1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/swap.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 */
7
8 /*
9 * This file contains the default values for the operation of the
10 * Linux VM subsystem. Fine-tuning documentation can be found in
11 * Documentation/admin-guide/sysctl/vm.rst.
12 * Started 18.12.91
13 * Swap aging added 23.2.95, Stephen Tweedie.
14 * Buffermem limits added 12.3.98, Rik van Riel.
15 */
16
17 #include <linux/mm.h>
18 #include <linux/sched.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/mman.h>
22 #include <linux/pagemap.h>
23 #include <linux/pagevec.h>
24 #include <linux/init.h>
25 #include <linux/export.h>
26 #include <linux/mm_inline.h>
27 #include <linux/percpu_counter.h>
28 #include <linux/memremap.h>
29 #include <linux/percpu.h>
30 #include <linux/cpu.h>
31 #include <linux/notifier.h>
32 #include <linux/backing-dev.h>
33 #include <linux/memcontrol.h>
34 #include <linux/gfp.h>
35 #include <linux/uio.h>
36 #include <linux/hugetlb.h>
37 #include <linux/page_idle.h>
38 #include <linux/local_lock.h>
39 #include <linux/buffer_head.h>
40
41 #include "internal.h"
42
43 #define CREATE_TRACE_POINTS
44 #include <trace/events/pagemap.h>
45
46 #undef CREATE_TRACE_POINTS
47 #include <trace/hooks/mm.h>
48
49 /* How many pages do we try to swap or page in/out together? As a power of 2 */
50 int page_cluster;
51 const int page_cluster_max = 31;
52
53 struct cpu_fbatches {
54 /*
55 * The following folio batches are grouped together because they are protected
56 * by disabling preemption (and interrupts remain enabled).
57 */
58 local_lock_t lock;
59 struct folio_batch lru_add;
60 struct folio_batch lru_deactivate_file;
61 struct folio_batch lru_deactivate;
62 struct folio_batch lru_lazyfree;
63 #ifdef CONFIG_SMP
64 struct folio_batch lru_activate;
65 #endif
66 /* Protecting the following batches which require disabling interrupts */
67 local_lock_t lock_irq;
68 struct folio_batch lru_move_tail;
69 };
70
71 static DEFINE_PER_CPU(struct cpu_fbatches, cpu_fbatches) = {
72 .lock = INIT_LOCAL_LOCK(lock),
73 .lock_irq = INIT_LOCAL_LOCK(lock_irq),
74 };
75
__page_cache_release(struct folio * folio,struct lruvec ** lruvecp,unsigned long * flagsp)76 static void __page_cache_release(struct folio *folio, struct lruvec **lruvecp,
77 unsigned long *flagsp)
78 {
79 if (folio_test_lru(folio)) {
80 folio_lruvec_relock_irqsave(folio, lruvecp, flagsp);
81 lruvec_del_folio(*lruvecp, folio);
82 __folio_clear_lru_flags(folio);
83 }
84 }
85
86 /*
87 * This path almost never happens for VM activity - pages are normally freed
88 * in batches. But it gets used by networking - and for compound pages.
89 */
page_cache_release(struct folio * folio)90 static void page_cache_release(struct folio *folio)
91 {
92 struct lruvec *lruvec = NULL;
93 unsigned long flags;
94
95 __page_cache_release(folio, &lruvec, &flags);
96 if (lruvec)
97 unlock_page_lruvec_irqrestore(lruvec, flags);
98 }
99
__folio_put(struct folio * folio)100 void __folio_put(struct folio *folio)
101 {
102 if (unlikely(folio_is_zone_device(folio))) {
103 free_zone_device_folio(folio);
104 return;
105 }
106
107 if (folio_test_hugetlb(folio)) {
108 free_huge_folio(folio);
109 return;
110 }
111
112 page_cache_release(folio);
113 folio_unqueue_deferred_split(folio);
114 mem_cgroup_uncharge(folio);
115 free_unref_page(&folio->page, folio_order(folio));
116 }
117 EXPORT_SYMBOL(__folio_put);
118
119 /**
120 * put_pages_list() - release a list of pages
121 * @pages: list of pages threaded on page->lru
122 *
123 * Release a list of pages which are strung together on page.lru.
124 */
put_pages_list(struct list_head * pages)125 void put_pages_list(struct list_head *pages)
126 {
127 struct folio_batch fbatch;
128 struct folio *folio, *next;
129
130 folio_batch_init(&fbatch);
131 list_for_each_entry_safe(folio, next, pages, lru) {
132 if (!folio_put_testzero(folio))
133 continue;
134 if (folio_test_hugetlb(folio)) {
135 free_huge_folio(folio);
136 continue;
137 }
138 /* LRU flag must be clear because it's passed using the lru */
139 if (folio_batch_add(&fbatch, folio) > 0)
140 continue;
141 free_unref_folios(&fbatch);
142 }
143
144 if (fbatch.nr)
145 free_unref_folios(&fbatch);
146 INIT_LIST_HEAD(pages);
147 }
148 EXPORT_SYMBOL(put_pages_list);
149
150 typedef void (*move_fn_t)(struct lruvec *lruvec, struct folio *folio);
151
lru_add(struct lruvec * lruvec,struct folio * folio)152 static void lru_add(struct lruvec *lruvec, struct folio *folio)
153 {
154 int was_unevictable = folio_test_clear_unevictable(folio);
155 long nr_pages = folio_nr_pages(folio);
156
157 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
158
159 /*
160 * Is an smp_mb__after_atomic() still required here, before
161 * folio_evictable() tests the mlocked flag, to rule out the possibility
162 * of stranding an evictable folio on an unevictable LRU? I think
163 * not, because __munlock_folio() only clears the mlocked flag
164 * while the LRU lock is held.
165 *
166 * (That is not true of __page_cache_release(), and not necessarily
167 * true of folios_put(): but those only clear the mlocked flag after
168 * folio_put_testzero() has excluded any other users of the folio.)
169 */
170 if (folio_evictable(folio)) {
171 if (was_unevictable)
172 __count_vm_events(UNEVICTABLE_PGRESCUED, nr_pages);
173 } else {
174 folio_clear_active(folio);
175 folio_set_unevictable(folio);
176 /*
177 * folio->mlock_count = !!folio_test_mlocked(folio)?
178 * But that leaves __mlock_folio() in doubt whether another
179 * actor has already counted the mlock or not. Err on the
180 * safe side, underestimate, let page reclaim fix it, rather
181 * than leaving a page on the unevictable LRU indefinitely.
182 */
183 folio->mlock_count = 0;
184 if (!was_unevictable)
185 __count_vm_events(UNEVICTABLE_PGCULLED, nr_pages);
186 }
187
188 lruvec_add_folio(lruvec, folio);
189 trace_mm_lru_insertion(folio);
190 }
191
folio_batch_move_lru(struct folio_batch * fbatch,move_fn_t move_fn)192 static void folio_batch_move_lru(struct folio_batch *fbatch, move_fn_t move_fn)
193 {
194 int i;
195 struct lruvec *lruvec = NULL;
196 unsigned long flags = 0;
197
198 for (i = 0; i < folio_batch_count(fbatch); i++) {
199 struct folio *folio = fbatch->folios[i];
200
201 /* block memcg migration while the folio moves between lru */
202 if (move_fn != lru_add && !folio_test_clear_lru(folio))
203 continue;
204
205 folio_lruvec_relock_irqsave(folio, &lruvec, &flags);
206 move_fn(lruvec, folio);
207
208 folio_set_lru(folio);
209 }
210
211 if (lruvec)
212 unlock_page_lruvec_irqrestore(lruvec, flags);
213 folios_put(fbatch);
214 }
215
__folio_batch_add_and_move(struct folio_batch __percpu * fbatch,struct folio * folio,move_fn_t move_fn,bool disable_irq)216 static void __folio_batch_add_and_move(struct folio_batch __percpu *fbatch,
217 struct folio *folio, move_fn_t move_fn, bool disable_irq)
218 {
219 unsigned long flags;
220
221 folio_get(folio);
222
223 if (disable_irq)
224 local_lock_irqsave(&cpu_fbatches.lock_irq, flags);
225 else
226 local_lock(&cpu_fbatches.lock);
227
228 if (!folio_batch_add(this_cpu_ptr(fbatch), folio) ||
229 !folio_may_be_lru_cached(folio) || lru_cache_disabled())
230 folio_batch_move_lru(this_cpu_ptr(fbatch), move_fn);
231
232 if (disable_irq)
233 local_unlock_irqrestore(&cpu_fbatches.lock_irq, flags);
234 else
235 local_unlock(&cpu_fbatches.lock);
236 }
237
238 #define folio_batch_add_and_move(folio, op) \
239 __folio_batch_add_and_move( \
240 &cpu_fbatches.op, \
241 folio, \
242 op, \
243 offsetof(struct cpu_fbatches, op) >= \
244 offsetof(struct cpu_fbatches, lock_irq) \
245 )
246
lru_move_tail(struct lruvec * lruvec,struct folio * folio)247 static void lru_move_tail(struct lruvec *lruvec, struct folio *folio)
248 {
249 if (folio_test_unevictable(folio))
250 return;
251
252 lruvec_del_folio(lruvec, folio);
253 folio_clear_active(folio);
254 lruvec_add_folio_tail(lruvec, folio);
255 __count_vm_events(PGROTATED, folio_nr_pages(folio));
256 }
257
258 /*
259 * Writeback is about to end against a folio which has been marked for
260 * immediate reclaim. If it still appears to be reclaimable, move it
261 * to the tail of the inactive list.
262 *
263 * folio_rotate_reclaimable() must disable IRQs, to prevent nasty races.
264 */
folio_rotate_reclaimable(struct folio * folio)265 void folio_rotate_reclaimable(struct folio *folio)
266 {
267 if (folio_test_locked(folio) || folio_test_dirty(folio) ||
268 folio_test_unevictable(folio) || !folio_test_lru(folio))
269 return;
270
271 folio_batch_add_and_move(folio, lru_move_tail);
272 }
273
lru_note_cost(struct lruvec * lruvec,bool file,unsigned int nr_io,unsigned int nr_rotated)274 void lru_note_cost(struct lruvec *lruvec, bool file,
275 unsigned int nr_io, unsigned int nr_rotated)
276 {
277 unsigned long cost;
278
279 /*
280 * Reflect the relative cost of incurring IO and spending CPU
281 * time on rotations. This doesn't attempt to make a precise
282 * comparison, it just says: if reloads are about comparable
283 * between the LRU lists, or rotations are overwhelmingly
284 * different between them, adjust scan balance for CPU work.
285 */
286 cost = nr_io * SWAP_CLUSTER_MAX + nr_rotated;
287
288 do {
289 unsigned long lrusize;
290
291 /*
292 * Hold lruvec->lru_lock is safe here, since
293 * 1) The pinned lruvec in reclaim, or
294 * 2) From a pre-LRU page during refault (which also holds the
295 * rcu lock, so would be safe even if the page was on the LRU
296 * and could move simultaneously to a new lruvec).
297 */
298 spin_lock_irq(&lruvec->lru_lock);
299 /* Record cost event */
300 if (file)
301 lruvec->file_cost += cost;
302 else
303 lruvec->anon_cost += cost;
304
305 /*
306 * Decay previous events
307 *
308 * Because workloads change over time (and to avoid
309 * overflow) we keep these statistics as a floating
310 * average, which ends up weighing recent refaults
311 * more than old ones.
312 */
313 lrusize = lruvec_page_state(lruvec, NR_INACTIVE_ANON) +
314 lruvec_page_state(lruvec, NR_ACTIVE_ANON) +
315 lruvec_page_state(lruvec, NR_INACTIVE_FILE) +
316 lruvec_page_state(lruvec, NR_ACTIVE_FILE);
317
318 if (lruvec->file_cost + lruvec->anon_cost > lrusize / 4) {
319 lruvec->file_cost /= 2;
320 lruvec->anon_cost /= 2;
321 }
322 spin_unlock_irq(&lruvec->lru_lock);
323 } while ((lruvec = parent_lruvec(lruvec)));
324 }
325
lru_note_cost_refault(struct folio * folio)326 void lru_note_cost_refault(struct folio *folio)
327 {
328 lru_note_cost(folio_lruvec(folio), folio_is_file_lru(folio),
329 folio_nr_pages(folio), 0);
330 }
331
lru_activate(struct lruvec * lruvec,struct folio * folio)332 static void lru_activate(struct lruvec *lruvec, struct folio *folio)
333 {
334 long nr_pages = folio_nr_pages(folio);
335
336 if (folio_test_active(folio) || folio_test_unevictable(folio))
337 return;
338
339
340 lruvec_del_folio(lruvec, folio);
341 folio_set_active(folio);
342 lruvec_add_folio(lruvec, folio);
343 trace_mm_lru_activate(folio);
344
345 __count_vm_events(PGACTIVATE, nr_pages);
346 __count_memcg_events(lruvec_memcg(lruvec), PGACTIVATE, nr_pages);
347 }
348
349 #ifdef CONFIG_SMP
folio_activate_drain(int cpu)350 static void folio_activate_drain(int cpu)
351 {
352 struct folio_batch *fbatch = &per_cpu(cpu_fbatches.lru_activate, cpu);
353
354 if (folio_batch_count(fbatch))
355 folio_batch_move_lru(fbatch, lru_activate);
356 }
357
folio_activate(struct folio * folio)358 void folio_activate(struct folio *folio)
359 {
360 if (folio_test_active(folio) || folio_test_unevictable(folio) ||
361 !folio_test_lru(folio))
362 return;
363
364 folio_batch_add_and_move(folio, lru_activate);
365 }
366
367 #else
folio_activate_drain(int cpu)368 static inline void folio_activate_drain(int cpu)
369 {
370 }
371
folio_activate(struct folio * folio)372 void folio_activate(struct folio *folio)
373 {
374 struct lruvec *lruvec;
375
376 if (!folio_test_clear_lru(folio))
377 return;
378
379 lruvec = folio_lruvec_lock_irq(folio);
380 lru_activate(lruvec, folio);
381 unlock_page_lruvec_irq(lruvec);
382 folio_set_lru(folio);
383 }
384 #endif
385
__lru_cache_activate_folio(struct folio * folio)386 static void __lru_cache_activate_folio(struct folio *folio)
387 {
388 struct folio_batch *fbatch;
389 int i;
390
391 local_lock(&cpu_fbatches.lock);
392 fbatch = this_cpu_ptr(&cpu_fbatches.lru_add);
393
394 /*
395 * Search backwards on the optimistic assumption that the folio being
396 * activated has just been added to this batch. Note that only
397 * the local batch is examined as a !LRU folio could be in the
398 * process of being released, reclaimed, migrated or on a remote
399 * batch that is currently being drained. Furthermore, marking
400 * a remote batch's folio active potentially hits a race where
401 * a folio is marked active just after it is added to the inactive
402 * list causing accounting errors and BUG_ON checks to trigger.
403 */
404 for (i = folio_batch_count(fbatch) - 1; i >= 0; i--) {
405 struct folio *batch_folio = fbatch->folios[i];
406
407 if (batch_folio == folio) {
408 folio_set_active(folio);
409 break;
410 }
411 }
412
413 local_unlock(&cpu_fbatches.lock);
414 }
415
416 #ifdef CONFIG_LRU_GEN
417
lru_gen_inc_refs(struct folio * folio)418 static void lru_gen_inc_refs(struct folio *folio)
419 {
420 unsigned long new_flags, old_flags = READ_ONCE(folio->flags);
421
422 if (folio_test_unevictable(folio))
423 return;
424
425 /* see the comment on LRU_REFS_FLAGS */
426 if (!folio_test_referenced(folio)) {
427 set_mask_bits(&folio->flags, LRU_REFS_MASK, BIT(PG_referenced));
428 return;
429 }
430
431 do {
432 if ((old_flags & LRU_REFS_MASK) == LRU_REFS_MASK) {
433 if (!folio_test_workingset(folio))
434 folio_set_workingset(folio);
435 return;
436 }
437
438 new_flags = old_flags + BIT(LRU_REFS_PGOFF);
439 } while (!try_cmpxchg(&folio->flags, &old_flags, new_flags));
440 }
441
lru_gen_clear_refs(struct folio * folio)442 static bool lru_gen_clear_refs(struct folio *folio)
443 {
444 struct lru_gen_folio *lrugen;
445 int gen = folio_lru_gen(folio);
446 int type = folio_is_file_lru(folio);
447
448 if (gen < 0)
449 return true;
450
451 set_mask_bits(&folio->flags, LRU_REFS_FLAGS | BIT(PG_workingset), 0);
452
453 lrugen = &folio_lruvec(folio)->lrugen;
454 /* whether can do without shuffling under the LRU lock */
455 return gen == lru_gen_from_seq(READ_ONCE(lrugen->min_seq[type]));
456 }
457
458 #else /* !CONFIG_LRU_GEN */
459
lru_gen_inc_refs(struct folio * folio)460 static void lru_gen_inc_refs(struct folio *folio)
461 {
462 }
463
lru_gen_clear_refs(struct folio * folio)464 static bool lru_gen_clear_refs(struct folio *folio)
465 {
466 return false;
467 }
468
469 #endif /* CONFIG_LRU_GEN */
470
471 /**
472 * folio_mark_accessed - Mark a folio as having seen activity.
473 * @folio: The folio to mark.
474 *
475 * This function will perform one of the following transitions:
476 *
477 * * inactive,unreferenced -> inactive,referenced
478 * * inactive,referenced -> active,unreferenced
479 * * active,unreferenced -> active,referenced
480 *
481 * When a newly allocated folio is not yet visible, so safe for non-atomic ops,
482 * __folio_set_referenced() may be substituted for folio_mark_accessed().
483 */
folio_mark_accessed(struct folio * folio)484 void folio_mark_accessed(struct folio *folio)
485 {
486 if (folio_test_dropbehind(folio))
487 return;
488 if (lru_gen_enabled()) {
489 lru_gen_inc_refs(folio);
490 return;
491 }
492
493 if (!folio_test_referenced(folio)) {
494 folio_set_referenced(folio);
495 } else if (folio_test_unevictable(folio)) {
496 /*
497 * Unevictable pages are on the "LRU_UNEVICTABLE" list. But,
498 * this list is never rotated or maintained, so marking an
499 * unevictable page accessed has no effect.
500 */
501 } else if (!folio_test_active(folio)) {
502 /*
503 * If the folio is on the LRU, queue it for activation via
504 * cpu_fbatches.lru_activate. Otherwise, assume the folio is in a
505 * folio_batch, mark it active and it'll be moved to the active
506 * LRU on the next drain.
507 */
508 if (folio_test_lru(folio))
509 folio_activate(folio);
510 else
511 __lru_cache_activate_folio(folio);
512 folio_clear_referenced(folio);
513 workingset_activation(folio);
514 }
515 if (folio_test_idle(folio))
516 folio_clear_idle(folio);
517 }
518 EXPORT_SYMBOL(folio_mark_accessed);
519
520 /**
521 * folio_add_lru - Add a folio to an LRU list.
522 * @folio: The folio to be added to the LRU.
523 *
524 * Queue the folio for addition to the LRU. The decision on whether
525 * to add the page to the [in]active [file|anon] list is deferred until the
526 * folio_batch is drained. This gives a chance for the caller of folio_add_lru()
527 * have the folio added to the active list using folio_mark_accessed().
528 */
folio_add_lru(struct folio * folio)529 void folio_add_lru(struct folio *folio)
530 {
531 VM_BUG_ON_FOLIO(folio_test_active(folio) &&
532 folio_test_unevictable(folio), folio);
533 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
534
535 /* see the comment in lru_gen_folio_seq() */
536 if (lru_gen_enabled() && !folio_test_unevictable(folio) &&
537 lru_gen_in_fault() && !(current->flags & PF_MEMALLOC))
538 folio_set_active(folio);
539
540 folio_batch_add_and_move(folio, lru_add);
541 }
542 EXPORT_SYMBOL(folio_add_lru);
543
544 /**
545 * folio_add_lru_vma() - Add a folio to the appropate LRU list for this VMA.
546 * @folio: The folio to be added to the LRU.
547 * @vma: VMA in which the folio is mapped.
548 *
549 * If the VMA is mlocked, @folio is added to the unevictable list.
550 * Otherwise, it is treated the same way as folio_add_lru().
551 */
folio_add_lru_vma(struct folio * folio,struct vm_area_struct * vma)552 void folio_add_lru_vma(struct folio *folio, struct vm_area_struct *vma)
553 {
554 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
555
556 if (unlikely((vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) == VM_LOCKED))
557 mlock_new_folio(folio);
558 else
559 folio_add_lru(folio);
560 }
561
562 /*
563 * If the folio cannot be invalidated, it is moved to the
564 * inactive list to speed up its reclaim. It is moved to the
565 * head of the list, rather than the tail, to give the flusher
566 * threads some time to write it out, as this is much more
567 * effective than the single-page writeout from reclaim.
568 *
569 * If the folio isn't mapped and dirty/writeback, the folio
570 * could be reclaimed asap using the reclaim flag.
571 *
572 * 1. active, mapped folio -> none
573 * 2. active, dirty/writeback folio -> inactive, head, reclaim
574 * 3. inactive, mapped folio -> none
575 * 4. inactive, dirty/writeback folio -> inactive, head, reclaim
576 * 5. inactive, clean -> inactive, tail
577 * 6. Others -> none
578 *
579 * In 4, it moves to the head of the inactive list so the folio is
580 * written out by flusher threads as this is much more efficient
581 * than the single-page writeout from reclaim.
582 */
lru_deactivate_file(struct lruvec * lruvec,struct folio * folio)583 static void lru_deactivate_file(struct lruvec *lruvec, struct folio *folio)
584 {
585 bool active = folio_test_active(folio) || lru_gen_enabled();
586 long nr_pages = folio_nr_pages(folio);
587
588 if (folio_test_unevictable(folio))
589 return;
590
591 /* Some processes are using the folio */
592 if (folio_mapped(folio))
593 return;
594
595 lruvec_del_folio(lruvec, folio);
596 folio_clear_active(folio);
597 folio_clear_referenced(folio);
598
599 if (folio_test_writeback(folio) || folio_test_dirty(folio)) {
600 /*
601 * Setting the reclaim flag could race with
602 * folio_end_writeback() and confuse readahead. But the
603 * race window is _really_ small and it's not a critical
604 * problem.
605 */
606 lruvec_add_folio(lruvec, folio);
607 folio_set_reclaim(folio);
608 } else {
609 /*
610 * The folio's writeback ended while it was in the batch.
611 * We move that folio to the tail of the inactive list.
612 */
613 lruvec_add_folio_tail(lruvec, folio);
614 __count_vm_events(PGROTATED, nr_pages);
615 }
616
617 if (active) {
618 __count_vm_events(PGDEACTIVATE, nr_pages);
619 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
620 nr_pages);
621 }
622 }
623
lru_deactivate(struct lruvec * lruvec,struct folio * folio)624 static void lru_deactivate(struct lruvec *lruvec, struct folio *folio)
625 {
626 long nr_pages = folio_nr_pages(folio);
627
628 if (folio_test_unevictable(folio) || !(folio_test_active(folio) || lru_gen_enabled()))
629 return;
630
631 lruvec_del_folio(lruvec, folio);
632 folio_clear_active(folio);
633 folio_clear_referenced(folio);
634 lruvec_add_folio(lruvec, folio);
635
636 __count_vm_events(PGDEACTIVATE, nr_pages);
637 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_pages);
638 }
639
lru_lazyfree(struct lruvec * lruvec,struct folio * folio)640 static void lru_lazyfree(struct lruvec *lruvec, struct folio *folio)
641 {
642 long nr_pages = folio_nr_pages(folio);
643 bool folio_added = false;
644
645 if (!folio_test_anon(folio) || !folio_test_swapbacked(folio) ||
646 folio_test_swapcache(folio) || folio_test_unevictable(folio))
647 return;
648
649 lruvec_del_folio(lruvec, folio);
650 folio_clear_active(folio);
651 if (lru_gen_enabled())
652 lru_gen_clear_refs(folio);
653 else
654 folio_clear_referenced(folio);
655 /*
656 * Lazyfree folios are clean anonymous folios. They have
657 * the swapbacked flag cleared, to distinguish them from normal
658 * anonymous folios
659 */
660 folio_clear_swapbacked(folio);
661 trace_android_vh_add_lazyfree_bypass(lruvec, folio, &folio_added);
662 if (!folio_added)
663 lruvec_add_folio(lruvec, folio);
664
665 __count_vm_events(PGLAZYFREE, nr_pages);
666 __count_memcg_events(lruvec_memcg(lruvec), PGLAZYFREE, nr_pages);
667 }
668
669 /*
670 * Drain pages out of the cpu's folio_batch.
671 * Either "cpu" is the current CPU, and preemption has already been
672 * disabled; or "cpu" is being hot-unplugged, and is already dead.
673 */
lru_add_drain_cpu(int cpu)674 void lru_add_drain_cpu(int cpu)
675 {
676 struct cpu_fbatches *fbatches = &per_cpu(cpu_fbatches, cpu);
677 struct folio_batch *fbatch = &fbatches->lru_add;
678
679 if (folio_batch_count(fbatch))
680 folio_batch_move_lru(fbatch, lru_add);
681
682 fbatch = &fbatches->lru_move_tail;
683 /* Disabling interrupts below acts as a compiler barrier. */
684 if (data_race(folio_batch_count(fbatch))) {
685 unsigned long flags;
686
687 /* No harm done if a racing interrupt already did this */
688 local_lock_irqsave(&cpu_fbatches.lock_irq, flags);
689 folio_batch_move_lru(fbatch, lru_move_tail);
690 local_unlock_irqrestore(&cpu_fbatches.lock_irq, flags);
691 }
692
693 fbatch = &fbatches->lru_deactivate_file;
694 if (folio_batch_count(fbatch))
695 folio_batch_move_lru(fbatch, lru_deactivate_file);
696
697 fbatch = &fbatches->lru_deactivate;
698 if (folio_batch_count(fbatch))
699 folio_batch_move_lru(fbatch, lru_deactivate);
700
701 fbatch = &fbatches->lru_lazyfree;
702 if (folio_batch_count(fbatch))
703 folio_batch_move_lru(fbatch, lru_lazyfree);
704
705 folio_activate_drain(cpu);
706 }
707
708 /**
709 * deactivate_file_folio() - Deactivate a file folio.
710 * @folio: Folio to deactivate.
711 *
712 * This function hints to the VM that @folio is a good reclaim candidate,
713 * for example if its invalidation fails due to the folio being dirty
714 * or under writeback.
715 *
716 * Context: Caller holds a reference on the folio.
717 */
deactivate_file_folio(struct folio * folio)718 void deactivate_file_folio(struct folio *folio)
719 {
720 /* Deactivating an unevictable folio will not accelerate reclaim */
721 if (folio_test_unevictable(folio) || !folio_test_lru(folio))
722 return;
723
724 if (lru_gen_enabled() && lru_gen_clear_refs(folio))
725 return;
726
727 folio_batch_add_and_move(folio, lru_deactivate_file);
728 }
729
730 /*
731 * folio_deactivate - deactivate a folio
732 * @folio: folio to deactivate
733 *
734 * folio_deactivate() moves @folio to the inactive list if @folio was on the
735 * active list and was not unevictable. This is done to accelerate the
736 * reclaim of @folio.
737 */
folio_deactivate(struct folio * folio)738 void folio_deactivate(struct folio *folio)
739 {
740 if (folio_test_unevictable(folio))
741 return;
742
743 if (lru_gen_enabled() ? lru_gen_clear_refs(folio) : !folio_test_active(folio))
744 return;
745
746 folio_batch_add_and_move(folio, lru_deactivate);
747 }
748 EXPORT_SYMBOL_GPL(folio_deactivate);
749
750 /**
751 * folio_mark_lazyfree - make an anon folio lazyfree
752 * @folio: folio to deactivate
753 *
754 * folio_mark_lazyfree() moves @folio to the inactive file list.
755 * This is done to accelerate the reclaim of @folio.
756 */
folio_mark_lazyfree(struct folio * folio)757 void folio_mark_lazyfree(struct folio *folio)
758 {
759 if (!folio_test_anon(folio) || !folio_test_swapbacked(folio) ||
760 !folio_test_lru(folio) ||
761 folio_test_swapcache(folio) || folio_test_unevictable(folio))
762 return;
763
764 folio_batch_add_and_move(folio, lru_lazyfree);
765 }
766
lru_add_drain(void)767 void lru_add_drain(void)
768 {
769 local_lock(&cpu_fbatches.lock);
770 lru_add_drain_cpu(smp_processor_id());
771 local_unlock(&cpu_fbatches.lock);
772 mlock_drain_local();
773 }
774
775 /*
776 * It's called from per-cpu workqueue context in SMP case so
777 * lru_add_drain_cpu and invalidate_bh_lrus_cpu should run on
778 * the same cpu. It shouldn't be a problem in !SMP case since
779 * the core is only one and the locks will disable preemption.
780 */
lru_add_and_bh_lrus_drain(void)781 static void lru_add_and_bh_lrus_drain(void)
782 {
783 local_lock(&cpu_fbatches.lock);
784 lru_add_drain_cpu(smp_processor_id());
785 local_unlock(&cpu_fbatches.lock);
786 invalidate_bh_lrus_cpu();
787 mlock_drain_local();
788 }
789
lru_add_drain_cpu_zone(struct zone * zone)790 void lru_add_drain_cpu_zone(struct zone *zone)
791 {
792 local_lock(&cpu_fbatches.lock);
793 lru_add_drain_cpu(smp_processor_id());
794 drain_local_pages(zone);
795 local_unlock(&cpu_fbatches.lock);
796 mlock_drain_local();
797 }
798
799 #ifdef CONFIG_SMP
800
801 static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work);
802
lru_add_drain_per_cpu(struct work_struct * dummy)803 static void lru_add_drain_per_cpu(struct work_struct *dummy)
804 {
805 lru_add_and_bh_lrus_drain();
806 }
807
cpu_needs_drain(unsigned int cpu)808 static bool cpu_needs_drain(unsigned int cpu)
809 {
810 struct cpu_fbatches *fbatches = &per_cpu(cpu_fbatches, cpu);
811
812 /* Check these in order of likelihood that they're not zero */
813 return folio_batch_count(&fbatches->lru_add) ||
814 folio_batch_count(&fbatches->lru_move_tail) ||
815 folio_batch_count(&fbatches->lru_deactivate_file) ||
816 folio_batch_count(&fbatches->lru_deactivate) ||
817 folio_batch_count(&fbatches->lru_lazyfree) ||
818 folio_batch_count(&fbatches->lru_activate) ||
819 need_mlock_drain(cpu) ||
820 has_bh_in_lru(cpu, NULL);
821 }
822
823 /*
824 * Doesn't need any cpu hotplug locking because we do rely on per-cpu
825 * kworkers being shut down before our page_alloc_cpu_dead callback is
826 * executed on the offlined cpu.
827 * Calling this function with cpu hotplug locks held can actually lead
828 * to obscure indirect dependencies via WQ context.
829 */
__lru_add_drain_all(bool force_all_cpus)830 static inline void __lru_add_drain_all(bool force_all_cpus)
831 {
832 /*
833 * lru_drain_gen - Global pages generation number
834 *
835 * (A) Definition: global lru_drain_gen = x implies that all generations
836 * 0 < n <= x are already *scheduled* for draining.
837 *
838 * This is an optimization for the highly-contended use case where a
839 * user space workload keeps constantly generating a flow of pages for
840 * each CPU.
841 */
842 static unsigned int lru_drain_gen;
843 static struct cpumask has_work;
844 static DEFINE_MUTEX(lock);
845 unsigned cpu, this_gen;
846
847 /*
848 * Make sure nobody triggers this path before mm_percpu_wq is fully
849 * initialized.
850 */
851 if (WARN_ON(!mm_percpu_wq))
852 return;
853
854 /*
855 * Guarantee folio_batch counter stores visible by this CPU
856 * are visible to other CPUs before loading the current drain
857 * generation.
858 */
859 smp_mb();
860
861 /*
862 * (B) Locally cache global LRU draining generation number
863 *
864 * The read barrier ensures that the counter is loaded before the mutex
865 * is taken. It pairs with smp_mb() inside the mutex critical section
866 * at (D).
867 */
868 this_gen = smp_load_acquire(&lru_drain_gen);
869
870 mutex_lock(&lock);
871
872 /*
873 * (C) Exit the draining operation if a newer generation, from another
874 * lru_add_drain_all(), was already scheduled for draining. Check (A).
875 */
876 if (unlikely(this_gen != lru_drain_gen && !force_all_cpus))
877 goto done;
878
879 /*
880 * (D) Increment global generation number
881 *
882 * Pairs with smp_load_acquire() at (B), outside of the critical
883 * section. Use a full memory barrier to guarantee that the
884 * new global drain generation number is stored before loading
885 * folio_batch counters.
886 *
887 * This pairing must be done here, before the for_each_online_cpu loop
888 * below which drains the page vectors.
889 *
890 * Let x, y, and z represent some system CPU numbers, where x < y < z.
891 * Assume CPU #z is in the middle of the for_each_online_cpu loop
892 * below and has already reached CPU #y's per-cpu data. CPU #x comes
893 * along, adds some pages to its per-cpu vectors, then calls
894 * lru_add_drain_all().
895 *
896 * If the paired barrier is done at any later step, e.g. after the
897 * loop, CPU #x will just exit at (C) and miss flushing out all of its
898 * added pages.
899 */
900 WRITE_ONCE(lru_drain_gen, lru_drain_gen + 1);
901 smp_mb();
902
903 cpumask_clear(&has_work);
904 for_each_online_cpu(cpu) {
905 struct work_struct *work = &per_cpu(lru_add_drain_work, cpu);
906
907 if (cpu_needs_drain(cpu)) {
908 INIT_WORK(work, lru_add_drain_per_cpu);
909 queue_work_on(cpu, mm_percpu_wq, work);
910 __cpumask_set_cpu(cpu, &has_work);
911 }
912 }
913
914 for_each_cpu(cpu, &has_work)
915 flush_work(&per_cpu(lru_add_drain_work, cpu));
916
917 done:
918 mutex_unlock(&lock);
919 }
920
lru_add_drain_all(void)921 void lru_add_drain_all(void)
922 {
923 __lru_add_drain_all(false);
924 }
925 #else
lru_add_drain_all(void)926 void lru_add_drain_all(void)
927 {
928 lru_add_drain();
929 }
930 #endif /* CONFIG_SMP */
931
932 atomic_t lru_disable_count = ATOMIC_INIT(0);
933 EXPORT_SYMBOL_GPL(lru_disable_count);
934
935 /*
936 * lru_cache_disable() needs to be called before we start compiling
937 * a list of folios to be migrated using folio_isolate_lru().
938 * It drains folios on LRU cache and then disable on all cpus until
939 * lru_cache_enable is called.
940 *
941 * Must be paired with a call to lru_cache_enable().
942 */
lru_cache_disable(void)943 void lru_cache_disable(void)
944 {
945 /*
946 * If someone is already disabled lru_cache, just return with
947 * increasing the lru_disable_count.
948 */
949 if (atomic_inc_not_zero(&lru_disable_count))
950 return;
951 /*
952 * Readers of lru_disable_count are protected by either disabling
953 * preemption or rcu_read_lock:
954 *
955 * preempt_disable, local_irq_disable [bh_lru_lock()]
956 * rcu_read_lock [rt_spin_lock CONFIG_PREEMPT_RT]
957 * preempt_disable [local_lock !CONFIG_PREEMPT_RT]
958 *
959 * Since v5.1 kernel, synchronize_rcu() is guaranteed to wait on
960 * preempt_disable() regions of code. So any CPU which sees
961 * lru_disable_count = 0 will have exited the critical
962 * section when synchronize_rcu() returns.
963 */
964 synchronize_rcu_expedited();
965 #ifdef CONFIG_SMP
966 __lru_add_drain_all(true);
967 #else
968 lru_add_and_bh_lrus_drain();
969 #endif
970 atomic_inc(&lru_disable_count);
971 }
972 EXPORT_SYMBOL_GPL(lru_cache_disable);
973
974 /**
975 * folios_put_refs - Reduce the reference count on a batch of folios.
976 * @folios: The folios.
977 * @refs: The number of refs to subtract from each folio.
978 *
979 * Like folio_put(), but for a batch of folios. This is more efficient
980 * than writing the loop yourself as it will optimise the locks which need
981 * to be taken if the folios are freed. The folios batch is returned
982 * empty and ready to be reused for another batch; there is no need
983 * to reinitialise it. If @refs is NULL, we subtract one from each
984 * folio refcount.
985 *
986 * Context: May be called in process or interrupt context, but not in NMI
987 * context. May be called while holding a spinlock.
988 */
folios_put_refs(struct folio_batch * folios,unsigned int * refs)989 void folios_put_refs(struct folio_batch *folios, unsigned int *refs)
990 {
991 int i, j;
992 struct lruvec *lruvec = NULL;
993 unsigned long flags = 0;
994
995 for (i = 0, j = 0; i < folios->nr; i++) {
996 struct folio *folio = folios->folios[i];
997 unsigned int nr_refs = refs ? refs[i] : 1;
998
999 if (is_huge_zero_folio(folio))
1000 continue;
1001
1002 if (folio_is_zone_device(folio)) {
1003 if (lruvec) {
1004 unlock_page_lruvec_irqrestore(lruvec, flags);
1005 lruvec = NULL;
1006 }
1007 if (put_devmap_managed_folio_refs(folio, nr_refs))
1008 continue;
1009 if (folio_ref_sub_and_test(folio, nr_refs))
1010 free_zone_device_folio(folio);
1011 continue;
1012 }
1013
1014 if (!folio_ref_sub_and_test(folio, nr_refs))
1015 continue;
1016
1017 /* hugetlb has its own memcg */
1018 if (folio_test_hugetlb(folio)) {
1019 if (lruvec) {
1020 unlock_page_lruvec_irqrestore(lruvec, flags);
1021 lruvec = NULL;
1022 }
1023 free_huge_folio(folio);
1024 continue;
1025 }
1026 folio_unqueue_deferred_split(folio);
1027 __page_cache_release(folio, &lruvec, &flags);
1028
1029 if (j != i)
1030 folios->folios[j] = folio;
1031 j++;
1032 }
1033 if (lruvec)
1034 unlock_page_lruvec_irqrestore(lruvec, flags);
1035 if (!j) {
1036 folio_batch_reinit(folios);
1037 return;
1038 }
1039
1040 folios->nr = j;
1041 mem_cgroup_uncharge_folios(folios);
1042 free_unref_folios(folios);
1043 }
1044 EXPORT_SYMBOL(folios_put_refs);
1045
1046 /**
1047 * release_pages - batched put_page()
1048 * @arg: array of pages to release
1049 * @nr: number of pages
1050 *
1051 * Decrement the reference count on all the pages in @arg. If it
1052 * fell to zero, remove the page from the LRU and free it.
1053 *
1054 * Note that the argument can be an array of pages, encoded pages,
1055 * or folio pointers. We ignore any encoded bits, and turn any of
1056 * them into just a folio that gets free'd.
1057 */
release_pages(release_pages_arg arg,int nr)1058 void release_pages(release_pages_arg arg, int nr)
1059 {
1060 struct folio_batch fbatch;
1061 int refs[PAGEVEC_SIZE];
1062 struct encoded_page **encoded = arg.encoded_pages;
1063 int i;
1064
1065 folio_batch_init(&fbatch);
1066 for (i = 0; i < nr; i++) {
1067 /* Turn any of the argument types into a folio */
1068 struct folio *folio = page_folio(encoded_page_ptr(encoded[i]));
1069
1070 /* Is our next entry actually "nr_pages" -> "nr_refs" ? */
1071 refs[fbatch.nr] = 1;
1072 if (unlikely(encoded_page_flags(encoded[i]) &
1073 ENCODED_PAGE_BIT_NR_PAGES_NEXT))
1074 refs[fbatch.nr] = encoded_nr_pages(encoded[++i]);
1075
1076 if (folio_batch_add(&fbatch, folio) > 0)
1077 continue;
1078 folios_put_refs(&fbatch, refs);
1079 }
1080
1081 if (fbatch.nr)
1082 folios_put_refs(&fbatch, refs);
1083 }
1084 EXPORT_SYMBOL(release_pages);
1085
1086 /*
1087 * The folios which we're about to release may be in the deferred lru-addition
1088 * queues. That would prevent them from really being freed right now. That's
1089 * OK from a correctness point of view but is inefficient - those folios may be
1090 * cache-warm and we want to give them back to the page allocator ASAP.
1091 *
1092 * So __folio_batch_release() will drain those queues here.
1093 * folio_batch_move_lru() calls folios_put() directly to avoid
1094 * mutual recursion.
1095 */
__folio_batch_release(struct folio_batch * fbatch)1096 void __folio_batch_release(struct folio_batch *fbatch)
1097 {
1098 if (!fbatch->percpu_pvec_drained) {
1099 lru_add_drain();
1100 fbatch->percpu_pvec_drained = true;
1101 }
1102 folios_put(fbatch);
1103 }
1104 EXPORT_SYMBOL(__folio_batch_release);
1105
1106 /**
1107 * folio_batch_remove_exceptionals() - Prune non-folios from a batch.
1108 * @fbatch: The batch to prune
1109 *
1110 * find_get_entries() fills a batch with both folios and shadow/swap/DAX
1111 * entries. This function prunes all the non-folio entries from @fbatch
1112 * without leaving holes, so that it can be passed on to folio-only batch
1113 * operations.
1114 */
folio_batch_remove_exceptionals(struct folio_batch * fbatch)1115 void folio_batch_remove_exceptionals(struct folio_batch *fbatch)
1116 {
1117 unsigned int i, j;
1118
1119 for (i = 0, j = 0; i < folio_batch_count(fbatch); i++) {
1120 struct folio *folio = fbatch->folios[i];
1121 if (!xa_is_value(folio))
1122 fbatch->folios[j++] = folio;
1123 }
1124 fbatch->nr = j;
1125 }
1126
1127 /*
1128 * Perform any setup for the swap system
1129 */
swap_setup(void)1130 void __init swap_setup(void)
1131 {
1132 unsigned long megs = totalram_pages() >> (20 - PAGE_SHIFT);
1133
1134 /* Use a smaller cluster for small-memory machines */
1135 if (megs < 16)
1136 page_cluster = 2;
1137 else
1138 page_cluster = 3;
1139 /*
1140 * Right now other parts of the system means that we
1141 * _really_ don't want to cluster much more
1142 */
1143 }
1144