• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 
3 //! Tasks (threads and processes).
4 //!
5 //! C header: [`include/linux/sched.h`](srctree/include/linux/sched.h).
6 
7 use crate::{
8     bindings,
9     ffi::{c_int, c_long, c_uint},
10     mm::MmWithUser,
11     pid_namespace::PidNamespace,
12     types::{ARef, NotThreadSafe, Opaque},
13 };
14 use core::{
15     cmp::{Eq, PartialEq},
16     ops::Deref,
17     ptr,
18 };
19 
20 /// A sentinel value used for infinite timeouts.
21 pub const MAX_SCHEDULE_TIMEOUT: c_long = c_long::MAX;
22 
23 /// Bitmask for tasks that are sleeping in an interruptible state.
24 pub const TASK_INTERRUPTIBLE: c_int = bindings::TASK_INTERRUPTIBLE as c_int;
25 /// Bitmask for tasks that are sleeping in an uninterruptible state.
26 pub const TASK_UNINTERRUPTIBLE: c_int = bindings::TASK_UNINTERRUPTIBLE as c_int;
27 /// Bitmask for tasks that are sleeping in a freezable state.
28 pub const TASK_FREEZABLE: c_int = bindings::TASK_FREEZABLE as c_int;
29 /// Convenience constant for waking up tasks regardless of whether they are in interruptible or
30 /// uninterruptible sleep.
31 pub const TASK_NORMAL: c_uint = bindings::TASK_NORMAL as c_uint;
32 
33 /// Returns the currently running task.
34 #[macro_export]
35 macro_rules! current {
36     () => {
37         // SAFETY: This expression creates a temporary value that is dropped at the end of the
38         // caller's scope. The following mechanisms ensure that the resulting `&CurrentTask` cannot
39         // leave current task context:
40         //
41         // * To return to userspace, the caller must leave the current scope.
42         // * Operations such as `begin_new_exec()` are necessarily unsafe and the caller of
43         //   `begin_new_exec()` is responsible for safety.
44         // * Rust abstractions for things such as a `kthread_use_mm()` scope must require the
45         //   closure to be `Send`, so the `NotThreadSafe` field of `CurrentTask` ensures that the
46         //   `&CurrentTask` cannot cross the scope in either direction.
47         unsafe { &*$crate::task::Task::current() }
48     };
49 }
50 
51 /// Wraps the kernel's `struct task_struct`.
52 ///
53 /// # Invariants
54 ///
55 /// All instances are valid tasks created by the C portion of the kernel.
56 ///
57 /// Instances of this type are always refcounted, that is, a call to `get_task_struct` ensures
58 /// that the allocation remains valid at least until the matching call to `put_task_struct`.
59 ///
60 /// # Examples
61 ///
62 /// The following is an example of getting the PID of the current thread with zero additional cost
63 /// when compared to the C version:
64 ///
65 /// ```
66 /// let pid = current!().pid();
67 /// ```
68 ///
69 /// Getting the PID of the current process, also zero additional cost:
70 ///
71 /// ```
72 /// let pid = current!().group_leader().pid();
73 /// ```
74 ///
75 /// Getting the current task and storing it in some struct. The reference count is automatically
76 /// incremented when creating `State` and decremented when it is dropped:
77 ///
78 /// ```
79 /// use kernel::{task::Task, types::ARef};
80 ///
81 /// struct State {
82 ///     creator: ARef<Task>,
83 ///     index: u32,
84 /// }
85 ///
86 /// impl State {
87 ///     fn new() -> Self {
88 ///         Self {
89 ///             creator: ARef::from(&**current!()),
90 ///             index: 0,
91 ///         }
92 ///     }
93 /// }
94 /// ```
95 #[repr(transparent)]
96 pub struct Task(pub(crate) Opaque<bindings::task_struct>);
97 
98 // SAFETY: By design, the only way to access a `Task` is via the `current` function or via an
99 // `ARef<Task>` obtained through the `AlwaysRefCounted` impl. This means that the only situation in
100 // which a `Task` can be accessed mutably is when the refcount drops to zero and the destructor
101 // runs. It is safe for that to happen on any thread, so it is ok for this type to be `Send`.
102 unsafe impl Send for Task {}
103 
104 // SAFETY: It's OK to access `Task` through shared references from other threads because we're
105 // either accessing properties that don't change (e.g., `pid`, `group_leader`) or that are properly
106 // synchronised by C code (e.g., `signal_pending`).
107 unsafe impl Sync for Task {}
108 
109 /// Represents the [`Task`] in the `current` global.
110 ///
111 /// This type exists to provide more efficient operations that are only valid on the current task.
112 /// For example, to retrieve the pid-namespace of a task, you must use rcu protection unless it is
113 /// the current task.
114 ///
115 /// # Invariants
116 ///
117 /// Each value of this type must only be accessed from the task context it was created within.
118 ///
119 /// Of course, every thread is in a different task context, but for the purposes of this invariant,
120 /// these operations also permanently leave the task context:
121 ///
122 /// * Returning to userspace from system call context.
123 /// * Calling `release_task()`.
124 /// * Calling `begin_new_exec()` in a binary format loader.
125 ///
126 /// Other operations temporarily create a new sub-context:
127 ///
128 /// * Calling `kthread_use_mm()` creates a new context, and `kthread_unuse_mm()` returns to the
129 ///   old context.
130 ///
131 /// This means that a `CurrentTask` obtained before a `kthread_use_mm()` call may be used again
132 /// once `kthread_unuse_mm()` is called, but it must not be used between these two calls.
133 /// Conversely, a `CurrentTask` obtained between a `kthread_use_mm()`/`kthread_unuse_mm()` pair
134 /// must not be used after `kthread_unuse_mm()`.
135 #[repr(transparent)]
136 pub struct CurrentTask(Task, NotThreadSafe);
137 
138 // Make all `Task` methods available on `CurrentTask`.
139 impl Deref for CurrentTask {
140     type Target = Task;
141     #[inline]
deref(&self) -> &Task142     fn deref(&self) -> &Task {
143         &self.0
144     }
145 }
146 
147 /// The type of process identifiers (PIDs).
148 pub type Pid = bindings::pid_t;
149 
150 /// The type of user identifiers (UIDs).
151 #[derive(Copy, Clone)]
152 pub struct Kuid {
153     kuid: bindings::kuid_t,
154 }
155 
156 impl Task {
157     /// Returns a raw pointer to the current task.
158     ///
159     /// It is up to the user to use the pointer correctly.
160     #[inline]
current_raw() -> *mut bindings::task_struct161     pub fn current_raw() -> *mut bindings::task_struct {
162         // SAFETY: Getting the current pointer is always safe.
163         unsafe { bindings::get_current() }
164     }
165 
166     /// Returns a task reference for the currently executing task/thread.
167     ///
168     /// The recommended way to get the current task/thread is to use the
169     /// [`current`] macro because it is safe.
170     ///
171     /// # Safety
172     ///
173     /// Callers must ensure that the returned object is only used to access a [`CurrentTask`]
174     /// within the task context that was active when this function was called. For more details,
175     /// see the invariants section for [`CurrentTask`].
current() -> impl Deref<Target = CurrentTask>176     pub unsafe fn current() -> impl Deref<Target = CurrentTask> {
177         struct TaskRef {
178             task: *const CurrentTask,
179         }
180 
181         impl Deref for TaskRef {
182             type Target = CurrentTask;
183 
184             fn deref(&self) -> &Self::Target {
185                 // SAFETY: The returned reference borrows from this `TaskRef`, so it cannot outlive
186                 // the `TaskRef`, which the caller of `Task::current()` has promised will not
187                 // outlive the task/thread for which `self.task` is the `current` pointer. Thus, it
188                 // is okay to return a `CurrentTask` reference here.
189                 unsafe { &*self.task }
190             }
191         }
192 
193         TaskRef {
194             // CAST: The layout of `struct task_struct` and `CurrentTask` is identical.
195             task: Task::current_raw().cast(),
196         }
197     }
198 
199     /// Returns a raw pointer to the task.
200     #[inline]
as_ptr(&self) -> *mut bindings::task_struct201     pub fn as_ptr(&self) -> *mut bindings::task_struct {
202         self.0.get()
203     }
204 
205     /// Returns the group leader of the given task.
group_leader(&self) -> &Task206     pub fn group_leader(&self) -> &Task {
207         // SAFETY: The group leader of a task never changes after initialization, so reading this
208         // field is not a data race.
209         let ptr = unsafe { *ptr::addr_of!((*self.as_ptr()).group_leader) };
210 
211         // SAFETY: The lifetime of the returned task reference is tied to the lifetime of `self`,
212         // and given that a task has a reference to its group leader, we know it must be valid for
213         // the lifetime of the returned task reference.
214         unsafe { &*ptr.cast() }
215     }
216 
217     /// Returns the PID of the given task.
pid(&self) -> Pid218     pub fn pid(&self) -> Pid {
219         // SAFETY: The pid of a task never changes after initialization, so reading this field is
220         // not a data race.
221         unsafe { *ptr::addr_of!((*self.as_ptr()).pid) }
222     }
223 
224     /// Returns the UID of the given task.
uid(&self) -> Kuid225     pub fn uid(&self) -> Kuid {
226         // SAFETY: It's always safe to call `task_uid` on a valid task.
227         Kuid::from_raw(unsafe { bindings::task_uid(self.as_ptr()) })
228     }
229 
230     /// Returns the effective UID of the given task.
euid(&self) -> Kuid231     pub fn euid(&self) -> Kuid {
232         // SAFETY: It's always safe to call `task_euid` on a valid task.
233         Kuid::from_raw(unsafe { bindings::task_euid(self.as_ptr()) })
234     }
235 
236     /// Determines whether the given task has pending signals.
signal_pending(&self) -> bool237     pub fn signal_pending(&self) -> bool {
238         // SAFETY: It's always safe to call `signal_pending` on a valid task.
239         unsafe { bindings::signal_pending(self.as_ptr()) != 0 }
240     }
241 
242     /// Returns task's pid namespace with elevated reference count
get_pid_ns(&self) -> Option<ARef<PidNamespace>>243     pub fn get_pid_ns(&self) -> Option<ARef<PidNamespace>> {
244         // SAFETY: By the type invariant, we know that `self.0` is valid.
245         let ptr = unsafe { bindings::task_get_pid_ns(self.0.get()) };
246         if ptr.is_null() {
247             None
248         } else {
249             // SAFETY: `ptr` is valid by the safety requirements of this function. And we own a
250             // reference count via `task_get_pid_ns()`.
251             // CAST: `Self` is a `repr(transparent)` wrapper around `bindings::pid_namespace`.
252             Some(unsafe { ARef::from_raw(ptr::NonNull::new_unchecked(ptr.cast::<PidNamespace>())) })
253         }
254     }
255 
256     /// Returns the given task's pid in the provided pid namespace.
257     #[doc(alias = "task_tgid_nr_ns")]
tgid_nr_ns(&self, pidns: Option<&PidNamespace>) -> Pid258     pub fn tgid_nr_ns(&self, pidns: Option<&PidNamespace>) -> Pid {
259         let pidns = match pidns {
260             Some(pidns) => pidns.as_ptr(),
261             None => core::ptr::null_mut(),
262         };
263         // SAFETY: By the type invariant, we know that `self.0` is valid. We received a valid
264         // PidNamespace that we can use as a pointer or we received an empty PidNamespace and
265         // thus pass a null pointer. The underlying C function is safe to be used with NULL
266         // pointers.
267         unsafe { bindings::task_tgid_nr_ns(self.0.get(), pidns) }
268     }
269 
270     /// Wakes up the task.
wake_up(&self)271     pub fn wake_up(&self) {
272         // SAFETY: It's always safe to call `wake_up_process` on a valid task, even if the task
273         // running.
274         unsafe { bindings::wake_up_process(self.as_ptr()) };
275     }
276 
277     /// Check if the task has the given capability without logging to the audit log.
has_capability_noaudit(&self, capability: i32) -> bool278     pub fn has_capability_noaudit(&self, capability: i32) -> bool {
279         // SAFETY: By the type invariant, we know that `self.0.get()` is valid.
280         unsafe { bindings::has_capability_noaudit(self.0.get(), capability) }
281     }
282 
283     /// Returns the current scheduling policy.
policy(&self) -> u32284     pub fn policy(&self) -> u32 {
285         // SAFETY: The file is valid because the shared reference guarantees a nonzero refcount.
286         //
287         // This uses a volatile read because C code may be modifying this field in parallel using
288         // non-atomic unsynchronized writes. This corresponds to how the C macro READ_ONCE is
289         // implemented.
290         unsafe { core::ptr::addr_of!((*self.0.get()).policy).read_volatile() }
291     }
292 
293     /// Returns the current normal priority.
normal_prio(&self) -> i32294     pub fn normal_prio(&self) -> i32 {
295         // SAFETY: The file is valid because the shared reference guarantees a nonzero refcount.
296         //
297         // This uses a volatile read because C code may be modifying this field in parallel using
298         // non-atomic unsynchronized writes. This corresponds to how the C macro READ_ONCE is
299         // implemented.
300         unsafe { core::ptr::addr_of!((*self.0.get()).normal_prio).read_volatile() }
301     }
302 
303     /// Get the rlimit value for RTPRIO.
rlimit_rtprio(&self) -> i32304     pub fn rlimit_rtprio(&self) -> i32 {
305         // SAFETY: By the type invariant, we know that `self.0.get()` is valid, and RLIMIT_RTPRIO
306         // is a valid limit type.
307         unsafe { bindings::task_rlimit(self.0.get(), bindings::RLIMIT_RTPRIO) as i32 }
308     }
309 
310     /// Get the rlimit value for NICE, converted to a nice value.
rlimit_nice(&self) -> i32311     pub fn rlimit_nice(&self) -> i32 {
312         // SAFETY: By the type invariant, we know that `self.0.get()` is valid, and RLIMIT_NICE
313         // is a valid limit type.
314         let prio = unsafe { bindings::task_rlimit(self.0.get(), bindings::RLIMIT_NICE) as i32 };
315         // Convert rlimit style value [1,40] to nice value [-20, 19].
316         bindings::MAX_NICE as i32 - prio + 1
317     }
318 
319     /// Set the scheduling properties for this task without checking whether the task is allowed to
320     /// set them.
sched_setscheduler_nocheck( &self, policy: i32, sched_priority: i32, reset_on_fork: bool, )321     pub fn sched_setscheduler_nocheck(
322         &self,
323         policy: i32,
324         sched_priority: i32,
325         reset_on_fork: bool,
326     ) {
327         let params = bindings::sched_param { sched_priority };
328 
329         let mut policy = policy;
330         if reset_on_fork {
331             policy |= bindings::SCHED_RESET_ON_FORK as i32;
332         }
333         unsafe { bindings::sched_setscheduler_nocheck(self.0.get(), policy, &params) };
334     }
335 
336     /// Set the nice value of this task.
set_user_nice(&self, nice: i32)337     pub fn set_user_nice(&self, nice: i32) {
338         unsafe { bindings::set_user_nice(self.0.get(), nice as _) };
339     }
340 }
341 
342 impl CurrentTask {
343     /// Access the address space of the current task.
344     ///
345     /// This function does not touch the refcount of the mm.
346     #[inline]
mm(&self) -> Option<&MmWithUser>347     pub fn mm(&self) -> Option<&MmWithUser> {
348         // SAFETY: The `mm` field of `current` is not modified from other threads, so reading it is
349         // not a data race.
350         let mm = unsafe { (*self.as_ptr()).mm };
351 
352         if mm.is_null() {
353             return None;
354         }
355 
356         // SAFETY: If `current->mm` is non-null, then it references a valid mm with a non-zero
357         // value of `mm_users`. Furthermore, the returned `&MmWithUser` borrows from this
358         // `CurrentTask`, so it cannot escape the scope in which the current pointer was obtained.
359         //
360         // This is safe even if `kthread_use_mm()`/`kthread_unuse_mm()` are used. There are two
361         // relevant cases:
362         // * If the `&CurrentTask` was created before `kthread_use_mm()`, then it cannot be
363         //   accessed during the `kthread_use_mm()`/`kthread_unuse_mm()` scope due to the
364         //   `NotThreadSafe` field of `CurrentTask`.
365         // * If the `&CurrentTask` was created within a `kthread_use_mm()`/`kthread_unuse_mm()`
366         //   scope, then the `&CurrentTask` cannot escape that scope, so the returned `&MmWithUser`
367         //   also cannot escape that scope.
368         // In either case, it's not possible to read `current->mm` and keep using it after the
369         // scope is ended with `kthread_unuse_mm()`.
370         Some(unsafe { MmWithUser::from_raw(mm) })
371     }
372 
373     /// Access the pid namespace of the current task.
374     ///
375     /// This function does not touch the refcount of the namespace or use RCU protection.
376     ///
377     /// To access the pid namespace of another task, see [`Task::get_pid_ns`].
378     #[doc(alias = "task_active_pid_ns")]
379     #[inline]
active_pid_ns(&self) -> Option<&PidNamespace>380     pub fn active_pid_ns(&self) -> Option<&PidNamespace> {
381         // SAFETY: It is safe to call `task_active_pid_ns` without RCU protection when calling it
382         // on the current task.
383         let active_ns = unsafe { bindings::task_active_pid_ns(self.as_ptr()) };
384 
385         if active_ns.is_null() {
386             return None;
387         }
388 
389         // The lifetime of `PidNamespace` is bound to `Task` and `struct pid`.
390         //
391         // The `PidNamespace` of a `Task` doesn't ever change once the `Task` is alive.
392         //
393         // From system call context retrieving the `PidNamespace` for the current task is always
394         // safe and requires neither RCU locking nor a reference count to be held. Retrieving the
395         // `PidNamespace` after `release_task()` for current will return `NULL` but no codepath
396         // like that is exposed to Rust.
397         //
398         // SAFETY: If `current`'s pid ns is non-null, then it references a valid pid ns.
399         // Furthermore, the returned `&PidNamespace` borrows from this `CurrentTask`, so it cannot
400         // escape the scope in which the current pointer was obtained, e.g. it cannot live past a
401         // `release_task()` call.
402         Some(unsafe { PidNamespace::from_ptr(active_ns) })
403     }
404 }
405 
406 // SAFETY: The type invariants guarantee that `Task` is always refcounted.
407 unsafe impl crate::types::AlwaysRefCounted for Task {
inc_ref(&self)408     fn inc_ref(&self) {
409         // SAFETY: The existence of a shared reference means that the refcount is nonzero.
410         unsafe { bindings::get_task_struct(self.as_ptr()) };
411     }
412 
dec_ref(obj: ptr::NonNull<Self>)413     unsafe fn dec_ref(obj: ptr::NonNull<Self>) {
414         // SAFETY: The safety requirements guarantee that the refcount is nonzero.
415         unsafe { bindings::put_task_struct(obj.cast().as_ptr()) }
416     }
417 }
418 
419 impl Kuid {
420     /// Get the current euid.
421     #[inline]
current_euid() -> Kuid422     pub fn current_euid() -> Kuid {
423         // SAFETY: Just an FFI call.
424         Self::from_raw(unsafe { bindings::current_euid() })
425     }
426 
427     /// Create a `Kuid` given the raw C type.
428     #[inline]
from_raw(kuid: bindings::kuid_t) -> Self429     pub fn from_raw(kuid: bindings::kuid_t) -> Self {
430         Self { kuid }
431     }
432 
433     /// Turn this kuid into the raw C type.
434     #[inline]
into_raw(self) -> bindings::kuid_t435     pub fn into_raw(self) -> bindings::kuid_t {
436         self.kuid
437     }
438 
439     /// Converts this kernel UID into a userspace UID.
440     ///
441     /// Uses the namespace of the current task.
442     #[inline]
into_uid_in_current_ns(self) -> bindings::uid_t443     pub fn into_uid_in_current_ns(self) -> bindings::uid_t {
444         // SAFETY: Just an FFI call.
445         unsafe { bindings::from_kuid(bindings::current_user_ns(), self.kuid) }
446     }
447 }
448 
449 impl PartialEq for Kuid {
450     #[inline]
eq(&self, other: &Kuid) -> bool451     fn eq(&self, other: &Kuid) -> bool {
452         // SAFETY: Just an FFI call.
453         unsafe { bindings::uid_eq(self.kuid, other.kuid) }
454     }
455 }
456 
457 impl Eq for Kuid {}
458