1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Implementation of the Transmission Control Protocol(TCP).
8 *
9 * Authors: Ross Biro
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Mark Evans, <evansmp@uhura.aston.ac.uk>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche, <flla@stud.uni-sb.de>
14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15 * Linus Torvalds, <torvalds@cs.helsinki.fi>
16 * Alan Cox, <gw4pts@gw4pts.ampr.org>
17 * Matthew Dillon, <dillon@apollo.west.oic.com>
18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19 * Jorge Cwik, <jorge@laser.satlink.net>
20 */
21
22 /*
23 * Changes:
24 * Pedro Roque : Fast Retransmit/Recovery.
25 * Two receive queues.
26 * Retransmit queue handled by TCP.
27 * Better retransmit timer handling.
28 * New congestion avoidance.
29 * Header prediction.
30 * Variable renaming.
31 *
32 * Eric : Fast Retransmit.
33 * Randy Scott : MSS option defines.
34 * Eric Schenk : Fixes to slow start algorithm.
35 * Eric Schenk : Yet another double ACK bug.
36 * Eric Schenk : Delayed ACK bug fixes.
37 * Eric Schenk : Floyd style fast retrans war avoidance.
38 * David S. Miller : Don't allow zero congestion window.
39 * Eric Schenk : Fix retransmitter so that it sends
40 * next packet on ack of previous packet.
41 * Andi Kleen : Moved open_request checking here
42 * and process RSTs for open_requests.
43 * Andi Kleen : Better prune_queue, and other fixes.
44 * Andrey Savochkin: Fix RTT measurements in the presence of
45 * timestamps.
46 * Andrey Savochkin: Check sequence numbers correctly when
47 * removing SACKs due to in sequence incoming
48 * data segments.
49 * Andi Kleen: Make sure we never ack data there is not
50 * enough room for. Also make this condition
51 * a fatal error if it might still happen.
52 * Andi Kleen: Add tcp_measure_rcv_mss to make
53 * connections with MSS<min(MTU,ann. MSS)
54 * work without delayed acks.
55 * Andi Kleen: Process packets with PSH set in the
56 * fast path.
57 * J Hadi Salim: ECN support
58 * Andrei Gurtov,
59 * Pasi Sarolahti,
60 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
61 * engine. Lots of bugs are found.
62 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
63 */
64
65 #define pr_fmt(fmt) "TCP: " fmt
66
67 #include <linux/mm.h>
68 #include <linux/slab.h>
69 #include <linux/module.h>
70 #include <linux/sysctl.h>
71 #include <linux/kernel.h>
72 #include <linux/prefetch.h>
73 #include <net/dst.h>
74 #include <net/tcp.h>
75 #include <net/proto_memory.h>
76 #include <net/inet_common.h>
77 #include <linux/ipsec.h>
78 #include <linux/unaligned.h>
79 #include <linux/errqueue.h>
80 #include <trace/events/tcp.h>
81 #include <linux/jump_label_ratelimit.h>
82 #include <net/busy_poll.h>
83 #include <net/mptcp.h>
84 #include <trace/hooks/net.h>
85
86 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
87
88 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
89 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
90 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
91 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
92 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
93 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
94 #define FLAG_ECE 0x40 /* ECE in this ACK */
95 #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */
96 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
97 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
98 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
99 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
100 #define FLAG_SET_XMIT_TIMER 0x1000 /* Set TLP or RTO timer */
101 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
102 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
103 #define FLAG_NO_CHALLENGE_ACK 0x8000 /* do not call tcp_send_challenge_ack() */
104 #define FLAG_ACK_MAYBE_DELAYED 0x10000 /* Likely a delayed ACK */
105 #define FLAG_DSACK_TLP 0x20000 /* DSACK for tail loss probe */
106
107 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
108 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
109 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK)
110 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
111
112 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
113 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
114
115 #define REXMIT_NONE 0 /* no loss recovery to do */
116 #define REXMIT_LOST 1 /* retransmit packets marked lost */
117 #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */
118
119 #if IS_ENABLED(CONFIG_TLS_DEVICE)
120 static DEFINE_STATIC_KEY_DEFERRED_FALSE(clean_acked_data_enabled, HZ);
121
clean_acked_data_enable(struct inet_connection_sock * icsk,void (* cad)(struct sock * sk,u32 ack_seq))122 void clean_acked_data_enable(struct inet_connection_sock *icsk,
123 void (*cad)(struct sock *sk, u32 ack_seq))
124 {
125 icsk->icsk_clean_acked = cad;
126 static_branch_deferred_inc(&clean_acked_data_enabled);
127 }
128 EXPORT_SYMBOL_GPL(clean_acked_data_enable);
129
clean_acked_data_disable(struct inet_connection_sock * icsk)130 void clean_acked_data_disable(struct inet_connection_sock *icsk)
131 {
132 static_branch_slow_dec_deferred(&clean_acked_data_enabled);
133 icsk->icsk_clean_acked = NULL;
134 }
135 EXPORT_SYMBOL_GPL(clean_acked_data_disable);
136
clean_acked_data_flush(void)137 void clean_acked_data_flush(void)
138 {
139 static_key_deferred_flush(&clean_acked_data_enabled);
140 }
141 EXPORT_SYMBOL_GPL(clean_acked_data_flush);
142 #endif
143
144 #ifdef CONFIG_CGROUP_BPF
bpf_skops_parse_hdr(struct sock * sk,struct sk_buff * skb)145 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb)
146 {
147 bool unknown_opt = tcp_sk(sk)->rx_opt.saw_unknown &&
148 BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
149 BPF_SOCK_OPS_PARSE_UNKNOWN_HDR_OPT_CB_FLAG);
150 bool parse_all_opt = BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
151 BPF_SOCK_OPS_PARSE_ALL_HDR_OPT_CB_FLAG);
152 struct bpf_sock_ops_kern sock_ops;
153
154 if (likely(!unknown_opt && !parse_all_opt))
155 return;
156
157 /* The skb will be handled in the
158 * bpf_skops_established() or
159 * bpf_skops_write_hdr_opt().
160 */
161 switch (sk->sk_state) {
162 case TCP_SYN_RECV:
163 case TCP_SYN_SENT:
164 case TCP_LISTEN:
165 return;
166 }
167
168 sock_owned_by_me(sk);
169
170 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
171 sock_ops.op = BPF_SOCK_OPS_PARSE_HDR_OPT_CB;
172 sock_ops.is_fullsock = 1;
173 sock_ops.sk = sk;
174 bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb));
175
176 BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
177 }
178
bpf_skops_established(struct sock * sk,int bpf_op,struct sk_buff * skb)179 static void bpf_skops_established(struct sock *sk, int bpf_op,
180 struct sk_buff *skb)
181 {
182 struct bpf_sock_ops_kern sock_ops;
183
184 sock_owned_by_me(sk);
185
186 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
187 sock_ops.op = bpf_op;
188 sock_ops.is_fullsock = 1;
189 sock_ops.sk = sk;
190 /* sk with TCP_REPAIR_ON does not have skb in tcp_finish_connect */
191 if (skb)
192 bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb));
193
194 BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
195 }
196 #else
bpf_skops_parse_hdr(struct sock * sk,struct sk_buff * skb)197 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb)
198 {
199 }
200
bpf_skops_established(struct sock * sk,int bpf_op,struct sk_buff * skb)201 static void bpf_skops_established(struct sock *sk, int bpf_op,
202 struct sk_buff *skb)
203 {
204 }
205 #endif
206
tcp_gro_dev_warn(const struct sock * sk,const struct sk_buff * skb,unsigned int len)207 static __cold void tcp_gro_dev_warn(const struct sock *sk, const struct sk_buff *skb,
208 unsigned int len)
209 {
210 struct net_device *dev;
211
212 rcu_read_lock();
213 dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
214 if (!dev || len >= READ_ONCE(dev->mtu))
215 pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
216 dev ? dev->name : "Unknown driver");
217 rcu_read_unlock();
218 }
219
220 /* Adapt the MSS value used to make delayed ack decision to the
221 * real world.
222 */
tcp_measure_rcv_mss(struct sock * sk,const struct sk_buff * skb)223 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
224 {
225 struct inet_connection_sock *icsk = inet_csk(sk);
226 const unsigned int lss = icsk->icsk_ack.last_seg_size;
227 unsigned int len;
228
229 icsk->icsk_ack.last_seg_size = 0;
230
231 /* skb->len may jitter because of SACKs, even if peer
232 * sends good full-sized frames.
233 */
234 len = skb_shinfo(skb)->gso_size ? : skb->len;
235 if (len >= icsk->icsk_ack.rcv_mss) {
236 /* Note: divides are still a bit expensive.
237 * For the moment, only adjust scaling_ratio
238 * when we update icsk_ack.rcv_mss.
239 */
240 if (unlikely(len != icsk->icsk_ack.rcv_mss)) {
241 u64 val = (u64)skb->len << TCP_RMEM_TO_WIN_SCALE;
242 u8 old_ratio = tcp_sk(sk)->scaling_ratio;
243
244 do_div(val, skb->truesize);
245 tcp_sk(sk)->scaling_ratio = val ? val : 1;
246
247 if (old_ratio != tcp_sk(sk)->scaling_ratio) {
248 struct tcp_sock *tp = tcp_sk(sk);
249
250 val = tcp_win_from_space(sk, sk->sk_rcvbuf);
251 tcp_set_window_clamp(sk, val);
252
253 if (tp->window_clamp < tp->rcvq_space.space)
254 tp->rcvq_space.space = tp->window_clamp;
255 }
256 }
257 icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
258 tcp_sk(sk)->advmss);
259 /* Account for possibly-removed options */
260 DO_ONCE_LITE_IF(len > icsk->icsk_ack.rcv_mss + MAX_TCP_OPTION_SPACE,
261 tcp_gro_dev_warn, sk, skb, len);
262 /* If the skb has a len of exactly 1*MSS and has the PSH bit
263 * set then it is likely the end of an application write. So
264 * more data may not be arriving soon, and yet the data sender
265 * may be waiting for an ACK if cwnd-bound or using TX zero
266 * copy. So we set ICSK_ACK_PUSHED here so that
267 * tcp_cleanup_rbuf() will send an ACK immediately if the app
268 * reads all of the data and is not ping-pong. If len > MSS
269 * then this logic does not matter (and does not hurt) because
270 * tcp_cleanup_rbuf() will always ACK immediately if the app
271 * reads data and there is more than an MSS of unACKed data.
272 */
273 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_PSH)
274 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
275 } else {
276 /* Otherwise, we make more careful check taking into account,
277 * that SACKs block is variable.
278 *
279 * "len" is invariant segment length, including TCP header.
280 */
281 len += skb->data - skb_transport_header(skb);
282 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
283 /* If PSH is not set, packet should be
284 * full sized, provided peer TCP is not badly broken.
285 * This observation (if it is correct 8)) allows
286 * to handle super-low mtu links fairly.
287 */
288 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
289 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
290 /* Subtract also invariant (if peer is RFC compliant),
291 * tcp header plus fixed timestamp option length.
292 * Resulting "len" is MSS free of SACK jitter.
293 */
294 len -= tcp_sk(sk)->tcp_header_len;
295 icsk->icsk_ack.last_seg_size = len;
296 if (len == lss) {
297 icsk->icsk_ack.rcv_mss = len;
298 return;
299 }
300 }
301 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
302 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
303 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
304 }
305 }
306
tcp_incr_quickack(struct sock * sk,unsigned int max_quickacks)307 static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks)
308 {
309 struct inet_connection_sock *icsk = inet_csk(sk);
310 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
311
312 if (quickacks == 0)
313 quickacks = 2;
314 quickacks = min(quickacks, max_quickacks);
315 if (quickacks > icsk->icsk_ack.quick)
316 icsk->icsk_ack.quick = quickacks;
317 }
318
tcp_enter_quickack_mode(struct sock * sk,unsigned int max_quickacks)319 static void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks)
320 {
321 struct inet_connection_sock *icsk = inet_csk(sk);
322
323 tcp_incr_quickack(sk, max_quickacks);
324 inet_csk_exit_pingpong_mode(sk);
325 icsk->icsk_ack.ato = TCP_ATO_MIN;
326 }
327
328 /* Send ACKs quickly, if "quick" count is not exhausted
329 * and the session is not interactive.
330 */
331
tcp_in_quickack_mode(struct sock * sk)332 static bool tcp_in_quickack_mode(struct sock *sk)
333 {
334 const struct inet_connection_sock *icsk = inet_csk(sk);
335 const struct dst_entry *dst = __sk_dst_get(sk);
336
337 return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
338 (icsk->icsk_ack.quick && !inet_csk_in_pingpong_mode(sk));
339 }
340
tcp_ecn_queue_cwr(struct tcp_sock * tp)341 static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
342 {
343 if (tp->ecn_flags & TCP_ECN_OK)
344 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
345 }
346
tcp_ecn_accept_cwr(struct sock * sk,const struct sk_buff * skb)347 static void tcp_ecn_accept_cwr(struct sock *sk, const struct sk_buff *skb)
348 {
349 if (tcp_hdr(skb)->cwr) {
350 tcp_sk(sk)->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
351
352 /* If the sender is telling us it has entered CWR, then its
353 * cwnd may be very low (even just 1 packet), so we should ACK
354 * immediately.
355 */
356 if (TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq)
357 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
358 }
359 }
360
tcp_ecn_withdraw_cwr(struct tcp_sock * tp)361 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
362 {
363 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
364 }
365
__tcp_ecn_check_ce(struct sock * sk,const struct sk_buff * skb)366 static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
367 {
368 struct tcp_sock *tp = tcp_sk(sk);
369
370 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
371 case INET_ECN_NOT_ECT:
372 /* Funny extension: if ECT is not set on a segment,
373 * and we already seen ECT on a previous segment,
374 * it is probably a retransmit.
375 */
376 if (tp->ecn_flags & TCP_ECN_SEEN)
377 tcp_enter_quickack_mode(sk, 2);
378 break;
379 case INET_ECN_CE:
380 if (tcp_ca_needs_ecn(sk))
381 tcp_ca_event(sk, CA_EVENT_ECN_IS_CE);
382
383 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
384 /* Better not delay acks, sender can have a very low cwnd */
385 tcp_enter_quickack_mode(sk, 2);
386 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
387 }
388 tp->ecn_flags |= TCP_ECN_SEEN;
389 break;
390 default:
391 if (tcp_ca_needs_ecn(sk))
392 tcp_ca_event(sk, CA_EVENT_ECN_NO_CE);
393 tp->ecn_flags |= TCP_ECN_SEEN;
394 break;
395 }
396 }
397
tcp_ecn_check_ce(struct sock * sk,const struct sk_buff * skb)398 static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
399 {
400 if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK)
401 __tcp_ecn_check_ce(sk, skb);
402 }
403
tcp_ecn_rcv_synack(struct tcp_sock * tp,const struct tcphdr * th)404 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
405 {
406 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
407 tp->ecn_flags &= ~TCP_ECN_OK;
408 }
409
tcp_ecn_rcv_syn(struct tcp_sock * tp,const struct tcphdr * th)410 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
411 {
412 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
413 tp->ecn_flags &= ~TCP_ECN_OK;
414 }
415
tcp_ecn_rcv_ecn_echo(const struct tcp_sock * tp,const struct tcphdr * th)416 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
417 {
418 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
419 return true;
420 return false;
421 }
422
tcp_count_delivered_ce(struct tcp_sock * tp,u32 ecn_count)423 static void tcp_count_delivered_ce(struct tcp_sock *tp, u32 ecn_count)
424 {
425 tp->delivered_ce += ecn_count;
426 }
427
428 /* Updates the delivered and delivered_ce counts */
tcp_count_delivered(struct tcp_sock * tp,u32 delivered,bool ece_ack)429 static void tcp_count_delivered(struct tcp_sock *tp, u32 delivered,
430 bool ece_ack)
431 {
432 tp->delivered += delivered;
433 if (ece_ack)
434 tcp_count_delivered_ce(tp, delivered);
435 }
436
437 /* Buffer size and advertised window tuning.
438 *
439 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
440 */
441
tcp_sndbuf_expand(struct sock * sk)442 static void tcp_sndbuf_expand(struct sock *sk)
443 {
444 const struct tcp_sock *tp = tcp_sk(sk);
445 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
446 int sndmem, per_mss;
447 u32 nr_segs;
448
449 /* Worst case is non GSO/TSO : each frame consumes one skb
450 * and skb->head is kmalloced using power of two area of memory
451 */
452 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
453 MAX_TCP_HEADER +
454 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
455
456 per_mss = roundup_pow_of_two(per_mss) +
457 SKB_DATA_ALIGN(sizeof(struct sk_buff));
458
459 nr_segs = max_t(u32, TCP_INIT_CWND, tcp_snd_cwnd(tp));
460 nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
461
462 /* Fast Recovery (RFC 5681 3.2) :
463 * Cubic needs 1.7 factor, rounded to 2 to include
464 * extra cushion (application might react slowly to EPOLLOUT)
465 */
466 sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
467 sndmem *= nr_segs * per_mss;
468
469 if (sk->sk_sndbuf < sndmem)
470 WRITE_ONCE(sk->sk_sndbuf,
471 min(sndmem, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[2])));
472 }
473
474 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
475 *
476 * All tcp_full_space() is split to two parts: "network" buffer, allocated
477 * forward and advertised in receiver window (tp->rcv_wnd) and
478 * "application buffer", required to isolate scheduling/application
479 * latencies from network.
480 * window_clamp is maximal advertised window. It can be less than
481 * tcp_full_space(), in this case tcp_full_space() - window_clamp
482 * is reserved for "application" buffer. The less window_clamp is
483 * the smoother our behaviour from viewpoint of network, but the lower
484 * throughput and the higher sensitivity of the connection to losses. 8)
485 *
486 * rcv_ssthresh is more strict window_clamp used at "slow start"
487 * phase to predict further behaviour of this connection.
488 * It is used for two goals:
489 * - to enforce header prediction at sender, even when application
490 * requires some significant "application buffer". It is check #1.
491 * - to prevent pruning of receive queue because of misprediction
492 * of receiver window. Check #2.
493 *
494 * The scheme does not work when sender sends good segments opening
495 * window and then starts to feed us spaghetti. But it should work
496 * in common situations. Otherwise, we have to rely on queue collapsing.
497 */
498
499 /* Slow part of check#2. */
__tcp_grow_window(const struct sock * sk,const struct sk_buff * skb,unsigned int skbtruesize)500 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb,
501 unsigned int skbtruesize)
502 {
503 const struct tcp_sock *tp = tcp_sk(sk);
504 /* Optimize this! */
505 int truesize = tcp_win_from_space(sk, skbtruesize) >> 1;
506 int window = tcp_win_from_space(sk, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2])) >> 1;
507
508 while (tp->rcv_ssthresh <= window) {
509 if (truesize <= skb->len)
510 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
511
512 truesize >>= 1;
513 window >>= 1;
514 }
515 return 0;
516 }
517
518 /* Even if skb appears to have a bad len/truesize ratio, TCP coalescing
519 * can play nice with us, as sk_buff and skb->head might be either
520 * freed or shared with up to MAX_SKB_FRAGS segments.
521 * Only give a boost to drivers using page frag(s) to hold the frame(s),
522 * and if no payload was pulled in skb->head before reaching us.
523 */
truesize_adjust(bool adjust,const struct sk_buff * skb)524 static u32 truesize_adjust(bool adjust, const struct sk_buff *skb)
525 {
526 u32 truesize = skb->truesize;
527
528 if (adjust && !skb_headlen(skb)) {
529 truesize -= SKB_TRUESIZE(skb_end_offset(skb));
530 /* paranoid check, some drivers might be buggy */
531 if (unlikely((int)truesize < (int)skb->len))
532 truesize = skb->truesize;
533 }
534 return truesize;
535 }
536
tcp_grow_window(struct sock * sk,const struct sk_buff * skb,bool adjust)537 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb,
538 bool adjust)
539 {
540 struct tcp_sock *tp = tcp_sk(sk);
541 int room;
542
543 room = min_t(int, tp->window_clamp, tcp_space(sk)) - tp->rcv_ssthresh;
544
545 if (room <= 0)
546 return;
547
548 /* Check #1 */
549 if (!tcp_under_memory_pressure(sk)) {
550 unsigned int truesize = truesize_adjust(adjust, skb);
551 int incr;
552
553 /* Check #2. Increase window, if skb with such overhead
554 * will fit to rcvbuf in future.
555 */
556 if (tcp_win_from_space(sk, truesize) <= skb->len)
557 incr = 2 * tp->advmss;
558 else
559 incr = __tcp_grow_window(sk, skb, truesize);
560
561 if (incr) {
562 incr = max_t(int, incr, 2 * skb->len);
563 tp->rcv_ssthresh += min(room, incr);
564 inet_csk(sk)->icsk_ack.quick |= 1;
565 }
566 } else {
567 /* Under pressure:
568 * Adjust rcv_ssthresh according to reserved mem
569 */
570 tcp_adjust_rcv_ssthresh(sk);
571 }
572 }
573
574 /* 3. Try to fixup all. It is made immediately after connection enters
575 * established state.
576 */
tcp_init_buffer_space(struct sock * sk)577 static void tcp_init_buffer_space(struct sock *sk)
578 {
579 int tcp_app_win = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_app_win);
580 struct tcp_sock *tp = tcp_sk(sk);
581 int maxwin;
582
583 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
584 tcp_sndbuf_expand(sk);
585
586 tcp_mstamp_refresh(tp);
587 tp->rcvq_space.time = tp->tcp_mstamp;
588 tp->rcvq_space.seq = tp->copied_seq;
589
590 maxwin = tcp_full_space(sk);
591
592 if (tp->window_clamp >= maxwin) {
593 WRITE_ONCE(tp->window_clamp, maxwin);
594
595 if (tcp_app_win && maxwin > 4 * tp->advmss)
596 WRITE_ONCE(tp->window_clamp,
597 max(maxwin - (maxwin >> tcp_app_win),
598 4 * tp->advmss));
599 }
600
601 /* Force reservation of one segment. */
602 if (tcp_app_win &&
603 tp->window_clamp > 2 * tp->advmss &&
604 tp->window_clamp + tp->advmss > maxwin)
605 WRITE_ONCE(tp->window_clamp,
606 max(2 * tp->advmss, maxwin - tp->advmss));
607
608 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
609 tp->snd_cwnd_stamp = tcp_jiffies32;
610 tp->rcvq_space.space = min3(tp->rcv_ssthresh, tp->rcv_wnd,
611 (u32)TCP_INIT_CWND * tp->advmss);
612 }
613
614 /* 4. Recalculate window clamp after socket hit its memory bounds. */
tcp_clamp_window(struct sock * sk)615 static void tcp_clamp_window(struct sock *sk)
616 {
617 struct tcp_sock *tp = tcp_sk(sk);
618 struct inet_connection_sock *icsk = inet_csk(sk);
619 struct net *net = sock_net(sk);
620 int rmem2;
621
622 icsk->icsk_ack.quick = 0;
623 rmem2 = READ_ONCE(net->ipv4.sysctl_tcp_rmem[2]);
624
625 if (sk->sk_rcvbuf < rmem2 &&
626 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
627 !tcp_under_memory_pressure(sk) &&
628 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
629 WRITE_ONCE(sk->sk_rcvbuf,
630 min(atomic_read(&sk->sk_rmem_alloc), rmem2));
631 }
632 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
633 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
634 }
635
636 /* Initialize RCV_MSS value.
637 * RCV_MSS is an our guess about MSS used by the peer.
638 * We haven't any direct information about the MSS.
639 * It's better to underestimate the RCV_MSS rather than overestimate.
640 * Overestimations make us ACKing less frequently than needed.
641 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
642 */
tcp_initialize_rcv_mss(struct sock * sk)643 void tcp_initialize_rcv_mss(struct sock *sk)
644 {
645 const struct tcp_sock *tp = tcp_sk(sk);
646 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
647
648 hint = min(hint, tp->rcv_wnd / 2);
649 hint = min(hint, TCP_MSS_DEFAULT);
650 hint = max(hint, TCP_MIN_MSS);
651
652 inet_csk(sk)->icsk_ack.rcv_mss = hint;
653 }
654 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
655
656 /* Receiver "autotuning" code.
657 *
658 * The algorithm for RTT estimation w/o timestamps is based on
659 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
660 * <https://public.lanl.gov/radiant/pubs.html#DRS>
661 *
662 * More detail on this code can be found at
663 * <http://staff.psc.edu/jheffner/>,
664 * though this reference is out of date. A new paper
665 * is pending.
666 */
tcp_rcv_rtt_update(struct tcp_sock * tp,u32 sample,int win_dep)667 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
668 {
669 u32 new_sample, old_sample = tp->rcv_rtt_est.rtt_us;
670 long m = sample << 3;
671
672 trace_android_vh_tcp_rcv_rtt_update(tp, sample, win_dep);
673
674 if (old_sample == 0 || m < old_sample) {
675 new_sample = m;
676 } else {
677 /* If we sample in larger samples in the non-timestamp
678 * case, we could grossly overestimate the RTT especially
679 * with chatty applications or bulk transfer apps which
680 * are stalled on filesystem I/O.
681 *
682 * Also, since we are only going for a minimum in the
683 * non-timestamp case, we do not smooth things out
684 * else with timestamps disabled convergence takes too
685 * long.
686 */
687 if (win_dep)
688 return;
689 new_sample = old_sample - (old_sample >> 3) + sample;
690 }
691
692 tp->rcv_rtt_est.rtt_us = new_sample;
693 }
694
tcp_rcv_rtt_measure(struct tcp_sock * tp)695 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
696 {
697 u32 delta_us;
698
699 if (tp->rcv_rtt_est.time == 0)
700 goto new_measure;
701 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
702 return;
703 delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time);
704 if (!delta_us)
705 delta_us = 1;
706 tcp_rcv_rtt_update(tp, delta_us, 1);
707
708 new_measure:
709 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
710 tp->rcv_rtt_est.time = tp->tcp_mstamp;
711 }
712
tcp_rtt_tsopt_us(const struct tcp_sock * tp,u32 min_delta)713 static s32 tcp_rtt_tsopt_us(const struct tcp_sock *tp, u32 min_delta)
714 {
715 u32 delta, delta_us;
716
717 delta = tcp_time_stamp_ts(tp) - tp->rx_opt.rcv_tsecr;
718 if (tp->tcp_usec_ts)
719 return delta;
720
721 if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
722 if (!delta)
723 delta = min_delta;
724 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
725 return delta_us;
726 }
727 return -1;
728 }
729
tcp_rcv_rtt_measure_ts(struct sock * sk,const struct sk_buff * skb)730 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
731 const struct sk_buff *skb)
732 {
733 struct tcp_sock *tp = tcp_sk(sk);
734
735 if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr)
736 return;
737 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
738
739 if (TCP_SKB_CB(skb)->end_seq -
740 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) {
741 s32 delta = tcp_rtt_tsopt_us(tp, 0);
742
743 if (delta > 0)
744 tcp_rcv_rtt_update(tp, delta, 0);
745 }
746 }
747
748 /*
749 * This function should be called every time data is copied to user space.
750 * It calculates the appropriate TCP receive buffer space.
751 */
tcp_rcv_space_adjust(struct sock * sk)752 void tcp_rcv_space_adjust(struct sock *sk)
753 {
754 struct tcp_sock *tp = tcp_sk(sk);
755 u32 copied;
756 int time;
757
758 trace_tcp_rcv_space_adjust(sk);
759
760 tcp_mstamp_refresh(tp);
761 time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time);
762 if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
763 return;
764
765 /* Number of bytes copied to user in last RTT */
766 copied = tp->copied_seq - tp->rcvq_space.seq;
767 if (copied <= tp->rcvq_space.space)
768 goto new_measure;
769
770 /* A bit of theory :
771 * copied = bytes received in previous RTT, our base window
772 * To cope with packet losses, we need a 2x factor
773 * To cope with slow start, and sender growing its cwin by 100 %
774 * every RTT, we need a 4x factor, because the ACK we are sending
775 * now is for the next RTT, not the current one :
776 * <prev RTT . ><current RTT .. ><next RTT .... >
777 */
778
779 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) &&
780 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
781 u64 rcvwin, grow;
782 int rcvbuf;
783
784 /* minimal window to cope with packet losses, assuming
785 * steady state. Add some cushion because of small variations.
786 */
787 rcvwin = ((u64)copied << 1) + 16 * tp->advmss;
788
789 /* Accommodate for sender rate increase (eg. slow start) */
790 grow = rcvwin * (copied - tp->rcvq_space.space);
791 do_div(grow, tp->rcvq_space.space);
792 rcvwin += (grow << 1);
793
794 rcvbuf = min_t(u64, tcp_space_from_win(sk, rcvwin),
795 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]));
796 if (rcvbuf > sk->sk_rcvbuf) {
797 WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
798
799 /* Make the window clamp follow along. */
800 WRITE_ONCE(tp->window_clamp,
801 tcp_win_from_space(sk, rcvbuf));
802 }
803 }
804 tp->rcvq_space.space = copied;
805
806 new_measure:
807 tp->rcvq_space.seq = tp->copied_seq;
808 tp->rcvq_space.time = tp->tcp_mstamp;
809 }
810
tcp_save_lrcv_flowlabel(struct sock * sk,const struct sk_buff * skb)811 static void tcp_save_lrcv_flowlabel(struct sock *sk, const struct sk_buff *skb)
812 {
813 #if IS_ENABLED(CONFIG_IPV6)
814 struct inet_connection_sock *icsk = inet_csk(sk);
815
816 if (skb->protocol == htons(ETH_P_IPV6))
817 icsk->icsk_ack.lrcv_flowlabel = ntohl(ip6_flowlabel(ipv6_hdr(skb)));
818 #endif
819 }
820
821 /* There is something which you must keep in mind when you analyze the
822 * behavior of the tp->ato delayed ack timeout interval. When a
823 * connection starts up, we want to ack as quickly as possible. The
824 * problem is that "good" TCP's do slow start at the beginning of data
825 * transmission. The means that until we send the first few ACK's the
826 * sender will sit on his end and only queue most of his data, because
827 * he can only send snd_cwnd unacked packets at any given time. For
828 * each ACK we send, he increments snd_cwnd and transmits more of his
829 * queue. -DaveM
830 */
tcp_event_data_recv(struct sock * sk,struct sk_buff * skb)831 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
832 {
833 struct tcp_sock *tp = tcp_sk(sk);
834 struct inet_connection_sock *icsk = inet_csk(sk);
835 u32 now;
836
837 inet_csk_schedule_ack(sk);
838
839 tcp_measure_rcv_mss(sk, skb);
840
841 tcp_rcv_rtt_measure(tp);
842
843 now = tcp_jiffies32;
844
845 if (!icsk->icsk_ack.ato) {
846 /* The _first_ data packet received, initialize
847 * delayed ACK engine.
848 */
849 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
850 icsk->icsk_ack.ato = TCP_ATO_MIN;
851 } else {
852 int m = now - icsk->icsk_ack.lrcvtime;
853
854 if (m <= TCP_ATO_MIN / 2) {
855 /* The fastest case is the first. */
856 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
857 } else if (m < icsk->icsk_ack.ato) {
858 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
859 if (icsk->icsk_ack.ato > icsk->icsk_rto)
860 icsk->icsk_ack.ato = icsk->icsk_rto;
861 } else if (m > icsk->icsk_rto) {
862 /* Too long gap. Apparently sender failed to
863 * restart window, so that we send ACKs quickly.
864 */
865 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
866 }
867 }
868 icsk->icsk_ack.lrcvtime = now;
869 tcp_save_lrcv_flowlabel(sk, skb);
870
871 tcp_ecn_check_ce(sk, skb);
872
873 if (skb->len >= 128)
874 tcp_grow_window(sk, skb, true);
875 }
876
877 /* Called to compute a smoothed rtt estimate. The data fed to this
878 * routine either comes from timestamps, or from segments that were
879 * known _not_ to have been retransmitted [see Karn/Partridge
880 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
881 * piece by Van Jacobson.
882 * NOTE: the next three routines used to be one big routine.
883 * To save cycles in the RFC 1323 implementation it was better to break
884 * it up into three procedures. -- erics
885 */
tcp_rtt_estimator(struct sock * sk,long mrtt_us)886 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
887 {
888 struct tcp_sock *tp = tcp_sk(sk);
889 long m = mrtt_us; /* RTT */
890 u32 srtt = tp->srtt_us;
891
892 trace_android_vh_tcp_rtt_estimator(sk, mrtt_us);
893
894 /* The following amusing code comes from Jacobson's
895 * article in SIGCOMM '88. Note that rtt and mdev
896 * are scaled versions of rtt and mean deviation.
897 * This is designed to be as fast as possible
898 * m stands for "measurement".
899 *
900 * On a 1990 paper the rto value is changed to:
901 * RTO = rtt + 4 * mdev
902 *
903 * Funny. This algorithm seems to be very broken.
904 * These formulae increase RTO, when it should be decreased, increase
905 * too slowly, when it should be increased quickly, decrease too quickly
906 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
907 * does not matter how to _calculate_ it. Seems, it was trap
908 * that VJ failed to avoid. 8)
909 */
910 if (srtt != 0) {
911 m -= (srtt >> 3); /* m is now error in rtt est */
912 srtt += m; /* rtt = 7/8 rtt + 1/8 new */
913 if (m < 0) {
914 m = -m; /* m is now abs(error) */
915 m -= (tp->mdev_us >> 2); /* similar update on mdev */
916 /* This is similar to one of Eifel findings.
917 * Eifel blocks mdev updates when rtt decreases.
918 * This solution is a bit different: we use finer gain
919 * for mdev in this case (alpha*beta).
920 * Like Eifel it also prevents growth of rto,
921 * but also it limits too fast rto decreases,
922 * happening in pure Eifel.
923 */
924 if (m > 0)
925 m >>= 3;
926 } else {
927 m -= (tp->mdev_us >> 2); /* similar update on mdev */
928 }
929 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */
930 if (tp->mdev_us > tp->mdev_max_us) {
931 tp->mdev_max_us = tp->mdev_us;
932 if (tp->mdev_max_us > tp->rttvar_us)
933 tp->rttvar_us = tp->mdev_max_us;
934 }
935 if (after(tp->snd_una, tp->rtt_seq)) {
936 if (tp->mdev_max_us < tp->rttvar_us)
937 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
938 tp->rtt_seq = tp->snd_nxt;
939 tp->mdev_max_us = tcp_rto_min_us(sk);
940
941 tcp_bpf_rtt(sk, mrtt_us, srtt);
942 }
943 } else {
944 /* no previous measure. */
945 srtt = m << 3; /* take the measured time to be rtt */
946 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */
947 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
948 tp->mdev_max_us = tp->rttvar_us;
949 tp->rtt_seq = tp->snd_nxt;
950
951 tcp_bpf_rtt(sk, mrtt_us, srtt);
952 }
953 tp->srtt_us = max(1U, srtt);
954 }
955
tcp_update_pacing_rate(struct sock * sk)956 static void tcp_update_pacing_rate(struct sock *sk)
957 {
958 const struct tcp_sock *tp = tcp_sk(sk);
959 u64 rate;
960
961 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
962 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
963
964 /* current rate is (cwnd * mss) / srtt
965 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
966 * In Congestion Avoidance phase, set it to 120 % the current rate.
967 *
968 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
969 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
970 * end of slow start and should slow down.
971 */
972 if (tcp_snd_cwnd(tp) < tp->snd_ssthresh / 2)
973 rate *= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio);
974 else
975 rate *= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio);
976
977 rate *= max(tcp_snd_cwnd(tp), tp->packets_out);
978
979 if (likely(tp->srtt_us))
980 do_div(rate, tp->srtt_us);
981
982 /* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate
983 * without any lock. We want to make sure compiler wont store
984 * intermediate values in this location.
985 */
986 WRITE_ONCE(sk->sk_pacing_rate,
987 min_t(u64, rate, READ_ONCE(sk->sk_max_pacing_rate)));
988 }
989
990 /* Calculate rto without backoff. This is the second half of Van Jacobson's
991 * routine referred to above.
992 */
tcp_set_rto(struct sock * sk)993 static void tcp_set_rto(struct sock *sk)
994 {
995 const struct tcp_sock *tp = tcp_sk(sk);
996 /* Old crap is replaced with new one. 8)
997 *
998 * More seriously:
999 * 1. If rtt variance happened to be less 50msec, it is hallucination.
1000 * It cannot be less due to utterly erratic ACK generation made
1001 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
1002 * to do with delayed acks, because at cwnd>2 true delack timeout
1003 * is invisible. Actually, Linux-2.4 also generates erratic
1004 * ACKs in some circumstances.
1005 */
1006 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
1007
1008 /* 2. Fixups made earlier cannot be right.
1009 * If we do not estimate RTO correctly without them,
1010 * all the algo is pure shit and should be replaced
1011 * with correct one. It is exactly, which we pretend to do.
1012 */
1013
1014 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
1015 * guarantees that rto is higher.
1016 */
1017 tcp_bound_rto(sk);
1018 }
1019
tcp_init_cwnd(const struct tcp_sock * tp,const struct dst_entry * dst)1020 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
1021 {
1022 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
1023
1024 if (!cwnd)
1025 cwnd = TCP_INIT_CWND;
1026 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
1027 }
1028
1029 struct tcp_sacktag_state {
1030 /* Timestamps for earliest and latest never-retransmitted segment
1031 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1032 * but congestion control should still get an accurate delay signal.
1033 */
1034 u64 first_sackt;
1035 u64 last_sackt;
1036 u32 reord;
1037 u32 sack_delivered;
1038 int flag;
1039 unsigned int mss_now;
1040 struct rate_sample *rate;
1041 };
1042
1043 /* Take a notice that peer is sending D-SACKs. Skip update of data delivery
1044 * and spurious retransmission information if this DSACK is unlikely caused by
1045 * sender's action:
1046 * - DSACKed sequence range is larger than maximum receiver's window.
1047 * - Total no. of DSACKed segments exceed the total no. of retransmitted segs.
1048 */
tcp_dsack_seen(struct tcp_sock * tp,u32 start_seq,u32 end_seq,struct tcp_sacktag_state * state)1049 static u32 tcp_dsack_seen(struct tcp_sock *tp, u32 start_seq,
1050 u32 end_seq, struct tcp_sacktag_state *state)
1051 {
1052 u32 seq_len, dup_segs = 1;
1053
1054 if (!before(start_seq, end_seq))
1055 return 0;
1056
1057 seq_len = end_seq - start_seq;
1058 /* Dubious DSACK: DSACKed range greater than maximum advertised rwnd */
1059 if (seq_len > tp->max_window)
1060 return 0;
1061 if (seq_len > tp->mss_cache)
1062 dup_segs = DIV_ROUND_UP(seq_len, tp->mss_cache);
1063 else if (tp->tlp_high_seq && tp->tlp_high_seq == end_seq)
1064 state->flag |= FLAG_DSACK_TLP;
1065
1066 tp->dsack_dups += dup_segs;
1067 /* Skip the DSACK if dup segs weren't retransmitted by sender */
1068 if (tp->dsack_dups > tp->total_retrans)
1069 return 0;
1070
1071 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
1072 /* We increase the RACK ordering window in rounds where we receive
1073 * DSACKs that may have been due to reordering causing RACK to trigger
1074 * a spurious fast recovery. Thus RACK ignores DSACKs that happen
1075 * without having seen reordering, or that match TLP probes (TLP
1076 * is timer-driven, not triggered by RACK).
1077 */
1078 if (tp->reord_seen && !(state->flag & FLAG_DSACK_TLP))
1079 tp->rack.dsack_seen = 1;
1080
1081 state->flag |= FLAG_DSACKING_ACK;
1082 /* A spurious retransmission is delivered */
1083 state->sack_delivered += dup_segs;
1084
1085 return dup_segs;
1086 }
1087
1088 /* It's reordering when higher sequence was delivered (i.e. sacked) before
1089 * some lower never-retransmitted sequence ("low_seq"). The maximum reordering
1090 * distance is approximated in full-mss packet distance ("reordering").
1091 */
tcp_check_sack_reordering(struct sock * sk,const u32 low_seq,const int ts)1092 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq,
1093 const int ts)
1094 {
1095 struct tcp_sock *tp = tcp_sk(sk);
1096 const u32 mss = tp->mss_cache;
1097 u32 fack, metric;
1098
1099 fack = tcp_highest_sack_seq(tp);
1100 if (!before(low_seq, fack))
1101 return;
1102
1103 metric = fack - low_seq;
1104 if ((metric > tp->reordering * mss) && mss) {
1105 #if FASTRETRANS_DEBUG > 1
1106 pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
1107 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
1108 tp->reordering,
1109 0,
1110 tp->sacked_out,
1111 tp->undo_marker ? tp->undo_retrans : 0);
1112 #endif
1113 tp->reordering = min_t(u32, (metric + mss - 1) / mss,
1114 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering));
1115 }
1116
1117 /* This exciting event is worth to be remembered. 8) */
1118 tp->reord_seen++;
1119 NET_INC_STATS(sock_net(sk),
1120 ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER);
1121 }
1122
1123 /* This must be called before lost_out or retrans_out are updated
1124 * on a new loss, because we want to know if all skbs previously
1125 * known to be lost have already been retransmitted, indicating
1126 * that this newly lost skb is our next skb to retransmit.
1127 */
tcp_verify_retransmit_hint(struct tcp_sock * tp,struct sk_buff * skb)1128 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
1129 {
1130 if ((!tp->retransmit_skb_hint && tp->retrans_out >= tp->lost_out) ||
1131 (tp->retransmit_skb_hint &&
1132 before(TCP_SKB_CB(skb)->seq,
1133 TCP_SKB_CB(tp->retransmit_skb_hint)->seq)))
1134 tp->retransmit_skb_hint = skb;
1135 }
1136
1137 /* Sum the number of packets on the wire we have marked as lost, and
1138 * notify the congestion control module that the given skb was marked lost.
1139 */
tcp_notify_skb_loss_event(struct tcp_sock * tp,const struct sk_buff * skb)1140 static void tcp_notify_skb_loss_event(struct tcp_sock *tp, const struct sk_buff *skb)
1141 {
1142 tp->lost += tcp_skb_pcount(skb);
1143 }
1144
tcp_mark_skb_lost(struct sock * sk,struct sk_buff * skb)1145 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb)
1146 {
1147 __u8 sacked = TCP_SKB_CB(skb)->sacked;
1148 struct tcp_sock *tp = tcp_sk(sk);
1149
1150 if (sacked & TCPCB_SACKED_ACKED)
1151 return;
1152
1153 tcp_verify_retransmit_hint(tp, skb);
1154 if (sacked & TCPCB_LOST) {
1155 if (sacked & TCPCB_SACKED_RETRANS) {
1156 /* Account for retransmits that are lost again */
1157 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1158 tp->retrans_out -= tcp_skb_pcount(skb);
1159 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT,
1160 tcp_skb_pcount(skb));
1161 tcp_notify_skb_loss_event(tp, skb);
1162 }
1163 } else {
1164 tp->lost_out += tcp_skb_pcount(skb);
1165 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1166 tcp_notify_skb_loss_event(tp, skb);
1167 }
1168 }
1169
1170 /* This procedure tags the retransmission queue when SACKs arrive.
1171 *
1172 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1173 * Packets in queue with these bits set are counted in variables
1174 * sacked_out, retrans_out and lost_out, correspondingly.
1175 *
1176 * Valid combinations are:
1177 * Tag InFlight Description
1178 * 0 1 - orig segment is in flight.
1179 * S 0 - nothing flies, orig reached receiver.
1180 * L 0 - nothing flies, orig lost by net.
1181 * R 2 - both orig and retransmit are in flight.
1182 * L|R 1 - orig is lost, retransmit is in flight.
1183 * S|R 1 - orig reached receiver, retrans is still in flight.
1184 * (L|S|R is logically valid, it could occur when L|R is sacked,
1185 * but it is equivalent to plain S and code short-circuits it to S.
1186 * L|S is logically invalid, it would mean -1 packet in flight 8))
1187 *
1188 * These 6 states form finite state machine, controlled by the following events:
1189 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1190 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1191 * 3. Loss detection event of two flavors:
1192 * A. Scoreboard estimator decided the packet is lost.
1193 * A'. Reno "three dupacks" marks head of queue lost.
1194 * B. SACK arrives sacking SND.NXT at the moment, when the
1195 * segment was retransmitted.
1196 * 4. D-SACK added new rule: D-SACK changes any tag to S.
1197 *
1198 * It is pleasant to note, that state diagram turns out to be commutative,
1199 * so that we are allowed not to be bothered by order of our actions,
1200 * when multiple events arrive simultaneously. (see the function below).
1201 *
1202 * Reordering detection.
1203 * --------------------
1204 * Reordering metric is maximal distance, which a packet can be displaced
1205 * in packet stream. With SACKs we can estimate it:
1206 *
1207 * 1. SACK fills old hole and the corresponding segment was not
1208 * ever retransmitted -> reordering. Alas, we cannot use it
1209 * when segment was retransmitted.
1210 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1211 * for retransmitted and already SACKed segment -> reordering..
1212 * Both of these heuristics are not used in Loss state, when we cannot
1213 * account for retransmits accurately.
1214 *
1215 * SACK block validation.
1216 * ----------------------
1217 *
1218 * SACK block range validation checks that the received SACK block fits to
1219 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1220 * Note that SND.UNA is not included to the range though being valid because
1221 * it means that the receiver is rather inconsistent with itself reporting
1222 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1223 * perfectly valid, however, in light of RFC2018 which explicitly states
1224 * that "SACK block MUST reflect the newest segment. Even if the newest
1225 * segment is going to be discarded ...", not that it looks very clever
1226 * in case of head skb. Due to potentional receiver driven attacks, we
1227 * choose to avoid immediate execution of a walk in write queue due to
1228 * reneging and defer head skb's loss recovery to standard loss recovery
1229 * procedure that will eventually trigger (nothing forbids us doing this).
1230 *
1231 * Implements also blockage to start_seq wrap-around. Problem lies in the
1232 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1233 * there's no guarantee that it will be before snd_nxt (n). The problem
1234 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1235 * wrap (s_w):
1236 *
1237 * <- outs wnd -> <- wrapzone ->
1238 * u e n u_w e_w s n_w
1239 * | | | | | | |
1240 * |<------------+------+----- TCP seqno space --------------+---------->|
1241 * ...-- <2^31 ->| |<--------...
1242 * ...---- >2^31 ------>| |<--------...
1243 *
1244 * Current code wouldn't be vulnerable but it's better still to discard such
1245 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1246 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1247 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1248 * equal to the ideal case (infinite seqno space without wrap caused issues).
1249 *
1250 * With D-SACK the lower bound is extended to cover sequence space below
1251 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1252 * again, D-SACK block must not to go across snd_una (for the same reason as
1253 * for the normal SACK blocks, explained above). But there all simplicity
1254 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1255 * fully below undo_marker they do not affect behavior in anyway and can
1256 * therefore be safely ignored. In rare cases (which are more or less
1257 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1258 * fragmentation and packet reordering past skb's retransmission. To consider
1259 * them correctly, the acceptable range must be extended even more though
1260 * the exact amount is rather hard to quantify. However, tp->max_window can
1261 * be used as an exaggerated estimate.
1262 */
tcp_is_sackblock_valid(struct tcp_sock * tp,bool is_dsack,u32 start_seq,u32 end_seq)1263 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1264 u32 start_seq, u32 end_seq)
1265 {
1266 /* Too far in future, or reversed (interpretation is ambiguous) */
1267 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1268 return false;
1269
1270 /* Nasty start_seq wrap-around check (see comments above) */
1271 if (!before(start_seq, tp->snd_nxt))
1272 return false;
1273
1274 /* In outstanding window? ...This is valid exit for D-SACKs too.
1275 * start_seq == snd_una is non-sensical (see comments above)
1276 */
1277 if (after(start_seq, tp->snd_una))
1278 return true;
1279
1280 if (!is_dsack || !tp->undo_marker)
1281 return false;
1282
1283 /* ...Then it's D-SACK, and must reside below snd_una completely */
1284 if (after(end_seq, tp->snd_una))
1285 return false;
1286
1287 if (!before(start_seq, tp->undo_marker))
1288 return true;
1289
1290 /* Too old */
1291 if (!after(end_seq, tp->undo_marker))
1292 return false;
1293
1294 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1295 * start_seq < undo_marker and end_seq >= undo_marker.
1296 */
1297 return !before(start_seq, end_seq - tp->max_window);
1298 }
1299
tcp_check_dsack(struct sock * sk,const struct sk_buff * ack_skb,struct tcp_sack_block_wire * sp,int num_sacks,u32 prior_snd_una,struct tcp_sacktag_state * state)1300 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1301 struct tcp_sack_block_wire *sp, int num_sacks,
1302 u32 prior_snd_una, struct tcp_sacktag_state *state)
1303 {
1304 struct tcp_sock *tp = tcp_sk(sk);
1305 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1306 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1307 u32 dup_segs;
1308
1309 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1310 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1311 } else if (num_sacks > 1) {
1312 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1313 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1314
1315 if (after(end_seq_0, end_seq_1) || before(start_seq_0, start_seq_1))
1316 return false;
1317 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKOFORECV);
1318 } else {
1319 return false;
1320 }
1321
1322 dup_segs = tcp_dsack_seen(tp, start_seq_0, end_seq_0, state);
1323 if (!dup_segs) { /* Skip dubious DSACK */
1324 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKIGNOREDDUBIOUS);
1325 return false;
1326 }
1327
1328 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECVSEGS, dup_segs);
1329
1330 /* D-SACK for already forgotten data... Do dumb counting. */
1331 if (tp->undo_marker && tp->undo_retrans > 0 &&
1332 !after(end_seq_0, prior_snd_una) &&
1333 after(end_seq_0, tp->undo_marker))
1334 tp->undo_retrans = max_t(int, 0, tp->undo_retrans - dup_segs);
1335
1336 return true;
1337 }
1338
1339 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1340 * the incoming SACK may not exactly match but we can find smaller MSS
1341 * aligned portion of it that matches. Therefore we might need to fragment
1342 * which may fail and creates some hassle (caller must handle error case
1343 * returns).
1344 *
1345 * FIXME: this could be merged to shift decision code
1346 */
tcp_match_skb_to_sack(struct sock * sk,struct sk_buff * skb,u32 start_seq,u32 end_seq)1347 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1348 u32 start_seq, u32 end_seq)
1349 {
1350 int err;
1351 bool in_sack;
1352 unsigned int pkt_len;
1353 unsigned int mss;
1354
1355 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1356 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1357
1358 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1359 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1360 mss = tcp_skb_mss(skb);
1361 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1362
1363 if (!in_sack) {
1364 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1365 if (pkt_len < mss)
1366 pkt_len = mss;
1367 } else {
1368 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1369 if (pkt_len < mss)
1370 return -EINVAL;
1371 }
1372
1373 /* Round if necessary so that SACKs cover only full MSSes
1374 * and/or the remaining small portion (if present)
1375 */
1376 if (pkt_len > mss) {
1377 unsigned int new_len = (pkt_len / mss) * mss;
1378 if (!in_sack && new_len < pkt_len)
1379 new_len += mss;
1380 pkt_len = new_len;
1381 }
1382
1383 if (pkt_len >= skb->len && !in_sack)
1384 return 0;
1385
1386 err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
1387 pkt_len, mss, GFP_ATOMIC);
1388 if (err < 0)
1389 return err;
1390 }
1391
1392 return in_sack;
1393 }
1394
1395 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
tcp_sacktag_one(struct sock * sk,struct tcp_sacktag_state * state,u8 sacked,u32 start_seq,u32 end_seq,int dup_sack,int pcount,u64 xmit_time)1396 static u8 tcp_sacktag_one(struct sock *sk,
1397 struct tcp_sacktag_state *state, u8 sacked,
1398 u32 start_seq, u32 end_seq,
1399 int dup_sack, int pcount,
1400 u64 xmit_time)
1401 {
1402 struct tcp_sock *tp = tcp_sk(sk);
1403
1404 /* Account D-SACK for retransmitted packet. */
1405 if (dup_sack && (sacked & TCPCB_RETRANS)) {
1406 if (tp->undo_marker && tp->undo_retrans > 0 &&
1407 after(end_seq, tp->undo_marker))
1408 tp->undo_retrans = max_t(int, 0, tp->undo_retrans - pcount);
1409 if ((sacked & TCPCB_SACKED_ACKED) &&
1410 before(start_seq, state->reord))
1411 state->reord = start_seq;
1412 }
1413
1414 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1415 if (!after(end_seq, tp->snd_una))
1416 return sacked;
1417
1418 if (!(sacked & TCPCB_SACKED_ACKED)) {
1419 tcp_rack_advance(tp, sacked, end_seq, xmit_time);
1420
1421 if (sacked & TCPCB_SACKED_RETRANS) {
1422 /* If the segment is not tagged as lost,
1423 * we do not clear RETRANS, believing
1424 * that retransmission is still in flight.
1425 */
1426 if (sacked & TCPCB_LOST) {
1427 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1428 tp->lost_out -= pcount;
1429 tp->retrans_out -= pcount;
1430 }
1431 } else {
1432 if (!(sacked & TCPCB_RETRANS)) {
1433 /* New sack for not retransmitted frame,
1434 * which was in hole. It is reordering.
1435 */
1436 if (before(start_seq,
1437 tcp_highest_sack_seq(tp)) &&
1438 before(start_seq, state->reord))
1439 state->reord = start_seq;
1440
1441 if (!after(end_seq, tp->high_seq))
1442 state->flag |= FLAG_ORIG_SACK_ACKED;
1443 if (state->first_sackt == 0)
1444 state->first_sackt = xmit_time;
1445 state->last_sackt = xmit_time;
1446 }
1447
1448 if (sacked & TCPCB_LOST) {
1449 sacked &= ~TCPCB_LOST;
1450 tp->lost_out -= pcount;
1451 }
1452 }
1453
1454 sacked |= TCPCB_SACKED_ACKED;
1455 state->flag |= FLAG_DATA_SACKED;
1456 tp->sacked_out += pcount;
1457 /* Out-of-order packets delivered */
1458 state->sack_delivered += pcount;
1459
1460 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1461 if (tp->lost_skb_hint &&
1462 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1463 tp->lost_cnt_hint += pcount;
1464 }
1465
1466 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1467 * frames and clear it. undo_retrans is decreased above, L|R frames
1468 * are accounted above as well.
1469 */
1470 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1471 sacked &= ~TCPCB_SACKED_RETRANS;
1472 tp->retrans_out -= pcount;
1473 }
1474
1475 return sacked;
1476 }
1477
1478 /* Shift newly-SACKed bytes from this skb to the immediately previous
1479 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1480 */
tcp_shifted_skb(struct sock * sk,struct sk_buff * prev,struct sk_buff * skb,struct tcp_sacktag_state * state,unsigned int pcount,int shifted,int mss,bool dup_sack)1481 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev,
1482 struct sk_buff *skb,
1483 struct tcp_sacktag_state *state,
1484 unsigned int pcount, int shifted, int mss,
1485 bool dup_sack)
1486 {
1487 struct tcp_sock *tp = tcp_sk(sk);
1488 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
1489 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
1490
1491 BUG_ON(!pcount);
1492
1493 /* Adjust counters and hints for the newly sacked sequence
1494 * range but discard the return value since prev is already
1495 * marked. We must tag the range first because the seq
1496 * advancement below implicitly advances
1497 * tcp_highest_sack_seq() when skb is highest_sack.
1498 */
1499 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1500 start_seq, end_seq, dup_sack, pcount,
1501 tcp_skb_timestamp_us(skb));
1502 tcp_rate_skb_delivered(sk, skb, state->rate);
1503
1504 if (skb == tp->lost_skb_hint)
1505 tp->lost_cnt_hint += pcount;
1506
1507 TCP_SKB_CB(prev)->end_seq += shifted;
1508 TCP_SKB_CB(skb)->seq += shifted;
1509
1510 tcp_skb_pcount_add(prev, pcount);
1511 WARN_ON_ONCE(tcp_skb_pcount(skb) < pcount);
1512 tcp_skb_pcount_add(skb, -pcount);
1513
1514 /* When we're adding to gso_segs == 1, gso_size will be zero,
1515 * in theory this shouldn't be necessary but as long as DSACK
1516 * code can come after this skb later on it's better to keep
1517 * setting gso_size to something.
1518 */
1519 if (!TCP_SKB_CB(prev)->tcp_gso_size)
1520 TCP_SKB_CB(prev)->tcp_gso_size = mss;
1521
1522 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1523 if (tcp_skb_pcount(skb) <= 1)
1524 TCP_SKB_CB(skb)->tcp_gso_size = 0;
1525
1526 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1527 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1528
1529 if (skb->len > 0) {
1530 BUG_ON(!tcp_skb_pcount(skb));
1531 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1532 return false;
1533 }
1534
1535 /* Whole SKB was eaten :-) */
1536
1537 if (skb == tp->retransmit_skb_hint)
1538 tp->retransmit_skb_hint = prev;
1539 if (skb == tp->lost_skb_hint) {
1540 tp->lost_skb_hint = prev;
1541 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1542 }
1543
1544 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1545 TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
1546 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1547 TCP_SKB_CB(prev)->end_seq++;
1548
1549 if (skb == tcp_highest_sack(sk))
1550 tcp_advance_highest_sack(sk, skb);
1551
1552 tcp_skb_collapse_tstamp(prev, skb);
1553 if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp))
1554 TCP_SKB_CB(prev)->tx.delivered_mstamp = 0;
1555
1556 tcp_rtx_queue_unlink_and_free(skb, sk);
1557
1558 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
1559
1560 return true;
1561 }
1562
1563 /* I wish gso_size would have a bit more sane initialization than
1564 * something-or-zero which complicates things
1565 */
tcp_skb_seglen(const struct sk_buff * skb)1566 static int tcp_skb_seglen(const struct sk_buff *skb)
1567 {
1568 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1569 }
1570
1571 /* Shifting pages past head area doesn't work */
skb_can_shift(const struct sk_buff * skb)1572 static int skb_can_shift(const struct sk_buff *skb)
1573 {
1574 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1575 }
1576
tcp_skb_shift(struct sk_buff * to,struct sk_buff * from,int pcount,int shiftlen)1577 int tcp_skb_shift(struct sk_buff *to, struct sk_buff *from,
1578 int pcount, int shiftlen)
1579 {
1580 /* TCP min gso_size is 8 bytes (TCP_MIN_GSO_SIZE)
1581 * Since TCP_SKB_CB(skb)->tcp_gso_segs is 16 bits, we need
1582 * to make sure not storing more than 65535 * 8 bytes per skb,
1583 * even if current MSS is bigger.
1584 */
1585 if (unlikely(to->len + shiftlen >= 65535 * TCP_MIN_GSO_SIZE))
1586 return 0;
1587 if (unlikely(tcp_skb_pcount(to) + pcount > 65535))
1588 return 0;
1589 return skb_shift(to, from, shiftlen);
1590 }
1591
1592 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1593 * skb.
1594 */
tcp_shift_skb_data(struct sock * sk,struct sk_buff * skb,struct tcp_sacktag_state * state,u32 start_seq,u32 end_seq,bool dup_sack)1595 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1596 struct tcp_sacktag_state *state,
1597 u32 start_seq, u32 end_seq,
1598 bool dup_sack)
1599 {
1600 struct tcp_sock *tp = tcp_sk(sk);
1601 struct sk_buff *prev;
1602 int mss;
1603 int pcount = 0;
1604 int len;
1605 int in_sack;
1606
1607 /* Normally R but no L won't result in plain S */
1608 if (!dup_sack &&
1609 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1610 goto fallback;
1611 if (!skb_can_shift(skb))
1612 goto fallback;
1613 /* This frame is about to be dropped (was ACKed). */
1614 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1615 goto fallback;
1616
1617 /* Can only happen with delayed DSACK + discard craziness */
1618 prev = skb_rb_prev(skb);
1619 if (!prev)
1620 goto fallback;
1621
1622 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1623 goto fallback;
1624
1625 if (!tcp_skb_can_collapse(prev, skb))
1626 goto fallback;
1627
1628 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1629 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1630
1631 if (in_sack) {
1632 len = skb->len;
1633 pcount = tcp_skb_pcount(skb);
1634 mss = tcp_skb_seglen(skb);
1635
1636 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1637 * drop this restriction as unnecessary
1638 */
1639 if (mss != tcp_skb_seglen(prev))
1640 goto fallback;
1641 } else {
1642 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1643 goto noop;
1644 /* CHECKME: This is non-MSS split case only?, this will
1645 * cause skipped skbs due to advancing loop btw, original
1646 * has that feature too
1647 */
1648 if (tcp_skb_pcount(skb) <= 1)
1649 goto noop;
1650
1651 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1652 if (!in_sack) {
1653 /* TODO: head merge to next could be attempted here
1654 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1655 * though it might not be worth of the additional hassle
1656 *
1657 * ...we can probably just fallback to what was done
1658 * previously. We could try merging non-SACKed ones
1659 * as well but it probably isn't going to buy off
1660 * because later SACKs might again split them, and
1661 * it would make skb timestamp tracking considerably
1662 * harder problem.
1663 */
1664 goto fallback;
1665 }
1666
1667 len = end_seq - TCP_SKB_CB(skb)->seq;
1668 BUG_ON(len < 0);
1669 BUG_ON(len > skb->len);
1670
1671 /* MSS boundaries should be honoured or else pcount will
1672 * severely break even though it makes things bit trickier.
1673 * Optimize common case to avoid most of the divides
1674 */
1675 mss = tcp_skb_mss(skb);
1676
1677 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1678 * drop this restriction as unnecessary
1679 */
1680 if (mss != tcp_skb_seglen(prev))
1681 goto fallback;
1682
1683 if (len == mss) {
1684 pcount = 1;
1685 } else if (len < mss) {
1686 goto noop;
1687 } else {
1688 pcount = len / mss;
1689 len = pcount * mss;
1690 }
1691 }
1692
1693 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1694 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1695 goto fallback;
1696
1697 if (!tcp_skb_shift(prev, skb, pcount, len))
1698 goto fallback;
1699 if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack))
1700 goto out;
1701
1702 /* Hole filled allows collapsing with the next as well, this is very
1703 * useful when hole on every nth skb pattern happens
1704 */
1705 skb = skb_rb_next(prev);
1706 if (!skb)
1707 goto out;
1708
1709 if (!skb_can_shift(skb) ||
1710 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1711 (mss != tcp_skb_seglen(skb)))
1712 goto out;
1713
1714 if (!tcp_skb_can_collapse(prev, skb))
1715 goto out;
1716 len = skb->len;
1717 pcount = tcp_skb_pcount(skb);
1718 if (tcp_skb_shift(prev, skb, pcount, len))
1719 tcp_shifted_skb(sk, prev, skb, state, pcount,
1720 len, mss, 0);
1721
1722 out:
1723 return prev;
1724
1725 noop:
1726 return skb;
1727
1728 fallback:
1729 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1730 return NULL;
1731 }
1732
tcp_sacktag_walk(struct sk_buff * skb,struct sock * sk,struct tcp_sack_block * next_dup,struct tcp_sacktag_state * state,u32 start_seq,u32 end_seq,bool dup_sack_in)1733 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1734 struct tcp_sack_block *next_dup,
1735 struct tcp_sacktag_state *state,
1736 u32 start_seq, u32 end_seq,
1737 bool dup_sack_in)
1738 {
1739 struct tcp_sock *tp = tcp_sk(sk);
1740 struct sk_buff *tmp;
1741
1742 skb_rbtree_walk_from(skb) {
1743 int in_sack = 0;
1744 bool dup_sack = dup_sack_in;
1745
1746 /* queue is in-order => we can short-circuit the walk early */
1747 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1748 break;
1749
1750 if (next_dup &&
1751 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1752 in_sack = tcp_match_skb_to_sack(sk, skb,
1753 next_dup->start_seq,
1754 next_dup->end_seq);
1755 if (in_sack > 0)
1756 dup_sack = true;
1757 }
1758
1759 /* skb reference here is a bit tricky to get right, since
1760 * shifting can eat and free both this skb and the next,
1761 * so not even _safe variant of the loop is enough.
1762 */
1763 if (in_sack <= 0) {
1764 tmp = tcp_shift_skb_data(sk, skb, state,
1765 start_seq, end_seq, dup_sack);
1766 if (tmp) {
1767 if (tmp != skb) {
1768 skb = tmp;
1769 continue;
1770 }
1771
1772 in_sack = 0;
1773 } else {
1774 in_sack = tcp_match_skb_to_sack(sk, skb,
1775 start_seq,
1776 end_seq);
1777 }
1778 }
1779
1780 if (unlikely(in_sack < 0))
1781 break;
1782
1783 if (in_sack) {
1784 TCP_SKB_CB(skb)->sacked =
1785 tcp_sacktag_one(sk,
1786 state,
1787 TCP_SKB_CB(skb)->sacked,
1788 TCP_SKB_CB(skb)->seq,
1789 TCP_SKB_CB(skb)->end_seq,
1790 dup_sack,
1791 tcp_skb_pcount(skb),
1792 tcp_skb_timestamp_us(skb));
1793 tcp_rate_skb_delivered(sk, skb, state->rate);
1794 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1795 list_del_init(&skb->tcp_tsorted_anchor);
1796
1797 if (!before(TCP_SKB_CB(skb)->seq,
1798 tcp_highest_sack_seq(tp)))
1799 tcp_advance_highest_sack(sk, skb);
1800 }
1801 }
1802 return skb;
1803 }
1804
tcp_sacktag_bsearch(struct sock * sk,u32 seq)1805 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, u32 seq)
1806 {
1807 struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node;
1808 struct sk_buff *skb;
1809
1810 while (*p) {
1811 parent = *p;
1812 skb = rb_to_skb(parent);
1813 if (before(seq, TCP_SKB_CB(skb)->seq)) {
1814 p = &parent->rb_left;
1815 continue;
1816 }
1817 if (!before(seq, TCP_SKB_CB(skb)->end_seq)) {
1818 p = &parent->rb_right;
1819 continue;
1820 }
1821 return skb;
1822 }
1823 return NULL;
1824 }
1825
tcp_sacktag_skip(struct sk_buff * skb,struct sock * sk,u32 skip_to_seq)1826 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1827 u32 skip_to_seq)
1828 {
1829 if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq))
1830 return skb;
1831
1832 return tcp_sacktag_bsearch(sk, skip_to_seq);
1833 }
1834
tcp_maybe_skipping_dsack(struct sk_buff * skb,struct sock * sk,struct tcp_sack_block * next_dup,struct tcp_sacktag_state * state,u32 skip_to_seq)1835 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1836 struct sock *sk,
1837 struct tcp_sack_block *next_dup,
1838 struct tcp_sacktag_state *state,
1839 u32 skip_to_seq)
1840 {
1841 if (!next_dup)
1842 return skb;
1843
1844 if (before(next_dup->start_seq, skip_to_seq)) {
1845 skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq);
1846 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1847 next_dup->start_seq, next_dup->end_seq,
1848 1);
1849 }
1850
1851 return skb;
1852 }
1853
tcp_sack_cache_ok(const struct tcp_sock * tp,const struct tcp_sack_block * cache)1854 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1855 {
1856 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1857 }
1858
1859 static int
tcp_sacktag_write_queue(struct sock * sk,const struct sk_buff * ack_skb,u32 prior_snd_una,struct tcp_sacktag_state * state)1860 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1861 u32 prior_snd_una, struct tcp_sacktag_state *state)
1862 {
1863 struct tcp_sock *tp = tcp_sk(sk);
1864 const unsigned char *ptr = (skb_transport_header(ack_skb) +
1865 TCP_SKB_CB(ack_skb)->sacked);
1866 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1867 struct tcp_sack_block sp[TCP_NUM_SACKS];
1868 struct tcp_sack_block *cache;
1869 struct sk_buff *skb;
1870 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1871 int used_sacks;
1872 bool found_dup_sack = false;
1873 int i, j;
1874 int first_sack_index;
1875
1876 state->flag = 0;
1877 state->reord = tp->snd_nxt;
1878
1879 if (!tp->sacked_out)
1880 tcp_highest_sack_reset(sk);
1881
1882 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1883 num_sacks, prior_snd_una, state);
1884
1885 /* Eliminate too old ACKs, but take into
1886 * account more or less fresh ones, they can
1887 * contain valid SACK info.
1888 */
1889 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1890 return 0;
1891
1892 if (!tp->packets_out)
1893 goto out;
1894
1895 used_sacks = 0;
1896 first_sack_index = 0;
1897 for (i = 0; i < num_sacks; i++) {
1898 bool dup_sack = !i && found_dup_sack;
1899
1900 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1901 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1902
1903 if (!tcp_is_sackblock_valid(tp, dup_sack,
1904 sp[used_sacks].start_seq,
1905 sp[used_sacks].end_seq)) {
1906 int mib_idx;
1907
1908 if (dup_sack) {
1909 if (!tp->undo_marker)
1910 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1911 else
1912 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1913 } else {
1914 /* Don't count olds caused by ACK reordering */
1915 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1916 !after(sp[used_sacks].end_seq, tp->snd_una))
1917 continue;
1918 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1919 }
1920
1921 NET_INC_STATS(sock_net(sk), mib_idx);
1922 if (i == 0)
1923 first_sack_index = -1;
1924 continue;
1925 }
1926
1927 /* Ignore very old stuff early */
1928 if (!after(sp[used_sacks].end_seq, prior_snd_una)) {
1929 if (i == 0)
1930 first_sack_index = -1;
1931 continue;
1932 }
1933
1934 used_sacks++;
1935 }
1936
1937 /* order SACK blocks to allow in order walk of the retrans queue */
1938 for (i = used_sacks - 1; i > 0; i--) {
1939 for (j = 0; j < i; j++) {
1940 if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1941 swap(sp[j], sp[j + 1]);
1942
1943 /* Track where the first SACK block goes to */
1944 if (j == first_sack_index)
1945 first_sack_index = j + 1;
1946 }
1947 }
1948 }
1949
1950 state->mss_now = tcp_current_mss(sk);
1951 skb = NULL;
1952 i = 0;
1953
1954 if (!tp->sacked_out) {
1955 /* It's already past, so skip checking against it */
1956 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1957 } else {
1958 cache = tp->recv_sack_cache;
1959 /* Skip empty blocks in at head of the cache */
1960 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1961 !cache->end_seq)
1962 cache++;
1963 }
1964
1965 while (i < used_sacks) {
1966 u32 start_seq = sp[i].start_seq;
1967 u32 end_seq = sp[i].end_seq;
1968 bool dup_sack = (found_dup_sack && (i == first_sack_index));
1969 struct tcp_sack_block *next_dup = NULL;
1970
1971 if (found_dup_sack && ((i + 1) == first_sack_index))
1972 next_dup = &sp[i + 1];
1973
1974 /* Skip too early cached blocks */
1975 while (tcp_sack_cache_ok(tp, cache) &&
1976 !before(start_seq, cache->end_seq))
1977 cache++;
1978
1979 /* Can skip some work by looking recv_sack_cache? */
1980 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1981 after(end_seq, cache->start_seq)) {
1982
1983 /* Head todo? */
1984 if (before(start_seq, cache->start_seq)) {
1985 skb = tcp_sacktag_skip(skb, sk, start_seq);
1986 skb = tcp_sacktag_walk(skb, sk, next_dup,
1987 state,
1988 start_seq,
1989 cache->start_seq,
1990 dup_sack);
1991 }
1992
1993 /* Rest of the block already fully processed? */
1994 if (!after(end_seq, cache->end_seq))
1995 goto advance_sp;
1996
1997 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1998 state,
1999 cache->end_seq);
2000
2001 /* ...tail remains todo... */
2002 if (tcp_highest_sack_seq(tp) == cache->end_seq) {
2003 /* ...but better entrypoint exists! */
2004 skb = tcp_highest_sack(sk);
2005 if (!skb)
2006 break;
2007 cache++;
2008 goto walk;
2009 }
2010
2011 skb = tcp_sacktag_skip(skb, sk, cache->end_seq);
2012 /* Check overlap against next cached too (past this one already) */
2013 cache++;
2014 continue;
2015 }
2016
2017 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
2018 skb = tcp_highest_sack(sk);
2019 if (!skb)
2020 break;
2021 }
2022 skb = tcp_sacktag_skip(skb, sk, start_seq);
2023
2024 walk:
2025 skb = tcp_sacktag_walk(skb, sk, next_dup, state,
2026 start_seq, end_seq, dup_sack);
2027
2028 advance_sp:
2029 i++;
2030 }
2031
2032 /* Clear the head of the cache sack blocks so we can skip it next time */
2033 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
2034 tp->recv_sack_cache[i].start_seq = 0;
2035 tp->recv_sack_cache[i].end_seq = 0;
2036 }
2037 for (j = 0; j < used_sacks; j++)
2038 tp->recv_sack_cache[i++] = sp[j];
2039
2040 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker)
2041 tcp_check_sack_reordering(sk, state->reord, 0);
2042
2043 tcp_verify_left_out(tp);
2044 out:
2045
2046 #if FASTRETRANS_DEBUG > 0
2047 WARN_ON((int)tp->sacked_out < 0);
2048 WARN_ON((int)tp->lost_out < 0);
2049 WARN_ON((int)tp->retrans_out < 0);
2050 WARN_ON((int)tcp_packets_in_flight(tp) < 0);
2051 #endif
2052 return state->flag;
2053 }
2054
2055 /* Limits sacked_out so that sum with lost_out isn't ever larger than
2056 * packets_out. Returns false if sacked_out adjustement wasn't necessary.
2057 */
tcp_limit_reno_sacked(struct tcp_sock * tp)2058 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
2059 {
2060 u32 holes;
2061
2062 holes = max(tp->lost_out, 1U);
2063 holes = min(holes, tp->packets_out);
2064
2065 if ((tp->sacked_out + holes) > tp->packets_out) {
2066 tp->sacked_out = tp->packets_out - holes;
2067 return true;
2068 }
2069 return false;
2070 }
2071
2072 /* If we receive more dupacks than we expected counting segments
2073 * in assumption of absent reordering, interpret this as reordering.
2074 * The only another reason could be bug in receiver TCP.
2075 */
tcp_check_reno_reordering(struct sock * sk,const int addend)2076 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
2077 {
2078 struct tcp_sock *tp = tcp_sk(sk);
2079
2080 if (!tcp_limit_reno_sacked(tp))
2081 return;
2082
2083 tp->reordering = min_t(u32, tp->packets_out + addend,
2084 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering));
2085 tp->reord_seen++;
2086 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER);
2087 }
2088
2089 /* Emulate SACKs for SACKless connection: account for a new dupack. */
2090
tcp_add_reno_sack(struct sock * sk,int num_dupack,bool ece_ack)2091 static void tcp_add_reno_sack(struct sock *sk, int num_dupack, bool ece_ack)
2092 {
2093 if (num_dupack) {
2094 struct tcp_sock *tp = tcp_sk(sk);
2095 u32 prior_sacked = tp->sacked_out;
2096 s32 delivered;
2097
2098 tp->sacked_out += num_dupack;
2099 tcp_check_reno_reordering(sk, 0);
2100 delivered = tp->sacked_out - prior_sacked;
2101 if (delivered > 0)
2102 tcp_count_delivered(tp, delivered, ece_ack);
2103 tcp_verify_left_out(tp);
2104 }
2105 }
2106
2107 /* Account for ACK, ACKing some data in Reno Recovery phase. */
2108
tcp_remove_reno_sacks(struct sock * sk,int acked,bool ece_ack)2109 static void tcp_remove_reno_sacks(struct sock *sk, int acked, bool ece_ack)
2110 {
2111 struct tcp_sock *tp = tcp_sk(sk);
2112
2113 if (acked > 0) {
2114 /* One ACK acked hole. The rest eat duplicate ACKs. */
2115 tcp_count_delivered(tp, max_t(int, acked - tp->sacked_out, 1),
2116 ece_ack);
2117 if (acked - 1 >= tp->sacked_out)
2118 tp->sacked_out = 0;
2119 else
2120 tp->sacked_out -= acked - 1;
2121 }
2122 tcp_check_reno_reordering(sk, acked);
2123 tcp_verify_left_out(tp);
2124 }
2125
tcp_reset_reno_sack(struct tcp_sock * tp)2126 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
2127 {
2128 tp->sacked_out = 0;
2129 }
2130
tcp_clear_retrans(struct tcp_sock * tp)2131 void tcp_clear_retrans(struct tcp_sock *tp)
2132 {
2133 tp->retrans_out = 0;
2134 tp->lost_out = 0;
2135 tp->undo_marker = 0;
2136 tp->undo_retrans = -1;
2137 tp->sacked_out = 0;
2138 tp->rto_stamp = 0;
2139 tp->total_rto = 0;
2140 tp->total_rto_recoveries = 0;
2141 tp->total_rto_time = 0;
2142 }
2143
tcp_init_undo(struct tcp_sock * tp)2144 static inline void tcp_init_undo(struct tcp_sock *tp)
2145 {
2146 tp->undo_marker = tp->snd_una;
2147
2148 /* Retransmission still in flight may cause DSACKs later. */
2149 /* First, account for regular retransmits in flight: */
2150 tp->undo_retrans = tp->retrans_out;
2151 /* Next, account for TLP retransmits in flight: */
2152 if (tp->tlp_high_seq && tp->tlp_retrans)
2153 tp->undo_retrans++;
2154 /* Finally, avoid 0, because undo_retrans==0 means "can undo now": */
2155 if (!tp->undo_retrans)
2156 tp->undo_retrans = -1;
2157 }
2158
tcp_is_rack(const struct sock * sk)2159 static bool tcp_is_rack(const struct sock *sk)
2160 {
2161 return READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_recovery) &
2162 TCP_RACK_LOSS_DETECTION;
2163 }
2164
2165 /* If we detect SACK reneging, forget all SACK information
2166 * and reset tags completely, otherwise preserve SACKs. If receiver
2167 * dropped its ofo queue, we will know this due to reneging detection.
2168 */
tcp_timeout_mark_lost(struct sock * sk)2169 static void tcp_timeout_mark_lost(struct sock *sk)
2170 {
2171 struct tcp_sock *tp = tcp_sk(sk);
2172 struct sk_buff *skb, *head;
2173 bool is_reneg; /* is receiver reneging on SACKs? */
2174
2175 head = tcp_rtx_queue_head(sk);
2176 is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED);
2177 if (is_reneg) {
2178 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2179 tp->sacked_out = 0;
2180 /* Mark SACK reneging until we recover from this loss event. */
2181 tp->is_sack_reneg = 1;
2182 } else if (tcp_is_reno(tp)) {
2183 tcp_reset_reno_sack(tp);
2184 }
2185
2186 skb = head;
2187 skb_rbtree_walk_from(skb) {
2188 if (is_reneg)
2189 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2190 else if (tcp_is_rack(sk) && skb != head &&
2191 tcp_rack_skb_timeout(tp, skb, 0) > 0)
2192 continue; /* Don't mark recently sent ones lost yet */
2193 tcp_mark_skb_lost(sk, skb);
2194 }
2195 tcp_verify_left_out(tp);
2196 tcp_clear_all_retrans_hints(tp);
2197 }
2198
2199 /* Enter Loss state. */
tcp_enter_loss(struct sock * sk)2200 void tcp_enter_loss(struct sock *sk)
2201 {
2202 const struct inet_connection_sock *icsk = inet_csk(sk);
2203 struct tcp_sock *tp = tcp_sk(sk);
2204 struct net *net = sock_net(sk);
2205 bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
2206 u8 reordering;
2207
2208 tcp_timeout_mark_lost(sk);
2209
2210 /* Reduce ssthresh if it has not yet been made inside this window. */
2211 if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
2212 !after(tp->high_seq, tp->snd_una) ||
2213 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2214 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2215 tp->prior_cwnd = tcp_snd_cwnd(tp);
2216 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2217 tcp_ca_event(sk, CA_EVENT_LOSS);
2218 tcp_init_undo(tp);
2219 }
2220 tcp_snd_cwnd_set(tp, tcp_packets_in_flight(tp) + 1);
2221 tp->snd_cwnd_cnt = 0;
2222 tp->snd_cwnd_stamp = tcp_jiffies32;
2223
2224 /* Timeout in disordered state after receiving substantial DUPACKs
2225 * suggests that the degree of reordering is over-estimated.
2226 */
2227 reordering = READ_ONCE(net->ipv4.sysctl_tcp_reordering);
2228 if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
2229 tp->sacked_out >= reordering)
2230 tp->reordering = min_t(unsigned int, tp->reordering,
2231 reordering);
2232
2233 tcp_set_ca_state(sk, TCP_CA_Loss);
2234 tp->high_seq = tp->snd_nxt;
2235 tp->tlp_high_seq = 0;
2236 tcp_ecn_queue_cwr(tp);
2237
2238 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
2239 * loss recovery is underway except recurring timeout(s) on
2240 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
2241 */
2242 tp->frto = READ_ONCE(net->ipv4.sysctl_tcp_frto) &&
2243 (new_recovery || icsk->icsk_retransmits) &&
2244 !inet_csk(sk)->icsk_mtup.probe_size;
2245 }
2246
2247 /* If ACK arrived pointing to a remembered SACK, it means that our
2248 * remembered SACKs do not reflect real state of receiver i.e.
2249 * receiver _host_ is heavily congested (or buggy).
2250 *
2251 * To avoid big spurious retransmission bursts due to transient SACK
2252 * scoreboard oddities that look like reneging, we give the receiver a
2253 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
2254 * restore sanity to the SACK scoreboard. If the apparent reneging
2255 * persists until this RTO then we'll clear the SACK scoreboard.
2256 */
tcp_check_sack_reneging(struct sock * sk,int * ack_flag)2257 static bool tcp_check_sack_reneging(struct sock *sk, int *ack_flag)
2258 {
2259 if (*ack_flag & FLAG_SACK_RENEGING &&
2260 *ack_flag & FLAG_SND_UNA_ADVANCED) {
2261 struct tcp_sock *tp = tcp_sk(sk);
2262 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2263 msecs_to_jiffies(10));
2264
2265 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2266 delay, TCP_RTO_MAX);
2267 *ack_flag &= ~FLAG_SET_XMIT_TIMER;
2268 return true;
2269 }
2270 return false;
2271 }
2272
2273 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2274 * counter when SACK is enabled (without SACK, sacked_out is used for
2275 * that purpose).
2276 *
2277 * With reordering, holes may still be in flight, so RFC3517 recovery
2278 * uses pure sacked_out (total number of SACKed segments) even though
2279 * it violates the RFC that uses duplicate ACKs, often these are equal
2280 * but when e.g. out-of-window ACKs or packet duplication occurs,
2281 * they differ. Since neither occurs due to loss, TCP should really
2282 * ignore them.
2283 */
tcp_dupack_heuristics(const struct tcp_sock * tp)2284 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2285 {
2286 return tp->sacked_out + 1;
2287 }
2288
2289 /* Linux NewReno/SACK/ECN state machine.
2290 * --------------------------------------
2291 *
2292 * "Open" Normal state, no dubious events, fast path.
2293 * "Disorder" In all the respects it is "Open",
2294 * but requires a bit more attention. It is entered when
2295 * we see some SACKs or dupacks. It is split of "Open"
2296 * mainly to move some processing from fast path to slow one.
2297 * "CWR" CWND was reduced due to some Congestion Notification event.
2298 * It can be ECN, ICMP source quench, local device congestion.
2299 * "Recovery" CWND was reduced, we are fast-retransmitting.
2300 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2301 *
2302 * tcp_fastretrans_alert() is entered:
2303 * - each incoming ACK, if state is not "Open"
2304 * - when arrived ACK is unusual, namely:
2305 * * SACK
2306 * * Duplicate ACK.
2307 * * ECN ECE.
2308 *
2309 * Counting packets in flight is pretty simple.
2310 *
2311 * in_flight = packets_out - left_out + retrans_out
2312 *
2313 * packets_out is SND.NXT-SND.UNA counted in packets.
2314 *
2315 * retrans_out is number of retransmitted segments.
2316 *
2317 * left_out is number of segments left network, but not ACKed yet.
2318 *
2319 * left_out = sacked_out + lost_out
2320 *
2321 * sacked_out: Packets, which arrived to receiver out of order
2322 * and hence not ACKed. With SACKs this number is simply
2323 * amount of SACKed data. Even without SACKs
2324 * it is easy to give pretty reliable estimate of this number,
2325 * counting duplicate ACKs.
2326 *
2327 * lost_out: Packets lost by network. TCP has no explicit
2328 * "loss notification" feedback from network (for now).
2329 * It means that this number can be only _guessed_.
2330 * Actually, it is the heuristics to predict lossage that
2331 * distinguishes different algorithms.
2332 *
2333 * F.e. after RTO, when all the queue is considered as lost,
2334 * lost_out = packets_out and in_flight = retrans_out.
2335 *
2336 * Essentially, we have now a few algorithms detecting
2337 * lost packets.
2338 *
2339 * If the receiver supports SACK:
2340 *
2341 * RFC6675/3517: It is the conventional algorithm. A packet is
2342 * considered lost if the number of higher sequence packets
2343 * SACKed is greater than or equal the DUPACK thoreshold
2344 * (reordering). This is implemented in tcp_mark_head_lost and
2345 * tcp_update_scoreboard.
2346 *
2347 * RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm
2348 * (2017-) that checks timing instead of counting DUPACKs.
2349 * Essentially a packet is considered lost if it's not S/ACKed
2350 * after RTT + reordering_window, where both metrics are
2351 * dynamically measured and adjusted. This is implemented in
2352 * tcp_rack_mark_lost.
2353 *
2354 * If the receiver does not support SACK:
2355 *
2356 * NewReno (RFC6582): in Recovery we assume that one segment
2357 * is lost (classic Reno). While we are in Recovery and
2358 * a partial ACK arrives, we assume that one more packet
2359 * is lost (NewReno). This heuristics are the same in NewReno
2360 * and SACK.
2361 *
2362 * Really tricky (and requiring careful tuning) part of algorithm
2363 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2364 * The first determines the moment _when_ we should reduce CWND and,
2365 * hence, slow down forward transmission. In fact, it determines the moment
2366 * when we decide that hole is caused by loss, rather than by a reorder.
2367 *
2368 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2369 * holes, caused by lost packets.
2370 *
2371 * And the most logically complicated part of algorithm is undo
2372 * heuristics. We detect false retransmits due to both too early
2373 * fast retransmit (reordering) and underestimated RTO, analyzing
2374 * timestamps and D-SACKs. When we detect that some segments were
2375 * retransmitted by mistake and CWND reduction was wrong, we undo
2376 * window reduction and abort recovery phase. This logic is hidden
2377 * inside several functions named tcp_try_undo_<something>.
2378 */
2379
2380 /* This function decides, when we should leave Disordered state
2381 * and enter Recovery phase, reducing congestion window.
2382 *
2383 * Main question: may we further continue forward transmission
2384 * with the same cwnd?
2385 */
tcp_time_to_recover(struct sock * sk,int flag)2386 static bool tcp_time_to_recover(struct sock *sk, int flag)
2387 {
2388 struct tcp_sock *tp = tcp_sk(sk);
2389
2390 /* Trick#1: The loss is proven. */
2391 if (tp->lost_out)
2392 return true;
2393
2394 /* Not-A-Trick#2 : Classic rule... */
2395 if (!tcp_is_rack(sk) && tcp_dupack_heuristics(tp) > tp->reordering)
2396 return true;
2397
2398 return false;
2399 }
2400
2401 /* Detect loss in event "A" above by marking head of queue up as lost.
2402 * For RFC3517 SACK, a segment is considered lost if it
2403 * has at least tp->reordering SACKed seqments above it; "packets" refers to
2404 * the maximum SACKed segments to pass before reaching this limit.
2405 */
tcp_mark_head_lost(struct sock * sk,int packets,int mark_head)2406 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2407 {
2408 struct tcp_sock *tp = tcp_sk(sk);
2409 struct sk_buff *skb;
2410 int cnt;
2411 /* Use SACK to deduce losses of new sequences sent during recovery */
2412 const u32 loss_high = tp->snd_nxt;
2413
2414 WARN_ON(packets > tp->packets_out);
2415 skb = tp->lost_skb_hint;
2416 if (skb) {
2417 /* Head already handled? */
2418 if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una))
2419 return;
2420 cnt = tp->lost_cnt_hint;
2421 } else {
2422 skb = tcp_rtx_queue_head(sk);
2423 cnt = 0;
2424 }
2425
2426 skb_rbtree_walk_from(skb) {
2427 /* TODO: do this better */
2428 /* this is not the most efficient way to do this... */
2429 tp->lost_skb_hint = skb;
2430 tp->lost_cnt_hint = cnt;
2431
2432 if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2433 break;
2434
2435 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2436 cnt += tcp_skb_pcount(skb);
2437
2438 if (cnt > packets)
2439 break;
2440
2441 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_LOST))
2442 tcp_mark_skb_lost(sk, skb);
2443
2444 if (mark_head)
2445 break;
2446 }
2447 tcp_verify_left_out(tp);
2448 }
2449
2450 /* Account newly detected lost packet(s) */
2451
tcp_update_scoreboard(struct sock * sk,int fast_rexmit)2452 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2453 {
2454 struct tcp_sock *tp = tcp_sk(sk);
2455
2456 if (tcp_is_sack(tp)) {
2457 int sacked_upto = tp->sacked_out - tp->reordering;
2458 if (sacked_upto >= 0)
2459 tcp_mark_head_lost(sk, sacked_upto, 0);
2460 else if (fast_rexmit)
2461 tcp_mark_head_lost(sk, 1, 1);
2462 }
2463 }
2464
tcp_tsopt_ecr_before(const struct tcp_sock * tp,u32 when)2465 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2466 {
2467 return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2468 before(tp->rx_opt.rcv_tsecr, when);
2469 }
2470
2471 /* skb is spurious retransmitted if the returned timestamp echo
2472 * reply is prior to the skb transmission time
2473 */
tcp_skb_spurious_retrans(const struct tcp_sock * tp,const struct sk_buff * skb)2474 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2475 const struct sk_buff *skb)
2476 {
2477 return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2478 tcp_tsopt_ecr_before(tp, tcp_skb_timestamp_ts(tp->tcp_usec_ts, skb));
2479 }
2480
2481 /* Nothing was retransmitted or returned timestamp is less
2482 * than timestamp of the first retransmission.
2483 */
tcp_packet_delayed(const struct tcp_sock * tp)2484 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2485 {
2486 const struct sock *sk = (const struct sock *)tp;
2487
2488 /* Received an echoed timestamp before the first retransmission? */
2489 if (tp->retrans_stamp)
2490 return tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
2491
2492 /* We set tp->retrans_stamp upon the first retransmission of a loss
2493 * recovery episode, so normally if tp->retrans_stamp is 0 then no
2494 * retransmission has happened yet (likely due to TSQ, which can cause
2495 * fast retransmits to be delayed). So if snd_una advanced while
2496 * (tp->retrans_stamp is 0 then apparently a packet was merely delayed,
2497 * not lost. But there are exceptions where we retransmit but then
2498 * clear tp->retrans_stamp, so we check for those exceptions.
2499 */
2500
2501 /* (1) For non-SACK connections, tcp_is_non_sack_preventing_reopen()
2502 * clears tp->retrans_stamp when snd_una == high_seq.
2503 */
2504 if (!tcp_is_sack(tp) && !before(tp->snd_una, tp->high_seq))
2505 return false;
2506
2507 /* (2) In TCP_SYN_SENT tcp_clean_rtx_queue() clears tp->retrans_stamp
2508 * when setting FLAG_SYN_ACKED is set, even if the SYN was
2509 * retransmitted.
2510 */
2511 if (sk->sk_state == TCP_SYN_SENT)
2512 return false;
2513
2514 return true; /* tp->retrans_stamp is zero; no retransmit yet */
2515 }
2516
2517 /* Undo procedures. */
2518
2519 /* We can clear retrans_stamp when there are no retransmissions in the
2520 * window. It would seem that it is trivially available for us in
2521 * tp->retrans_out, however, that kind of assumptions doesn't consider
2522 * what will happen if errors occur when sending retransmission for the
2523 * second time. ...It could the that such segment has only
2524 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2525 * the head skb is enough except for some reneging corner cases that
2526 * are not worth the effort.
2527 *
2528 * Main reason for all this complexity is the fact that connection dying
2529 * time now depends on the validity of the retrans_stamp, in particular,
2530 * that successive retransmissions of a segment must not advance
2531 * retrans_stamp under any conditions.
2532 */
tcp_any_retrans_done(const struct sock * sk)2533 static bool tcp_any_retrans_done(const struct sock *sk)
2534 {
2535 const struct tcp_sock *tp = tcp_sk(sk);
2536 struct sk_buff *skb;
2537
2538 if (tp->retrans_out)
2539 return true;
2540
2541 skb = tcp_rtx_queue_head(sk);
2542 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2543 return true;
2544
2545 return false;
2546 }
2547
2548 /* If loss recovery is finished and there are no retransmits out in the
2549 * network, then we clear retrans_stamp so that upon the next loss recovery
2550 * retransmits_timed_out() and timestamp-undo are using the correct value.
2551 */
tcp_retrans_stamp_cleanup(struct sock * sk)2552 static void tcp_retrans_stamp_cleanup(struct sock *sk)
2553 {
2554 if (!tcp_any_retrans_done(sk))
2555 tcp_sk(sk)->retrans_stamp = 0;
2556 }
2557
DBGUNDO(struct sock * sk,const char * msg)2558 static void DBGUNDO(struct sock *sk, const char *msg)
2559 {
2560 #if FASTRETRANS_DEBUG > 1
2561 struct tcp_sock *tp = tcp_sk(sk);
2562 struct inet_sock *inet = inet_sk(sk);
2563
2564 if (sk->sk_family == AF_INET) {
2565 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2566 msg,
2567 &inet->inet_daddr, ntohs(inet->inet_dport),
2568 tcp_snd_cwnd(tp), tcp_left_out(tp),
2569 tp->snd_ssthresh, tp->prior_ssthresh,
2570 tp->packets_out);
2571 }
2572 #if IS_ENABLED(CONFIG_IPV6)
2573 else if (sk->sk_family == AF_INET6) {
2574 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2575 msg,
2576 &sk->sk_v6_daddr, ntohs(inet->inet_dport),
2577 tcp_snd_cwnd(tp), tcp_left_out(tp),
2578 tp->snd_ssthresh, tp->prior_ssthresh,
2579 tp->packets_out);
2580 }
2581 #endif
2582 #endif
2583 }
2584
tcp_undo_cwnd_reduction(struct sock * sk,bool unmark_loss)2585 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2586 {
2587 struct tcp_sock *tp = tcp_sk(sk);
2588
2589 if (unmark_loss) {
2590 struct sk_buff *skb;
2591
2592 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2593 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2594 }
2595 tp->lost_out = 0;
2596 tcp_clear_all_retrans_hints(tp);
2597 }
2598
2599 if (tp->prior_ssthresh) {
2600 const struct inet_connection_sock *icsk = inet_csk(sk);
2601
2602 tcp_snd_cwnd_set(tp, icsk->icsk_ca_ops->undo_cwnd(sk));
2603
2604 if (tp->prior_ssthresh > tp->snd_ssthresh) {
2605 tp->snd_ssthresh = tp->prior_ssthresh;
2606 tcp_ecn_withdraw_cwr(tp);
2607 }
2608 }
2609 tp->snd_cwnd_stamp = tcp_jiffies32;
2610 tp->undo_marker = 0;
2611 tp->rack.advanced = 1; /* Force RACK to re-exam losses */
2612 }
2613
tcp_may_undo(const struct tcp_sock * tp)2614 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2615 {
2616 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2617 }
2618
tcp_is_non_sack_preventing_reopen(struct sock * sk)2619 static bool tcp_is_non_sack_preventing_reopen(struct sock *sk)
2620 {
2621 struct tcp_sock *tp = tcp_sk(sk);
2622
2623 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2624 /* Hold old state until something *above* high_seq
2625 * is ACKed. For Reno it is MUST to prevent false
2626 * fast retransmits (RFC2582). SACK TCP is safe. */
2627 if (!tcp_any_retrans_done(sk))
2628 tp->retrans_stamp = 0;
2629 return true;
2630 }
2631 return false;
2632 }
2633
2634 /* People celebrate: "We love our President!" */
tcp_try_undo_recovery(struct sock * sk)2635 static bool tcp_try_undo_recovery(struct sock *sk)
2636 {
2637 struct tcp_sock *tp = tcp_sk(sk);
2638
2639 if (tcp_may_undo(tp)) {
2640 int mib_idx;
2641
2642 /* Happy end! We did not retransmit anything
2643 * or our original transmission succeeded.
2644 */
2645 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2646 tcp_undo_cwnd_reduction(sk, false);
2647 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2648 mib_idx = LINUX_MIB_TCPLOSSUNDO;
2649 else
2650 mib_idx = LINUX_MIB_TCPFULLUNDO;
2651
2652 NET_INC_STATS(sock_net(sk), mib_idx);
2653 } else if (tp->rack.reo_wnd_persist) {
2654 tp->rack.reo_wnd_persist--;
2655 }
2656 if (tcp_is_non_sack_preventing_reopen(sk))
2657 return true;
2658 tcp_set_ca_state(sk, TCP_CA_Open);
2659 tp->is_sack_reneg = 0;
2660 return false;
2661 }
2662
2663 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
tcp_try_undo_dsack(struct sock * sk)2664 static bool tcp_try_undo_dsack(struct sock *sk)
2665 {
2666 struct tcp_sock *tp = tcp_sk(sk);
2667
2668 if (tp->undo_marker && !tp->undo_retrans) {
2669 tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH,
2670 tp->rack.reo_wnd_persist + 1);
2671 DBGUNDO(sk, "D-SACK");
2672 tcp_undo_cwnd_reduction(sk, false);
2673 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2674 return true;
2675 }
2676 return false;
2677 }
2678
2679 /* Undo during loss recovery after partial ACK or using F-RTO. */
tcp_try_undo_loss(struct sock * sk,bool frto_undo)2680 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2681 {
2682 struct tcp_sock *tp = tcp_sk(sk);
2683
2684 if (frto_undo || tcp_may_undo(tp)) {
2685 tcp_undo_cwnd_reduction(sk, true);
2686
2687 DBGUNDO(sk, "partial loss");
2688 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2689 if (frto_undo)
2690 NET_INC_STATS(sock_net(sk),
2691 LINUX_MIB_TCPSPURIOUSRTOS);
2692 inet_csk(sk)->icsk_retransmits = 0;
2693 if (tcp_is_non_sack_preventing_reopen(sk))
2694 return true;
2695 if (frto_undo || tcp_is_sack(tp)) {
2696 tcp_set_ca_state(sk, TCP_CA_Open);
2697 tp->is_sack_reneg = 0;
2698 }
2699 return true;
2700 }
2701 return false;
2702 }
2703
2704 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2705 * It computes the number of packets to send (sndcnt) based on packets newly
2706 * delivered:
2707 * 1) If the packets in flight is larger than ssthresh, PRR spreads the
2708 * cwnd reductions across a full RTT.
2709 * 2) Otherwise PRR uses packet conservation to send as much as delivered.
2710 * But when SND_UNA is acked without further losses,
2711 * slow starts cwnd up to ssthresh to speed up the recovery.
2712 */
tcp_init_cwnd_reduction(struct sock * sk)2713 static void tcp_init_cwnd_reduction(struct sock *sk)
2714 {
2715 struct tcp_sock *tp = tcp_sk(sk);
2716
2717 tp->high_seq = tp->snd_nxt;
2718 tp->tlp_high_seq = 0;
2719 tp->snd_cwnd_cnt = 0;
2720 tp->prior_cwnd = tcp_snd_cwnd(tp);
2721 tp->prr_delivered = 0;
2722 tp->prr_out = 0;
2723 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2724 tcp_ecn_queue_cwr(tp);
2725 }
2726
tcp_cwnd_reduction(struct sock * sk,int newly_acked_sacked,int newly_lost,int flag)2727 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag)
2728 {
2729 struct tcp_sock *tp = tcp_sk(sk);
2730 int sndcnt = 0;
2731 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2732
2733 if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2734 return;
2735
2736 tp->prr_delivered += newly_acked_sacked;
2737 if (delta < 0) {
2738 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2739 tp->prior_cwnd - 1;
2740 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2741 } else {
2742 sndcnt = max_t(int, tp->prr_delivered - tp->prr_out,
2743 newly_acked_sacked);
2744 if (flag & FLAG_SND_UNA_ADVANCED && !newly_lost)
2745 sndcnt++;
2746 sndcnt = min(delta, sndcnt);
2747 }
2748 /* Force a fast retransmit upon entering fast recovery */
2749 sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2750 tcp_snd_cwnd_set(tp, tcp_packets_in_flight(tp) + sndcnt);
2751 }
2752
tcp_end_cwnd_reduction(struct sock * sk)2753 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2754 {
2755 struct tcp_sock *tp = tcp_sk(sk);
2756
2757 if (inet_csk(sk)->icsk_ca_ops->cong_control)
2758 return;
2759
2760 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2761 if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH &&
2762 (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) {
2763 tcp_snd_cwnd_set(tp, tp->snd_ssthresh);
2764 tp->snd_cwnd_stamp = tcp_jiffies32;
2765 }
2766 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2767 }
2768
2769 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
tcp_enter_cwr(struct sock * sk)2770 void tcp_enter_cwr(struct sock *sk)
2771 {
2772 struct tcp_sock *tp = tcp_sk(sk);
2773
2774 tp->prior_ssthresh = 0;
2775 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2776 tp->undo_marker = 0;
2777 tcp_init_cwnd_reduction(sk);
2778 tcp_set_ca_state(sk, TCP_CA_CWR);
2779 }
2780 }
2781 EXPORT_SYMBOL(tcp_enter_cwr);
2782
tcp_try_keep_open(struct sock * sk)2783 static void tcp_try_keep_open(struct sock *sk)
2784 {
2785 struct tcp_sock *tp = tcp_sk(sk);
2786 int state = TCP_CA_Open;
2787
2788 if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2789 state = TCP_CA_Disorder;
2790
2791 if (inet_csk(sk)->icsk_ca_state != state) {
2792 tcp_set_ca_state(sk, state);
2793 tp->high_seq = tp->snd_nxt;
2794 }
2795 }
2796
tcp_try_to_open(struct sock * sk,int flag)2797 static void tcp_try_to_open(struct sock *sk, int flag)
2798 {
2799 struct tcp_sock *tp = tcp_sk(sk);
2800
2801 tcp_verify_left_out(tp);
2802
2803 if (!tcp_any_retrans_done(sk))
2804 tp->retrans_stamp = 0;
2805
2806 if (flag & FLAG_ECE)
2807 tcp_enter_cwr(sk);
2808
2809 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2810 tcp_try_keep_open(sk);
2811 }
2812 }
2813
tcp_mtup_probe_failed(struct sock * sk)2814 static void tcp_mtup_probe_failed(struct sock *sk)
2815 {
2816 struct inet_connection_sock *icsk = inet_csk(sk);
2817
2818 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2819 icsk->icsk_mtup.probe_size = 0;
2820 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2821 }
2822
tcp_mtup_probe_success(struct sock * sk)2823 static void tcp_mtup_probe_success(struct sock *sk)
2824 {
2825 struct tcp_sock *tp = tcp_sk(sk);
2826 struct inet_connection_sock *icsk = inet_csk(sk);
2827 u64 val;
2828
2829 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2830
2831 val = (u64)tcp_snd_cwnd(tp) * tcp_mss_to_mtu(sk, tp->mss_cache);
2832 do_div(val, icsk->icsk_mtup.probe_size);
2833 DEBUG_NET_WARN_ON_ONCE((u32)val != val);
2834 tcp_snd_cwnd_set(tp, max_t(u32, 1U, val));
2835
2836 tp->snd_cwnd_cnt = 0;
2837 tp->snd_cwnd_stamp = tcp_jiffies32;
2838 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2839
2840 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2841 icsk->icsk_mtup.probe_size = 0;
2842 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2843 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2844 }
2845
2846 /* Sometimes we deduce that packets have been dropped due to reasons other than
2847 * congestion, like path MTU reductions or failed client TFO attempts. In these
2848 * cases we call this function to retransmit as many packets as cwnd allows,
2849 * without reducing cwnd. Given that retransmits will set retrans_stamp to a
2850 * non-zero value (and may do so in a later calling context due to TSQ), we
2851 * also enter CA_Loss so that we track when all retransmitted packets are ACKed
2852 * and clear retrans_stamp when that happens (to ensure later recurring RTOs
2853 * are using the correct retrans_stamp and don't declare ETIMEDOUT
2854 * prematurely).
2855 */
tcp_non_congestion_loss_retransmit(struct sock * sk)2856 static void tcp_non_congestion_loss_retransmit(struct sock *sk)
2857 {
2858 const struct inet_connection_sock *icsk = inet_csk(sk);
2859 struct tcp_sock *tp = tcp_sk(sk);
2860
2861 if (icsk->icsk_ca_state != TCP_CA_Loss) {
2862 tp->high_seq = tp->snd_nxt;
2863 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2864 tp->prior_ssthresh = 0;
2865 tp->undo_marker = 0;
2866 tcp_set_ca_state(sk, TCP_CA_Loss);
2867 }
2868 tcp_xmit_retransmit_queue(sk);
2869 }
2870
2871 /* Do a simple retransmit without using the backoff mechanisms in
2872 * tcp_timer. This is used for path mtu discovery.
2873 * The socket is already locked here.
2874 */
tcp_simple_retransmit(struct sock * sk)2875 void tcp_simple_retransmit(struct sock *sk)
2876 {
2877 struct tcp_sock *tp = tcp_sk(sk);
2878 struct sk_buff *skb;
2879 int mss;
2880
2881 /* A fastopen SYN request is stored as two separate packets within
2882 * the retransmit queue, this is done by tcp_send_syn_data().
2883 * As a result simply checking the MSS of the frames in the queue
2884 * will not work for the SYN packet.
2885 *
2886 * Us being here is an indication of a path MTU issue so we can
2887 * assume that the fastopen SYN was lost and just mark all the
2888 * frames in the retransmit queue as lost. We will use an MSS of
2889 * -1 to mark all frames as lost, otherwise compute the current MSS.
2890 */
2891 if (tp->syn_data && sk->sk_state == TCP_SYN_SENT)
2892 mss = -1;
2893 else
2894 mss = tcp_current_mss(sk);
2895
2896 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2897 if (tcp_skb_seglen(skb) > mss)
2898 tcp_mark_skb_lost(sk, skb);
2899 }
2900
2901 tcp_clear_retrans_hints_partial(tp);
2902
2903 if (!tp->lost_out)
2904 return;
2905
2906 if (tcp_is_reno(tp))
2907 tcp_limit_reno_sacked(tp);
2908
2909 tcp_verify_left_out(tp);
2910
2911 /* Don't muck with the congestion window here.
2912 * Reason is that we do not increase amount of _data_
2913 * in network, but units changed and effective
2914 * cwnd/ssthresh really reduced now.
2915 */
2916 tcp_non_congestion_loss_retransmit(sk);
2917 }
2918 EXPORT_SYMBOL(tcp_simple_retransmit);
2919
tcp_enter_recovery(struct sock * sk,bool ece_ack)2920 void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2921 {
2922 struct tcp_sock *tp = tcp_sk(sk);
2923 int mib_idx;
2924
2925 /* Start the clock with our fast retransmit, for undo and ETIMEDOUT. */
2926 tcp_retrans_stamp_cleanup(sk);
2927
2928 if (tcp_is_reno(tp))
2929 mib_idx = LINUX_MIB_TCPRENORECOVERY;
2930 else
2931 mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2932
2933 NET_INC_STATS(sock_net(sk), mib_idx);
2934
2935 tp->prior_ssthresh = 0;
2936 tcp_init_undo(tp);
2937
2938 if (!tcp_in_cwnd_reduction(sk)) {
2939 if (!ece_ack)
2940 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2941 tcp_init_cwnd_reduction(sk);
2942 }
2943 tcp_set_ca_state(sk, TCP_CA_Recovery);
2944 }
2945
tcp_update_rto_time(struct tcp_sock * tp)2946 static void tcp_update_rto_time(struct tcp_sock *tp)
2947 {
2948 if (tp->rto_stamp) {
2949 tp->total_rto_time += tcp_time_stamp_ms(tp) - tp->rto_stamp;
2950 tp->rto_stamp = 0;
2951 }
2952 }
2953
2954 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2955 * recovered or spurious. Otherwise retransmits more on partial ACKs.
2956 */
tcp_process_loss(struct sock * sk,int flag,int num_dupack,int * rexmit)2957 static void tcp_process_loss(struct sock *sk, int flag, int num_dupack,
2958 int *rexmit)
2959 {
2960 struct tcp_sock *tp = tcp_sk(sk);
2961 bool recovered = !before(tp->snd_una, tp->high_seq);
2962
2963 if ((flag & FLAG_SND_UNA_ADVANCED || rcu_access_pointer(tp->fastopen_rsk)) &&
2964 tcp_try_undo_loss(sk, false))
2965 return;
2966
2967 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2968 /* Step 3.b. A timeout is spurious if not all data are
2969 * lost, i.e., never-retransmitted data are (s)acked.
2970 */
2971 if ((flag & FLAG_ORIG_SACK_ACKED) &&
2972 tcp_try_undo_loss(sk, true))
2973 return;
2974
2975 if (after(tp->snd_nxt, tp->high_seq)) {
2976 if (flag & FLAG_DATA_SACKED || num_dupack)
2977 tp->frto = 0; /* Step 3.a. loss was real */
2978 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2979 tp->high_seq = tp->snd_nxt;
2980 /* Step 2.b. Try send new data (but deferred until cwnd
2981 * is updated in tcp_ack()). Otherwise fall back to
2982 * the conventional recovery.
2983 */
2984 if (!tcp_write_queue_empty(sk) &&
2985 after(tcp_wnd_end(tp), tp->snd_nxt)) {
2986 *rexmit = REXMIT_NEW;
2987 return;
2988 }
2989 tp->frto = 0;
2990 }
2991 }
2992
2993 if (recovered) {
2994 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2995 tcp_try_undo_recovery(sk);
2996 return;
2997 }
2998 if (tcp_is_reno(tp)) {
2999 /* A Reno DUPACK means new data in F-RTO step 2.b above are
3000 * delivered. Lower inflight to clock out (re)transmissions.
3001 */
3002 if (after(tp->snd_nxt, tp->high_seq) && num_dupack)
3003 tcp_add_reno_sack(sk, num_dupack, flag & FLAG_ECE);
3004 else if (flag & FLAG_SND_UNA_ADVANCED)
3005 tcp_reset_reno_sack(tp);
3006 }
3007 *rexmit = REXMIT_LOST;
3008 }
3009
tcp_force_fast_retransmit(struct sock * sk)3010 static bool tcp_force_fast_retransmit(struct sock *sk)
3011 {
3012 struct tcp_sock *tp = tcp_sk(sk);
3013
3014 return after(tcp_highest_sack_seq(tp),
3015 tp->snd_una + tp->reordering * tp->mss_cache);
3016 }
3017
3018 /* Undo during fast recovery after partial ACK. */
tcp_try_undo_partial(struct sock * sk,u32 prior_snd_una,bool * do_lost)3019 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una,
3020 bool *do_lost)
3021 {
3022 struct tcp_sock *tp = tcp_sk(sk);
3023
3024 if (tp->undo_marker && tcp_packet_delayed(tp)) {
3025 /* Plain luck! Hole if filled with delayed
3026 * packet, rather than with a retransmit. Check reordering.
3027 */
3028 tcp_check_sack_reordering(sk, prior_snd_una, 1);
3029
3030 /* We are getting evidence that the reordering degree is higher
3031 * than we realized. If there are no retransmits out then we
3032 * can undo. Otherwise we clock out new packets but do not
3033 * mark more packets lost or retransmit more.
3034 */
3035 if (tp->retrans_out)
3036 return true;
3037
3038 if (!tcp_any_retrans_done(sk))
3039 tp->retrans_stamp = 0;
3040
3041 DBGUNDO(sk, "partial recovery");
3042 tcp_undo_cwnd_reduction(sk, true);
3043 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
3044 tcp_try_keep_open(sk);
3045 } else {
3046 /* Partial ACK arrived. Force fast retransmit. */
3047 *do_lost = tcp_force_fast_retransmit(sk);
3048 }
3049 return false;
3050 }
3051
tcp_identify_packet_loss(struct sock * sk,int * ack_flag)3052 static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag)
3053 {
3054 struct tcp_sock *tp = tcp_sk(sk);
3055
3056 if (tcp_rtx_queue_empty(sk))
3057 return;
3058
3059 if (unlikely(tcp_is_reno(tp))) {
3060 tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED);
3061 } else if (tcp_is_rack(sk)) {
3062 u32 prior_retrans = tp->retrans_out;
3063
3064 if (tcp_rack_mark_lost(sk))
3065 *ack_flag &= ~FLAG_SET_XMIT_TIMER;
3066 if (prior_retrans > tp->retrans_out)
3067 *ack_flag |= FLAG_LOST_RETRANS;
3068 }
3069 }
3070
3071 /* Process an event, which can update packets-in-flight not trivially.
3072 * Main goal of this function is to calculate new estimate for left_out,
3073 * taking into account both packets sitting in receiver's buffer and
3074 * packets lost by network.
3075 *
3076 * Besides that it updates the congestion state when packet loss or ECN
3077 * is detected. But it does not reduce the cwnd, it is done by the
3078 * congestion control later.
3079 *
3080 * It does _not_ decide what to send, it is made in function
3081 * tcp_xmit_retransmit_queue().
3082 */
tcp_fastretrans_alert(struct sock * sk,const u32 prior_snd_una,int num_dupack,int * ack_flag,int * rexmit)3083 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una,
3084 int num_dupack, int *ack_flag, int *rexmit)
3085 {
3086 struct inet_connection_sock *icsk = inet_csk(sk);
3087 struct tcp_sock *tp = tcp_sk(sk);
3088 int fast_rexmit = 0, flag = *ack_flag;
3089 bool ece_ack = flag & FLAG_ECE;
3090 bool do_lost = num_dupack || ((flag & FLAG_DATA_SACKED) &&
3091 tcp_force_fast_retransmit(sk));
3092
3093 if (!tp->packets_out && tp->sacked_out)
3094 tp->sacked_out = 0;
3095
3096 /* Now state machine starts.
3097 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
3098 if (ece_ack)
3099 tp->prior_ssthresh = 0;
3100
3101 /* B. In all the states check for reneging SACKs. */
3102 if (tcp_check_sack_reneging(sk, ack_flag))
3103 return;
3104
3105 /* C. Check consistency of the current state. */
3106 tcp_verify_left_out(tp);
3107
3108 /* D. Check state exit conditions. State can be terminated
3109 * when high_seq is ACKed. */
3110 if (icsk->icsk_ca_state == TCP_CA_Open) {
3111 WARN_ON(tp->retrans_out != 0 && !tp->syn_data);
3112 tp->retrans_stamp = 0;
3113 } else if (!before(tp->snd_una, tp->high_seq)) {
3114 switch (icsk->icsk_ca_state) {
3115 case TCP_CA_CWR:
3116 /* CWR is to be held something *above* high_seq
3117 * is ACKed for CWR bit to reach receiver. */
3118 if (tp->snd_una != tp->high_seq) {
3119 tcp_end_cwnd_reduction(sk);
3120 tcp_set_ca_state(sk, TCP_CA_Open);
3121 }
3122 break;
3123
3124 case TCP_CA_Recovery:
3125 if (tcp_is_reno(tp))
3126 tcp_reset_reno_sack(tp);
3127 if (tcp_try_undo_recovery(sk))
3128 return;
3129 tcp_end_cwnd_reduction(sk);
3130 break;
3131 }
3132 }
3133
3134 /* E. Process state. */
3135 switch (icsk->icsk_ca_state) {
3136 case TCP_CA_Recovery:
3137 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
3138 if (tcp_is_reno(tp))
3139 tcp_add_reno_sack(sk, num_dupack, ece_ack);
3140 } else if (tcp_try_undo_partial(sk, prior_snd_una, &do_lost))
3141 return;
3142
3143 if (tcp_try_undo_dsack(sk))
3144 tcp_try_to_open(sk, flag);
3145
3146 tcp_identify_packet_loss(sk, ack_flag);
3147 if (icsk->icsk_ca_state != TCP_CA_Recovery) {
3148 if (!tcp_time_to_recover(sk, flag))
3149 return;
3150 /* Undo reverts the recovery state. If loss is evident,
3151 * starts a new recovery (e.g. reordering then loss);
3152 */
3153 tcp_enter_recovery(sk, ece_ack);
3154 }
3155 break;
3156 case TCP_CA_Loss:
3157 tcp_process_loss(sk, flag, num_dupack, rexmit);
3158 if (icsk->icsk_ca_state != TCP_CA_Loss)
3159 tcp_update_rto_time(tp);
3160 tcp_identify_packet_loss(sk, ack_flag);
3161 if (!(icsk->icsk_ca_state == TCP_CA_Open ||
3162 (*ack_flag & FLAG_LOST_RETRANS)))
3163 return;
3164 /* Change state if cwnd is undone or retransmits are lost */
3165 fallthrough;
3166 default:
3167 if (tcp_is_reno(tp)) {
3168 if (flag & FLAG_SND_UNA_ADVANCED)
3169 tcp_reset_reno_sack(tp);
3170 tcp_add_reno_sack(sk, num_dupack, ece_ack);
3171 }
3172
3173 if (icsk->icsk_ca_state <= TCP_CA_Disorder)
3174 tcp_try_undo_dsack(sk);
3175
3176 tcp_identify_packet_loss(sk, ack_flag);
3177 if (!tcp_time_to_recover(sk, flag)) {
3178 tcp_try_to_open(sk, flag);
3179 return;
3180 }
3181
3182 /* MTU probe failure: don't reduce cwnd */
3183 if (icsk->icsk_ca_state < TCP_CA_CWR &&
3184 icsk->icsk_mtup.probe_size &&
3185 tp->snd_una == tp->mtu_probe.probe_seq_start) {
3186 tcp_mtup_probe_failed(sk);
3187 /* Restores the reduction we did in tcp_mtup_probe() */
3188 tcp_snd_cwnd_set(tp, tcp_snd_cwnd(tp) + 1);
3189 tcp_simple_retransmit(sk);
3190 return;
3191 }
3192
3193 /* Otherwise enter Recovery state */
3194 tcp_enter_recovery(sk, ece_ack);
3195 fast_rexmit = 1;
3196 }
3197
3198 if (!tcp_is_rack(sk) && do_lost)
3199 tcp_update_scoreboard(sk, fast_rexmit);
3200 *rexmit = REXMIT_LOST;
3201 }
3202
tcp_update_rtt_min(struct sock * sk,u32 rtt_us,const int flag)3203 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag)
3204 {
3205 u32 wlen = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen) * HZ;
3206 struct tcp_sock *tp = tcp_sk(sk);
3207
3208 if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) {
3209 /* If the remote keeps returning delayed ACKs, eventually
3210 * the min filter would pick it up and overestimate the
3211 * prop. delay when it expires. Skip suspected delayed ACKs.
3212 */
3213 return;
3214 }
3215 minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32,
3216 rtt_us ? : jiffies_to_usecs(1));
3217 }
3218
tcp_ack_update_rtt(struct sock * sk,const int flag,long seq_rtt_us,long sack_rtt_us,long ca_rtt_us,struct rate_sample * rs)3219 static bool tcp_ack_update_rtt(struct sock *sk, const int flag,
3220 long seq_rtt_us, long sack_rtt_us,
3221 long ca_rtt_us, struct rate_sample *rs)
3222 {
3223 const struct tcp_sock *tp = tcp_sk(sk);
3224
3225 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because
3226 * broken middle-boxes or peers may corrupt TS-ECR fields. But
3227 * Karn's algorithm forbids taking RTT if some retransmitted data
3228 * is acked (RFC6298).
3229 */
3230 if (seq_rtt_us < 0)
3231 seq_rtt_us = sack_rtt_us;
3232
3233 /* RTTM Rule: A TSecr value received in a segment is used to
3234 * update the averaged RTT measurement only if the segment
3235 * acknowledges some new data, i.e., only if it advances the
3236 * left edge of the send window.
3237 * See draft-ietf-tcplw-high-performance-00, section 3.3.
3238 */
3239 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp &&
3240 tp->rx_opt.rcv_tsecr && flag & FLAG_ACKED)
3241 seq_rtt_us = ca_rtt_us = tcp_rtt_tsopt_us(tp, 1);
3242
3243 rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */
3244 if (seq_rtt_us < 0)
3245 return false;
3246
3247 trace_android_vh_tcp_update_rtt(sk, seq_rtt_us);
3248
3249 /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
3250 * always taken together with ACK, SACK, or TS-opts. Any negative
3251 * values will be skipped with the seq_rtt_us < 0 check above.
3252 */
3253 tcp_update_rtt_min(sk, ca_rtt_us, flag);
3254 tcp_rtt_estimator(sk, seq_rtt_us);
3255 tcp_set_rto(sk);
3256
3257 /* RFC6298: only reset backoff on valid RTT measurement. */
3258 inet_csk(sk)->icsk_backoff = 0;
3259 return true;
3260 }
3261
3262 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
tcp_synack_rtt_meas(struct sock * sk,struct request_sock * req)3263 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
3264 {
3265 struct rate_sample rs;
3266 long rtt_us = -1L;
3267
3268 if (req && !req->num_retrans && tcp_rsk(req)->snt_synack)
3269 rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack);
3270
3271 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs);
3272 }
3273
3274
tcp_cong_avoid(struct sock * sk,u32 ack,u32 acked)3275 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
3276 {
3277 const struct inet_connection_sock *icsk = inet_csk(sk);
3278
3279 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
3280 tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32;
3281 }
3282
3283 /* Restart timer after forward progress on connection.
3284 * RFC2988 recommends to restart timer to now+rto.
3285 */
tcp_rearm_rto(struct sock * sk)3286 void tcp_rearm_rto(struct sock *sk)
3287 {
3288 const struct inet_connection_sock *icsk = inet_csk(sk);
3289 struct tcp_sock *tp = tcp_sk(sk);
3290
3291 /* If the retrans timer is currently being used by Fast Open
3292 * for SYN-ACK retrans purpose, stay put.
3293 */
3294 if (rcu_access_pointer(tp->fastopen_rsk))
3295 return;
3296
3297 if (!tp->packets_out) {
3298 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3299 } else {
3300 u32 rto = inet_csk(sk)->icsk_rto;
3301 /* Offset the time elapsed after installing regular RTO */
3302 if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
3303 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
3304 s64 delta_us = tcp_rto_delta_us(sk);
3305 /* delta_us may not be positive if the socket is locked
3306 * when the retrans timer fires and is rescheduled.
3307 */
3308 rto = usecs_to_jiffies(max_t(int, delta_us, 1));
3309 }
3310 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
3311 TCP_RTO_MAX);
3312 }
3313 }
3314
3315 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */
tcp_set_xmit_timer(struct sock * sk)3316 static void tcp_set_xmit_timer(struct sock *sk)
3317 {
3318 if (!tcp_schedule_loss_probe(sk, true))
3319 tcp_rearm_rto(sk);
3320 }
3321
3322 /* If we get here, the whole TSO packet has not been acked. */
tcp_tso_acked(struct sock * sk,struct sk_buff * skb)3323 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3324 {
3325 struct tcp_sock *tp = tcp_sk(sk);
3326 u32 packets_acked;
3327
3328 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3329
3330 packets_acked = tcp_skb_pcount(skb);
3331 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3332 return 0;
3333 packets_acked -= tcp_skb_pcount(skb);
3334
3335 if (packets_acked) {
3336 BUG_ON(tcp_skb_pcount(skb) == 0);
3337 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3338 }
3339
3340 return packets_acked;
3341 }
3342
tcp_ack_tstamp(struct sock * sk,struct sk_buff * skb,const struct sk_buff * ack_skb,u32 prior_snd_una)3343 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3344 const struct sk_buff *ack_skb, u32 prior_snd_una)
3345 {
3346 const struct skb_shared_info *shinfo;
3347
3348 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3349 if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
3350 return;
3351
3352 shinfo = skb_shinfo(skb);
3353 if (!before(shinfo->tskey, prior_snd_una) &&
3354 before(shinfo->tskey, tcp_sk(sk)->snd_una)) {
3355 tcp_skb_tsorted_save(skb) {
3356 __skb_tstamp_tx(skb, ack_skb, NULL, sk, SCM_TSTAMP_ACK);
3357 } tcp_skb_tsorted_restore(skb);
3358 }
3359 }
3360
3361 /* Remove acknowledged frames from the retransmission queue. If our packet
3362 * is before the ack sequence we can discard it as it's confirmed to have
3363 * arrived at the other end.
3364 */
tcp_clean_rtx_queue(struct sock * sk,const struct sk_buff * ack_skb,u32 prior_fack,u32 prior_snd_una,struct tcp_sacktag_state * sack,bool ece_ack)3365 static int tcp_clean_rtx_queue(struct sock *sk, const struct sk_buff *ack_skb,
3366 u32 prior_fack, u32 prior_snd_una,
3367 struct tcp_sacktag_state *sack, bool ece_ack)
3368 {
3369 const struct inet_connection_sock *icsk = inet_csk(sk);
3370 u64 first_ackt, last_ackt;
3371 struct tcp_sock *tp = tcp_sk(sk);
3372 u32 prior_sacked = tp->sacked_out;
3373 u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */
3374 struct sk_buff *skb, *next;
3375 bool fully_acked = true;
3376 long sack_rtt_us = -1L;
3377 long seq_rtt_us = -1L;
3378 long ca_rtt_us = -1L;
3379 u32 pkts_acked = 0;
3380 bool rtt_update;
3381 int flag = 0;
3382
3383 first_ackt = 0;
3384
3385 for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) {
3386 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3387 const u32 start_seq = scb->seq;
3388 u8 sacked = scb->sacked;
3389 u32 acked_pcount;
3390
3391 /* Determine how many packets and what bytes were acked, tso and else */
3392 if (after(scb->end_seq, tp->snd_una)) {
3393 if (tcp_skb_pcount(skb) == 1 ||
3394 !after(tp->snd_una, scb->seq))
3395 break;
3396
3397 acked_pcount = tcp_tso_acked(sk, skb);
3398 if (!acked_pcount)
3399 break;
3400 fully_acked = false;
3401 } else {
3402 acked_pcount = tcp_skb_pcount(skb);
3403 }
3404
3405 if (unlikely(sacked & TCPCB_RETRANS)) {
3406 if (sacked & TCPCB_SACKED_RETRANS)
3407 tp->retrans_out -= acked_pcount;
3408 flag |= FLAG_RETRANS_DATA_ACKED;
3409 } else if (!(sacked & TCPCB_SACKED_ACKED)) {
3410 last_ackt = tcp_skb_timestamp_us(skb);
3411 WARN_ON_ONCE(last_ackt == 0);
3412 if (!first_ackt)
3413 first_ackt = last_ackt;
3414
3415 if (before(start_seq, reord))
3416 reord = start_seq;
3417 if (!after(scb->end_seq, tp->high_seq))
3418 flag |= FLAG_ORIG_SACK_ACKED;
3419 }
3420
3421 if (sacked & TCPCB_SACKED_ACKED) {
3422 tp->sacked_out -= acked_pcount;
3423 } else if (tcp_is_sack(tp)) {
3424 tcp_count_delivered(tp, acked_pcount, ece_ack);
3425 if (!tcp_skb_spurious_retrans(tp, skb))
3426 tcp_rack_advance(tp, sacked, scb->end_seq,
3427 tcp_skb_timestamp_us(skb));
3428 }
3429 if (sacked & TCPCB_LOST)
3430 tp->lost_out -= acked_pcount;
3431
3432 tp->packets_out -= acked_pcount;
3433 pkts_acked += acked_pcount;
3434 tcp_rate_skb_delivered(sk, skb, sack->rate);
3435
3436 /* Initial outgoing SYN's get put onto the write_queue
3437 * just like anything else we transmit. It is not
3438 * true data, and if we misinform our callers that
3439 * this ACK acks real data, we will erroneously exit
3440 * connection startup slow start one packet too
3441 * quickly. This is severely frowned upon behavior.
3442 */
3443 if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3444 flag |= FLAG_DATA_ACKED;
3445 } else {
3446 flag |= FLAG_SYN_ACKED;
3447 tp->retrans_stamp = 0;
3448 }
3449
3450 if (!fully_acked)
3451 break;
3452
3453 tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una);
3454
3455 next = skb_rb_next(skb);
3456 if (unlikely(skb == tp->retransmit_skb_hint))
3457 tp->retransmit_skb_hint = NULL;
3458 if (unlikely(skb == tp->lost_skb_hint))
3459 tp->lost_skb_hint = NULL;
3460 tcp_highest_sack_replace(sk, skb, next);
3461 tcp_rtx_queue_unlink_and_free(skb, sk);
3462 }
3463
3464 if (!skb)
3465 tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3466
3467 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3468 tp->snd_up = tp->snd_una;
3469
3470 if (skb) {
3471 tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una);
3472 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
3473 flag |= FLAG_SACK_RENEGING;
3474 }
3475
3476 if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3477 seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt);
3478 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt);
3479
3480 if (pkts_acked == 1 && fully_acked && !prior_sacked &&
3481 (tp->snd_una - prior_snd_una) < tp->mss_cache &&
3482 sack->rate->prior_delivered + 1 == tp->delivered &&
3483 !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) {
3484 /* Conservatively mark a delayed ACK. It's typically
3485 * from a lone runt packet over the round trip to
3486 * a receiver w/o out-of-order or CE events.
3487 */
3488 flag |= FLAG_ACK_MAYBE_DELAYED;
3489 }
3490 }
3491 if (sack->first_sackt) {
3492 sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt);
3493 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt);
3494 }
3495 trace_android_vh_tcp_clean_rtx_queue(sk, flag, seq_rtt_us);
3496 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3497 ca_rtt_us, sack->rate);
3498
3499 if (flag & FLAG_ACKED) {
3500 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */
3501 if (unlikely(icsk->icsk_mtup.probe_size &&
3502 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3503 tcp_mtup_probe_success(sk);
3504 }
3505
3506 if (tcp_is_reno(tp)) {
3507 tcp_remove_reno_sacks(sk, pkts_acked, ece_ack);
3508
3509 /* If any of the cumulatively ACKed segments was
3510 * retransmitted, non-SACK case cannot confirm that
3511 * progress was due to original transmission due to
3512 * lack of TCPCB_SACKED_ACKED bits even if some of
3513 * the packets may have been never retransmitted.
3514 */
3515 if (flag & FLAG_RETRANS_DATA_ACKED)
3516 flag &= ~FLAG_ORIG_SACK_ACKED;
3517 } else {
3518 int delta;
3519
3520 /* Non-retransmitted hole got filled? That's reordering */
3521 if (before(reord, prior_fack))
3522 tcp_check_sack_reordering(sk, reord, 0);
3523
3524 delta = prior_sacked - tp->sacked_out;
3525 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3526 }
3527 } else if (skb && rtt_update && sack_rtt_us >= 0 &&
3528 sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp,
3529 tcp_skb_timestamp_us(skb))) {
3530 /* Do not re-arm RTO if the sack RTT is measured from data sent
3531 * after when the head was last (re)transmitted. Otherwise the
3532 * timeout may continue to extend in loss recovery.
3533 */
3534 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */
3535 }
3536
3537 if (icsk->icsk_ca_ops->pkts_acked) {
3538 struct ack_sample sample = { .pkts_acked = pkts_acked,
3539 .rtt_us = sack->rate->rtt_us };
3540
3541 sample.in_flight = tp->mss_cache *
3542 (tp->delivered - sack->rate->prior_delivered);
3543 icsk->icsk_ca_ops->pkts_acked(sk, &sample);
3544 }
3545
3546 #if FASTRETRANS_DEBUG > 0
3547 WARN_ON((int)tp->sacked_out < 0);
3548 WARN_ON((int)tp->lost_out < 0);
3549 WARN_ON((int)tp->retrans_out < 0);
3550 if (!tp->packets_out && tcp_is_sack(tp)) {
3551 icsk = inet_csk(sk);
3552 if (tp->lost_out) {
3553 pr_debug("Leak l=%u %d\n",
3554 tp->lost_out, icsk->icsk_ca_state);
3555 tp->lost_out = 0;
3556 }
3557 if (tp->sacked_out) {
3558 pr_debug("Leak s=%u %d\n",
3559 tp->sacked_out, icsk->icsk_ca_state);
3560 tp->sacked_out = 0;
3561 }
3562 if (tp->retrans_out) {
3563 pr_debug("Leak r=%u %d\n",
3564 tp->retrans_out, icsk->icsk_ca_state);
3565 tp->retrans_out = 0;
3566 }
3567 }
3568 #endif
3569 return flag;
3570 }
3571
tcp_ack_probe(struct sock * sk)3572 static void tcp_ack_probe(struct sock *sk)
3573 {
3574 struct inet_connection_sock *icsk = inet_csk(sk);
3575 struct sk_buff *head = tcp_send_head(sk);
3576 const struct tcp_sock *tp = tcp_sk(sk);
3577
3578 /* Was it a usable window open? */
3579 if (!head)
3580 return;
3581 if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) {
3582 icsk->icsk_backoff = 0;
3583 icsk->icsk_probes_tstamp = 0;
3584 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3585 /* Socket must be waked up by subsequent tcp_data_snd_check().
3586 * This function is not for random using!
3587 */
3588 } else {
3589 unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3590
3591 when = tcp_clamp_probe0_to_user_timeout(sk, when);
3592 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, when, TCP_RTO_MAX);
3593 }
3594 }
3595
tcp_ack_is_dubious(const struct sock * sk,const int flag)3596 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3597 {
3598 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3599 inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3600 }
3601
3602 /* Decide wheather to run the increase function of congestion control. */
tcp_may_raise_cwnd(const struct sock * sk,const int flag)3603 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3604 {
3605 /* If reordering is high then always grow cwnd whenever data is
3606 * delivered regardless of its ordering. Otherwise stay conservative
3607 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3608 * new SACK or ECE mark may first advance cwnd here and later reduce
3609 * cwnd in tcp_fastretrans_alert() based on more states.
3610 */
3611 if (tcp_sk(sk)->reordering >
3612 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering))
3613 return flag & FLAG_FORWARD_PROGRESS;
3614
3615 return flag & FLAG_DATA_ACKED;
3616 }
3617
3618 /* The "ultimate" congestion control function that aims to replace the rigid
3619 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3620 * It's called toward the end of processing an ACK with precise rate
3621 * information. All transmission or retransmission are delayed afterwards.
3622 */
tcp_cong_control(struct sock * sk,u32 ack,u32 acked_sacked,int flag,const struct rate_sample * rs)3623 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3624 int flag, const struct rate_sample *rs)
3625 {
3626 const struct inet_connection_sock *icsk = inet_csk(sk);
3627
3628 if (icsk->icsk_ca_ops->cong_control) {
3629 icsk->icsk_ca_ops->cong_control(sk, ack, flag, rs);
3630 return;
3631 }
3632
3633 if (tcp_in_cwnd_reduction(sk)) {
3634 /* Reduce cwnd if state mandates */
3635 tcp_cwnd_reduction(sk, acked_sacked, rs->losses, flag);
3636 } else if (tcp_may_raise_cwnd(sk, flag)) {
3637 /* Advance cwnd if state allows */
3638 tcp_cong_avoid(sk, ack, acked_sacked);
3639 }
3640 tcp_update_pacing_rate(sk);
3641 }
3642
3643 /* Check that window update is acceptable.
3644 * The function assumes that snd_una<=ack<=snd_next.
3645 */
tcp_may_update_window(const struct tcp_sock * tp,const u32 ack,const u32 ack_seq,const u32 nwin)3646 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3647 const u32 ack, const u32 ack_seq,
3648 const u32 nwin)
3649 {
3650 return after(ack, tp->snd_una) ||
3651 after(ack_seq, tp->snd_wl1) ||
3652 (ack_seq == tp->snd_wl1 && (nwin > tp->snd_wnd || !nwin));
3653 }
3654
tcp_snd_sne_update(struct tcp_sock * tp,u32 ack)3655 static void tcp_snd_sne_update(struct tcp_sock *tp, u32 ack)
3656 {
3657 #ifdef CONFIG_TCP_AO
3658 struct tcp_ao_info *ao;
3659
3660 if (!static_branch_unlikely(&tcp_ao_needed.key))
3661 return;
3662
3663 ao = rcu_dereference_protected(tp->ao_info,
3664 lockdep_sock_is_held((struct sock *)tp));
3665 if (ao && ack < tp->snd_una) {
3666 ao->snd_sne++;
3667 trace_tcp_ao_snd_sne_update((struct sock *)tp, ao->snd_sne);
3668 }
3669 #endif
3670 }
3671
3672 /* If we update tp->snd_una, also update tp->bytes_acked */
tcp_snd_una_update(struct tcp_sock * tp,u32 ack)3673 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3674 {
3675 u32 delta = ack - tp->snd_una;
3676
3677 sock_owned_by_me((struct sock *)tp);
3678 tp->bytes_acked += delta;
3679 tcp_snd_sne_update(tp, ack);
3680 tp->snd_una = ack;
3681 }
3682
tcp_rcv_sne_update(struct tcp_sock * tp,u32 seq)3683 static void tcp_rcv_sne_update(struct tcp_sock *tp, u32 seq)
3684 {
3685 #ifdef CONFIG_TCP_AO
3686 struct tcp_ao_info *ao;
3687
3688 if (!static_branch_unlikely(&tcp_ao_needed.key))
3689 return;
3690
3691 ao = rcu_dereference_protected(tp->ao_info,
3692 lockdep_sock_is_held((struct sock *)tp));
3693 if (ao && seq < tp->rcv_nxt) {
3694 ao->rcv_sne++;
3695 trace_tcp_ao_rcv_sne_update((struct sock *)tp, ao->rcv_sne);
3696 }
3697 #endif
3698 }
3699
3700 /* If we update tp->rcv_nxt, also update tp->bytes_received */
tcp_rcv_nxt_update(struct tcp_sock * tp,u32 seq)3701 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3702 {
3703 u32 delta = seq - tp->rcv_nxt;
3704
3705 sock_owned_by_me((struct sock *)tp);
3706 tp->bytes_received += delta;
3707 tcp_rcv_sne_update(tp, seq);
3708 WRITE_ONCE(tp->rcv_nxt, seq);
3709 }
3710
3711 /* Update our send window.
3712 *
3713 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3714 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3715 */
tcp_ack_update_window(struct sock * sk,const struct sk_buff * skb,u32 ack,u32 ack_seq)3716 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3717 u32 ack_seq)
3718 {
3719 struct tcp_sock *tp = tcp_sk(sk);
3720 int flag = 0;
3721 u32 nwin = ntohs(tcp_hdr(skb)->window);
3722
3723 if (likely(!tcp_hdr(skb)->syn))
3724 nwin <<= tp->rx_opt.snd_wscale;
3725
3726 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3727 flag |= FLAG_WIN_UPDATE;
3728 tcp_update_wl(tp, ack_seq);
3729
3730 if (tp->snd_wnd != nwin) {
3731 tp->snd_wnd = nwin;
3732
3733 /* Note, it is the only place, where
3734 * fast path is recovered for sending TCP.
3735 */
3736 tp->pred_flags = 0;
3737 tcp_fast_path_check(sk);
3738
3739 if (!tcp_write_queue_empty(sk))
3740 tcp_slow_start_after_idle_check(sk);
3741
3742 if (nwin > tp->max_window) {
3743 tp->max_window = nwin;
3744 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3745 }
3746 }
3747 }
3748
3749 tcp_snd_una_update(tp, ack);
3750
3751 return flag;
3752 }
3753
__tcp_oow_rate_limited(struct net * net,int mib_idx,u32 * last_oow_ack_time)3754 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
3755 u32 *last_oow_ack_time)
3756 {
3757 /* Paired with the WRITE_ONCE() in this function. */
3758 u32 val = READ_ONCE(*last_oow_ack_time);
3759
3760 if (val) {
3761 s32 elapsed = (s32)(tcp_jiffies32 - val);
3762
3763 if (0 <= elapsed &&
3764 elapsed < READ_ONCE(net->ipv4.sysctl_tcp_invalid_ratelimit)) {
3765 NET_INC_STATS(net, mib_idx);
3766 return true; /* rate-limited: don't send yet! */
3767 }
3768 }
3769
3770 /* Paired with the prior READ_ONCE() and with itself,
3771 * as we might be lockless.
3772 */
3773 WRITE_ONCE(*last_oow_ack_time, tcp_jiffies32);
3774
3775 return false; /* not rate-limited: go ahead, send dupack now! */
3776 }
3777
3778 /* Return true if we're currently rate-limiting out-of-window ACKs and
3779 * thus shouldn't send a dupack right now. We rate-limit dupacks in
3780 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3781 * attacks that send repeated SYNs or ACKs for the same connection. To
3782 * do this, we do not send a duplicate SYNACK or ACK if the remote
3783 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3784 */
tcp_oow_rate_limited(struct net * net,const struct sk_buff * skb,int mib_idx,u32 * last_oow_ack_time)3785 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3786 int mib_idx, u32 *last_oow_ack_time)
3787 {
3788 /* Data packets without SYNs are not likely part of an ACK loop. */
3789 if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3790 !tcp_hdr(skb)->syn)
3791 return false;
3792
3793 return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
3794 }
3795
3796 /* RFC 5961 7 [ACK Throttling] */
tcp_send_challenge_ack(struct sock * sk)3797 static void tcp_send_challenge_ack(struct sock *sk)
3798 {
3799 struct tcp_sock *tp = tcp_sk(sk);
3800 struct net *net = sock_net(sk);
3801 u32 count, now, ack_limit;
3802
3803 /* First check our per-socket dupack rate limit. */
3804 if (__tcp_oow_rate_limited(net,
3805 LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3806 &tp->last_oow_ack_time))
3807 return;
3808
3809 ack_limit = READ_ONCE(net->ipv4.sysctl_tcp_challenge_ack_limit);
3810 if (ack_limit == INT_MAX)
3811 goto send_ack;
3812
3813 /* Then check host-wide RFC 5961 rate limit. */
3814 now = jiffies / HZ;
3815 if (now != READ_ONCE(net->ipv4.tcp_challenge_timestamp)) {
3816 u32 half = (ack_limit + 1) >> 1;
3817
3818 WRITE_ONCE(net->ipv4.tcp_challenge_timestamp, now);
3819 WRITE_ONCE(net->ipv4.tcp_challenge_count,
3820 get_random_u32_inclusive(half, ack_limit + half - 1));
3821 }
3822 count = READ_ONCE(net->ipv4.tcp_challenge_count);
3823 if (count > 0) {
3824 WRITE_ONCE(net->ipv4.tcp_challenge_count, count - 1);
3825 send_ack:
3826 NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK);
3827 tcp_send_ack(sk);
3828 }
3829 }
3830
tcp_store_ts_recent(struct tcp_sock * tp)3831 static void tcp_store_ts_recent(struct tcp_sock *tp)
3832 {
3833 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3834 tp->rx_opt.ts_recent_stamp = ktime_get_seconds();
3835 }
3836
tcp_replace_ts_recent(struct tcp_sock * tp,u32 seq)3837 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3838 {
3839 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3840 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3841 * extra check below makes sure this can only happen
3842 * for pure ACK frames. -DaveM
3843 *
3844 * Not only, also it occurs for expired timestamps.
3845 */
3846
3847 if (tcp_paws_check(&tp->rx_opt, 0))
3848 tcp_store_ts_recent(tp);
3849 }
3850 }
3851
3852 /* This routine deals with acks during a TLP episode and ends an episode by
3853 * resetting tlp_high_seq. Ref: TLP algorithm in draft-ietf-tcpm-rack
3854 */
tcp_process_tlp_ack(struct sock * sk,u32 ack,int flag)3855 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3856 {
3857 struct tcp_sock *tp = tcp_sk(sk);
3858
3859 if (before(ack, tp->tlp_high_seq))
3860 return;
3861
3862 if (!tp->tlp_retrans) {
3863 /* TLP of new data has been acknowledged */
3864 tp->tlp_high_seq = 0;
3865 } else if (flag & FLAG_DSACK_TLP) {
3866 /* This DSACK means original and TLP probe arrived; no loss */
3867 tp->tlp_high_seq = 0;
3868 } else if (after(ack, tp->tlp_high_seq)) {
3869 /* ACK advances: there was a loss, so reduce cwnd. Reset
3870 * tlp_high_seq in tcp_init_cwnd_reduction()
3871 */
3872 tcp_init_cwnd_reduction(sk);
3873 tcp_set_ca_state(sk, TCP_CA_CWR);
3874 tcp_end_cwnd_reduction(sk);
3875 tcp_try_keep_open(sk);
3876 NET_INC_STATS(sock_net(sk),
3877 LINUX_MIB_TCPLOSSPROBERECOVERY);
3878 } else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3879 FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3880 /* Pure dupack: original and TLP probe arrived; no loss */
3881 tp->tlp_high_seq = 0;
3882 }
3883 }
3884
tcp_in_ack_event(struct sock * sk,int flag)3885 static void tcp_in_ack_event(struct sock *sk, int flag)
3886 {
3887 const struct inet_connection_sock *icsk = inet_csk(sk);
3888
3889 if (icsk->icsk_ca_ops->in_ack_event) {
3890 u32 ack_ev_flags = 0;
3891
3892 if (flag & FLAG_WIN_UPDATE)
3893 ack_ev_flags |= CA_ACK_WIN_UPDATE;
3894 if (flag & FLAG_SLOWPATH) {
3895 ack_ev_flags |= CA_ACK_SLOWPATH;
3896 if (flag & FLAG_ECE)
3897 ack_ev_flags |= CA_ACK_ECE;
3898 }
3899
3900 icsk->icsk_ca_ops->in_ack_event(sk, ack_ev_flags);
3901 }
3902 }
3903
3904 /* Congestion control has updated the cwnd already. So if we're in
3905 * loss recovery then now we do any new sends (for FRTO) or
3906 * retransmits (for CA_Loss or CA_recovery) that make sense.
3907 */
tcp_xmit_recovery(struct sock * sk,int rexmit)3908 static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3909 {
3910 struct tcp_sock *tp = tcp_sk(sk);
3911
3912 if (rexmit == REXMIT_NONE || sk->sk_state == TCP_SYN_SENT)
3913 return;
3914
3915 if (unlikely(rexmit == REXMIT_NEW)) {
3916 __tcp_push_pending_frames(sk, tcp_current_mss(sk),
3917 TCP_NAGLE_OFF);
3918 if (after(tp->snd_nxt, tp->high_seq))
3919 return;
3920 tp->frto = 0;
3921 }
3922 tcp_xmit_retransmit_queue(sk);
3923 }
3924
3925 /* Returns the number of packets newly acked or sacked by the current ACK */
tcp_newly_delivered(struct sock * sk,u32 prior_delivered,int flag)3926 static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag)
3927 {
3928 const struct net *net = sock_net(sk);
3929 struct tcp_sock *tp = tcp_sk(sk);
3930 u32 delivered;
3931
3932 delivered = tp->delivered - prior_delivered;
3933 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered);
3934 if (flag & FLAG_ECE)
3935 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered);
3936
3937 return delivered;
3938 }
3939
3940 /* This routine deals with incoming acks, but not outgoing ones. */
tcp_ack(struct sock * sk,const struct sk_buff * skb,int flag)3941 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3942 {
3943 struct inet_connection_sock *icsk = inet_csk(sk);
3944 struct tcp_sock *tp = tcp_sk(sk);
3945 struct tcp_sacktag_state sack_state;
3946 struct rate_sample rs = { .prior_delivered = 0 };
3947 u32 prior_snd_una = tp->snd_una;
3948 bool is_sack_reneg = tp->is_sack_reneg;
3949 u32 ack_seq = TCP_SKB_CB(skb)->seq;
3950 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3951 int num_dupack = 0;
3952 int prior_packets = tp->packets_out;
3953 u32 delivered = tp->delivered;
3954 u32 lost = tp->lost;
3955 int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
3956 u32 prior_fack;
3957
3958 sack_state.first_sackt = 0;
3959 sack_state.rate = &rs;
3960 sack_state.sack_delivered = 0;
3961
3962 /* We very likely will need to access rtx queue. */
3963 prefetch(sk->tcp_rtx_queue.rb_node);
3964
3965 /* If the ack is older than previous acks
3966 * then we can probably ignore it.
3967 */
3968 if (before(ack, prior_snd_una)) {
3969 u32 max_window;
3970
3971 /* do not accept ACK for bytes we never sent. */
3972 max_window = min_t(u64, tp->max_window, tp->bytes_acked);
3973 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3974 if (before(ack, prior_snd_una - max_window)) {
3975 if (!(flag & FLAG_NO_CHALLENGE_ACK))
3976 tcp_send_challenge_ack(sk);
3977 return -SKB_DROP_REASON_TCP_TOO_OLD_ACK;
3978 }
3979 goto old_ack;
3980 }
3981
3982 /* If the ack includes data we haven't sent yet, discard
3983 * this segment (RFC793 Section 3.9).
3984 */
3985 if (after(ack, tp->snd_nxt))
3986 return -SKB_DROP_REASON_TCP_ACK_UNSENT_DATA;
3987
3988 if (after(ack, prior_snd_una)) {
3989 flag |= FLAG_SND_UNA_ADVANCED;
3990 icsk->icsk_retransmits = 0;
3991
3992 #if IS_ENABLED(CONFIG_TLS_DEVICE)
3993 if (static_branch_unlikely(&clean_acked_data_enabled.key))
3994 if (icsk->icsk_clean_acked)
3995 icsk->icsk_clean_acked(sk, ack);
3996 #endif
3997 }
3998
3999 prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una;
4000 rs.prior_in_flight = tcp_packets_in_flight(tp);
4001
4002 /* ts_recent update must be made after we are sure that the packet
4003 * is in window.
4004 */
4005 if (flag & FLAG_UPDATE_TS_RECENT)
4006 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4007
4008 if ((flag & (FLAG_SLOWPATH | FLAG_SND_UNA_ADVANCED)) ==
4009 FLAG_SND_UNA_ADVANCED) {
4010 /* Window is constant, pure forward advance.
4011 * No more checks are required.
4012 * Note, we use the fact that SND.UNA>=SND.WL2.
4013 */
4014 tcp_update_wl(tp, ack_seq);
4015 tcp_snd_una_update(tp, ack);
4016 flag |= FLAG_WIN_UPDATE;
4017
4018 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
4019 } else {
4020 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
4021 flag |= FLAG_DATA;
4022 else
4023 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
4024
4025 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
4026
4027 if (TCP_SKB_CB(skb)->sacked)
4028 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
4029 &sack_state);
4030
4031 if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb)))
4032 flag |= FLAG_ECE;
4033
4034 if (sack_state.sack_delivered)
4035 tcp_count_delivered(tp, sack_state.sack_delivered,
4036 flag & FLAG_ECE);
4037 }
4038
4039 /* This is a deviation from RFC3168 since it states that:
4040 * "When the TCP data sender is ready to set the CWR bit after reducing
4041 * the congestion window, it SHOULD set the CWR bit only on the first
4042 * new data packet that it transmits."
4043 * We accept CWR on pure ACKs to be more robust
4044 * with widely-deployed TCP implementations that do this.
4045 */
4046 tcp_ecn_accept_cwr(sk, skb);
4047
4048 /* We passed data and got it acked, remove any soft error
4049 * log. Something worked...
4050 */
4051 WRITE_ONCE(sk->sk_err_soft, 0);
4052 icsk->icsk_probes_out = 0;
4053 tp->rcv_tstamp = tcp_jiffies32;
4054 if (!prior_packets)
4055 goto no_queue;
4056
4057 /* See if we can take anything off of the retransmit queue. */
4058 flag |= tcp_clean_rtx_queue(sk, skb, prior_fack, prior_snd_una,
4059 &sack_state, flag & FLAG_ECE);
4060
4061 tcp_rack_update_reo_wnd(sk, &rs);
4062
4063 tcp_in_ack_event(sk, flag);
4064
4065 if (tp->tlp_high_seq)
4066 tcp_process_tlp_ack(sk, ack, flag);
4067
4068 if (tcp_ack_is_dubious(sk, flag)) {
4069 if (!(flag & (FLAG_SND_UNA_ADVANCED |
4070 FLAG_NOT_DUP | FLAG_DSACKING_ACK))) {
4071 num_dupack = 1;
4072 /* Consider if pure acks were aggregated in tcp_add_backlog() */
4073 if (!(flag & FLAG_DATA))
4074 num_dupack = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
4075 }
4076 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
4077 &rexmit);
4078 }
4079
4080 /* If needed, reset TLP/RTO timer when RACK doesn't set. */
4081 if (flag & FLAG_SET_XMIT_TIMER)
4082 tcp_set_xmit_timer(sk);
4083
4084 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
4085 sk_dst_confirm(sk);
4086
4087 delivered = tcp_newly_delivered(sk, delivered, flag);
4088 lost = tp->lost - lost; /* freshly marked lost */
4089 rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED);
4090 tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate);
4091 tcp_cong_control(sk, ack, delivered, flag, sack_state.rate);
4092 tcp_xmit_recovery(sk, rexmit);
4093 return 1;
4094
4095 no_queue:
4096 tcp_in_ack_event(sk, flag);
4097 /* If data was DSACKed, see if we can undo a cwnd reduction. */
4098 if (flag & FLAG_DSACKING_ACK) {
4099 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
4100 &rexmit);
4101 tcp_newly_delivered(sk, delivered, flag);
4102 }
4103 /* If this ack opens up a zero window, clear backoff. It was
4104 * being used to time the probes, and is probably far higher than
4105 * it needs to be for normal retransmission.
4106 */
4107 tcp_ack_probe(sk);
4108
4109 if (tp->tlp_high_seq)
4110 tcp_process_tlp_ack(sk, ack, flag);
4111 return 1;
4112
4113 old_ack:
4114 /* If data was SACKed, tag it and see if we should send more data.
4115 * If data was DSACKed, see if we can undo a cwnd reduction.
4116 */
4117 if (TCP_SKB_CB(skb)->sacked) {
4118 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
4119 &sack_state);
4120 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
4121 &rexmit);
4122 tcp_newly_delivered(sk, delivered, flag);
4123 tcp_xmit_recovery(sk, rexmit);
4124 }
4125
4126 return 0;
4127 }
4128
tcp_parse_fastopen_option(int len,const unsigned char * cookie,bool syn,struct tcp_fastopen_cookie * foc,bool exp_opt)4129 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
4130 bool syn, struct tcp_fastopen_cookie *foc,
4131 bool exp_opt)
4132 {
4133 /* Valid only in SYN or SYN-ACK with an even length. */
4134 if (!foc || !syn || len < 0 || (len & 1))
4135 return;
4136
4137 if (len >= TCP_FASTOPEN_COOKIE_MIN &&
4138 len <= TCP_FASTOPEN_COOKIE_MAX)
4139 memcpy(foc->val, cookie, len);
4140 else if (len != 0)
4141 len = -1;
4142 foc->len = len;
4143 foc->exp = exp_opt;
4144 }
4145
smc_parse_options(const struct tcphdr * th,struct tcp_options_received * opt_rx,const unsigned char * ptr,int opsize)4146 static bool smc_parse_options(const struct tcphdr *th,
4147 struct tcp_options_received *opt_rx,
4148 const unsigned char *ptr,
4149 int opsize)
4150 {
4151 #if IS_ENABLED(CONFIG_SMC)
4152 if (static_branch_unlikely(&tcp_have_smc)) {
4153 if (th->syn && !(opsize & 1) &&
4154 opsize >= TCPOLEN_EXP_SMC_BASE &&
4155 get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC) {
4156 opt_rx->smc_ok = 1;
4157 return true;
4158 }
4159 }
4160 #endif
4161 return false;
4162 }
4163
4164 /* Try to parse the MSS option from the TCP header. Return 0 on failure, clamped
4165 * value on success.
4166 */
tcp_parse_mss_option(const struct tcphdr * th,u16 user_mss)4167 u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss)
4168 {
4169 const unsigned char *ptr = (const unsigned char *)(th + 1);
4170 int length = (th->doff * 4) - sizeof(struct tcphdr);
4171 u16 mss = 0;
4172
4173 while (length > 0) {
4174 int opcode = *ptr++;
4175 int opsize;
4176
4177 switch (opcode) {
4178 case TCPOPT_EOL:
4179 return mss;
4180 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
4181 length--;
4182 continue;
4183 default:
4184 if (length < 2)
4185 return mss;
4186 opsize = *ptr++;
4187 if (opsize < 2) /* "silly options" */
4188 return mss;
4189 if (opsize > length)
4190 return mss; /* fail on partial options */
4191 if (opcode == TCPOPT_MSS && opsize == TCPOLEN_MSS) {
4192 u16 in_mss = get_unaligned_be16(ptr);
4193
4194 if (in_mss) {
4195 if (user_mss && user_mss < in_mss)
4196 in_mss = user_mss;
4197 mss = in_mss;
4198 }
4199 }
4200 ptr += opsize - 2;
4201 length -= opsize;
4202 }
4203 }
4204 return mss;
4205 }
4206 EXPORT_SYMBOL_GPL(tcp_parse_mss_option);
4207
4208 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
4209 * But, this can also be called on packets in the established flow when
4210 * the fast version below fails.
4211 */
tcp_parse_options(const struct net * net,const struct sk_buff * skb,struct tcp_options_received * opt_rx,int estab,struct tcp_fastopen_cookie * foc)4212 void tcp_parse_options(const struct net *net,
4213 const struct sk_buff *skb,
4214 struct tcp_options_received *opt_rx, int estab,
4215 struct tcp_fastopen_cookie *foc)
4216 {
4217 const unsigned char *ptr;
4218 const struct tcphdr *th = tcp_hdr(skb);
4219 int length = (th->doff * 4) - sizeof(struct tcphdr);
4220
4221 ptr = (const unsigned char *)(th + 1);
4222 opt_rx->saw_tstamp = 0;
4223 opt_rx->saw_unknown = 0;
4224
4225 while (length > 0) {
4226 int opcode = *ptr++;
4227 int opsize;
4228
4229 switch (opcode) {
4230 case TCPOPT_EOL:
4231 return;
4232 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
4233 length--;
4234 continue;
4235 default:
4236 if (length < 2)
4237 return;
4238 opsize = *ptr++;
4239 if (opsize < 2) /* "silly options" */
4240 return;
4241 if (opsize > length)
4242 return; /* don't parse partial options */
4243 switch (opcode) {
4244 case TCPOPT_MSS:
4245 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
4246 u16 in_mss = get_unaligned_be16(ptr);
4247 if (in_mss) {
4248 if (opt_rx->user_mss &&
4249 opt_rx->user_mss < in_mss)
4250 in_mss = opt_rx->user_mss;
4251 opt_rx->mss_clamp = in_mss;
4252 }
4253 }
4254 break;
4255 case TCPOPT_WINDOW:
4256 if (opsize == TCPOLEN_WINDOW && th->syn &&
4257 !estab && READ_ONCE(net->ipv4.sysctl_tcp_window_scaling)) {
4258 __u8 snd_wscale = *(__u8 *)ptr;
4259 opt_rx->wscale_ok = 1;
4260 if (snd_wscale > TCP_MAX_WSCALE) {
4261 net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n",
4262 __func__,
4263 snd_wscale,
4264 TCP_MAX_WSCALE);
4265 snd_wscale = TCP_MAX_WSCALE;
4266 }
4267 opt_rx->snd_wscale = snd_wscale;
4268 }
4269 break;
4270 case TCPOPT_TIMESTAMP:
4271 if ((opsize == TCPOLEN_TIMESTAMP) &&
4272 ((estab && opt_rx->tstamp_ok) ||
4273 (!estab && READ_ONCE(net->ipv4.sysctl_tcp_timestamps)))) {
4274 opt_rx->saw_tstamp = 1;
4275 opt_rx->rcv_tsval = get_unaligned_be32(ptr);
4276 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
4277 }
4278 break;
4279 case TCPOPT_SACK_PERM:
4280 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
4281 !estab && READ_ONCE(net->ipv4.sysctl_tcp_sack)) {
4282 opt_rx->sack_ok = TCP_SACK_SEEN;
4283 tcp_sack_reset(opt_rx);
4284 }
4285 break;
4286
4287 case TCPOPT_SACK:
4288 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
4289 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
4290 opt_rx->sack_ok) {
4291 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
4292 }
4293 break;
4294 #ifdef CONFIG_TCP_MD5SIG
4295 case TCPOPT_MD5SIG:
4296 /* The MD5 Hash has already been
4297 * checked (see tcp_v{4,6}_rcv()).
4298 */
4299 break;
4300 #endif
4301 #ifdef CONFIG_TCP_AO
4302 case TCPOPT_AO:
4303 /* TCP AO has already been checked
4304 * (see tcp_inbound_ao_hash()).
4305 */
4306 break;
4307 #endif
4308 case TCPOPT_FASTOPEN:
4309 tcp_parse_fastopen_option(
4310 opsize - TCPOLEN_FASTOPEN_BASE,
4311 ptr, th->syn, foc, false);
4312 break;
4313
4314 case TCPOPT_EXP:
4315 /* Fast Open option shares code 254 using a
4316 * 16 bits magic number.
4317 */
4318 if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
4319 get_unaligned_be16(ptr) ==
4320 TCPOPT_FASTOPEN_MAGIC) {
4321 tcp_parse_fastopen_option(opsize -
4322 TCPOLEN_EXP_FASTOPEN_BASE,
4323 ptr + 2, th->syn, foc, true);
4324 break;
4325 }
4326
4327 if (smc_parse_options(th, opt_rx, ptr, opsize))
4328 break;
4329
4330 opt_rx->saw_unknown = 1;
4331 break;
4332
4333 default:
4334 opt_rx->saw_unknown = 1;
4335 }
4336 ptr += opsize-2;
4337 length -= opsize;
4338 }
4339 }
4340 }
4341 EXPORT_SYMBOL(tcp_parse_options);
4342
tcp_parse_aligned_timestamp(struct tcp_sock * tp,const struct tcphdr * th)4343 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
4344 {
4345 const __be32 *ptr = (const __be32 *)(th + 1);
4346
4347 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
4348 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
4349 tp->rx_opt.saw_tstamp = 1;
4350 ++ptr;
4351 tp->rx_opt.rcv_tsval = ntohl(*ptr);
4352 ++ptr;
4353 if (*ptr)
4354 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
4355 else
4356 tp->rx_opt.rcv_tsecr = 0;
4357 return true;
4358 }
4359 return false;
4360 }
4361
4362 /* Fast parse options. This hopes to only see timestamps.
4363 * If it is wrong it falls back on tcp_parse_options().
4364 */
tcp_fast_parse_options(const struct net * net,const struct sk_buff * skb,const struct tcphdr * th,struct tcp_sock * tp)4365 static bool tcp_fast_parse_options(const struct net *net,
4366 const struct sk_buff *skb,
4367 const struct tcphdr *th, struct tcp_sock *tp)
4368 {
4369 /* In the spirit of fast parsing, compare doff directly to constant
4370 * values. Because equality is used, short doff can be ignored here.
4371 */
4372 if (th->doff == (sizeof(*th) / 4)) {
4373 tp->rx_opt.saw_tstamp = 0;
4374 return false;
4375 } else if (tp->rx_opt.tstamp_ok &&
4376 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
4377 if (tcp_parse_aligned_timestamp(tp, th))
4378 return true;
4379 }
4380
4381 tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL);
4382 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
4383 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
4384
4385 return true;
4386 }
4387
4388 #if defined(CONFIG_TCP_MD5SIG) || defined(CONFIG_TCP_AO)
4389 /*
4390 * Parse Signature options
4391 */
tcp_do_parse_auth_options(const struct tcphdr * th,const u8 ** md5_hash,const u8 ** ao_hash)4392 int tcp_do_parse_auth_options(const struct tcphdr *th,
4393 const u8 **md5_hash, const u8 **ao_hash)
4394 {
4395 int length = (th->doff << 2) - sizeof(*th);
4396 const u8 *ptr = (const u8 *)(th + 1);
4397 unsigned int minlen = TCPOLEN_MD5SIG;
4398
4399 if (IS_ENABLED(CONFIG_TCP_AO))
4400 minlen = sizeof(struct tcp_ao_hdr) + 1;
4401
4402 *md5_hash = NULL;
4403 *ao_hash = NULL;
4404
4405 /* If not enough data remaining, we can short cut */
4406 while (length >= minlen) {
4407 int opcode = *ptr++;
4408 int opsize;
4409
4410 switch (opcode) {
4411 case TCPOPT_EOL:
4412 return 0;
4413 case TCPOPT_NOP:
4414 length--;
4415 continue;
4416 default:
4417 opsize = *ptr++;
4418 if (opsize < 2 || opsize > length)
4419 return -EINVAL;
4420 if (opcode == TCPOPT_MD5SIG) {
4421 if (opsize != TCPOLEN_MD5SIG)
4422 return -EINVAL;
4423 if (unlikely(*md5_hash || *ao_hash))
4424 return -EEXIST;
4425 *md5_hash = ptr;
4426 } else if (opcode == TCPOPT_AO) {
4427 if (opsize <= sizeof(struct tcp_ao_hdr))
4428 return -EINVAL;
4429 if (unlikely(*md5_hash || *ao_hash))
4430 return -EEXIST;
4431 *ao_hash = ptr;
4432 }
4433 }
4434 ptr += opsize - 2;
4435 length -= opsize;
4436 }
4437 return 0;
4438 }
4439 EXPORT_SYMBOL(tcp_do_parse_auth_options);
4440 #endif
4441
4442 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
4443 *
4444 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
4445 * it can pass through stack. So, the following predicate verifies that
4446 * this segment is not used for anything but congestion avoidance or
4447 * fast retransmit. Moreover, we even are able to eliminate most of such
4448 * second order effects, if we apply some small "replay" window (~RTO)
4449 * to timestamp space.
4450 *
4451 * All these measures still do not guarantee that we reject wrapped ACKs
4452 * on networks with high bandwidth, when sequence space is recycled fastly,
4453 * but it guarantees that such events will be very rare and do not affect
4454 * connection seriously. This doesn't look nice, but alas, PAWS is really
4455 * buggy extension.
4456 *
4457 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
4458 * states that events when retransmit arrives after original data are rare.
4459 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
4460 * the biggest problem on large power networks even with minor reordering.
4461 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
4462 * up to bandwidth of 18Gigabit/sec. 8) ]
4463 */
4464
4465 /* Estimates max number of increments of remote peer TSval in
4466 * a replay window (based on our current RTO estimation).
4467 */
tcp_tsval_replay(const struct sock * sk)4468 static u32 tcp_tsval_replay(const struct sock *sk)
4469 {
4470 /* If we use usec TS resolution,
4471 * then expect the remote peer to use the same resolution.
4472 */
4473 if (tcp_sk(sk)->tcp_usec_ts)
4474 return inet_csk(sk)->icsk_rto * (USEC_PER_SEC / HZ);
4475
4476 /* RFC 7323 recommends a TSval clock between 1ms and 1sec.
4477 * We know that some OS (including old linux) can use 1200 Hz.
4478 */
4479 return inet_csk(sk)->icsk_rto * 1200 / HZ;
4480 }
4481
tcp_disordered_ack(const struct sock * sk,const struct sk_buff * skb)4482 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
4483 {
4484 const struct tcp_sock *tp = tcp_sk(sk);
4485 const struct tcphdr *th = tcp_hdr(skb);
4486 u32 seq = TCP_SKB_CB(skb)->seq;
4487 u32 ack = TCP_SKB_CB(skb)->ack_seq;
4488
4489 return /* 1. Pure ACK with correct sequence number. */
4490 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
4491
4492 /* 2. ... and duplicate ACK. */
4493 ack == tp->snd_una &&
4494
4495 /* 3. ... and does not update window. */
4496 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
4497
4498 /* 4. ... and sits in replay window. */
4499 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <=
4500 tcp_tsval_replay(sk);
4501 }
4502
tcp_paws_discard(const struct sock * sk,const struct sk_buff * skb)4503 static inline bool tcp_paws_discard(const struct sock *sk,
4504 const struct sk_buff *skb)
4505 {
4506 const struct tcp_sock *tp = tcp_sk(sk);
4507
4508 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4509 !tcp_disordered_ack(sk, skb);
4510 }
4511
4512 /* Check segment sequence number for validity.
4513 *
4514 * Segment controls are considered valid, if the segment
4515 * fits to the window after truncation to the window. Acceptability
4516 * of data (and SYN, FIN, of course) is checked separately.
4517 * See tcp_data_queue(), for example.
4518 *
4519 * Also, controls (RST is main one) are accepted using RCV.WUP instead
4520 * of RCV.NXT. Peer still did not advance his SND.UNA when we
4521 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4522 * (borrowed from freebsd)
4523 */
4524
tcp_sequence(const struct tcp_sock * tp,u32 seq,u32 end_seq)4525 static enum skb_drop_reason tcp_sequence(const struct tcp_sock *tp,
4526 u32 seq, u32 end_seq)
4527 {
4528 if (before(end_seq, tp->rcv_wup))
4529 return SKB_DROP_REASON_TCP_OLD_SEQUENCE;
4530
4531 if (after(seq, tp->rcv_nxt + tcp_receive_window(tp)))
4532 return SKB_DROP_REASON_TCP_INVALID_SEQUENCE;
4533
4534 return SKB_NOT_DROPPED_YET;
4535 }
4536
4537
tcp_done_with_error(struct sock * sk,int err)4538 void tcp_done_with_error(struct sock *sk, int err)
4539 {
4540 /* This barrier is coupled with smp_rmb() in tcp_poll() */
4541 WRITE_ONCE(sk->sk_err, err);
4542 smp_wmb();
4543
4544 tcp_write_queue_purge(sk);
4545 tcp_done(sk);
4546
4547 if (!sock_flag(sk, SOCK_DEAD))
4548 sk_error_report(sk);
4549 }
4550 EXPORT_SYMBOL(tcp_done_with_error);
4551
4552 /* When we get a reset we do this. */
tcp_reset(struct sock * sk,struct sk_buff * skb)4553 void tcp_reset(struct sock *sk, struct sk_buff *skb)
4554 {
4555 int err;
4556
4557 trace_tcp_receive_reset(sk);
4558
4559 /* mptcp can't tell us to ignore reset pkts,
4560 * so just ignore the return value of mptcp_incoming_options().
4561 */
4562 if (sk_is_mptcp(sk))
4563 mptcp_incoming_options(sk, skb);
4564
4565 /* We want the right error as BSD sees it (and indeed as we do). */
4566 switch (sk->sk_state) {
4567 case TCP_SYN_SENT:
4568 err = ECONNREFUSED;
4569 break;
4570 case TCP_CLOSE_WAIT:
4571 err = EPIPE;
4572 break;
4573 case TCP_CLOSE:
4574 return;
4575 default:
4576 err = ECONNRESET;
4577 }
4578 tcp_done_with_error(sk, err);
4579 }
4580
4581 /*
4582 * Process the FIN bit. This now behaves as it is supposed to work
4583 * and the FIN takes effect when it is validly part of sequence
4584 * space. Not before when we get holes.
4585 *
4586 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4587 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
4588 * TIME-WAIT)
4589 *
4590 * If we are in FINWAIT-1, a received FIN indicates simultaneous
4591 * close and we go into CLOSING (and later onto TIME-WAIT)
4592 *
4593 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4594 */
tcp_fin(struct sock * sk)4595 void tcp_fin(struct sock *sk)
4596 {
4597 struct tcp_sock *tp = tcp_sk(sk);
4598
4599 inet_csk_schedule_ack(sk);
4600
4601 WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN);
4602 sock_set_flag(sk, SOCK_DONE);
4603
4604 switch (sk->sk_state) {
4605 case TCP_SYN_RECV:
4606 case TCP_ESTABLISHED:
4607 /* Move to CLOSE_WAIT */
4608 tcp_set_state(sk, TCP_CLOSE_WAIT);
4609 inet_csk_enter_pingpong_mode(sk);
4610 break;
4611
4612 case TCP_CLOSE_WAIT:
4613 case TCP_CLOSING:
4614 /* Received a retransmission of the FIN, do
4615 * nothing.
4616 */
4617 break;
4618 case TCP_LAST_ACK:
4619 /* RFC793: Remain in the LAST-ACK state. */
4620 break;
4621
4622 case TCP_FIN_WAIT1:
4623 /* This case occurs when a simultaneous close
4624 * happens, we must ack the received FIN and
4625 * enter the CLOSING state.
4626 */
4627 tcp_send_ack(sk);
4628 tcp_set_state(sk, TCP_CLOSING);
4629 break;
4630 case TCP_FIN_WAIT2:
4631 /* Received a FIN -- send ACK and enter TIME_WAIT. */
4632 tcp_send_ack(sk);
4633 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4634 break;
4635 default:
4636 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4637 * cases we should never reach this piece of code.
4638 */
4639 pr_err("%s: Impossible, sk->sk_state=%d\n",
4640 __func__, sk->sk_state);
4641 break;
4642 }
4643
4644 /* It _is_ possible, that we have something out-of-order _after_ FIN.
4645 * Probably, we should reset in this case. For now drop them.
4646 */
4647 skb_rbtree_purge(&tp->out_of_order_queue);
4648 if (tcp_is_sack(tp))
4649 tcp_sack_reset(&tp->rx_opt);
4650
4651 if (!sock_flag(sk, SOCK_DEAD)) {
4652 trace_android_vh_tcp_sock_error(sk);
4653
4654 sk->sk_state_change(sk);
4655
4656 /* Do not send POLL_HUP for half duplex close. */
4657 if (sk->sk_shutdown == SHUTDOWN_MASK ||
4658 sk->sk_state == TCP_CLOSE)
4659 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4660 else
4661 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4662 }
4663 }
4664
tcp_sack_extend(struct tcp_sack_block * sp,u32 seq,u32 end_seq)4665 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4666 u32 end_seq)
4667 {
4668 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4669 if (before(seq, sp->start_seq))
4670 sp->start_seq = seq;
4671 if (after(end_seq, sp->end_seq))
4672 sp->end_seq = end_seq;
4673 return true;
4674 }
4675 return false;
4676 }
4677
tcp_dsack_set(struct sock * sk,u32 seq,u32 end_seq)4678 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4679 {
4680 struct tcp_sock *tp = tcp_sk(sk);
4681
4682 if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) {
4683 int mib_idx;
4684
4685 if (before(seq, tp->rcv_nxt))
4686 mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4687 else
4688 mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4689
4690 NET_INC_STATS(sock_net(sk), mib_idx);
4691
4692 tp->rx_opt.dsack = 1;
4693 tp->duplicate_sack[0].start_seq = seq;
4694 tp->duplicate_sack[0].end_seq = end_seq;
4695 }
4696 }
4697
tcp_dsack_extend(struct sock * sk,u32 seq,u32 end_seq)4698 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4699 {
4700 struct tcp_sock *tp = tcp_sk(sk);
4701
4702 if (!tp->rx_opt.dsack)
4703 tcp_dsack_set(sk, seq, end_seq);
4704 else
4705 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4706 }
4707
tcp_rcv_spurious_retrans(struct sock * sk,const struct sk_buff * skb)4708 static void tcp_rcv_spurious_retrans(struct sock *sk, const struct sk_buff *skb)
4709 {
4710 /* When the ACK path fails or drops most ACKs, the sender would
4711 * timeout and spuriously retransmit the same segment repeatedly.
4712 * If it seems our ACKs are not reaching the other side,
4713 * based on receiving a duplicate data segment with new flowlabel
4714 * (suggesting the sender suffered an RTO), and we are not already
4715 * repathing due to our own RTO, then rehash the socket to repath our
4716 * packets.
4717 */
4718 trace_android_rvh_tcp_rcv_spurious_retrans(sk);
4719
4720 #if IS_ENABLED(CONFIG_IPV6)
4721 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss &&
4722 skb->protocol == htons(ETH_P_IPV6) &&
4723 (tcp_sk(sk)->inet_conn.icsk_ack.lrcv_flowlabel !=
4724 ntohl(ip6_flowlabel(ipv6_hdr(skb)))) &&
4725 sk_rethink_txhash(sk))
4726 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDUPLICATEDATAREHASH);
4727
4728 /* Save last flowlabel after a spurious retrans. */
4729 tcp_save_lrcv_flowlabel(sk, skb);
4730 #endif
4731 }
4732
tcp_send_dupack(struct sock * sk,const struct sk_buff * skb)4733 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4734 {
4735 struct tcp_sock *tp = tcp_sk(sk);
4736
4737 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4738 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4739 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4740 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4741
4742 if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) {
4743 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4744
4745 tcp_rcv_spurious_retrans(sk, skb);
4746 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4747 end_seq = tp->rcv_nxt;
4748 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4749 }
4750 }
4751
4752 tcp_send_ack(sk);
4753 }
4754
4755 /* These routines update the SACK block as out-of-order packets arrive or
4756 * in-order packets close up the sequence space.
4757 */
tcp_sack_maybe_coalesce(struct tcp_sock * tp)4758 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4759 {
4760 int this_sack;
4761 struct tcp_sack_block *sp = &tp->selective_acks[0];
4762 struct tcp_sack_block *swalk = sp + 1;
4763
4764 /* See if the recent change to the first SACK eats into
4765 * or hits the sequence space of other SACK blocks, if so coalesce.
4766 */
4767 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4768 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4769 int i;
4770
4771 /* Zap SWALK, by moving every further SACK up by one slot.
4772 * Decrease num_sacks.
4773 */
4774 tp->rx_opt.num_sacks--;
4775 for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4776 sp[i] = sp[i + 1];
4777 continue;
4778 }
4779 this_sack++;
4780 swalk++;
4781 }
4782 }
4783
tcp_sack_compress_send_ack(struct sock * sk)4784 void tcp_sack_compress_send_ack(struct sock *sk)
4785 {
4786 struct tcp_sock *tp = tcp_sk(sk);
4787
4788 if (!tp->compressed_ack)
4789 return;
4790
4791 if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
4792 __sock_put(sk);
4793
4794 /* Since we have to send one ack finally,
4795 * substract one from tp->compressed_ack to keep
4796 * LINUX_MIB_TCPACKCOMPRESSED accurate.
4797 */
4798 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
4799 tp->compressed_ack - 1);
4800
4801 tp->compressed_ack = 0;
4802 tcp_send_ack(sk);
4803 }
4804
4805 /* Reasonable amount of sack blocks included in TCP SACK option
4806 * The max is 4, but this becomes 3 if TCP timestamps are there.
4807 * Given that SACK packets might be lost, be conservative and use 2.
4808 */
4809 #define TCP_SACK_BLOCKS_EXPECTED 2
4810
tcp_sack_new_ofo_skb(struct sock * sk,u32 seq,u32 end_seq)4811 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4812 {
4813 struct tcp_sock *tp = tcp_sk(sk);
4814 struct tcp_sack_block *sp = &tp->selective_acks[0];
4815 int cur_sacks = tp->rx_opt.num_sacks;
4816 int this_sack;
4817
4818 if (!cur_sacks)
4819 goto new_sack;
4820
4821 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4822 if (tcp_sack_extend(sp, seq, end_seq)) {
4823 if (this_sack >= TCP_SACK_BLOCKS_EXPECTED)
4824 tcp_sack_compress_send_ack(sk);
4825 /* Rotate this_sack to the first one. */
4826 for (; this_sack > 0; this_sack--, sp--)
4827 swap(*sp, *(sp - 1));
4828 if (cur_sacks > 1)
4829 tcp_sack_maybe_coalesce(tp);
4830 return;
4831 }
4832 }
4833
4834 if (this_sack >= TCP_SACK_BLOCKS_EXPECTED)
4835 tcp_sack_compress_send_ack(sk);
4836
4837 /* Could not find an adjacent existing SACK, build a new one,
4838 * put it at the front, and shift everyone else down. We
4839 * always know there is at least one SACK present already here.
4840 *
4841 * If the sack array is full, forget about the last one.
4842 */
4843 if (this_sack >= TCP_NUM_SACKS) {
4844 this_sack--;
4845 tp->rx_opt.num_sacks--;
4846 sp--;
4847 }
4848 for (; this_sack > 0; this_sack--, sp--)
4849 *sp = *(sp - 1);
4850
4851 new_sack:
4852 /* Build the new head SACK, and we're done. */
4853 sp->start_seq = seq;
4854 sp->end_seq = end_seq;
4855 tp->rx_opt.num_sacks++;
4856 }
4857
4858 /* RCV.NXT advances, some SACKs should be eaten. */
4859
tcp_sack_remove(struct tcp_sock * tp)4860 static void tcp_sack_remove(struct tcp_sock *tp)
4861 {
4862 struct tcp_sack_block *sp = &tp->selective_acks[0];
4863 int num_sacks = tp->rx_opt.num_sacks;
4864 int this_sack;
4865
4866 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4867 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4868 tp->rx_opt.num_sacks = 0;
4869 return;
4870 }
4871
4872 for (this_sack = 0; this_sack < num_sacks;) {
4873 /* Check if the start of the sack is covered by RCV.NXT. */
4874 if (!before(tp->rcv_nxt, sp->start_seq)) {
4875 int i;
4876
4877 /* RCV.NXT must cover all the block! */
4878 WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4879
4880 /* Zap this SACK, by moving forward any other SACKS. */
4881 for (i = this_sack+1; i < num_sacks; i++)
4882 tp->selective_acks[i-1] = tp->selective_acks[i];
4883 num_sacks--;
4884 continue;
4885 }
4886 this_sack++;
4887 sp++;
4888 }
4889 tp->rx_opt.num_sacks = num_sacks;
4890 }
4891
4892 /**
4893 * tcp_try_coalesce - try to merge skb to prior one
4894 * @sk: socket
4895 * @to: prior buffer
4896 * @from: buffer to add in queue
4897 * @fragstolen: pointer to boolean
4898 *
4899 * Before queueing skb @from after @to, try to merge them
4900 * to reduce overall memory use and queue lengths, if cost is small.
4901 * Packets in ofo or receive queues can stay a long time.
4902 * Better try to coalesce them right now to avoid future collapses.
4903 * Returns true if caller should free @from instead of queueing it
4904 */
tcp_try_coalesce(struct sock * sk,struct sk_buff * to,struct sk_buff * from,bool * fragstolen)4905 static bool tcp_try_coalesce(struct sock *sk,
4906 struct sk_buff *to,
4907 struct sk_buff *from,
4908 bool *fragstolen)
4909 {
4910 int delta;
4911
4912 *fragstolen = false;
4913
4914 /* Its possible this segment overlaps with prior segment in queue */
4915 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4916 return false;
4917
4918 if (!tcp_skb_can_collapse_rx(to, from))
4919 return false;
4920
4921 if (!skb_try_coalesce(to, from, fragstolen, &delta))
4922 return false;
4923
4924 atomic_add(delta, &sk->sk_rmem_alloc);
4925 sk_mem_charge(sk, delta);
4926 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4927 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4928 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4929 TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4930
4931 if (TCP_SKB_CB(from)->has_rxtstamp) {
4932 TCP_SKB_CB(to)->has_rxtstamp = true;
4933 to->tstamp = from->tstamp;
4934 skb_hwtstamps(to)->hwtstamp = skb_hwtstamps(from)->hwtstamp;
4935 }
4936
4937 return true;
4938 }
4939
tcp_ooo_try_coalesce(struct sock * sk,struct sk_buff * to,struct sk_buff * from,bool * fragstolen)4940 static bool tcp_ooo_try_coalesce(struct sock *sk,
4941 struct sk_buff *to,
4942 struct sk_buff *from,
4943 bool *fragstolen)
4944 {
4945 bool res = tcp_try_coalesce(sk, to, from, fragstolen);
4946
4947 /* In case tcp_drop_reason() is called later, update to->gso_segs */
4948 if (res) {
4949 u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) +
4950 max_t(u16, 1, skb_shinfo(from)->gso_segs);
4951
4952 skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF);
4953 }
4954 return res;
4955 }
4956
tcp_drop_reason(struct sock * sk,struct sk_buff * skb,enum skb_drop_reason reason)4957 static void tcp_drop_reason(struct sock *sk, struct sk_buff *skb,
4958 enum skb_drop_reason reason)
4959 {
4960 sk_drops_add(sk, skb);
4961 sk_skb_reason_drop(sk, skb, reason);
4962 }
4963
4964 /* This one checks to see if we can put data from the
4965 * out_of_order queue into the receive_queue.
4966 */
tcp_ofo_queue(struct sock * sk)4967 static void tcp_ofo_queue(struct sock *sk)
4968 {
4969 struct tcp_sock *tp = tcp_sk(sk);
4970 __u32 dsack_high = tp->rcv_nxt;
4971 bool fin, fragstolen, eaten;
4972 struct sk_buff *skb, *tail;
4973 struct rb_node *p;
4974
4975 p = rb_first(&tp->out_of_order_queue);
4976 while (p) {
4977 skb = rb_to_skb(p);
4978 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4979 break;
4980
4981 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4982 __u32 dsack = dsack_high;
4983
4984 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4985 dsack = TCP_SKB_CB(skb)->end_seq;
4986 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4987 }
4988 p = rb_next(p);
4989 rb_erase(&skb->rbnode, &tp->out_of_order_queue);
4990
4991 if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
4992 tcp_drop_reason(sk, skb, SKB_DROP_REASON_TCP_OFO_DROP);
4993 continue;
4994 }
4995
4996 tail = skb_peek_tail(&sk->sk_receive_queue);
4997 eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4998 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4999 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
5000 if (!eaten)
5001 tcp_add_receive_queue(sk, skb);
5002 else
5003 kfree_skb_partial(skb, fragstolen);
5004
5005 if (unlikely(fin)) {
5006 tcp_fin(sk);
5007 /* tcp_fin() purges tp->out_of_order_queue,
5008 * so we must end this loop right now.
5009 */
5010 break;
5011 }
5012 }
5013 }
5014
5015 static bool tcp_prune_ofo_queue(struct sock *sk, const struct sk_buff *in_skb);
5016 static int tcp_prune_queue(struct sock *sk, const struct sk_buff *in_skb);
5017
tcp_try_rmem_schedule(struct sock * sk,struct sk_buff * skb,unsigned int size)5018 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
5019 unsigned int size)
5020 {
5021 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
5022 !sk_rmem_schedule(sk, skb, size)) {
5023
5024 if (tcp_prune_queue(sk, skb) < 0)
5025 return -1;
5026
5027 while (!sk_rmem_schedule(sk, skb, size)) {
5028 if (!tcp_prune_ofo_queue(sk, skb))
5029 return -1;
5030 }
5031 }
5032 return 0;
5033 }
5034
tcp_data_queue_ofo(struct sock * sk,struct sk_buff * skb)5035 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
5036 {
5037 struct tcp_sock *tp = tcp_sk(sk);
5038 struct rb_node **p, *parent;
5039 struct sk_buff *skb1;
5040 u32 seq, end_seq;
5041 bool fragstolen;
5042
5043 tcp_save_lrcv_flowlabel(sk, skb);
5044 tcp_ecn_check_ce(sk, skb);
5045
5046 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
5047 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
5048 sk->sk_data_ready(sk);
5049 tcp_drop_reason(sk, skb, SKB_DROP_REASON_PROTO_MEM);
5050 return;
5051 }
5052
5053 tcp_measure_rcv_mss(sk, skb);
5054 /* Disable header prediction. */
5055 tp->pred_flags = 0;
5056 inet_csk_schedule_ack(sk);
5057
5058 tp->rcv_ooopack += max_t(u16, 1, skb_shinfo(skb)->gso_segs);
5059 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
5060 seq = TCP_SKB_CB(skb)->seq;
5061 end_seq = TCP_SKB_CB(skb)->end_seq;
5062
5063 p = &tp->out_of_order_queue.rb_node;
5064 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5065 /* Initial out of order segment, build 1 SACK. */
5066 if (tcp_is_sack(tp)) {
5067 tp->rx_opt.num_sacks = 1;
5068 tp->selective_acks[0].start_seq = seq;
5069 tp->selective_acks[0].end_seq = end_seq;
5070 }
5071 rb_link_node(&skb->rbnode, NULL, p);
5072 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
5073 tp->ooo_last_skb = skb;
5074 goto end;
5075 }
5076
5077 /* In the typical case, we are adding an skb to the end of the list.
5078 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
5079 */
5080 if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb,
5081 skb, &fragstolen)) {
5082 coalesce_done:
5083 /* For non sack flows, do not grow window to force DUPACK
5084 * and trigger fast retransmit.
5085 */
5086 if (tcp_is_sack(tp))
5087 tcp_grow_window(sk, skb, true);
5088 kfree_skb_partial(skb, fragstolen);
5089 skb = NULL;
5090 goto add_sack;
5091 }
5092 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
5093 if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
5094 parent = &tp->ooo_last_skb->rbnode;
5095 p = &parent->rb_right;
5096 goto insert;
5097 }
5098
5099 /* Find place to insert this segment. Handle overlaps on the way. */
5100 parent = NULL;
5101 while (*p) {
5102 parent = *p;
5103 skb1 = rb_to_skb(parent);
5104 if (before(seq, TCP_SKB_CB(skb1)->seq)) {
5105 p = &parent->rb_left;
5106 continue;
5107 }
5108 if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
5109 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
5110 /* All the bits are present. Drop. */
5111 NET_INC_STATS(sock_net(sk),
5112 LINUX_MIB_TCPOFOMERGE);
5113 tcp_drop_reason(sk, skb,
5114 SKB_DROP_REASON_TCP_OFOMERGE);
5115 skb = NULL;
5116 tcp_dsack_set(sk, seq, end_seq);
5117 goto add_sack;
5118 }
5119 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
5120 /* Partial overlap. */
5121 tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
5122 } else {
5123 /* skb's seq == skb1's seq and skb covers skb1.
5124 * Replace skb1 with skb.
5125 */
5126 rb_replace_node(&skb1->rbnode, &skb->rbnode,
5127 &tp->out_of_order_queue);
5128 tcp_dsack_extend(sk,
5129 TCP_SKB_CB(skb1)->seq,
5130 TCP_SKB_CB(skb1)->end_seq);
5131 NET_INC_STATS(sock_net(sk),
5132 LINUX_MIB_TCPOFOMERGE);
5133 tcp_drop_reason(sk, skb1,
5134 SKB_DROP_REASON_TCP_OFOMERGE);
5135 goto merge_right;
5136 }
5137 } else if (tcp_ooo_try_coalesce(sk, skb1,
5138 skb, &fragstolen)) {
5139 goto coalesce_done;
5140 }
5141 p = &parent->rb_right;
5142 }
5143 insert:
5144 /* Insert segment into RB tree. */
5145 rb_link_node(&skb->rbnode, parent, p);
5146 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
5147
5148 merge_right:
5149 /* Remove other segments covered by skb. */
5150 while ((skb1 = skb_rb_next(skb)) != NULL) {
5151 if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
5152 break;
5153 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
5154 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
5155 end_seq);
5156 break;
5157 }
5158 rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
5159 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
5160 TCP_SKB_CB(skb1)->end_seq);
5161 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
5162 tcp_drop_reason(sk, skb1, SKB_DROP_REASON_TCP_OFOMERGE);
5163 }
5164 /* If there is no skb after us, we are the last_skb ! */
5165 if (!skb1)
5166 tp->ooo_last_skb = skb;
5167
5168 add_sack:
5169 if (tcp_is_sack(tp))
5170 tcp_sack_new_ofo_skb(sk, seq, end_seq);
5171 end:
5172 if (skb) {
5173 /* For non sack flows, do not grow window to force DUPACK
5174 * and trigger fast retransmit.
5175 */
5176 if (tcp_is_sack(tp))
5177 tcp_grow_window(sk, skb, false);
5178 skb_condense(skb);
5179 skb_set_owner_r(skb, sk);
5180 }
5181 }
5182
tcp_queue_rcv(struct sock * sk,struct sk_buff * skb,bool * fragstolen)5183 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb,
5184 bool *fragstolen)
5185 {
5186 int eaten;
5187 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
5188
5189 eaten = (tail &&
5190 tcp_try_coalesce(sk, tail,
5191 skb, fragstolen)) ? 1 : 0;
5192 tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
5193 if (!eaten) {
5194 tcp_add_receive_queue(sk, skb);
5195 skb_set_owner_r(skb, sk);
5196 }
5197 return eaten;
5198 }
5199
tcp_send_rcvq(struct sock * sk,struct msghdr * msg,size_t size)5200 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
5201 {
5202 struct sk_buff *skb;
5203 int err = -ENOMEM;
5204 int data_len = 0;
5205 bool fragstolen;
5206
5207 if (size == 0)
5208 return 0;
5209
5210 if (size > PAGE_SIZE) {
5211 int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
5212
5213 data_len = npages << PAGE_SHIFT;
5214 size = data_len + (size & ~PAGE_MASK);
5215 }
5216 skb = alloc_skb_with_frags(size - data_len, data_len,
5217 PAGE_ALLOC_COSTLY_ORDER,
5218 &err, sk->sk_allocation);
5219 if (!skb)
5220 goto err;
5221
5222 skb_put(skb, size - data_len);
5223 skb->data_len = data_len;
5224 skb->len = size;
5225
5226 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
5227 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
5228 goto err_free;
5229 }
5230
5231 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
5232 if (err)
5233 goto err_free;
5234
5235 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
5236 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
5237 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
5238
5239 if (tcp_queue_rcv(sk, skb, &fragstolen)) {
5240 WARN_ON_ONCE(fragstolen); /* should not happen */
5241 __kfree_skb(skb);
5242 }
5243 return size;
5244
5245 err_free:
5246 kfree_skb(skb);
5247 err:
5248 return err;
5249
5250 }
5251
tcp_data_ready(struct sock * sk)5252 void tcp_data_ready(struct sock *sk)
5253 {
5254 if (tcp_epollin_ready(sk, sk->sk_rcvlowat) || sock_flag(sk, SOCK_DONE))
5255 sk->sk_data_ready(sk);
5256 }
5257
tcp_data_queue(struct sock * sk,struct sk_buff * skb)5258 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
5259 {
5260 struct tcp_sock *tp = tcp_sk(sk);
5261 enum skb_drop_reason reason;
5262 bool fragstolen;
5263 int eaten;
5264
5265 /* If a subflow has been reset, the packet should not continue
5266 * to be processed, drop the packet.
5267 */
5268 if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb)) {
5269 __kfree_skb(skb);
5270 return;
5271 }
5272
5273 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
5274 __kfree_skb(skb);
5275 return;
5276 }
5277 tcp_cleanup_skb(skb);
5278 __skb_pull(skb, tcp_hdr(skb)->doff * 4);
5279
5280 reason = SKB_DROP_REASON_NOT_SPECIFIED;
5281 tp->rx_opt.dsack = 0;
5282
5283 /* Queue data for delivery to the user.
5284 * Packets in sequence go to the receive queue.
5285 * Out of sequence packets to the out_of_order_queue.
5286 */
5287 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
5288 if (tcp_receive_window(tp) == 0) {
5289 /* Some stacks are known to send bare FIN packets
5290 * in a loop even if we send RWIN 0 in our ACK.
5291 * Accepting this FIN does not hurt memory pressure
5292 * because the FIN flag will simply be merged to the
5293 * receive queue tail skb in most cases.
5294 */
5295 if (!skb->len &&
5296 (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
5297 goto queue_and_out;
5298
5299 reason = SKB_DROP_REASON_TCP_ZEROWINDOW;
5300 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
5301 goto out_of_window;
5302 }
5303
5304 /* Ok. In sequence. In window. */
5305 queue_and_out:
5306 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
5307 /* TODO: maybe ratelimit these WIN 0 ACK ? */
5308 inet_csk(sk)->icsk_ack.pending |=
5309 (ICSK_ACK_NOMEM | ICSK_ACK_NOW);
5310 inet_csk_schedule_ack(sk);
5311 sk->sk_data_ready(sk);
5312
5313 if (skb_queue_len(&sk->sk_receive_queue) && skb->len) {
5314 reason = SKB_DROP_REASON_PROTO_MEM;
5315 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
5316 goto drop;
5317 }
5318 sk_forced_mem_schedule(sk, skb->truesize);
5319 }
5320
5321 eaten = tcp_queue_rcv(sk, skb, &fragstolen);
5322 if (skb->len)
5323 tcp_event_data_recv(sk, skb);
5324 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
5325 tcp_fin(sk);
5326
5327 if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5328 tcp_ofo_queue(sk);
5329
5330 /* RFC5681. 4.2. SHOULD send immediate ACK, when
5331 * gap in queue is filled.
5332 */
5333 if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5334 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
5335 }
5336
5337 if (tp->rx_opt.num_sacks)
5338 tcp_sack_remove(tp);
5339
5340 tcp_fast_path_check(sk);
5341
5342 if (eaten > 0)
5343 kfree_skb_partial(skb, fragstolen);
5344 if (!sock_flag(sk, SOCK_DEAD))
5345 tcp_data_ready(sk);
5346 return;
5347 }
5348
5349 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
5350 tcp_rcv_spurious_retrans(sk, skb);
5351 /* A retransmit, 2nd most common case. Force an immediate ack. */
5352 reason = SKB_DROP_REASON_TCP_OLD_DATA;
5353 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
5354 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
5355
5356 out_of_window:
5357 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
5358 inet_csk_schedule_ack(sk);
5359 drop:
5360 tcp_drop_reason(sk, skb, reason);
5361 return;
5362 }
5363
5364 /* Out of window. F.e. zero window probe. */
5365 if (!before(TCP_SKB_CB(skb)->seq,
5366 tp->rcv_nxt + tcp_receive_window(tp))) {
5367 reason = SKB_DROP_REASON_TCP_OVERWINDOW;
5368 goto out_of_window;
5369 }
5370
5371 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5372 /* Partial packet, seq < rcv_next < end_seq */
5373 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
5374
5375 /* If window is closed, drop tail of packet. But after
5376 * remembering D-SACK for its head made in previous line.
5377 */
5378 if (!tcp_receive_window(tp)) {
5379 reason = SKB_DROP_REASON_TCP_ZEROWINDOW;
5380 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
5381 goto out_of_window;
5382 }
5383 goto queue_and_out;
5384 }
5385
5386 tcp_data_queue_ofo(sk, skb);
5387 }
5388
tcp_skb_next(struct sk_buff * skb,struct sk_buff_head * list)5389 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
5390 {
5391 if (list)
5392 return !skb_queue_is_last(list, skb) ? skb->next : NULL;
5393
5394 return skb_rb_next(skb);
5395 }
5396
tcp_collapse_one(struct sock * sk,struct sk_buff * skb,struct sk_buff_head * list,struct rb_root * root)5397 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
5398 struct sk_buff_head *list,
5399 struct rb_root *root)
5400 {
5401 struct sk_buff *next = tcp_skb_next(skb, list);
5402
5403 if (list)
5404 __skb_unlink(skb, list);
5405 else
5406 rb_erase(&skb->rbnode, root);
5407
5408 __kfree_skb(skb);
5409 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
5410
5411 return next;
5412 }
5413
5414 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
tcp_rbtree_insert(struct rb_root * root,struct sk_buff * skb)5415 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
5416 {
5417 struct rb_node **p = &root->rb_node;
5418 struct rb_node *parent = NULL;
5419 struct sk_buff *skb1;
5420
5421 while (*p) {
5422 parent = *p;
5423 skb1 = rb_to_skb(parent);
5424 if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
5425 p = &parent->rb_left;
5426 else
5427 p = &parent->rb_right;
5428 }
5429 rb_link_node(&skb->rbnode, parent, p);
5430 rb_insert_color(&skb->rbnode, root);
5431 }
5432
5433 /* Collapse contiguous sequence of skbs head..tail with
5434 * sequence numbers start..end.
5435 *
5436 * If tail is NULL, this means until the end of the queue.
5437 *
5438 * Segments with FIN/SYN are not collapsed (only because this
5439 * simplifies code)
5440 */
5441 static void
tcp_collapse(struct sock * sk,struct sk_buff_head * list,struct rb_root * root,struct sk_buff * head,struct sk_buff * tail,u32 start,u32 end)5442 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
5443 struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
5444 {
5445 struct sk_buff *skb = head, *n;
5446 struct sk_buff_head tmp;
5447 bool end_of_skbs;
5448
5449 /* First, check that queue is collapsible and find
5450 * the point where collapsing can be useful.
5451 */
5452 restart:
5453 for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
5454 n = tcp_skb_next(skb, list);
5455
5456 if (!skb_frags_readable(skb))
5457 goto skip_this;
5458
5459 /* No new bits? It is possible on ofo queue. */
5460 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
5461 skb = tcp_collapse_one(sk, skb, list, root);
5462 if (!skb)
5463 break;
5464 goto restart;
5465 }
5466
5467 /* The first skb to collapse is:
5468 * - not SYN/FIN and
5469 * - bloated or contains data before "start" or
5470 * overlaps to the next one and mptcp allow collapsing.
5471 */
5472 if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
5473 (tcp_win_from_space(sk, skb->truesize) > skb->len ||
5474 before(TCP_SKB_CB(skb)->seq, start))) {
5475 end_of_skbs = false;
5476 break;
5477 }
5478
5479 if (n && n != tail && skb_frags_readable(n) &&
5480 tcp_skb_can_collapse_rx(skb, n) &&
5481 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
5482 end_of_skbs = false;
5483 break;
5484 }
5485
5486 skip_this:
5487 /* Decided to skip this, advance start seq. */
5488 start = TCP_SKB_CB(skb)->end_seq;
5489 }
5490 if (end_of_skbs ||
5491 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) ||
5492 !skb_frags_readable(skb))
5493 return;
5494
5495 __skb_queue_head_init(&tmp);
5496
5497 while (before(start, end)) {
5498 int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
5499 struct sk_buff *nskb;
5500
5501 nskb = alloc_skb(copy, GFP_ATOMIC);
5502 if (!nskb)
5503 break;
5504
5505 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
5506 skb_copy_decrypted(nskb, skb);
5507 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
5508 if (list)
5509 __skb_queue_before(list, skb, nskb);
5510 else
5511 __skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
5512 skb_set_owner_r(nskb, sk);
5513 mptcp_skb_ext_move(nskb, skb);
5514
5515 /* Copy data, releasing collapsed skbs. */
5516 while (copy > 0) {
5517 int offset = start - TCP_SKB_CB(skb)->seq;
5518 int size = TCP_SKB_CB(skb)->end_seq - start;
5519
5520 BUG_ON(offset < 0);
5521 if (size > 0) {
5522 size = min(copy, size);
5523 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
5524 BUG();
5525 TCP_SKB_CB(nskb)->end_seq += size;
5526 copy -= size;
5527 start += size;
5528 }
5529 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
5530 skb = tcp_collapse_one(sk, skb, list, root);
5531 if (!skb ||
5532 skb == tail ||
5533 !tcp_skb_can_collapse_rx(nskb, skb) ||
5534 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) ||
5535 !skb_frags_readable(skb))
5536 goto end;
5537 }
5538 }
5539 }
5540 end:
5541 skb_queue_walk_safe(&tmp, skb, n)
5542 tcp_rbtree_insert(root, skb);
5543 }
5544
5545 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
5546 * and tcp_collapse() them until all the queue is collapsed.
5547 */
tcp_collapse_ofo_queue(struct sock * sk)5548 static void tcp_collapse_ofo_queue(struct sock *sk)
5549 {
5550 struct tcp_sock *tp = tcp_sk(sk);
5551 u32 range_truesize, sum_tiny = 0;
5552 struct sk_buff *skb, *head;
5553 u32 start, end;
5554
5555 skb = skb_rb_first(&tp->out_of_order_queue);
5556 new_range:
5557 if (!skb) {
5558 tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue);
5559 return;
5560 }
5561 start = TCP_SKB_CB(skb)->seq;
5562 end = TCP_SKB_CB(skb)->end_seq;
5563 range_truesize = skb->truesize;
5564
5565 for (head = skb;;) {
5566 skb = skb_rb_next(skb);
5567
5568 /* Range is terminated when we see a gap or when
5569 * we are at the queue end.
5570 */
5571 if (!skb ||
5572 after(TCP_SKB_CB(skb)->seq, end) ||
5573 before(TCP_SKB_CB(skb)->end_seq, start)) {
5574 /* Do not attempt collapsing tiny skbs */
5575 if (range_truesize != head->truesize ||
5576 end - start >= SKB_WITH_OVERHEAD(PAGE_SIZE)) {
5577 tcp_collapse(sk, NULL, &tp->out_of_order_queue,
5578 head, skb, start, end);
5579 } else {
5580 sum_tiny += range_truesize;
5581 if (sum_tiny > sk->sk_rcvbuf >> 3)
5582 return;
5583 }
5584 goto new_range;
5585 }
5586
5587 range_truesize += skb->truesize;
5588 if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
5589 start = TCP_SKB_CB(skb)->seq;
5590 if (after(TCP_SKB_CB(skb)->end_seq, end))
5591 end = TCP_SKB_CB(skb)->end_seq;
5592 }
5593 }
5594
5595 /*
5596 * Clean the out-of-order queue to make room.
5597 * We drop high sequences packets to :
5598 * 1) Let a chance for holes to be filled.
5599 * This means we do not drop packets from ooo queue if their sequence
5600 * is before incoming packet sequence.
5601 * 2) not add too big latencies if thousands of packets sit there.
5602 * (But if application shrinks SO_RCVBUF, we could still end up
5603 * freeing whole queue here)
5604 * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks.
5605 *
5606 * Return true if queue has shrunk.
5607 */
tcp_prune_ofo_queue(struct sock * sk,const struct sk_buff * in_skb)5608 static bool tcp_prune_ofo_queue(struct sock *sk, const struct sk_buff *in_skb)
5609 {
5610 struct tcp_sock *tp = tcp_sk(sk);
5611 struct rb_node *node, *prev;
5612 bool pruned = false;
5613 int goal;
5614
5615 if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5616 return false;
5617
5618 goal = sk->sk_rcvbuf >> 3;
5619 node = &tp->ooo_last_skb->rbnode;
5620
5621 do {
5622 struct sk_buff *skb = rb_to_skb(node);
5623
5624 /* If incoming skb would land last in ofo queue, stop pruning. */
5625 if (after(TCP_SKB_CB(in_skb)->seq, TCP_SKB_CB(skb)->seq))
5626 break;
5627 pruned = true;
5628 prev = rb_prev(node);
5629 rb_erase(node, &tp->out_of_order_queue);
5630 goal -= skb->truesize;
5631 tcp_drop_reason(sk, skb, SKB_DROP_REASON_TCP_OFO_QUEUE_PRUNE);
5632 tp->ooo_last_skb = rb_to_skb(prev);
5633 if (!prev || goal <= 0) {
5634 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
5635 !tcp_under_memory_pressure(sk))
5636 break;
5637 goal = sk->sk_rcvbuf >> 3;
5638 }
5639 node = prev;
5640 } while (node);
5641
5642 if (pruned) {
5643 NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
5644 /* Reset SACK state. A conforming SACK implementation will
5645 * do the same at a timeout based retransmit. When a connection
5646 * is in a sad state like this, we care only about integrity
5647 * of the connection not performance.
5648 */
5649 if (tp->rx_opt.sack_ok)
5650 tcp_sack_reset(&tp->rx_opt);
5651 }
5652 return pruned;
5653 }
5654
5655 /* Reduce allocated memory if we can, trying to get
5656 * the socket within its memory limits again.
5657 *
5658 * Return less than zero if we should start dropping frames
5659 * until the socket owning process reads some of the data
5660 * to stabilize the situation.
5661 */
tcp_prune_queue(struct sock * sk,const struct sk_buff * in_skb)5662 static int tcp_prune_queue(struct sock *sk, const struct sk_buff *in_skb)
5663 {
5664 struct tcp_sock *tp = tcp_sk(sk);
5665
5666 NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
5667
5668 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
5669 tcp_clamp_window(sk);
5670 else if (tcp_under_memory_pressure(sk))
5671 tcp_adjust_rcv_ssthresh(sk);
5672
5673 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5674 return 0;
5675
5676 tcp_collapse_ofo_queue(sk);
5677 if (!skb_queue_empty(&sk->sk_receive_queue))
5678 tcp_collapse(sk, &sk->sk_receive_queue, NULL,
5679 skb_peek(&sk->sk_receive_queue),
5680 NULL,
5681 tp->copied_seq, tp->rcv_nxt);
5682
5683 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5684 return 0;
5685
5686 /* Collapsing did not help, destructive actions follow.
5687 * This must not ever occur. */
5688
5689 tcp_prune_ofo_queue(sk, in_skb);
5690
5691 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5692 return 0;
5693
5694 /* If we are really being abused, tell the caller to silently
5695 * drop receive data on the floor. It will get retransmitted
5696 * and hopefully then we'll have sufficient space.
5697 */
5698 NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
5699
5700 /* Massive buffer overcommit. */
5701 tp->pred_flags = 0;
5702 return -1;
5703 }
5704
tcp_should_expand_sndbuf(struct sock * sk)5705 static bool tcp_should_expand_sndbuf(struct sock *sk)
5706 {
5707 const struct tcp_sock *tp = tcp_sk(sk);
5708
5709 /* If the user specified a specific send buffer setting, do
5710 * not modify it.
5711 */
5712 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
5713 return false;
5714
5715 /* If we are under global TCP memory pressure, do not expand. */
5716 if (tcp_under_memory_pressure(sk)) {
5717 int unused_mem = sk_unused_reserved_mem(sk);
5718
5719 /* Adjust sndbuf according to reserved mem. But make sure
5720 * it never goes below SOCK_MIN_SNDBUF.
5721 * See sk_stream_moderate_sndbuf() for more details.
5722 */
5723 if (unused_mem > SOCK_MIN_SNDBUF)
5724 WRITE_ONCE(sk->sk_sndbuf, unused_mem);
5725
5726 return false;
5727 }
5728
5729 /* If we are under soft global TCP memory pressure, do not expand. */
5730 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
5731 return false;
5732
5733 /* If we filled the congestion window, do not expand. */
5734 if (tcp_packets_in_flight(tp) >= tcp_snd_cwnd(tp))
5735 return false;
5736
5737 return true;
5738 }
5739
tcp_new_space(struct sock * sk)5740 static void tcp_new_space(struct sock *sk)
5741 {
5742 struct tcp_sock *tp = tcp_sk(sk);
5743
5744 if (tcp_should_expand_sndbuf(sk)) {
5745 tcp_sndbuf_expand(sk);
5746 tp->snd_cwnd_stamp = tcp_jiffies32;
5747 }
5748
5749 INDIRECT_CALL_1(sk->sk_write_space, sk_stream_write_space, sk);
5750 }
5751
5752 /* Caller made space either from:
5753 * 1) Freeing skbs in rtx queues (after tp->snd_una has advanced)
5754 * 2) Sent skbs from output queue (and thus advancing tp->snd_nxt)
5755 *
5756 * We might be able to generate EPOLLOUT to the application if:
5757 * 1) Space consumed in output/rtx queues is below sk->sk_sndbuf/2
5758 * 2) notsent amount (tp->write_seq - tp->snd_nxt) became
5759 * small enough that tcp_stream_memory_free() decides it
5760 * is time to generate EPOLLOUT.
5761 */
tcp_check_space(struct sock * sk)5762 void tcp_check_space(struct sock *sk)
5763 {
5764 /* pairs with tcp_poll() */
5765 smp_mb();
5766 if (sk->sk_socket &&
5767 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
5768 tcp_new_space(sk);
5769 if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5770 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
5771 }
5772 }
5773
tcp_data_snd_check(struct sock * sk)5774 static inline void tcp_data_snd_check(struct sock *sk)
5775 {
5776 tcp_push_pending_frames(sk);
5777 tcp_check_space(sk);
5778 }
5779
5780 /*
5781 * Check if sending an ack is needed.
5782 */
__tcp_ack_snd_check(struct sock * sk,int ofo_possible)5783 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5784 {
5785 struct tcp_sock *tp = tcp_sk(sk);
5786 unsigned long rtt, delay;
5787
5788 /* More than one full frame received... */
5789 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5790 /* ... and right edge of window advances far enough.
5791 * (tcp_recvmsg() will send ACK otherwise).
5792 * If application uses SO_RCVLOWAT, we want send ack now if
5793 * we have not received enough bytes to satisfy the condition.
5794 */
5795 (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat ||
5796 __tcp_select_window(sk) >= tp->rcv_wnd)) ||
5797 /* We ACK each frame or... */
5798 tcp_in_quickack_mode(sk) ||
5799 /* Protocol state mandates a one-time immediate ACK */
5800 inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOW) {
5801 /* If we are running from __release_sock() in user context,
5802 * Defer the ack until tcp_release_cb().
5803 */
5804 if (sock_owned_by_user_nocheck(sk) &&
5805 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_backlog_ack_defer)) {
5806 set_bit(TCP_ACK_DEFERRED, &sk->sk_tsq_flags);
5807 return;
5808 }
5809 send_now:
5810 tcp_send_ack(sk);
5811 return;
5812 }
5813
5814 if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5815 tcp_send_delayed_ack(sk);
5816 return;
5817 }
5818
5819 if (!tcp_is_sack(tp) ||
5820 tp->compressed_ack >= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr))
5821 goto send_now;
5822
5823 if (tp->compressed_ack_rcv_nxt != tp->rcv_nxt) {
5824 tp->compressed_ack_rcv_nxt = tp->rcv_nxt;
5825 tp->dup_ack_counter = 0;
5826 }
5827 if (tp->dup_ack_counter < TCP_FASTRETRANS_THRESH) {
5828 tp->dup_ack_counter++;
5829 goto send_now;
5830 }
5831 tp->compressed_ack++;
5832 if (hrtimer_is_queued(&tp->compressed_ack_timer))
5833 return;
5834
5835 /* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */
5836
5837 rtt = tp->rcv_rtt_est.rtt_us;
5838 if (tp->srtt_us && tp->srtt_us < rtt)
5839 rtt = tp->srtt_us;
5840
5841 delay = min_t(unsigned long,
5842 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns),
5843 rtt * (NSEC_PER_USEC >> 3)/20);
5844 sock_hold(sk);
5845 hrtimer_start_range_ns(&tp->compressed_ack_timer, ns_to_ktime(delay),
5846 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_slack_ns),
5847 HRTIMER_MODE_REL_PINNED_SOFT);
5848 }
5849
tcp_ack_snd_check(struct sock * sk)5850 static inline void tcp_ack_snd_check(struct sock *sk)
5851 {
5852 if (!inet_csk_ack_scheduled(sk)) {
5853 /* We sent a data segment already. */
5854 return;
5855 }
5856 __tcp_ack_snd_check(sk, 1);
5857 }
5858
5859 /*
5860 * This routine is only called when we have urgent data
5861 * signaled. Its the 'slow' part of tcp_urg. It could be
5862 * moved inline now as tcp_urg is only called from one
5863 * place. We handle URGent data wrong. We have to - as
5864 * BSD still doesn't use the correction from RFC961.
5865 * For 1003.1g we should support a new option TCP_STDURG to permit
5866 * either form (or just set the sysctl tcp_stdurg).
5867 */
5868
tcp_check_urg(struct sock * sk,const struct tcphdr * th)5869 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5870 {
5871 struct tcp_sock *tp = tcp_sk(sk);
5872 u32 ptr = ntohs(th->urg_ptr);
5873
5874 if (ptr && !READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_stdurg))
5875 ptr--;
5876 ptr += ntohl(th->seq);
5877
5878 /* Ignore urgent data that we've already seen and read. */
5879 if (after(tp->copied_seq, ptr))
5880 return;
5881
5882 /* Do not replay urg ptr.
5883 *
5884 * NOTE: interesting situation not covered by specs.
5885 * Misbehaving sender may send urg ptr, pointing to segment,
5886 * which we already have in ofo queue. We are not able to fetch
5887 * such data and will stay in TCP_URG_NOTYET until will be eaten
5888 * by recvmsg(). Seems, we are not obliged to handle such wicked
5889 * situations. But it is worth to think about possibility of some
5890 * DoSes using some hypothetical application level deadlock.
5891 */
5892 if (before(ptr, tp->rcv_nxt))
5893 return;
5894
5895 /* Do we already have a newer (or duplicate) urgent pointer? */
5896 if (tp->urg_data && !after(ptr, tp->urg_seq))
5897 return;
5898
5899 /* Tell the world about our new urgent pointer. */
5900 sk_send_sigurg(sk);
5901
5902 /* We may be adding urgent data when the last byte read was
5903 * urgent. To do this requires some care. We cannot just ignore
5904 * tp->copied_seq since we would read the last urgent byte again
5905 * as data, nor can we alter copied_seq until this data arrives
5906 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5907 *
5908 * NOTE. Double Dutch. Rendering to plain English: author of comment
5909 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
5910 * and expect that both A and B disappear from stream. This is _wrong_.
5911 * Though this happens in BSD with high probability, this is occasional.
5912 * Any application relying on this is buggy. Note also, that fix "works"
5913 * only in this artificial test. Insert some normal data between A and B and we will
5914 * decline of BSD again. Verdict: it is better to remove to trap
5915 * buggy users.
5916 */
5917 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5918 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5919 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5920 tp->copied_seq++;
5921 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5922 __skb_unlink(skb, &sk->sk_receive_queue);
5923 __kfree_skb(skb);
5924 }
5925 }
5926
5927 WRITE_ONCE(tp->urg_data, TCP_URG_NOTYET);
5928 WRITE_ONCE(tp->urg_seq, ptr);
5929
5930 /* Disable header prediction. */
5931 tp->pred_flags = 0;
5932 }
5933
5934 /* This is the 'fast' part of urgent handling. */
tcp_urg(struct sock * sk,struct sk_buff * skb,const struct tcphdr * th)5935 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5936 {
5937 struct tcp_sock *tp = tcp_sk(sk);
5938
5939 /* Check if we get a new urgent pointer - normally not. */
5940 if (unlikely(th->urg))
5941 tcp_check_urg(sk, th);
5942
5943 /* Do we wait for any urgent data? - normally not... */
5944 if (unlikely(tp->urg_data == TCP_URG_NOTYET)) {
5945 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5946 th->syn;
5947
5948 /* Is the urgent pointer pointing into this packet? */
5949 if (ptr < skb->len) {
5950 u8 tmp;
5951 if (skb_copy_bits(skb, ptr, &tmp, 1))
5952 BUG();
5953 WRITE_ONCE(tp->urg_data, TCP_URG_VALID | tmp);
5954 if (!sock_flag(sk, SOCK_DEAD))
5955 sk->sk_data_ready(sk);
5956 }
5957 }
5958 }
5959
5960 /* Accept RST for rcv_nxt - 1 after a FIN.
5961 * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
5962 * FIN is sent followed by a RST packet. The RST is sent with the same
5963 * sequence number as the FIN, and thus according to RFC 5961 a challenge
5964 * ACK should be sent. However, Mac OSX rate limits replies to challenge
5965 * ACKs on the closed socket. In addition middleboxes can drop either the
5966 * challenge ACK or a subsequent RST.
5967 */
tcp_reset_check(const struct sock * sk,const struct sk_buff * skb)5968 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb)
5969 {
5970 const struct tcp_sock *tp = tcp_sk(sk);
5971
5972 return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) &&
5973 (1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK |
5974 TCPF_CLOSING));
5975 }
5976
5977 /* Does PAWS and seqno based validation of an incoming segment, flags will
5978 * play significant role here.
5979 */
tcp_validate_incoming(struct sock * sk,struct sk_buff * skb,const struct tcphdr * th,int syn_inerr)5980 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5981 const struct tcphdr *th, int syn_inerr)
5982 {
5983 struct tcp_sock *tp = tcp_sk(sk);
5984 SKB_DR(reason);
5985
5986 /* RFC1323: H1. Apply PAWS check first. */
5987 if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) &&
5988 tp->rx_opt.saw_tstamp &&
5989 tcp_paws_discard(sk, skb)) {
5990 if (!th->rst) {
5991 if (unlikely(th->syn))
5992 goto syn_challenge;
5993 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5994 if (!tcp_oow_rate_limited(sock_net(sk), skb,
5995 LINUX_MIB_TCPACKSKIPPEDPAWS,
5996 &tp->last_oow_ack_time))
5997 tcp_send_dupack(sk, skb);
5998 SKB_DR_SET(reason, TCP_RFC7323_PAWS);
5999 goto discard;
6000 }
6001 /* Reset is accepted even if it did not pass PAWS. */
6002 }
6003
6004 /* Step 1: check sequence number */
6005 reason = tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
6006 if (reason) {
6007 /* RFC793, page 37: "In all states except SYN-SENT, all reset
6008 * (RST) segments are validated by checking their SEQ-fields."
6009 * And page 69: "If an incoming segment is not acceptable,
6010 * an acknowledgment should be sent in reply (unless the RST
6011 * bit is set, if so drop the segment and return)".
6012 */
6013 if (!th->rst) {
6014 if (th->syn)
6015 goto syn_challenge;
6016 if (!tcp_oow_rate_limited(sock_net(sk), skb,
6017 LINUX_MIB_TCPACKSKIPPEDSEQ,
6018 &tp->last_oow_ack_time))
6019 tcp_send_dupack(sk, skb);
6020 } else if (tcp_reset_check(sk, skb)) {
6021 goto reset;
6022 }
6023 goto discard;
6024 }
6025
6026 /* Step 2: check RST bit */
6027 if (th->rst) {
6028 /* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
6029 * FIN and SACK too if available):
6030 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
6031 * the right-most SACK block,
6032 * then
6033 * RESET the connection
6034 * else
6035 * Send a challenge ACK
6036 */
6037 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt ||
6038 tcp_reset_check(sk, skb))
6039 goto reset;
6040
6041 if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
6042 struct tcp_sack_block *sp = &tp->selective_acks[0];
6043 int max_sack = sp[0].end_seq;
6044 int this_sack;
6045
6046 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
6047 ++this_sack) {
6048 max_sack = after(sp[this_sack].end_seq,
6049 max_sack) ?
6050 sp[this_sack].end_seq : max_sack;
6051 }
6052
6053 if (TCP_SKB_CB(skb)->seq == max_sack)
6054 goto reset;
6055 }
6056
6057 /* Disable TFO if RST is out-of-order
6058 * and no data has been received
6059 * for current active TFO socket
6060 */
6061 if (tp->syn_fastopen && !tp->data_segs_in &&
6062 sk->sk_state == TCP_ESTABLISHED)
6063 tcp_fastopen_active_disable(sk);
6064 tcp_send_challenge_ack(sk);
6065 SKB_DR_SET(reason, TCP_RESET);
6066 goto discard;
6067 }
6068
6069 /* step 3: check security and precedence [ignored] */
6070
6071 /* step 4: Check for a SYN
6072 * RFC 5961 4.2 : Send a challenge ack
6073 */
6074 if (th->syn) {
6075 if (sk->sk_state == TCP_SYN_RECV && sk->sk_socket && th->ack &&
6076 TCP_SKB_CB(skb)->seq + 1 == TCP_SKB_CB(skb)->end_seq &&
6077 TCP_SKB_CB(skb)->seq + 1 == tp->rcv_nxt &&
6078 TCP_SKB_CB(skb)->ack_seq == tp->snd_nxt)
6079 goto pass;
6080 syn_challenge:
6081 if (syn_inerr)
6082 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
6083 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
6084 tcp_send_challenge_ack(sk);
6085 SKB_DR_SET(reason, TCP_INVALID_SYN);
6086 goto discard;
6087 }
6088
6089 pass:
6090 bpf_skops_parse_hdr(sk, skb);
6091
6092 return true;
6093
6094 discard:
6095 tcp_drop_reason(sk, skb, reason);
6096 return false;
6097
6098 reset:
6099 tcp_reset(sk, skb);
6100 __kfree_skb(skb);
6101 return false;
6102 }
6103
6104 /*
6105 * TCP receive function for the ESTABLISHED state.
6106 *
6107 * It is split into a fast path and a slow path. The fast path is
6108 * disabled when:
6109 * - A zero window was announced from us - zero window probing
6110 * is only handled properly in the slow path.
6111 * - Out of order segments arrived.
6112 * - Urgent data is expected.
6113 * - There is no buffer space left
6114 * - Unexpected TCP flags/window values/header lengths are received
6115 * (detected by checking the TCP header against pred_flags)
6116 * - Data is sent in both directions. Fast path only supports pure senders
6117 * or pure receivers (this means either the sequence number or the ack
6118 * value must stay constant)
6119 * - Unexpected TCP option.
6120 *
6121 * When these conditions are not satisfied it drops into a standard
6122 * receive procedure patterned after RFC793 to handle all cases.
6123 * The first three cases are guaranteed by proper pred_flags setting,
6124 * the rest is checked inline. Fast processing is turned on in
6125 * tcp_data_queue when everything is OK.
6126 */
tcp_rcv_established(struct sock * sk,struct sk_buff * skb)6127 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb)
6128 {
6129 enum skb_drop_reason reason = SKB_DROP_REASON_NOT_SPECIFIED;
6130 const struct tcphdr *th = (const struct tcphdr *)skb->data;
6131 struct tcp_sock *tp = tcp_sk(sk);
6132 unsigned int len = skb->len;
6133
6134 /* TCP congestion window tracking */
6135 trace_tcp_probe(sk, skb);
6136
6137 tcp_mstamp_refresh(tp);
6138 if (unlikely(!rcu_access_pointer(sk->sk_rx_dst)))
6139 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
6140 /*
6141 * Header prediction.
6142 * The code loosely follows the one in the famous
6143 * "30 instruction TCP receive" Van Jacobson mail.
6144 *
6145 * Van's trick is to deposit buffers into socket queue
6146 * on a device interrupt, to call tcp_recv function
6147 * on the receive process context and checksum and copy
6148 * the buffer to user space. smart...
6149 *
6150 * Our current scheme is not silly either but we take the
6151 * extra cost of the net_bh soft interrupt processing...
6152 * We do checksum and copy also but from device to kernel.
6153 */
6154
6155 tp->rx_opt.saw_tstamp = 0;
6156
6157 /* pred_flags is 0xS?10 << 16 + snd_wnd
6158 * if header_prediction is to be made
6159 * 'S' will always be tp->tcp_header_len >> 2
6160 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
6161 * turn it off (when there are holes in the receive
6162 * space for instance)
6163 * PSH flag is ignored.
6164 */
6165
6166 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
6167 TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
6168 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
6169 int tcp_header_len = tp->tcp_header_len;
6170
6171 /* Timestamp header prediction: tcp_header_len
6172 * is automatically equal to th->doff*4 due to pred_flags
6173 * match.
6174 */
6175
6176 /* Check timestamp */
6177 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
6178 /* No? Slow path! */
6179 if (!tcp_parse_aligned_timestamp(tp, th))
6180 goto slow_path;
6181
6182 /* If PAWS failed, check it more carefully in slow path */
6183 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
6184 goto slow_path;
6185
6186 /* DO NOT update ts_recent here, if checksum fails
6187 * and timestamp was corrupted part, it will result
6188 * in a hung connection since we will drop all
6189 * future packets due to the PAWS test.
6190 */
6191 }
6192
6193 if (len <= tcp_header_len) {
6194 /* Bulk data transfer: sender */
6195 if (len == tcp_header_len) {
6196 /* Predicted packet is in window by definition.
6197 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
6198 * Hence, check seq<=rcv_wup reduces to:
6199 */
6200 if (tcp_header_len ==
6201 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
6202 tp->rcv_nxt == tp->rcv_wup)
6203 tcp_store_ts_recent(tp);
6204
6205 /* We know that such packets are checksummed
6206 * on entry.
6207 */
6208 tcp_ack(sk, skb, 0);
6209 __kfree_skb(skb);
6210 tcp_data_snd_check(sk);
6211 /* When receiving pure ack in fast path, update
6212 * last ts ecr directly instead of calling
6213 * tcp_rcv_rtt_measure_ts()
6214 */
6215 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
6216 return;
6217 } else { /* Header too small */
6218 reason = SKB_DROP_REASON_PKT_TOO_SMALL;
6219 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
6220 goto discard;
6221 }
6222 } else {
6223 int eaten = 0;
6224 bool fragstolen = false;
6225
6226 if (tcp_checksum_complete(skb))
6227 goto csum_error;
6228
6229 if ((int)skb->truesize > sk->sk_forward_alloc)
6230 goto step5;
6231
6232 /* Predicted packet is in window by definition.
6233 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
6234 * Hence, check seq<=rcv_wup reduces to:
6235 */
6236 if (tcp_header_len ==
6237 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
6238 tp->rcv_nxt == tp->rcv_wup)
6239 tcp_store_ts_recent(tp);
6240
6241 tcp_rcv_rtt_measure_ts(sk, skb);
6242
6243 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
6244
6245 /* Bulk data transfer: receiver */
6246 tcp_cleanup_skb(skb);
6247 __skb_pull(skb, tcp_header_len);
6248 eaten = tcp_queue_rcv(sk, skb, &fragstolen);
6249
6250 tcp_event_data_recv(sk, skb);
6251
6252 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
6253 /* Well, only one small jumplet in fast path... */
6254 tcp_ack(sk, skb, FLAG_DATA);
6255 tcp_data_snd_check(sk);
6256 if (!inet_csk_ack_scheduled(sk))
6257 goto no_ack;
6258 } else {
6259 tcp_update_wl(tp, TCP_SKB_CB(skb)->seq);
6260 }
6261
6262 __tcp_ack_snd_check(sk, 0);
6263 no_ack:
6264 trace_android_vh_tcp_rcv_established_fast_path(sk);
6265 if (eaten)
6266 kfree_skb_partial(skb, fragstolen);
6267 tcp_data_ready(sk);
6268 return;
6269 }
6270 }
6271
6272 slow_path:
6273 if (len < (th->doff << 2) || tcp_checksum_complete(skb))
6274 goto csum_error;
6275
6276 if (!th->ack && !th->rst && !th->syn) {
6277 reason = SKB_DROP_REASON_TCP_FLAGS;
6278 goto discard;
6279 }
6280
6281 /*
6282 * Standard slow path.
6283 */
6284
6285 if (!tcp_validate_incoming(sk, skb, th, 1))
6286 return;
6287
6288 step5:
6289 reason = tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT);
6290 if ((int)reason < 0) {
6291 reason = -reason;
6292 goto discard;
6293 }
6294 tcp_rcv_rtt_measure_ts(sk, skb);
6295
6296 /* Process urgent data. */
6297 tcp_urg(sk, skb, th);
6298
6299 /* step 7: process the segment text */
6300 tcp_data_queue(sk, skb);
6301
6302 tcp_data_snd_check(sk);
6303 tcp_ack_snd_check(sk);
6304
6305 trace_android_vh_tcp_rcv_established_slow_path(sk);
6306 return;
6307
6308 csum_error:
6309 reason = SKB_DROP_REASON_TCP_CSUM;
6310 trace_tcp_bad_csum(skb);
6311 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
6312 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
6313
6314 discard:
6315 tcp_drop_reason(sk, skb, reason);
6316 }
6317 EXPORT_SYMBOL(tcp_rcv_established);
6318
tcp_init_transfer(struct sock * sk,int bpf_op,struct sk_buff * skb)6319 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb)
6320 {
6321 struct inet_connection_sock *icsk = inet_csk(sk);
6322 struct tcp_sock *tp = tcp_sk(sk);
6323
6324 tcp_mtup_init(sk);
6325 icsk->icsk_af_ops->rebuild_header(sk);
6326 tcp_init_metrics(sk);
6327
6328 /* Initialize the congestion window to start the transfer.
6329 * Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
6330 * retransmitted. In light of RFC6298 more aggressive 1sec
6331 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
6332 * retransmission has occurred.
6333 */
6334 if (tp->total_retrans > 1 && tp->undo_marker)
6335 tcp_snd_cwnd_set(tp, 1);
6336 else
6337 tcp_snd_cwnd_set(tp, tcp_init_cwnd(tp, __sk_dst_get(sk)));
6338 tp->snd_cwnd_stamp = tcp_jiffies32;
6339
6340 bpf_skops_established(sk, bpf_op, skb);
6341 /* Initialize congestion control unless BPF initialized it already: */
6342 if (!icsk->icsk_ca_initialized)
6343 tcp_init_congestion_control(sk);
6344 tcp_init_buffer_space(sk);
6345 }
6346
tcp_finish_connect(struct sock * sk,struct sk_buff * skb)6347 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
6348 {
6349 struct tcp_sock *tp = tcp_sk(sk);
6350 struct inet_connection_sock *icsk = inet_csk(sk);
6351
6352 tcp_ao_finish_connect(sk, skb);
6353 tcp_set_state(sk, TCP_ESTABLISHED);
6354 icsk->icsk_ack.lrcvtime = tcp_jiffies32;
6355
6356 if (skb) {
6357 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
6358 security_inet_conn_established(sk, skb);
6359 sk_mark_napi_id(sk, skb);
6360 }
6361
6362 tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB, skb);
6363
6364 /* Prevent spurious tcp_cwnd_restart() on first data
6365 * packet.
6366 */
6367 tp->lsndtime = tcp_jiffies32;
6368
6369 if (sock_flag(sk, SOCK_KEEPOPEN))
6370 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
6371
6372 if (!tp->rx_opt.snd_wscale)
6373 __tcp_fast_path_on(tp, tp->snd_wnd);
6374 else
6375 tp->pred_flags = 0;
6376 }
6377
tcp_rcv_fastopen_synack(struct sock * sk,struct sk_buff * synack,struct tcp_fastopen_cookie * cookie)6378 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
6379 struct tcp_fastopen_cookie *cookie)
6380 {
6381 struct tcp_sock *tp = tcp_sk(sk);
6382 struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL;
6383 u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
6384 bool syn_drop = false;
6385
6386 if (mss == tp->rx_opt.user_mss) {
6387 struct tcp_options_received opt;
6388
6389 /* Get original SYNACK MSS value if user MSS sets mss_clamp */
6390 tcp_clear_options(&opt);
6391 opt.user_mss = opt.mss_clamp = 0;
6392 tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL);
6393 mss = opt.mss_clamp;
6394 }
6395
6396 if (!tp->syn_fastopen) {
6397 /* Ignore an unsolicited cookie */
6398 cookie->len = -1;
6399 } else if (tp->total_retrans) {
6400 /* SYN timed out and the SYN-ACK neither has a cookie nor
6401 * acknowledges data. Presumably the remote received only
6402 * the retransmitted (regular) SYNs: either the original
6403 * SYN-data or the corresponding SYN-ACK was dropped.
6404 */
6405 syn_drop = (cookie->len < 0 && data);
6406 } else if (cookie->len < 0 && !tp->syn_data) {
6407 /* We requested a cookie but didn't get it. If we did not use
6408 * the (old) exp opt format then try so next time (try_exp=1).
6409 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
6410 */
6411 try_exp = tp->syn_fastopen_exp ? 2 : 1;
6412 }
6413
6414 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
6415
6416 if (data) { /* Retransmit unacked data in SYN */
6417 if (tp->total_retrans)
6418 tp->fastopen_client_fail = TFO_SYN_RETRANSMITTED;
6419 else
6420 tp->fastopen_client_fail = TFO_DATA_NOT_ACKED;
6421 skb_rbtree_walk_from(data)
6422 tcp_mark_skb_lost(sk, data);
6423 tcp_non_congestion_loss_retransmit(sk);
6424 NET_INC_STATS(sock_net(sk),
6425 LINUX_MIB_TCPFASTOPENACTIVEFAIL);
6426 return true;
6427 }
6428 tp->syn_data_acked = tp->syn_data;
6429 if (tp->syn_data_acked) {
6430 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
6431 /* SYN-data is counted as two separate packets in tcp_ack() */
6432 if (tp->delivered > 1)
6433 --tp->delivered;
6434 }
6435
6436 tcp_fastopen_add_skb(sk, synack);
6437
6438 return false;
6439 }
6440
smc_check_reset_syn(struct tcp_sock * tp)6441 static void smc_check_reset_syn(struct tcp_sock *tp)
6442 {
6443 #if IS_ENABLED(CONFIG_SMC)
6444 if (static_branch_unlikely(&tcp_have_smc)) {
6445 if (tp->syn_smc && !tp->rx_opt.smc_ok)
6446 tp->syn_smc = 0;
6447 }
6448 #endif
6449 }
6450
tcp_try_undo_spurious_syn(struct sock * sk)6451 static void tcp_try_undo_spurious_syn(struct sock *sk)
6452 {
6453 struct tcp_sock *tp = tcp_sk(sk);
6454 u32 syn_stamp;
6455
6456 /* undo_marker is set when SYN or SYNACK times out. The timeout is
6457 * spurious if the ACK's timestamp option echo value matches the
6458 * original SYN timestamp.
6459 */
6460 syn_stamp = tp->retrans_stamp;
6461 if (tp->undo_marker && syn_stamp && tp->rx_opt.saw_tstamp &&
6462 syn_stamp == tp->rx_opt.rcv_tsecr)
6463 tp->undo_marker = 0;
6464 }
6465
tcp_rcv_synsent_state_process(struct sock * sk,struct sk_buff * skb,const struct tcphdr * th)6466 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
6467 const struct tcphdr *th)
6468 {
6469 struct inet_connection_sock *icsk = inet_csk(sk);
6470 struct tcp_sock *tp = tcp_sk(sk);
6471 struct tcp_fastopen_cookie foc = { .len = -1 };
6472 int saved_clamp = tp->rx_opt.mss_clamp;
6473 bool fastopen_fail;
6474 SKB_DR(reason);
6475
6476 tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc);
6477 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
6478 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
6479
6480 if (th->ack) {
6481 /* rfc793:
6482 * "If the state is SYN-SENT then
6483 * first check the ACK bit
6484 * If the ACK bit is set
6485 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
6486 * a reset (unless the RST bit is set, if so drop
6487 * the segment and return)"
6488 */
6489 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
6490 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
6491 /* Previous FIN/ACK or RST/ACK might be ignored. */
6492 if (icsk->icsk_retransmits == 0)
6493 inet_csk_reset_xmit_timer(sk,
6494 ICSK_TIME_RETRANS,
6495 TCP_TIMEOUT_MIN, TCP_RTO_MAX);
6496 SKB_DR_SET(reason, TCP_INVALID_ACK_SEQUENCE);
6497 goto reset_and_undo;
6498 }
6499
6500 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
6501 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
6502 tcp_time_stamp_ts(tp))) {
6503 NET_INC_STATS(sock_net(sk),
6504 LINUX_MIB_PAWSACTIVEREJECTED);
6505 SKB_DR_SET(reason, TCP_RFC7323_PAWS);
6506 goto reset_and_undo;
6507 }
6508
6509 /* Now ACK is acceptable.
6510 *
6511 * "If the RST bit is set
6512 * If the ACK was acceptable then signal the user "error:
6513 * connection reset", drop the segment, enter CLOSED state,
6514 * delete TCB, and return."
6515 */
6516
6517 if (th->rst) {
6518 tcp_reset(sk, skb);
6519
6520 trace_android_vh_tcp_state_change(sk, TCP_STATE_CHANGE_REASON_SYN_RST, 0);
6521 consume:
6522 __kfree_skb(skb);
6523 return 0;
6524 }
6525
6526 /* rfc793:
6527 * "fifth, if neither of the SYN or RST bits is set then
6528 * drop the segment and return."
6529 *
6530 * See note below!
6531 * --ANK(990513)
6532 */
6533 if (!th->syn) {
6534 SKB_DR_SET(reason, TCP_FLAGS);
6535 goto discard_and_undo;
6536 }
6537 /* rfc793:
6538 * "If the SYN bit is on ...
6539 * are acceptable then ...
6540 * (our SYN has been ACKed), change the connection
6541 * state to ESTABLISHED..."
6542 */
6543
6544 tcp_ecn_rcv_synack(tp, th);
6545
6546 trace_android_vh_tcp_rcv_synack(icsk);
6547 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6548 tcp_try_undo_spurious_syn(sk);
6549 tcp_ack(sk, skb, FLAG_SLOWPATH);
6550
6551 /* Ok.. it's good. Set up sequence numbers and
6552 * move to established.
6553 */
6554 WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6555 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6556
6557 /* RFC1323: The window in SYN & SYN/ACK segments is
6558 * never scaled.
6559 */
6560 tp->snd_wnd = ntohs(th->window);
6561
6562 if (!tp->rx_opt.wscale_ok) {
6563 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
6564 WRITE_ONCE(tp->window_clamp,
6565 min(tp->window_clamp, 65535U));
6566 }
6567
6568 if (tp->rx_opt.saw_tstamp) {
6569 tp->rx_opt.tstamp_ok = 1;
6570 tp->tcp_header_len =
6571 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6572 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6573 tcp_store_ts_recent(tp);
6574 } else {
6575 tp->tcp_header_len = sizeof(struct tcphdr);
6576 }
6577
6578 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6579 tcp_initialize_rcv_mss(sk);
6580
6581 /* Remember, tcp_poll() does not lock socket!
6582 * Change state from SYN-SENT only after copied_seq
6583 * is initialized. */
6584 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6585
6586 smc_check_reset_syn(tp);
6587
6588 smp_mb();
6589
6590 tcp_finish_connect(sk, skb);
6591
6592 fastopen_fail = (tp->syn_fastopen || tp->syn_data) &&
6593 tcp_rcv_fastopen_synack(sk, skb, &foc);
6594
6595 if (!sock_flag(sk, SOCK_DEAD)) {
6596 sk->sk_state_change(sk);
6597 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6598 }
6599 if (fastopen_fail)
6600 return -1;
6601 if (sk->sk_write_pending ||
6602 READ_ONCE(icsk->icsk_accept_queue.rskq_defer_accept) ||
6603 inet_csk_in_pingpong_mode(sk)) {
6604 /* Save one ACK. Data will be ready after
6605 * several ticks, if write_pending is set.
6606 *
6607 * It may be deleted, but with this feature tcpdumps
6608 * look so _wonderfully_ clever, that I was not able
6609 * to stand against the temptation 8) --ANK
6610 */
6611 inet_csk_schedule_ack(sk);
6612 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
6613 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
6614 TCP_DELACK_MAX, TCP_RTO_MAX);
6615 goto consume;
6616 }
6617 tcp_send_ack(sk);
6618 return -1;
6619 }
6620
6621 /* No ACK in the segment */
6622
6623 if (th->rst) {
6624 /* rfc793:
6625 * "If the RST bit is set
6626 *
6627 * Otherwise (no ACK) drop the segment and return."
6628 */
6629 SKB_DR_SET(reason, TCP_RESET);
6630 goto discard_and_undo;
6631 }
6632
6633 /* PAWS check. */
6634 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
6635 tcp_paws_reject(&tp->rx_opt, 0)) {
6636 SKB_DR_SET(reason, TCP_RFC7323_PAWS);
6637 goto discard_and_undo;
6638 }
6639 if (th->syn) {
6640 /* We see SYN without ACK. It is attempt of
6641 * simultaneous connect with crossed SYNs.
6642 * Particularly, it can be connect to self.
6643 */
6644 #ifdef CONFIG_TCP_AO
6645 struct tcp_ao_info *ao;
6646
6647 ao = rcu_dereference_protected(tp->ao_info,
6648 lockdep_sock_is_held(sk));
6649 if (ao) {
6650 WRITE_ONCE(ao->risn, th->seq);
6651 ao->rcv_sne = 0;
6652 }
6653 #endif
6654 tcp_set_state(sk, TCP_SYN_RECV);
6655
6656 if (tp->rx_opt.saw_tstamp) {
6657 tp->rx_opt.tstamp_ok = 1;
6658 tcp_store_ts_recent(tp);
6659 tp->tcp_header_len =
6660 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6661 } else {
6662 tp->tcp_header_len = sizeof(struct tcphdr);
6663 }
6664
6665 WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6666 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6667 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6668
6669 /* RFC1323: The window in SYN & SYN/ACK segments is
6670 * never scaled.
6671 */
6672 tp->snd_wnd = ntohs(th->window);
6673 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
6674 tp->max_window = tp->snd_wnd;
6675
6676 tcp_ecn_rcv_syn(tp, th);
6677
6678 tcp_mtup_init(sk);
6679 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6680 tcp_initialize_rcv_mss(sk);
6681
6682 tcp_send_synack(sk);
6683 #if 0
6684 /* Note, we could accept data and URG from this segment.
6685 * There are no obstacles to make this (except that we must
6686 * either change tcp_recvmsg() to prevent it from returning data
6687 * before 3WHS completes per RFC793, or employ TCP Fast Open).
6688 *
6689 * However, if we ignore data in ACKless segments sometimes,
6690 * we have no reasons to accept it sometimes.
6691 * Also, seems the code doing it in step6 of tcp_rcv_state_process
6692 * is not flawless. So, discard packet for sanity.
6693 * Uncomment this return to process the data.
6694 */
6695 return -1;
6696 #else
6697 goto consume;
6698 #endif
6699 }
6700 /* "fifth, if neither of the SYN or RST bits is set then
6701 * drop the segment and return."
6702 */
6703
6704 discard_and_undo:
6705 tcp_clear_options(&tp->rx_opt);
6706 tp->rx_opt.mss_clamp = saved_clamp;
6707 tcp_drop_reason(sk, skb, reason);
6708 return 0;
6709
6710 reset_and_undo:
6711 tcp_clear_options(&tp->rx_opt);
6712 tp->rx_opt.mss_clamp = saved_clamp;
6713 /* we can reuse/return @reason to its caller to handle the exception */
6714 return reason;
6715 }
6716
tcp_rcv_synrecv_state_fastopen(struct sock * sk)6717 static void tcp_rcv_synrecv_state_fastopen(struct sock *sk)
6718 {
6719 struct tcp_sock *tp = tcp_sk(sk);
6720 struct request_sock *req;
6721
6722 /* If we are still handling the SYNACK RTO, see if timestamp ECR allows
6723 * undo. If peer SACKs triggered fast recovery, we can't undo here.
6724 */
6725 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss && !tp->packets_out)
6726 tcp_try_undo_recovery(sk);
6727
6728 tcp_update_rto_time(tp);
6729 inet_csk(sk)->icsk_retransmits = 0;
6730 /* In tcp_fastopen_synack_timer() on the first SYNACK RTO we set
6731 * retrans_stamp but don't enter CA_Loss, so in case that happened we
6732 * need to zero retrans_stamp here to prevent spurious
6733 * retransmits_timed_out(). However, if the ACK of our SYNACK caused us
6734 * to enter CA_Recovery then we need to leave retrans_stamp as it was
6735 * set entering CA_Recovery, for correct retransmits_timed_out() and
6736 * undo behavior.
6737 */
6738 tcp_retrans_stamp_cleanup(sk);
6739
6740 /* Once we leave TCP_SYN_RECV or TCP_FIN_WAIT_1,
6741 * we no longer need req so release it.
6742 */
6743 req = rcu_dereference_protected(tp->fastopen_rsk,
6744 lockdep_sock_is_held(sk));
6745 reqsk_fastopen_remove(sk, req, false);
6746
6747 /* Re-arm the timer because data may have been sent out.
6748 * This is similar to the regular data transmission case
6749 * when new data has just been ack'ed.
6750 *
6751 * (TFO) - we could try to be more aggressive and
6752 * retransmitting any data sooner based on when they
6753 * are sent out.
6754 */
6755 tcp_rearm_rto(sk);
6756 }
6757
6758 /*
6759 * This function implements the receiving procedure of RFC 793 for
6760 * all states except ESTABLISHED and TIME_WAIT.
6761 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
6762 * address independent.
6763 */
6764
6765 enum skb_drop_reason
tcp_rcv_state_process(struct sock * sk,struct sk_buff * skb)6766 tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
6767 {
6768 struct tcp_sock *tp = tcp_sk(sk);
6769 struct inet_connection_sock *icsk = inet_csk(sk);
6770 const struct tcphdr *th = tcp_hdr(skb);
6771 struct request_sock *req;
6772 int queued = 0;
6773 SKB_DR(reason);
6774
6775 switch (sk->sk_state) {
6776 case TCP_CLOSE:
6777 SKB_DR_SET(reason, TCP_CLOSE);
6778 goto discard;
6779
6780 case TCP_LISTEN:
6781 if (th->ack)
6782 return SKB_DROP_REASON_TCP_FLAGS;
6783
6784 if (th->rst) {
6785 SKB_DR_SET(reason, TCP_RESET);
6786 goto discard;
6787 }
6788 if (th->syn) {
6789 if (th->fin) {
6790 SKB_DR_SET(reason, TCP_FLAGS);
6791 goto discard;
6792 }
6793 /* It is possible that we process SYN packets from backlog,
6794 * so we need to make sure to disable BH and RCU right there.
6795 */
6796 rcu_read_lock();
6797 local_bh_disable();
6798 icsk->icsk_af_ops->conn_request(sk, skb);
6799 local_bh_enable();
6800 rcu_read_unlock();
6801
6802 consume_skb(skb);
6803 return 0;
6804 }
6805 SKB_DR_SET(reason, TCP_FLAGS);
6806 goto discard;
6807
6808 case TCP_SYN_SENT:
6809 tp->rx_opt.saw_tstamp = 0;
6810 tcp_mstamp_refresh(tp);
6811 queued = tcp_rcv_synsent_state_process(sk, skb, th);
6812 if (queued >= 0)
6813 return queued;
6814
6815 /* Do step6 onward by hand. */
6816 tcp_urg(sk, skb, th);
6817 __kfree_skb(skb);
6818 tcp_data_snd_check(sk);
6819 return 0;
6820 }
6821
6822 tcp_mstamp_refresh(tp);
6823 tp->rx_opt.saw_tstamp = 0;
6824 req = rcu_dereference_protected(tp->fastopen_rsk,
6825 lockdep_sock_is_held(sk));
6826 if (req) {
6827 bool req_stolen;
6828
6829 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
6830 sk->sk_state != TCP_FIN_WAIT1);
6831
6832 if (!tcp_check_req(sk, skb, req, true, &req_stolen)) {
6833 SKB_DR_SET(reason, TCP_FASTOPEN);
6834 goto discard;
6835 }
6836 }
6837
6838 if (!th->ack && !th->rst && !th->syn) {
6839 SKB_DR_SET(reason, TCP_FLAGS);
6840 goto discard;
6841 }
6842 if (!tcp_validate_incoming(sk, skb, th, 0))
6843 return 0;
6844
6845 /* step 5: check the ACK field */
6846 reason = tcp_ack(sk, skb, FLAG_SLOWPATH |
6847 FLAG_UPDATE_TS_RECENT |
6848 FLAG_NO_CHALLENGE_ACK);
6849
6850 if ((int)reason <= 0) {
6851 if (sk->sk_state == TCP_SYN_RECV) {
6852 /* send one RST */
6853 if (!reason)
6854 return SKB_DROP_REASON_TCP_OLD_ACK;
6855 return -reason;
6856 }
6857 /* accept old ack during closing */
6858 if ((int)reason < 0) {
6859 tcp_send_challenge_ack(sk);
6860 reason = -reason;
6861 goto discard;
6862 }
6863 }
6864 SKB_DR_SET(reason, NOT_SPECIFIED);
6865 switch (sk->sk_state) {
6866 case TCP_SYN_RECV:
6867 tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */
6868 if (!tp->srtt_us)
6869 tcp_synack_rtt_meas(sk, req);
6870
6871 if (tp->rx_opt.tstamp_ok)
6872 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6873
6874 if (req) {
6875 tcp_rcv_synrecv_state_fastopen(sk);
6876 } else {
6877 tcp_try_undo_spurious_syn(sk);
6878 tp->retrans_stamp = 0;
6879 tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB,
6880 skb);
6881 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6882 }
6883 tcp_ao_established(sk);
6884 smp_mb();
6885 tcp_set_state(sk, TCP_ESTABLISHED);
6886 sk->sk_state_change(sk);
6887
6888 /* Note, that this wakeup is only for marginal crossed SYN case.
6889 * Passively open sockets are not waked up, because
6890 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
6891 */
6892 if (sk->sk_socket)
6893 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6894
6895 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
6896 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
6897 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6898
6899 if (!inet_csk(sk)->icsk_ca_ops->cong_control)
6900 tcp_update_pacing_rate(sk);
6901
6902 /* Prevent spurious tcp_cwnd_restart() on first data packet */
6903 tp->lsndtime = tcp_jiffies32;
6904
6905 tcp_initialize_rcv_mss(sk);
6906 tcp_fast_path_on(tp);
6907 if (sk->sk_shutdown & SEND_SHUTDOWN)
6908 tcp_shutdown(sk, SEND_SHUTDOWN);
6909 break;
6910
6911 case TCP_FIN_WAIT1: {
6912 int tmo;
6913
6914 if (req)
6915 tcp_rcv_synrecv_state_fastopen(sk);
6916
6917 if (tp->snd_una != tp->write_seq)
6918 break;
6919
6920 tcp_set_state(sk, TCP_FIN_WAIT2);
6921 WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | SEND_SHUTDOWN);
6922
6923 sk_dst_confirm(sk);
6924
6925 if (!sock_flag(sk, SOCK_DEAD)) {
6926 /* Wake up lingering close() */
6927 sk->sk_state_change(sk);
6928 break;
6929 }
6930
6931 if (READ_ONCE(tp->linger2) < 0) {
6932 tcp_done(sk);
6933 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6934 return SKB_DROP_REASON_TCP_ABORT_ON_DATA;
6935 }
6936 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6937 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6938 /* Receive out of order FIN after close() */
6939 if (tp->syn_fastopen && th->fin)
6940 tcp_fastopen_active_disable(sk);
6941 tcp_done(sk);
6942 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6943 return SKB_DROP_REASON_TCP_ABORT_ON_DATA;
6944 }
6945
6946 tmo = tcp_fin_time(sk);
6947 if (tmo > TCP_TIMEWAIT_LEN) {
6948 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6949 } else if (th->fin || sock_owned_by_user(sk)) {
6950 /* Bad case. We could lose such FIN otherwise.
6951 * It is not a big problem, but it looks confusing
6952 * and not so rare event. We still can lose it now,
6953 * if it spins in bh_lock_sock(), but it is really
6954 * marginal case.
6955 */
6956 inet_csk_reset_keepalive_timer(sk, tmo);
6957 } else {
6958 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6959 goto consume;
6960 }
6961 break;
6962 }
6963
6964 case TCP_CLOSING:
6965 if (tp->snd_una == tp->write_seq) {
6966 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6967 goto consume;
6968 }
6969 break;
6970
6971 case TCP_LAST_ACK:
6972 if (tp->snd_una == tp->write_seq) {
6973 tcp_update_metrics(sk);
6974 tcp_done(sk);
6975 goto consume;
6976 }
6977 break;
6978 }
6979
6980 /* step 6: check the URG bit */
6981 tcp_urg(sk, skb, th);
6982
6983 /* step 7: process the segment text */
6984 switch (sk->sk_state) {
6985 case TCP_CLOSE_WAIT:
6986 case TCP_CLOSING:
6987 case TCP_LAST_ACK:
6988 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
6989 /* If a subflow has been reset, the packet should not
6990 * continue to be processed, drop the packet.
6991 */
6992 if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb))
6993 goto discard;
6994 break;
6995 }
6996 fallthrough;
6997 case TCP_FIN_WAIT1:
6998 case TCP_FIN_WAIT2:
6999 /* RFC 793 says to queue data in these states,
7000 * RFC 1122 says we MUST send a reset.
7001 * BSD 4.4 also does reset.
7002 */
7003 if (sk->sk_shutdown & RCV_SHUTDOWN) {
7004 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
7005 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
7006 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
7007 tcp_reset(sk, skb);
7008 return SKB_DROP_REASON_TCP_ABORT_ON_DATA;
7009 }
7010 }
7011 fallthrough;
7012 case TCP_ESTABLISHED:
7013 tcp_data_queue(sk, skb);
7014 queued = 1;
7015 break;
7016 }
7017
7018 /* tcp_data could move socket to TIME-WAIT */
7019 if (sk->sk_state != TCP_CLOSE) {
7020 tcp_data_snd_check(sk);
7021 tcp_ack_snd_check(sk);
7022 }
7023
7024 if (!queued) {
7025 discard:
7026 tcp_drop_reason(sk, skb, reason);
7027 }
7028 return 0;
7029
7030 consume:
7031 __kfree_skb(skb);
7032 return 0;
7033 }
7034 EXPORT_SYMBOL(tcp_rcv_state_process);
7035
pr_drop_req(struct request_sock * req,__u16 port,int family)7036 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
7037 {
7038 struct inet_request_sock *ireq = inet_rsk(req);
7039
7040 if (family == AF_INET)
7041 net_dbg_ratelimited("drop open request from %pI4/%u\n",
7042 &ireq->ir_rmt_addr, port);
7043 #if IS_ENABLED(CONFIG_IPV6)
7044 else if (family == AF_INET6)
7045 net_dbg_ratelimited("drop open request from %pI6/%u\n",
7046 &ireq->ir_v6_rmt_addr, port);
7047 #endif
7048 }
7049
7050 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
7051 *
7052 * If we receive a SYN packet with these bits set, it means a
7053 * network is playing bad games with TOS bits. In order to
7054 * avoid possible false congestion notifications, we disable
7055 * TCP ECN negotiation.
7056 *
7057 * Exception: tcp_ca wants ECN. This is required for DCTCP
7058 * congestion control: Linux DCTCP asserts ECT on all packets,
7059 * including SYN, which is most optimal solution; however,
7060 * others, such as FreeBSD do not.
7061 *
7062 * Exception: At least one of the reserved bits of the TCP header (th->res1) is
7063 * set, indicating the use of a future TCP extension (such as AccECN). See
7064 * RFC8311 §4.3 which updates RFC3168 to allow the development of such
7065 * extensions.
7066 */
tcp_ecn_create_request(struct request_sock * req,const struct sk_buff * skb,const struct sock * listen_sk,const struct dst_entry * dst)7067 static void tcp_ecn_create_request(struct request_sock *req,
7068 const struct sk_buff *skb,
7069 const struct sock *listen_sk,
7070 const struct dst_entry *dst)
7071 {
7072 const struct tcphdr *th = tcp_hdr(skb);
7073 const struct net *net = sock_net(listen_sk);
7074 bool th_ecn = th->ece && th->cwr;
7075 bool ect, ecn_ok;
7076 u32 ecn_ok_dst;
7077
7078 if (!th_ecn)
7079 return;
7080
7081 ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
7082 ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
7083 ecn_ok = READ_ONCE(net->ipv4.sysctl_tcp_ecn) || ecn_ok_dst;
7084
7085 if (((!ect || th->res1) && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
7086 (ecn_ok_dst & DST_FEATURE_ECN_CA) ||
7087 tcp_bpf_ca_needs_ecn((struct sock *)req))
7088 inet_rsk(req)->ecn_ok = 1;
7089 }
7090
tcp_openreq_init(struct request_sock * req,const struct tcp_options_received * rx_opt,struct sk_buff * skb,const struct sock * sk)7091 static void tcp_openreq_init(struct request_sock *req,
7092 const struct tcp_options_received *rx_opt,
7093 struct sk_buff *skb, const struct sock *sk)
7094 {
7095 struct inet_request_sock *ireq = inet_rsk(req);
7096
7097 req->rsk_rcv_wnd = 0; /* So that tcp_send_synack() knows! */
7098 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
7099 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
7100 tcp_rsk(req)->snt_synack = 0;
7101 tcp_rsk(req)->last_oow_ack_time = 0;
7102 req->mss = rx_opt->mss_clamp;
7103 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
7104 ireq->tstamp_ok = rx_opt->tstamp_ok;
7105 ireq->sack_ok = rx_opt->sack_ok;
7106 ireq->snd_wscale = rx_opt->snd_wscale;
7107 ireq->wscale_ok = rx_opt->wscale_ok;
7108 ireq->acked = 0;
7109 ireq->ecn_ok = 0;
7110 ireq->ir_rmt_port = tcp_hdr(skb)->source;
7111 ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
7112 ireq->ir_mark = inet_request_mark(sk, skb);
7113 #if IS_ENABLED(CONFIG_SMC)
7114 ireq->smc_ok = rx_opt->smc_ok && !(tcp_sk(sk)->smc_hs_congested &&
7115 tcp_sk(sk)->smc_hs_congested(sk));
7116 #endif
7117 }
7118
7119 /*
7120 * Return true if a syncookie should be sent
7121 */
tcp_syn_flood_action(struct sock * sk,const char * proto)7122 static bool tcp_syn_flood_action(struct sock *sk, const char *proto)
7123 {
7124 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
7125 const char *msg = "Dropping request";
7126 struct net *net = sock_net(sk);
7127 bool want_cookie = false;
7128 u8 syncookies;
7129
7130 syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies);
7131
7132 #ifdef CONFIG_SYN_COOKIES
7133 if (syncookies) {
7134 msg = "Sending cookies";
7135 want_cookie = true;
7136 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
7137 } else
7138 #endif
7139 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
7140
7141 if (!READ_ONCE(queue->synflood_warned) && syncookies != 2 &&
7142 xchg(&queue->synflood_warned, 1) == 0) {
7143 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_family == AF_INET6) {
7144 net_info_ratelimited("%s: Possible SYN flooding on port [%pI6c]:%u. %s.\n",
7145 proto, inet6_rcv_saddr(sk),
7146 sk->sk_num, msg);
7147 } else {
7148 net_info_ratelimited("%s: Possible SYN flooding on port %pI4:%u. %s.\n",
7149 proto, &sk->sk_rcv_saddr,
7150 sk->sk_num, msg);
7151 }
7152 }
7153
7154 return want_cookie;
7155 }
7156
tcp_reqsk_record_syn(const struct sock * sk,struct request_sock * req,const struct sk_buff * skb)7157 static void tcp_reqsk_record_syn(const struct sock *sk,
7158 struct request_sock *req,
7159 const struct sk_buff *skb)
7160 {
7161 if (tcp_sk(sk)->save_syn) {
7162 u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
7163 struct saved_syn *saved_syn;
7164 u32 mac_hdrlen;
7165 void *base;
7166
7167 if (tcp_sk(sk)->save_syn == 2) { /* Save full header. */
7168 base = skb_mac_header(skb);
7169 mac_hdrlen = skb_mac_header_len(skb);
7170 len += mac_hdrlen;
7171 } else {
7172 base = skb_network_header(skb);
7173 mac_hdrlen = 0;
7174 }
7175
7176 saved_syn = kmalloc(struct_size(saved_syn, data, len),
7177 GFP_ATOMIC);
7178 if (saved_syn) {
7179 saved_syn->mac_hdrlen = mac_hdrlen;
7180 saved_syn->network_hdrlen = skb_network_header_len(skb);
7181 saved_syn->tcp_hdrlen = tcp_hdrlen(skb);
7182 memcpy(saved_syn->data, base, len);
7183 req->saved_syn = saved_syn;
7184 }
7185 }
7186 }
7187
7188 /* If a SYN cookie is required and supported, returns a clamped MSS value to be
7189 * used for SYN cookie generation.
7190 */
tcp_get_syncookie_mss(struct request_sock_ops * rsk_ops,const struct tcp_request_sock_ops * af_ops,struct sock * sk,struct tcphdr * th)7191 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
7192 const struct tcp_request_sock_ops *af_ops,
7193 struct sock *sk, struct tcphdr *th)
7194 {
7195 struct tcp_sock *tp = tcp_sk(sk);
7196 u16 mss;
7197
7198 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies) != 2 &&
7199 !inet_csk_reqsk_queue_is_full(sk))
7200 return 0;
7201
7202 if (!tcp_syn_flood_action(sk, rsk_ops->slab_name))
7203 return 0;
7204
7205 if (sk_acceptq_is_full(sk)) {
7206 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
7207 return 0;
7208 }
7209
7210 mss = tcp_parse_mss_option(th, tp->rx_opt.user_mss);
7211 if (!mss)
7212 mss = af_ops->mss_clamp;
7213
7214 return mss;
7215 }
7216 EXPORT_SYMBOL_GPL(tcp_get_syncookie_mss);
7217
tcp_conn_request(struct request_sock_ops * rsk_ops,const struct tcp_request_sock_ops * af_ops,struct sock * sk,struct sk_buff * skb)7218 int tcp_conn_request(struct request_sock_ops *rsk_ops,
7219 const struct tcp_request_sock_ops *af_ops,
7220 struct sock *sk, struct sk_buff *skb)
7221 {
7222 struct tcp_fastopen_cookie foc = { .len = -1 };
7223 struct tcp_options_received tmp_opt;
7224 struct tcp_sock *tp = tcp_sk(sk);
7225 struct net *net = sock_net(sk);
7226 struct sock *fastopen_sk = NULL;
7227 struct request_sock *req;
7228 bool want_cookie = false;
7229 struct dst_entry *dst;
7230 struct flowi fl;
7231 u8 syncookies;
7232 u32 isn;
7233
7234 #ifdef CONFIG_TCP_AO
7235 const struct tcp_ao_hdr *aoh;
7236 #endif
7237
7238 isn = __this_cpu_read(tcp_tw_isn);
7239 if (isn) {
7240 /* TW buckets are converted to open requests without
7241 * limitations, they conserve resources and peer is
7242 * evidently real one.
7243 */
7244 __this_cpu_write(tcp_tw_isn, 0);
7245 } else {
7246 syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies);
7247
7248 if (syncookies == 2 || inet_csk_reqsk_queue_is_full(sk)) {
7249 want_cookie = tcp_syn_flood_action(sk,
7250 rsk_ops->slab_name);
7251 if (!want_cookie)
7252 goto drop;
7253 }
7254 }
7255
7256 if (sk_acceptq_is_full(sk)) {
7257 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
7258 goto drop;
7259 }
7260
7261 req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
7262 if (!req)
7263 goto drop;
7264
7265 req->syncookie = want_cookie;
7266 tcp_rsk(req)->af_specific = af_ops;
7267 tcp_rsk(req)->ts_off = 0;
7268 tcp_rsk(req)->req_usec_ts = false;
7269 #if IS_ENABLED(CONFIG_MPTCP)
7270 tcp_rsk(req)->is_mptcp = 0;
7271 #endif
7272
7273 tcp_clear_options(&tmp_opt);
7274 tmp_opt.mss_clamp = af_ops->mss_clamp;
7275 tmp_opt.user_mss = tp->rx_opt.user_mss;
7276 tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0,
7277 want_cookie ? NULL : &foc);
7278
7279 if (want_cookie && !tmp_opt.saw_tstamp)
7280 tcp_clear_options(&tmp_opt);
7281
7282 if (IS_ENABLED(CONFIG_SMC) && want_cookie)
7283 tmp_opt.smc_ok = 0;
7284
7285 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
7286 tcp_openreq_init(req, &tmp_opt, skb, sk);
7287 inet_rsk(req)->no_srccheck = inet_test_bit(TRANSPARENT, sk);
7288
7289 /* Note: tcp_v6_init_req() might override ir_iif for link locals */
7290 inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
7291
7292 dst = af_ops->route_req(sk, skb, &fl, req, isn);
7293 if (!dst)
7294 goto drop_and_free;
7295
7296 if (tmp_opt.tstamp_ok) {
7297 tcp_rsk(req)->req_usec_ts = dst_tcp_usec_ts(dst);
7298 tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb);
7299 }
7300 if (!want_cookie && !isn) {
7301 int max_syn_backlog = READ_ONCE(net->ipv4.sysctl_max_syn_backlog);
7302
7303 /* Kill the following clause, if you dislike this way. */
7304 if (!syncookies &&
7305 (max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
7306 (max_syn_backlog >> 2)) &&
7307 !tcp_peer_is_proven(req, dst)) {
7308 /* Without syncookies last quarter of
7309 * backlog is filled with destinations,
7310 * proven to be alive.
7311 * It means that we continue to communicate
7312 * to destinations, already remembered
7313 * to the moment of synflood.
7314 */
7315 pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
7316 rsk_ops->family);
7317 goto drop_and_release;
7318 }
7319
7320 isn = af_ops->init_seq(skb);
7321 }
7322
7323 tcp_ecn_create_request(req, skb, sk, dst);
7324
7325 if (want_cookie) {
7326 isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
7327 if (!tmp_opt.tstamp_ok)
7328 inet_rsk(req)->ecn_ok = 0;
7329 }
7330
7331 #ifdef CONFIG_TCP_AO
7332 if (tcp_parse_auth_options(tcp_hdr(skb), NULL, &aoh))
7333 goto drop_and_release; /* Invalid TCP options */
7334 if (aoh) {
7335 tcp_rsk(req)->used_tcp_ao = true;
7336 tcp_rsk(req)->ao_rcv_next = aoh->keyid;
7337 tcp_rsk(req)->ao_keyid = aoh->rnext_keyid;
7338
7339 } else {
7340 tcp_rsk(req)->used_tcp_ao = false;
7341 }
7342 #endif
7343 tcp_rsk(req)->snt_isn = isn;
7344 tcp_rsk(req)->txhash = net_tx_rndhash();
7345 tcp_rsk(req)->syn_tos = TCP_SKB_CB(skb)->ip_dsfield;
7346 tcp_openreq_init_rwin(req, sk, dst);
7347 sk_rx_queue_set(req_to_sk(req), skb);
7348 if (!want_cookie) {
7349 tcp_reqsk_record_syn(sk, req, skb);
7350 fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
7351 }
7352 if (fastopen_sk) {
7353 af_ops->send_synack(fastopen_sk, dst, &fl, req,
7354 &foc, TCP_SYNACK_FASTOPEN, skb);
7355 /* Add the child socket directly into the accept queue */
7356 if (!inet_csk_reqsk_queue_add(sk, req, fastopen_sk)) {
7357 reqsk_fastopen_remove(fastopen_sk, req, false);
7358 bh_unlock_sock(fastopen_sk);
7359 sock_put(fastopen_sk);
7360 goto drop_and_free;
7361 }
7362 sk->sk_data_ready(sk);
7363 bh_unlock_sock(fastopen_sk);
7364 sock_put(fastopen_sk);
7365 } else {
7366 tcp_rsk(req)->tfo_listener = false;
7367 if (!want_cookie) {
7368 req->timeout = tcp_timeout_init((struct sock *)req);
7369 if (unlikely(!inet_csk_reqsk_queue_hash_add(sk, req,
7370 req->timeout))) {
7371 reqsk_free(req);
7372 dst_release(dst);
7373 return 0;
7374 }
7375
7376 }
7377 af_ops->send_synack(sk, dst, &fl, req, &foc,
7378 !want_cookie ? TCP_SYNACK_NORMAL :
7379 TCP_SYNACK_COOKIE,
7380 skb);
7381 if (want_cookie) {
7382 reqsk_free(req);
7383 return 0;
7384 }
7385 }
7386 reqsk_put(req);
7387 return 0;
7388
7389 drop_and_release:
7390 dst_release(dst);
7391 drop_and_free:
7392 __reqsk_free(req);
7393 drop:
7394 tcp_listendrop(sk);
7395 return 0;
7396 }
7397 EXPORT_SYMBOL(tcp_conn_request);
7398