	put_task_struct_rcu_user(p);
286 
287 	p = leader;
288 	if (unlikely(zap_leader))
289 		goto repeat;
290 }
291 
rcuwait_wake_up(struct rcuwait * w)292 int rcuwait_wake_up(struct rcuwait *w)
293 {
294 	int ret = 0;
295 	struct task_struct *task;
296 
297 	rcu_read_lock();
298 
299 	/*
300 	 * Order condition vs @task, such that everything prior to the load
301 	 * of @task is visible. This is the condition as to why the user called
302 	 * rcuwait_wake() in the first place. Pairs with set_current_state()
303 	 * barrier (A) in rcuwait_wait_event().
304 	 *
305 	 *    WAIT                WAKE
306 	 *    [S] tsk = current	  [S] cond = true
307 	 *        MB (A)	      MB (B)
308 	 *    [L] cond		  [L] tsk
309 	 */
310 	smp_mb(); /* (B) */
311 
312 	task = rcu_dereference(w->task);
313 	if (task)
314 		ret = wake_up_process(task);
315 	rcu_read_unlock();
316 
317 	return ret;
318 }
319 EXPORT_SYMBOL_GPL(rcuwait_wake_up);
320 
321 /*
322  * Determine if a process group is "orphaned", according to the POSIX
323  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
324  * by terminal-generated stop signals.  Newly orphaned process groups are
325  * to receive a SIGHUP and a SIGCONT.
326  *
327  * "I ask you, have you ever known what it is to be an orphan?"
328  */
will_become_orphaned_pgrp(struct pid * pgrp,struct task_struct * ignored_task)329 static int will_become_orphaned_pgrp(struct pid *pgrp,
330 					struct task_struct *ignored_task)
331 {
332 	struct task_struct *p;
333 
334 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
335 		if ((p == ignored_task) ||
336 		    (p->exit_state && thread_group_empty(p)) ||
337 		    is_global_init(p->real_parent))
338 			continue;
339 
340 		if (task_pgrp(p->real_parent) != pgrp &&
341 		    task_session(p->real_parent) == task_session(p))
342 			return 0;
343 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
344 
345 	return 1;
346 }
347 
is_current_pgrp_orphaned(void)348 int is_current_pgrp_orphaned(void)
349 {
350 	int retval;
351 
352 	read_lock(&tasklist_lock);
353 	retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
354 	read_unlock(&tasklist_lock);
355 
356 	return retval;
357 }
358 
has_stopped_jobs(struct pid * pgrp)359 static bool has_stopped_jobs(struct pid *pgrp)
360 {
361 	struct task_struct *p;
362 
363 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
364 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
365 			return true;
366 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
367 
368 	return false;
369 }
370 
371 /*
372  * Check to see if any process groups have become orphaned as
373  * a result of our exiting, and if they have any stopped jobs,
374  * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
375  */
376 static void
kill_orphaned_pgrp(struct task_struct * tsk,struct task_struct * parent)377 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
378 {
379 	struct pid *pgrp = task_pgrp(tsk);
380 	struct task_struct *ignored_task = tsk;
381 
382 	if (!parent)
383 		/* exit: our father is in a different pgrp than
384 		 * we are and we were the only connection outside.
385 		 */
386 		parent = tsk->real_parent;
387 	else
388 		/* reparent: our child is in a different pgrp than
389 		 * we are, and it was the only connection outside.
390 		 */
391 		ignored_task = NULL;
392 
393 	if (task_pgrp(parent) != pgrp &&
394 	    task_session(parent) == task_session(tsk) &&
395 	    will_become_orphaned_pgrp(pgrp, ignored_task) &&
396 	    has_stopped_jobs(pgrp)) {
397 		__kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
398 		__kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
399 	}
400 }
401 
coredump_task_exit(struct task_struct * tsk)402 static void coredump_task_exit(struct task_struct *tsk)
403 {
404 	struct core_state *core_state;
405 
406 	/*
407 	 * Serialize with any possible pending coredump.
408 	 * We must hold siglock around checking core_state
409 	 * and setting PF_POSTCOREDUMP.  The core-inducing thread
410 	 * will increment ->nr_threads for each thread in the
411 	 * group without PF_POSTCOREDUMP set.
412 	 */
413 	spin_lock_irq(&tsk->sighand->siglock);
414 	tsk->flags |= PF_POSTCOREDUMP;
415 	core_state = tsk->signal->core_state;
416 	spin_unlock_irq(&tsk->sighand->siglock);
417 	if (core_state) {
418 		struct core_thread self;
419 
420 		self.task = current;
421 		if (self.task->flags & PF_SIGNALED)
422 			self.next = xchg(&core_state->dumper.next, &self);
423 		else
424 			self.task = NULL;
425 		/*
426 		 * Implies mb(), the result of xchg() must be visible
427 		 * to core_state->dumper.
428 		 */
429 		if (atomic_dec_and_test(&core_state->nr_threads))
430 			complete(&core_state->startup);
431 
432 		for (;;) {
433 			set_current_state(TASK_IDLE|TASK_FREEZABLE);
434 			if (!self.task) /* see coredump_finish() */
435 				break;
436 			schedule();
437 		}
438 		__set_current_state(TASK_RUNNING);
439 	}
440 }
441 
442 #ifdef CONFIG_MEMCG
443 /* drops tasklist_lock if succeeds */
__try_to_set_owner(struct task_struct * tsk,struct mm_struct * mm)444 static bool __try_to_set_owner(struct task_struct *tsk, struct mm_struct *mm)
445 {
446 	bool ret = false;
447 
448 	task_lock(tsk);
449 	if (likely(tsk->mm == mm)) {
450 		/* tsk can't pass exit_mm/exec_mmap and exit */
451 		read_unlock(&tasklist_lock);
452 		WRITE_ONCE(mm->owner, tsk);
453 		lru_gen_migrate_mm(mm);
454 		ret = true;
455 	}
456 	task_unlock(tsk);
457 	return ret;
458 }
459 
try_to_set_owner(struct task_struct * g,struct mm_struct * mm)460 static bool try_to_set_owner(struct task_struct *g, struct mm_struct *mm)
461 {
462 	struct task_struct *t;
463 
464 	for_each_thread(g, t) {
465 		struct mm_struct *t_mm = READ_ONCE(t->mm);
466 		if (t_mm == mm) {
467 			if (__try_to_set_owner(t, mm))
468 				return true;
469 		} else if (t_mm)
470 			break;
471 	}
472 
473 	return false;
474 }
475 
476 /*
477  * A task is exiting.   If it owned this mm, find a new owner for the mm.
478  */
mm_update_next_owner(struct mm_struct * mm)479 void mm_update_next_owner(struct mm_struct *mm)
480 {
481 	struct task_struct *g, *p = current;
482 
483 	/*
484 	 * If the exiting or execing task is not the owner, it's
485 	 * someone else's problem.
486 	 */
487 	if (mm->owner != p)
488 		return;
489 	/*
490 	 * The current owner is exiting/execing and there are no other
491 	 * candidates.  Do not leave the mm pointing to a possibly
492 	 * freed task structure.
493 	 */
494 	if (atomic_read(&mm->mm_users) <= 1) {
495 		WRITE_ONCE(mm->owner, NULL);
496 		return;
497 	}
498 
499 	read_lock(&tasklist_lock);
500 	/*
501 	 * Search in the children
502 	 */
503 	list_for_each_entry(g, &p->children, sibling) {
504 		if (try_to_set_owner(g, mm))
505 			goto ret;
506 	}
507 	/*
508 	 * Search in the siblings
509 	 */
510 	list_for_each_entry(g, &p->real_parent->children, sibling) {
511 		if (try_to_set_owner(g, mm))
512 			goto ret;
513 	}
514 	/*
515 	 * Search through everything else, we should not get here often.
516 	 */
517 	for_each_process(g) {
518 		if (atomic_read(&mm->mm_users) <= 1)
519 			break;
520 		if (g->flags & PF_KTHREAD)
521 			continue;
522 		if (try_to_set_owner(g, mm))
523 			goto ret;
524 	}
525 	read_unlock(&tasklist_lock);
526 	/*
527 	 * We found no owner yet mm_users > 1: this implies that we are
528 	 * most likely racing with swapoff (try_to_unuse()) or /proc or
529 	 * ptrace or page migration (get_task_mm()).  Mark owner as NULL.
530 	 */
531 	WRITE_ONCE(mm->owner, NULL);
532  ret:
533 	return;
534 
535 }
536 #endif /* CONFIG_MEMCG */
537 
538 /*
539  * Turn us into a lazy TLB process if we
540  * aren't already..
541  */
exit_mm(void)542 static void exit_mm(void)
543 {
544 	struct mm_struct *mm = current->mm;
545 
546 	exit_mm_release(current, mm);
547 	if (!mm)
548 		return;
549 	mmap_read_lock(mm);
550 	mmgrab_lazy_tlb(mm);
551 	BUG_ON(mm != current->active_mm);
552 	/* more a memory barrier than a real lock */
553 	task_lock(current);
554 	/*
555 	 * When a thread stops operating on an address space, the loop
556 	 * in membarrier_private_expedited() may not observe that
557 	 * tsk->mm, and the loop in membarrier_global_expedited() may
558 	 * not observe a MEMBARRIER_STATE_GLOBAL_EXPEDITED
559 	 * rq->membarrier_state, so those would not issue an IPI.
560 	 * Membarrier requires a memory barrier after accessing
561 	 * user-space memory, before clearing tsk->mm or the
562 	 * rq->membarrier_state.
563 	 */
564 	smp_mb__after_spinlock();
565 	local_irq_disable();
566 	current->mm = NULL;
567 	membarrier_update_current_mm(NULL);
568 	enter_lazy_tlb(mm, current);
569 	local_irq_enable();
570 	task_unlock(current);
571 	mmap_read_unlock(mm);
572 	mm_update_next_owner(mm);
573 	trace_android_vh_exit_mm(mm);
574 	mmput(mm);
575 	if (test_thread_flag(TIF_MEMDIE))
576 		exit_oom_victim();
577 }
578 
find_alive_thread(struct task_struct * p)579 static struct task_struct *find_alive_thread(struct task_struct *p)
580 {
581 	struct task_struct *t;
582 
583 	for_each_thread(p, t) {
584 		if (!(t->flags & PF_EXITING))
585 			return t;
586 	}
587 	return NULL;
588 }
589 
find_child_reaper(struct task_struct * father,struct list_head * dead)590 static struct task_struct *find_child_reaper(struct task_struct *father,
591 						struct list_head *dead)
592 	__releases(&tasklist_lock)
593 	__acquires(&tasklist_lock)
594 {
595 	struct pid_namespace *pid_ns = task_active_pid_ns(father);
596 	struct task_struct *reaper = pid_ns->child_reaper;
597 	struct task_struct *p, *n;
598 
599 	if (likely(reaper != father))
600 		return reaper;
601 
602 	reaper = find_alive_thread(father);
603 	if (reaper) {
604 		pid_ns->child_reaper = reaper;
605 		return reaper;
606 	}
607 
608 	write_unlock_irq(&tasklist_lock);
609 
610 	list_for_each_entry_safe(p, n, dead, ptrace_entry) {
611 		list_del_init(&p->ptrace_entry);
612 		release_task(p);
613 	}
614 
615 	zap_pid_ns_processes(pid_ns);
616 	write_lock_irq(&tasklist_lock);
617 
618 	return father;
619 }
620 
621 /*
622  * When we die, we re-parent all our children, and try to:
623  * 1. give them to another thread in our thread group, if such a member exists
624  * 2. give it to the first ancestor process which prctl'd itself as a
625  *    child_subreaper for its children (like a service manager)
626  * 3. give it to the init process (PID 1) in our pid namespace
627  */
find_new_reaper(struct task_struct * father,struct task_struct * child_reaper)628 static struct task_struct *find_new_reaper(struct task_struct *father,
629 					   struct task_struct *child_reaper)
630 {
631 	struct task_struct *thread, *reaper;
632 
633 	thread = find_alive_thread(father);
634 	if (thread)
635 		return thread;
636 
637 	if (father->signal->has_child_subreaper) {
638 		unsigned int ns_level = task_pid(father)->level;
639 		/*
640 		 * Find the first ->is_child_subreaper ancestor in our pid_ns.
641 		 * We can't check reaper != child_reaper to ensure we do not
642 		 * cross the namespaces, the exiting parent could be injected
643 		 * by setns() + fork().
644 		 * We check pid->level, this is slightly more efficient than
645 		 * task_active_pid_ns(reaper) != task_active_pid_ns(father).
646 		 */
647 		for (reaper = father->real_parent;
648 		     task_pid(reaper)->level == ns_level;
649 		     reaper = reaper->real_parent) {
650 			if (reaper == &init_task)
651 				break;
652 			if (!reaper->signal->is_child_subreaper)
653 				continue;
654 			thread = find_alive_thread(reaper);
655 			if (thread)
656 				return thread;
657 		}
658 	}
659 
660 	return child_reaper;
661 }
662 
663 /*
664 * Any that need to be release_task'd are put on the @dead list.
665  */
reparent_leader(struct task_struct * father,struct task_struct * p,struct list_head * dead)666 static void reparent_leader(struct task_struct *father, struct task_struct *p,
667 				struct list_head *dead)
668 {
669 	if (unlikely(p->exit_state == EXIT_DEAD))
670 		return;
671 
672 	/* We don't want people slaying init. */
673 	p->exit_signal = SIGCHLD;
674 
675 	/* If it has exited notify the new parent about this child's death. */
676 	if (!p->ptrace &&
677 	    p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
678 		if (do_notify_parent(p, p->exit_signal)) {
679 			p->exit_state = EXIT_DEAD;
680 			list_add(&p->ptrace_entry, dead);
681 		}
682 	}
683 
684 	kill_orphaned_pgrp(p, father);
685 }
686 
687 /*
688  * This does two things:
689  *
690  * A.  Make init inherit all the child processes
691  * B.  Check to see if any process groups have become orphaned
692  *	as a result of our exiting, and if they have any stopped
693  *	jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
694  */
forget_original_parent(struct task_struct * father,struct list_head * dead)695 static void forget_original_parent(struct task_struct *father,
696 					struct list_head *dead)
697 {
698 	struct task_struct *p, *t, *reaper;
699 
700 	if (unlikely(!list_empty(&father->ptraced)))
701 		exit_ptrace(father, dead);
702 
703 	/* Can drop and reacquire tasklist_lock */
704 	reaper = find_child_reaper(father, dead);
705 	if (list_empty(&father->children))
706 		return;
707 
708 	reaper = find_new_reaper(father, reaper);
709 	list_for_each_entry(p, &father->children, sibling) {
710 		for_each_thread(p, t) {
711 			RCU_INIT_POINTER(t->real_parent, reaper);
712 			BUG_ON((!t->ptrace) != (rcu_access_pointer(t->parent) == father));
713 			if (likely(!t->ptrace))
714 				t->parent = t->real_parent;
715 			if (t->pdeath_signal)
716 				group_send_sig_info(t->pdeath_signal,
717 						    SEND_SIG_NOINFO, t,
718 						    PIDTYPE_TGID);
719 		}
720 		/*
721 		 * If this is a threaded reparent there is no need to
722 		 * notify anyone anything has happened.
723 		 */
724 		if (!same_thread_group(reaper, father))
725 			reparent_leader(father, p, dead);
726 	}
727 	list_splice_tail_init(&father->children, &reaper->children);
728 }
729 
730 /*
731  * Send signals to all our closest relatives so that they know
732  * to properly mourn us..
733  */
exit_notify(struct task_struct * tsk,int group_dead)734 static void exit_notify(struct task_struct *tsk, int group_dead)
735 {
736 	bool autoreap;
737 	struct task_struct *p, *n;
738 	LIST_HEAD(dead);
739 
740 	write_lock_irq(&tasklist_lock);
741 	forget_original_parent(tsk, &dead);
742 
743 	if (group_dead)
744 		kill_orphaned_pgrp(tsk->group_leader, NULL);
745 
746 	tsk->exit_state = EXIT_ZOMBIE;
747 	/*
748 	 * Ignore thread-group leaders that exited before all
749 	 * subthreads did.
750 	 */
751 	if (!delay_group_leader(tsk))
752 		do_notify_pidfd(tsk);
753 
754 	if (unlikely(tsk->ptrace)) {
755 		int sig = thread_group_leader(tsk) &&
756 				thread_group_empty(tsk) &&
757 				!ptrace_reparented(tsk) ?
758 			tsk->exit_signal : SIGCHLD;
759 		autoreap = do_notify_parent(tsk, sig);
760 	} else if (thread_group_leader(tsk)) {
761 		autoreap = thread_group_empty(tsk) &&
762 			do_notify_parent(tsk, tsk->exit_signal);
763 	} else {
764 		autoreap = true;
765 	}
766 
767 	if (autoreap) {
768 		tsk->exit_state = EXIT_DEAD;
769 		list_add(&tsk->ptrace_entry, &dead);
770 	}
771 
772 	/* mt-exec, de_thread() is waiting for group leader */
773 	if (unlikely(tsk->signal->notify_count < 0))
774 		wake_up_process(tsk->signal->group_exec_task);
775 	write_unlock_irq(&tasklist_lock);
776 
777 	list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
778 		list_del_init(&p->ptrace_entry);
779 		release_task(p);
780 	}
781 }
782 
783 #ifdef CONFIG_DEBUG_STACK_USAGE
stack_not_used(struct task_struct * p)784 unsigned long stack_not_used(struct task_struct *p)
785 {
786 	unsigned long *n = end_of_stack(p);
787 
788 	do {	/* Skip over canary */
789 # ifdef CONFIG_STACK_GROWSUP
790 		n--;
791 # else
792 		n++;
793 # endif
794 	} while (!*n);
795 
796 # ifdef CONFIG_STACK_GROWSUP
797 	return (unsigned long)end_of_stack(p) - (unsigned long)n;
798 # else
799 	return (unsigned long)n - (unsigned long)end_of_stack(p);
800 # endif
801 }
802 
803 /* Count the maximum pages reached in kernel stacks */
kstack_histogram(unsigned long used_stack)804 static inline void kstack_histogram(unsigned long used_stack)
805 {
806 #ifdef CONFIG_VM_EVENT_COUNTERS
807 	if (used_stack <= 1024)
808 		count_vm_event(KSTACK_1K);
809 #if THREAD_SIZE > 1024
810 	else if (used_stack <= 2048)
811 		count_vm_event(KSTACK_2K);
812 #endif
813 #if THREAD_SIZE > 2048
814 	else if (used_stack <= 4096)
815 		count_vm_event(KSTACK_4K);
816 #endif
817 #if THREAD_SIZE > 4096
818 	else if (used_stack <= 8192)
819 		count_vm_event(KSTACK_8K);
820 #endif
821 #if THREAD_SIZE > 8192
822 	else if (used_stack <= 16384)
823 		count_vm_event(KSTACK_16K);
824 #endif
825 #if THREAD_SIZE > 16384
826 	else if (used_stack <= 32768)
827 		count_vm_event(KSTACK_32K);
828 #endif
829 #if THREAD_SIZE > 32768
830 	else if (used_stack <= 65536)
831 		count_vm_event(KSTACK_64K);
832 #endif
833 #if THREAD_SIZE > 65536
834 	else
835 		count_vm_event(KSTACK_REST);
836 #endif
837 #endif /* CONFIG_VM_EVENT_COUNTERS */
838 }
839 
check_stack_usage(void)840 static void check_stack_usage(void)
841 {
842 	static DEFINE_SPINLOCK(low_water_lock);
843 	static int lowest_to_date = THREAD_SIZE;
844 	unsigned long free;
845 
846 	free = stack_not_used(current);
847 	kstack_histogram(THREAD_SIZE - free);
848 
849 	if (free >= lowest_to_date)
850 		return;
851 
852 	spin_lock(&low_water_lock);
853 	if (free < lowest_to_date) {
854 		pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
855 			current->comm, task_pid_nr(current), free);
856 		lowest_to_date = free;
857 	}
858 	spin_unlock(&low_water_lock);
859 }
860 #else
check_stack_usage(void)861 static inline void check_stack_usage(void) {}
862 #endif
863 
synchronize_group_exit(struct task_struct * tsk,long code)864 static void synchronize_group_exit(struct task_struct *tsk, long code)
865 {
866 	struct sighand_struct *sighand = tsk->sighand;
867 	struct signal_struct *signal = tsk->signal;
868 
869 	spin_lock_irq(&sighand->siglock);
870 	signal->quick_threads--;
871 	if ((signal->quick_threads == 0) &&
872 	    !(signal->flags & SIGNAL_GROUP_EXIT)) {
873 		signal->flags = SIGNAL_GROUP_EXIT;
874 		signal->group_exit_code = code;
875 		signal->group_stop_count = 0;
876 	}
877 	spin_unlock_irq(&sighand->siglock);
878 }
879 
do_exit(long code)880 void __noreturn do_exit(long code)
881 {
882 	struct task_struct *tsk = current;
883 	int group_dead;
884 
885 	WARN_ON(irqs_disabled());
886 
887 	synchronize_group_exit(tsk, code);
888 
889 	WARN_ON(tsk->plug);
890 
891 	profile_task_exit(tsk);
892 	kcov_task_exit(tsk);
893 	kmsan_task_exit(tsk);
894 
895 	coredump_task_exit(tsk);
896 	ptrace_event(PTRACE_EVENT_EXIT, code);
897 	user_events_exit(tsk);
898 
899 	io_uring_files_cancel();
900 	exit_signals(tsk);  /* sets PF_EXITING */
901 	trace_android_vh_exit_check(current);
902 
903 	seccomp_filter_release(tsk);
904 
905 	acct_update_integrals(tsk);
906 	group_dead = atomic_dec_and_test(&tsk->signal->live);
907 	if (group_dead) {
908 		/*
909 		 * If the last thread of global init has exited, panic
910 		 * immediately to get a useable coredump.
911 		 */
912 		if (unlikely(is_global_init(tsk)))
913 			panic("Attempted to kill init! exitcode=0x%08x\n",
914 				tsk->signal->group_exit_code ?: (int)code);
915 
916 #ifdef CONFIG_POSIX_TIMERS
917 		hrtimer_cancel(&tsk->signal->real_timer);
918 		exit_itimers(tsk);
919 #endif
920 		if (tsk->mm)
921 			setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
922 	}
923 	acct_collect(code, group_dead);
924 	if (group_dead)
925 		tty_audit_exit();
926 	audit_free(tsk);
927 
928 	tsk->exit_code = code;
929 	taskstats_exit(tsk, group_dead);
930 
931 	/*
932 	 * Since sampling can touch ->mm, make sure to stop everything before we
933 	 * tear it down.
934 	 *
935 	 * Also flushes inherited counters to the parent - before the parent
936 	 * gets woken up by child-exit notifications.
937 	 */
938 	perf_event_exit_task(tsk);
939 
940 	exit_mm();
941 
942 	if (group_dead)
943 		acct_process();
944 	trace_sched_process_exit(tsk);
945 
946 	exit_sem(tsk);
947 	exit_shm(tsk);
948 	exit_files(tsk);
949 	exit_fs(tsk);
950 	if (group_dead)
951 		disassociate_ctty(1);
952 	exit_task_namespaces(tsk);
953 	exit_task_work(tsk);
954 	exit_thread(tsk);
955 
956 	sched_autogroup_exit_task(tsk);
957 	cgroup_exit(tsk);
958 
959 	/*
960 	 * FIXME: do that only when needed, using sched_exit tracepoint
961 	 */
962 	flush_ptrace_hw_breakpoint(tsk);
963 
964 	exit_tasks_rcu_start();
965 	exit_notify(tsk, group_dead);
966 	proc_exit_connector(tsk);
967 	mpol_put_task_policy(tsk);
968 #ifdef CONFIG_FUTEX
969 	if (unlikely(current->pi_state_cache))
970 		kfree(current->pi_state_cache);
971 #endif
972 	/*
973 	 * Make sure we are holding no locks:
974 	 */
975 	debug_check_no_locks_held();
976 
977 	if (tsk->io_context)
978 		exit_io_context(tsk);
979 
980 	if (tsk->splice_pipe)
981 		free_pipe_info(tsk->splice_pipe);
982 
983 	if (tsk->task_frag.page)
984 		put_page(tsk->task_frag.page);
985 
986 	exit_task_stack_account(tsk);
987 
988 	check_stack_usage();
989 	preempt_disable();
990 	if (tsk->nr_dirtied)
991 		__this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
992 	exit_rcu();
993 	exit_tasks_rcu_finish();
994 
995 	lockdep_free_task(tsk);
996 	do_task_dead();
997 }
998 
make_task_dead(int signr)999 void __noreturn make_task_dead(int signr)
1000 {
1001 	/*
1002 	 * Take the task off the cpu after something catastrophic has
1003 	 * happened.
1004 	 *
1005 	 * We can get here from a kernel oops, sometimes with preemption off.
1006 	 * Start by checking for critical errors.
1007 	 * Then fix up important state like USER_DS and preemption.
1008 	 * Then do everything else.
1009 	 */
1010 	struct task_struct *tsk = current;
1011 	unsigned int limit;
1012 
1013 	if (unlikely(in_interrupt()))
1014 		panic("Aiee, killing interrupt handler!");
1015 	if (unlikely(!tsk->pid))
1016 		panic("Attempted to kill the idle task!");
1017 
1018 	if (unlikely(irqs_disabled())) {
1019 		pr_info("note: %s[%d] exited with irqs disabled\n",
1020 			current->comm, task_pid_nr(current));
1021 		local_irq_enable();
1022 	}
1023 	if (unlikely(in_atomic())) {
1024 		pr_info("note: %s[%d] exited with preempt_count %d\n",
1025 			current->comm, task_pid_nr(current),
1026 			preempt_count());
1027 		preempt_count_set(PREEMPT_ENABLED);
1028 	}
1029 
1030 	/*
1031 	 * Every time the system oopses, if the oops happens while a reference
1032 	 * to an object was held, the reference leaks.
1033 	 * If the oops doesn't also leak memory, repeated oopsing can cause
1034 	 * reference counters to wrap around (if they're not using refcount_t).
1035 	 * This means that repeated oopsing can make unexploitable-looking bugs
1036 	 * exploitable through repeated oopsing.
1037 	 * To make sure this can't happen, place an upper bound on how often the
1038 	 * kernel may oops without panic().
1039 	 */
1040 	limit = READ_ONCE(oops_limit);
1041 	if (atomic_inc_return(&oops_count) >= limit && limit)
1042 		panic("Oopsed too often (kernel.oops_limit is %d)", limit);
1043 
1044 	/*
1045 	 * We're taking recursive faults here in make_task_dead. Safest is to just
1046 	 * leave this task alone and wait for reboot.
1047 	 */
1048 	if (unlikely(tsk->flags & PF_EXITING)) {
1049 		pr_alert("Fixing recursive fault but reboot is needed!\n");
1050 		futex_exit_recursive(tsk);
1051 		tsk->exit_state = EXIT_DEAD;
1052 		refcount_inc(&tsk->rcu_users);
1053 		do_task_dead();
1054 	}
1055 
1056 	do_exit(signr);
1057 }
1058 
SYSCALL_DEFINE1(exit,int,error_code)1059 SYSCALL_DEFINE1(exit, int, error_code)
1060 {
1061 	do_exit((error_code&0xff)<<8);
1062 }
1063 
1064 /*
1065  * Take down every thread in the group.  This is called by fatal signals
1066  * as well as by sys_exit_group (below).
1067  */
1068 void __noreturn
do_group_exit(int exit_code)1069 do_group_exit(int exit_code)
1070 {
1071 	struct signal_struct *sig = current->signal;
1072 
1073 	if (sig->flags & SIGNAL_GROUP_EXIT)
1074 		exit_code = sig->group_exit_code;
1075 	else if (sig->group_exec_task)
1076 		exit_code = 0;
1077 	else {
1078 		struct sighand_struct *const sighand = current->sighand;
1079 
1080 		spin_lock_irq(&sighand->siglock);
1081 		if (sig->flags & SIGNAL_GROUP_EXIT)
1082 			/* Another thread got here before we took the lock.  */
1083 			exit_code = sig->group_exit_code;
1084 		else if (sig->group_exec_task)
1085 			exit_code = 0;
1086 		else {
1087 			sig->group_exit_code = exit_code;
1088 			sig->flags = SIGNAL_GROUP_EXIT;
1089 			zap_other_threads(current);
1090 		}
1091 		spin_unlock_irq(&sighand->siglock);
1092 	}
1093 	trace_android_vh_do_group_exit(current);
1094 
1095 	do_exit(exit_code);
1096 	/* NOTREACHED */
1097 }
1098 
1099 /*
1100  * this kills every thread in the thread group. Note that any externally
1101  * wait4()-ing process will get the correct exit code - even if this
1102  * thread is not the thread group leader.
1103  */
SYSCALL_DEFINE1(exit_group,int,error_code)1104 SYSCALL_DEFINE1(exit_group, int, error_code)
1105 {
1106 	do_group_exit((error_code & 0xff) << 8);
1107 	/* NOTREACHED */
1108 	return 0;
1109 }
1110 
eligible_pid(struct wait_opts * wo,struct task_struct * p)1111 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
1112 {
1113 	return	wo->wo_type == PIDTYPE_MAX ||
1114 		task_pid_type(p, wo->wo_type) == wo->wo_pid;
1115 }
1116 
1117 static int
eligible_child(struct wait_opts * wo,bool ptrace,struct task_struct * p)1118 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
1119 {
1120 	if (!eligible_pid(wo, p))
1121 		return 0;
1122 
1123 	/*
1124 	 * Wait for all children (clone and not) if __WALL is set or
1125 	 * if it is traced by us.
1126 	 */
1127 	if (ptrace || (wo->wo_flags & __WALL))
1128 		return 1;
1129 
1130 	/*
1131 	 * Otherwise, wait for clone children *only* if __WCLONE is set;
1132 	 * otherwise, wait for non-clone children *only*.
1133 	 *
1134 	 * Note: a "clone" child here is one that reports to its parent
1135 	 * using a signal other than SIGCHLD, or a non-leader thread which
1136 	 * we can only see if it is traced by us.
1137 	 */
1138 	if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1139 		return 0;
1140 
1141 	return 1;
1142 }
1143 
1144 /*
1145  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
1146  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1147  * the lock and this task is uninteresting.  If we return nonzero, we have
1148  * released the lock and the system call should return.
1149  */
wait_task_zombie(struct wait_opts * wo,struct task_struct * p)1150 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1151 {
1152 	int state, status;
1153 	pid_t pid = task_pid_vnr(p);
1154 	uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
1155 	struct waitid_info *infop;
1156 
1157 	if (!likely(wo->wo_flags & WEXITED))
1158 		return 0;
1159 
1160 	if (unlikely(wo->wo_flags & WNOWAIT)) {
1161 		status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1162 			? p->signal->group_exit_code : p->exit_code;
1163 		get_task_struct(p);
1164 		read_unlock(&tasklist_lock);
1165 		sched_annotate_sleep();
1166 		if (wo->wo_rusage)
1167 			getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1168 		put_task_struct(p);
1169 		goto out_info;
1170 	}
1171 	/*
1172 	 * Move the task's state to DEAD/TRACE, only one thread can do this.
1173 	 */
1174 	state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1175 		EXIT_TRACE : EXIT_DEAD;
1176 	if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1177 		return 0;
1178 	/*
1179 	 * We own this thread, nobody else can reap it.
1180 	 */
1181 	read_unlock(&tasklist_lock);
1182 	sched_annotate_sleep();
1183 
1184 	/*
1185 	 * Check thread_group_leader() to exclude the traced sub-threads.
1186 	 */
1187 	if (state == EXIT_DEAD && thread_group_leader(p)) {
1188 		struct signal_struct *sig = p->signal;
1189 		struct signal_struct *psig = current->signal;
1190 		unsigned long maxrss;
1191 		u64 tgutime, tgstime;
1192 
1193 		/*
1194 		 * The resource counters for the group leader are in its
1195 		 * own task_struct.  Those for dead threads in the group
1196 		 * are in its signal_struct, as are those for the child
1197 		 * processes it has previously reaped.  All these
1198 		 * accumulate in the parent's signal_struct c* fields.
1199 		 *
1200 		 * We don't bother to take a lock here to protect these
1201 		 * p->signal fields because the whole thread group is dead
1202 		 * and nobody can change them.
1203 		 *
1204 		 * psig->stats_lock also protects us from our sub-threads
1205 		 * which can reap other children at the same time.
1206 		 *
1207 		 * We use thread_group_cputime_adjusted() to get times for
1208 		 * the thread group, which consolidates times for all threads
1209 		 * in the group including the group leader.
1210 		 */
1211 		thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1212 		write_seqlock_irq(&psig->stats_lock);
1213 		psig->cutime += tgutime + sig->cutime;
1214 		psig->cstime += tgstime + sig->cstime;
1215 		psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1216 		psig->cmin_flt +=
1217 			p->min_flt + sig->min_flt + sig->cmin_flt;
1218 		psig->cmaj_flt +=
1219 			p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1220 		psig->cnvcsw +=
1221 			p->nvcsw + sig->nvcsw + sig->cnvcsw;
1222 		psig->cnivcsw +=
1223 			p->nivcsw + sig->nivcsw + sig->cnivcsw;
1224 		psig->cinblock +=
1225 			task_io_get_inblock(p) +
1226 			sig->inblock + sig->cinblock;
1227 		psig->coublock +=
1228 			task_io_get_oublock(p) +
1229 			sig->oublock + sig->coublock;
1230 		maxrss = max(sig->maxrss, sig->cmaxrss);
1231 		if (psig->cmaxrss < maxrss)
1232 			psig->cmaxrss = maxrss;
1233 		task_io_accounting_add(&psig->ioac, &p->ioac);
1234 		task_io_accounting_add(&psig->ioac, &sig->ioac);
1235 		write_sequnlock_irq(&psig->stats_lock);
1236 	}
1237 
1238 	if (wo->wo_rusage)
1239 		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1240 	status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1241 		? p->signal->group_exit_code : p->exit_code;
1242 	wo->wo_stat = status;
1243 
1244 	if (state == EXIT_TRACE) {
1245 		write_lock_irq(&tasklist_lock);
1246 		/* We dropped tasklist, ptracer could die and untrace */
1247 		ptrace_unlink(p);
1248 
1249 		/* If parent wants a zombie, don't release it now */
1250 		state = EXIT_ZOMBIE;
1251 		if (do_notify_parent(p, p->exit_signal))
1252 			state = EXIT_DEAD;
1253 		p->exit_state = state;
1254 		write_unlock_irq(&tasklist_lock);
1255 	}
1256 	if (state == EXIT_DEAD)
1257 		release_task(p);
1258 
1259 out_info:
1260 	infop = wo->wo_info;
1261 	if (infop) {
1262 		if ((status & 0x7f) == 0) {
1263 			infop->cause = CLD_EXITED;
1264 			infop->status = status >> 8;
1265 		} else {
1266 			infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1267 			infop->status = status & 0x7f;
1268 		}
1269 		infop->pid = pid;
1270 		infop->uid = uid;
1271 	}
1272 
1273 	return pid;
1274 }
1275 
task_stopped_code(struct task_struct * p,bool ptrace)1276 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1277 {
1278 	if (ptrace) {
1279 		if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1280 			return &p->exit_code;
1281 	} else {
1282 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
1283 			return &p->signal->group_exit_code;
1284 	}
1285 	return NULL;
1286 }
1287 
1288 /**
1289  * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1290  * @wo: wait options
1291  * @ptrace: is the wait for ptrace
1292  * @p: task to wait for
1293  *
1294  * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1295  *
1296  * CONTEXT:
1297  * read_lock(&tasklist_lock), which is released if return value is
1298  * non-zero.  Also, grabs and releases @p->sighand->siglock.
1299  *
1300  * RETURNS:
1301  * 0 if wait condition didn't exist and search for other wait conditions
1302  * should continue.  Non-zero return, -errno on failure and @p's pid on
1303  * success, implies that tasklist_lock is released and wait condition
1304  * search should terminate.
1305  */
wait_task_stopped(struct wait_opts * wo,int ptrace,struct task_struct * p)1306 static int wait_task_stopped(struct wait_opts *wo,
1307 				int ptrace, struct task_struct *p)
1308 {
1309 	struct waitid_info *infop;
1310 	int exit_code, *p_code, why;
1311 	uid_t uid = 0; /* unneeded, required by compiler */
1312 	pid_t pid;
1313 
1314 	/*
1315 	 * Traditionally we see ptrace'd stopped tasks regardless of options.
1316 	 */
1317 	if (!ptrace && !(wo->wo_flags & WUNTRACED))
1318 		return 0;
1319 
1320 	if (!task_stopped_code(p, ptrace))
1321 		return 0;
1322 
1323 	exit_code = 0;
1324 	spin_lock_irq(&p->sighand->siglock);
1325 
1326 	p_code = task_stopped_code(p, ptrace);
1327 	if (unlikely(!p_code))
1328 		goto unlock_sig;
1329 
1330 	exit_code = *p_code;
1331 	if (!exit_code)
1332 		goto unlock_sig;
1333 
1334 	if (!unlikely(wo->wo_flags & WNOWAIT))
1335 		*p_code = 0;
1336 
1337 	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1338 unlock_sig:
1339 	spin_unlock_irq(&p->sighand->siglock);
1340 	if (!exit_code)
1341 		return 0;
1342 
1343 	/*
1344 	 * Now we are pretty sure this task is interesting.
1345 	 * Make sure it doesn't get reaped out from under us while we
1346 	 * give up the lock and then examine it below.  We don't want to
1347 	 * keep holding onto the tasklist_lock while we call getrusage and
1348 	 * possibly take page faults for user memory.
1349 	 */
1350 	get_task_struct(p);
1351 	pid = task_pid_vnr(p);
1352 	why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1353 	read_unlock(&tasklist_lock);
1354 	sched_annotate_sleep();
1355 	if (wo->wo_rusage)
1356 		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1357 	put_task_struct(p);
1358 
1359 	if (likely(!(wo->wo_flags & WNOWAIT)))
1360 		wo->wo_stat = (exit_code << 8) | 0x7f;
1361 
1362 	infop = wo->wo_info;
1363 	if (infop) {
1364 		infop->cause = why;
1365 		infop->status = exit_code;
1366 		infop->pid = pid;
1367 		infop->uid = uid;
1368 	}
1369 	return pid;
1370 }
1371 
1372 /*
1373  * Handle do_wait work for one task in a live, non-stopped state.
1374  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1375  * the lock and this task is uninteresting.  If we return nonzero, we have
1376  * released the lock and the system call should return.
1377  */
wait_task_continued(struct wait_opts * wo,struct task_struct * p)1378 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1379 {
1380 	struct waitid_info *infop;
1381 	pid_t pid;
1382 	uid_t uid;
1383 
1384 	if (!unlikely(wo->wo_flags & WCONTINUED))
1385 		return 0;
1386 
1387 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1388 		return 0;
1389 
1390 	spin_lock_irq(&p->sighand->siglock);
1391 	/* Re-check with the lock held.  */
1392 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1393 		spin_unlock_irq(&p->sighand->siglock);
1394 		return 0;
1395 	}
1396 	if (!unlikely(wo->wo_flags & WNOWAIT))
1397 		p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1398 	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1399 	spin_unlock_irq(&p->sighand->siglock);
1400 
1401 	pid = task_pid_vnr(p);
1402 	get_task_struct(p);
1403 	read_unlock(&tasklist_lock);
1404 	sched_annotate_sleep();
1405 	if (wo->wo_rusage)
1406 		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1407 	put_task_struct(p);
1408 
1409 	infop = wo->wo_info;
1410 	if (!infop) {
1411 		wo->wo_stat = 0xffff;
1412 	} else {
1413 		infop->cause = CLD_CONTINUED;
1414 		infop->pid = pid;
1415 		infop->uid = uid;
1416 		infop->status = SIGCONT;
1417 	}
1418 	return pid;
1419 }
1420 
1421 /*
1422  * Consider @p for a wait by @parent.
1423  *
1424  * -ECHILD should be in ->notask_error before the first call.
1425  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1426  * Returns zero if the search for a child should continue;
1427  * then ->notask_error is 0 if @p is an eligible child,
1428  * or still -ECHILD.
1429  */
wait_consider_task(struct wait_opts * wo,int ptrace,struct task_struct * p)1430 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1431 				struct task_struct *p)
1432 {
1433 	/*
1434 	 * We can race with wait_task_zombie() from another thread.
1435 	 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1436 	 * can't confuse the checks below.
1437 	 */
1438 	int exit_state = READ_ONCE(p->exit_state);
1439 	int ret;
1440 
1441 	if (unlikely(exit_state == EXIT_DEAD))
1442 		return 0;
1443 
1444 	ret = eligible_child(wo, ptrace, p);
1445 	if (!ret)
1446 		return ret;
1447 
1448 	if (unlikely(exit_state == EXIT_TRACE)) {
1449 		/*
1450 		 * ptrace == 0 means we are the natural parent. In this case
1451 		 * we should clear notask_error, debugger will notify us.
1452 		 */
1453 		if (likely(!ptrace))
1454 			wo->notask_error = 0;
1455 		return 0;
1456 	}
1457 
1458 	if (likely(!ptrace) && unlikely(p->ptrace)) {
1459 		/*
1460 		 * If it is traced by its real parent's group, just pretend
1461 		 * the caller is ptrace_do_wait() and reap this child if it
1462 		 * is zombie.
1463 		 *
1464 		 * This also hides group stop state from real parent; otherwise
1465 		 * a single stop can be reported twice as group and ptrace stop.
1466 		 * If a ptracer wants to distinguish these two events for its
1467 		 * own children it should create a separate process which takes
1468 		 * the role of real parent.
1469 		 */
1470 		if (!ptrace_reparented(p))
1471 			ptrace = 1;
1472 	}
1473 
1474 	/* slay zombie? */
1475 	if (exit_state == EXIT_ZOMBIE) {
1476 		/* we don't reap group leaders with subthreads */
1477 		if (!delay_group_leader(p)) {
1478 			/*
1479 			 * A zombie ptracee is only visible to its ptracer.
1480 			 * Notification and reaping will be cascaded to the
1481 			 * real parent when the ptracer detaches.
1482 			 */
1483 			if (unlikely(ptrace) || likely(!p->ptrace))
1484 				return wait_task_zombie(wo, p);
1485 		}
1486 
1487 		/*
1488 		 * Allow access to stopped/continued state via zombie by
1489 		 * falling through.  Clearing of notask_error is complex.
1490 		 *
1491 		 * When !@ptrace:
1492 		 *
1493 		 * If WEXITED is set, notask_error should naturally be
1494 		 * cleared.  If not, subset of WSTOPPED|WCONTINUED is set,
1495 		 * so, if there are live subthreads, there are events to
1496 		 * wait for.  If all subthreads are dead, it's still safe
1497 		 * to clear - this function will be called again in finite
1498 		 * amount time once all the subthreads are released and
1499 		 * will then return without clearing.
1500 		 *
1501 		 * When @ptrace:
1502 		 *
1503 		 * Stopped state is per-task and thus can't change once the
1504 		 * target task dies.  Only continued and exited can happen.
1505 		 * Clear notask_error if WCONTINUED | WEXITED.
1506 		 */
1507 		if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1508 			wo->notask_error = 0;
1509 	} else {
1510 		/*
1511 		 * @p is alive and it's gonna stop, continue or exit, so
1512 		 * there always is something to wait for.
1513 		 */
1514 		wo->notask_error = 0;
1515 	}
1516 
1517 	/*
1518 	 * Wait for stopped.  Depending on @ptrace, different stopped state
1519 	 * is used and the two don't interact with each other.
1520 	 */
1521 	ret = wait_task_stopped(wo, ptrace, p);
1522 	if (ret)
1523 		return ret;
1524 
1525 	/*
1526 	 * Wait for continued.  There's only one continued state and the
1527 	 * ptracer can consume it which can confuse the real parent.  Don't
1528 	 * use WCONTINUED from ptracer.  You don't need or want it.
1529 	 */
1530 	return wait_task_continued(wo, p);
1531 }
1532 
1533 /*
1534  * Do the work of do_wait() for one thread in the group, @tsk.
1535  *
1536  * -ECHILD should be in ->notask_error before the first call.
1537  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1538  * Returns zero if the search for a child should continue; then
1539  * ->notask_error is 0 if there were any eligible children,
1540  * or still -ECHILD.
1541  */
do_wait_thread(struct wait_opts * wo,struct task_struct * tsk)1542 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1543 {
1544 	struct task_struct *p;
1545 
1546 	list_for_each_entry(p, &tsk->children, sibling) {
1547 		int ret = wait_consider_task(wo, 0, p);
1548 
1549 		if (ret)
1550 			return ret;
1551 	}
1552 
1553 	return 0;
1554 }
1555 
ptrace_do_wait(struct wait_opts * wo,struct task_struct * tsk)1556 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1557 {
1558 	struct task_struct *p;
1559 
1560 	list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1561 		int ret = wait_consider_task(wo, 1, p);
1562 
1563 		if (ret)
1564 			return ret;
1565 	}
1566 
1567 	return 0;
1568 }
1569 
pid_child_should_wake(struct wait_opts * wo,struct task_struct * p)1570 bool pid_child_should_wake(struct wait_opts *wo, struct task_struct *p)
1571 {
1572 	if (!eligible_pid(wo, p))
1573 		return false;
1574 
1575 	if ((wo->wo_flags & __WNOTHREAD) && wo->child_wait.private != p->parent)
1576 		return false;
1577 
1578 	return true;
1579 }
1580 
child_wait_callback(wait_queue_entry_t * wait,unsigned mode,int sync,void * key)1581 static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode,
1582 				int sync, void *key)
1583 {
1584 	struct wait_opts *wo = container_of(wait, struct wait_opts,
1585 						child_wait);
1586 	struct task_struct *p = key;
1587 
1588 	if (pid_child_should_wake(wo, p))
1589 		return default_wake_function(wait, mode, sync, key);
1590 
1591 	return 0;
1592 }
1593 
__wake_up_parent(struct task_struct * p,struct task_struct * parent)1594 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1595 {
1596 	__wake_up_sync_key(&parent->signal->wait_chldexit,
1597 			   TASK_INTERRUPTIBLE, p);
1598 }
1599 
is_effectively_child(struct wait_opts * wo,bool ptrace,struct task_struct * target)1600 static bool is_effectively_child(struct wait_opts *wo, bool ptrace,
1601 				 struct task_struct *target)
1602 {
1603 	struct task_struct *parent =
1604 		!ptrace ? target->real_parent : target->parent;
1605 
1606 	return current == parent || (!(wo->wo_flags & __WNOTHREAD) &&
1607 				     same_thread_group(current, parent));
1608 }
1609 
1610 /*
1611  * Optimization for waiting on PIDTYPE_PID. No need to iterate through child
1612  * and tracee lists to find the target task.
1613  */
do_wait_pid(struct wait_opts * wo)1614 static int do_wait_pid(struct wait_opts *wo)
1615 {
1616 	bool ptrace;
1617 	struct task_struct *target;
1618 	int retval;
1619 
1620 	ptrace = false;
1621 	target = pid_task(wo->wo_pid, PIDTYPE_TGID);
1622 	if (target && is_effectively_child(wo, ptrace, target)) {
1623 		retval = wait_consider_task(wo, ptrace, target);
1624 		if (retval)
1625 			return retval;
1626 	}
1627 
1628 	ptrace = true;
1629 	target = pid_task(wo->wo_pid, PIDTYPE_PID);
1630 	if (target && target->ptrace &&
1631 	    is_effectively_child(wo, ptrace, target)) {
1632 		retval = wait_consider_task(wo, ptrace, target);
1633 		if (retval)
1634 			return retval;
1635 	}
1636 
1637 	return 0;
1638 }
1639 
__do_wait(struct wait_opts * wo)1640 long __do_wait(struct wait_opts *wo)
1641 {
1642 	long retval;
1643 
1644 	/*
1645 	 * If there is nothing that can match our criteria, just get out.
1646 	 * We will clear ->notask_error to zero if we see any child that
1647 	 * might later match our criteria, even if we are not able to reap
1648 	 * it yet.
1649 	 */
1650 	wo->notask_error = -ECHILD;
1651 	if ((wo->wo_type < PIDTYPE_MAX) &&
1652 	   (!wo->wo_pid || !pid_has_task(wo->wo_pid, wo->wo_type)))
1653 		goto notask;
1654 
1655 	read_lock(&tasklist_lock);
1656 
1657 	if (wo->wo_type == PIDTYPE_PID) {
1658 		retval = do_wait_pid(wo);
1659 		if (retval)
1660 			return retval;
1661 	} else {
1662 		struct task_struct *tsk = current;
1663 
1664 		do {
1665 			retval = do_wait_thread(wo, tsk);
1666 			if (retval)
1667 				return retval;
1668 
1669 			retval = ptrace_do_wait(wo, tsk);
1670 			if (retval)
1671 				return retval;
1672 
1673 			if (wo->wo_flags & __WNOTHREAD)
1674 				break;
1675 		} while_each_thread(current, tsk);
1676 	}
1677 	read_unlock(&tasklist_lock);
1678 
1679 notask:
1680 	retval = wo->notask_error;
1681 	if (!retval && !(wo->wo_flags & WNOHANG))
1682 		return -ERESTARTSYS;
1683 
1684 	return retval;
1685 }
1686 
do_wait(struct wait_opts * wo)1687 static long do_wait(struct wait_opts *wo)
1688 {
1689 	int retval;
1690 
1691 	trace_sched_process_wait(wo->wo_pid);
1692 
1693 	init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1694 	wo->child_wait.private = current;
1695 	add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1696 
1697 	do {
1698 		set_current_state(TASK_INTERRUPTIBLE);
1699 		retval = __do_wait(wo);
1700 		if (retval != -ERESTARTSYS)
1701 			break;
1702 		if (signal_pending(current))
1703 			break;
1704 		schedule();
1705 	} while (1);
1706 
1707 	__set_current_state(TASK_RUNNING);
1708 	remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1709 	return retval;
1710 }
1711 
kernel_waitid_prepare(struct wait_opts * wo,int which,pid_t upid,struct waitid_info * infop,int options,struct rusage * ru)1712 int kernel_waitid_prepare(struct wait_opts *wo, int which, pid_t upid,
1713 			  struct waitid_info *infop, int options,
1714 			  struct rusage *ru)
1715 {
1716 	unsigned int f_flags = 0;
1717 	struct pid *pid = NULL;
1718 	enum pid_type type;
1719 
1720 	if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1721 			__WNOTHREAD|__WCLONE|__WALL))
1722 		return -EINVAL;
1723 	if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1724 		return -EINVAL;
1725 
1726 	switch (which) {
1727 	case P_ALL:
1728 		type = PIDTYPE_MAX;
1729 		break;
1730 	case P_PID:
1731 		type = PIDTYPE_PID;
1732 		if (upid <= 0)
1733 			return -EINVAL;
1734 
1735 		pid = find_get_pid(upid);
1736 		break;
1737 	case P_PGID:
1738 		type = PIDTYPE_PGID;
1739 		if (upid < 0)
1740 			return -EINVAL;
1741 
1742 		if (upid)
1743 			pid = find_get_pid(upid);
1744 		else
1745 			pid = get_task_pid(current, PIDTYPE_PGID);
1746 		break;
1747 	case P_PIDFD:
1748 		type = PIDTYPE_PID;
1749 		if (upid < 0)
1750 			return -EINVAL;
1751 
1752 		pid = pidfd_get_pid(upid, &f_flags);
1753 		if (IS_ERR(pid))
1754 			return PTR_ERR(pid);
1755 
1756 		break;
1757 	default:
1758 		return -EINVAL;
1759 	}
1760 
1761 	wo->wo_type	= type;
1762 	wo->wo_pid	= pid;
1763 	wo->wo_flags	= options;
1764 	wo->wo_info	= infop;
1765 	wo->wo_rusage	= ru;
1766 	if (f_flags & O_NONBLOCK)
1767 		wo->wo_flags |= WNOHANG;
1768 
1769 	return 0;
1770 }
1771 
kernel_waitid(int which,pid_t upid,struct waitid_info * infop,int options,struct rusage * ru)1772 static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop,
1773 			  int options, struct rusage *ru)
1774 {
1775 	struct wait_opts wo;
1776 	long ret;
1777 
1778 	ret = kernel_waitid_prepare(&wo, which, upid, infop, options, ru);
1779 	if (ret)
1780 		return ret;
1781 
1782 	ret = do_wait(&wo);
1783 	if (!ret && !(options & WNOHANG) && (wo.wo_flags & WNOHANG))
1784 		ret = -EAGAIN;
1785 
1786 	put_pid(wo.wo_pid);
1787 	return ret;
1788 }
1789 
SYSCALL_DEFINE5(waitid,int,which,pid_t,upid,struct siginfo __user *,infop,int,options,struct rusage __user *,ru)1790 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1791 		infop, int, options, struct rusage __user *, ru)
1792 {
1793 	struct rusage r;
1794 	struct waitid_info info = {.status = 0};
1795 	long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL);
1796 	int signo = 0;
1797 
1798 	if (err > 0) {
1799 		signo = SIGCHLD;
1800 		err = 0;
1801 		if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1802 			return -EFAULT;
1803 	}
1804 	if (!infop)
1805 		return err;
1806 
1807 	if (!user_write_access_begin(infop, sizeof(*infop)))
1808 		return -EFAULT;
1809 
1810 	unsafe_put_user(signo, &infop->si_signo, Efault);
1811 	unsafe_put_user(0, &infop->si_errno, Efault);
1812 	unsafe_put_user(info.cause, &infop->si_code, Efault);
1813 	unsafe_put_user(info.pid, &infop->si_pid, Efault);
1814 	unsafe_put_user(info.uid, &infop->si_uid, Efault);
1815 	unsafe_put_user(info.status, &infop->si_status, Efault);
1816 	user_write_access_end();
1817 	return err;
1818 Efault:
1819 	user_write_access_end();
1820 	return -EFAULT;
1821 }
1822 
kernel_wait4(pid_t upid,int __user * stat_addr,int options,struct rusage * ru)1823 long kernel_wait4(pid_t upid, int __user *stat_addr, int options,
1824 		  struct rusage *ru)
1825 {
1826 	struct wait_opts wo;
1827 	struct pid *pid = NULL;
1828 	enum pid_type type;
1829 	long ret;
1830 
1831 	if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1832 			__WNOTHREAD|__WCLONE|__WALL))
1833 		return -EINVAL;
1834 
1835 	/* -INT_MIN is not defined */
1836 	if (upid == INT_MIN)
1837 		return -ESRCH;
1838 
1839 	if (upid == -1)
1840 		type = PIDTYPE_MAX;
1841 	else if (upid < 0) {
1842 		type = PIDTYPE_PGID;
1843 		pid = find_get_pid(-upid);
1844 	} else if (upid == 0) {
1845 		type = PIDTYPE_PGID;
1846 		pid = get_task_pid(current, PIDTYPE_PGID);
1847 	} else /* upid > 0 */ {
1848 		type = PIDTYPE_PID;
1849 		pid = find_get_pid(upid);
1850 	}
1851 
1852 	wo.wo_type	= type;
1853 	wo.wo_pid	= pid;
1854 	wo.wo_flags	= options | WEXITED;
1855 	wo.wo_info	= NULL;
1856 	wo.wo_stat	= 0;
1857 	wo.wo_rusage	= ru;
1858 	ret = do_wait(&wo);
1859 	put_pid(pid);
1860 	if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr))
1861 		ret = -EFAULT;
1862 
1863 	return ret;
1864 }
1865 
kernel_wait(pid_t pid,int * stat)1866 int kernel_wait(pid_t pid, int *stat)
1867 {
1868 	struct wait_opts wo = {
1869 		.wo_type	= PIDTYPE_PID,
1870 		.wo_pid		= find_get_pid(pid),
1871 		.wo_flags	= WEXITED,
1872 	};
1873 	int ret;
1874 
1875 	ret = do_wait(&wo);
1876 	if (ret > 0 && wo.wo_stat)
1877 		*stat = wo.wo_stat;
1878 	put_pid(wo.wo_pid);
1879 	return ret;
1880 }
1881 
SYSCALL_DEFINE4(wait4,pid_t,upid,int __user *,stat_addr,int,options,struct rusage __user *,ru)1882 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1883 		int, options, struct rusage __user *, ru)
1884 {
1885 	struct rusage r;
1886 	long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL);
1887 
1888 	if (err > 0) {
1889 		if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1890 			return -EFAULT;
1891 	}
1892 	return err;
1893 }
1894 
1895 #ifdef __ARCH_WANT_SYS_WAITPID
1896 
1897 /*
1898  * sys_waitpid() remains for compatibility. waitpid() should be
1899  * implemented by calling sys_wait4() from libc.a.
1900  */
SYSCALL_DEFINE3(waitpid,pid_t,pid,int __user *,stat_addr,int,options)1901 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1902 {
1903 	return kernel_wait4(pid, stat_addr, options, NULL);
1904 }
1905 
1906 #endif
1907 
1908 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE4(wait4,compat_pid_t,pid,compat_uint_t __user *,stat_addr,int,options,struct compat_rusage __user *,ru)1909 COMPAT_SYSCALL_DEFINE4(wait4,
1910 	compat_pid_t, pid,
1911 	compat_uint_t __user *, stat_addr,
1912 	int, options,
1913 	struct compat_rusage __user *, ru)
1914 {
1915 	struct rusage r;
1916 	long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL);
1917 	if (err > 0) {
1918 		if (ru && put_compat_rusage(&r, ru))
1919 			return -EFAULT;
1920 	}
1921 	return err;
1922 }
1923 
COMPAT_SYSCALL_DEFINE5(waitid,int,which,compat_pid_t,pid,struct compat_siginfo __user *,infop,int,options,struct compat_rusage __user *,uru)1924 COMPAT_SYSCALL_DEFINE5(waitid,
1925 		int, which, compat_pid_t, pid,
1926 		struct compat_siginfo __user *, infop, int, options,
1927 		struct compat_rusage __user *, uru)
1928 {
1929 	struct rusage ru;
1930 	struct waitid_info info = {.status = 0};
1931 	long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL);
1932 	int signo = 0;
1933 	if (err > 0) {
1934 		signo = SIGCHLD;
1935 		err = 0;
1936 		if (uru) {
1937 			/* kernel_waitid() overwrites everything in ru */
1938 			if (COMPAT_USE_64BIT_TIME)
1939 				err = copy_to_user(uru, &ru, sizeof(ru));
1940 			else
1941 				err = put_compat_rusage(&ru, uru);
1942 			if (err)
1943 				return -EFAULT;
1944 		}
1945 	}
1946 
1947 	if (!infop)
1948 		return err;
1949 
1950 	if (!user_write_access_begin(infop, sizeof(*infop)))
1951 		return -EFAULT;
1952 
1953 	unsafe_put_user(signo, &infop->si_signo, Efault);
1954 	unsafe_put_user(0, &infop->si_errno, Efault);
1955 	unsafe_put_user(info.cause, &infop->si_code, Efault);
1956 	unsafe_put_user(info.pid, &infop->si_pid, Efault);
1957 	unsafe_put_user(info.uid, &infop->si_uid, Efault);
1958 	unsafe_put_user(info.status, &infop->si_status, Efault);
1959 	user_write_access_end();
1960 	return err;
1961 Efault:
1962 	user_write_access_end();
1963 	return -EFAULT;
1964 }
1965 #endif
1966 
1967 /*
1968  * This needs to be __function_aligned as GCC implicitly makes any
1969  * implementation of abort() cold and drops alignment specified by
1970  * -falign-functions=N.
1971  *
1972  * See https://gcc.gnu.org/bugzilla/show_bug.cgi?id=88345#c11
1973  */
abort(void)1974 __weak __function_aligned void abort(void)
1975 {
1976 	BUG();
1977 
1978 	/* if that doesn't kill us, halt */
1979 	panic("Oops failed to kill thread");
1980 }
1981 EXPORT_SYMBOL(abort);
1982