1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * fs/fs-writeback.c
4 *
5 * Copyright (C) 2002, Linus Torvalds.
6 *
7 * Contains all the functions related to writing back and waiting
8 * upon dirty inodes against superblocks, and writing back dirty
9 * pages against inodes. ie: data writeback. Writeout of the
10 * inode itself is not handled here.
11 *
12 * 10Apr2002 Andrew Morton
13 * Split out of fs/inode.c
14 * Additions for address_space-based writeback
15 */
16
17 #include <linux/kernel.h>
18 #include <linux/export.h>
19 #include <linux/spinlock.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/fs.h>
23 #include <linux/mm.h>
24 #include <linux/pagemap.h>
25 #include <linux/kthread.h>
26 #include <linux/writeback.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/tracepoint.h>
30 #include <linux/device.h>
31 #include <linux/memcontrol.h>
32 #include "internal.h"
33
34 /*
35 * 4MB minimal write chunk size
36 */
37 #define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_SHIFT - 10))
38
39 /*
40 * Passed into wb_writeback(), essentially a subset of writeback_control
41 */
42 struct wb_writeback_work {
43 long nr_pages;
44 struct super_block *sb;
45 enum writeback_sync_modes sync_mode;
46 unsigned int tagged_writepages:1;
47 unsigned int for_kupdate:1;
48 unsigned int range_cyclic:1;
49 unsigned int for_background:1;
50 unsigned int for_sync:1; /* sync(2) WB_SYNC_ALL writeback */
51 unsigned int auto_free:1; /* free on completion */
52 enum wb_reason reason; /* why was writeback initiated? */
53
54 struct list_head list; /* pending work list */
55 struct wb_completion *done; /* set if the caller waits */
56 };
57
58 /*
59 * If an inode is constantly having its pages dirtied, but then the
60 * updates stop dirtytime_expire_interval seconds in the past, it's
61 * possible for the worst case time between when an inode has its
62 * timestamps updated and when they finally get written out to be two
63 * dirtytime_expire_intervals. We set the default to 12 hours (in
64 * seconds), which means most of the time inodes will have their
65 * timestamps written to disk after 12 hours, but in the worst case a
66 * few inodes might not their timestamps updated for 24 hours.
67 */
68 unsigned int dirtytime_expire_interval = 12 * 60 * 60;
69
wb_inode(struct list_head * head)70 static inline struct inode *wb_inode(struct list_head *head)
71 {
72 return list_entry(head, struct inode, i_io_list);
73 }
74
75 /*
76 * Include the creation of the trace points after defining the
77 * wb_writeback_work structure and inline functions so that the definition
78 * remains local to this file.
79 */
80 #define CREATE_TRACE_POINTS
81 #include <trace/events/writeback.h>
82 #undef CREATE_TRACE_POINTS
83 #include <trace/hooks/fs.h>
84
85 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
86
wb_io_lists_populated(struct bdi_writeback * wb)87 static bool wb_io_lists_populated(struct bdi_writeback *wb)
88 {
89 if (wb_has_dirty_io(wb)) {
90 return false;
91 } else {
92 set_bit(WB_has_dirty_io, &wb->state);
93 WARN_ON_ONCE(!wb->avg_write_bandwidth);
94 atomic_long_add(wb->avg_write_bandwidth,
95 &wb->bdi->tot_write_bandwidth);
96 return true;
97 }
98 }
99
wb_io_lists_depopulated(struct bdi_writeback * wb)100 static void wb_io_lists_depopulated(struct bdi_writeback *wb)
101 {
102 if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
103 list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
104 clear_bit(WB_has_dirty_io, &wb->state);
105 WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
106 &wb->bdi->tot_write_bandwidth) < 0);
107 }
108 }
109
110 /**
111 * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
112 * @inode: inode to be moved
113 * @wb: target bdi_writeback
114 * @head: one of @wb->b_{dirty|io|more_io|dirty_time}
115 *
116 * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
117 * Returns %true if @inode is the first occupant of the !dirty_time IO
118 * lists; otherwise, %false.
119 */
inode_io_list_move_locked(struct inode * inode,struct bdi_writeback * wb,struct list_head * head)120 static bool inode_io_list_move_locked(struct inode *inode,
121 struct bdi_writeback *wb,
122 struct list_head *head)
123 {
124 assert_spin_locked(&wb->list_lock);
125 assert_spin_locked(&inode->i_lock);
126 WARN_ON_ONCE(inode->i_state & I_FREEING);
127
128 list_move(&inode->i_io_list, head);
129
130 /* dirty_time doesn't count as dirty_io until expiration */
131 if (head != &wb->b_dirty_time)
132 return wb_io_lists_populated(wb);
133
134 wb_io_lists_depopulated(wb);
135 return false;
136 }
137
wb_wakeup(struct bdi_writeback * wb)138 void wb_wakeup(struct bdi_writeback *wb)
139 {
140 spin_lock_irq(&wb->work_lock);
141 if (test_bit(WB_registered, &wb->state))
142 mod_delayed_work(bdi_wq, &wb->dwork, 0);
143 spin_unlock_irq(&wb->work_lock);
144 }
145 EXPORT_SYMBOL_GPL(wb_wakeup);
146
147 /*
148 * This function is used when the first inode for this wb is marked dirty. It
149 * wakes-up the corresponding bdi thread which should then take care of the
150 * periodic background write-out of dirty inodes. Since the write-out would
151 * starts only 'dirty_writeback_interval' centisecs from now anyway, we just
152 * set up a timer which wakes the bdi thread up later.
153 *
154 * Note, we wouldn't bother setting up the timer, but this function is on the
155 * fast-path (used by '__mark_inode_dirty()'), so we save few context switches
156 * by delaying the wake-up.
157 *
158 * We have to be careful not to postpone flush work if it is scheduled for
159 * earlier. Thus we use queue_delayed_work().
160 */
wb_wakeup_delayed(struct bdi_writeback * wb)161 static void wb_wakeup_delayed(struct bdi_writeback *wb)
162 {
163 unsigned long timeout;
164
165 timeout = msecs_to_jiffies(dirty_writeback_interval * 10);
166 spin_lock_irq(&wb->work_lock);
167 if (test_bit(WB_registered, &wb->state))
168 queue_delayed_work(bdi_wq, &wb->dwork, timeout);
169 spin_unlock_irq(&wb->work_lock);
170 }
171
finish_writeback_work(struct wb_writeback_work * work)172 static void finish_writeback_work(struct wb_writeback_work *work)
173 {
174 struct wb_completion *done = work->done;
175
176 if (work->auto_free)
177 kfree(work);
178 if (done) {
179 wait_queue_head_t *waitq = done->waitq;
180
181 /* @done can't be accessed after the following dec */
182 if (atomic_dec_and_test(&done->cnt))
183 wake_up_all(waitq);
184 }
185 }
186
wb_queue_work(struct bdi_writeback * wb,struct wb_writeback_work * work)187 static void wb_queue_work(struct bdi_writeback *wb,
188 struct wb_writeback_work *work)
189 {
190 trace_writeback_queue(wb, work);
191
192 if (work->done)
193 atomic_inc(&work->done->cnt);
194
195 spin_lock_irq(&wb->work_lock);
196
197 if (test_bit(WB_registered, &wb->state)) {
198 list_add_tail(&work->list, &wb->work_list);
199 mod_delayed_work(bdi_wq, &wb->dwork, 0);
200 } else
201 finish_writeback_work(work);
202
203 spin_unlock_irq(&wb->work_lock);
204 }
205
206 /**
207 * wb_wait_for_completion - wait for completion of bdi_writeback_works
208 * @done: target wb_completion
209 *
210 * Wait for one or more work items issued to @bdi with their ->done field
211 * set to @done, which should have been initialized with
212 * DEFINE_WB_COMPLETION(). This function returns after all such work items
213 * are completed. Work items which are waited upon aren't freed
214 * automatically on completion.
215 */
wb_wait_for_completion(struct wb_completion * done)216 void wb_wait_for_completion(struct wb_completion *done)
217 {
218 atomic_dec(&done->cnt); /* put down the initial count */
219 wait_event(*done->waitq, !atomic_read(&done->cnt));
220 }
221
222 #ifdef CONFIG_CGROUP_WRITEBACK
223
224 /*
225 * Parameters for foreign inode detection, see wbc_detach_inode() to see
226 * how they're used.
227 *
228 * These paramters are inherently heuristical as the detection target
229 * itself is fuzzy. All we want to do is detaching an inode from the
230 * current owner if it's being written to by some other cgroups too much.
231 *
232 * The current cgroup writeback is built on the assumption that multiple
233 * cgroups writing to the same inode concurrently is very rare and a mode
234 * of operation which isn't well supported. As such, the goal is not
235 * taking too long when a different cgroup takes over an inode while
236 * avoiding too aggressive flip-flops from occasional foreign writes.
237 *
238 * We record, very roughly, 2s worth of IO time history and if more than
239 * half of that is foreign, trigger the switch. The recording is quantized
240 * to 16 slots. To avoid tiny writes from swinging the decision too much,
241 * writes smaller than 1/8 of avg size are ignored.
242 */
243 #define WB_FRN_TIME_SHIFT 13 /* 1s = 2^13, upto 8 secs w/ 16bit */
244 #define WB_FRN_TIME_AVG_SHIFT 3 /* avg = avg * 7/8 + new * 1/8 */
245 #define WB_FRN_TIME_CUT_DIV 8 /* ignore rounds < avg / 8 */
246 #define WB_FRN_TIME_PERIOD (2 * (1 << WB_FRN_TIME_SHIFT)) /* 2s */
247
248 #define WB_FRN_HIST_SLOTS 16 /* inode->i_wb_frn_history is 16bit */
249 #define WB_FRN_HIST_UNIT (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
250 /* each slot's duration is 2s / 16 */
251 #define WB_FRN_HIST_THR_SLOTS (WB_FRN_HIST_SLOTS / 2)
252 /* if foreign slots >= 8, switch */
253 #define WB_FRN_HIST_MAX_SLOTS (WB_FRN_HIST_THR_SLOTS / 2 + 1)
254 /* one round can affect upto 5 slots */
255 #define WB_FRN_MAX_IN_FLIGHT 1024 /* don't queue too many concurrently */
256
257 /*
258 * Maximum inodes per isw. A specific value has been chosen to make
259 * struct inode_switch_wbs_context fit into 1024 bytes kmalloc.
260 */
261 #define WB_MAX_INODES_PER_ISW ((1024UL - sizeof(struct inode_switch_wbs_context)) \
262 / sizeof(struct inode *))
263
264 static atomic_t isw_nr_in_flight = ATOMIC_INIT(0);
265 static struct workqueue_struct *isw_wq;
266
__inode_attach_wb(struct inode * inode,struct folio * folio)267 void __inode_attach_wb(struct inode *inode, struct folio *folio)
268 {
269 struct backing_dev_info *bdi = inode_to_bdi(inode);
270 struct bdi_writeback *wb = NULL;
271
272 if (inode_cgwb_enabled(inode)) {
273 struct cgroup_subsys_state *memcg_css;
274
275 if (folio) {
276 memcg_css = mem_cgroup_css_from_folio(folio);
277 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
278 } else {
279 /* must pin memcg_css, see wb_get_create() */
280 memcg_css = task_get_css(current, memory_cgrp_id);
281 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
282 css_put(memcg_css);
283 }
284 }
285
286 if (!wb)
287 wb = &bdi->wb;
288
289 /*
290 * There may be multiple instances of this function racing to
291 * update the same inode. Use cmpxchg() to tell the winner.
292 */
293 if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
294 wb_put(wb);
295 }
296 EXPORT_SYMBOL_GPL(__inode_attach_wb);
297
298 /**
299 * inode_cgwb_move_to_attached - put the inode onto wb->b_attached list
300 * @inode: inode of interest with i_lock held
301 * @wb: target bdi_writeback
302 *
303 * Remove the inode from wb's io lists and if necessarily put onto b_attached
304 * list. Only inodes attached to cgwb's are kept on this list.
305 */
inode_cgwb_move_to_attached(struct inode * inode,struct bdi_writeback * wb)306 static void inode_cgwb_move_to_attached(struct inode *inode,
307 struct bdi_writeback *wb)
308 {
309 assert_spin_locked(&wb->list_lock);
310 assert_spin_locked(&inode->i_lock);
311 WARN_ON_ONCE(inode->i_state & I_FREEING);
312
313 inode->i_state &= ~I_SYNC_QUEUED;
314 if (wb != &wb->bdi->wb)
315 list_move(&inode->i_io_list, &wb->b_attached);
316 else
317 list_del_init(&inode->i_io_list);
318 wb_io_lists_depopulated(wb);
319 }
320
321 /**
322 * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
323 * @inode: inode of interest with i_lock held
324 *
325 * Returns @inode's wb with its list_lock held. @inode->i_lock must be
326 * held on entry and is released on return. The returned wb is guaranteed
327 * to stay @inode's associated wb until its list_lock is released.
328 */
329 static struct bdi_writeback *
locked_inode_to_wb_and_lock_list(struct inode * inode)330 locked_inode_to_wb_and_lock_list(struct inode *inode)
331 __releases(&inode->i_lock)
332 __acquires(&wb->list_lock)
333 {
334 while (true) {
335 struct bdi_writeback *wb = inode_to_wb(inode);
336
337 /*
338 * inode_to_wb() association is protected by both
339 * @inode->i_lock and @wb->list_lock but list_lock nests
340 * outside i_lock. Drop i_lock and verify that the
341 * association hasn't changed after acquiring list_lock.
342 */
343 wb_get(wb);
344 spin_unlock(&inode->i_lock);
345 spin_lock(&wb->list_lock);
346
347 /* i_wb may have changed inbetween, can't use inode_to_wb() */
348 if (likely(wb == inode->i_wb)) {
349 wb_put(wb); /* @inode already has ref */
350 return wb;
351 }
352
353 spin_unlock(&wb->list_lock);
354 wb_put(wb);
355 cpu_relax();
356 spin_lock(&inode->i_lock);
357 }
358 }
359
360 /**
361 * inode_to_wb_and_lock_list - determine an inode's wb and lock it
362 * @inode: inode of interest
363 *
364 * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
365 * on entry.
366 */
inode_to_wb_and_lock_list(struct inode * inode)367 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
368 __acquires(&wb->list_lock)
369 {
370 spin_lock(&inode->i_lock);
371 return locked_inode_to_wb_and_lock_list(inode);
372 }
373
374 struct inode_switch_wbs_context {
375 struct rcu_work work;
376
377 /*
378 * Multiple inodes can be switched at once. The switching procedure
379 * consists of two parts, separated by a RCU grace period. To make
380 * sure that the second part is executed for each inode gone through
381 * the first part, all inode pointers are placed into a NULL-terminated
382 * array embedded into struct inode_switch_wbs_context. Otherwise
383 * an inode could be left in a non-consistent state.
384 */
385 struct bdi_writeback *new_wb;
386 struct inode *inodes[];
387 };
388
bdi_down_write_wb_switch_rwsem(struct backing_dev_info * bdi)389 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi)
390 {
391 down_write(&bdi->wb_switch_rwsem);
392 }
393
bdi_up_write_wb_switch_rwsem(struct backing_dev_info * bdi)394 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi)
395 {
396 up_write(&bdi->wb_switch_rwsem);
397 }
398
inode_do_switch_wbs(struct inode * inode,struct bdi_writeback * old_wb,struct bdi_writeback * new_wb)399 static bool inode_do_switch_wbs(struct inode *inode,
400 struct bdi_writeback *old_wb,
401 struct bdi_writeback *new_wb)
402 {
403 struct address_space *mapping = inode->i_mapping;
404 XA_STATE(xas, &mapping->i_pages, 0);
405 struct folio *folio;
406 bool switched = false;
407
408 spin_lock(&inode->i_lock);
409 xa_lock_irq(&mapping->i_pages);
410
411 /*
412 * Once I_FREEING or I_WILL_FREE are visible under i_lock, the eviction
413 * path owns the inode and we shouldn't modify ->i_io_list.
414 */
415 if (unlikely(inode->i_state & (I_FREEING | I_WILL_FREE)))
416 goto skip_switch;
417
418 trace_inode_switch_wbs(inode, old_wb, new_wb);
419
420 /*
421 * Count and transfer stats. Note that PAGECACHE_TAG_DIRTY points
422 * to possibly dirty folios while PAGECACHE_TAG_WRITEBACK points to
423 * folios actually under writeback.
424 */
425 xas_for_each_marked(&xas, folio, ULONG_MAX, PAGECACHE_TAG_DIRTY) {
426 if (folio_test_dirty(folio)) {
427 long nr = folio_nr_pages(folio);
428 wb_stat_mod(old_wb, WB_RECLAIMABLE, -nr);
429 wb_stat_mod(new_wb, WB_RECLAIMABLE, nr);
430 }
431 }
432
433 xas_set(&xas, 0);
434 xas_for_each_marked(&xas, folio, ULONG_MAX, PAGECACHE_TAG_WRITEBACK) {
435 long nr = folio_nr_pages(folio);
436 WARN_ON_ONCE(!folio_test_writeback(folio));
437 wb_stat_mod(old_wb, WB_WRITEBACK, -nr);
438 wb_stat_mod(new_wb, WB_WRITEBACK, nr);
439 }
440
441 if (mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK)) {
442 atomic_dec(&old_wb->writeback_inodes);
443 atomic_inc(&new_wb->writeback_inodes);
444 }
445
446 wb_get(new_wb);
447
448 /*
449 * Transfer to @new_wb's IO list if necessary. If the @inode is dirty,
450 * the specific list @inode was on is ignored and the @inode is put on
451 * ->b_dirty which is always correct including from ->b_dirty_time.
452 * The transfer preserves @inode->dirtied_when ordering. If the @inode
453 * was clean, it means it was on the b_attached list, so move it onto
454 * the b_attached list of @new_wb.
455 */
456 if (!list_empty(&inode->i_io_list)) {
457 inode->i_wb = new_wb;
458
459 if (inode->i_state & I_DIRTY_ALL) {
460 struct inode *pos;
461
462 list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
463 if (time_after_eq(inode->dirtied_when,
464 pos->dirtied_when))
465 break;
466 inode_io_list_move_locked(inode, new_wb,
467 pos->i_io_list.prev);
468 } else {
469 inode_cgwb_move_to_attached(inode, new_wb);
470 }
471 } else {
472 inode->i_wb = new_wb;
473 }
474
475 /* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
476 inode->i_wb_frn_winner = 0;
477 inode->i_wb_frn_avg_time = 0;
478 inode->i_wb_frn_history = 0;
479 switched = true;
480 skip_switch:
481 /*
482 * Paired with load_acquire in unlocked_inode_to_wb_begin() and
483 * ensures that the new wb is visible if they see !I_WB_SWITCH.
484 */
485 smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
486
487 xa_unlock_irq(&mapping->i_pages);
488 spin_unlock(&inode->i_lock);
489
490 return switched;
491 }
492
inode_switch_wbs_work_fn(struct work_struct * work)493 static void inode_switch_wbs_work_fn(struct work_struct *work)
494 {
495 struct inode_switch_wbs_context *isw =
496 container_of(to_rcu_work(work), struct inode_switch_wbs_context, work);
497 struct backing_dev_info *bdi = inode_to_bdi(isw->inodes[0]);
498 struct bdi_writeback *old_wb = isw->inodes[0]->i_wb;
499 struct bdi_writeback *new_wb = isw->new_wb;
500 unsigned long nr_switched = 0;
501 struct inode **inodep;
502
503 /*
504 * If @inode switches cgwb membership while sync_inodes_sb() is
505 * being issued, sync_inodes_sb() might miss it. Synchronize.
506 */
507 down_read(&bdi->wb_switch_rwsem);
508
509 /*
510 * By the time control reaches here, RCU grace period has passed
511 * since I_WB_SWITCH assertion and all wb stat update transactions
512 * between unlocked_inode_to_wb_begin/end() are guaranteed to be
513 * synchronizing against the i_pages lock.
514 *
515 * Grabbing old_wb->list_lock, inode->i_lock and the i_pages lock
516 * gives us exclusion against all wb related operations on @inode
517 * including IO list manipulations and stat updates.
518 */
519 if (old_wb < new_wb) {
520 spin_lock(&old_wb->list_lock);
521 spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
522 } else {
523 spin_lock(&new_wb->list_lock);
524 spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
525 }
526
527 for (inodep = isw->inodes; *inodep; inodep++) {
528 WARN_ON_ONCE((*inodep)->i_wb != old_wb);
529 if (inode_do_switch_wbs(*inodep, old_wb, new_wb))
530 nr_switched++;
531 }
532
533 spin_unlock(&new_wb->list_lock);
534 spin_unlock(&old_wb->list_lock);
535
536 up_read(&bdi->wb_switch_rwsem);
537
538 if (nr_switched) {
539 wb_wakeup(new_wb);
540 wb_put_many(old_wb, nr_switched);
541 }
542
543 for (inodep = isw->inodes; *inodep; inodep++)
544 iput(*inodep);
545 wb_put(new_wb);
546 kfree(isw);
547 atomic_dec(&isw_nr_in_flight);
548 }
549
inode_prepare_wbs_switch(struct inode * inode,struct bdi_writeback * new_wb)550 static bool inode_prepare_wbs_switch(struct inode *inode,
551 struct bdi_writeback *new_wb)
552 {
553 /*
554 * Paired with smp_mb() in cgroup_writeback_umount().
555 * isw_nr_in_flight must be increased before checking SB_ACTIVE and
556 * grabbing an inode, otherwise isw_nr_in_flight can be observed as 0
557 * in cgroup_writeback_umount() and the isw_wq will be not flushed.
558 */
559 smp_mb();
560
561 if (IS_DAX(inode))
562 return false;
563
564 /* while holding I_WB_SWITCH, no one else can update the association */
565 spin_lock(&inode->i_lock);
566 if (!(inode->i_sb->s_flags & SB_ACTIVE) ||
567 inode->i_state & (I_WB_SWITCH | I_FREEING | I_WILL_FREE) ||
568 inode_to_wb(inode) == new_wb) {
569 spin_unlock(&inode->i_lock);
570 return false;
571 }
572 inode->i_state |= I_WB_SWITCH;
573 __iget(inode);
574 spin_unlock(&inode->i_lock);
575
576 return true;
577 }
578
579 /**
580 * inode_switch_wbs - change the wb association of an inode
581 * @inode: target inode
582 * @new_wb_id: ID of the new wb
583 *
584 * Switch @inode's wb association to the wb identified by @new_wb_id. The
585 * switching is performed asynchronously and may fail silently.
586 */
inode_switch_wbs(struct inode * inode,int new_wb_id)587 static void inode_switch_wbs(struct inode *inode, int new_wb_id)
588 {
589 struct backing_dev_info *bdi = inode_to_bdi(inode);
590 struct cgroup_subsys_state *memcg_css;
591 struct inode_switch_wbs_context *isw;
592
593 /* noop if seems to be already in progress */
594 if (inode->i_state & I_WB_SWITCH)
595 return;
596
597 /* avoid queueing a new switch if too many are already in flight */
598 if (atomic_read(&isw_nr_in_flight) > WB_FRN_MAX_IN_FLIGHT)
599 return;
600
601 isw = kzalloc(struct_size(isw, inodes, 2), GFP_ATOMIC);
602 if (!isw)
603 return;
604
605 atomic_inc(&isw_nr_in_flight);
606
607 /* find and pin the new wb */
608 rcu_read_lock();
609 memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
610 if (memcg_css && !css_tryget(memcg_css))
611 memcg_css = NULL;
612 rcu_read_unlock();
613 if (!memcg_css)
614 goto out_free;
615
616 isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
617 css_put(memcg_css);
618 if (!isw->new_wb)
619 goto out_free;
620
621 if (!inode_prepare_wbs_switch(inode, isw->new_wb))
622 goto out_free;
623
624 isw->inodes[0] = inode;
625
626 /*
627 * In addition to synchronizing among switchers, I_WB_SWITCH tells
628 * the RCU protected stat update paths to grab the i_page
629 * lock so that stat transfer can synchronize against them.
630 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
631 */
632 INIT_RCU_WORK(&isw->work, inode_switch_wbs_work_fn);
633 queue_rcu_work(isw_wq, &isw->work);
634 return;
635
636 out_free:
637 atomic_dec(&isw_nr_in_flight);
638 if (isw->new_wb)
639 wb_put(isw->new_wb);
640 kfree(isw);
641 }
642
isw_prepare_wbs_switch(struct inode_switch_wbs_context * isw,struct list_head * list,int * nr)643 static bool isw_prepare_wbs_switch(struct inode_switch_wbs_context *isw,
644 struct list_head *list, int *nr)
645 {
646 struct inode *inode;
647
648 list_for_each_entry(inode, list, i_io_list) {
649 if (!inode_prepare_wbs_switch(inode, isw->new_wb))
650 continue;
651
652 isw->inodes[*nr] = inode;
653 (*nr)++;
654
655 if (*nr >= WB_MAX_INODES_PER_ISW - 1)
656 return true;
657 }
658 return false;
659 }
660
661 /**
662 * cleanup_offline_cgwb - detach associated inodes
663 * @wb: target wb
664 *
665 * Switch all inodes attached to @wb to a nearest living ancestor's wb in order
666 * to eventually release the dying @wb. Returns %true if not all inodes were
667 * switched and the function has to be restarted.
668 */
cleanup_offline_cgwb(struct bdi_writeback * wb)669 bool cleanup_offline_cgwb(struct bdi_writeback *wb)
670 {
671 struct cgroup_subsys_state *memcg_css;
672 struct inode_switch_wbs_context *isw;
673 int nr;
674 bool restart = false;
675
676 isw = kzalloc(struct_size(isw, inodes, WB_MAX_INODES_PER_ISW),
677 GFP_KERNEL);
678 if (!isw)
679 return restart;
680
681 atomic_inc(&isw_nr_in_flight);
682
683 for (memcg_css = wb->memcg_css->parent; memcg_css;
684 memcg_css = memcg_css->parent) {
685 isw->new_wb = wb_get_create(wb->bdi, memcg_css, GFP_KERNEL);
686 if (isw->new_wb)
687 break;
688 }
689 if (unlikely(!isw->new_wb))
690 isw->new_wb = &wb->bdi->wb; /* wb_get() is noop for bdi's wb */
691
692 nr = 0;
693 spin_lock(&wb->list_lock);
694 /*
695 * In addition to the inodes that have completed writeback, also switch
696 * cgwbs for those inodes only with dirty timestamps. Otherwise, those
697 * inodes won't be written back for a long time when lazytime is
698 * enabled, and thus pinning the dying cgwbs. It won't break the
699 * bandwidth restrictions, as writeback of inode metadata is not
700 * accounted for.
701 */
702 restart = isw_prepare_wbs_switch(isw, &wb->b_attached, &nr);
703 if (!restart)
704 restart = isw_prepare_wbs_switch(isw, &wb->b_dirty_time, &nr);
705 spin_unlock(&wb->list_lock);
706
707 /* no attached inodes? bail out */
708 if (nr == 0) {
709 atomic_dec(&isw_nr_in_flight);
710 wb_put(isw->new_wb);
711 kfree(isw);
712 return restart;
713 }
714
715 /*
716 * In addition to synchronizing among switchers, I_WB_SWITCH tells
717 * the RCU protected stat update paths to grab the i_page
718 * lock so that stat transfer can synchronize against them.
719 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
720 */
721 INIT_RCU_WORK(&isw->work, inode_switch_wbs_work_fn);
722 queue_rcu_work(isw_wq, &isw->work);
723
724 return restart;
725 }
726
727 /**
728 * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
729 * @wbc: writeback_control of interest
730 * @inode: target inode
731 *
732 * @inode is locked and about to be written back under the control of @wbc.
733 * Record @inode's writeback context into @wbc and unlock the i_lock. On
734 * writeback completion, wbc_detach_inode() should be called. This is used
735 * to track the cgroup writeback context.
736 */
wbc_attach_and_unlock_inode(struct writeback_control * wbc,struct inode * inode)737 void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
738 struct inode *inode)
739 {
740 if (!inode_cgwb_enabled(inode)) {
741 spin_unlock(&inode->i_lock);
742 return;
743 }
744
745 wbc->wb = inode_to_wb(inode);
746 wbc->inode = inode;
747
748 wbc->wb_id = wbc->wb->memcg_css->id;
749 wbc->wb_lcand_id = inode->i_wb_frn_winner;
750 wbc->wb_tcand_id = 0;
751 wbc->wb_bytes = 0;
752 wbc->wb_lcand_bytes = 0;
753 wbc->wb_tcand_bytes = 0;
754
755 wb_get(wbc->wb);
756 spin_unlock(&inode->i_lock);
757
758 /*
759 * A dying wb indicates that either the blkcg associated with the
760 * memcg changed or the associated memcg is dying. In the first
761 * case, a replacement wb should already be available and we should
762 * refresh the wb immediately. In the second case, trying to
763 * refresh will keep failing.
764 */
765 if (unlikely(wb_dying(wbc->wb) && !css_is_dying(wbc->wb->memcg_css)))
766 inode_switch_wbs(inode, wbc->wb_id);
767 }
768 EXPORT_SYMBOL_GPL(wbc_attach_and_unlock_inode);
769
770 /**
771 * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
772 * @wbc: writeback_control of the just finished writeback
773 *
774 * To be called after a writeback attempt of an inode finishes and undoes
775 * wbc_attach_and_unlock_inode(). Can be called under any context.
776 *
777 * As concurrent write sharing of an inode is expected to be very rare and
778 * memcg only tracks page ownership on first-use basis severely confining
779 * the usefulness of such sharing, cgroup writeback tracks ownership
780 * per-inode. While the support for concurrent write sharing of an inode
781 * is deemed unnecessary, an inode being written to by different cgroups at
782 * different points in time is a lot more common, and, more importantly,
783 * charging only by first-use can too readily lead to grossly incorrect
784 * behaviors (single foreign page can lead to gigabytes of writeback to be
785 * incorrectly attributed).
786 *
787 * To resolve this issue, cgroup writeback detects the majority dirtier of
788 * an inode and transfers the ownership to it. To avoid unnecessary
789 * oscillation, the detection mechanism keeps track of history and gives
790 * out the switch verdict only if the foreign usage pattern is stable over
791 * a certain amount of time and/or writeback attempts.
792 *
793 * On each writeback attempt, @wbc tries to detect the majority writer
794 * using Boyer-Moore majority vote algorithm. In addition to the byte
795 * count from the majority voting, it also counts the bytes written for the
796 * current wb and the last round's winner wb (max of last round's current
797 * wb, the winner from two rounds ago, and the last round's majority
798 * candidate). Keeping track of the historical winner helps the algorithm
799 * to semi-reliably detect the most active writer even when it's not the
800 * absolute majority.
801 *
802 * Once the winner of the round is determined, whether the winner is
803 * foreign or not and how much IO time the round consumed is recorded in
804 * inode->i_wb_frn_history. If the amount of recorded foreign IO time is
805 * over a certain threshold, the switch verdict is given.
806 */
wbc_detach_inode(struct writeback_control * wbc)807 void wbc_detach_inode(struct writeback_control *wbc)
808 {
809 struct bdi_writeback *wb = wbc->wb;
810 struct inode *inode = wbc->inode;
811 unsigned long avg_time, max_bytes, max_time;
812 u16 history;
813 int max_id;
814
815 if (!wb)
816 return;
817
818 history = inode->i_wb_frn_history;
819 avg_time = inode->i_wb_frn_avg_time;
820
821 /* pick the winner of this round */
822 if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
823 wbc->wb_bytes >= wbc->wb_tcand_bytes) {
824 max_id = wbc->wb_id;
825 max_bytes = wbc->wb_bytes;
826 } else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
827 max_id = wbc->wb_lcand_id;
828 max_bytes = wbc->wb_lcand_bytes;
829 } else {
830 max_id = wbc->wb_tcand_id;
831 max_bytes = wbc->wb_tcand_bytes;
832 }
833
834 /*
835 * Calculate the amount of IO time the winner consumed and fold it
836 * into the running average kept per inode. If the consumed IO
837 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
838 * deciding whether to switch or not. This is to prevent one-off
839 * small dirtiers from skewing the verdict.
840 */
841 max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
842 wb->avg_write_bandwidth);
843 if (avg_time)
844 avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
845 (avg_time >> WB_FRN_TIME_AVG_SHIFT);
846 else
847 avg_time = max_time; /* immediate catch up on first run */
848
849 if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
850 int slots;
851
852 /*
853 * The switch verdict is reached if foreign wb's consume
854 * more than a certain proportion of IO time in a
855 * WB_FRN_TIME_PERIOD. This is loosely tracked by 16 slot
856 * history mask where each bit represents one sixteenth of
857 * the period. Determine the number of slots to shift into
858 * history from @max_time.
859 */
860 slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
861 (unsigned long)WB_FRN_HIST_MAX_SLOTS);
862 history <<= slots;
863 if (wbc->wb_id != max_id)
864 history |= (1U << slots) - 1;
865
866 if (history)
867 trace_inode_foreign_history(inode, wbc, history);
868
869 /*
870 * Switch if the current wb isn't the consistent winner.
871 * If there are multiple closely competing dirtiers, the
872 * inode may switch across them repeatedly over time, which
873 * is okay. The main goal is avoiding keeping an inode on
874 * the wrong wb for an extended period of time.
875 */
876 if (hweight16(history) > WB_FRN_HIST_THR_SLOTS)
877 inode_switch_wbs(inode, max_id);
878 }
879
880 /*
881 * Multiple instances of this function may race to update the
882 * following fields but we don't mind occassional inaccuracies.
883 */
884 inode->i_wb_frn_winner = max_id;
885 inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
886 inode->i_wb_frn_history = history;
887
888 wb_put(wbc->wb);
889 wbc->wb = NULL;
890 }
891 EXPORT_SYMBOL_GPL(wbc_detach_inode);
892
893 /**
894 * wbc_account_cgroup_owner - account writeback to update inode cgroup ownership
895 * @wbc: writeback_control of the writeback in progress
896 * @folio: folio being written out
897 * @bytes: number of bytes being written out
898 *
899 * @bytes from @folio are about to written out during the writeback
900 * controlled by @wbc. Keep the book for foreign inode detection. See
901 * wbc_detach_inode().
902 */
wbc_account_cgroup_owner(struct writeback_control * wbc,struct folio * folio,size_t bytes)903 void wbc_account_cgroup_owner(struct writeback_control *wbc, struct folio *folio,
904 size_t bytes)
905 {
906 struct cgroup_subsys_state *css;
907 int id;
908
909 /*
910 * pageout() path doesn't attach @wbc to the inode being written
911 * out. This is intentional as we don't want the function to block
912 * behind a slow cgroup. Ultimately, we want pageout() to kick off
913 * regular writeback instead of writing things out itself.
914 */
915 if (!wbc->wb || wbc->no_cgroup_owner)
916 return;
917
918 css = mem_cgroup_css_from_folio(folio);
919 /* dead cgroups shouldn't contribute to inode ownership arbitration */
920 if (!(css->flags & CSS_ONLINE))
921 return;
922
923 id = css->id;
924
925 if (id == wbc->wb_id) {
926 wbc->wb_bytes += bytes;
927 return;
928 }
929
930 if (id == wbc->wb_lcand_id)
931 wbc->wb_lcand_bytes += bytes;
932
933 /* Boyer-Moore majority vote algorithm */
934 if (!wbc->wb_tcand_bytes)
935 wbc->wb_tcand_id = id;
936 if (id == wbc->wb_tcand_id)
937 wbc->wb_tcand_bytes += bytes;
938 else
939 wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
940 }
941 EXPORT_SYMBOL_GPL(wbc_account_cgroup_owner);
942
943 /**
944 * wb_split_bdi_pages - split nr_pages to write according to bandwidth
945 * @wb: target bdi_writeback to split @nr_pages to
946 * @nr_pages: number of pages to write for the whole bdi
947 *
948 * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
949 * relation to the total write bandwidth of all wb's w/ dirty inodes on
950 * @wb->bdi.
951 */
wb_split_bdi_pages(struct bdi_writeback * wb,long nr_pages)952 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
953 {
954 unsigned long this_bw = wb->avg_write_bandwidth;
955 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
956
957 if (nr_pages == LONG_MAX)
958 return LONG_MAX;
959
960 /*
961 * This may be called on clean wb's and proportional distribution
962 * may not make sense, just use the original @nr_pages in those
963 * cases. In general, we wanna err on the side of writing more.
964 */
965 if (!tot_bw || this_bw >= tot_bw)
966 return nr_pages;
967 else
968 return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
969 }
970
971 /**
972 * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
973 * @bdi: target backing_dev_info
974 * @base_work: wb_writeback_work to issue
975 * @skip_if_busy: skip wb's which already have writeback in progress
976 *
977 * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
978 * have dirty inodes. If @base_work->nr_page isn't %LONG_MAX, it's
979 * distributed to the busy wbs according to each wb's proportion in the
980 * total active write bandwidth of @bdi.
981 */
bdi_split_work_to_wbs(struct backing_dev_info * bdi,struct wb_writeback_work * base_work,bool skip_if_busy)982 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
983 struct wb_writeback_work *base_work,
984 bool skip_if_busy)
985 {
986 struct bdi_writeback *last_wb = NULL;
987 struct bdi_writeback *wb = list_entry(&bdi->wb_list,
988 struct bdi_writeback, bdi_node);
989
990 might_sleep();
991 restart:
992 rcu_read_lock();
993 list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
994 DEFINE_WB_COMPLETION(fallback_work_done, bdi);
995 struct wb_writeback_work fallback_work;
996 struct wb_writeback_work *work;
997 long nr_pages;
998
999 if (last_wb) {
1000 wb_put(last_wb);
1001 last_wb = NULL;
1002 }
1003
1004 /* SYNC_ALL writes out I_DIRTY_TIME too */
1005 if (!wb_has_dirty_io(wb) &&
1006 (base_work->sync_mode == WB_SYNC_NONE ||
1007 list_empty(&wb->b_dirty_time)))
1008 continue;
1009 if (skip_if_busy && writeback_in_progress(wb))
1010 continue;
1011
1012 nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);
1013
1014 work = kmalloc(sizeof(*work), GFP_ATOMIC);
1015 if (work) {
1016 *work = *base_work;
1017 work->nr_pages = nr_pages;
1018 work->auto_free = 1;
1019 wb_queue_work(wb, work);
1020 continue;
1021 }
1022
1023 /*
1024 * If wb_tryget fails, the wb has been shutdown, skip it.
1025 *
1026 * Pin @wb so that it stays on @bdi->wb_list. This allows
1027 * continuing iteration from @wb after dropping and
1028 * regrabbing rcu read lock.
1029 */
1030 if (!wb_tryget(wb))
1031 continue;
1032
1033 /* alloc failed, execute synchronously using on-stack fallback */
1034 work = &fallback_work;
1035 *work = *base_work;
1036 work->nr_pages = nr_pages;
1037 work->auto_free = 0;
1038 work->done = &fallback_work_done;
1039
1040 wb_queue_work(wb, work);
1041 last_wb = wb;
1042
1043 rcu_read_unlock();
1044 wb_wait_for_completion(&fallback_work_done);
1045 goto restart;
1046 }
1047 rcu_read_unlock();
1048
1049 if (last_wb)
1050 wb_put(last_wb);
1051 }
1052
1053 /**
1054 * cgroup_writeback_by_id - initiate cgroup writeback from bdi and memcg IDs
1055 * @bdi_id: target bdi id
1056 * @memcg_id: target memcg css id
1057 * @reason: reason why some writeback work initiated
1058 * @done: target wb_completion
1059 *
1060 * Initiate flush of the bdi_writeback identified by @bdi_id and @memcg_id
1061 * with the specified parameters.
1062 */
cgroup_writeback_by_id(u64 bdi_id,int memcg_id,enum wb_reason reason,struct wb_completion * done)1063 int cgroup_writeback_by_id(u64 bdi_id, int memcg_id,
1064 enum wb_reason reason, struct wb_completion *done)
1065 {
1066 struct backing_dev_info *bdi;
1067 struct cgroup_subsys_state *memcg_css;
1068 struct bdi_writeback *wb;
1069 struct wb_writeback_work *work;
1070 unsigned long dirty;
1071 int ret;
1072
1073 /* lookup bdi and memcg */
1074 bdi = bdi_get_by_id(bdi_id);
1075 if (!bdi)
1076 return -ENOENT;
1077
1078 rcu_read_lock();
1079 memcg_css = css_from_id(memcg_id, &memory_cgrp_subsys);
1080 if (memcg_css && !css_tryget(memcg_css))
1081 memcg_css = NULL;
1082 rcu_read_unlock();
1083 if (!memcg_css) {
1084 ret = -ENOENT;
1085 goto out_bdi_put;
1086 }
1087
1088 /*
1089 * And find the associated wb. If the wb isn't there already
1090 * there's nothing to flush, don't create one.
1091 */
1092 wb = wb_get_lookup(bdi, memcg_css);
1093 if (!wb) {
1094 ret = -ENOENT;
1095 goto out_css_put;
1096 }
1097
1098 /*
1099 * The caller is attempting to write out most of
1100 * the currently dirty pages. Let's take the current dirty page
1101 * count and inflate it by 25% which should be large enough to
1102 * flush out most dirty pages while avoiding getting livelocked by
1103 * concurrent dirtiers.
1104 *
1105 * BTW the memcg stats are flushed periodically and this is best-effort
1106 * estimation, so some potential error is ok.
1107 */
1108 dirty = memcg_page_state(mem_cgroup_from_css(memcg_css), NR_FILE_DIRTY);
1109 dirty = dirty * 10 / 8;
1110
1111 /* issue the writeback work */
1112 work = kzalloc(sizeof(*work), GFP_NOWAIT | __GFP_NOWARN);
1113 if (work) {
1114 work->nr_pages = dirty;
1115 work->sync_mode = WB_SYNC_NONE;
1116 work->range_cyclic = 1;
1117 work->reason = reason;
1118 work->done = done;
1119 work->auto_free = 1;
1120 wb_queue_work(wb, work);
1121 ret = 0;
1122 } else {
1123 ret = -ENOMEM;
1124 }
1125
1126 wb_put(wb);
1127 out_css_put:
1128 css_put(memcg_css);
1129 out_bdi_put:
1130 bdi_put(bdi);
1131 return ret;
1132 }
1133
1134 /**
1135 * cgroup_writeback_umount - flush inode wb switches for umount
1136 * @sb: target super_block
1137 *
1138 * This function is called when a super_block is about to be destroyed and
1139 * flushes in-flight inode wb switches. An inode wb switch goes through
1140 * RCU and then workqueue, so the two need to be flushed in order to ensure
1141 * that all previously scheduled switches are finished. As wb switches are
1142 * rare occurrences and synchronize_rcu() can take a while, perform
1143 * flushing iff wb switches are in flight.
1144 */
cgroup_writeback_umount(struct super_block * sb)1145 void cgroup_writeback_umount(struct super_block *sb)
1146 {
1147
1148 if (!(sb->s_bdi->capabilities & BDI_CAP_WRITEBACK))
1149 return;
1150
1151 /*
1152 * SB_ACTIVE should be reliably cleared before checking
1153 * isw_nr_in_flight, see generic_shutdown_super().
1154 */
1155 smp_mb();
1156
1157 if (atomic_read(&isw_nr_in_flight)) {
1158 /*
1159 * Use rcu_barrier() to wait for all pending callbacks to
1160 * ensure that all in-flight wb switches are in the workqueue.
1161 */
1162 rcu_barrier();
1163 flush_workqueue(isw_wq);
1164 }
1165 }
1166
cgroup_writeback_init(void)1167 static int __init cgroup_writeback_init(void)
1168 {
1169 isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0);
1170 if (!isw_wq)
1171 return -ENOMEM;
1172 return 0;
1173 }
1174 fs_initcall(cgroup_writeback_init);
1175
1176 #else /* CONFIG_CGROUP_WRITEBACK */
1177
bdi_down_write_wb_switch_rwsem(struct backing_dev_info * bdi)1178 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
bdi_up_write_wb_switch_rwsem(struct backing_dev_info * bdi)1179 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
1180
inode_cgwb_move_to_attached(struct inode * inode,struct bdi_writeback * wb)1181 static void inode_cgwb_move_to_attached(struct inode *inode,
1182 struct bdi_writeback *wb)
1183 {
1184 assert_spin_locked(&wb->list_lock);
1185 assert_spin_locked(&inode->i_lock);
1186 WARN_ON_ONCE(inode->i_state & I_FREEING);
1187
1188 inode->i_state &= ~I_SYNC_QUEUED;
1189 list_del_init(&inode->i_io_list);
1190 wb_io_lists_depopulated(wb);
1191 }
1192
1193 static struct bdi_writeback *
locked_inode_to_wb_and_lock_list(struct inode * inode)1194 locked_inode_to_wb_and_lock_list(struct inode *inode)
1195 __releases(&inode->i_lock)
1196 __acquires(&wb->list_lock)
1197 {
1198 struct bdi_writeback *wb = inode_to_wb(inode);
1199
1200 spin_unlock(&inode->i_lock);
1201 spin_lock(&wb->list_lock);
1202 return wb;
1203 }
1204
inode_to_wb_and_lock_list(struct inode * inode)1205 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
1206 __acquires(&wb->list_lock)
1207 {
1208 struct bdi_writeback *wb = inode_to_wb(inode);
1209
1210 spin_lock(&wb->list_lock);
1211 return wb;
1212 }
1213
wb_split_bdi_pages(struct bdi_writeback * wb,long nr_pages)1214 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
1215 {
1216 return nr_pages;
1217 }
1218
bdi_split_work_to_wbs(struct backing_dev_info * bdi,struct wb_writeback_work * base_work,bool skip_if_busy)1219 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
1220 struct wb_writeback_work *base_work,
1221 bool skip_if_busy)
1222 {
1223 might_sleep();
1224
1225 if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
1226 base_work->auto_free = 0;
1227 wb_queue_work(&bdi->wb, base_work);
1228 }
1229 }
1230
1231 #endif /* CONFIG_CGROUP_WRITEBACK */
1232
1233 /*
1234 * Add in the number of potentially dirty inodes, because each inode
1235 * write can dirty pagecache in the underlying blockdev.
1236 */
get_nr_dirty_pages(void)1237 static unsigned long get_nr_dirty_pages(void)
1238 {
1239 return global_node_page_state(NR_FILE_DIRTY) +
1240 get_nr_dirty_inodes();
1241 }
1242
wb_start_writeback(struct bdi_writeback * wb,enum wb_reason reason)1243 static void wb_start_writeback(struct bdi_writeback *wb, enum wb_reason reason)
1244 {
1245 if (!wb_has_dirty_io(wb))
1246 return;
1247
1248 /*
1249 * All callers of this function want to start writeback of all
1250 * dirty pages. Places like vmscan can call this at a very
1251 * high frequency, causing pointless allocations of tons of
1252 * work items and keeping the flusher threads busy retrieving
1253 * that work. Ensure that we only allow one of them pending and
1254 * inflight at the time.
1255 */
1256 if (test_bit(WB_start_all, &wb->state) ||
1257 test_and_set_bit(WB_start_all, &wb->state))
1258 return;
1259
1260 wb->start_all_reason = reason;
1261 wb_wakeup(wb);
1262 }
1263
1264 /**
1265 * wb_start_background_writeback - start background writeback
1266 * @wb: bdi_writback to write from
1267 *
1268 * Description:
1269 * This makes sure WB_SYNC_NONE background writeback happens. When
1270 * this function returns, it is only guaranteed that for given wb
1271 * some IO is happening if we are over background dirty threshold.
1272 * Caller need not hold sb s_umount semaphore.
1273 */
wb_start_background_writeback(struct bdi_writeback * wb)1274 void wb_start_background_writeback(struct bdi_writeback *wb)
1275 {
1276 /*
1277 * We just wake up the flusher thread. It will perform background
1278 * writeback as soon as there is no other work to do.
1279 */
1280 trace_writeback_wake_background(wb);
1281 wb_wakeup(wb);
1282 }
1283
1284 /*
1285 * Remove the inode from the writeback list it is on.
1286 */
inode_io_list_del(struct inode * inode)1287 void inode_io_list_del(struct inode *inode)
1288 {
1289 struct bdi_writeback *wb;
1290
1291 wb = inode_to_wb_and_lock_list(inode);
1292 spin_lock(&inode->i_lock);
1293
1294 inode->i_state &= ~I_SYNC_QUEUED;
1295 trace_android_vh_inode_io_list_del(inode, wb);
1296 list_del_init(&inode->i_io_list);
1297 wb_io_lists_depopulated(wb);
1298
1299 spin_unlock(&inode->i_lock);
1300 spin_unlock(&wb->list_lock);
1301 }
1302 EXPORT_SYMBOL(inode_io_list_del);
1303
1304 /*
1305 * mark an inode as under writeback on the sb
1306 */
sb_mark_inode_writeback(struct inode * inode)1307 void sb_mark_inode_writeback(struct inode *inode)
1308 {
1309 struct super_block *sb = inode->i_sb;
1310 unsigned long flags;
1311
1312 if (list_empty(&inode->i_wb_list)) {
1313 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1314 if (list_empty(&inode->i_wb_list)) {
1315 list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb);
1316 trace_sb_mark_inode_writeback(inode);
1317 }
1318 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1319 }
1320 }
1321
1322 /*
1323 * clear an inode as under writeback on the sb
1324 */
sb_clear_inode_writeback(struct inode * inode)1325 void sb_clear_inode_writeback(struct inode *inode)
1326 {
1327 struct super_block *sb = inode->i_sb;
1328 unsigned long flags;
1329
1330 if (!list_empty(&inode->i_wb_list)) {
1331 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1332 if (!list_empty(&inode->i_wb_list)) {
1333 list_del_init(&inode->i_wb_list);
1334 trace_sb_clear_inode_writeback(inode);
1335 }
1336 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1337 }
1338 }
1339
1340 /*
1341 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
1342 * furthest end of its superblock's dirty-inode list.
1343 *
1344 * Before stamping the inode's ->dirtied_when, we check to see whether it is
1345 * already the most-recently-dirtied inode on the b_dirty list. If that is
1346 * the case then the inode must have been redirtied while it was being written
1347 * out and we don't reset its dirtied_when.
1348 */
redirty_tail_locked(struct inode * inode,struct bdi_writeback * wb)1349 void redirty_tail_locked(struct inode *inode, struct bdi_writeback *wb)
1350 {
1351 struct list_head *target_list = &wb->b_dirty;
1352 assert_spin_locked(&inode->i_lock);
1353
1354 inode->i_state &= ~I_SYNC_QUEUED;
1355 /*
1356 * When the inode is being freed just don't bother with dirty list
1357 * tracking. Flush worker will ignore this inode anyway and it will
1358 * trigger assertions in inode_io_list_move_locked().
1359 */
1360 if (inode->i_state & I_FREEING) {
1361 list_del_init(&inode->i_io_list);
1362 wb_io_lists_depopulated(wb);
1363 return;
1364 }
1365 trace_android_vh_redirty_tail_locked(&target_list, inode, wb);
1366 if (!list_empty(target_list)) {
1367 struct inode *tail;
1368
1369 tail = wb_inode(target_list->next);
1370 if (time_before(inode->dirtied_when, tail->dirtied_when))
1371 inode->dirtied_when = jiffies;
1372 }
1373 inode_io_list_move_locked(inode, wb, target_list);
1374 }
1375 EXPORT_SYMBOL_GPL(redirty_tail_locked);
1376
redirty_tail(struct inode * inode,struct bdi_writeback * wb)1377 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
1378 {
1379 spin_lock(&inode->i_lock);
1380 redirty_tail_locked(inode, wb);
1381 spin_unlock(&inode->i_lock);
1382 }
1383
1384 /*
1385 * requeue inode for re-scanning after bdi->b_io list is exhausted.
1386 */
requeue_io(struct inode * inode,struct bdi_writeback * wb)1387 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
1388 {
1389 inode_io_list_move_locked(inode, wb, &wb->b_more_io);
1390 }
1391
inode_sync_complete(struct inode * inode)1392 static void inode_sync_complete(struct inode *inode)
1393 {
1394 assert_spin_locked(&inode->i_lock);
1395
1396 inode->i_state &= ~I_SYNC;
1397 /* If inode is clean an unused, put it into LRU now... */
1398 inode_add_lru(inode);
1399 /* Called with inode->i_lock which ensures memory ordering. */
1400 inode_wake_up_bit(inode, __I_SYNC);
1401 }
1402
inode_dirtied_after(struct inode * inode,unsigned long t)1403 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
1404 {
1405 bool ret = time_after(inode->dirtied_when, t);
1406 #ifndef CONFIG_64BIT
1407 /*
1408 * For inodes being constantly redirtied, dirtied_when can get stuck.
1409 * It _appears_ to be in the future, but is actually in distant past.
1410 * This test is necessary to prevent such wrapped-around relative times
1411 * from permanently stopping the whole bdi writeback.
1412 */
1413 ret = ret && time_before_eq(inode->dirtied_when, jiffies);
1414 #endif
1415 return ret;
1416 }
1417
1418 /*
1419 * Move expired (dirtied before dirtied_before) dirty inodes from
1420 * @delaying_queue to @dispatch_queue.
1421 */
move_expired_inodes(struct list_head * delaying_queue,struct list_head * dispatch_queue,unsigned long dirtied_before)1422 static int move_expired_inodes(struct list_head *delaying_queue,
1423 struct list_head *dispatch_queue,
1424 unsigned long dirtied_before)
1425 {
1426 LIST_HEAD(tmp);
1427 struct list_head *pos, *node;
1428 struct super_block *sb = NULL;
1429 struct inode *inode;
1430 int do_sb_sort = 0;
1431 int moved = 0;
1432
1433 while (!list_empty(delaying_queue)) {
1434 inode = wb_inode(delaying_queue->prev);
1435 if (inode_dirtied_after(inode, dirtied_before))
1436 break;
1437 spin_lock(&inode->i_lock);
1438 list_move(&inode->i_io_list, &tmp);
1439 moved++;
1440 inode->i_state |= I_SYNC_QUEUED;
1441 spin_unlock(&inode->i_lock);
1442 if (sb_is_blkdev_sb(inode->i_sb))
1443 continue;
1444 if (sb && sb != inode->i_sb)
1445 do_sb_sort = 1;
1446 sb = inode->i_sb;
1447 }
1448
1449 /* just one sb in list, splice to dispatch_queue and we're done */
1450 if (!do_sb_sort) {
1451 list_splice(&tmp, dispatch_queue);
1452 goto out;
1453 }
1454
1455 /*
1456 * Although inode's i_io_list is moved from 'tmp' to 'dispatch_queue',
1457 * we don't take inode->i_lock here because it is just a pointless overhead.
1458 * Inode is already marked as I_SYNC_QUEUED so writeback list handling is
1459 * fully under our control.
1460 */
1461 while (!list_empty(&tmp)) {
1462 sb = wb_inode(tmp.prev)->i_sb;
1463 list_for_each_prev_safe(pos, node, &tmp) {
1464 inode = wb_inode(pos);
1465 if (inode->i_sb == sb)
1466 list_move(&inode->i_io_list, dispatch_queue);
1467 }
1468 }
1469 out:
1470 return moved;
1471 }
1472
1473 /*
1474 * Queue all expired dirty inodes for io, eldest first.
1475 * Before
1476 * newly dirtied b_dirty b_io b_more_io
1477 * =============> gf edc BA
1478 * After
1479 * newly dirtied b_dirty b_io b_more_io
1480 * =============> g fBAedc
1481 * |
1482 * +--> dequeue for IO
1483 */
queue_io(struct bdi_writeback * wb,struct wb_writeback_work * work,unsigned long dirtied_before)1484 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work,
1485 unsigned long dirtied_before)
1486 {
1487 int moved;
1488 unsigned long time_expire_jif = dirtied_before;
1489
1490 assert_spin_locked(&wb->list_lock);
1491 list_splice_init(&wb->b_more_io, &wb->b_io);
1492 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, dirtied_before);
1493 trace_android_vh_queue_io(wb, work->for_kupdate, dirtied_before, &moved);
1494 if (!work->for_sync)
1495 time_expire_jif = jiffies - dirtytime_expire_interval * HZ;
1496 moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
1497 time_expire_jif);
1498 if (moved)
1499 wb_io_lists_populated(wb);
1500 trace_writeback_queue_io(wb, work, dirtied_before, moved);
1501 }
1502
write_inode(struct inode * inode,struct writeback_control * wbc)1503 static int write_inode(struct inode *inode, struct writeback_control *wbc)
1504 {
1505 int ret;
1506
1507 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1508 trace_writeback_write_inode_start(inode, wbc);
1509 ret = inode->i_sb->s_op->write_inode(inode, wbc);
1510 trace_writeback_write_inode(inode, wbc);
1511 return ret;
1512 }
1513 return 0;
1514 }
1515
1516 /*
1517 * Wait for writeback on an inode to complete. Called with i_lock held.
1518 * Caller must make sure inode cannot go away when we drop i_lock.
1519 */
inode_wait_for_writeback(struct inode * inode)1520 void inode_wait_for_writeback(struct inode *inode)
1521 {
1522 struct wait_bit_queue_entry wqe;
1523 struct wait_queue_head *wq_head;
1524
1525 assert_spin_locked(&inode->i_lock);
1526
1527 if (!(inode->i_state & I_SYNC))
1528 return;
1529
1530 wq_head = inode_bit_waitqueue(&wqe, inode, __I_SYNC);
1531 for (;;) {
1532 prepare_to_wait_event(wq_head, &wqe.wq_entry, TASK_UNINTERRUPTIBLE);
1533 /* Checking I_SYNC with inode->i_lock guarantees memory ordering. */
1534 if (!(inode->i_state & I_SYNC))
1535 break;
1536 spin_unlock(&inode->i_lock);
1537 schedule();
1538 spin_lock(&inode->i_lock);
1539 }
1540 finish_wait(wq_head, &wqe.wq_entry);
1541 }
1542
1543 /*
1544 * Sleep until I_SYNC is cleared. This function must be called with i_lock
1545 * held and drops it. It is aimed for callers not holding any inode reference
1546 * so once i_lock is dropped, inode can go away.
1547 */
inode_sleep_on_writeback(struct inode * inode)1548 static void inode_sleep_on_writeback(struct inode *inode)
1549 __releases(inode->i_lock)
1550 {
1551 struct wait_bit_queue_entry wqe;
1552 struct wait_queue_head *wq_head;
1553 bool sleep;
1554
1555 assert_spin_locked(&inode->i_lock);
1556
1557 wq_head = inode_bit_waitqueue(&wqe, inode, __I_SYNC);
1558 prepare_to_wait_event(wq_head, &wqe.wq_entry, TASK_UNINTERRUPTIBLE);
1559 /* Checking I_SYNC with inode->i_lock guarantees memory ordering. */
1560 sleep = !!(inode->i_state & I_SYNC);
1561 spin_unlock(&inode->i_lock);
1562 if (sleep)
1563 schedule();
1564 finish_wait(wq_head, &wqe.wq_entry);
1565 }
1566
1567 /*
1568 * Find proper writeback list for the inode depending on its current state and
1569 * possibly also change of its state while we were doing writeback. Here we
1570 * handle things such as livelock prevention or fairness of writeback among
1571 * inodes. This function can be called only by flusher thread - noone else
1572 * processes all inodes in writeback lists and requeueing inodes behind flusher
1573 * thread's back can have unexpected consequences.
1574 */
requeue_inode(struct inode * inode,struct bdi_writeback * wb,struct writeback_control * wbc,unsigned long dirtied_before)1575 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1576 struct writeback_control *wbc,
1577 unsigned long dirtied_before)
1578 {
1579 if (inode->i_state & I_FREEING)
1580 return;
1581
1582 /*
1583 * Sync livelock prevention. Each inode is tagged and synced in one
1584 * shot. If still dirty, it will be redirty_tail()'ed below. Update
1585 * the dirty time to prevent enqueue and sync it again.
1586 */
1587 if ((inode->i_state & I_DIRTY) &&
1588 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1589 inode->dirtied_when = jiffies;
1590
1591 if (wbc->pages_skipped) {
1592 /*
1593 * Writeback is not making progress due to locked buffers.
1594 * Skip this inode for now. Although having skipped pages
1595 * is odd for clean inodes, it can happen for some
1596 * filesystems so handle that gracefully.
1597 */
1598 if (inode->i_state & I_DIRTY_ALL)
1599 redirty_tail_locked(inode, wb);
1600 else
1601 inode_cgwb_move_to_attached(inode, wb);
1602 return;
1603 }
1604
1605 if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1606 /*
1607 * We didn't write back all the pages. nfs_writepages()
1608 * sometimes bales out without doing anything.
1609 */
1610 if (wbc->nr_to_write <= 0 &&
1611 !inode_dirtied_after(inode, dirtied_before)) {
1612 /* Slice used up. Queue for next turn. */
1613 requeue_io(inode, wb);
1614 } else {
1615 /*
1616 * Writeback blocked by something other than
1617 * congestion. Delay the inode for some time to
1618 * avoid spinning on the CPU (100% iowait)
1619 * retrying writeback of the dirty page/inode
1620 * that cannot be performed immediately.
1621 */
1622 redirty_tail_locked(inode, wb);
1623 }
1624 } else if (inode->i_state & I_DIRTY) {
1625 /*
1626 * Filesystems can dirty the inode during writeback operations,
1627 * such as delayed allocation during submission or metadata
1628 * updates after data IO completion.
1629 */
1630 redirty_tail_locked(inode, wb);
1631 } else if (inode->i_state & I_DIRTY_TIME) {
1632 inode->dirtied_when = jiffies;
1633 inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
1634 inode->i_state &= ~I_SYNC_QUEUED;
1635 } else {
1636 /* The inode is clean. Remove from writeback lists. */
1637 inode_cgwb_move_to_attached(inode, wb);
1638 }
1639 }
1640
1641 /*
1642 * Write out an inode and its dirty pages (or some of its dirty pages, depending
1643 * on @wbc->nr_to_write), and clear the relevant dirty flags from i_state.
1644 *
1645 * This doesn't remove the inode from the writeback list it is on, except
1646 * potentially to move it from b_dirty_time to b_dirty due to timestamp
1647 * expiration. The caller is otherwise responsible for writeback list handling.
1648 *
1649 * The caller is also responsible for setting the I_SYNC flag beforehand and
1650 * calling inode_sync_complete() to clear it afterwards.
1651 */
1652 static int
__writeback_single_inode(struct inode * inode,struct writeback_control * wbc)1653 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1654 {
1655 struct address_space *mapping = inode->i_mapping;
1656 long nr_to_write = wbc->nr_to_write;
1657 unsigned dirty;
1658 int ret;
1659
1660 WARN_ON(!(inode->i_state & I_SYNC));
1661
1662 trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1663
1664 ret = do_writepages(mapping, wbc);
1665
1666 /*
1667 * Make sure to wait on the data before writing out the metadata.
1668 * This is important for filesystems that modify metadata on data
1669 * I/O completion. We don't do it for sync(2) writeback because it has a
1670 * separate, external IO completion path and ->sync_fs for guaranteeing
1671 * inode metadata is written back correctly.
1672 */
1673 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
1674 int err = filemap_fdatawait(mapping);
1675 if (ret == 0)
1676 ret = err;
1677 }
1678
1679 /*
1680 * If the inode has dirty timestamps and we need to write them, call
1681 * mark_inode_dirty_sync() to notify the filesystem about it and to
1682 * change I_DIRTY_TIME into I_DIRTY_SYNC.
1683 */
1684 if ((inode->i_state & I_DIRTY_TIME) &&
1685 (wbc->sync_mode == WB_SYNC_ALL ||
1686 time_after(jiffies, inode->dirtied_time_when +
1687 dirtytime_expire_interval * HZ))) {
1688 trace_writeback_lazytime(inode);
1689 mark_inode_dirty_sync(inode);
1690 }
1691
1692 /*
1693 * Get and clear the dirty flags from i_state. This needs to be done
1694 * after calling writepages because some filesystems may redirty the
1695 * inode during writepages due to delalloc. It also needs to be done
1696 * after handling timestamp expiration, as that may dirty the inode too.
1697 */
1698 spin_lock(&inode->i_lock);
1699 dirty = inode->i_state & I_DIRTY;
1700 inode->i_state &= ~dirty;
1701
1702 /*
1703 * Paired with smp_mb() in __mark_inode_dirty(). This allows
1704 * __mark_inode_dirty() to test i_state without grabbing i_lock -
1705 * either they see the I_DIRTY bits cleared or we see the dirtied
1706 * inode.
1707 *
1708 * I_DIRTY_PAGES is always cleared together above even if @mapping
1709 * still has dirty pages. The flag is reinstated after smp_mb() if
1710 * necessary. This guarantees that either __mark_inode_dirty()
1711 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1712 */
1713 smp_mb();
1714
1715 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1716 inode->i_state |= I_DIRTY_PAGES;
1717 else if (unlikely(inode->i_state & I_PINNING_NETFS_WB)) {
1718 if (!(inode->i_state & I_DIRTY_PAGES)) {
1719 inode->i_state &= ~I_PINNING_NETFS_WB;
1720 wbc->unpinned_netfs_wb = true;
1721 dirty |= I_PINNING_NETFS_WB; /* Cause write_inode */
1722 }
1723 }
1724
1725 spin_unlock(&inode->i_lock);
1726
1727 /* Don't write the inode if only I_DIRTY_PAGES was set */
1728 if (dirty & ~I_DIRTY_PAGES) {
1729 int err = write_inode(inode, wbc);
1730 if (ret == 0)
1731 ret = err;
1732 }
1733 wbc->unpinned_netfs_wb = false;
1734 trace_writeback_single_inode(inode, wbc, nr_to_write);
1735 return ret;
1736 }
1737
1738 /*
1739 * Write out an inode's dirty data and metadata on-demand, i.e. separately from
1740 * the regular batched writeback done by the flusher threads in
1741 * writeback_sb_inodes(). @wbc controls various aspects of the write, such as
1742 * whether it is a data-integrity sync (%WB_SYNC_ALL) or not (%WB_SYNC_NONE).
1743 *
1744 * To prevent the inode from going away, either the caller must have a reference
1745 * to the inode, or the inode must have I_WILL_FREE or I_FREEING set.
1746 */
writeback_single_inode(struct inode * inode,struct writeback_control * wbc)1747 static int writeback_single_inode(struct inode *inode,
1748 struct writeback_control *wbc)
1749 {
1750 struct bdi_writeback *wb;
1751 int ret = 0;
1752
1753 spin_lock(&inode->i_lock);
1754 if (!atomic_read(&inode->i_count))
1755 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1756 else
1757 WARN_ON(inode->i_state & I_WILL_FREE);
1758
1759 if (inode->i_state & I_SYNC) {
1760 /*
1761 * Writeback is already running on the inode. For WB_SYNC_NONE,
1762 * that's enough and we can just return. For WB_SYNC_ALL, we
1763 * must wait for the existing writeback to complete, then do
1764 * writeback again if there's anything left.
1765 */
1766 if (wbc->sync_mode != WB_SYNC_ALL)
1767 goto out;
1768 inode_wait_for_writeback(inode);
1769 }
1770 WARN_ON(inode->i_state & I_SYNC);
1771 /*
1772 * If the inode is already fully clean, then there's nothing to do.
1773 *
1774 * For data-integrity syncs we also need to check whether any pages are
1775 * still under writeback, e.g. due to prior WB_SYNC_NONE writeback. If
1776 * there are any such pages, we'll need to wait for them.
1777 */
1778 if (!(inode->i_state & I_DIRTY_ALL) &&
1779 (wbc->sync_mode != WB_SYNC_ALL ||
1780 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
1781 goto out;
1782 inode->i_state |= I_SYNC;
1783 wbc_attach_and_unlock_inode(wbc, inode);
1784
1785 ret = __writeback_single_inode(inode, wbc);
1786
1787 wbc_detach_inode(wbc);
1788
1789 wb = inode_to_wb_and_lock_list(inode);
1790 spin_lock(&inode->i_lock);
1791 /*
1792 * If the inode is freeing, its i_io_list shoudn't be updated
1793 * as it can be finally deleted at this moment.
1794 */
1795 if (!(inode->i_state & I_FREEING)) {
1796 /*
1797 * If the inode is now fully clean, then it can be safely
1798 * removed from its writeback list (if any). Otherwise the
1799 * flusher threads are responsible for the writeback lists.
1800 */
1801 if (!(inode->i_state & I_DIRTY_ALL))
1802 inode_cgwb_move_to_attached(inode, wb);
1803 else if (!(inode->i_state & I_SYNC_QUEUED)) {
1804 if ((inode->i_state & I_DIRTY))
1805 redirty_tail_locked(inode, wb);
1806 else if (inode->i_state & I_DIRTY_TIME) {
1807 inode->dirtied_when = jiffies;
1808 inode_io_list_move_locked(inode,
1809 wb,
1810 &wb->b_dirty_time);
1811 }
1812 }
1813 }
1814
1815 spin_unlock(&wb->list_lock);
1816 inode_sync_complete(inode);
1817 out:
1818 spin_unlock(&inode->i_lock);
1819 return ret;
1820 }
1821
writeback_chunk_size(struct bdi_writeback * wb,struct wb_writeback_work * work)1822 static long writeback_chunk_size(struct bdi_writeback *wb,
1823 struct wb_writeback_work *work)
1824 {
1825 long pages;
1826
1827 /*
1828 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1829 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1830 * here avoids calling into writeback_inodes_wb() more than once.
1831 *
1832 * The intended call sequence for WB_SYNC_ALL writeback is:
1833 *
1834 * wb_writeback()
1835 * writeback_sb_inodes() <== called only once
1836 * write_cache_pages() <== called once for each inode
1837 * (quickly) tag currently dirty pages
1838 * (maybe slowly) sync all tagged pages
1839 */
1840 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1841 pages = LONG_MAX;
1842 else {
1843 pages = min(wb->avg_write_bandwidth / 2,
1844 global_wb_domain.dirty_limit / DIRTY_SCOPE);
1845 pages = min(pages, work->nr_pages);
1846 pages = round_down(pages + MIN_WRITEBACK_PAGES,
1847 MIN_WRITEBACK_PAGES);
1848 }
1849
1850 return pages;
1851 }
1852
1853 /*
1854 * Write a portion of b_io inodes which belong to @sb.
1855 *
1856 * Return the number of pages and/or inodes written.
1857 *
1858 * NOTE! This is called with wb->list_lock held, and will
1859 * unlock and relock that for each inode it ends up doing
1860 * IO for.
1861 */
writeback_sb_inodes(struct super_block * sb,struct bdi_writeback * wb,struct wb_writeback_work * work)1862 static long writeback_sb_inodes(struct super_block *sb,
1863 struct bdi_writeback *wb,
1864 struct wb_writeback_work *work)
1865 {
1866 struct writeback_control wbc = {
1867 .sync_mode = work->sync_mode,
1868 .tagged_writepages = work->tagged_writepages,
1869 .for_kupdate = work->for_kupdate,
1870 .for_background = work->for_background,
1871 .for_sync = work->for_sync,
1872 .range_cyclic = work->range_cyclic,
1873 .range_start = 0,
1874 .range_end = LLONG_MAX,
1875 };
1876 unsigned long start_time = jiffies;
1877 long write_chunk;
1878 long total_wrote = 0; /* count both pages and inodes */
1879 unsigned long dirtied_before = jiffies;
1880
1881 if (work->for_kupdate)
1882 dirtied_before = jiffies -
1883 msecs_to_jiffies(dirty_expire_interval * 10);
1884
1885 while (!list_empty(&wb->b_io)) {
1886 struct inode *inode = wb_inode(wb->b_io.prev);
1887 struct bdi_writeback *tmp_wb;
1888 long wrote;
1889
1890 if (inode->i_sb != sb) {
1891 if (work->sb) {
1892 /*
1893 * We only want to write back data for this
1894 * superblock, move all inodes not belonging
1895 * to it back onto the dirty list.
1896 */
1897 redirty_tail(inode, wb);
1898 continue;
1899 }
1900
1901 /*
1902 * The inode belongs to a different superblock.
1903 * Bounce back to the caller to unpin this and
1904 * pin the next superblock.
1905 */
1906 break;
1907 }
1908
1909 /*
1910 * Don't bother with new inodes or inodes being freed, first
1911 * kind does not need periodic writeout yet, and for the latter
1912 * kind writeout is handled by the freer.
1913 */
1914 spin_lock(&inode->i_lock);
1915 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
1916 redirty_tail_locked(inode, wb);
1917 spin_unlock(&inode->i_lock);
1918 continue;
1919 }
1920 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1921 /*
1922 * If this inode is locked for writeback and we are not
1923 * doing writeback-for-data-integrity, move it to
1924 * b_more_io so that writeback can proceed with the
1925 * other inodes on s_io.
1926 *
1927 * We'll have another go at writing back this inode
1928 * when we completed a full scan of b_io.
1929 */
1930 requeue_io(inode, wb);
1931 spin_unlock(&inode->i_lock);
1932 trace_writeback_sb_inodes_requeue(inode);
1933 continue;
1934 }
1935 spin_unlock(&wb->list_lock);
1936
1937 /*
1938 * We already requeued the inode if it had I_SYNC set and we
1939 * are doing WB_SYNC_NONE writeback. So this catches only the
1940 * WB_SYNC_ALL case.
1941 */
1942 if (inode->i_state & I_SYNC) {
1943 /* Wait for I_SYNC. This function drops i_lock... */
1944 inode_sleep_on_writeback(inode);
1945 /* Inode may be gone, start again */
1946 spin_lock(&wb->list_lock);
1947 continue;
1948 }
1949 inode->i_state |= I_SYNC;
1950 wbc_attach_and_unlock_inode(&wbc, inode);
1951
1952 write_chunk = writeback_chunk_size(wb, work);
1953 wbc.nr_to_write = write_chunk;
1954 wbc.pages_skipped = 0;
1955
1956 /*
1957 * We use I_SYNC to pin the inode in memory. While it is set
1958 * evict_inode() will wait so the inode cannot be freed.
1959 */
1960 __writeback_single_inode(inode, &wbc);
1961
1962 wbc_detach_inode(&wbc);
1963 work->nr_pages -= write_chunk - wbc.nr_to_write;
1964 wrote = write_chunk - wbc.nr_to_write - wbc.pages_skipped;
1965 wrote = wrote < 0 ? 0 : wrote;
1966 total_wrote += wrote;
1967
1968 if (need_resched()) {
1969 /*
1970 * We're trying to balance between building up a nice
1971 * long list of IOs to improve our merge rate, and
1972 * getting those IOs out quickly for anyone throttling
1973 * in balance_dirty_pages(). cond_resched() doesn't
1974 * unplug, so get our IOs out the door before we
1975 * give up the CPU.
1976 */
1977 blk_flush_plug(current->plug, false);
1978 cond_resched();
1979 }
1980
1981 /*
1982 * Requeue @inode if still dirty. Be careful as @inode may
1983 * have been switched to another wb in the meantime.
1984 */
1985 tmp_wb = inode_to_wb_and_lock_list(inode);
1986 spin_lock(&inode->i_lock);
1987 if (!(inode->i_state & I_DIRTY_ALL))
1988 total_wrote++;
1989 requeue_inode(inode, tmp_wb, &wbc, dirtied_before);
1990 inode_sync_complete(inode);
1991 spin_unlock(&inode->i_lock);
1992
1993 if (unlikely(tmp_wb != wb)) {
1994 spin_unlock(&tmp_wb->list_lock);
1995 spin_lock(&wb->list_lock);
1996 }
1997
1998 /*
1999 * bail out to wb_writeback() often enough to check
2000 * background threshold and other termination conditions.
2001 */
2002 if (total_wrote) {
2003 if (time_is_before_jiffies(start_time + HZ / 10UL))
2004 break;
2005 if (work->nr_pages <= 0)
2006 break;
2007 }
2008 }
2009 return total_wrote;
2010 }
2011
__writeback_inodes_wb(struct bdi_writeback * wb,struct wb_writeback_work * work)2012 static long __writeback_inodes_wb(struct bdi_writeback *wb,
2013 struct wb_writeback_work *work)
2014 {
2015 unsigned long start_time = jiffies;
2016 long wrote = 0;
2017
2018 while (!list_empty(&wb->b_io)) {
2019 struct inode *inode = wb_inode(wb->b_io.prev);
2020 struct super_block *sb = inode->i_sb;
2021
2022 if (!super_trylock_shared(sb)) {
2023 /*
2024 * super_trylock_shared() may fail consistently due to
2025 * s_umount being grabbed by someone else. Don't use
2026 * requeue_io() to avoid busy retrying the inode/sb.
2027 */
2028 redirty_tail(inode, wb);
2029 continue;
2030 }
2031 wrote += writeback_sb_inodes(sb, wb, work);
2032 up_read(&sb->s_umount);
2033
2034 /* refer to the same tests at the end of writeback_sb_inodes */
2035 if (wrote) {
2036 if (time_is_before_jiffies(start_time + HZ / 10UL))
2037 break;
2038 if (work->nr_pages <= 0)
2039 break;
2040 }
2041 }
2042 /* Leave any unwritten inodes on b_io */
2043 return wrote;
2044 }
2045
writeback_inodes_wb(struct bdi_writeback * wb,long nr_pages,enum wb_reason reason)2046 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
2047 enum wb_reason reason)
2048 {
2049 struct wb_writeback_work work = {
2050 .nr_pages = nr_pages,
2051 .sync_mode = WB_SYNC_NONE,
2052 .range_cyclic = 1,
2053 .reason = reason,
2054 };
2055 struct blk_plug plug;
2056
2057 blk_start_plug(&plug);
2058 spin_lock(&wb->list_lock);
2059 if (list_empty(&wb->b_io))
2060 queue_io(wb, &work, jiffies);
2061 __writeback_inodes_wb(wb, &work);
2062 spin_unlock(&wb->list_lock);
2063 blk_finish_plug(&plug);
2064
2065 return nr_pages - work.nr_pages;
2066 }
2067
2068 /*
2069 * Explicit flushing or periodic writeback of "old" data.
2070 *
2071 * Define "old": the first time one of an inode's pages is dirtied, we mark the
2072 * dirtying-time in the inode's address_space. So this periodic writeback code
2073 * just walks the superblock inode list, writing back any inodes which are
2074 * older than a specific point in time.
2075 *
2076 * Try to run once per dirty_writeback_interval. But if a writeback event
2077 * takes longer than a dirty_writeback_interval interval, then leave a
2078 * one-second gap.
2079 *
2080 * dirtied_before takes precedence over nr_to_write. So we'll only write back
2081 * all dirty pages if they are all attached to "old" mappings.
2082 */
wb_writeback(struct bdi_writeback * wb,struct wb_writeback_work * work)2083 static long wb_writeback(struct bdi_writeback *wb,
2084 struct wb_writeback_work *work)
2085 {
2086 long nr_pages = work->nr_pages;
2087 unsigned long dirtied_before = jiffies;
2088 struct inode *inode;
2089 long progress;
2090 struct blk_plug plug;
2091 bool queued = false;
2092
2093 blk_start_plug(&plug);
2094 for (;;) {
2095 /*
2096 * Stop writeback when nr_pages has been consumed
2097 */
2098 if (work->nr_pages <= 0)
2099 break;
2100
2101 /*
2102 * Background writeout and kupdate-style writeback may
2103 * run forever. Stop them if there is other work to do
2104 * so that e.g. sync can proceed. They'll be restarted
2105 * after the other works are all done.
2106 */
2107 if ((work->for_background || work->for_kupdate) &&
2108 !list_empty(&wb->work_list))
2109 break;
2110
2111 /*
2112 * For background writeout, stop when we are below the
2113 * background dirty threshold
2114 */
2115 if (work->for_background && !wb_over_bg_thresh(wb))
2116 break;
2117
2118
2119 spin_lock(&wb->list_lock);
2120
2121 trace_writeback_start(wb, work);
2122 if (list_empty(&wb->b_io)) {
2123 /*
2124 * Kupdate and background works are special and we want
2125 * to include all inodes that need writing. Livelock
2126 * avoidance is handled by these works yielding to any
2127 * other work so we are safe.
2128 */
2129 if (work->for_kupdate) {
2130 dirtied_before = jiffies -
2131 msecs_to_jiffies(dirty_expire_interval *
2132 10);
2133 } else if (work->for_background)
2134 dirtied_before = jiffies;
2135
2136 queue_io(wb, work, dirtied_before);
2137 queued = true;
2138 }
2139 if (work->sb)
2140 progress = writeback_sb_inodes(work->sb, wb, work);
2141 else
2142 progress = __writeback_inodes_wb(wb, work);
2143 trace_writeback_written(wb, work);
2144
2145 /*
2146 * Did we write something? Try for more
2147 *
2148 * Dirty inodes are moved to b_io for writeback in batches.
2149 * The completion of the current batch does not necessarily
2150 * mean the overall work is done. So we keep looping as long
2151 * as made some progress on cleaning pages or inodes.
2152 */
2153 if (progress || !queued) {
2154 spin_unlock(&wb->list_lock);
2155 continue;
2156 }
2157
2158 /*
2159 * No more inodes for IO, bail
2160 */
2161 if (list_empty(&wb->b_more_io)) {
2162 spin_unlock(&wb->list_lock);
2163 break;
2164 }
2165
2166 /*
2167 * Nothing written. Wait for some inode to
2168 * become available for writeback. Otherwise
2169 * we'll just busyloop.
2170 */
2171 trace_writeback_wait(wb, work);
2172 inode = wb_inode(wb->b_more_io.prev);
2173 spin_lock(&inode->i_lock);
2174 spin_unlock(&wb->list_lock);
2175 /* This function drops i_lock... */
2176 inode_sleep_on_writeback(inode);
2177 }
2178 blk_finish_plug(&plug);
2179
2180 return nr_pages - work->nr_pages;
2181 }
2182
2183 /*
2184 * Return the next wb_writeback_work struct that hasn't been processed yet.
2185 */
get_next_work_item(struct bdi_writeback * wb)2186 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
2187 {
2188 struct wb_writeback_work *work = NULL;
2189
2190 spin_lock_irq(&wb->work_lock);
2191 if (!list_empty(&wb->work_list)) {
2192 work = list_entry(wb->work_list.next,
2193 struct wb_writeback_work, list);
2194 list_del_init(&work->list);
2195 }
2196 spin_unlock_irq(&wb->work_lock);
2197 return work;
2198 }
2199
wb_check_background_flush(struct bdi_writeback * wb)2200 static long wb_check_background_flush(struct bdi_writeback *wb)
2201 {
2202 if (wb_over_bg_thresh(wb)) {
2203
2204 struct wb_writeback_work work = {
2205 .nr_pages = LONG_MAX,
2206 .sync_mode = WB_SYNC_NONE,
2207 .for_background = 1,
2208 .range_cyclic = 1,
2209 .reason = WB_REASON_BACKGROUND,
2210 };
2211
2212 return wb_writeback(wb, &work);
2213 }
2214
2215 return 0;
2216 }
2217
wb_check_old_data_flush(struct bdi_writeback * wb)2218 static long wb_check_old_data_flush(struct bdi_writeback *wb)
2219 {
2220 unsigned long expired;
2221 long nr_pages;
2222
2223 /*
2224 * When set to zero, disable periodic writeback
2225 */
2226 if (!dirty_writeback_interval)
2227 return 0;
2228
2229 expired = wb->last_old_flush +
2230 msecs_to_jiffies(dirty_writeback_interval * 10);
2231 if (time_before(jiffies, expired))
2232 return 0;
2233
2234 wb->last_old_flush = jiffies;
2235 nr_pages = get_nr_dirty_pages();
2236
2237 if (nr_pages) {
2238 struct wb_writeback_work work = {
2239 .nr_pages = nr_pages,
2240 .sync_mode = WB_SYNC_NONE,
2241 .for_kupdate = 1,
2242 .range_cyclic = 1,
2243 .reason = WB_REASON_PERIODIC,
2244 };
2245
2246 return wb_writeback(wb, &work);
2247 }
2248
2249 return 0;
2250 }
2251
wb_check_start_all(struct bdi_writeback * wb)2252 static long wb_check_start_all(struct bdi_writeback *wb)
2253 {
2254 long nr_pages;
2255
2256 if (!test_bit(WB_start_all, &wb->state))
2257 return 0;
2258
2259 nr_pages = get_nr_dirty_pages();
2260 if (nr_pages) {
2261 struct wb_writeback_work work = {
2262 .nr_pages = wb_split_bdi_pages(wb, nr_pages),
2263 .sync_mode = WB_SYNC_NONE,
2264 .range_cyclic = 1,
2265 .reason = wb->start_all_reason,
2266 };
2267
2268 nr_pages = wb_writeback(wb, &work);
2269 }
2270
2271 clear_bit(WB_start_all, &wb->state);
2272 return nr_pages;
2273 }
2274
2275
2276 /*
2277 * Retrieve work items and do the writeback they describe
2278 */
wb_do_writeback(struct bdi_writeback * wb)2279 static long wb_do_writeback(struct bdi_writeback *wb)
2280 {
2281 struct wb_writeback_work *work;
2282 long wrote = 0;
2283
2284 set_bit(WB_writeback_running, &wb->state);
2285 while ((work = get_next_work_item(wb)) != NULL) {
2286 trace_writeback_exec(wb, work);
2287 wrote += wb_writeback(wb, work);
2288 finish_writeback_work(work);
2289 }
2290
2291 /*
2292 * Check for a flush-everything request
2293 */
2294 wrote += wb_check_start_all(wb);
2295
2296 /*
2297 * Check for periodic writeback, kupdated() style
2298 */
2299 wrote += wb_check_old_data_flush(wb);
2300 wrote += wb_check_background_flush(wb);
2301 clear_bit(WB_writeback_running, &wb->state);
2302
2303 return wrote;
2304 }
2305
2306 /*
2307 * Handle writeback of dirty data for the device backed by this bdi. Also
2308 * reschedules periodically and does kupdated style flushing.
2309 */
wb_workfn(struct work_struct * work)2310 void wb_workfn(struct work_struct *work)
2311 {
2312 struct bdi_writeback *wb = container_of(to_delayed_work(work),
2313 struct bdi_writeback, dwork);
2314 long pages_written;
2315
2316 set_worker_desc("flush-%s", bdi_dev_name(wb->bdi));
2317
2318 if (likely(!current_is_workqueue_rescuer() ||
2319 !test_bit(WB_registered, &wb->state))) {
2320 /*
2321 * The normal path. Keep writing back @wb until its
2322 * work_list is empty. Note that this path is also taken
2323 * if @wb is shutting down even when we're running off the
2324 * rescuer as work_list needs to be drained.
2325 */
2326 do {
2327 pages_written = wb_do_writeback(wb);
2328 trace_writeback_pages_written(pages_written);
2329 } while (!list_empty(&wb->work_list));
2330 } else {
2331 /*
2332 * bdi_wq can't get enough workers and we're running off
2333 * the emergency worker. Don't hog it. Hopefully, 1024 is
2334 * enough for efficient IO.
2335 */
2336 pages_written = writeback_inodes_wb(wb, 1024,
2337 WB_REASON_FORKER_THREAD);
2338 trace_writeback_pages_written(pages_written);
2339 }
2340
2341 if (!list_empty(&wb->work_list))
2342 wb_wakeup(wb);
2343 else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
2344 wb_wakeup_delayed(wb);
2345 }
2346
2347 /*
2348 * Start writeback of all dirty pages on this bdi.
2349 */
__wakeup_flusher_threads_bdi(struct backing_dev_info * bdi,enum wb_reason reason)2350 static void __wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2351 enum wb_reason reason)
2352 {
2353 struct bdi_writeback *wb;
2354
2355 if (!bdi_has_dirty_io(bdi))
2356 return;
2357
2358 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2359 wb_start_writeback(wb, reason);
2360 }
2361
wakeup_flusher_threads_bdi(struct backing_dev_info * bdi,enum wb_reason reason)2362 void wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2363 enum wb_reason reason)
2364 {
2365 rcu_read_lock();
2366 __wakeup_flusher_threads_bdi(bdi, reason);
2367 rcu_read_unlock();
2368 }
2369
2370 /*
2371 * Wakeup the flusher threads to start writeback of all currently dirty pages
2372 */
wakeup_flusher_threads(enum wb_reason reason)2373 void wakeup_flusher_threads(enum wb_reason reason)
2374 {
2375 struct backing_dev_info *bdi;
2376
2377 /*
2378 * If we are expecting writeback progress we must submit plugged IO.
2379 */
2380 blk_flush_plug(current->plug, true);
2381
2382 rcu_read_lock();
2383 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2384 __wakeup_flusher_threads_bdi(bdi, reason);
2385 rcu_read_unlock();
2386 }
2387
2388 /*
2389 * Wake up bdi's periodically to make sure dirtytime inodes gets
2390 * written back periodically. We deliberately do *not* check the
2391 * b_dirtytime list in wb_has_dirty_io(), since this would cause the
2392 * kernel to be constantly waking up once there are any dirtytime
2393 * inodes on the system. So instead we define a separate delayed work
2394 * function which gets called much more rarely. (By default, only
2395 * once every 12 hours.)
2396 *
2397 * If there is any other write activity going on in the file system,
2398 * this function won't be necessary. But if the only thing that has
2399 * happened on the file system is a dirtytime inode caused by an atime
2400 * update, we need this infrastructure below to make sure that inode
2401 * eventually gets pushed out to disk.
2402 */
2403 static void wakeup_dirtytime_writeback(struct work_struct *w);
2404 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
2405
wakeup_dirtytime_writeback(struct work_struct * w)2406 static void wakeup_dirtytime_writeback(struct work_struct *w)
2407 {
2408 struct backing_dev_info *bdi;
2409
2410 rcu_read_lock();
2411 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
2412 struct bdi_writeback *wb;
2413
2414 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2415 if (!list_empty(&wb->b_dirty_time))
2416 wb_wakeup(wb);
2417 }
2418 rcu_read_unlock();
2419 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2420 }
2421
start_dirtytime_writeback(void)2422 static int __init start_dirtytime_writeback(void)
2423 {
2424 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2425 return 0;
2426 }
2427 __initcall(start_dirtytime_writeback);
2428
dirtytime_interval_handler(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)2429 int dirtytime_interval_handler(const struct ctl_table *table, int write,
2430 void *buffer, size_t *lenp, loff_t *ppos)
2431 {
2432 int ret;
2433
2434 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2435 if (ret == 0 && write)
2436 mod_delayed_work(system_wq, &dirtytime_work, 0);
2437 return ret;
2438 }
2439
2440 /**
2441 * __mark_inode_dirty - internal function to mark an inode dirty
2442 *
2443 * @inode: inode to mark
2444 * @flags: what kind of dirty, e.g. I_DIRTY_SYNC. This can be a combination of
2445 * multiple I_DIRTY_* flags, except that I_DIRTY_TIME can't be combined
2446 * with I_DIRTY_PAGES.
2447 *
2448 * Mark an inode as dirty. We notify the filesystem, then update the inode's
2449 * dirty flags. Then, if needed we add the inode to the appropriate dirty list.
2450 *
2451 * Most callers should use mark_inode_dirty() or mark_inode_dirty_sync()
2452 * instead of calling this directly.
2453 *
2454 * CAREFUL! We only add the inode to the dirty list if it is hashed or if it
2455 * refers to a blockdev. Unhashed inodes will never be added to the dirty list
2456 * even if they are later hashed, as they will have been marked dirty already.
2457 *
2458 * In short, ensure you hash any inodes _before_ you start marking them dirty.
2459 *
2460 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
2461 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
2462 * the kernel-internal blockdev inode represents the dirtying time of the
2463 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
2464 * page->mapping->host, so the page-dirtying time is recorded in the internal
2465 * blockdev inode.
2466 */
__mark_inode_dirty(struct inode * inode,int flags)2467 void __mark_inode_dirty(struct inode *inode, int flags)
2468 {
2469 struct super_block *sb = inode->i_sb;
2470 int dirtytime = 0;
2471 struct bdi_writeback *wb = NULL;
2472
2473 trace_writeback_mark_inode_dirty(inode, flags);
2474
2475 if (flags & I_DIRTY_INODE) {
2476 /*
2477 * Inode timestamp update will piggback on this dirtying.
2478 * We tell ->dirty_inode callback that timestamps need to
2479 * be updated by setting I_DIRTY_TIME in flags.
2480 */
2481 if (inode->i_state & I_DIRTY_TIME) {
2482 spin_lock(&inode->i_lock);
2483 if (inode->i_state & I_DIRTY_TIME) {
2484 inode->i_state &= ~I_DIRTY_TIME;
2485 flags |= I_DIRTY_TIME;
2486 }
2487 spin_unlock(&inode->i_lock);
2488 }
2489
2490 /*
2491 * Notify the filesystem about the inode being dirtied, so that
2492 * (if needed) it can update on-disk fields and journal the
2493 * inode. This is only needed when the inode itself is being
2494 * dirtied now. I.e. it's only needed for I_DIRTY_INODE, not
2495 * for just I_DIRTY_PAGES or I_DIRTY_TIME.
2496 */
2497 trace_writeback_dirty_inode_start(inode, flags);
2498 if (sb->s_op->dirty_inode)
2499 sb->s_op->dirty_inode(inode,
2500 flags & (I_DIRTY_INODE | I_DIRTY_TIME));
2501 trace_writeback_dirty_inode(inode, flags);
2502
2503 /* I_DIRTY_INODE supersedes I_DIRTY_TIME. */
2504 flags &= ~I_DIRTY_TIME;
2505 } else {
2506 /*
2507 * Else it's either I_DIRTY_PAGES, I_DIRTY_TIME, or nothing.
2508 * (We don't support setting both I_DIRTY_PAGES and I_DIRTY_TIME
2509 * in one call to __mark_inode_dirty().)
2510 */
2511 dirtytime = flags & I_DIRTY_TIME;
2512 WARN_ON_ONCE(dirtytime && flags != I_DIRTY_TIME);
2513 }
2514
2515 /*
2516 * Paired with smp_mb() in __writeback_single_inode() for the
2517 * following lockless i_state test. See there for details.
2518 */
2519 smp_mb();
2520
2521 if ((inode->i_state & flags) == flags)
2522 return;
2523
2524 spin_lock(&inode->i_lock);
2525 if ((inode->i_state & flags) != flags) {
2526 const int was_dirty = inode->i_state & I_DIRTY;
2527
2528 inode_attach_wb(inode, NULL);
2529
2530 inode->i_state |= flags;
2531
2532 /*
2533 * Grab inode's wb early because it requires dropping i_lock and we
2534 * need to make sure following checks happen atomically with dirty
2535 * list handling so that we don't move inodes under flush worker's
2536 * hands.
2537 */
2538 if (!was_dirty) {
2539 wb = locked_inode_to_wb_and_lock_list(inode);
2540 spin_lock(&inode->i_lock);
2541 }
2542
2543 /*
2544 * If the inode is queued for writeback by flush worker, just
2545 * update its dirty state. Once the flush worker is done with
2546 * the inode it will place it on the appropriate superblock
2547 * list, based upon its state.
2548 */
2549 if (inode->i_state & I_SYNC_QUEUED)
2550 goto out_unlock;
2551
2552 /*
2553 * Only add valid (hashed) inodes to the superblock's
2554 * dirty list. Add blockdev inodes as well.
2555 */
2556 if (!S_ISBLK(inode->i_mode)) {
2557 if (inode_unhashed(inode))
2558 goto out_unlock;
2559 }
2560 if (inode->i_state & I_FREEING)
2561 goto out_unlock;
2562
2563 /*
2564 * If the inode was already on b_dirty/b_io/b_more_io, don't
2565 * reposition it (that would break b_dirty time-ordering).
2566 */
2567 if (!was_dirty) {
2568 struct list_head *dirty_list;
2569 bool wakeup_bdi = false;
2570
2571 inode->dirtied_when = jiffies;
2572 if (dirtytime)
2573 inode->dirtied_time_when = jiffies;
2574
2575 if (inode->i_state & I_DIRTY)
2576 dirty_list = &wb->b_dirty;
2577 else
2578 dirty_list = &wb->b_dirty_time;
2579
2580 trace_android_vh_mark_inode_dirty(inode, wb,
2581 &dirty_list);
2582 wakeup_bdi = inode_io_list_move_locked(inode, wb,
2583 dirty_list);
2584
2585 /*
2586 * If this is the first dirty inode for this bdi,
2587 * we have to wake-up the corresponding bdi thread
2588 * to make sure background write-back happens
2589 * later.
2590 */
2591 if (wakeup_bdi &&
2592 (wb->bdi->capabilities & BDI_CAP_WRITEBACK))
2593 wb_wakeup_delayed(wb);
2594
2595 spin_unlock(&wb->list_lock);
2596 spin_unlock(&inode->i_lock);
2597 trace_writeback_dirty_inode_enqueue(inode);
2598
2599 return;
2600 }
2601 }
2602 out_unlock:
2603 if (wb)
2604 spin_unlock(&wb->list_lock);
2605 spin_unlock(&inode->i_lock);
2606 }
2607 EXPORT_SYMBOL(__mark_inode_dirty);
2608
2609 /*
2610 * The @s_sync_lock is used to serialise concurrent sync operations
2611 * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2612 * Concurrent callers will block on the s_sync_lock rather than doing contending
2613 * walks. The queueing maintains sync(2) required behaviour as all the IO that
2614 * has been issued up to the time this function is enter is guaranteed to be
2615 * completed by the time we have gained the lock and waited for all IO that is
2616 * in progress regardless of the order callers are granted the lock.
2617 */
wait_sb_inodes(struct super_block * sb)2618 static void wait_sb_inodes(struct super_block *sb)
2619 {
2620 LIST_HEAD(sync_list);
2621
2622 /*
2623 * We need to be protected against the filesystem going from
2624 * r/o to r/w or vice versa.
2625 */
2626 WARN_ON(!rwsem_is_locked(&sb->s_umount));
2627
2628 mutex_lock(&sb->s_sync_lock);
2629
2630 /*
2631 * Splice the writeback list onto a temporary list to avoid waiting on
2632 * inodes that have started writeback after this point.
2633 *
2634 * Use rcu_read_lock() to keep the inodes around until we have a
2635 * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as
2636 * the local list because inodes can be dropped from either by writeback
2637 * completion.
2638 */
2639 rcu_read_lock();
2640 spin_lock_irq(&sb->s_inode_wblist_lock);
2641 list_splice_init(&sb->s_inodes_wb, &sync_list);
2642
2643 /*
2644 * Data integrity sync. Must wait for all pages under writeback, because
2645 * there may have been pages dirtied before our sync call, but which had
2646 * writeout started before we write it out. In which case, the inode
2647 * may not be on the dirty list, but we still have to wait for that
2648 * writeout.
2649 */
2650 while (!list_empty(&sync_list)) {
2651 struct inode *inode = list_first_entry(&sync_list, struct inode,
2652 i_wb_list);
2653 struct address_space *mapping = inode->i_mapping;
2654
2655 /*
2656 * Move each inode back to the wb list before we drop the lock
2657 * to preserve consistency between i_wb_list and the mapping
2658 * writeback tag. Writeback completion is responsible to remove
2659 * the inode from either list once the writeback tag is cleared.
2660 */
2661 list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb);
2662
2663 /*
2664 * The mapping can appear untagged while still on-list since we
2665 * do not have the mapping lock. Skip it here, wb completion
2666 * will remove it.
2667 */
2668 if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
2669 continue;
2670
2671 spin_unlock_irq(&sb->s_inode_wblist_lock);
2672
2673 spin_lock(&inode->i_lock);
2674 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) {
2675 spin_unlock(&inode->i_lock);
2676
2677 spin_lock_irq(&sb->s_inode_wblist_lock);
2678 continue;
2679 }
2680 __iget(inode);
2681 spin_unlock(&inode->i_lock);
2682 rcu_read_unlock();
2683
2684 /*
2685 * We keep the error status of individual mapping so that
2686 * applications can catch the writeback error using fsync(2).
2687 * See filemap_fdatawait_keep_errors() for details.
2688 */
2689 filemap_fdatawait_keep_errors(mapping);
2690
2691 cond_resched();
2692
2693 iput(inode);
2694
2695 rcu_read_lock();
2696 spin_lock_irq(&sb->s_inode_wblist_lock);
2697 }
2698 spin_unlock_irq(&sb->s_inode_wblist_lock);
2699 rcu_read_unlock();
2700 mutex_unlock(&sb->s_sync_lock);
2701 }
2702
__writeback_inodes_sb_nr(struct super_block * sb,unsigned long nr,enum wb_reason reason,bool skip_if_busy)2703 static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2704 enum wb_reason reason, bool skip_if_busy)
2705 {
2706 struct backing_dev_info *bdi = sb->s_bdi;
2707 DEFINE_WB_COMPLETION(done, bdi);
2708 struct wb_writeback_work work = {
2709 .sb = sb,
2710 .sync_mode = WB_SYNC_NONE,
2711 .tagged_writepages = 1,
2712 .done = &done,
2713 .nr_pages = nr,
2714 .reason = reason,
2715 };
2716
2717 if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2718 return;
2719 WARN_ON(!rwsem_is_locked(&sb->s_umount));
2720
2721 bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
2722 wb_wait_for_completion(&done);
2723 }
2724
2725 /**
2726 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block
2727 * @sb: the superblock
2728 * @nr: the number of pages to write
2729 * @reason: reason why some writeback work initiated
2730 *
2731 * Start writeback on some inodes on this super_block. No guarantees are made
2732 * on how many (if any) will be written, and this function does not wait
2733 * for IO completion of submitted IO.
2734 */
writeback_inodes_sb_nr(struct super_block * sb,unsigned long nr,enum wb_reason reason)2735 void writeback_inodes_sb_nr(struct super_block *sb,
2736 unsigned long nr,
2737 enum wb_reason reason)
2738 {
2739 __writeback_inodes_sb_nr(sb, nr, reason, false);
2740 }
2741 EXPORT_SYMBOL(writeback_inodes_sb_nr);
2742
2743 /**
2744 * writeback_inodes_sb - writeback dirty inodes from given super_block
2745 * @sb: the superblock
2746 * @reason: reason why some writeback work was initiated
2747 *
2748 * Start writeback on some inodes on this super_block. No guarantees are made
2749 * on how many (if any) will be written, and this function does not wait
2750 * for IO completion of submitted IO.
2751 */
writeback_inodes_sb(struct super_block * sb,enum wb_reason reason)2752 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2753 {
2754 writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2755 }
2756 EXPORT_SYMBOL(writeback_inodes_sb);
2757
2758 /**
2759 * try_to_writeback_inodes_sb - try to start writeback if none underway
2760 * @sb: the superblock
2761 * @reason: reason why some writeback work was initiated
2762 *
2763 * Invoke __writeback_inodes_sb_nr if no writeback is currently underway.
2764 */
try_to_writeback_inodes_sb(struct super_block * sb,enum wb_reason reason)2765 void try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2766 {
2767 if (!down_read_trylock(&sb->s_umount))
2768 return;
2769
2770 __writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason, true);
2771 up_read(&sb->s_umount);
2772 }
2773 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
2774
2775 /**
2776 * sync_inodes_sb - sync sb inode pages
2777 * @sb: the superblock
2778 *
2779 * This function writes and waits on any dirty inode belonging to this
2780 * super_block.
2781 */
sync_inodes_sb(struct super_block * sb)2782 void sync_inodes_sb(struct super_block *sb)
2783 {
2784 struct backing_dev_info *bdi = sb->s_bdi;
2785 DEFINE_WB_COMPLETION(done, bdi);
2786 struct wb_writeback_work work = {
2787 .sb = sb,
2788 .sync_mode = WB_SYNC_ALL,
2789 .nr_pages = LONG_MAX,
2790 .range_cyclic = 0,
2791 .done = &done,
2792 .reason = WB_REASON_SYNC,
2793 .for_sync = 1,
2794 };
2795
2796 /*
2797 * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2798 * inodes under writeback and I_DIRTY_TIME inodes ignored by
2799 * bdi_has_dirty() need to be written out too.
2800 */
2801 if (bdi == &noop_backing_dev_info)
2802 return;
2803 WARN_ON(!rwsem_is_locked(&sb->s_umount));
2804
2805 /* protect against inode wb switch, see inode_switch_wbs_work_fn() */
2806 bdi_down_write_wb_switch_rwsem(bdi);
2807 bdi_split_work_to_wbs(bdi, &work, false);
2808 wb_wait_for_completion(&done);
2809 bdi_up_write_wb_switch_rwsem(bdi);
2810
2811 wait_sb_inodes(sb);
2812 }
2813 EXPORT_SYMBOL(sync_inodes_sb);
2814
2815 /**
2816 * write_inode_now - write an inode to disk
2817 * @inode: inode to write to disk
2818 * @sync: whether the write should be synchronous or not
2819 *
2820 * This function commits an inode to disk immediately if it is dirty. This is
2821 * primarily needed by knfsd.
2822 *
2823 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
2824 */
write_inode_now(struct inode * inode,int sync)2825 int write_inode_now(struct inode *inode, int sync)
2826 {
2827 struct writeback_control wbc = {
2828 .nr_to_write = LONG_MAX,
2829 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
2830 .range_start = 0,
2831 .range_end = LLONG_MAX,
2832 };
2833
2834 if (!mapping_can_writeback(inode->i_mapping))
2835 wbc.nr_to_write = 0;
2836
2837 might_sleep();
2838 return writeback_single_inode(inode, &wbc);
2839 }
2840 EXPORT_SYMBOL(write_inode_now);
2841
2842 /**
2843 * sync_inode_metadata - write an inode to disk
2844 * @inode: the inode to sync
2845 * @wait: wait for I/O to complete.
2846 *
2847 * Write an inode to disk and adjust its dirty state after completion.
2848 *
2849 * Note: only writes the actual inode, no associated data or other metadata.
2850 */
sync_inode_metadata(struct inode * inode,int wait)2851 int sync_inode_metadata(struct inode *inode, int wait)
2852 {
2853 struct writeback_control wbc = {
2854 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2855 .nr_to_write = 0, /* metadata-only */
2856 };
2857
2858 return writeback_single_inode(inode, &wbc);
2859 }
2860 EXPORT_SYMBOL(sync_inode_metadata);
2861