1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * fs/fs-writeback.c
4  *
5  * Copyright (C) 2002, Linus Torvalds.
6  *
7  * Contains all the functions related to writing back and waiting
8  * upon dirty inodes against superblocks, and writing back dirty
9  * pages against inodes.  ie: data writeback.  Writeout of the
10  * inode itself is not handled here.
11  *
12  * 10Apr2002	Andrew Morton
13  *		Split out of fs/inode.c
14  *		Additions for address_space-based writeback
15  */
16 
17 #include <linux/kernel.h>
18 #include <linux/export.h>
19 #include <linux/spinlock.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/fs.h>
23 #include <linux/mm.h>
24 #include <linux/pagemap.h>
25 #include <linux/kthread.h>
26 #include <linux/writeback.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/tracepoint.h>
30 #include <linux/device.h>
31 #include <linux/memcontrol.h>
32 #include "internal.h"
33 
34 /*
35  * 4MB minimal write chunk size
36  */
37 #define MIN_WRITEBACK_PAGES	(4096UL >> (PAGE_SHIFT - 10))
38 
39 /*
40  * Passed into wb_writeback(), essentially a subset of writeback_control
41  */
42 struct wb_writeback_work {
43 	long nr_pages;
44 	struct super_block *sb;
45 	enum writeback_sync_modes sync_mode;
46 	unsigned int tagged_writepages:1;
47 	unsigned int for_kupdate:1;
48 	unsigned int range_cyclic:1;
49 	unsigned int for_background:1;
50 	unsigned int for_sync:1;	/* sync(2) WB_SYNC_ALL writeback */
51 	unsigned int auto_free:1;	/* free on completion */
52 	enum wb_reason reason;		/* why was writeback initiated? */
53 
54 	struct list_head list;		/* pending work list */
55 	struct wb_completion *done;	/* set if the caller waits */
56 };
57 
58 /*
59  * If an inode is constantly having its pages dirtied, but then the
60  * updates stop dirtytime_expire_interval seconds in the past, it's
61  * possible for the worst case time between when an inode has its
62  * timestamps updated and when they finally get written out to be two
63  * dirtytime_expire_intervals.  We set the default to 12 hours (in
64  * seconds), which means most of the time inodes will have their
65  * timestamps written to disk after 12 hours, but in the worst case a
66  * few inodes might not their timestamps updated for 24 hours.
67  */
68 unsigned int dirtytime_expire_interval = 12 * 60 * 60;
69 
wb_inode(struct list_head * head)70 static inline struct inode *wb_inode(struct list_head *head)
71 {
72 	return list_entry(head, struct inode, i_io_list);
73 }
74 
75 /*
76  * Include the creation of the trace points after defining the
77  * wb_writeback_work structure and inline functions so that the definition
78  * remains local to this file.
79  */
80 #define CREATE_TRACE_POINTS
81 #include <trace/events/writeback.h>
82 #undef CREATE_TRACE_POINTS
83 #include <trace/hooks/fs.h>
84 
85 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
86 
wb_io_lists_populated(struct bdi_writeback * wb)87 static bool wb_io_lists_populated(struct bdi_writeback *wb)
88 {
89 	if (wb_has_dirty_io(wb)) {
90 		return false;
91 	} else {
92 		set_bit(WB_has_dirty_io, &wb->state);
93 		WARN_ON_ONCE(!wb->avg_write_bandwidth);
94 		atomic_long_add(wb->avg_write_bandwidth,
95 				&wb->bdi->tot_write_bandwidth);
96 		return true;
97 	}
98 }
99 
wb_io_lists_depopulated(struct bdi_writeback * wb)100 static void wb_io_lists_depopulated(struct bdi_writeback *wb)
101 {
102 	if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
103 	    list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
104 		clear_bit(WB_has_dirty_io, &wb->state);
105 		WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
106 					&wb->bdi->tot_write_bandwidth) < 0);
107 	}
108 }
109 
110 /**
111  * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
112  * @inode: inode to be moved
113  * @wb: target bdi_writeback
114  * @head: one of @wb->b_{dirty|io|more_io|dirty_time}
115  *
116  * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
117  * Returns %true if @inode is the first occupant of the !dirty_time IO
118  * lists; otherwise, %false.
119  */
inode_io_list_move_locked(struct inode * inode,struct bdi_writeback * wb,struct list_head * head)120 static bool inode_io_list_move_locked(struct inode *inode,
121 				      struct bdi_writeback *wb,
122 				      struct list_head *head)
123 {
124 	assert_spin_locked(&wb->list_lock);
125 	assert_spin_locked(&inode->i_lock);
126 	WARN_ON_ONCE(inode->i_state & I_FREEING);
127 
128 	list_move(&inode->i_io_list, head);
129 
130 	/* dirty_time doesn't count as dirty_io until expiration */
131 	if (head != &wb->b_dirty_time)
132 		return wb_io_lists_populated(wb);
133 
134 	wb_io_lists_depopulated(wb);
135 	return false;
136 }
137 
wb_wakeup(struct bdi_writeback * wb)138 void wb_wakeup(struct bdi_writeback *wb)
139 {
140 	spin_lock_irq(&wb->work_lock);
141 	if (test_bit(WB_registered, &wb->state))
142 		mod_delayed_work(bdi_wq, &wb->dwork, 0);
143 	spin_unlock_irq(&wb->work_lock);
144 }
145 EXPORT_SYMBOL_GPL(wb_wakeup);
146 
147 /*
148  * This function is used when the first inode for this wb is marked dirty. It
149  * wakes-up the corresponding bdi thread which should then take care of the
150  * periodic background write-out of dirty inodes. Since the write-out would
151  * starts only 'dirty_writeback_interval' centisecs from now anyway, we just
152  * set up a timer which wakes the bdi thread up later.
153  *
154  * Note, we wouldn't bother setting up the timer, but this function is on the
155  * fast-path (used by '__mark_inode_dirty()'), so we save few context switches
156  * by delaying the wake-up.
157  *
158  * We have to be careful not to postpone flush work if it is scheduled for
159  * earlier. Thus we use queue_delayed_work().
160  */
wb_wakeup_delayed(struct bdi_writeback * wb)161 static void wb_wakeup_delayed(struct bdi_writeback *wb)
162 {
163 	unsigned long timeout;
164 
165 	timeout = msecs_to_jiffies(dirty_writeback_interval * 10);
166 	spin_lock_irq(&wb->work_lock);
167 	if (test_bit(WB_registered, &wb->state))
168 		queue_delayed_work(bdi_wq, &wb->dwork, timeout);
169 	spin_unlock_irq(&wb->work_lock);
170 }
171 
finish_writeback_work(struct wb_writeback_work * work)172 static void finish_writeback_work(struct wb_writeback_work *work)
173 {
174 	struct wb_completion *done = work->done;
175 
176 	if (work->auto_free)
177 		kfree(work);
178 	if (done) {
179 		wait_queue_head_t *waitq = done->waitq;
180 
181 		/* @done can't be accessed after the following dec */
182 		if (atomic_dec_and_test(&done->cnt))
183 			wake_up_all(waitq);
184 	}
185 }
186 
wb_queue_work(struct bdi_writeback * wb,struct wb_writeback_work * work)187 static void wb_queue_work(struct bdi_writeback *wb,
188 			  struct wb_writeback_work *work)
189 {
190 	trace_writeback_queue(wb, work);
191 
192 	if (work->done)
193 		atomic_inc(&work->done->cnt);
194 
195 	spin_lock_irq(&wb->work_lock);
196 
197 	if (test_bit(WB_registered, &wb->state)) {
198 		list_add_tail(&work->list, &wb->work_list);
199 		mod_delayed_work(bdi_wq, &wb->dwork, 0);
200 	} else
201 		finish_writeback_work(work);
202 
203 	spin_unlock_irq(&wb->work_lock);
204 }
205 
206 /**
207  * wb_wait_for_completion - wait for completion of bdi_writeback_works
208  * @done: target wb_completion
209  *
210  * Wait for one or more work items issued to @bdi with their ->done field
211  * set to @done, which should have been initialized with
212  * DEFINE_WB_COMPLETION().  This function returns after all such work items
213  * are completed.  Work items which are waited upon aren't freed
214  * automatically on completion.
215  */
wb_wait_for_completion(struct wb_completion * done)216 void wb_wait_for_completion(struct wb_completion *done)
217 {
218 	atomic_dec(&done->cnt);		/* put down the initial count */
219 	wait_event(*done->waitq, !atomic_read(&done->cnt));
220 }
221 
222 #ifdef CONFIG_CGROUP_WRITEBACK
223 
224 /*
225  * Parameters for foreign inode detection, see wbc_detach_inode() to see
226  * how they're used.
227  *
228  * These paramters are inherently heuristical as the detection target
229  * itself is fuzzy.  All we want to do is detaching an inode from the
230  * current owner if it's being written to by some other cgroups too much.
231  *
232  * The current cgroup writeback is built on the assumption that multiple
233  * cgroups writing to the same inode concurrently is very rare and a mode
234  * of operation which isn't well supported.  As such, the goal is not
235  * taking too long when a different cgroup takes over an inode while
236  * avoiding too aggressive flip-flops from occasional foreign writes.
237  *
238  * We record, very roughly, 2s worth of IO time history and if more than
239  * half of that is foreign, trigger the switch.  The recording is quantized
240  * to 16 slots.  To avoid tiny writes from swinging the decision too much,
241  * writes smaller than 1/8 of avg size are ignored.
242  */
243 #define WB_FRN_TIME_SHIFT	13	/* 1s = 2^13, upto 8 secs w/ 16bit */
244 #define WB_FRN_TIME_AVG_SHIFT	3	/* avg = avg * 7/8 + new * 1/8 */
245 #define WB_FRN_TIME_CUT_DIV	8	/* ignore rounds < avg / 8 */
246 #define WB_FRN_TIME_PERIOD	(2 * (1 << WB_FRN_TIME_SHIFT))	/* 2s */
247 
248 #define WB_FRN_HIST_SLOTS	16	/* inode->i_wb_frn_history is 16bit */
249 #define WB_FRN_HIST_UNIT	(WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
250 					/* each slot's duration is 2s / 16 */
251 #define WB_FRN_HIST_THR_SLOTS	(WB_FRN_HIST_SLOTS / 2)
252 					/* if foreign slots >= 8, switch */
253 #define WB_FRN_HIST_MAX_SLOTS	(WB_FRN_HIST_THR_SLOTS / 2 + 1)
254 					/* one round can affect upto 5 slots */
255 #define WB_FRN_MAX_IN_FLIGHT	1024	/* don't queue too many concurrently */
256 
257 /*
258  * Maximum inodes per isw.  A specific value has been chosen to make
259  * struct inode_switch_wbs_context fit into 1024 bytes kmalloc.
260  */
261 #define WB_MAX_INODES_PER_ISW  ((1024UL - sizeof(struct inode_switch_wbs_context)) \
262                                 / sizeof(struct inode *))
263 
264 static atomic_t isw_nr_in_flight = ATOMIC_INIT(0);
265 static struct workqueue_struct *isw_wq;
266 
__inode_attach_wb(struct inode * inode,struct folio * folio)267 void __inode_attach_wb(struct inode *inode, struct folio *folio)
268 {
269 	struct backing_dev_info *bdi = inode_to_bdi(inode);
270 	struct bdi_writeback *wb = NULL;
271 
272 	if (inode_cgwb_enabled(inode)) {
273 		struct cgroup_subsys_state *memcg_css;
274 
275 		if (folio) {
276 			memcg_css = mem_cgroup_css_from_folio(folio);
277 			wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
278 		} else {
279 			/* must pin memcg_css, see wb_get_create() */
280 			memcg_css = task_get_css(current, memory_cgrp_id);
281 			wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
282 			css_put(memcg_css);
283 		}
284 	}
285 
286 	if (!wb)
287 		wb = &bdi->wb;
288 
289 	/*
290 	 * There may be multiple instances of this function racing to
291 	 * update the same inode.  Use cmpxchg() to tell the winner.
292 	 */
293 	if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
294 		wb_put(wb);
295 }
296 EXPORT_SYMBOL_GPL(__inode_attach_wb);
297 
298 /**
299  * inode_cgwb_move_to_attached - put the inode onto wb->b_attached list
300  * @inode: inode of interest with i_lock held
301  * @wb: target bdi_writeback
302  *
303  * Remove the inode from wb's io lists and if necessarily put onto b_attached
304  * list.  Only inodes attached to cgwb's are kept on this list.
305  */
inode_cgwb_move_to_attached(struct inode * inode,struct bdi_writeback * wb)306 static void inode_cgwb_move_to_attached(struct inode *inode,
307 					struct bdi_writeback *wb)
308 {
309 	assert_spin_locked(&wb->list_lock);
310 	assert_spin_locked(&inode->i_lock);
311 	WARN_ON_ONCE(inode->i_state & I_FREEING);
312 
313 	inode->i_state &= ~I_SYNC_QUEUED;
314 	if (wb != &wb->bdi->wb)
315 		list_move(&inode->i_io_list, &wb->b_attached);
316 	else
317 		list_del_init(&inode->i_io_list);
318 	wb_io_lists_depopulated(wb);
319 }
320 
321 /**
322  * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
323  * @inode: inode of interest with i_lock held
324  *
325  * Returns @inode's wb with its list_lock held.  @inode->i_lock must be
326  * held on entry and is released on return.  The returned wb is guaranteed
327  * to stay @inode's associated wb until its list_lock is released.
328  */
329 static struct bdi_writeback *
locked_inode_to_wb_and_lock_list(struct inode * inode)330 locked_inode_to_wb_and_lock_list(struct inode *inode)
331 	__releases(&inode->i_lock)
332 	__acquires(&wb->list_lock)
333 {
334 	while (true) {
335 		struct bdi_writeback *wb = inode_to_wb(inode);
336 
337 		/*
338 		 * inode_to_wb() association is protected by both
339 		 * @inode->i_lock and @wb->list_lock but list_lock nests
340 		 * outside i_lock.  Drop i_lock and verify that the
341 		 * association hasn't changed after acquiring list_lock.
342 		 */
343 		wb_get(wb);
344 		spin_unlock(&inode->i_lock);
345 		spin_lock(&wb->list_lock);
346 
347 		/* i_wb may have changed inbetween, can't use inode_to_wb() */
348 		if (likely(wb == inode->i_wb)) {
349 			wb_put(wb);	/* @inode already has ref */
350 			return wb;
351 		}
352 
353 		spin_unlock(&wb->list_lock);
354 		wb_put(wb);
355 		cpu_relax();
356 		spin_lock(&inode->i_lock);
357 	}
358 }
359 
360 /**
361  * inode_to_wb_and_lock_list - determine an inode's wb and lock it
362  * @inode: inode of interest
363  *
364  * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
365  * on entry.
366  */
inode_to_wb_and_lock_list(struct inode * inode)367 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
368 	__acquires(&wb->list_lock)
369 {
370 	spin_lock(&inode->i_lock);
371 	return locked_inode_to_wb_and_lock_list(inode);
372 }
373 
374 struct inode_switch_wbs_context {
375 	struct rcu_work		work;
376 
377 	/*
378 	 * Multiple inodes can be switched at once.  The switching procedure
379 	 * consists of two parts, separated by a RCU grace period.  To make
380 	 * sure that the second part is executed for each inode gone through
381 	 * the first part, all inode pointers are placed into a NULL-terminated
382 	 * array embedded into struct inode_switch_wbs_context.  Otherwise
383 	 * an inode could be left in a non-consistent state.
384 	 */
385 	struct bdi_writeback	*new_wb;
386 	struct inode		*inodes[];
387 };
388 
bdi_down_write_wb_switch_rwsem(struct backing_dev_info * bdi)389 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi)
390 {
391 	down_write(&bdi->wb_switch_rwsem);
392 }
393 
bdi_up_write_wb_switch_rwsem(struct backing_dev_info * bdi)394 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi)
395 {
396 	up_write(&bdi->wb_switch_rwsem);
397 }
398 
inode_do_switch_wbs(struct inode * inode,struct bdi_writeback * old_wb,struct bdi_writeback * new_wb)399 static bool inode_do_switch_wbs(struct inode *inode,
400 				struct bdi_writeback *old_wb,
401 				struct bdi_writeback *new_wb)
402 {
403 	struct address_space *mapping = inode->i_mapping;
404 	XA_STATE(xas, &mapping->i_pages, 0);
405 	struct folio *folio;
406 	bool switched = false;
407 
408 	spin_lock(&inode->i_lock);
409 	xa_lock_irq(&mapping->i_pages);
410 
411 	/*
412 	 * Once I_FREEING or I_WILL_FREE are visible under i_lock, the eviction
413 	 * path owns the inode and we shouldn't modify ->i_io_list.
414 	 */
415 	if (unlikely(inode->i_state & (I_FREEING | I_WILL_FREE)))
416 		goto skip_switch;
417 
418 	trace_inode_switch_wbs(inode, old_wb, new_wb);
419 
420 	/*
421 	 * Count and transfer stats.  Note that PAGECACHE_TAG_DIRTY points
422 	 * to possibly dirty folios while PAGECACHE_TAG_WRITEBACK points to
423 	 * folios actually under writeback.
424 	 */
425 	xas_for_each_marked(&xas, folio, ULONG_MAX, PAGECACHE_TAG_DIRTY) {
426 		if (folio_test_dirty(folio)) {
427 			long nr = folio_nr_pages(folio);
428 			wb_stat_mod(old_wb, WB_RECLAIMABLE, -nr);
429 			wb_stat_mod(new_wb, WB_RECLAIMABLE, nr);
430 		}
431 	}
432 
433 	xas_set(&xas, 0);
434 	xas_for_each_marked(&xas, folio, ULONG_MAX, PAGECACHE_TAG_WRITEBACK) {
435 		long nr = folio_nr_pages(folio);
436 		WARN_ON_ONCE(!folio_test_writeback(folio));
437 		wb_stat_mod(old_wb, WB_WRITEBACK, -nr);
438 		wb_stat_mod(new_wb, WB_WRITEBACK, nr);
439 	}
440 
441 	if (mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK)) {
442 		atomic_dec(&old_wb->writeback_inodes);
443 		atomic_inc(&new_wb->writeback_inodes);
444 	}
445 
446 	wb_get(new_wb);
447 
448 	/*
449 	 * Transfer to @new_wb's IO list if necessary.  If the @inode is dirty,
450 	 * the specific list @inode was on is ignored and the @inode is put on
451 	 * ->b_dirty which is always correct including from ->b_dirty_time.
452 	 * The transfer preserves @inode->dirtied_when ordering.  If the @inode
453 	 * was clean, it means it was on the b_attached list, so move it onto
454 	 * the b_attached list of @new_wb.
455 	 */
456 	if (!list_empty(&inode->i_io_list)) {
457 		inode->i_wb = new_wb;
458 
459 		if (inode->i_state & I_DIRTY_ALL) {
460 			struct inode *pos;
461 
462 			list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
463 				if (time_after_eq(inode->dirtied_when,
464 						  pos->dirtied_when))
465 					break;
466 			inode_io_list_move_locked(inode, new_wb,
467 						  pos->i_io_list.prev);
468 		} else {
469 			inode_cgwb_move_to_attached(inode, new_wb);
470 		}
471 	} else {
472 		inode->i_wb = new_wb;
473 	}
474 
475 	/* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
476 	inode->i_wb_frn_winner = 0;
477 	inode->i_wb_frn_avg_time = 0;
478 	inode->i_wb_frn_history = 0;
479 	switched = true;
480 skip_switch:
481 	/*
482 	 * Paired with load_acquire in unlocked_inode_to_wb_begin() and
483 	 * ensures that the new wb is visible if they see !I_WB_SWITCH.
484 	 */
485 	smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
486 
487 	xa_unlock_irq(&mapping->i_pages);
488 	spin_unlock(&inode->i_lock);
489 
490 	return switched;
491 }
492 
inode_switch_wbs_work_fn(struct work_struct * work)493 static void inode_switch_wbs_work_fn(struct work_struct *work)
494 {
495 	struct inode_switch_wbs_context *isw =
496 		container_of(to_rcu_work(work), struct inode_switch_wbs_context, work);
497 	struct backing_dev_info *bdi = inode_to_bdi(isw->inodes[0]);
498 	struct bdi_writeback *old_wb = isw->inodes[0]->i_wb;
499 	struct bdi_writeback *new_wb = isw->new_wb;
500 	unsigned long nr_switched = 0;
501 	struct inode **inodep;
502 
503 	/*
504 	 * If @inode switches cgwb membership while sync_inodes_sb() is
505 	 * being issued, sync_inodes_sb() might miss it.  Synchronize.
506 	 */
507 	down_read(&bdi->wb_switch_rwsem);
508 
509 	/*
510 	 * By the time control reaches here, RCU grace period has passed
511 	 * since I_WB_SWITCH assertion and all wb stat update transactions
512 	 * between unlocked_inode_to_wb_begin/end() are guaranteed to be
513 	 * synchronizing against the i_pages lock.
514 	 *
515 	 * Grabbing old_wb->list_lock, inode->i_lock and the i_pages lock
516 	 * gives us exclusion against all wb related operations on @inode
517 	 * including IO list manipulations and stat updates.
518 	 */
519 	if (old_wb < new_wb) {
520 		spin_lock(&old_wb->list_lock);
521 		spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
522 	} else {
523 		spin_lock(&new_wb->list_lock);
524 		spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
525 	}
526 
527 	for (inodep = isw->inodes; *inodep; inodep++) {
528 		WARN_ON_ONCE((*inodep)->i_wb != old_wb);
529 		if (inode_do_switch_wbs(*inodep, old_wb, new_wb))
530 			nr_switched++;
531 	}
532 
533 	spin_unlock(&new_wb->list_lock);
534 	spin_unlock(&old_wb->list_lock);
535 
536 	up_read(&bdi->wb_switch_rwsem);
537 
538 	if (nr_switched) {
539 		wb_wakeup(new_wb);
540 		wb_put_many(old_wb, nr_switched);
541 	}
542 
543 	for (inodep = isw->inodes; *inodep; inodep++)
544 		iput(*inodep);
545 	wb_put(new_wb);
546 	kfree(isw);
547 	atomic_dec(&isw_nr_in_flight);
548 }
549 
inode_prepare_wbs_switch(struct inode * inode,struct bdi_writeback * new_wb)550 static bool inode_prepare_wbs_switch(struct inode *inode,
551 				     struct bdi_writeback *new_wb)
552 {
553 	/*
554 	 * Paired with smp_mb() in cgroup_writeback_umount().
555 	 * isw_nr_in_flight must be increased before checking SB_ACTIVE and
556 	 * grabbing an inode, otherwise isw_nr_in_flight can be observed as 0
557 	 * in cgroup_writeback_umount() and the isw_wq will be not flushed.
558 	 */
559 	smp_mb();
560 
561 	if (IS_DAX(inode))
562 		return false;
563 
564 	/* while holding I_WB_SWITCH, no one else can update the association */
565 	spin_lock(&inode->i_lock);
566 	if (!(inode->i_sb->s_flags & SB_ACTIVE) ||
567 	    inode->i_state & (I_WB_SWITCH | I_FREEING | I_WILL_FREE) ||
568 	    inode_to_wb(inode) == new_wb) {
569 		spin_unlock(&inode->i_lock);
570 		return false;
571 	}
572 	inode->i_state |= I_WB_SWITCH;
573 	__iget(inode);
574 	spin_unlock(&inode->i_lock);
575 
576 	return true;
577 }
578 
579 /**
580  * inode_switch_wbs - change the wb association of an inode
581  * @inode: target inode
582  * @new_wb_id: ID of the new wb
583  *
584  * Switch @inode's wb association to the wb identified by @new_wb_id.  The
585  * switching is performed asynchronously and may fail silently.
586  */
inode_switch_wbs(struct inode * inode,int new_wb_id)587 static void inode_switch_wbs(struct inode *inode, int new_wb_id)
588 {
589 	struct backing_dev_info *bdi = inode_to_bdi(inode);
590 	struct cgroup_subsys_state *memcg_css;
591 	struct inode_switch_wbs_context *isw;
592 
593 	/* noop if seems to be already in progress */
594 	if (inode->i_state & I_WB_SWITCH)
595 		return;
596 
597 	/* avoid queueing a new switch if too many are already in flight */
598 	if (atomic_read(&isw_nr_in_flight) > WB_FRN_MAX_IN_FLIGHT)
599 		return;
600 
601 	isw = kzalloc(struct_size(isw, inodes, 2), GFP_ATOMIC);
602 	if (!isw)
603 		return;
604 
605 	atomic_inc(&isw_nr_in_flight);
606 
607 	/* find and pin the new wb */
608 	rcu_read_lock();
609 	memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
610 	if (memcg_css && !css_tryget(memcg_css))
611 		memcg_css = NULL;
612 	rcu_read_unlock();
613 	if (!memcg_css)
614 		goto out_free;
615 
616 	isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
617 	css_put(memcg_css);
618 	if (!isw->new_wb)
619 		goto out_free;
620 
621 	if (!inode_prepare_wbs_switch(inode, isw->new_wb))
622 		goto out_free;
623 
624 	isw->inodes[0] = inode;
625 
626 	/*
627 	 * In addition to synchronizing among switchers, I_WB_SWITCH tells
628 	 * the RCU protected stat update paths to grab the i_page
629 	 * lock so that stat transfer can synchronize against them.
630 	 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
631 	 */
632 	INIT_RCU_WORK(&isw->work, inode_switch_wbs_work_fn);
633 	queue_rcu_work(isw_wq, &isw->work);
634 	return;
635 
636 out_free:
637 	atomic_dec(&isw_nr_in_flight);
638 	if (isw->new_wb)
639 		wb_put(isw->new_wb);
640 	kfree(isw);
641 }
642 
isw_prepare_wbs_switch(struct inode_switch_wbs_context * isw,struct list_head * list,int * nr)643 static bool isw_prepare_wbs_switch(struct inode_switch_wbs_context *isw,
644 				   struct list_head *list, int *nr)
645 {
646 	struct inode *inode;
647 
648 	list_for_each_entry(inode, list, i_io_list) {
649 		if (!inode_prepare_wbs_switch(inode, isw->new_wb))
650 			continue;
651 
652 		isw->inodes[*nr] = inode;
653 		(*nr)++;
654 
655 		if (*nr >= WB_MAX_INODES_PER_ISW - 1)
656 			return true;
657 	}
658 	return false;
659 }
660 
661 /**
662  * cleanup_offline_cgwb - detach associated inodes
663  * @wb: target wb
664  *
665  * Switch all inodes attached to @wb to a nearest living ancestor's wb in order
666  * to eventually release the dying @wb.  Returns %true if not all inodes were
667  * switched and the function has to be restarted.
668  */
cleanup_offline_cgwb(struct bdi_writeback * wb)669 bool cleanup_offline_cgwb(struct bdi_writeback *wb)
670 {
671 	struct cgroup_subsys_state *memcg_css;
672 	struct inode_switch_wbs_context *isw;
673 	int nr;
674 	bool restart = false;
675 
676 	isw = kzalloc(struct_size(isw, inodes, WB_MAX_INODES_PER_ISW),
677 		      GFP_KERNEL);
678 	if (!isw)
679 		return restart;
680 
681 	atomic_inc(&isw_nr_in_flight);
682 
683 	for (memcg_css = wb->memcg_css->parent; memcg_css;
684 	     memcg_css = memcg_css->parent) {
685 		isw->new_wb = wb_get_create(wb->bdi, memcg_css, GFP_KERNEL);
686 		if (isw->new_wb)
687 			break;
688 	}
689 	if (unlikely(!isw->new_wb))
690 		isw->new_wb = &wb->bdi->wb; /* wb_get() is noop for bdi's wb */
691 
692 	nr = 0;
693 	spin_lock(&wb->list_lock);
694 	/*
695 	 * In addition to the inodes that have completed writeback, also switch
696 	 * cgwbs for those inodes only with dirty timestamps. Otherwise, those
697 	 * inodes won't be written back for a long time when lazytime is
698 	 * enabled, and thus pinning the dying cgwbs. It won't break the
699 	 * bandwidth restrictions, as writeback of inode metadata is not
700 	 * accounted for.
701 	 */
702 	restart = isw_prepare_wbs_switch(isw, &wb->b_attached, &nr);
703 	if (!restart)
704 		restart = isw_prepare_wbs_switch(isw, &wb->b_dirty_time, &nr);
705 	spin_unlock(&wb->list_lock);
706 
707 	/* no attached inodes? bail out */
708 	if (nr == 0) {
709 		atomic_dec(&isw_nr_in_flight);
710 		wb_put(isw->new_wb);
711 		kfree(isw);
712 		return restart;
713 	}
714 
715 	/*
716 	 * In addition to synchronizing among switchers, I_WB_SWITCH tells
717 	 * the RCU protected stat update paths to grab the i_page
718 	 * lock so that stat transfer can synchronize against them.
719 	 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
720 	 */
721 	INIT_RCU_WORK(&isw->work, inode_switch_wbs_work_fn);
722 	queue_rcu_work(isw_wq, &isw->work);
723 
724 	return restart;
725 }
726 
727 /**
728  * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
729  * @wbc: writeback_control of interest
730  * @inode: target inode
731  *
732  * @inode is locked and about to be written back under the control of @wbc.
733  * Record @inode's writeback context into @wbc and unlock the i_lock.  On
734  * writeback completion, wbc_detach_inode() should be called.  This is used
735  * to track the cgroup writeback context.
736  */
wbc_attach_and_unlock_inode(struct writeback_control * wbc,struct inode * inode)737 void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
738 				 struct inode *inode)
739 {
740 	if (!inode_cgwb_enabled(inode)) {
741 		spin_unlock(&inode->i_lock);
742 		return;
743 	}
744 
745 	wbc->wb = inode_to_wb(inode);
746 	wbc->inode = inode;
747 
748 	wbc->wb_id = wbc->wb->memcg_css->id;
749 	wbc->wb_lcand_id = inode->i_wb_frn_winner;
750 	wbc->wb_tcand_id = 0;
751 	wbc->wb_bytes = 0;
752 	wbc->wb_lcand_bytes = 0;
753 	wbc->wb_tcand_bytes = 0;
754 
755 	wb_get(wbc->wb);
756 	spin_unlock(&inode->i_lock);
757 
758 	/*
759 	 * A dying wb indicates that either the blkcg associated with the
760 	 * memcg changed or the associated memcg is dying.  In the first
761 	 * case, a replacement wb should already be available and we should
762 	 * refresh the wb immediately.  In the second case, trying to
763 	 * refresh will keep failing.
764 	 */
765 	if (unlikely(wb_dying(wbc->wb) && !css_is_dying(wbc->wb->memcg_css)))
766 		inode_switch_wbs(inode, wbc->wb_id);
767 }
768 EXPORT_SYMBOL_GPL(wbc_attach_and_unlock_inode);
769 
770 /**
771  * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
772  * @wbc: writeback_control of the just finished writeback
773  *
774  * To be called after a writeback attempt of an inode finishes and undoes
775  * wbc_attach_and_unlock_inode().  Can be called under any context.
776  *
777  * As concurrent write sharing of an inode is expected to be very rare and
778  * memcg only tracks page ownership on first-use basis severely confining
779  * the usefulness of such sharing, cgroup writeback tracks ownership
780  * per-inode.  While the support for concurrent write sharing of an inode
781  * is deemed unnecessary, an inode being written to by different cgroups at
782  * different points in time is a lot more common, and, more importantly,
783  * charging only by first-use can too readily lead to grossly incorrect
784  * behaviors (single foreign page can lead to gigabytes of writeback to be
785  * incorrectly attributed).
786  *
787  * To resolve this issue, cgroup writeback detects the majority dirtier of
788  * an inode and transfers the ownership to it.  To avoid unnecessary
789  * oscillation, the detection mechanism keeps track of history and gives
790  * out the switch verdict only if the foreign usage pattern is stable over
791  * a certain amount of time and/or writeback attempts.
792  *
793  * On each writeback attempt, @wbc tries to detect the majority writer
794  * using Boyer-Moore majority vote algorithm.  In addition to the byte
795  * count from the majority voting, it also counts the bytes written for the
796  * current wb and the last round's winner wb (max of last round's current
797  * wb, the winner from two rounds ago, and the last round's majority
798  * candidate).  Keeping track of the historical winner helps the algorithm
799  * to semi-reliably detect the most active writer even when it's not the
800  * absolute majority.
801  *
802  * Once the winner of the round is determined, whether the winner is
803  * foreign or not and how much IO time the round consumed is recorded in
804  * inode->i_wb_frn_history.  If the amount of recorded foreign IO time is
805  * over a certain threshold, the switch verdict is given.
806  */
wbc_detach_inode(struct writeback_control * wbc)807 void wbc_detach_inode(struct writeback_control *wbc)
808 {
809 	struct bdi_writeback *wb = wbc->wb;
810 	struct inode *inode = wbc->inode;
811 	unsigned long avg_time, max_bytes, max_time;
812 	u16 history;
813 	int max_id;
814 
815 	if (!wb)
816 		return;
817 
818 	history = inode->i_wb_frn_history;
819 	avg_time = inode->i_wb_frn_avg_time;
820 
821 	/* pick the winner of this round */
822 	if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
823 	    wbc->wb_bytes >= wbc->wb_tcand_bytes) {
824 		max_id = wbc->wb_id;
825 		max_bytes = wbc->wb_bytes;
826 	} else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
827 		max_id = wbc->wb_lcand_id;
828 		max_bytes = wbc->wb_lcand_bytes;
829 	} else {
830 		max_id = wbc->wb_tcand_id;
831 		max_bytes = wbc->wb_tcand_bytes;
832 	}
833 
834 	/*
835 	 * Calculate the amount of IO time the winner consumed and fold it
836 	 * into the running average kept per inode.  If the consumed IO
837 	 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
838 	 * deciding whether to switch or not.  This is to prevent one-off
839 	 * small dirtiers from skewing the verdict.
840 	 */
841 	max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
842 				wb->avg_write_bandwidth);
843 	if (avg_time)
844 		avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
845 			    (avg_time >> WB_FRN_TIME_AVG_SHIFT);
846 	else
847 		avg_time = max_time;	/* immediate catch up on first run */
848 
849 	if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
850 		int slots;
851 
852 		/*
853 		 * The switch verdict is reached if foreign wb's consume
854 		 * more than a certain proportion of IO time in a
855 		 * WB_FRN_TIME_PERIOD.  This is loosely tracked by 16 slot
856 		 * history mask where each bit represents one sixteenth of
857 		 * the period.  Determine the number of slots to shift into
858 		 * history from @max_time.
859 		 */
860 		slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
861 			    (unsigned long)WB_FRN_HIST_MAX_SLOTS);
862 		history <<= slots;
863 		if (wbc->wb_id != max_id)
864 			history |= (1U << slots) - 1;
865 
866 		if (history)
867 			trace_inode_foreign_history(inode, wbc, history);
868 
869 		/*
870 		 * Switch if the current wb isn't the consistent winner.
871 		 * If there are multiple closely competing dirtiers, the
872 		 * inode may switch across them repeatedly over time, which
873 		 * is okay.  The main goal is avoiding keeping an inode on
874 		 * the wrong wb for an extended period of time.
875 		 */
876 		if (hweight16(history) > WB_FRN_HIST_THR_SLOTS)
877 			inode_switch_wbs(inode, max_id);
878 	}
879 
880 	/*
881 	 * Multiple instances of this function may race to update the
882 	 * following fields but we don't mind occassional inaccuracies.
883 	 */
884 	inode->i_wb_frn_winner = max_id;
885 	inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
886 	inode->i_wb_frn_history = history;
887 
888 	wb_put(wbc->wb);
889 	wbc->wb = NULL;
890 }
891 EXPORT_SYMBOL_GPL(wbc_detach_inode);
892 
893 /**
894  * wbc_account_cgroup_owner - account writeback to update inode cgroup ownership
895  * @wbc: writeback_control of the writeback in progress
896  * @folio: folio being written out
897  * @bytes: number of bytes being written out
898  *
899  * @bytes from @folio are about to written out during the writeback
900  * controlled by @wbc.  Keep the book for foreign inode detection.  See
901  * wbc_detach_inode().
902  */
wbc_account_cgroup_owner(struct writeback_control * wbc,struct folio * folio,size_t bytes)903 void wbc_account_cgroup_owner(struct writeback_control *wbc, struct folio *folio,
904 			      size_t bytes)
905 {
906 	struct cgroup_subsys_state *css;
907 	int id;
908 
909 	/*
910 	 * pageout() path doesn't attach @wbc to the inode being written
911 	 * out.  This is intentional as we don't want the function to block
912 	 * behind a slow cgroup.  Ultimately, we want pageout() to kick off
913 	 * regular writeback instead of writing things out itself.
914 	 */
915 	if (!wbc->wb || wbc->no_cgroup_owner)
916 		return;
917 
918 	css = mem_cgroup_css_from_folio(folio);
919 	/* dead cgroups shouldn't contribute to inode ownership arbitration */
920 	if (!(css->flags & CSS_ONLINE))
921 		return;
922 
923 	id = css->id;
924 
925 	if (id == wbc->wb_id) {
926 		wbc->wb_bytes += bytes;
927 		return;
928 	}
929 
930 	if (id == wbc->wb_lcand_id)
931 		wbc->wb_lcand_bytes += bytes;
932 
933 	/* Boyer-Moore majority vote algorithm */
934 	if (!wbc->wb_tcand_bytes)
935 		wbc->wb_tcand_id = id;
936 	if (id == wbc->wb_tcand_id)
937 		wbc->wb_tcand_bytes += bytes;
938 	else
939 		wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
940 }
941 EXPORT_SYMBOL_GPL(wbc_account_cgroup_owner);
942 
943 /**
944  * wb_split_bdi_pages - split nr_pages to write according to bandwidth
945  * @wb: target bdi_writeback to split @nr_pages to
946  * @nr_pages: number of pages to write for the whole bdi
947  *
948  * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
949  * relation to the total write bandwidth of all wb's w/ dirty inodes on
950  * @wb->bdi.
951  */
wb_split_bdi_pages(struct bdi_writeback * wb,long nr_pages)952 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
953 {
954 	unsigned long this_bw = wb->avg_write_bandwidth;
955 	unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
956 
957 	if (nr_pages == LONG_MAX)
958 		return LONG_MAX;
959 
960 	/*
961 	 * This may be called on clean wb's and proportional distribution
962 	 * may not make sense, just use the original @nr_pages in those
963 	 * cases.  In general, we wanna err on the side of writing more.
964 	 */
965 	if (!tot_bw || this_bw >= tot_bw)
966 		return nr_pages;
967 	else
968 		return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
969 }
970 
971 /**
972  * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
973  * @bdi: target backing_dev_info
974  * @base_work: wb_writeback_work to issue
975  * @skip_if_busy: skip wb's which already have writeback in progress
976  *
977  * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
978  * have dirty inodes.  If @base_work->nr_page isn't %LONG_MAX, it's
979  * distributed to the busy wbs according to each wb's proportion in the
980  * total active write bandwidth of @bdi.
981  */
bdi_split_work_to_wbs(struct backing_dev_info * bdi,struct wb_writeback_work * base_work,bool skip_if_busy)982 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
983 				  struct wb_writeback_work *base_work,
984 				  bool skip_if_busy)
985 {
986 	struct bdi_writeback *last_wb = NULL;
987 	struct bdi_writeback *wb = list_entry(&bdi->wb_list,
988 					      struct bdi_writeback, bdi_node);
989 
990 	might_sleep();
991 restart:
992 	rcu_read_lock();
993 	list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
994 		DEFINE_WB_COMPLETION(fallback_work_done, bdi);
995 		struct wb_writeback_work fallback_work;
996 		struct wb_writeback_work *work;
997 		long nr_pages;
998 
999 		if (last_wb) {
1000 			wb_put(last_wb);
1001 			last_wb = NULL;
1002 		}
1003 
1004 		/* SYNC_ALL writes out I_DIRTY_TIME too */
1005 		if (!wb_has_dirty_io(wb) &&
1006 		    (base_work->sync_mode == WB_SYNC_NONE ||
1007 		     list_empty(&wb->b_dirty_time)))
1008 			continue;
1009 		if (skip_if_busy && writeback_in_progress(wb))
1010 			continue;
1011 
1012 		nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);
1013 
1014 		work = kmalloc(sizeof(*work), GFP_ATOMIC);
1015 		if (work) {
1016 			*work = *base_work;
1017 			work->nr_pages = nr_pages;
1018 			work->auto_free = 1;
1019 			wb_queue_work(wb, work);
1020 			continue;
1021 		}
1022 
1023 		/*
1024 		 * If wb_tryget fails, the wb has been shutdown, skip it.
1025 		 *
1026 		 * Pin @wb so that it stays on @bdi->wb_list.  This allows
1027 		 * continuing iteration from @wb after dropping and
1028 		 * regrabbing rcu read lock.
1029 		 */
1030 		if (!wb_tryget(wb))
1031 			continue;
1032 
1033 		/* alloc failed, execute synchronously using on-stack fallback */
1034 		work = &fallback_work;
1035 		*work = *base_work;
1036 		work->nr_pages = nr_pages;
1037 		work->auto_free = 0;
1038 		work->done = &fallback_work_done;
1039 
1040 		wb_queue_work(wb, work);
1041 		last_wb = wb;
1042 
1043 		rcu_read_unlock();
1044 		wb_wait_for_completion(&fallback_work_done);
1045 		goto restart;
1046 	}
1047 	rcu_read_unlock();
1048 
1049 	if (last_wb)
1050 		wb_put(last_wb);
1051 }
1052 
1053 /**
1054  * cgroup_writeback_by_id - initiate cgroup writeback from bdi and memcg IDs
1055  * @bdi_id: target bdi id
1056  * @memcg_id: target memcg css id
1057  * @reason: reason why some writeback work initiated
1058  * @done: target wb_completion
1059  *
1060  * Initiate flush of the bdi_writeback identified by @bdi_id and @memcg_id
1061  * with the specified parameters.
1062  */
cgroup_writeback_by_id(u64 bdi_id,int memcg_id,enum wb_reason reason,struct wb_completion * done)1063 int cgroup_writeback_by_id(u64 bdi_id, int memcg_id,
1064 			   enum wb_reason reason, struct wb_completion *done)
1065 {
1066 	struct backing_dev_info *bdi;
1067 	struct cgroup_subsys_state *memcg_css;
1068 	struct bdi_writeback *wb;
1069 	struct wb_writeback_work *work;
1070 	unsigned long dirty;
1071 	int ret;
1072 
1073 	/* lookup bdi and memcg */
1074 	bdi = bdi_get_by_id(bdi_id);
1075 	if (!bdi)
1076 		return -ENOENT;
1077 
1078 	rcu_read_lock();
1079 	memcg_css = css_from_id(memcg_id, &memory_cgrp_subsys);
1080 	if (memcg_css && !css_tryget(memcg_css))
1081 		memcg_css = NULL;
1082 	rcu_read_unlock();
1083 	if (!memcg_css) {
1084 		ret = -ENOENT;
1085 		goto out_bdi_put;
1086 	}
1087 
1088 	/*
1089 	 * And find the associated wb.  If the wb isn't there already
1090 	 * there's nothing to flush, don't create one.
1091 	 */
1092 	wb = wb_get_lookup(bdi, memcg_css);
1093 	if (!wb) {
1094 		ret = -ENOENT;
1095 		goto out_css_put;
1096 	}
1097 
1098 	/*
1099 	 * The caller is attempting to write out most of
1100 	 * the currently dirty pages.  Let's take the current dirty page
1101 	 * count and inflate it by 25% which should be large enough to
1102 	 * flush out most dirty pages while avoiding getting livelocked by
1103 	 * concurrent dirtiers.
1104 	 *
1105 	 * BTW the memcg stats are flushed periodically and this is best-effort
1106 	 * estimation, so some potential error is ok.
1107 	 */
1108 	dirty = memcg_page_state(mem_cgroup_from_css(memcg_css), NR_FILE_DIRTY);
1109 	dirty = dirty * 10 / 8;
1110 
1111 	/* issue the writeback work */
1112 	work = kzalloc(sizeof(*work), GFP_NOWAIT | __GFP_NOWARN);
1113 	if (work) {
1114 		work->nr_pages = dirty;
1115 		work->sync_mode = WB_SYNC_NONE;
1116 		work->range_cyclic = 1;
1117 		work->reason = reason;
1118 		work->done = done;
1119 		work->auto_free = 1;
1120 		wb_queue_work(wb, work);
1121 		ret = 0;
1122 	} else {
1123 		ret = -ENOMEM;
1124 	}
1125 
1126 	wb_put(wb);
1127 out_css_put:
1128 	css_put(memcg_css);
1129 out_bdi_put:
1130 	bdi_put(bdi);
1131 	return ret;
1132 }
1133 
1134 /**
1135  * cgroup_writeback_umount - flush inode wb switches for umount
1136  * @sb: target super_block
1137  *
1138  * This function is called when a super_block is about to be destroyed and
1139  * flushes in-flight inode wb switches.  An inode wb switch goes through
1140  * RCU and then workqueue, so the two need to be flushed in order to ensure
1141  * that all previously scheduled switches are finished.  As wb switches are
1142  * rare occurrences and synchronize_rcu() can take a while, perform
1143  * flushing iff wb switches are in flight.
1144  */
cgroup_writeback_umount(struct super_block * sb)1145 void cgroup_writeback_umount(struct super_block *sb)
1146 {
1147 
1148 	if (!(sb->s_bdi->capabilities & BDI_CAP_WRITEBACK))
1149 		return;
1150 
1151 	/*
1152 	 * SB_ACTIVE should be reliably cleared before checking
1153 	 * isw_nr_in_flight, see generic_shutdown_super().
1154 	 */
1155 	smp_mb();
1156 
1157 	if (atomic_read(&isw_nr_in_flight)) {
1158 		/*
1159 		 * Use rcu_barrier() to wait for all pending callbacks to
1160 		 * ensure that all in-flight wb switches are in the workqueue.
1161 		 */
1162 		rcu_barrier();
1163 		flush_workqueue(isw_wq);
1164 	}
1165 }
1166 
cgroup_writeback_init(void)1167 static int __init cgroup_writeback_init(void)
1168 {
1169 	isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0);
1170 	if (!isw_wq)
1171 		return -ENOMEM;
1172 	return 0;
1173 }
1174 fs_initcall(cgroup_writeback_init);
1175 
1176 #else	/* CONFIG_CGROUP_WRITEBACK */
1177 
bdi_down_write_wb_switch_rwsem(struct backing_dev_info * bdi)1178 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
bdi_up_write_wb_switch_rwsem(struct backing_dev_info * bdi)1179 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
1180 
inode_cgwb_move_to_attached(struct inode * inode,struct bdi_writeback * wb)1181 static void inode_cgwb_move_to_attached(struct inode *inode,
1182 					struct bdi_writeback *wb)
1183 {
1184 	assert_spin_locked(&wb->list_lock);
1185 	assert_spin_locked(&inode->i_lock);
1186 	WARN_ON_ONCE(inode->i_state & I_FREEING);
1187 
1188 	inode->i_state &= ~I_SYNC_QUEUED;
1189 	list_del_init(&inode->i_io_list);
1190 	wb_io_lists_depopulated(wb);
1191 }
1192 
1193 static struct bdi_writeback *
locked_inode_to_wb_and_lock_list(struct inode * inode)1194 locked_inode_to_wb_and_lock_list(struct inode *inode)
1195 	__releases(&inode->i_lock)
1196 	__acquires(&wb->list_lock)
1197 {
1198 	struct bdi_writeback *wb = inode_to_wb(inode);
1199 
1200 	spin_unlock(&inode->i_lock);
1201 	spin_lock(&wb->list_lock);
1202 	return wb;
1203 }
1204 
inode_to_wb_and_lock_list(struct inode * inode)1205 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
1206 	__acquires(&wb->list_lock)
1207 {
1208 	struct bdi_writeback *wb = inode_to_wb(inode);
1209 
1210 	spin_lock(&wb->list_lock);
1211 	return wb;
1212 }
1213 
wb_split_bdi_pages(struct bdi_writeback * wb,long nr_pages)1214 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
1215 {
1216 	return nr_pages;
1217 }
1218 
bdi_split_work_to_wbs(struct backing_dev_info * bdi,struct wb_writeback_work * base_work,bool skip_if_busy)1219 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
1220 				  struct wb_writeback_work *base_work,
1221 				  bool skip_if_busy)
1222 {
1223 	might_sleep();
1224 
1225 	if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
1226 		base_work->auto_free = 0;
1227 		wb_queue_work(&bdi->wb, base_work);
1228 	}
1229 }
1230 
1231 #endif	/* CONFIG_CGROUP_WRITEBACK */
1232 
1233 /*
1234  * Add in the number of potentially dirty inodes, because each inode
1235  * write can dirty pagecache in the underlying blockdev.
1236  */
get_nr_dirty_pages(void)1237 static unsigned long get_nr_dirty_pages(void)
1238 {
1239 	return global_node_page_state(NR_FILE_DIRTY) +
1240 		get_nr_dirty_inodes();
1241 }
1242 
wb_start_writeback(struct bdi_writeback * wb,enum wb_reason reason)1243 static void wb_start_writeback(struct bdi_writeback *wb, enum wb_reason reason)
1244 {
1245 	if (!wb_has_dirty_io(wb))
1246 		return;
1247 
1248 	/*
1249 	 * All callers of this function want to start writeback of all
1250 	 * dirty pages. Places like vmscan can call this at a very
1251 	 * high frequency, causing pointless allocations of tons of
1252 	 * work items and keeping the flusher threads busy retrieving
1253 	 * that work. Ensure that we only allow one of them pending and
1254 	 * inflight at the time.
1255 	 */
1256 	if (test_bit(WB_start_all, &wb->state) ||
1257 	    test_and_set_bit(WB_start_all, &wb->state))
1258 		return;
1259 
1260 	wb->start_all_reason = reason;
1261 	wb_wakeup(wb);
1262 }
1263 
1264 /**
1265  * wb_start_background_writeback - start background writeback
1266  * @wb: bdi_writback to write from
1267  *
1268  * Description:
1269  *   This makes sure WB_SYNC_NONE background writeback happens. When
1270  *   this function returns, it is only guaranteed that for given wb
1271  *   some IO is happening if we are over background dirty threshold.
1272  *   Caller need not hold sb s_umount semaphore.
1273  */
wb_start_background_writeback(struct bdi_writeback * wb)1274 void wb_start_background_writeback(struct bdi_writeback *wb)
1275 {
1276 	/*
1277 	 * We just wake up the flusher thread. It will perform background
1278 	 * writeback as soon as there is no other work to do.
1279 	 */
1280 	trace_writeback_wake_background(wb);
1281 	wb_wakeup(wb);
1282 }
1283 
1284 /*
1285  * Remove the inode from the writeback list it is on.
1286  */
inode_io_list_del(struct inode * inode)1287 void inode_io_list_del(struct inode *inode)
1288 {
1289 	struct bdi_writeback *wb;
1290 
1291 	wb = inode_to_wb_and_lock_list(inode);
1292 	spin_lock(&inode->i_lock);
1293 
1294 	inode->i_state &= ~I_SYNC_QUEUED;
1295 	trace_android_vh_inode_io_list_del(inode, wb);
1296 	list_del_init(&inode->i_io_list);
1297 	wb_io_lists_depopulated(wb);
1298 
1299 	spin_unlock(&inode->i_lock);
1300 	spin_unlock(&wb->list_lock);
1301 }
1302 EXPORT_SYMBOL(inode_io_list_del);
1303 
1304 /*
1305  * mark an inode as under writeback on the sb
1306  */
sb_mark_inode_writeback(struct inode * inode)1307 void sb_mark_inode_writeback(struct inode *inode)
1308 {
1309 	struct super_block *sb = inode->i_sb;
1310 	unsigned long flags;
1311 
1312 	if (list_empty(&inode->i_wb_list)) {
1313 		spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1314 		if (list_empty(&inode->i_wb_list)) {
1315 			list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb);
1316 			trace_sb_mark_inode_writeback(inode);
1317 		}
1318 		spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1319 	}
1320 }
1321 
1322 /*
1323  * clear an inode as under writeback on the sb
1324  */
sb_clear_inode_writeback(struct inode * inode)1325 void sb_clear_inode_writeback(struct inode *inode)
1326 {
1327 	struct super_block *sb = inode->i_sb;
1328 	unsigned long flags;
1329 
1330 	if (!list_empty(&inode->i_wb_list)) {
1331 		spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1332 		if (!list_empty(&inode->i_wb_list)) {
1333 			list_del_init(&inode->i_wb_list);
1334 			trace_sb_clear_inode_writeback(inode);
1335 		}
1336 		spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1337 	}
1338 }
1339 
1340 /*
1341  * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
1342  * furthest end of its superblock's dirty-inode list.
1343  *
1344  * Before stamping the inode's ->dirtied_when, we check to see whether it is
1345  * already the most-recently-dirtied inode on the b_dirty list.  If that is
1346  * the case then the inode must have been redirtied while it was being written
1347  * out and we don't reset its dirtied_when.
1348  */
redirty_tail_locked(struct inode * inode,struct bdi_writeback * wb)1349 void redirty_tail_locked(struct inode *inode, struct bdi_writeback *wb)
1350 {
1351 	struct list_head *target_list = &wb->b_dirty;
1352 	assert_spin_locked(&inode->i_lock);
1353 
1354 	inode->i_state &= ~I_SYNC_QUEUED;
1355 	/*
1356 	 * When the inode is being freed just don't bother with dirty list
1357 	 * tracking. Flush worker will ignore this inode anyway and it will
1358 	 * trigger assertions in inode_io_list_move_locked().
1359 	 */
1360 	if (inode->i_state & I_FREEING) {
1361 		list_del_init(&inode->i_io_list);
1362 		wb_io_lists_depopulated(wb);
1363 		return;
1364 	}
1365 	trace_android_vh_redirty_tail_locked(&target_list, inode, wb);
1366 	if (!list_empty(target_list)) {
1367 		struct inode *tail;
1368 
1369 		tail = wb_inode(target_list->next);
1370 		if (time_before(inode->dirtied_when, tail->dirtied_when))
1371 			inode->dirtied_when = jiffies;
1372 	}
1373 	inode_io_list_move_locked(inode, wb, target_list);
1374 }
1375 EXPORT_SYMBOL_GPL(redirty_tail_locked);
1376 
redirty_tail(struct inode * inode,struct bdi_writeback * wb)1377 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
1378 {
1379 	spin_lock(&inode->i_lock);
1380 	redirty_tail_locked(inode, wb);
1381 	spin_unlock(&inode->i_lock);
1382 }
1383 
1384 /*
1385  * requeue inode for re-scanning after bdi->b_io list is exhausted.
1386  */
requeue_io(struct inode * inode,struct bdi_writeback * wb)1387 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
1388 {
1389 	inode_io_list_move_locked(inode, wb, &wb->b_more_io);
1390 }
1391 
inode_sync_complete(struct inode * inode)1392 static void inode_sync_complete(struct inode *inode)
1393 {
1394 	assert_spin_locked(&inode->i_lock);
1395 
1396 	inode->i_state &= ~I_SYNC;
1397 	/* If inode is clean an unused, put it into LRU now... */
1398 	inode_add_lru(inode);
1399 	/* Called with inode->i_lock which ensures memory ordering. */
1400 	inode_wake_up_bit(inode, __I_SYNC);
1401 }
1402 
inode_dirtied_after(struct inode * inode,unsigned long t)1403 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
1404 {
1405 	bool ret = time_after(inode->dirtied_when, t);
1406 #ifndef CONFIG_64BIT
1407 	/*
1408 	 * For inodes being constantly redirtied, dirtied_when can get stuck.
1409 	 * It _appears_ to be in the future, but is actually in distant past.
1410 	 * This test is necessary to prevent such wrapped-around relative times
1411 	 * from permanently stopping the whole bdi writeback.
1412 	 */
1413 	ret = ret && time_before_eq(inode->dirtied_when, jiffies);
1414 #endif
1415 	return ret;
1416 }
1417 
1418 /*
1419  * Move expired (dirtied before dirtied_before) dirty inodes from
1420  * @delaying_queue to @dispatch_queue.
1421  */
move_expired_inodes(struct list_head * delaying_queue,struct list_head * dispatch_queue,unsigned long dirtied_before)1422 static int move_expired_inodes(struct list_head *delaying_queue,
1423 			       struct list_head *dispatch_queue,
1424 			       unsigned long dirtied_before)
1425 {
1426 	LIST_HEAD(tmp);
1427 	struct list_head *pos, *node;
1428 	struct super_block *sb = NULL;
1429 	struct inode *inode;
1430 	int do_sb_sort = 0;
1431 	int moved = 0;
1432 
1433 	while (!list_empty(delaying_queue)) {
1434 		inode = wb_inode(delaying_queue->prev);
1435 		if (inode_dirtied_after(inode, dirtied_before))
1436 			break;
1437 		spin_lock(&inode->i_lock);
1438 		list_move(&inode->i_io_list, &tmp);
1439 		moved++;
1440 		inode->i_state |= I_SYNC_QUEUED;
1441 		spin_unlock(&inode->i_lock);
1442 		if (sb_is_blkdev_sb(inode->i_sb))
1443 			continue;
1444 		if (sb && sb != inode->i_sb)
1445 			do_sb_sort = 1;
1446 		sb = inode->i_sb;
1447 	}
1448 
1449 	/* just one sb in list, splice to dispatch_queue and we're done */
1450 	if (!do_sb_sort) {
1451 		list_splice(&tmp, dispatch_queue);
1452 		goto out;
1453 	}
1454 
1455 	/*
1456 	 * Although inode's i_io_list is moved from 'tmp' to 'dispatch_queue',
1457 	 * we don't take inode->i_lock here because it is just a pointless overhead.
1458 	 * Inode is already marked as I_SYNC_QUEUED so writeback list handling is
1459 	 * fully under our control.
1460 	 */
1461 	while (!list_empty(&tmp)) {
1462 		sb = wb_inode(tmp.prev)->i_sb;
1463 		list_for_each_prev_safe(pos, node, &tmp) {
1464 			inode = wb_inode(pos);
1465 			if (inode->i_sb == sb)
1466 				list_move(&inode->i_io_list, dispatch_queue);
1467 		}
1468 	}
1469 out:
1470 	return moved;
1471 }
1472 
1473 /*
1474  * Queue all expired dirty inodes for io, eldest first.
1475  * Before
1476  *         newly dirtied     b_dirty    b_io    b_more_io
1477  *         =============>    gf         edc     BA
1478  * After
1479  *         newly dirtied     b_dirty    b_io    b_more_io
1480  *         =============>    g          fBAedc
1481  *                                           |
1482  *                                           +--> dequeue for IO
1483  */
queue_io(struct bdi_writeback * wb,struct wb_writeback_work * work,unsigned long dirtied_before)1484 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work,
1485 		     unsigned long dirtied_before)
1486 {
1487 	int moved;
1488 	unsigned long time_expire_jif = dirtied_before;
1489 
1490 	assert_spin_locked(&wb->list_lock);
1491 	list_splice_init(&wb->b_more_io, &wb->b_io);
1492 	moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, dirtied_before);
1493 	trace_android_vh_queue_io(wb, work->for_kupdate, dirtied_before, &moved);
1494 	if (!work->for_sync)
1495 		time_expire_jif = jiffies - dirtytime_expire_interval * HZ;
1496 	moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
1497 				     time_expire_jif);
1498 	if (moved)
1499 		wb_io_lists_populated(wb);
1500 	trace_writeback_queue_io(wb, work, dirtied_before, moved);
1501 }
1502 
write_inode(struct inode * inode,struct writeback_control * wbc)1503 static int write_inode(struct inode *inode, struct writeback_control *wbc)
1504 {
1505 	int ret;
1506 
1507 	if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1508 		trace_writeback_write_inode_start(inode, wbc);
1509 		ret = inode->i_sb->s_op->write_inode(inode, wbc);
1510 		trace_writeback_write_inode(inode, wbc);
1511 		return ret;
1512 	}
1513 	return 0;
1514 }
1515 
1516 /*
1517  * Wait for writeback on an inode to complete. Called with i_lock held.
1518  * Caller must make sure inode cannot go away when we drop i_lock.
1519  */
inode_wait_for_writeback(struct inode * inode)1520 void inode_wait_for_writeback(struct inode *inode)
1521 {
1522 	struct wait_bit_queue_entry wqe;
1523 	struct wait_queue_head *wq_head;
1524 
1525 	assert_spin_locked(&inode->i_lock);
1526 
1527 	if (!(inode->i_state & I_SYNC))
1528 		return;
1529 
1530 	wq_head = inode_bit_waitqueue(&wqe, inode, __I_SYNC);
1531 	for (;;) {
1532 		prepare_to_wait_event(wq_head, &wqe.wq_entry, TASK_UNINTERRUPTIBLE);
1533 		/* Checking I_SYNC with inode->i_lock guarantees memory ordering. */
1534 		if (!(inode->i_state & I_SYNC))
1535 			break;
1536 		spin_unlock(&inode->i_lock);
1537 		schedule();
1538 		spin_lock(&inode->i_lock);
1539 	}
1540 	finish_wait(wq_head, &wqe.wq_entry);
1541 }
1542 
1543 /*
1544  * Sleep until I_SYNC is cleared. This function must be called with i_lock
1545  * held and drops it. It is aimed for callers not holding any inode reference
1546  * so once i_lock is dropped, inode can go away.
1547  */
inode_sleep_on_writeback(struct inode * inode)1548 static void inode_sleep_on_writeback(struct inode *inode)
1549 	__releases(inode->i_lock)
1550 {
1551 	struct wait_bit_queue_entry wqe;
1552 	struct wait_queue_head *wq_head;
1553 	bool sleep;
1554 
1555 	assert_spin_locked(&inode->i_lock);
1556 
1557 	wq_head = inode_bit_waitqueue(&wqe, inode, __I_SYNC);
1558 	prepare_to_wait_event(wq_head, &wqe.wq_entry, TASK_UNINTERRUPTIBLE);
1559 	/* Checking I_SYNC with inode->i_lock guarantees memory ordering. */
1560 	sleep = !!(inode->i_state & I_SYNC);
1561 	spin_unlock(&inode->i_lock);
1562 	if (sleep)
1563 		schedule();
1564 	finish_wait(wq_head, &wqe.wq_entry);
1565 }
1566 
1567 /*
1568  * Find proper writeback list for the inode depending on its current state and
1569  * possibly also change of its state while we were doing writeback.  Here we
1570  * handle things such as livelock prevention or fairness of writeback among
1571  * inodes. This function can be called only by flusher thread - noone else
1572  * processes all inodes in writeback lists and requeueing inodes behind flusher
1573  * thread's back can have unexpected consequences.
1574  */
requeue_inode(struct inode * inode,struct bdi_writeback * wb,struct writeback_control * wbc,unsigned long dirtied_before)1575 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1576 			  struct writeback_control *wbc,
1577 			  unsigned long dirtied_before)
1578 {
1579 	if (inode->i_state & I_FREEING)
1580 		return;
1581 
1582 	/*
1583 	 * Sync livelock prevention. Each inode is tagged and synced in one
1584 	 * shot. If still dirty, it will be redirty_tail()'ed below.  Update
1585 	 * the dirty time to prevent enqueue and sync it again.
1586 	 */
1587 	if ((inode->i_state & I_DIRTY) &&
1588 	    (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1589 		inode->dirtied_when = jiffies;
1590 
1591 	if (wbc->pages_skipped) {
1592 		/*
1593 		 * Writeback is not making progress due to locked buffers.
1594 		 * Skip this inode for now. Although having skipped pages
1595 		 * is odd for clean inodes, it can happen for some
1596 		 * filesystems so handle that gracefully.
1597 		 */
1598 		if (inode->i_state & I_DIRTY_ALL)
1599 			redirty_tail_locked(inode, wb);
1600 		else
1601 			inode_cgwb_move_to_attached(inode, wb);
1602 		return;
1603 	}
1604 
1605 	if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1606 		/*
1607 		 * We didn't write back all the pages.  nfs_writepages()
1608 		 * sometimes bales out without doing anything.
1609 		 */
1610 		if (wbc->nr_to_write <= 0 &&
1611 		    !inode_dirtied_after(inode, dirtied_before)) {
1612 			/* Slice used up. Queue for next turn. */
1613 			requeue_io(inode, wb);
1614 		} else {
1615 			/*
1616 			 * Writeback blocked by something other than
1617 			 * congestion. Delay the inode for some time to
1618 			 * avoid spinning on the CPU (100% iowait)
1619 			 * retrying writeback of the dirty page/inode
1620 			 * that cannot be performed immediately.
1621 			 */
1622 			redirty_tail_locked(inode, wb);
1623 		}
1624 	} else if (inode->i_state & I_DIRTY) {
1625 		/*
1626 		 * Filesystems can dirty the inode during writeback operations,
1627 		 * such as delayed allocation during submission or metadata
1628 		 * updates after data IO completion.
1629 		 */
1630 		redirty_tail_locked(inode, wb);
1631 	} else if (inode->i_state & I_DIRTY_TIME) {
1632 		inode->dirtied_when = jiffies;
1633 		inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
1634 		inode->i_state &= ~I_SYNC_QUEUED;
1635 	} else {
1636 		/* The inode is clean. Remove from writeback lists. */
1637 		inode_cgwb_move_to_attached(inode, wb);
1638 	}
1639 }
1640 
1641 /*
1642  * Write out an inode and its dirty pages (or some of its dirty pages, depending
1643  * on @wbc->nr_to_write), and clear the relevant dirty flags from i_state.
1644  *
1645  * This doesn't remove the inode from the writeback list it is on, except
1646  * potentially to move it from b_dirty_time to b_dirty due to timestamp
1647  * expiration.  The caller is otherwise responsible for writeback list handling.
1648  *
1649  * The caller is also responsible for setting the I_SYNC flag beforehand and
1650  * calling inode_sync_complete() to clear it afterwards.
1651  */
1652 static int
__writeback_single_inode(struct inode * inode,struct writeback_control * wbc)1653 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1654 {
1655 	struct address_space *mapping = inode->i_mapping;
1656 	long nr_to_write = wbc->nr_to_write;
1657 	unsigned dirty;
1658 	int ret;
1659 
1660 	WARN_ON(!(inode->i_state & I_SYNC));
1661 
1662 	trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1663 
1664 	ret = do_writepages(mapping, wbc);
1665 
1666 	/*
1667 	 * Make sure to wait on the data before writing out the metadata.
1668 	 * This is important for filesystems that modify metadata on data
1669 	 * I/O completion. We don't do it for sync(2) writeback because it has a
1670 	 * separate, external IO completion path and ->sync_fs for guaranteeing
1671 	 * inode metadata is written back correctly.
1672 	 */
1673 	if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
1674 		int err = filemap_fdatawait(mapping);
1675 		if (ret == 0)
1676 			ret = err;
1677 	}
1678 
1679 	/*
1680 	 * If the inode has dirty timestamps and we need to write them, call
1681 	 * mark_inode_dirty_sync() to notify the filesystem about it and to
1682 	 * change I_DIRTY_TIME into I_DIRTY_SYNC.
1683 	 */
1684 	if ((inode->i_state & I_DIRTY_TIME) &&
1685 	    (wbc->sync_mode == WB_SYNC_ALL ||
1686 	     time_after(jiffies, inode->dirtied_time_when +
1687 			dirtytime_expire_interval * HZ))) {
1688 		trace_writeback_lazytime(inode);
1689 		mark_inode_dirty_sync(inode);
1690 	}
1691 
1692 	/*
1693 	 * Get and clear the dirty flags from i_state.  This needs to be done
1694 	 * after calling writepages because some filesystems may redirty the
1695 	 * inode during writepages due to delalloc.  It also needs to be done
1696 	 * after handling timestamp expiration, as that may dirty the inode too.
1697 	 */
1698 	spin_lock(&inode->i_lock);
1699 	dirty = inode->i_state & I_DIRTY;
1700 	inode->i_state &= ~dirty;
1701 
1702 	/*
1703 	 * Paired with smp_mb() in __mark_inode_dirty().  This allows
1704 	 * __mark_inode_dirty() to test i_state without grabbing i_lock -
1705 	 * either they see the I_DIRTY bits cleared or we see the dirtied
1706 	 * inode.
1707 	 *
1708 	 * I_DIRTY_PAGES is always cleared together above even if @mapping
1709 	 * still has dirty pages.  The flag is reinstated after smp_mb() if
1710 	 * necessary.  This guarantees that either __mark_inode_dirty()
1711 	 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1712 	 */
1713 	smp_mb();
1714 
1715 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1716 		inode->i_state |= I_DIRTY_PAGES;
1717 	else if (unlikely(inode->i_state & I_PINNING_NETFS_WB)) {
1718 		if (!(inode->i_state & I_DIRTY_PAGES)) {
1719 			inode->i_state &= ~I_PINNING_NETFS_WB;
1720 			wbc->unpinned_netfs_wb = true;
1721 			dirty |= I_PINNING_NETFS_WB; /* Cause write_inode */
1722 		}
1723 	}
1724 
1725 	spin_unlock(&inode->i_lock);
1726 
1727 	/* Don't write the inode if only I_DIRTY_PAGES was set */
1728 	if (dirty & ~I_DIRTY_PAGES) {
1729 		int err = write_inode(inode, wbc);
1730 		if (ret == 0)
1731 			ret = err;
1732 	}
1733 	wbc->unpinned_netfs_wb = false;
1734 	trace_writeback_single_inode(inode, wbc, nr_to_write);
1735 	return ret;
1736 }
1737 
1738 /*
1739  * Write out an inode's dirty data and metadata on-demand, i.e. separately from
1740  * the regular batched writeback done by the flusher threads in
1741  * writeback_sb_inodes().  @wbc controls various aspects of the write, such as
1742  * whether it is a data-integrity sync (%WB_SYNC_ALL) or not (%WB_SYNC_NONE).
1743  *
1744  * To prevent the inode from going away, either the caller must have a reference
1745  * to the inode, or the inode must have I_WILL_FREE or I_FREEING set.
1746  */
writeback_single_inode(struct inode * inode,struct writeback_control * wbc)1747 static int writeback_single_inode(struct inode *inode,
1748 				  struct writeback_control *wbc)
1749 {
1750 	struct bdi_writeback *wb;
1751 	int ret = 0;
1752 
1753 	spin_lock(&inode->i_lock);
1754 	if (!atomic_read(&inode->i_count))
1755 		WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1756 	else
1757 		WARN_ON(inode->i_state & I_WILL_FREE);
1758 
1759 	if (inode->i_state & I_SYNC) {
1760 		/*
1761 		 * Writeback is already running on the inode.  For WB_SYNC_NONE,
1762 		 * that's enough and we can just return.  For WB_SYNC_ALL, we
1763 		 * must wait for the existing writeback to complete, then do
1764 		 * writeback again if there's anything left.
1765 		 */
1766 		if (wbc->sync_mode != WB_SYNC_ALL)
1767 			goto out;
1768 		inode_wait_for_writeback(inode);
1769 	}
1770 	WARN_ON(inode->i_state & I_SYNC);
1771 	/*
1772 	 * If the inode is already fully clean, then there's nothing to do.
1773 	 *
1774 	 * For data-integrity syncs we also need to check whether any pages are
1775 	 * still under writeback, e.g. due to prior WB_SYNC_NONE writeback.  If
1776 	 * there are any such pages, we'll need to wait for them.
1777 	 */
1778 	if (!(inode->i_state & I_DIRTY_ALL) &&
1779 	    (wbc->sync_mode != WB_SYNC_ALL ||
1780 	     !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
1781 		goto out;
1782 	inode->i_state |= I_SYNC;
1783 	wbc_attach_and_unlock_inode(wbc, inode);
1784 
1785 	ret = __writeback_single_inode(inode, wbc);
1786 
1787 	wbc_detach_inode(wbc);
1788 
1789 	wb = inode_to_wb_and_lock_list(inode);
1790 	spin_lock(&inode->i_lock);
1791 	/*
1792 	 * If the inode is freeing, its i_io_list shoudn't be updated
1793 	 * as it can be finally deleted at this moment.
1794 	 */
1795 	if (!(inode->i_state & I_FREEING)) {
1796 		/*
1797 		 * If the inode is now fully clean, then it can be safely
1798 		 * removed from its writeback list (if any). Otherwise the
1799 		 * flusher threads are responsible for the writeback lists.
1800 		 */
1801 		if (!(inode->i_state & I_DIRTY_ALL))
1802 			inode_cgwb_move_to_attached(inode, wb);
1803 		else if (!(inode->i_state & I_SYNC_QUEUED)) {
1804 			if ((inode->i_state & I_DIRTY))
1805 				redirty_tail_locked(inode, wb);
1806 			else if (inode->i_state & I_DIRTY_TIME) {
1807 				inode->dirtied_when = jiffies;
1808 				inode_io_list_move_locked(inode,
1809 							  wb,
1810 							  &wb->b_dirty_time);
1811 			}
1812 		}
1813 	}
1814 
1815 	spin_unlock(&wb->list_lock);
1816 	inode_sync_complete(inode);
1817 out:
1818 	spin_unlock(&inode->i_lock);
1819 	return ret;
1820 }
1821 
writeback_chunk_size(struct bdi_writeback * wb,struct wb_writeback_work * work)1822 static long writeback_chunk_size(struct bdi_writeback *wb,
1823 				 struct wb_writeback_work *work)
1824 {
1825 	long pages;
1826 
1827 	/*
1828 	 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1829 	 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1830 	 * here avoids calling into writeback_inodes_wb() more than once.
1831 	 *
1832 	 * The intended call sequence for WB_SYNC_ALL writeback is:
1833 	 *
1834 	 *      wb_writeback()
1835 	 *          writeback_sb_inodes()       <== called only once
1836 	 *              write_cache_pages()     <== called once for each inode
1837 	 *                   (quickly) tag currently dirty pages
1838 	 *                   (maybe slowly) sync all tagged pages
1839 	 */
1840 	if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1841 		pages = LONG_MAX;
1842 	else {
1843 		pages = min(wb->avg_write_bandwidth / 2,
1844 			    global_wb_domain.dirty_limit / DIRTY_SCOPE);
1845 		pages = min(pages, work->nr_pages);
1846 		pages = round_down(pages + MIN_WRITEBACK_PAGES,
1847 				   MIN_WRITEBACK_PAGES);
1848 	}
1849 
1850 	return pages;
1851 }
1852 
1853 /*
1854  * Write a portion of b_io inodes which belong to @sb.
1855  *
1856  * Return the number of pages and/or inodes written.
1857  *
1858  * NOTE! This is called with wb->list_lock held, and will
1859  * unlock and relock that for each inode it ends up doing
1860  * IO for.
1861  */
writeback_sb_inodes(struct super_block * sb,struct bdi_writeback * wb,struct wb_writeback_work * work)1862 static long writeback_sb_inodes(struct super_block *sb,
1863 				struct bdi_writeback *wb,
1864 				struct wb_writeback_work *work)
1865 {
1866 	struct writeback_control wbc = {
1867 		.sync_mode		= work->sync_mode,
1868 		.tagged_writepages	= work->tagged_writepages,
1869 		.for_kupdate		= work->for_kupdate,
1870 		.for_background		= work->for_background,
1871 		.for_sync		= work->for_sync,
1872 		.range_cyclic		= work->range_cyclic,
1873 		.range_start		= 0,
1874 		.range_end		= LLONG_MAX,
1875 	};
1876 	unsigned long start_time = jiffies;
1877 	long write_chunk;
1878 	long total_wrote = 0;  /* count both pages and inodes */
1879 	unsigned long dirtied_before = jiffies;
1880 
1881 	if (work->for_kupdate)
1882 		dirtied_before = jiffies -
1883 			msecs_to_jiffies(dirty_expire_interval * 10);
1884 
1885 	while (!list_empty(&wb->b_io)) {
1886 		struct inode *inode = wb_inode(wb->b_io.prev);
1887 		struct bdi_writeback *tmp_wb;
1888 		long wrote;
1889 
1890 		if (inode->i_sb != sb) {
1891 			if (work->sb) {
1892 				/*
1893 				 * We only want to write back data for this
1894 				 * superblock, move all inodes not belonging
1895 				 * to it back onto the dirty list.
1896 				 */
1897 				redirty_tail(inode, wb);
1898 				continue;
1899 			}
1900 
1901 			/*
1902 			 * The inode belongs to a different superblock.
1903 			 * Bounce back to the caller to unpin this and
1904 			 * pin the next superblock.
1905 			 */
1906 			break;
1907 		}
1908 
1909 		/*
1910 		 * Don't bother with new inodes or inodes being freed, first
1911 		 * kind does not need periodic writeout yet, and for the latter
1912 		 * kind writeout is handled by the freer.
1913 		 */
1914 		spin_lock(&inode->i_lock);
1915 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
1916 			redirty_tail_locked(inode, wb);
1917 			spin_unlock(&inode->i_lock);
1918 			continue;
1919 		}
1920 		if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1921 			/*
1922 			 * If this inode is locked for writeback and we are not
1923 			 * doing writeback-for-data-integrity, move it to
1924 			 * b_more_io so that writeback can proceed with the
1925 			 * other inodes on s_io.
1926 			 *
1927 			 * We'll have another go at writing back this inode
1928 			 * when we completed a full scan of b_io.
1929 			 */
1930 			requeue_io(inode, wb);
1931 			spin_unlock(&inode->i_lock);
1932 			trace_writeback_sb_inodes_requeue(inode);
1933 			continue;
1934 		}
1935 		spin_unlock(&wb->list_lock);
1936 
1937 		/*
1938 		 * We already requeued the inode if it had I_SYNC set and we
1939 		 * are doing WB_SYNC_NONE writeback. So this catches only the
1940 		 * WB_SYNC_ALL case.
1941 		 */
1942 		if (inode->i_state & I_SYNC) {
1943 			/* Wait for I_SYNC. This function drops i_lock... */
1944 			inode_sleep_on_writeback(inode);
1945 			/* Inode may be gone, start again */
1946 			spin_lock(&wb->list_lock);
1947 			continue;
1948 		}
1949 		inode->i_state |= I_SYNC;
1950 		wbc_attach_and_unlock_inode(&wbc, inode);
1951 
1952 		write_chunk = writeback_chunk_size(wb, work);
1953 		wbc.nr_to_write = write_chunk;
1954 		wbc.pages_skipped = 0;
1955 
1956 		/*
1957 		 * We use I_SYNC to pin the inode in memory. While it is set
1958 		 * evict_inode() will wait so the inode cannot be freed.
1959 		 */
1960 		__writeback_single_inode(inode, &wbc);
1961 
1962 		wbc_detach_inode(&wbc);
1963 		work->nr_pages -= write_chunk - wbc.nr_to_write;
1964 		wrote = write_chunk - wbc.nr_to_write - wbc.pages_skipped;
1965 		wrote = wrote < 0 ? 0 : wrote;
1966 		total_wrote += wrote;
1967 
1968 		if (need_resched()) {
1969 			/*
1970 			 * We're trying to balance between building up a nice
1971 			 * long list of IOs to improve our merge rate, and
1972 			 * getting those IOs out quickly for anyone throttling
1973 			 * in balance_dirty_pages().  cond_resched() doesn't
1974 			 * unplug, so get our IOs out the door before we
1975 			 * give up the CPU.
1976 			 */
1977 			blk_flush_plug(current->plug, false);
1978 			cond_resched();
1979 		}
1980 
1981 		/*
1982 		 * Requeue @inode if still dirty.  Be careful as @inode may
1983 		 * have been switched to another wb in the meantime.
1984 		 */
1985 		tmp_wb = inode_to_wb_and_lock_list(inode);
1986 		spin_lock(&inode->i_lock);
1987 		if (!(inode->i_state & I_DIRTY_ALL))
1988 			total_wrote++;
1989 		requeue_inode(inode, tmp_wb, &wbc, dirtied_before);
1990 		inode_sync_complete(inode);
1991 		spin_unlock(&inode->i_lock);
1992 
1993 		if (unlikely(tmp_wb != wb)) {
1994 			spin_unlock(&tmp_wb->list_lock);
1995 			spin_lock(&wb->list_lock);
1996 		}
1997 
1998 		/*
1999 		 * bail out to wb_writeback() often enough to check
2000 		 * background threshold and other termination conditions.
2001 		 */
2002 		if (total_wrote) {
2003 			if (time_is_before_jiffies(start_time + HZ / 10UL))
2004 				break;
2005 			if (work->nr_pages <= 0)
2006 				break;
2007 		}
2008 	}
2009 	return total_wrote;
2010 }
2011 
__writeback_inodes_wb(struct bdi_writeback * wb,struct wb_writeback_work * work)2012 static long __writeback_inodes_wb(struct bdi_writeback *wb,
2013 				  struct wb_writeback_work *work)
2014 {
2015 	unsigned long start_time = jiffies;
2016 	long wrote = 0;
2017 
2018 	while (!list_empty(&wb->b_io)) {
2019 		struct inode *inode = wb_inode(wb->b_io.prev);
2020 		struct super_block *sb = inode->i_sb;
2021 
2022 		if (!super_trylock_shared(sb)) {
2023 			/*
2024 			 * super_trylock_shared() may fail consistently due to
2025 			 * s_umount being grabbed by someone else. Don't use
2026 			 * requeue_io() to avoid busy retrying the inode/sb.
2027 			 */
2028 			redirty_tail(inode, wb);
2029 			continue;
2030 		}
2031 		wrote += writeback_sb_inodes(sb, wb, work);
2032 		up_read(&sb->s_umount);
2033 
2034 		/* refer to the same tests at the end of writeback_sb_inodes */
2035 		if (wrote) {
2036 			if (time_is_before_jiffies(start_time + HZ / 10UL))
2037 				break;
2038 			if (work->nr_pages <= 0)
2039 				break;
2040 		}
2041 	}
2042 	/* Leave any unwritten inodes on b_io */
2043 	return wrote;
2044 }
2045 
writeback_inodes_wb(struct bdi_writeback * wb,long nr_pages,enum wb_reason reason)2046 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
2047 				enum wb_reason reason)
2048 {
2049 	struct wb_writeback_work work = {
2050 		.nr_pages	= nr_pages,
2051 		.sync_mode	= WB_SYNC_NONE,
2052 		.range_cyclic	= 1,
2053 		.reason		= reason,
2054 	};
2055 	struct blk_plug plug;
2056 
2057 	blk_start_plug(&plug);
2058 	spin_lock(&wb->list_lock);
2059 	if (list_empty(&wb->b_io))
2060 		queue_io(wb, &work, jiffies);
2061 	__writeback_inodes_wb(wb, &work);
2062 	spin_unlock(&wb->list_lock);
2063 	blk_finish_plug(&plug);
2064 
2065 	return nr_pages - work.nr_pages;
2066 }
2067 
2068 /*
2069  * Explicit flushing or periodic writeback of "old" data.
2070  *
2071  * Define "old": the first time one of an inode's pages is dirtied, we mark the
2072  * dirtying-time in the inode's address_space.  So this periodic writeback code
2073  * just walks the superblock inode list, writing back any inodes which are
2074  * older than a specific point in time.
2075  *
2076  * Try to run once per dirty_writeback_interval.  But if a writeback event
2077  * takes longer than a dirty_writeback_interval interval, then leave a
2078  * one-second gap.
2079  *
2080  * dirtied_before takes precedence over nr_to_write.  So we'll only write back
2081  * all dirty pages if they are all attached to "old" mappings.
2082  */
wb_writeback(struct bdi_writeback * wb,struct wb_writeback_work * work)2083 static long wb_writeback(struct bdi_writeback *wb,
2084 			 struct wb_writeback_work *work)
2085 {
2086 	long nr_pages = work->nr_pages;
2087 	unsigned long dirtied_before = jiffies;
2088 	struct inode *inode;
2089 	long progress;
2090 	struct blk_plug plug;
2091 	bool queued = false;
2092 
2093 	blk_start_plug(&plug);
2094 	for (;;) {
2095 		/*
2096 		 * Stop writeback when nr_pages has been consumed
2097 		 */
2098 		if (work->nr_pages <= 0)
2099 			break;
2100 
2101 		/*
2102 		 * Background writeout and kupdate-style writeback may
2103 		 * run forever. Stop them if there is other work to do
2104 		 * so that e.g. sync can proceed. They'll be restarted
2105 		 * after the other works are all done.
2106 		 */
2107 		if ((work->for_background || work->for_kupdate) &&
2108 		    !list_empty(&wb->work_list))
2109 			break;
2110 
2111 		/*
2112 		 * For background writeout, stop when we are below the
2113 		 * background dirty threshold
2114 		 */
2115 		if (work->for_background && !wb_over_bg_thresh(wb))
2116 			break;
2117 
2118 
2119 		spin_lock(&wb->list_lock);
2120 
2121 		trace_writeback_start(wb, work);
2122 		if (list_empty(&wb->b_io)) {
2123 			/*
2124 			 * Kupdate and background works are special and we want
2125 			 * to include all inodes that need writing. Livelock
2126 			 * avoidance is handled by these works yielding to any
2127 			 * other work so we are safe.
2128 			 */
2129 			if (work->for_kupdate) {
2130 				dirtied_before = jiffies -
2131 					msecs_to_jiffies(dirty_expire_interval *
2132 							 10);
2133 			} else if (work->for_background)
2134 				dirtied_before = jiffies;
2135 
2136 			queue_io(wb, work, dirtied_before);
2137 			queued = true;
2138 		}
2139 		if (work->sb)
2140 			progress = writeback_sb_inodes(work->sb, wb, work);
2141 		else
2142 			progress = __writeback_inodes_wb(wb, work);
2143 		trace_writeback_written(wb, work);
2144 
2145 		/*
2146 		 * Did we write something? Try for more
2147 		 *
2148 		 * Dirty inodes are moved to b_io for writeback in batches.
2149 		 * The completion of the current batch does not necessarily
2150 		 * mean the overall work is done. So we keep looping as long
2151 		 * as made some progress on cleaning pages or inodes.
2152 		 */
2153 		if (progress || !queued) {
2154 			spin_unlock(&wb->list_lock);
2155 			continue;
2156 		}
2157 
2158 		/*
2159 		 * No more inodes for IO, bail
2160 		 */
2161 		if (list_empty(&wb->b_more_io)) {
2162 			spin_unlock(&wb->list_lock);
2163 			break;
2164 		}
2165 
2166 		/*
2167 		 * Nothing written. Wait for some inode to
2168 		 * become available for writeback. Otherwise
2169 		 * we'll just busyloop.
2170 		 */
2171 		trace_writeback_wait(wb, work);
2172 		inode = wb_inode(wb->b_more_io.prev);
2173 		spin_lock(&inode->i_lock);
2174 		spin_unlock(&wb->list_lock);
2175 		/* This function drops i_lock... */
2176 		inode_sleep_on_writeback(inode);
2177 	}
2178 	blk_finish_plug(&plug);
2179 
2180 	return nr_pages - work->nr_pages;
2181 }
2182 
2183 /*
2184  * Return the next wb_writeback_work struct that hasn't been processed yet.
2185  */
get_next_work_item(struct bdi_writeback * wb)2186 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
2187 {
2188 	struct wb_writeback_work *work = NULL;
2189 
2190 	spin_lock_irq(&wb->work_lock);
2191 	if (!list_empty(&wb->work_list)) {
2192 		work = list_entry(wb->work_list.next,
2193 				  struct wb_writeback_work, list);
2194 		list_del_init(&work->list);
2195 	}
2196 	spin_unlock_irq(&wb->work_lock);
2197 	return work;
2198 }
2199 
wb_check_background_flush(struct bdi_writeback * wb)2200 static long wb_check_background_flush(struct bdi_writeback *wb)
2201 {
2202 	if (wb_over_bg_thresh(wb)) {
2203 
2204 		struct wb_writeback_work work = {
2205 			.nr_pages	= LONG_MAX,
2206 			.sync_mode	= WB_SYNC_NONE,
2207 			.for_background	= 1,
2208 			.range_cyclic	= 1,
2209 			.reason		= WB_REASON_BACKGROUND,
2210 		};
2211 
2212 		return wb_writeback(wb, &work);
2213 	}
2214 
2215 	return 0;
2216 }
2217 
wb_check_old_data_flush(struct bdi_writeback * wb)2218 static long wb_check_old_data_flush(struct bdi_writeback *wb)
2219 {
2220 	unsigned long expired;
2221 	long nr_pages;
2222 
2223 	/*
2224 	 * When set to zero, disable periodic writeback
2225 	 */
2226 	if (!dirty_writeback_interval)
2227 		return 0;
2228 
2229 	expired = wb->last_old_flush +
2230 			msecs_to_jiffies(dirty_writeback_interval * 10);
2231 	if (time_before(jiffies, expired))
2232 		return 0;
2233 
2234 	wb->last_old_flush = jiffies;
2235 	nr_pages = get_nr_dirty_pages();
2236 
2237 	if (nr_pages) {
2238 		struct wb_writeback_work work = {
2239 			.nr_pages	= nr_pages,
2240 			.sync_mode	= WB_SYNC_NONE,
2241 			.for_kupdate	= 1,
2242 			.range_cyclic	= 1,
2243 			.reason		= WB_REASON_PERIODIC,
2244 		};
2245 
2246 		return wb_writeback(wb, &work);
2247 	}
2248 
2249 	return 0;
2250 }
2251 
wb_check_start_all(struct bdi_writeback * wb)2252 static long wb_check_start_all(struct bdi_writeback *wb)
2253 {
2254 	long nr_pages;
2255 
2256 	if (!test_bit(WB_start_all, &wb->state))
2257 		return 0;
2258 
2259 	nr_pages = get_nr_dirty_pages();
2260 	if (nr_pages) {
2261 		struct wb_writeback_work work = {
2262 			.nr_pages	= wb_split_bdi_pages(wb, nr_pages),
2263 			.sync_mode	= WB_SYNC_NONE,
2264 			.range_cyclic	= 1,
2265 			.reason		= wb->start_all_reason,
2266 		};
2267 
2268 		nr_pages = wb_writeback(wb, &work);
2269 	}
2270 
2271 	clear_bit(WB_start_all, &wb->state);
2272 	return nr_pages;
2273 }
2274 
2275 
2276 /*
2277  * Retrieve work items and do the writeback they describe
2278  */
wb_do_writeback(struct bdi_writeback * wb)2279 static long wb_do_writeback(struct bdi_writeback *wb)
2280 {
2281 	struct wb_writeback_work *work;
2282 	long wrote = 0;
2283 
2284 	set_bit(WB_writeback_running, &wb->state);
2285 	while ((work = get_next_work_item(wb)) != NULL) {
2286 		trace_writeback_exec(wb, work);
2287 		wrote += wb_writeback(wb, work);
2288 		finish_writeback_work(work);
2289 	}
2290 
2291 	/*
2292 	 * Check for a flush-everything request
2293 	 */
2294 	wrote += wb_check_start_all(wb);
2295 
2296 	/*
2297 	 * Check for periodic writeback, kupdated() style
2298 	 */
2299 	wrote += wb_check_old_data_flush(wb);
2300 	wrote += wb_check_background_flush(wb);
2301 	clear_bit(WB_writeback_running, &wb->state);
2302 
2303 	return wrote;
2304 }
2305 
2306 /*
2307  * Handle writeback of dirty data for the device backed by this bdi. Also
2308  * reschedules periodically and does kupdated style flushing.
2309  */
wb_workfn(struct work_struct * work)2310 void wb_workfn(struct work_struct *work)
2311 {
2312 	struct bdi_writeback *wb = container_of(to_delayed_work(work),
2313 						struct bdi_writeback, dwork);
2314 	long pages_written;
2315 
2316 	set_worker_desc("flush-%s", bdi_dev_name(wb->bdi));
2317 
2318 	if (likely(!current_is_workqueue_rescuer() ||
2319 		   !test_bit(WB_registered, &wb->state))) {
2320 		/*
2321 		 * The normal path.  Keep writing back @wb until its
2322 		 * work_list is empty.  Note that this path is also taken
2323 		 * if @wb is shutting down even when we're running off the
2324 		 * rescuer as work_list needs to be drained.
2325 		 */
2326 		do {
2327 			pages_written = wb_do_writeback(wb);
2328 			trace_writeback_pages_written(pages_written);
2329 		} while (!list_empty(&wb->work_list));
2330 	} else {
2331 		/*
2332 		 * bdi_wq can't get enough workers and we're running off
2333 		 * the emergency worker.  Don't hog it.  Hopefully, 1024 is
2334 		 * enough for efficient IO.
2335 		 */
2336 		pages_written = writeback_inodes_wb(wb, 1024,
2337 						    WB_REASON_FORKER_THREAD);
2338 		trace_writeback_pages_written(pages_written);
2339 	}
2340 
2341 	if (!list_empty(&wb->work_list))
2342 		wb_wakeup(wb);
2343 	else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
2344 		wb_wakeup_delayed(wb);
2345 }
2346 
2347 /*
2348  * Start writeback of all dirty pages on this bdi.
2349  */
__wakeup_flusher_threads_bdi(struct backing_dev_info * bdi,enum wb_reason reason)2350 static void __wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2351 					 enum wb_reason reason)
2352 {
2353 	struct bdi_writeback *wb;
2354 
2355 	if (!bdi_has_dirty_io(bdi))
2356 		return;
2357 
2358 	list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2359 		wb_start_writeback(wb, reason);
2360 }
2361 
wakeup_flusher_threads_bdi(struct backing_dev_info * bdi,enum wb_reason reason)2362 void wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2363 				enum wb_reason reason)
2364 {
2365 	rcu_read_lock();
2366 	__wakeup_flusher_threads_bdi(bdi, reason);
2367 	rcu_read_unlock();
2368 }
2369 
2370 /*
2371  * Wakeup the flusher threads to start writeback of all currently dirty pages
2372  */
wakeup_flusher_threads(enum wb_reason reason)2373 void wakeup_flusher_threads(enum wb_reason reason)
2374 {
2375 	struct backing_dev_info *bdi;
2376 
2377 	/*
2378 	 * If we are expecting writeback progress we must submit plugged IO.
2379 	 */
2380 	blk_flush_plug(current->plug, true);
2381 
2382 	rcu_read_lock();
2383 	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2384 		__wakeup_flusher_threads_bdi(bdi, reason);
2385 	rcu_read_unlock();
2386 }
2387 
2388 /*
2389  * Wake up bdi's periodically to make sure dirtytime inodes gets
2390  * written back periodically.  We deliberately do *not* check the
2391  * b_dirtytime list in wb_has_dirty_io(), since this would cause the
2392  * kernel to be constantly waking up once there are any dirtytime
2393  * inodes on the system.  So instead we define a separate delayed work
2394  * function which gets called much more rarely.  (By default, only
2395  * once every 12 hours.)
2396  *
2397  * If there is any other write activity going on in the file system,
2398  * this function won't be necessary.  But if the only thing that has
2399  * happened on the file system is a dirtytime inode caused by an atime
2400  * update, we need this infrastructure below to make sure that inode
2401  * eventually gets pushed out to disk.
2402  */
2403 static void wakeup_dirtytime_writeback(struct work_struct *w);
2404 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
2405 
wakeup_dirtytime_writeback(struct work_struct * w)2406 static void wakeup_dirtytime_writeback(struct work_struct *w)
2407 {
2408 	struct backing_dev_info *bdi;
2409 
2410 	rcu_read_lock();
2411 	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
2412 		struct bdi_writeback *wb;
2413 
2414 		list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2415 			if (!list_empty(&wb->b_dirty_time))
2416 				wb_wakeup(wb);
2417 	}
2418 	rcu_read_unlock();
2419 	schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2420 }
2421 
start_dirtytime_writeback(void)2422 static int __init start_dirtytime_writeback(void)
2423 {
2424 	schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2425 	return 0;
2426 }
2427 __initcall(start_dirtytime_writeback);
2428 
dirtytime_interval_handler(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)2429 int dirtytime_interval_handler(const struct ctl_table *table, int write,
2430 			       void *buffer, size_t *lenp, loff_t *ppos)
2431 {
2432 	int ret;
2433 
2434 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2435 	if (ret == 0 && write)
2436 		mod_delayed_work(system_wq, &dirtytime_work, 0);
2437 	return ret;
2438 }
2439 
2440 /**
2441  * __mark_inode_dirty -	internal function to mark an inode dirty
2442  *
2443  * @inode: inode to mark
2444  * @flags: what kind of dirty, e.g. I_DIRTY_SYNC.  This can be a combination of
2445  *	   multiple I_DIRTY_* flags, except that I_DIRTY_TIME can't be combined
2446  *	   with I_DIRTY_PAGES.
2447  *
2448  * Mark an inode as dirty.  We notify the filesystem, then update the inode's
2449  * dirty flags.  Then, if needed we add the inode to the appropriate dirty list.
2450  *
2451  * Most callers should use mark_inode_dirty() or mark_inode_dirty_sync()
2452  * instead of calling this directly.
2453  *
2454  * CAREFUL!  We only add the inode to the dirty list if it is hashed or if it
2455  * refers to a blockdev.  Unhashed inodes will never be added to the dirty list
2456  * even if they are later hashed, as they will have been marked dirty already.
2457  *
2458  * In short, ensure you hash any inodes _before_ you start marking them dirty.
2459  *
2460  * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
2461  * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
2462  * the kernel-internal blockdev inode represents the dirtying time of the
2463  * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
2464  * page->mapping->host, so the page-dirtying time is recorded in the internal
2465  * blockdev inode.
2466  */
__mark_inode_dirty(struct inode * inode,int flags)2467 void __mark_inode_dirty(struct inode *inode, int flags)
2468 {
2469 	struct super_block *sb = inode->i_sb;
2470 	int dirtytime = 0;
2471 	struct bdi_writeback *wb = NULL;
2472 
2473 	trace_writeback_mark_inode_dirty(inode, flags);
2474 
2475 	if (flags & I_DIRTY_INODE) {
2476 		/*
2477 		 * Inode timestamp update will piggback on this dirtying.
2478 		 * We tell ->dirty_inode callback that timestamps need to
2479 		 * be updated by setting I_DIRTY_TIME in flags.
2480 		 */
2481 		if (inode->i_state & I_DIRTY_TIME) {
2482 			spin_lock(&inode->i_lock);
2483 			if (inode->i_state & I_DIRTY_TIME) {
2484 				inode->i_state &= ~I_DIRTY_TIME;
2485 				flags |= I_DIRTY_TIME;
2486 			}
2487 			spin_unlock(&inode->i_lock);
2488 		}
2489 
2490 		/*
2491 		 * Notify the filesystem about the inode being dirtied, so that
2492 		 * (if needed) it can update on-disk fields and journal the
2493 		 * inode.  This is only needed when the inode itself is being
2494 		 * dirtied now.  I.e. it's only needed for I_DIRTY_INODE, not
2495 		 * for just I_DIRTY_PAGES or I_DIRTY_TIME.
2496 		 */
2497 		trace_writeback_dirty_inode_start(inode, flags);
2498 		if (sb->s_op->dirty_inode)
2499 			sb->s_op->dirty_inode(inode,
2500 				flags & (I_DIRTY_INODE | I_DIRTY_TIME));
2501 		trace_writeback_dirty_inode(inode, flags);
2502 
2503 		/* I_DIRTY_INODE supersedes I_DIRTY_TIME. */
2504 		flags &= ~I_DIRTY_TIME;
2505 	} else {
2506 		/*
2507 		 * Else it's either I_DIRTY_PAGES, I_DIRTY_TIME, or nothing.
2508 		 * (We don't support setting both I_DIRTY_PAGES and I_DIRTY_TIME
2509 		 * in one call to __mark_inode_dirty().)
2510 		 */
2511 		dirtytime = flags & I_DIRTY_TIME;
2512 		WARN_ON_ONCE(dirtytime && flags != I_DIRTY_TIME);
2513 	}
2514 
2515 	/*
2516 	 * Paired with smp_mb() in __writeback_single_inode() for the
2517 	 * following lockless i_state test.  See there for details.
2518 	 */
2519 	smp_mb();
2520 
2521 	if ((inode->i_state & flags) == flags)
2522 		return;
2523 
2524 	spin_lock(&inode->i_lock);
2525 	if ((inode->i_state & flags) != flags) {
2526 		const int was_dirty = inode->i_state & I_DIRTY;
2527 
2528 		inode_attach_wb(inode, NULL);
2529 
2530 		inode->i_state |= flags;
2531 
2532 		/*
2533 		 * Grab inode's wb early because it requires dropping i_lock and we
2534 		 * need to make sure following checks happen atomically with dirty
2535 		 * list handling so that we don't move inodes under flush worker's
2536 		 * hands.
2537 		 */
2538 		if (!was_dirty) {
2539 			wb = locked_inode_to_wb_and_lock_list(inode);
2540 			spin_lock(&inode->i_lock);
2541 		}
2542 
2543 		/*
2544 		 * If the inode is queued for writeback by flush worker, just
2545 		 * update its dirty state. Once the flush worker is done with
2546 		 * the inode it will place it on the appropriate superblock
2547 		 * list, based upon its state.
2548 		 */
2549 		if (inode->i_state & I_SYNC_QUEUED)
2550 			goto out_unlock;
2551 
2552 		/*
2553 		 * Only add valid (hashed) inodes to the superblock's
2554 		 * dirty list.  Add blockdev inodes as well.
2555 		 */
2556 		if (!S_ISBLK(inode->i_mode)) {
2557 			if (inode_unhashed(inode))
2558 				goto out_unlock;
2559 		}
2560 		if (inode->i_state & I_FREEING)
2561 			goto out_unlock;
2562 
2563 		/*
2564 		 * If the inode was already on b_dirty/b_io/b_more_io, don't
2565 		 * reposition it (that would break b_dirty time-ordering).
2566 		 */
2567 		if (!was_dirty) {
2568 			struct list_head *dirty_list;
2569 			bool wakeup_bdi = false;
2570 
2571 			inode->dirtied_when = jiffies;
2572 			if (dirtytime)
2573 				inode->dirtied_time_when = jiffies;
2574 
2575 			if (inode->i_state & I_DIRTY)
2576 				dirty_list = &wb->b_dirty;
2577 			else
2578 				dirty_list = &wb->b_dirty_time;
2579 
2580 			trace_android_vh_mark_inode_dirty(inode, wb,
2581 							       &dirty_list);
2582 			wakeup_bdi = inode_io_list_move_locked(inode, wb,
2583 							       dirty_list);
2584 
2585 			/*
2586 			 * If this is the first dirty inode for this bdi,
2587 			 * we have to wake-up the corresponding bdi thread
2588 			 * to make sure background write-back happens
2589 			 * later.
2590 			 */
2591 			if (wakeup_bdi &&
2592 			    (wb->bdi->capabilities & BDI_CAP_WRITEBACK))
2593 				wb_wakeup_delayed(wb);
2594 
2595 			spin_unlock(&wb->list_lock);
2596 			spin_unlock(&inode->i_lock);
2597 			trace_writeback_dirty_inode_enqueue(inode);
2598 
2599 			return;
2600 		}
2601 	}
2602 out_unlock:
2603 	if (wb)
2604 		spin_unlock(&wb->list_lock);
2605 	spin_unlock(&inode->i_lock);
2606 }
2607 EXPORT_SYMBOL(__mark_inode_dirty);
2608 
2609 /*
2610  * The @s_sync_lock is used to serialise concurrent sync operations
2611  * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2612  * Concurrent callers will block on the s_sync_lock rather than doing contending
2613  * walks. The queueing maintains sync(2) required behaviour as all the IO that
2614  * has been issued up to the time this function is enter is guaranteed to be
2615  * completed by the time we have gained the lock and waited for all IO that is
2616  * in progress regardless of the order callers are granted the lock.
2617  */
wait_sb_inodes(struct super_block * sb)2618 static void wait_sb_inodes(struct super_block *sb)
2619 {
2620 	LIST_HEAD(sync_list);
2621 
2622 	/*
2623 	 * We need to be protected against the filesystem going from
2624 	 * r/o to r/w or vice versa.
2625 	 */
2626 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2627 
2628 	mutex_lock(&sb->s_sync_lock);
2629 
2630 	/*
2631 	 * Splice the writeback list onto a temporary list to avoid waiting on
2632 	 * inodes that have started writeback after this point.
2633 	 *
2634 	 * Use rcu_read_lock() to keep the inodes around until we have a
2635 	 * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as
2636 	 * the local list because inodes can be dropped from either by writeback
2637 	 * completion.
2638 	 */
2639 	rcu_read_lock();
2640 	spin_lock_irq(&sb->s_inode_wblist_lock);
2641 	list_splice_init(&sb->s_inodes_wb, &sync_list);
2642 
2643 	/*
2644 	 * Data integrity sync. Must wait for all pages under writeback, because
2645 	 * there may have been pages dirtied before our sync call, but which had
2646 	 * writeout started before we write it out.  In which case, the inode
2647 	 * may not be on the dirty list, but we still have to wait for that
2648 	 * writeout.
2649 	 */
2650 	while (!list_empty(&sync_list)) {
2651 		struct inode *inode = list_first_entry(&sync_list, struct inode,
2652 						       i_wb_list);
2653 		struct address_space *mapping = inode->i_mapping;
2654 
2655 		/*
2656 		 * Move each inode back to the wb list before we drop the lock
2657 		 * to preserve consistency between i_wb_list and the mapping
2658 		 * writeback tag. Writeback completion is responsible to remove
2659 		 * the inode from either list once the writeback tag is cleared.
2660 		 */
2661 		list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb);
2662 
2663 		/*
2664 		 * The mapping can appear untagged while still on-list since we
2665 		 * do not have the mapping lock. Skip it here, wb completion
2666 		 * will remove it.
2667 		 */
2668 		if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
2669 			continue;
2670 
2671 		spin_unlock_irq(&sb->s_inode_wblist_lock);
2672 
2673 		spin_lock(&inode->i_lock);
2674 		if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) {
2675 			spin_unlock(&inode->i_lock);
2676 
2677 			spin_lock_irq(&sb->s_inode_wblist_lock);
2678 			continue;
2679 		}
2680 		__iget(inode);
2681 		spin_unlock(&inode->i_lock);
2682 		rcu_read_unlock();
2683 
2684 		/*
2685 		 * We keep the error status of individual mapping so that
2686 		 * applications can catch the writeback error using fsync(2).
2687 		 * See filemap_fdatawait_keep_errors() for details.
2688 		 */
2689 		filemap_fdatawait_keep_errors(mapping);
2690 
2691 		cond_resched();
2692 
2693 		iput(inode);
2694 
2695 		rcu_read_lock();
2696 		spin_lock_irq(&sb->s_inode_wblist_lock);
2697 	}
2698 	spin_unlock_irq(&sb->s_inode_wblist_lock);
2699 	rcu_read_unlock();
2700 	mutex_unlock(&sb->s_sync_lock);
2701 }
2702 
__writeback_inodes_sb_nr(struct super_block * sb,unsigned long nr,enum wb_reason reason,bool skip_if_busy)2703 static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2704 				     enum wb_reason reason, bool skip_if_busy)
2705 {
2706 	struct backing_dev_info *bdi = sb->s_bdi;
2707 	DEFINE_WB_COMPLETION(done, bdi);
2708 	struct wb_writeback_work work = {
2709 		.sb			= sb,
2710 		.sync_mode		= WB_SYNC_NONE,
2711 		.tagged_writepages	= 1,
2712 		.done			= &done,
2713 		.nr_pages		= nr,
2714 		.reason			= reason,
2715 	};
2716 
2717 	if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2718 		return;
2719 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2720 
2721 	bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
2722 	wb_wait_for_completion(&done);
2723 }
2724 
2725 /**
2726  * writeback_inodes_sb_nr -	writeback dirty inodes from given super_block
2727  * @sb: the superblock
2728  * @nr: the number of pages to write
2729  * @reason: reason why some writeback work initiated
2730  *
2731  * Start writeback on some inodes on this super_block. No guarantees are made
2732  * on how many (if any) will be written, and this function does not wait
2733  * for IO completion of submitted IO.
2734  */
writeback_inodes_sb_nr(struct super_block * sb,unsigned long nr,enum wb_reason reason)2735 void writeback_inodes_sb_nr(struct super_block *sb,
2736 			    unsigned long nr,
2737 			    enum wb_reason reason)
2738 {
2739 	__writeback_inodes_sb_nr(sb, nr, reason, false);
2740 }
2741 EXPORT_SYMBOL(writeback_inodes_sb_nr);
2742 
2743 /**
2744  * writeback_inodes_sb	-	writeback dirty inodes from given super_block
2745  * @sb: the superblock
2746  * @reason: reason why some writeback work was initiated
2747  *
2748  * Start writeback on some inodes on this super_block. No guarantees are made
2749  * on how many (if any) will be written, and this function does not wait
2750  * for IO completion of submitted IO.
2751  */
writeback_inodes_sb(struct super_block * sb,enum wb_reason reason)2752 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2753 {
2754 	writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2755 }
2756 EXPORT_SYMBOL(writeback_inodes_sb);
2757 
2758 /**
2759  * try_to_writeback_inodes_sb - try to start writeback if none underway
2760  * @sb: the superblock
2761  * @reason: reason why some writeback work was initiated
2762  *
2763  * Invoke __writeback_inodes_sb_nr if no writeback is currently underway.
2764  */
try_to_writeback_inodes_sb(struct super_block * sb,enum wb_reason reason)2765 void try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2766 {
2767 	if (!down_read_trylock(&sb->s_umount))
2768 		return;
2769 
2770 	__writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason, true);
2771 	up_read(&sb->s_umount);
2772 }
2773 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
2774 
2775 /**
2776  * sync_inodes_sb	-	sync sb inode pages
2777  * @sb: the superblock
2778  *
2779  * This function writes and waits on any dirty inode belonging to this
2780  * super_block.
2781  */
sync_inodes_sb(struct super_block * sb)2782 void sync_inodes_sb(struct super_block *sb)
2783 {
2784 	struct backing_dev_info *bdi = sb->s_bdi;
2785 	DEFINE_WB_COMPLETION(done, bdi);
2786 	struct wb_writeback_work work = {
2787 		.sb		= sb,
2788 		.sync_mode	= WB_SYNC_ALL,
2789 		.nr_pages	= LONG_MAX,
2790 		.range_cyclic	= 0,
2791 		.done		= &done,
2792 		.reason		= WB_REASON_SYNC,
2793 		.for_sync	= 1,
2794 	};
2795 
2796 	/*
2797 	 * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2798 	 * inodes under writeback and I_DIRTY_TIME inodes ignored by
2799 	 * bdi_has_dirty() need to be written out too.
2800 	 */
2801 	if (bdi == &noop_backing_dev_info)
2802 		return;
2803 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2804 
2805 	/* protect against inode wb switch, see inode_switch_wbs_work_fn() */
2806 	bdi_down_write_wb_switch_rwsem(bdi);
2807 	bdi_split_work_to_wbs(bdi, &work, false);
2808 	wb_wait_for_completion(&done);
2809 	bdi_up_write_wb_switch_rwsem(bdi);
2810 
2811 	wait_sb_inodes(sb);
2812 }
2813 EXPORT_SYMBOL(sync_inodes_sb);
2814 
2815 /**
2816  * write_inode_now	-	write an inode to disk
2817  * @inode: inode to write to disk
2818  * @sync: whether the write should be synchronous or not
2819  *
2820  * This function commits an inode to disk immediately if it is dirty. This is
2821  * primarily needed by knfsd.
2822  *
2823  * The caller must either have a ref on the inode or must have set I_WILL_FREE.
2824  */
write_inode_now(struct inode * inode,int sync)2825 int write_inode_now(struct inode *inode, int sync)
2826 {
2827 	struct writeback_control wbc = {
2828 		.nr_to_write = LONG_MAX,
2829 		.sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
2830 		.range_start = 0,
2831 		.range_end = LLONG_MAX,
2832 	};
2833 
2834 	if (!mapping_can_writeback(inode->i_mapping))
2835 		wbc.nr_to_write = 0;
2836 
2837 	might_sleep();
2838 	return writeback_single_inode(inode, &wbc);
2839 }
2840 EXPORT_SYMBOL(write_inode_now);
2841 
2842 /**
2843  * sync_inode_metadata - write an inode to disk
2844  * @inode: the inode to sync
2845  * @wait: wait for I/O to complete.
2846  *
2847  * Write an inode to disk and adjust its dirty state after completion.
2848  *
2849  * Note: only writes the actual inode, no associated data or other metadata.
2850  */
sync_inode_metadata(struct inode * inode,int wait)2851 int sync_inode_metadata(struct inode *inode, int wait)
2852 {
2853 	struct writeback_control wbc = {
2854 		.sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2855 		.nr_to_write = 0, /* metadata-only */
2856 	};
2857 
2858 	return writeback_single_inode(inode, &wbc);
2859 }
2860 EXPORT_SYMBOL(sync_inode_metadata);
2861