1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  *
21  * Fixes:
22  *		Alan Cox	:	Numerous verify_area() calls
23  *		Alan Cox	:	Set the ACK bit on a reset
24  *		Alan Cox	:	Stopped it crashing if it closed while
25  *					sk->inuse=1 and was trying to connect
26  *					(tcp_err()).
27  *		Alan Cox	:	All icmp error handling was broken
28  *					pointers passed where wrong and the
29  *					socket was looked up backwards. Nobody
30  *					tested any icmp error code obviously.
31  *		Alan Cox	:	tcp_err() now handled properly. It
32  *					wakes people on errors. poll
33  *					behaves and the icmp error race
34  *					has gone by moving it into sock.c
35  *		Alan Cox	:	tcp_send_reset() fixed to work for
36  *					everything not just packets for
37  *					unknown sockets.
38  *		Alan Cox	:	tcp option processing.
39  *		Alan Cox	:	Reset tweaked (still not 100%) [Had
40  *					syn rule wrong]
41  *		Herp Rosmanith  :	More reset fixes
42  *		Alan Cox	:	No longer acks invalid rst frames.
43  *					Acking any kind of RST is right out.
44  *		Alan Cox	:	Sets an ignore me flag on an rst
45  *					receive otherwise odd bits of prattle
46  *					escape still
47  *		Alan Cox	:	Fixed another acking RST frame bug.
48  *					Should stop LAN workplace lockups.
49  *		Alan Cox	: 	Some tidyups using the new skb list
50  *					facilities
51  *		Alan Cox	:	sk->keepopen now seems to work
52  *		Alan Cox	:	Pulls options out correctly on accepts
53  *		Alan Cox	:	Fixed assorted sk->rqueue->next errors
54  *		Alan Cox	:	PSH doesn't end a TCP read. Switched a
55  *					bit to skb ops.
56  *		Alan Cox	:	Tidied tcp_data to avoid a potential
57  *					nasty.
58  *		Alan Cox	:	Added some better commenting, as the
59  *					tcp is hard to follow
60  *		Alan Cox	:	Removed incorrect check for 20 * psh
61  *	Michael O'Reilly	:	ack < copied bug fix.
62  *	Johannes Stille		:	Misc tcp fixes (not all in yet).
63  *		Alan Cox	:	FIN with no memory -> CRASH
64  *		Alan Cox	:	Added socket option proto entries.
65  *					Also added awareness of them to accept.
66  *		Alan Cox	:	Added TCP options (SOL_TCP)
67  *		Alan Cox	:	Switched wakeup calls to callbacks,
68  *					so the kernel can layer network
69  *					sockets.
70  *		Alan Cox	:	Use ip_tos/ip_ttl settings.
71  *		Alan Cox	:	Handle FIN (more) properly (we hope).
72  *		Alan Cox	:	RST frames sent on unsynchronised
73  *					state ack error.
74  *		Alan Cox	:	Put in missing check for SYN bit.
75  *		Alan Cox	:	Added tcp_select_window() aka NET2E
76  *					window non shrink trick.
77  *		Alan Cox	:	Added a couple of small NET2E timer
78  *					fixes
79  *		Charles Hedrick :	TCP fixes
80  *		Toomas Tamm	:	TCP window fixes
81  *		Alan Cox	:	Small URG fix to rlogin ^C ack fight
82  *		Charles Hedrick	:	Rewrote most of it to actually work
83  *		Linus		:	Rewrote tcp_read() and URG handling
84  *					completely
85  *		Gerhard Koerting:	Fixed some missing timer handling
86  *		Matthew Dillon  :	Reworked TCP machine states as per RFC
87  *		Gerhard Koerting:	PC/TCP workarounds
88  *		Adam Caldwell	:	Assorted timer/timing errors
89  *		Matthew Dillon	:	Fixed another RST bug
90  *		Alan Cox	:	Move to kernel side addressing changes.
91  *		Alan Cox	:	Beginning work on TCP fastpathing
92  *					(not yet usable)
93  *		Arnt Gulbrandsen:	Turbocharged tcp_check() routine.
94  *		Alan Cox	:	TCP fast path debugging
95  *		Alan Cox	:	Window clamping
96  *		Michael Riepe	:	Bug in tcp_check()
97  *		Matt Dillon	:	More TCP improvements and RST bug fixes
98  *		Matt Dillon	:	Yet more small nasties remove from the
99  *					TCP code (Be very nice to this man if
100  *					tcp finally works 100%) 8)
101  *		Alan Cox	:	BSD accept semantics.
102  *		Alan Cox	:	Reset on closedown bug.
103  *	Peter De Schrijver	:	ENOTCONN check missing in tcp_sendto().
104  *		Michael Pall	:	Handle poll() after URG properly in
105  *					all cases.
106  *		Michael Pall	:	Undo the last fix in tcp_read_urg()
107  *					(multi URG PUSH broke rlogin).
108  *		Michael Pall	:	Fix the multi URG PUSH problem in
109  *					tcp_readable(), poll() after URG
110  *					works now.
111  *		Michael Pall	:	recv(...,MSG_OOB) never blocks in the
112  *					BSD api.
113  *		Alan Cox	:	Changed the semantics of sk->socket to
114  *					fix a race and a signal problem with
115  *					accept() and async I/O.
116  *		Alan Cox	:	Relaxed the rules on tcp_sendto().
117  *		Yury Shevchuk	:	Really fixed accept() blocking problem.
118  *		Craig I. Hagan  :	Allow for BSD compatible TIME_WAIT for
119  *					clients/servers which listen in on
120  *					fixed ports.
121  *		Alan Cox	:	Cleaned the above up and shrank it to
122  *					a sensible code size.
123  *		Alan Cox	:	Self connect lockup fix.
124  *		Alan Cox	:	No connect to multicast.
125  *		Ross Biro	:	Close unaccepted children on master
126  *					socket close.
127  *		Alan Cox	:	Reset tracing code.
128  *		Alan Cox	:	Spurious resets on shutdown.
129  *		Alan Cox	:	Giant 15 minute/60 second timer error
130  *		Alan Cox	:	Small whoops in polling before an
131  *					accept.
132  *		Alan Cox	:	Kept the state trace facility since
133  *					it's handy for debugging.
134  *		Alan Cox	:	More reset handler fixes.
135  *		Alan Cox	:	Started rewriting the code based on
136  *					the RFC's for other useful protocol
137  *					references see: Comer, KA9Q NOS, and
138  *					for a reference on the difference
139  *					between specifications and how BSD
140  *					works see the 4.4lite source.
141  *		A.N.Kuznetsov	:	Don't time wait on completion of tidy
142  *					close.
143  *		Linus Torvalds	:	Fin/Shutdown & copied_seq changes.
144  *		Linus Torvalds	:	Fixed BSD port reuse to work first syn
145  *		Alan Cox	:	Reimplemented timers as per the RFC
146  *					and using multiple timers for sanity.
147  *		Alan Cox	:	Small bug fixes, and a lot of new
148  *					comments.
149  *		Alan Cox	:	Fixed dual reader crash by locking
150  *					the buffers (much like datagram.c)
151  *		Alan Cox	:	Fixed stuck sockets in probe. A probe
152  *					now gets fed up of retrying without
153  *					(even a no space) answer.
154  *		Alan Cox	:	Extracted closing code better
155  *		Alan Cox	:	Fixed the closing state machine to
156  *					resemble the RFC.
157  *		Alan Cox	:	More 'per spec' fixes.
158  *		Jorge Cwik	:	Even faster checksumming.
159  *		Alan Cox	:	tcp_data() doesn't ack illegal PSH
160  *					only frames. At least one pc tcp stack
161  *					generates them.
162  *		Alan Cox	:	Cache last socket.
163  *		Alan Cox	:	Per route irtt.
164  *		Matt Day	:	poll()->select() match BSD precisely on error
165  *		Alan Cox	:	New buffers
166  *		Marc Tamsky	:	Various sk->prot->retransmits and
167  *					sk->retransmits misupdating fixed.
168  *					Fixed tcp_write_timeout: stuck close,
169  *					and TCP syn retries gets used now.
170  *		Mark Yarvis	:	In tcp_read_wakeup(), don't send an
171  *					ack if state is TCP_CLOSED.
172  *		Alan Cox	:	Look up device on a retransmit - routes may
173  *					change. Doesn't yet cope with MSS shrink right
174  *					but it's a start!
175  *		Marc Tamsky	:	Closing in closing fixes.
176  *		Mike Shaver	:	RFC1122 verifications.
177  *		Alan Cox	:	rcv_saddr errors.
178  *		Alan Cox	:	Block double connect().
179  *		Alan Cox	:	Small hooks for enSKIP.
180  *		Alexey Kuznetsov:	Path MTU discovery.
181  *		Alan Cox	:	Support soft errors.
182  *		Alan Cox	:	Fix MTU discovery pathological case
183  *					when the remote claims no mtu!
184  *		Marc Tamsky	:	TCP_CLOSE fix.
185  *		Colin (G3TNE)	:	Send a reset on syn ack replies in
186  *					window but wrong (fixes NT lpd problems)
187  *		Pedro Roque	:	Better TCP window handling, delayed ack.
188  *		Joerg Reuter	:	No modification of locked buffers in
189  *					tcp_do_retransmit()
190  *		Eric Schenk	:	Changed receiver side silly window
191  *					avoidance algorithm to BSD style
192  *					algorithm. This doubles throughput
193  *					against machines running Solaris,
194  *					and seems to result in general
195  *					improvement.
196  *	Stefan Magdalinski	:	adjusted tcp_readable() to fix FIONREAD
197  *	Willy Konynenberg	:	Transparent proxying support.
198  *	Mike McLagan		:	Routing by source
199  *		Keith Owens	:	Do proper merging with partial SKB's in
200  *					tcp_do_sendmsg to avoid burstiness.
201  *		Eric Schenk	:	Fix fast close down bug with
202  *					shutdown() followed by close().
203  *		Andi Kleen 	:	Make poll agree with SIGIO
204  *	Salvatore Sanfilippo	:	Support SO_LINGER with linger == 1 and
205  *					lingertime == 0 (RFC 793 ABORT Call)
206  *	Hirokazu Takahashi	:	Use copy_from_user() instead of
207  *					csum_and_copy_from_user() if possible.
208  *
209  * Description of States:
210  *
211  *	TCP_SYN_SENT		sent a connection request, waiting for ack
212  *
213  *	TCP_SYN_RECV		received a connection request, sent ack,
214  *				waiting for final ack in three-way handshake.
215  *
216  *	TCP_ESTABLISHED		connection established
217  *
218  *	TCP_FIN_WAIT1		our side has shutdown, waiting to complete
219  *				transmission of remaining buffered data
220  *
221  *	TCP_FIN_WAIT2		all buffered data sent, waiting for remote
222  *				to shutdown
223  *
224  *	TCP_CLOSING		both sides have shutdown but we still have
225  *				data we have to finish sending
226  *
227  *	TCP_TIME_WAIT		timeout to catch resent junk before entering
228  *				closed, can only be entered from FIN_WAIT2
229  *				or CLOSING.  Required because the other end
230  *				may not have gotten our last ACK causing it
231  *				to retransmit the data packet (which we ignore)
232  *
233  *	TCP_CLOSE_WAIT		remote side has shutdown and is waiting for
234  *				us to finish writing our data and to shutdown
235  *				(we have to close() to move on to LAST_ACK)
236  *
237  *	TCP_LAST_ACK		out side has shutdown after remote has
238  *				shutdown.  There may still be data in our
239  *				buffer that we have to finish sending
240  *
241  *	TCP_CLOSE		socket is finished
242  */
243 
244 #define pr_fmt(fmt) "TCP: " fmt
245 
246 #include <crypto/hash.h>
247 #include <linux/kernel.h>
248 #include <linux/module.h>
249 #include <linux/types.h>
250 #include <linux/fcntl.h>
251 #include <linux/poll.h>
252 #include <linux/inet_diag.h>
253 #include <linux/init.h>
254 #include <linux/fs.h>
255 #include <linux/skbuff.h>
256 #include <linux/scatterlist.h>
257 #include <linux/splice.h>
258 #include <linux/net.h>
259 #include <linux/socket.h>
260 #include <linux/random.h>
261 #include <linux/memblock.h>
262 #include <linux/highmem.h>
263 #include <linux/cache.h>
264 #include <linux/err.h>
265 #include <linux/time.h>
266 #include <linux/slab.h>
267 #include <linux/errqueue.h>
268 #include <linux/static_key.h>
269 #include <linux/btf.h>
270 
271 #include <net/icmp.h>
272 #include <net/inet_common.h>
273 #include <net/tcp.h>
274 #include <net/mptcp.h>
275 #include <net/proto_memory.h>
276 #include <net/xfrm.h>
277 #include <net/ip.h>
278 #include <net/sock.h>
279 #include <net/rstreason.h>
280 
281 #include <linux/uaccess.h>
282 #include <asm/ioctls.h>
283 #include <net/busy_poll.h>
284 #include <net/hotdata.h>
285 #include <trace/events/tcp.h>
286 #include <net/rps.h>
287 #include <trace/hooks/net.h>
288 
289 #include "../core/devmem.h"
290 
291 /* Track pending CMSGs. */
292 enum {
293 	TCP_CMSG_INQ = 1,
294 	TCP_CMSG_TS = 2
295 };
296 
297 DEFINE_PER_CPU(unsigned int, tcp_orphan_count);
298 EXPORT_PER_CPU_SYMBOL_GPL(tcp_orphan_count);
299 
300 DEFINE_PER_CPU(u32, tcp_tw_isn);
301 EXPORT_PER_CPU_SYMBOL_GPL(tcp_tw_isn);
302 
303 long sysctl_tcp_mem[3] __read_mostly;
304 EXPORT_SYMBOL(sysctl_tcp_mem);
305 
306 atomic_long_t tcp_memory_allocated ____cacheline_aligned_in_smp;	/* Current allocated memory. */
307 EXPORT_SYMBOL(tcp_memory_allocated);
308 DEFINE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc);
309 EXPORT_PER_CPU_SYMBOL_GPL(tcp_memory_per_cpu_fw_alloc);
310 
311 #if IS_ENABLED(CONFIG_SMC)
312 DEFINE_STATIC_KEY_FALSE(tcp_have_smc);
313 EXPORT_SYMBOL(tcp_have_smc);
314 #endif
315 
316 /*
317  * Current number of TCP sockets.
318  */
319 struct percpu_counter tcp_sockets_allocated ____cacheline_aligned_in_smp;
320 EXPORT_SYMBOL(tcp_sockets_allocated);
321 
322 /*
323  * TCP splice context
324  */
325 struct tcp_splice_state {
326 	struct pipe_inode_info *pipe;
327 	size_t len;
328 	unsigned int flags;
329 };
330 
331 /*
332  * Pressure flag: try to collapse.
333  * Technical note: it is used by multiple contexts non atomically.
334  * All the __sk_mem_schedule() is of this nature: accounting
335  * is strict, actions are advisory and have some latency.
336  */
337 unsigned long tcp_memory_pressure __read_mostly;
338 EXPORT_SYMBOL_GPL(tcp_memory_pressure);
339 
tcp_enter_memory_pressure(struct sock * sk)340 void tcp_enter_memory_pressure(struct sock *sk)
341 {
342 	unsigned long val;
343 
344 	if (READ_ONCE(tcp_memory_pressure))
345 		return;
346 	val = jiffies;
347 
348 	if (!val)
349 		val--;
350 	if (!cmpxchg(&tcp_memory_pressure, 0, val))
351 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
352 }
353 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure);
354 
tcp_leave_memory_pressure(struct sock * sk)355 void tcp_leave_memory_pressure(struct sock *sk)
356 {
357 	unsigned long val;
358 
359 	if (!READ_ONCE(tcp_memory_pressure))
360 		return;
361 	val = xchg(&tcp_memory_pressure, 0);
362 	if (val)
363 		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO,
364 			      jiffies_to_msecs(jiffies - val));
365 }
366 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure);
367 
368 /* Convert seconds to retransmits based on initial and max timeout */
secs_to_retrans(int seconds,int timeout,int rto_max)369 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
370 {
371 	u8 res = 0;
372 
373 	if (seconds > 0) {
374 		int period = timeout;
375 
376 		res = 1;
377 		while (seconds > period && res < 255) {
378 			res++;
379 			timeout <<= 1;
380 			if (timeout > rto_max)
381 				timeout = rto_max;
382 			period += timeout;
383 		}
384 	}
385 	return res;
386 }
387 
388 /* Convert retransmits to seconds based on initial and max timeout */
retrans_to_secs(u8 retrans,int timeout,int rto_max)389 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
390 {
391 	int period = 0;
392 
393 	if (retrans > 0) {
394 		period = timeout;
395 		while (--retrans) {
396 			timeout <<= 1;
397 			if (timeout > rto_max)
398 				timeout = rto_max;
399 			period += timeout;
400 		}
401 	}
402 	return period;
403 }
404 
tcp_compute_delivery_rate(const struct tcp_sock * tp)405 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp)
406 {
407 	u32 rate = READ_ONCE(tp->rate_delivered);
408 	u32 intv = READ_ONCE(tp->rate_interval_us);
409 	u64 rate64 = 0;
410 
411 	if (rate && intv) {
412 		rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC;
413 		do_div(rate64, intv);
414 	}
415 	return rate64;
416 }
417 
418 /* Address-family independent initialization for a tcp_sock.
419  *
420  * NOTE: A lot of things set to zero explicitly by call to
421  *       sk_alloc() so need not be done here.
422  */
tcp_init_sock(struct sock * sk)423 void tcp_init_sock(struct sock *sk)
424 {
425 	struct inet_connection_sock *icsk = inet_csk(sk);
426 	struct tcp_sock *tp = tcp_sk(sk);
427 	int rto_min_us;
428 
429 	tp->out_of_order_queue = RB_ROOT;
430 	sk->tcp_rtx_queue = RB_ROOT;
431 	tcp_init_xmit_timers(sk);
432 	INIT_LIST_HEAD(&tp->tsq_node);
433 	INIT_LIST_HEAD(&tp->tsorted_sent_queue);
434 
435 	icsk->icsk_rto = TCP_TIMEOUT_INIT;
436 	rto_min_us = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rto_min_us);
437 	icsk->icsk_rto_min = usecs_to_jiffies(rto_min_us);
438 	icsk->icsk_delack_max = TCP_DELACK_MAX;
439 	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
440 	minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U);
441 
442 	/* So many TCP implementations out there (incorrectly) count the
443 	 * initial SYN frame in their delayed-ACK and congestion control
444 	 * algorithms that we must have the following bandaid to talk
445 	 * efficiently to them.  -DaveM
446 	 */
447 	tcp_snd_cwnd_set(tp, TCP_INIT_CWND);
448 
449 	/* There's a bubble in the pipe until at least the first ACK. */
450 	tp->app_limited = ~0U;
451 	tp->rate_app_limited = 1;
452 
453 	/* See draft-stevens-tcpca-spec-01 for discussion of the
454 	 * initialization of these values.
455 	 */
456 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
457 	tp->snd_cwnd_clamp = ~0;
458 	tp->mss_cache = TCP_MSS_DEFAULT;
459 
460 	tp->reordering = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering);
461 	tcp_assign_congestion_control(sk);
462 
463 	tp->tsoffset = 0;
464 	tp->rack.reo_wnd_steps = 1;
465 
466 	sk->sk_write_space = sk_stream_write_space;
467 	sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
468 
469 	icsk->icsk_sync_mss = tcp_sync_mss;
470 
471 	WRITE_ONCE(sk->sk_sndbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[1]));
472 	WRITE_ONCE(sk->sk_rcvbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[1]));
473 	tcp_scaling_ratio_init(sk);
474 
475 	set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags);
476 	sk_sockets_allocated_inc(sk);
477 	xa_init_flags(&sk->sk_user_frags, XA_FLAGS_ALLOC1);
478 }
479 EXPORT_SYMBOL(tcp_init_sock);
480 
tcp_tx_timestamp(struct sock * sk,u16 tsflags)481 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags)
482 {
483 	struct sk_buff *skb = tcp_write_queue_tail(sk);
484 
485 	if (tsflags && skb) {
486 		struct skb_shared_info *shinfo = skb_shinfo(skb);
487 		struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
488 
489 		sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags);
490 		if (tsflags & SOF_TIMESTAMPING_TX_ACK)
491 			tcb->txstamp_ack = 1;
492 		if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
493 			shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
494 	}
495 }
496 
tcp_stream_is_readable(struct sock * sk,int target)497 static bool tcp_stream_is_readable(struct sock *sk, int target)
498 {
499 	if (tcp_epollin_ready(sk, target))
500 		return true;
501 	return sk_is_readable(sk);
502 }
503 
504 /*
505  *	Wait for a TCP event.
506  *
507  *	Note that we don't need to lock the socket, as the upper poll layers
508  *	take care of normal races (between the test and the event) and we don't
509  *	go look at any of the socket buffers directly.
510  */
tcp_poll(struct file * file,struct socket * sock,poll_table * wait)511 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
512 {
513 	__poll_t mask;
514 	struct sock *sk = sock->sk;
515 	const struct tcp_sock *tp = tcp_sk(sk);
516 	u8 shutdown;
517 	int state;
518 
519 	sock_poll_wait(file, sock, wait);
520 
521 	state = inet_sk_state_load(sk);
522 	if (state == TCP_LISTEN)
523 		return inet_csk_listen_poll(sk);
524 
525 	/* Socket is not locked. We are protected from async events
526 	 * by poll logic and correct handling of state changes
527 	 * made by other threads is impossible in any case.
528 	 */
529 
530 	mask = 0;
531 
532 	/*
533 	 * EPOLLHUP is certainly not done right. But poll() doesn't
534 	 * have a notion of HUP in just one direction, and for a
535 	 * socket the read side is more interesting.
536 	 *
537 	 * Some poll() documentation says that EPOLLHUP is incompatible
538 	 * with the EPOLLOUT/POLLWR flags, so somebody should check this
539 	 * all. But careful, it tends to be safer to return too many
540 	 * bits than too few, and you can easily break real applications
541 	 * if you don't tell them that something has hung up!
542 	 *
543 	 * Check-me.
544 	 *
545 	 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and
546 	 * our fs/select.c). It means that after we received EOF,
547 	 * poll always returns immediately, making impossible poll() on write()
548 	 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP
549 	 * if and only if shutdown has been made in both directions.
550 	 * Actually, it is interesting to look how Solaris and DUX
551 	 * solve this dilemma. I would prefer, if EPOLLHUP were maskable,
552 	 * then we could set it on SND_SHUTDOWN. BTW examples given
553 	 * in Stevens' books assume exactly this behaviour, it explains
554 	 * why EPOLLHUP is incompatible with EPOLLOUT.	--ANK
555 	 *
556 	 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
557 	 * blocking on fresh not-connected or disconnected socket. --ANK
558 	 */
559 	shutdown = READ_ONCE(sk->sk_shutdown);
560 	if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
561 		mask |= EPOLLHUP;
562 	if (shutdown & RCV_SHUTDOWN)
563 		mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
564 
565 	/* Connected or passive Fast Open socket? */
566 	if (state != TCP_SYN_SENT &&
567 	    (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) {
568 		int target = sock_rcvlowat(sk, 0, INT_MAX);
569 		u16 urg_data = READ_ONCE(tp->urg_data);
570 
571 		if (unlikely(urg_data) &&
572 		    READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) &&
573 		    !sock_flag(sk, SOCK_URGINLINE))
574 			target++;
575 
576 		if (tcp_stream_is_readable(sk, target))
577 			mask |= EPOLLIN | EPOLLRDNORM;
578 
579 		if (!(shutdown & SEND_SHUTDOWN)) {
580 			if (__sk_stream_is_writeable(sk, 1)) {
581 				mask |= EPOLLOUT | EPOLLWRNORM;
582 			} else {  /* send SIGIO later */
583 				sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
584 				set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
585 
586 				/* Race breaker. If space is freed after
587 				 * wspace test but before the flags are set,
588 				 * IO signal will be lost. Memory barrier
589 				 * pairs with the input side.
590 				 */
591 				smp_mb__after_atomic();
592 				if (__sk_stream_is_writeable(sk, 1))
593 					mask |= EPOLLOUT | EPOLLWRNORM;
594 			}
595 		} else
596 			mask |= EPOLLOUT | EPOLLWRNORM;
597 
598 		if (urg_data & TCP_URG_VALID)
599 			mask |= EPOLLPRI;
600 	} else if (state == TCP_SYN_SENT &&
601 		   inet_test_bit(DEFER_CONNECT, sk)) {
602 		/* Active TCP fastopen socket with defer_connect
603 		 * Return EPOLLOUT so application can call write()
604 		 * in order for kernel to generate SYN+data
605 		 */
606 		mask |= EPOLLOUT | EPOLLWRNORM;
607 	}
608 	/* This barrier is coupled with smp_wmb() in tcp_done_with_error() */
609 	smp_rmb();
610 	if (READ_ONCE(sk->sk_err) ||
611 	    !skb_queue_empty_lockless(&sk->sk_error_queue))
612 		mask |= EPOLLERR;
613 
614 	return mask;
615 }
616 EXPORT_SYMBOL(tcp_poll);
617 
tcp_ioctl(struct sock * sk,int cmd,int * karg)618 int tcp_ioctl(struct sock *sk, int cmd, int *karg)
619 {
620 	struct tcp_sock *tp = tcp_sk(sk);
621 	int answ;
622 	bool slow;
623 
624 	switch (cmd) {
625 	case SIOCINQ:
626 		if (sk->sk_state == TCP_LISTEN)
627 			return -EINVAL;
628 
629 		slow = lock_sock_fast(sk);
630 		answ = tcp_inq(sk);
631 		unlock_sock_fast(sk, slow);
632 		break;
633 	case SIOCATMARK:
634 		answ = READ_ONCE(tp->urg_data) &&
635 		       READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq);
636 		break;
637 	case SIOCOUTQ:
638 		if (sk->sk_state == TCP_LISTEN)
639 			return -EINVAL;
640 
641 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
642 			answ = 0;
643 		else
644 			answ = READ_ONCE(tp->write_seq) - tp->snd_una;
645 		break;
646 	case SIOCOUTQNSD:
647 		if (sk->sk_state == TCP_LISTEN)
648 			return -EINVAL;
649 
650 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
651 			answ = 0;
652 		else
653 			answ = READ_ONCE(tp->write_seq) -
654 			       READ_ONCE(tp->snd_nxt);
655 		break;
656 	default:
657 		return -ENOIOCTLCMD;
658 	}
659 
660 	*karg = answ;
661 	return 0;
662 }
663 EXPORT_SYMBOL(tcp_ioctl);
664 
tcp_mark_push(struct tcp_sock * tp,struct sk_buff * skb)665 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
666 {
667 	TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
668 	tp->pushed_seq = tp->write_seq;
669 }
670 
forced_push(const struct tcp_sock * tp)671 static inline bool forced_push(const struct tcp_sock *tp)
672 {
673 	return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
674 }
675 
tcp_skb_entail(struct sock * sk,struct sk_buff * skb)676 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb)
677 {
678 	struct tcp_sock *tp = tcp_sk(sk);
679 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
680 
681 	tcb->seq     = tcb->end_seq = tp->write_seq;
682 	tcb->tcp_flags = TCPHDR_ACK;
683 	__skb_header_release(skb);
684 	tcp_add_write_queue_tail(sk, skb);
685 	sk_wmem_queued_add(sk, skb->truesize);
686 	sk_mem_charge(sk, skb->truesize);
687 	if (tp->nonagle & TCP_NAGLE_PUSH)
688 		tp->nonagle &= ~TCP_NAGLE_PUSH;
689 
690 	tcp_slow_start_after_idle_check(sk);
691 }
692 
tcp_mark_urg(struct tcp_sock * tp,int flags)693 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
694 {
695 	if (flags & MSG_OOB)
696 		tp->snd_up = tp->write_seq;
697 }
698 
699 /* If a not yet filled skb is pushed, do not send it if
700  * we have data packets in Qdisc or NIC queues :
701  * Because TX completion will happen shortly, it gives a chance
702  * to coalesce future sendmsg() payload into this skb, without
703  * need for a timer, and with no latency trade off.
704  * As packets containing data payload have a bigger truesize
705  * than pure acks (dataless) packets, the last checks prevent
706  * autocorking if we only have an ACK in Qdisc/NIC queues,
707  * or if TX completion was delayed after we processed ACK packet.
708  */
tcp_should_autocork(struct sock * sk,struct sk_buff * skb,int size_goal)709 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
710 				int size_goal)
711 {
712 	return skb->len < size_goal &&
713 	       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_autocorking) &&
714 	       !tcp_rtx_queue_empty(sk) &&
715 	       refcount_read(&sk->sk_wmem_alloc) > skb->truesize &&
716 	       tcp_skb_can_collapse_to(skb);
717 }
718 
tcp_push(struct sock * sk,int flags,int mss_now,int nonagle,int size_goal)719 void tcp_push(struct sock *sk, int flags, int mss_now,
720 	      int nonagle, int size_goal)
721 {
722 	struct tcp_sock *tp = tcp_sk(sk);
723 	struct sk_buff *skb;
724 
725 	skb = tcp_write_queue_tail(sk);
726 	if (!skb)
727 		return;
728 	if (!(flags & MSG_MORE) || forced_push(tp))
729 		tcp_mark_push(tp, skb);
730 
731 	tcp_mark_urg(tp, flags);
732 
733 	if (tcp_should_autocork(sk, skb, size_goal)) {
734 
735 		/* avoid atomic op if TSQ_THROTTLED bit is already set */
736 		if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) {
737 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
738 			set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
739 			smp_mb__after_atomic();
740 		}
741 		/* It is possible TX completion already happened
742 		 * before we set TSQ_THROTTLED.
743 		 */
744 		if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize)
745 			return;
746 	}
747 
748 	if (flags & MSG_MORE)
749 		nonagle = TCP_NAGLE_CORK;
750 
751 	__tcp_push_pending_frames(sk, mss_now, nonagle);
752 }
753 
tcp_splice_data_recv(read_descriptor_t * rd_desc,struct sk_buff * skb,unsigned int offset,size_t len)754 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
755 				unsigned int offset, size_t len)
756 {
757 	struct tcp_splice_state *tss = rd_desc->arg.data;
758 	int ret;
759 
760 	ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
761 			      min(rd_desc->count, len), tss->flags);
762 	if (ret > 0)
763 		rd_desc->count -= ret;
764 	return ret;
765 }
766 
__tcp_splice_read(struct sock * sk,struct tcp_splice_state * tss)767 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
768 {
769 	/* Store TCP splice context information in read_descriptor_t. */
770 	read_descriptor_t rd_desc = {
771 		.arg.data = tss,
772 		.count	  = tss->len,
773 	};
774 
775 	return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
776 }
777 
778 /**
779  *  tcp_splice_read - splice data from TCP socket to a pipe
780  * @sock:	socket to splice from
781  * @ppos:	position (not valid)
782  * @pipe:	pipe to splice to
783  * @len:	number of bytes to splice
784  * @flags:	splice modifier flags
785  *
786  * Description:
787  *    Will read pages from given socket and fill them into a pipe.
788  *
789  **/
tcp_splice_read(struct socket * sock,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)790 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
791 			struct pipe_inode_info *pipe, size_t len,
792 			unsigned int flags)
793 {
794 	struct sock *sk = sock->sk;
795 	struct tcp_splice_state tss = {
796 		.pipe = pipe,
797 		.len = len,
798 		.flags = flags,
799 	};
800 	long timeo;
801 	ssize_t spliced;
802 	int ret;
803 
804 	sock_rps_record_flow(sk);
805 	/*
806 	 * We can't seek on a socket input
807 	 */
808 	if (unlikely(*ppos))
809 		return -ESPIPE;
810 
811 	ret = spliced = 0;
812 
813 	lock_sock(sk);
814 
815 	timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
816 	while (tss.len) {
817 		ret = __tcp_splice_read(sk, &tss);
818 		if (ret < 0)
819 			break;
820 		else if (!ret) {
821 			if (spliced)
822 				break;
823 			if (sock_flag(sk, SOCK_DONE))
824 				break;
825 			if (sk->sk_err) {
826 				ret = sock_error(sk);
827 				break;
828 			}
829 			if (sk->sk_shutdown & RCV_SHUTDOWN)
830 				break;
831 			if (sk->sk_state == TCP_CLOSE) {
832 				/*
833 				 * This occurs when user tries to read
834 				 * from never connected socket.
835 				 */
836 				ret = -ENOTCONN;
837 				break;
838 			}
839 			if (!timeo) {
840 				ret = -EAGAIN;
841 				break;
842 			}
843 			/* if __tcp_splice_read() got nothing while we have
844 			 * an skb in receive queue, we do not want to loop.
845 			 * This might happen with URG data.
846 			 */
847 			if (!skb_queue_empty(&sk->sk_receive_queue))
848 				break;
849 			ret = sk_wait_data(sk, &timeo, NULL);
850 			if (ret < 0)
851 				break;
852 			if (signal_pending(current)) {
853 				ret = sock_intr_errno(timeo);
854 				break;
855 			}
856 			continue;
857 		}
858 		tss.len -= ret;
859 		spliced += ret;
860 
861 		if (!tss.len || !timeo)
862 			break;
863 		release_sock(sk);
864 		lock_sock(sk);
865 
866 		if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
867 		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
868 		    signal_pending(current))
869 			break;
870 	}
871 
872 	release_sock(sk);
873 
874 	if (spliced)
875 		return spliced;
876 
877 	return ret;
878 }
879 EXPORT_SYMBOL(tcp_splice_read);
880 
tcp_stream_alloc_skb(struct sock * sk,gfp_t gfp,bool force_schedule)881 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, gfp_t gfp,
882 				     bool force_schedule)
883 {
884 	struct sk_buff *skb;
885 
886 	skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp);
887 	if (likely(skb)) {
888 		bool mem_scheduled;
889 
890 		skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
891 		if (force_schedule) {
892 			mem_scheduled = true;
893 			sk_forced_mem_schedule(sk, skb->truesize);
894 		} else {
895 			mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
896 		}
897 		if (likely(mem_scheduled)) {
898 			skb_reserve(skb, MAX_TCP_HEADER);
899 			skb->ip_summed = CHECKSUM_PARTIAL;
900 			INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
901 			return skb;
902 		}
903 		__kfree_skb(skb);
904 	} else {
905 		sk->sk_prot->enter_memory_pressure(sk);
906 		sk_stream_moderate_sndbuf(sk);
907 	}
908 	return NULL;
909 }
910 
tcp_xmit_size_goal(struct sock * sk,u32 mss_now,int large_allowed)911 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
912 				       int large_allowed)
913 {
914 	struct tcp_sock *tp = tcp_sk(sk);
915 	u32 new_size_goal, size_goal;
916 
917 	if (!large_allowed)
918 		return mss_now;
919 
920 	/* Note : tcp_tso_autosize() will eventually split this later */
921 	new_size_goal = tcp_bound_to_half_wnd(tp, sk->sk_gso_max_size);
922 
923 	/* We try hard to avoid divides here */
924 	size_goal = tp->gso_segs * mss_now;
925 	if (unlikely(new_size_goal < size_goal ||
926 		     new_size_goal >= size_goal + mss_now)) {
927 		tp->gso_segs = min_t(u16, new_size_goal / mss_now,
928 				     sk->sk_gso_max_segs);
929 		size_goal = tp->gso_segs * mss_now;
930 	}
931 
932 	return max(size_goal, mss_now);
933 }
934 
tcp_send_mss(struct sock * sk,int * size_goal,int flags)935 int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
936 {
937 	int mss_now;
938 
939 	mss_now = tcp_current_mss(sk);
940 	*size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
941 
942 	return mss_now;
943 }
944 
945 /* In some cases, sendmsg() could have added an skb to the write queue,
946  * but failed adding payload on it. We need to remove it to consume less
947  * memory, but more importantly be able to generate EPOLLOUT for Edge Trigger
948  * epoll() users. Another reason is that tcp_write_xmit() does not like
949  * finding an empty skb in the write queue.
950  */
tcp_remove_empty_skb(struct sock * sk)951 void tcp_remove_empty_skb(struct sock *sk)
952 {
953 	struct sk_buff *skb = tcp_write_queue_tail(sk);
954 
955 	if (skb && TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
956 		tcp_unlink_write_queue(skb, sk);
957 		if (tcp_write_queue_empty(sk))
958 			tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
959 		tcp_wmem_free_skb(sk, skb);
960 	}
961 }
962 
963 /* skb changing from pure zc to mixed, must charge zc */
tcp_downgrade_zcopy_pure(struct sock * sk,struct sk_buff * skb)964 static int tcp_downgrade_zcopy_pure(struct sock *sk, struct sk_buff *skb)
965 {
966 	if (unlikely(skb_zcopy_pure(skb))) {
967 		u32 extra = skb->truesize -
968 			    SKB_TRUESIZE(skb_end_offset(skb));
969 
970 		if (!sk_wmem_schedule(sk, extra))
971 			return -ENOMEM;
972 
973 		sk_mem_charge(sk, extra);
974 		skb_shinfo(skb)->flags &= ~SKBFL_PURE_ZEROCOPY;
975 	}
976 	return 0;
977 }
978 
979 
tcp_wmem_schedule(struct sock * sk,int copy)980 int tcp_wmem_schedule(struct sock *sk, int copy)
981 {
982 	int left;
983 
984 	if (likely(sk_wmem_schedule(sk, copy)))
985 		return copy;
986 
987 	/* We could be in trouble if we have nothing queued.
988 	 * Use whatever is left in sk->sk_forward_alloc and tcp_wmem[0]
989 	 * to guarantee some progress.
990 	 */
991 	left = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[0]) - sk->sk_wmem_queued;
992 	if (left > 0)
993 		sk_forced_mem_schedule(sk, min(left, copy));
994 	return min(copy, sk->sk_forward_alloc);
995 }
996 
tcp_free_fastopen_req(struct tcp_sock * tp)997 void tcp_free_fastopen_req(struct tcp_sock *tp)
998 {
999 	if (tp->fastopen_req) {
1000 		kfree(tp->fastopen_req);
1001 		tp->fastopen_req = NULL;
1002 	}
1003 }
1004 
tcp_sendmsg_fastopen(struct sock * sk,struct msghdr * msg,int * copied,size_t size,struct ubuf_info * uarg)1005 int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied,
1006 			 size_t size, struct ubuf_info *uarg)
1007 {
1008 	struct tcp_sock *tp = tcp_sk(sk);
1009 	struct inet_sock *inet = inet_sk(sk);
1010 	struct sockaddr *uaddr = msg->msg_name;
1011 	int err, flags;
1012 
1013 	if (!(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen) &
1014 	      TFO_CLIENT_ENABLE) ||
1015 	    (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) &&
1016 	     uaddr->sa_family == AF_UNSPEC))
1017 		return -EOPNOTSUPP;
1018 	if (tp->fastopen_req)
1019 		return -EALREADY; /* Another Fast Open is in progress */
1020 
1021 	tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1022 				   sk->sk_allocation);
1023 	if (unlikely(!tp->fastopen_req))
1024 		return -ENOBUFS;
1025 	tp->fastopen_req->data = msg;
1026 	tp->fastopen_req->size = size;
1027 	tp->fastopen_req->uarg = uarg;
1028 
1029 	if (inet_test_bit(DEFER_CONNECT, sk)) {
1030 		err = tcp_connect(sk);
1031 		/* Same failure procedure as in tcp_v4/6_connect */
1032 		if (err) {
1033 			tcp_set_state(sk, TCP_CLOSE);
1034 			inet->inet_dport = 0;
1035 			sk->sk_route_caps = 0;
1036 		}
1037 	}
1038 	flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1039 	err = __inet_stream_connect(sk->sk_socket, uaddr,
1040 				    msg->msg_namelen, flags, 1);
1041 	/* fastopen_req could already be freed in __inet_stream_connect
1042 	 * if the connection times out or gets rst
1043 	 */
1044 	if (tp->fastopen_req) {
1045 		*copied = tp->fastopen_req->copied;
1046 		tcp_free_fastopen_req(tp);
1047 		inet_clear_bit(DEFER_CONNECT, sk);
1048 	}
1049 	return err;
1050 }
1051 
tcp_sendmsg_locked(struct sock * sk,struct msghdr * msg,size_t size)1052 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size)
1053 {
1054 	struct tcp_sock *tp = tcp_sk(sk);
1055 	struct ubuf_info *uarg = NULL;
1056 	struct sk_buff *skb;
1057 	struct sockcm_cookie sockc;
1058 	int flags, err, copied = 0;
1059 	int mss_now = 0, size_goal, copied_syn = 0;
1060 	int process_backlog = 0;
1061 	int zc = 0;
1062 	long timeo;
1063 
1064 	flags = msg->msg_flags;
1065 
1066 	if ((flags & MSG_ZEROCOPY) && size) {
1067 		if (msg->msg_ubuf) {
1068 			uarg = msg->msg_ubuf;
1069 			if (sk->sk_route_caps & NETIF_F_SG)
1070 				zc = MSG_ZEROCOPY;
1071 		} else if (sock_flag(sk, SOCK_ZEROCOPY)) {
1072 			skb = tcp_write_queue_tail(sk);
1073 			uarg = msg_zerocopy_realloc(sk, size, skb_zcopy(skb));
1074 			if (!uarg) {
1075 				err = -ENOBUFS;
1076 				goto out_err;
1077 			}
1078 			if (sk->sk_route_caps & NETIF_F_SG)
1079 				zc = MSG_ZEROCOPY;
1080 			else
1081 				uarg_to_msgzc(uarg)->zerocopy = 0;
1082 		}
1083 	} else if (unlikely(msg->msg_flags & MSG_SPLICE_PAGES) && size) {
1084 		if (sk->sk_route_caps & NETIF_F_SG)
1085 			zc = MSG_SPLICE_PAGES;
1086 	}
1087 
1088 	if (unlikely(flags & MSG_FASTOPEN ||
1089 		     inet_test_bit(DEFER_CONNECT, sk)) &&
1090 	    !tp->repair) {
1091 		err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg);
1092 		if (err == -EINPROGRESS && copied_syn > 0)
1093 			goto out;
1094 		else if (err)
1095 			goto out_err;
1096 	}
1097 
1098 	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1099 
1100 	tcp_rate_check_app_limited(sk);  /* is sending application-limited? */
1101 
1102 	/* Wait for a connection to finish. One exception is TCP Fast Open
1103 	 * (passive side) where data is allowed to be sent before a connection
1104 	 * is fully established.
1105 	 */
1106 	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1107 	    !tcp_passive_fastopen(sk)) {
1108 		err = sk_stream_wait_connect(sk, &timeo);
1109 		if (err != 0)
1110 			goto do_error;
1111 	}
1112 
1113 	if (unlikely(tp->repair)) {
1114 		if (tp->repair_queue == TCP_RECV_QUEUE) {
1115 			copied = tcp_send_rcvq(sk, msg, size);
1116 			goto out_nopush;
1117 		}
1118 
1119 		err = -EINVAL;
1120 		if (tp->repair_queue == TCP_NO_QUEUE)
1121 			goto out_err;
1122 
1123 		/* 'common' sending to sendq */
1124 	}
1125 
1126 	sockcm_init(&sockc, sk);
1127 	if (msg->msg_controllen) {
1128 		err = sock_cmsg_send(sk, msg, &sockc);
1129 		if (unlikely(err)) {
1130 			err = -EINVAL;
1131 			goto out_err;
1132 		}
1133 	}
1134 
1135 	trace_android_vh_uplink_send_msg(sk);
1136 
1137 	/* This should be in poll */
1138 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1139 
1140 	/* Ok commence sending. */
1141 	copied = 0;
1142 
1143 restart:
1144 	mss_now = tcp_send_mss(sk, &size_goal, flags);
1145 
1146 	err = -EPIPE;
1147 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1148 		goto do_error;
1149 
1150 	while (msg_data_left(msg)) {
1151 		int copy = 0;
1152 
1153 		skb = tcp_write_queue_tail(sk);
1154 		if (skb)
1155 			copy = size_goal - skb->len;
1156 
1157 		if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) {
1158 			bool first_skb;
1159 
1160 new_segment:
1161 			if (!sk_stream_memory_free(sk))
1162 				goto wait_for_space;
1163 
1164 			if (unlikely(process_backlog >= 16)) {
1165 				process_backlog = 0;
1166 				if (sk_flush_backlog(sk))
1167 					goto restart;
1168 			}
1169 			first_skb = tcp_rtx_and_write_queues_empty(sk);
1170 			skb = tcp_stream_alloc_skb(sk, sk->sk_allocation,
1171 						   first_skb);
1172 			if (!skb)
1173 				goto wait_for_space;
1174 
1175 			process_backlog++;
1176 
1177 #ifdef CONFIG_SKB_DECRYPTED
1178 			skb->decrypted = !!(flags & MSG_SENDPAGE_DECRYPTED);
1179 #endif
1180 			tcp_skb_entail(sk, skb);
1181 			copy = size_goal;
1182 
1183 			/* All packets are restored as if they have
1184 			 * already been sent. skb_mstamp_ns isn't set to
1185 			 * avoid wrong rtt estimation.
1186 			 */
1187 			if (tp->repair)
1188 				TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1189 		}
1190 
1191 		/* Try to append data to the end of skb. */
1192 		if (copy > msg_data_left(msg))
1193 			copy = msg_data_left(msg);
1194 
1195 		if (zc == 0) {
1196 			bool merge = true;
1197 			int i = skb_shinfo(skb)->nr_frags;
1198 			struct page_frag *pfrag = sk_page_frag(sk);
1199 
1200 			if (!sk_page_frag_refill(sk, pfrag))
1201 				goto wait_for_space;
1202 
1203 			if (!skb_can_coalesce(skb, i, pfrag->page,
1204 					      pfrag->offset)) {
1205 				if (i >= READ_ONCE(net_hotdata.sysctl_max_skb_frags)) {
1206 					tcp_mark_push(tp, skb);
1207 					goto new_segment;
1208 				}
1209 				merge = false;
1210 			}
1211 
1212 			copy = min_t(int, copy, pfrag->size - pfrag->offset);
1213 
1214 			if (unlikely(skb_zcopy_pure(skb) || skb_zcopy_managed(skb))) {
1215 				if (tcp_downgrade_zcopy_pure(sk, skb))
1216 					goto wait_for_space;
1217 				skb_zcopy_downgrade_managed(skb);
1218 			}
1219 
1220 			copy = tcp_wmem_schedule(sk, copy);
1221 			if (!copy)
1222 				goto wait_for_space;
1223 
1224 			err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1225 						       pfrag->page,
1226 						       pfrag->offset,
1227 						       copy);
1228 			if (err)
1229 				goto do_error;
1230 
1231 			/* Update the skb. */
1232 			if (merge) {
1233 				skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1234 			} else {
1235 				skb_fill_page_desc(skb, i, pfrag->page,
1236 						   pfrag->offset, copy);
1237 				page_ref_inc(pfrag->page);
1238 			}
1239 			pfrag->offset += copy;
1240 		} else if (zc == MSG_ZEROCOPY)  {
1241 			/* First append to a fragless skb builds initial
1242 			 * pure zerocopy skb
1243 			 */
1244 			if (!skb->len)
1245 				skb_shinfo(skb)->flags |= SKBFL_PURE_ZEROCOPY;
1246 
1247 			if (!skb_zcopy_pure(skb)) {
1248 				copy = tcp_wmem_schedule(sk, copy);
1249 				if (!copy)
1250 					goto wait_for_space;
1251 			}
1252 
1253 			err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg);
1254 			if (err == -EMSGSIZE || err == -EEXIST) {
1255 				tcp_mark_push(tp, skb);
1256 				goto new_segment;
1257 			}
1258 			if (err < 0)
1259 				goto do_error;
1260 			copy = err;
1261 		} else if (zc == MSG_SPLICE_PAGES) {
1262 			/* Splice in data if we can; copy if we can't. */
1263 			if (tcp_downgrade_zcopy_pure(sk, skb))
1264 				goto wait_for_space;
1265 			copy = tcp_wmem_schedule(sk, copy);
1266 			if (!copy)
1267 				goto wait_for_space;
1268 
1269 			err = skb_splice_from_iter(skb, &msg->msg_iter, copy,
1270 						   sk->sk_allocation);
1271 			if (err < 0) {
1272 				if (err == -EMSGSIZE) {
1273 					tcp_mark_push(tp, skb);
1274 					goto new_segment;
1275 				}
1276 				goto do_error;
1277 			}
1278 			copy = err;
1279 
1280 			if (!(flags & MSG_NO_SHARED_FRAGS))
1281 				skb_shinfo(skb)->flags |= SKBFL_SHARED_FRAG;
1282 
1283 			sk_wmem_queued_add(sk, copy);
1284 			sk_mem_charge(sk, copy);
1285 		}
1286 
1287 		if (!copied)
1288 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1289 
1290 		WRITE_ONCE(tp->write_seq, tp->write_seq + copy);
1291 		TCP_SKB_CB(skb)->end_seq += copy;
1292 		tcp_skb_pcount_set(skb, 0);
1293 
1294 		copied += copy;
1295 		if (!msg_data_left(msg)) {
1296 			if (unlikely(flags & MSG_EOR))
1297 				TCP_SKB_CB(skb)->eor = 1;
1298 			goto out;
1299 		}
1300 
1301 		if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair))
1302 			continue;
1303 
1304 		if (forced_push(tp)) {
1305 			tcp_mark_push(tp, skb);
1306 			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1307 		} else if (skb == tcp_send_head(sk))
1308 			tcp_push_one(sk, mss_now);
1309 		continue;
1310 
1311 wait_for_space:
1312 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1313 		tcp_remove_empty_skb(sk);
1314 		if (copied)
1315 			tcp_push(sk, flags & ~MSG_MORE, mss_now,
1316 				 TCP_NAGLE_PUSH, size_goal);
1317 
1318 		err = sk_stream_wait_memory(sk, &timeo);
1319 		if (err != 0)
1320 			goto do_error;
1321 
1322 		mss_now = tcp_send_mss(sk, &size_goal, flags);
1323 	}
1324 
1325 out:
1326 	if (copied) {
1327 		tcp_tx_timestamp(sk, sockc.tsflags);
1328 		tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1329 	}
1330 out_nopush:
1331 	/* msg->msg_ubuf is pinned by the caller so we don't take extra refs */
1332 	if (uarg && !msg->msg_ubuf)
1333 		net_zcopy_put(uarg);
1334 	return copied + copied_syn;
1335 
1336 do_error:
1337 	tcp_remove_empty_skb(sk);
1338 
1339 	if (copied + copied_syn)
1340 		goto out;
1341 out_err:
1342 	/* msg->msg_ubuf is pinned by the caller so we don't take extra refs */
1343 	if (uarg && !msg->msg_ubuf)
1344 		net_zcopy_put_abort(uarg, true);
1345 	err = sk_stream_error(sk, flags, err);
1346 	/* make sure we wake any epoll edge trigger waiter */
1347 	if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) {
1348 		sk->sk_write_space(sk);
1349 		tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1350 	}
1351 	return err;
1352 }
1353 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked);
1354 
tcp_sendmsg(struct sock * sk,struct msghdr * msg,size_t size)1355 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1356 {
1357 	int ret;
1358 
1359 	trace_android_rvh_tcp_sendmsg(sk, msg, size);
1360 	lock_sock(sk);
1361 	ret = tcp_sendmsg_locked(sk, msg, size);
1362 	release_sock(sk);
1363 
1364 	return ret;
1365 }
1366 EXPORT_SYMBOL(tcp_sendmsg);
1367 
tcp_splice_eof(struct socket * sock)1368 void tcp_splice_eof(struct socket *sock)
1369 {
1370 	struct sock *sk = sock->sk;
1371 	struct tcp_sock *tp = tcp_sk(sk);
1372 	int mss_now, size_goal;
1373 
1374 	if (!tcp_write_queue_tail(sk))
1375 		return;
1376 
1377 	lock_sock(sk);
1378 	mss_now = tcp_send_mss(sk, &size_goal, 0);
1379 	tcp_push(sk, 0, mss_now, tp->nonagle, size_goal);
1380 	release_sock(sk);
1381 }
1382 EXPORT_SYMBOL_GPL(tcp_splice_eof);
1383 
1384 /*
1385  *	Handle reading urgent data. BSD has very simple semantics for
1386  *	this, no blocking and very strange errors 8)
1387  */
1388 
tcp_recv_urg(struct sock * sk,struct msghdr * msg,int len,int flags)1389 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1390 {
1391 	struct tcp_sock *tp = tcp_sk(sk);
1392 
1393 	/* No URG data to read. */
1394 	if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1395 	    tp->urg_data == TCP_URG_READ)
1396 		return -EINVAL;	/* Yes this is right ! */
1397 
1398 	if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1399 		return -ENOTCONN;
1400 
1401 	if (tp->urg_data & TCP_URG_VALID) {
1402 		int err = 0;
1403 		char c = tp->urg_data;
1404 
1405 		if (!(flags & MSG_PEEK))
1406 			WRITE_ONCE(tp->urg_data, TCP_URG_READ);
1407 
1408 		/* Read urgent data. */
1409 		msg->msg_flags |= MSG_OOB;
1410 
1411 		if (len > 0) {
1412 			if (!(flags & MSG_TRUNC))
1413 				err = memcpy_to_msg(msg, &c, 1);
1414 			len = 1;
1415 		} else
1416 			msg->msg_flags |= MSG_TRUNC;
1417 
1418 		return err ? -EFAULT : len;
1419 	}
1420 
1421 	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1422 		return 0;
1423 
1424 	/* Fixed the recv(..., MSG_OOB) behaviour.  BSD docs and
1425 	 * the available implementations agree in this case:
1426 	 * this call should never block, independent of the
1427 	 * blocking state of the socket.
1428 	 * Mike <pall@rz.uni-karlsruhe.de>
1429 	 */
1430 	return -EAGAIN;
1431 }
1432 
tcp_peek_sndq(struct sock * sk,struct msghdr * msg,int len)1433 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1434 {
1435 	struct sk_buff *skb;
1436 	int copied = 0, err = 0;
1437 
1438 	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
1439 		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1440 		if (err)
1441 			return err;
1442 		copied += skb->len;
1443 	}
1444 
1445 	skb_queue_walk(&sk->sk_write_queue, skb) {
1446 		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1447 		if (err)
1448 			break;
1449 
1450 		copied += skb->len;
1451 	}
1452 
1453 	return err ?: copied;
1454 }
1455 
1456 /* Clean up the receive buffer for full frames taken by the user,
1457  * then send an ACK if necessary.  COPIED is the number of bytes
1458  * tcp_recvmsg has given to the user so far, it speeds up the
1459  * calculation of whether or not we must ACK for the sake of
1460  * a window update.
1461  */
__tcp_cleanup_rbuf(struct sock * sk,int copied)1462 void __tcp_cleanup_rbuf(struct sock *sk, int copied)
1463 {
1464 	struct tcp_sock *tp = tcp_sk(sk);
1465 	bool time_to_ack = false;
1466 
1467 	if (inet_csk_ack_scheduled(sk)) {
1468 		const struct inet_connection_sock *icsk = inet_csk(sk);
1469 
1470 		if (/* Once-per-two-segments ACK was not sent by tcp_input.c */
1471 		    tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1472 		    /*
1473 		     * If this read emptied read buffer, we send ACK, if
1474 		     * connection is not bidirectional, user drained
1475 		     * receive buffer and there was a small segment
1476 		     * in queue.
1477 		     */
1478 		    (copied > 0 &&
1479 		     ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1480 		      ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1481 		       !inet_csk_in_pingpong_mode(sk))) &&
1482 		      !atomic_read(&sk->sk_rmem_alloc)))
1483 			time_to_ack = true;
1484 	}
1485 
1486 	/* We send an ACK if we can now advertise a non-zero window
1487 	 * which has been raised "significantly".
1488 	 *
1489 	 * Even if window raised up to infinity, do not send window open ACK
1490 	 * in states, where we will not receive more. It is useless.
1491 	 */
1492 	if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1493 		__u32 rcv_window_now = tcp_receive_window(tp);
1494 
1495 		/* Optimize, __tcp_select_window() is not cheap. */
1496 		if (2*rcv_window_now <= tp->window_clamp) {
1497 			__u32 new_window = __tcp_select_window(sk);
1498 
1499 			/* Send ACK now, if this read freed lots of space
1500 			 * in our buffer. Certainly, new_window is new window.
1501 			 * We can advertise it now, if it is not less than current one.
1502 			 * "Lots" means "at least twice" here.
1503 			 */
1504 			if (new_window && new_window >= 2 * rcv_window_now)
1505 				time_to_ack = true;
1506 		}
1507 	}
1508 	if (time_to_ack)
1509 		tcp_send_ack(sk);
1510 }
1511 
tcp_cleanup_rbuf(struct sock * sk,int copied)1512 void tcp_cleanup_rbuf(struct sock *sk, int copied)
1513 {
1514 	struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1515 	struct tcp_sock *tp = tcp_sk(sk);
1516 
1517 	WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1518 	     "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1519 	     tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1520 	__tcp_cleanup_rbuf(sk, copied);
1521 }
1522 
tcp_eat_recv_skb(struct sock * sk,struct sk_buff * skb)1523 static void tcp_eat_recv_skb(struct sock *sk, struct sk_buff *skb)
1524 {
1525 	__skb_unlink(skb, &sk->sk_receive_queue);
1526 	if (likely(skb->destructor == sock_rfree)) {
1527 		sock_rfree(skb);
1528 		skb->destructor = NULL;
1529 		skb->sk = NULL;
1530 		return skb_attempt_defer_free(skb);
1531 	}
1532 	__kfree_skb(skb);
1533 }
1534 
tcp_recv_skb(struct sock * sk,u32 seq,u32 * off)1535 struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1536 {
1537 	struct sk_buff *skb;
1538 	u32 offset;
1539 
1540 	while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1541 		offset = seq - TCP_SKB_CB(skb)->seq;
1542 		if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1543 			pr_err_once("%s: found a SYN, please report !\n", __func__);
1544 			offset--;
1545 		}
1546 		if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1547 			*off = offset;
1548 			return skb;
1549 		}
1550 		/* This looks weird, but this can happen if TCP collapsing
1551 		 * splitted a fat GRO packet, while we released socket lock
1552 		 * in skb_splice_bits()
1553 		 */
1554 		tcp_eat_recv_skb(sk, skb);
1555 	}
1556 	return NULL;
1557 }
1558 EXPORT_SYMBOL(tcp_recv_skb);
1559 
1560 /*
1561  * This routine provides an alternative to tcp_recvmsg() for routines
1562  * that would like to handle copying from skbuffs directly in 'sendfile'
1563  * fashion.
1564  * Note:
1565  *	- It is assumed that the socket was locked by the caller.
1566  *	- The routine does not block.
1567  *	- At present, there is no support for reading OOB data
1568  *	  or for 'peeking' the socket using this routine
1569  *	  (although both would be easy to implement).
1570  */
__tcp_read_sock(struct sock * sk,read_descriptor_t * desc,sk_read_actor_t recv_actor,bool noack,u32 * copied_seq)1571 static int __tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1572 			   sk_read_actor_t recv_actor, bool noack,
1573 			   u32 *copied_seq)
1574 {
1575 	struct sk_buff *skb;
1576 	struct tcp_sock *tp = tcp_sk(sk);
1577 	u32 seq = *copied_seq;
1578 	u32 offset;
1579 	int copied = 0;
1580 
1581 	if (sk->sk_state == TCP_LISTEN)
1582 		return -ENOTCONN;
1583 	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1584 		if (offset < skb->len) {
1585 			int used;
1586 			size_t len;
1587 
1588 			len = skb->len - offset;
1589 			/* Stop reading if we hit a patch of urgent data */
1590 			if (unlikely(tp->urg_data)) {
1591 				u32 urg_offset = tp->urg_seq - seq;
1592 				if (urg_offset < len)
1593 					len = urg_offset;
1594 				if (!len)
1595 					break;
1596 			}
1597 			used = recv_actor(desc, skb, offset, len);
1598 			if (used <= 0) {
1599 				if (!copied)
1600 					copied = used;
1601 				break;
1602 			}
1603 			if (WARN_ON_ONCE(used > len))
1604 				used = len;
1605 			seq += used;
1606 			copied += used;
1607 			offset += used;
1608 
1609 			/* If recv_actor drops the lock (e.g. TCP splice
1610 			 * receive) the skb pointer might be invalid when
1611 			 * getting here: tcp_collapse might have deleted it
1612 			 * while aggregating skbs from the socket queue.
1613 			 */
1614 			skb = tcp_recv_skb(sk, seq - 1, &offset);
1615 			if (!skb)
1616 				break;
1617 			/* TCP coalescing might have appended data to the skb.
1618 			 * Try to splice more frags
1619 			 */
1620 			if (offset + 1 != skb->len)
1621 				continue;
1622 		}
1623 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1624 			tcp_eat_recv_skb(sk, skb);
1625 			++seq;
1626 			break;
1627 		}
1628 		tcp_eat_recv_skb(sk, skb);
1629 		if (!desc->count)
1630 			break;
1631 		WRITE_ONCE(*copied_seq, seq);
1632 	}
1633 	WRITE_ONCE(*copied_seq, seq);
1634 
1635 	if (noack)
1636 		goto out;
1637 
1638 	tcp_rcv_space_adjust(sk);
1639 
1640 	/* Clean up data we have read: This will do ACK frames. */
1641 	if (copied > 0) {
1642 		tcp_recv_skb(sk, seq, &offset);
1643 		tcp_cleanup_rbuf(sk, copied);
1644 	}
1645 out:
1646 	return copied;
1647 }
1648 
tcp_read_sock(struct sock * sk,read_descriptor_t * desc,sk_read_actor_t recv_actor)1649 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1650 		  sk_read_actor_t recv_actor)
1651 {
1652 	return __tcp_read_sock(sk, desc, recv_actor, false,
1653 			       &tcp_sk(sk)->copied_seq);
1654 }
1655 EXPORT_SYMBOL(tcp_read_sock);
1656 
tcp_read_sock_noack(struct sock * sk,read_descriptor_t * desc,sk_read_actor_t recv_actor,bool noack,u32 * copied_seq)1657 int tcp_read_sock_noack(struct sock *sk, read_descriptor_t *desc,
1658 			sk_read_actor_t recv_actor, bool noack,
1659 			u32 *copied_seq)
1660 {
1661 	return __tcp_read_sock(sk, desc, recv_actor, noack, copied_seq);
1662 }
1663 
tcp_read_skb(struct sock * sk,skb_read_actor_t recv_actor)1664 int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor)
1665 {
1666 	struct sk_buff *skb;
1667 	int copied = 0;
1668 
1669 	if (sk->sk_state == TCP_LISTEN)
1670 		return -ENOTCONN;
1671 
1672 	while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1673 		u8 tcp_flags;
1674 		int used;
1675 
1676 		__skb_unlink(skb, &sk->sk_receive_queue);
1677 		WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk));
1678 		tcp_flags = TCP_SKB_CB(skb)->tcp_flags;
1679 		used = recv_actor(sk, skb);
1680 		if (used < 0) {
1681 			if (!copied)
1682 				copied = used;
1683 			break;
1684 		}
1685 		copied += used;
1686 
1687 		if (tcp_flags & TCPHDR_FIN)
1688 			break;
1689 	}
1690 	return copied;
1691 }
1692 EXPORT_SYMBOL(tcp_read_skb);
1693 
tcp_read_done(struct sock * sk,size_t len)1694 void tcp_read_done(struct sock *sk, size_t len)
1695 {
1696 	struct tcp_sock *tp = tcp_sk(sk);
1697 	u32 seq = tp->copied_seq;
1698 	struct sk_buff *skb;
1699 	size_t left;
1700 	u32 offset;
1701 
1702 	if (sk->sk_state == TCP_LISTEN)
1703 		return;
1704 
1705 	left = len;
1706 	while (left && (skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1707 		int used;
1708 
1709 		used = min_t(size_t, skb->len - offset, left);
1710 		seq += used;
1711 		left -= used;
1712 
1713 		if (skb->len > offset + used)
1714 			break;
1715 
1716 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1717 			tcp_eat_recv_skb(sk, skb);
1718 			++seq;
1719 			break;
1720 		}
1721 		tcp_eat_recv_skb(sk, skb);
1722 	}
1723 	WRITE_ONCE(tp->copied_seq, seq);
1724 
1725 	tcp_rcv_space_adjust(sk);
1726 
1727 	/* Clean up data we have read: This will do ACK frames. */
1728 	if (left != len)
1729 		tcp_cleanup_rbuf(sk, len - left);
1730 }
1731 EXPORT_SYMBOL(tcp_read_done);
1732 
tcp_peek_len(struct socket * sock)1733 int tcp_peek_len(struct socket *sock)
1734 {
1735 	return tcp_inq(sock->sk);
1736 }
1737 EXPORT_SYMBOL(tcp_peek_len);
1738 
1739 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */
tcp_set_rcvlowat(struct sock * sk,int val)1740 int tcp_set_rcvlowat(struct sock *sk, int val)
1741 {
1742 	int space, cap;
1743 
1744 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1745 		cap = sk->sk_rcvbuf >> 1;
1746 	else
1747 		cap = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
1748 	val = min(val, cap);
1749 	WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
1750 
1751 	/* Check if we need to signal EPOLLIN right now */
1752 	tcp_data_ready(sk);
1753 
1754 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1755 		return 0;
1756 
1757 	space = tcp_space_from_win(sk, val);
1758 	if (space > sk->sk_rcvbuf) {
1759 		WRITE_ONCE(sk->sk_rcvbuf, space);
1760 		WRITE_ONCE(tcp_sk(sk)->window_clamp, val);
1761 	}
1762 	return 0;
1763 }
1764 EXPORT_SYMBOL(tcp_set_rcvlowat);
1765 
tcp_update_recv_tstamps(struct sk_buff * skb,struct scm_timestamping_internal * tss)1766 void tcp_update_recv_tstamps(struct sk_buff *skb,
1767 			     struct scm_timestamping_internal *tss)
1768 {
1769 	if (skb->tstamp)
1770 		tss->ts[0] = ktime_to_timespec64(skb->tstamp);
1771 	else
1772 		tss->ts[0] = (struct timespec64) {0};
1773 
1774 	if (skb_hwtstamps(skb)->hwtstamp)
1775 		tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp);
1776 	else
1777 		tss->ts[2] = (struct timespec64) {0};
1778 }
1779 
1780 #ifdef CONFIG_MMU
1781 static const struct vm_operations_struct tcp_vm_ops = {
1782 };
1783 
tcp_mmap(struct file * file,struct socket * sock,struct vm_area_struct * vma)1784 int tcp_mmap(struct file *file, struct socket *sock,
1785 	     struct vm_area_struct *vma)
1786 {
1787 	if (vma->vm_flags & (VM_WRITE | VM_EXEC))
1788 		return -EPERM;
1789 	vm_flags_clear(vma, VM_MAYWRITE | VM_MAYEXEC);
1790 
1791 	/* Instruct vm_insert_page() to not mmap_read_lock(mm) */
1792 	vm_flags_set(vma, VM_MIXEDMAP);
1793 
1794 	vma->vm_ops = &tcp_vm_ops;
1795 	return 0;
1796 }
1797 EXPORT_SYMBOL(tcp_mmap);
1798 
skb_advance_to_frag(struct sk_buff * skb,u32 offset_skb,u32 * offset_frag)1799 static skb_frag_t *skb_advance_to_frag(struct sk_buff *skb, u32 offset_skb,
1800 				       u32 *offset_frag)
1801 {
1802 	skb_frag_t *frag;
1803 
1804 	if (unlikely(offset_skb >= skb->len))
1805 		return NULL;
1806 
1807 	offset_skb -= skb_headlen(skb);
1808 	if ((int)offset_skb < 0 || skb_has_frag_list(skb))
1809 		return NULL;
1810 
1811 	frag = skb_shinfo(skb)->frags;
1812 	while (offset_skb) {
1813 		if (skb_frag_size(frag) > offset_skb) {
1814 			*offset_frag = offset_skb;
1815 			return frag;
1816 		}
1817 		offset_skb -= skb_frag_size(frag);
1818 		++frag;
1819 	}
1820 	*offset_frag = 0;
1821 	return frag;
1822 }
1823 
can_map_frag(const skb_frag_t * frag)1824 static bool can_map_frag(const skb_frag_t *frag)
1825 {
1826 	struct page *page;
1827 
1828 	if (skb_frag_size(frag) != PAGE_SIZE || skb_frag_off(frag))
1829 		return false;
1830 
1831 	page = skb_frag_page(frag);
1832 
1833 	if (PageCompound(page) || page->mapping)
1834 		return false;
1835 
1836 	return true;
1837 }
1838 
find_next_mappable_frag(const skb_frag_t * frag,int remaining_in_skb)1839 static int find_next_mappable_frag(const skb_frag_t *frag,
1840 				   int remaining_in_skb)
1841 {
1842 	int offset = 0;
1843 
1844 	if (likely(can_map_frag(frag)))
1845 		return 0;
1846 
1847 	while (offset < remaining_in_skb && !can_map_frag(frag)) {
1848 		offset += skb_frag_size(frag);
1849 		++frag;
1850 	}
1851 	return offset;
1852 }
1853 
tcp_zerocopy_set_hint_for_skb(struct sock * sk,struct tcp_zerocopy_receive * zc,struct sk_buff * skb,u32 offset)1854 static void tcp_zerocopy_set_hint_for_skb(struct sock *sk,
1855 					  struct tcp_zerocopy_receive *zc,
1856 					  struct sk_buff *skb, u32 offset)
1857 {
1858 	u32 frag_offset, partial_frag_remainder = 0;
1859 	int mappable_offset;
1860 	skb_frag_t *frag;
1861 
1862 	/* worst case: skip to next skb. try to improve on this case below */
1863 	zc->recv_skip_hint = skb->len - offset;
1864 
1865 	/* Find the frag containing this offset (and how far into that frag) */
1866 	frag = skb_advance_to_frag(skb, offset, &frag_offset);
1867 	if (!frag)
1868 		return;
1869 
1870 	if (frag_offset) {
1871 		struct skb_shared_info *info = skb_shinfo(skb);
1872 
1873 		/* We read part of the last frag, must recvmsg() rest of skb. */
1874 		if (frag == &info->frags[info->nr_frags - 1])
1875 			return;
1876 
1877 		/* Else, we must at least read the remainder in this frag. */
1878 		partial_frag_remainder = skb_frag_size(frag) - frag_offset;
1879 		zc->recv_skip_hint -= partial_frag_remainder;
1880 		++frag;
1881 	}
1882 
1883 	/* partial_frag_remainder: If part way through a frag, must read rest.
1884 	 * mappable_offset: Bytes till next mappable frag, *not* counting bytes
1885 	 * in partial_frag_remainder.
1886 	 */
1887 	mappable_offset = find_next_mappable_frag(frag, zc->recv_skip_hint);
1888 	zc->recv_skip_hint = mappable_offset + partial_frag_remainder;
1889 }
1890 
1891 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
1892 			      int flags, struct scm_timestamping_internal *tss,
1893 			      int *cmsg_flags);
receive_fallback_to_copy(struct sock * sk,struct tcp_zerocopy_receive * zc,int inq,struct scm_timestamping_internal * tss)1894 static int receive_fallback_to_copy(struct sock *sk,
1895 				    struct tcp_zerocopy_receive *zc, int inq,
1896 				    struct scm_timestamping_internal *tss)
1897 {
1898 	unsigned long copy_address = (unsigned long)zc->copybuf_address;
1899 	struct msghdr msg = {};
1900 	int err;
1901 
1902 	zc->length = 0;
1903 	zc->recv_skip_hint = 0;
1904 
1905 	if (copy_address != zc->copybuf_address)
1906 		return -EINVAL;
1907 
1908 	err = import_ubuf(ITER_DEST, (void __user *)copy_address, inq,
1909 			  &msg.msg_iter);
1910 	if (err)
1911 		return err;
1912 
1913 	err = tcp_recvmsg_locked(sk, &msg, inq, MSG_DONTWAIT,
1914 				 tss, &zc->msg_flags);
1915 	if (err < 0)
1916 		return err;
1917 
1918 	zc->copybuf_len = err;
1919 	if (likely(zc->copybuf_len)) {
1920 		struct sk_buff *skb;
1921 		u32 offset;
1922 
1923 		skb = tcp_recv_skb(sk, tcp_sk(sk)->copied_seq, &offset);
1924 		if (skb)
1925 			tcp_zerocopy_set_hint_for_skb(sk, zc, skb, offset);
1926 	}
1927 	return 0;
1928 }
1929 
tcp_copy_straggler_data(struct tcp_zerocopy_receive * zc,struct sk_buff * skb,u32 copylen,u32 * offset,u32 * seq)1930 static int tcp_copy_straggler_data(struct tcp_zerocopy_receive *zc,
1931 				   struct sk_buff *skb, u32 copylen,
1932 				   u32 *offset, u32 *seq)
1933 {
1934 	unsigned long copy_address = (unsigned long)zc->copybuf_address;
1935 	struct msghdr msg = {};
1936 	int err;
1937 
1938 	if (copy_address != zc->copybuf_address)
1939 		return -EINVAL;
1940 
1941 	err = import_ubuf(ITER_DEST, (void __user *)copy_address, copylen,
1942 			  &msg.msg_iter);
1943 	if (err)
1944 		return err;
1945 	err = skb_copy_datagram_msg(skb, *offset, &msg, copylen);
1946 	if (err)
1947 		return err;
1948 	zc->recv_skip_hint -= copylen;
1949 	*offset += copylen;
1950 	*seq += copylen;
1951 	return (__s32)copylen;
1952 }
1953 
tcp_zc_handle_leftover(struct tcp_zerocopy_receive * zc,struct sock * sk,struct sk_buff * skb,u32 * seq,s32 copybuf_len,struct scm_timestamping_internal * tss)1954 static int tcp_zc_handle_leftover(struct tcp_zerocopy_receive *zc,
1955 				  struct sock *sk,
1956 				  struct sk_buff *skb,
1957 				  u32 *seq,
1958 				  s32 copybuf_len,
1959 				  struct scm_timestamping_internal *tss)
1960 {
1961 	u32 offset, copylen = min_t(u32, copybuf_len, zc->recv_skip_hint);
1962 
1963 	if (!copylen)
1964 		return 0;
1965 	/* skb is null if inq < PAGE_SIZE. */
1966 	if (skb) {
1967 		offset = *seq - TCP_SKB_CB(skb)->seq;
1968 	} else {
1969 		skb = tcp_recv_skb(sk, *seq, &offset);
1970 		if (TCP_SKB_CB(skb)->has_rxtstamp) {
1971 			tcp_update_recv_tstamps(skb, tss);
1972 			zc->msg_flags |= TCP_CMSG_TS;
1973 		}
1974 	}
1975 
1976 	zc->copybuf_len = tcp_copy_straggler_data(zc, skb, copylen, &offset,
1977 						  seq);
1978 	return zc->copybuf_len < 0 ? 0 : copylen;
1979 }
1980 
tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct * vma,struct page ** pending_pages,unsigned long pages_remaining,unsigned long * address,u32 * length,u32 * seq,struct tcp_zerocopy_receive * zc,u32 total_bytes_to_map,int err)1981 static int tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct *vma,
1982 					      struct page **pending_pages,
1983 					      unsigned long pages_remaining,
1984 					      unsigned long *address,
1985 					      u32 *length,
1986 					      u32 *seq,
1987 					      struct tcp_zerocopy_receive *zc,
1988 					      u32 total_bytes_to_map,
1989 					      int err)
1990 {
1991 	/* At least one page did not map. Try zapping if we skipped earlier. */
1992 	if (err == -EBUSY &&
1993 	    zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT) {
1994 		u32 maybe_zap_len;
1995 
1996 		maybe_zap_len = total_bytes_to_map -  /* All bytes to map */
1997 				*length + /* Mapped or pending */
1998 				(pages_remaining * PAGE_SIZE); /* Failed map. */
1999 		zap_page_range_single(vma, *address, maybe_zap_len, NULL);
2000 		err = 0;
2001 	}
2002 
2003 	if (!err) {
2004 		unsigned long leftover_pages = pages_remaining;
2005 		int bytes_mapped;
2006 
2007 		/* We called zap_page_range_single, try to reinsert. */
2008 		err = vm_insert_pages(vma, *address,
2009 				      pending_pages,
2010 				      &pages_remaining);
2011 		bytes_mapped = PAGE_SIZE * (leftover_pages - pages_remaining);
2012 		*seq += bytes_mapped;
2013 		*address += bytes_mapped;
2014 	}
2015 	if (err) {
2016 		/* Either we were unable to zap, OR we zapped, retried an
2017 		 * insert, and still had an issue. Either ways, pages_remaining
2018 		 * is the number of pages we were unable to map, and we unroll
2019 		 * some state we speculatively touched before.
2020 		 */
2021 		const int bytes_not_mapped = PAGE_SIZE * pages_remaining;
2022 
2023 		*length -= bytes_not_mapped;
2024 		zc->recv_skip_hint += bytes_not_mapped;
2025 	}
2026 	return err;
2027 }
2028 
tcp_zerocopy_vm_insert_batch(struct vm_area_struct * vma,struct page ** pages,unsigned int pages_to_map,unsigned long * address,u32 * length,u32 * seq,struct tcp_zerocopy_receive * zc,u32 total_bytes_to_map)2029 static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma,
2030 					struct page **pages,
2031 					unsigned int pages_to_map,
2032 					unsigned long *address,
2033 					u32 *length,
2034 					u32 *seq,
2035 					struct tcp_zerocopy_receive *zc,
2036 					u32 total_bytes_to_map)
2037 {
2038 	unsigned long pages_remaining = pages_to_map;
2039 	unsigned int pages_mapped;
2040 	unsigned int bytes_mapped;
2041 	int err;
2042 
2043 	err = vm_insert_pages(vma, *address, pages, &pages_remaining);
2044 	pages_mapped = pages_to_map - (unsigned int)pages_remaining;
2045 	bytes_mapped = PAGE_SIZE * pages_mapped;
2046 	/* Even if vm_insert_pages fails, it may have partially succeeded in
2047 	 * mapping (some but not all of the pages).
2048 	 */
2049 	*seq += bytes_mapped;
2050 	*address += bytes_mapped;
2051 
2052 	if (likely(!err))
2053 		return 0;
2054 
2055 	/* Error: maybe zap and retry + rollback state for failed inserts. */
2056 	return tcp_zerocopy_vm_insert_batch_error(vma, pages + pages_mapped,
2057 		pages_remaining, address, length, seq, zc, total_bytes_to_map,
2058 		err);
2059 }
2060 
2061 #define TCP_VALID_ZC_MSG_FLAGS   (TCP_CMSG_TS)
tcp_zc_finalize_rx_tstamp(struct sock * sk,struct tcp_zerocopy_receive * zc,struct scm_timestamping_internal * tss)2062 static void tcp_zc_finalize_rx_tstamp(struct sock *sk,
2063 				      struct tcp_zerocopy_receive *zc,
2064 				      struct scm_timestamping_internal *tss)
2065 {
2066 	unsigned long msg_control_addr;
2067 	struct msghdr cmsg_dummy;
2068 
2069 	msg_control_addr = (unsigned long)zc->msg_control;
2070 	cmsg_dummy.msg_control_user = (void __user *)msg_control_addr;
2071 	cmsg_dummy.msg_controllen =
2072 		(__kernel_size_t)zc->msg_controllen;
2073 	cmsg_dummy.msg_flags = in_compat_syscall()
2074 		? MSG_CMSG_COMPAT : 0;
2075 	cmsg_dummy.msg_control_is_user = true;
2076 	zc->msg_flags = 0;
2077 	if (zc->msg_control == msg_control_addr &&
2078 	    zc->msg_controllen == cmsg_dummy.msg_controllen) {
2079 		tcp_recv_timestamp(&cmsg_dummy, sk, tss);
2080 		zc->msg_control = (__u64)
2081 			((uintptr_t)cmsg_dummy.msg_control_user);
2082 		zc->msg_controllen =
2083 			(__u64)cmsg_dummy.msg_controllen;
2084 		zc->msg_flags = (__u32)cmsg_dummy.msg_flags;
2085 	}
2086 }
2087 
find_tcp_vma(struct mm_struct * mm,unsigned long address,bool * mmap_locked)2088 static struct vm_area_struct *find_tcp_vma(struct mm_struct *mm,
2089 					   unsigned long address,
2090 					   bool *mmap_locked)
2091 {
2092 	struct vm_area_struct *vma = lock_vma_under_rcu(mm, address);
2093 
2094 	if (vma) {
2095 		if (vma->vm_ops != &tcp_vm_ops) {
2096 			vma_end_read(vma);
2097 			return NULL;
2098 		}
2099 		*mmap_locked = false;
2100 		return vma;
2101 	}
2102 
2103 	mmap_read_lock(mm);
2104 	vma = vma_lookup(mm, address);
2105 	if (!vma || vma->vm_ops != &tcp_vm_ops) {
2106 		mmap_read_unlock(mm);
2107 		return NULL;
2108 	}
2109 	*mmap_locked = true;
2110 	return vma;
2111 }
2112 
2113 #define TCP_ZEROCOPY_PAGE_BATCH_SIZE 32
tcp_zerocopy_receive(struct sock * sk,struct tcp_zerocopy_receive * zc,struct scm_timestamping_internal * tss)2114 static int tcp_zerocopy_receive(struct sock *sk,
2115 				struct tcp_zerocopy_receive *zc,
2116 				struct scm_timestamping_internal *tss)
2117 {
2118 	u32 length = 0, offset, vma_len, avail_len, copylen = 0;
2119 	unsigned long address = (unsigned long)zc->address;
2120 	struct page *pages[TCP_ZEROCOPY_PAGE_BATCH_SIZE];
2121 	s32 copybuf_len = zc->copybuf_len;
2122 	struct tcp_sock *tp = tcp_sk(sk);
2123 	const skb_frag_t *frags = NULL;
2124 	unsigned int pages_to_map = 0;
2125 	struct vm_area_struct *vma;
2126 	struct sk_buff *skb = NULL;
2127 	u32 seq = tp->copied_seq;
2128 	u32 total_bytes_to_map;
2129 	int inq = tcp_inq(sk);
2130 	bool mmap_locked;
2131 	int ret;
2132 
2133 	zc->copybuf_len = 0;
2134 	zc->msg_flags = 0;
2135 
2136 	if (address & (PAGE_SIZE - 1) || address != zc->address)
2137 		return -EINVAL;
2138 
2139 	if (sk->sk_state == TCP_LISTEN)
2140 		return -ENOTCONN;
2141 
2142 	sock_rps_record_flow(sk);
2143 
2144 	if (inq && inq <= copybuf_len)
2145 		return receive_fallback_to_copy(sk, zc, inq, tss);
2146 
2147 	if (inq < PAGE_SIZE) {
2148 		zc->length = 0;
2149 		zc->recv_skip_hint = inq;
2150 		if (!inq && sock_flag(sk, SOCK_DONE))
2151 			return -EIO;
2152 		return 0;
2153 	}
2154 
2155 	vma = find_tcp_vma(current->mm, address, &mmap_locked);
2156 	if (!vma)
2157 		return -EINVAL;
2158 
2159 	vma_len = min_t(unsigned long, zc->length, vma->vm_end - address);
2160 	avail_len = min_t(u32, vma_len, inq);
2161 	total_bytes_to_map = avail_len & ~(PAGE_SIZE - 1);
2162 	if (total_bytes_to_map) {
2163 		if (!(zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT))
2164 			zap_page_range_single(vma, address, total_bytes_to_map,
2165 					      NULL);
2166 		zc->length = total_bytes_to_map;
2167 		zc->recv_skip_hint = 0;
2168 	} else {
2169 		zc->length = avail_len;
2170 		zc->recv_skip_hint = avail_len;
2171 	}
2172 	ret = 0;
2173 	while (length + PAGE_SIZE <= zc->length) {
2174 		int mappable_offset;
2175 		struct page *page;
2176 
2177 		if (zc->recv_skip_hint < PAGE_SIZE) {
2178 			u32 offset_frag;
2179 
2180 			if (skb) {
2181 				if (zc->recv_skip_hint > 0)
2182 					break;
2183 				skb = skb->next;
2184 				offset = seq - TCP_SKB_CB(skb)->seq;
2185 			} else {
2186 				skb = tcp_recv_skb(sk, seq, &offset);
2187 			}
2188 
2189 			if (!skb_frags_readable(skb))
2190 				break;
2191 
2192 			if (TCP_SKB_CB(skb)->has_rxtstamp) {
2193 				tcp_update_recv_tstamps(skb, tss);
2194 				zc->msg_flags |= TCP_CMSG_TS;
2195 			}
2196 			zc->recv_skip_hint = skb->len - offset;
2197 			frags = skb_advance_to_frag(skb, offset, &offset_frag);
2198 			if (!frags || offset_frag)
2199 				break;
2200 		}
2201 
2202 		mappable_offset = find_next_mappable_frag(frags,
2203 							  zc->recv_skip_hint);
2204 		if (mappable_offset) {
2205 			zc->recv_skip_hint = mappable_offset;
2206 			break;
2207 		}
2208 		page = skb_frag_page(frags);
2209 		if (WARN_ON_ONCE(!page))
2210 			break;
2211 
2212 		prefetchw(page);
2213 		pages[pages_to_map++] = page;
2214 		length += PAGE_SIZE;
2215 		zc->recv_skip_hint -= PAGE_SIZE;
2216 		frags++;
2217 		if (pages_to_map == TCP_ZEROCOPY_PAGE_BATCH_SIZE ||
2218 		    zc->recv_skip_hint < PAGE_SIZE) {
2219 			/* Either full batch, or we're about to go to next skb
2220 			 * (and we cannot unroll failed ops across skbs).
2221 			 */
2222 			ret = tcp_zerocopy_vm_insert_batch(vma, pages,
2223 							   pages_to_map,
2224 							   &address, &length,
2225 							   &seq, zc,
2226 							   total_bytes_to_map);
2227 			if (ret)
2228 				goto out;
2229 			pages_to_map = 0;
2230 		}
2231 	}
2232 	if (pages_to_map) {
2233 		ret = tcp_zerocopy_vm_insert_batch(vma, pages, pages_to_map,
2234 						   &address, &length, &seq,
2235 						   zc, total_bytes_to_map);
2236 	}
2237 out:
2238 	if (mmap_locked)
2239 		mmap_read_unlock(current->mm);
2240 	else
2241 		vma_end_read(vma);
2242 	/* Try to copy straggler data. */
2243 	if (!ret)
2244 		copylen = tcp_zc_handle_leftover(zc, sk, skb, &seq, copybuf_len, tss);
2245 
2246 	if (length + copylen) {
2247 		WRITE_ONCE(tp->copied_seq, seq);
2248 		tcp_rcv_space_adjust(sk);
2249 
2250 		/* Clean up data we have read: This will do ACK frames. */
2251 		tcp_recv_skb(sk, seq, &offset);
2252 		tcp_cleanup_rbuf(sk, length + copylen);
2253 		ret = 0;
2254 		if (length == zc->length)
2255 			zc->recv_skip_hint = 0;
2256 	} else {
2257 		if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE))
2258 			ret = -EIO;
2259 	}
2260 	zc->length = length;
2261 	return ret;
2262 }
2263 #endif
2264 
2265 /* Similar to __sock_recv_timestamp, but does not require an skb */
tcp_recv_timestamp(struct msghdr * msg,const struct sock * sk,struct scm_timestamping_internal * tss)2266 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
2267 			struct scm_timestamping_internal *tss)
2268 {
2269 	int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
2270 	u32 tsflags = READ_ONCE(sk->sk_tsflags);
2271 	bool has_timestamping = false;
2272 
2273 	if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) {
2274 		if (sock_flag(sk, SOCK_RCVTSTAMP)) {
2275 			if (sock_flag(sk, SOCK_RCVTSTAMPNS)) {
2276 				if (new_tstamp) {
2277 					struct __kernel_timespec kts = {
2278 						.tv_sec = tss->ts[0].tv_sec,
2279 						.tv_nsec = tss->ts[0].tv_nsec,
2280 					};
2281 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
2282 						 sizeof(kts), &kts);
2283 				} else {
2284 					struct __kernel_old_timespec ts_old = {
2285 						.tv_sec = tss->ts[0].tv_sec,
2286 						.tv_nsec = tss->ts[0].tv_nsec,
2287 					};
2288 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
2289 						 sizeof(ts_old), &ts_old);
2290 				}
2291 			} else {
2292 				if (new_tstamp) {
2293 					struct __kernel_sock_timeval stv = {
2294 						.tv_sec = tss->ts[0].tv_sec,
2295 						.tv_usec = tss->ts[0].tv_nsec / 1000,
2296 					};
2297 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
2298 						 sizeof(stv), &stv);
2299 				} else {
2300 					struct __kernel_old_timeval tv = {
2301 						.tv_sec = tss->ts[0].tv_sec,
2302 						.tv_usec = tss->ts[0].tv_nsec / 1000,
2303 					};
2304 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
2305 						 sizeof(tv), &tv);
2306 				}
2307 			}
2308 		}
2309 
2310 		if (tsflags & SOF_TIMESTAMPING_SOFTWARE &&
2311 		    (tsflags & SOF_TIMESTAMPING_RX_SOFTWARE ||
2312 		     !(tsflags & SOF_TIMESTAMPING_OPT_RX_FILTER)))
2313 			has_timestamping = true;
2314 		else
2315 			tss->ts[0] = (struct timespec64) {0};
2316 	}
2317 
2318 	if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) {
2319 		if (tsflags & SOF_TIMESTAMPING_RAW_HARDWARE &&
2320 		    (tsflags & SOF_TIMESTAMPING_RX_HARDWARE ||
2321 		     !(tsflags & SOF_TIMESTAMPING_OPT_RX_FILTER)))
2322 			has_timestamping = true;
2323 		else
2324 			tss->ts[2] = (struct timespec64) {0};
2325 	}
2326 
2327 	if (has_timestamping) {
2328 		tss->ts[1] = (struct timespec64) {0};
2329 		if (sock_flag(sk, SOCK_TSTAMP_NEW))
2330 			put_cmsg_scm_timestamping64(msg, tss);
2331 		else
2332 			put_cmsg_scm_timestamping(msg, tss);
2333 	}
2334 }
2335 
tcp_inq_hint(struct sock * sk)2336 static int tcp_inq_hint(struct sock *sk)
2337 {
2338 	const struct tcp_sock *tp = tcp_sk(sk);
2339 	u32 copied_seq = READ_ONCE(tp->copied_seq);
2340 	u32 rcv_nxt = READ_ONCE(tp->rcv_nxt);
2341 	int inq;
2342 
2343 	inq = rcv_nxt - copied_seq;
2344 	if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) {
2345 		lock_sock(sk);
2346 		inq = tp->rcv_nxt - tp->copied_seq;
2347 		release_sock(sk);
2348 	}
2349 	/* After receiving a FIN, tell the user-space to continue reading
2350 	 * by returning a non-zero inq.
2351 	 */
2352 	if (inq == 0 && sock_flag(sk, SOCK_DONE))
2353 		inq = 1;
2354 	return inq;
2355 }
2356 
2357 /* batch __xa_alloc() calls and reduce xa_lock()/xa_unlock() overhead. */
2358 struct tcp_xa_pool {
2359 	u8		max; /* max <= MAX_SKB_FRAGS */
2360 	u8		idx; /* idx <= max */
2361 	__u32		tokens[MAX_SKB_FRAGS];
2362 	netmem_ref	netmems[MAX_SKB_FRAGS];
2363 };
2364 
tcp_xa_pool_commit_locked(struct sock * sk,struct tcp_xa_pool * p)2365 static void tcp_xa_pool_commit_locked(struct sock *sk, struct tcp_xa_pool *p)
2366 {
2367 	int i;
2368 
2369 	/* Commit part that has been copied to user space. */
2370 	for (i = 0; i < p->idx; i++)
2371 		__xa_cmpxchg(&sk->sk_user_frags, p->tokens[i], XA_ZERO_ENTRY,
2372 			     (__force void *)p->netmems[i], GFP_KERNEL);
2373 	/* Rollback what has been pre-allocated and is no longer needed. */
2374 	for (; i < p->max; i++)
2375 		__xa_erase(&sk->sk_user_frags, p->tokens[i]);
2376 
2377 	p->max = 0;
2378 	p->idx = 0;
2379 }
2380 
tcp_xa_pool_commit(struct sock * sk,struct tcp_xa_pool * p)2381 static void tcp_xa_pool_commit(struct sock *sk, struct tcp_xa_pool *p)
2382 {
2383 	if (!p->max)
2384 		return;
2385 
2386 	xa_lock_bh(&sk->sk_user_frags);
2387 
2388 	tcp_xa_pool_commit_locked(sk, p);
2389 
2390 	xa_unlock_bh(&sk->sk_user_frags);
2391 }
2392 
tcp_xa_pool_refill(struct sock * sk,struct tcp_xa_pool * p,unsigned int max_frags)2393 static int tcp_xa_pool_refill(struct sock *sk, struct tcp_xa_pool *p,
2394 			      unsigned int max_frags)
2395 {
2396 	int err, k;
2397 
2398 	if (p->idx < p->max)
2399 		return 0;
2400 
2401 	xa_lock_bh(&sk->sk_user_frags);
2402 
2403 	tcp_xa_pool_commit_locked(sk, p);
2404 
2405 	for (k = 0; k < max_frags; k++) {
2406 		err = __xa_alloc(&sk->sk_user_frags, &p->tokens[k],
2407 				 XA_ZERO_ENTRY, xa_limit_31b, GFP_KERNEL);
2408 		if (err)
2409 			break;
2410 	}
2411 
2412 	xa_unlock_bh(&sk->sk_user_frags);
2413 
2414 	p->max = k;
2415 	p->idx = 0;
2416 	return k ? 0 : err;
2417 }
2418 
2419 /* On error, returns the -errno. On success, returns number of bytes sent to the
2420  * user. May not consume all of @remaining_len.
2421  */
tcp_recvmsg_dmabuf(struct sock * sk,const struct sk_buff * skb,unsigned int offset,struct msghdr * msg,int remaining_len)2422 static int tcp_recvmsg_dmabuf(struct sock *sk, const struct sk_buff *skb,
2423 			      unsigned int offset, struct msghdr *msg,
2424 			      int remaining_len)
2425 {
2426 	struct dmabuf_cmsg dmabuf_cmsg = { 0 };
2427 	struct tcp_xa_pool tcp_xa_pool;
2428 	unsigned int start;
2429 	int i, copy, n;
2430 	int sent = 0;
2431 	int err = 0;
2432 
2433 	tcp_xa_pool.max = 0;
2434 	tcp_xa_pool.idx = 0;
2435 	do {
2436 		start = skb_headlen(skb);
2437 
2438 		if (skb_frags_readable(skb)) {
2439 			err = -ENODEV;
2440 			goto out;
2441 		}
2442 
2443 		/* Copy header. */
2444 		copy = start - offset;
2445 		if (copy > 0) {
2446 			copy = min(copy, remaining_len);
2447 
2448 			n = copy_to_iter(skb->data + offset, copy,
2449 					 &msg->msg_iter);
2450 			if (n != copy) {
2451 				err = -EFAULT;
2452 				goto out;
2453 			}
2454 
2455 			offset += copy;
2456 			remaining_len -= copy;
2457 
2458 			/* First a dmabuf_cmsg for # bytes copied to user
2459 			 * buffer.
2460 			 */
2461 			memset(&dmabuf_cmsg, 0, sizeof(dmabuf_cmsg));
2462 			dmabuf_cmsg.frag_size = copy;
2463 			err = put_cmsg_notrunc(msg, SOL_SOCKET,
2464 					       SO_DEVMEM_LINEAR,
2465 					       sizeof(dmabuf_cmsg),
2466 					       &dmabuf_cmsg);
2467 			if (err)
2468 				goto out;
2469 
2470 			sent += copy;
2471 
2472 			if (remaining_len == 0)
2473 				goto out;
2474 		}
2475 
2476 		/* after that, send information of dmabuf pages through a
2477 		 * sequence of cmsg
2478 		 */
2479 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2480 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2481 			struct net_iov *niov;
2482 			u64 frag_offset;
2483 			int end;
2484 
2485 			/* !skb_frags_readable() should indicate that ALL the
2486 			 * frags in this skb are dmabuf net_iovs. We're checking
2487 			 * for that flag above, but also check individual frags
2488 			 * here. If the tcp stack is not setting
2489 			 * skb_frags_readable() correctly, we still don't want
2490 			 * to crash here.
2491 			 */
2492 			if (!skb_frag_net_iov(frag)) {
2493 				net_err_ratelimited("Found non-dmabuf skb with net_iov");
2494 				err = -ENODEV;
2495 				goto out;
2496 			}
2497 
2498 			niov = skb_frag_net_iov(frag);
2499 			end = start + skb_frag_size(frag);
2500 			copy = end - offset;
2501 
2502 			if (copy > 0) {
2503 				copy = min(copy, remaining_len);
2504 
2505 				frag_offset = net_iov_virtual_addr(niov) +
2506 					      skb_frag_off(frag) + offset -
2507 					      start;
2508 				dmabuf_cmsg.frag_offset = frag_offset;
2509 				dmabuf_cmsg.frag_size = copy;
2510 				err = tcp_xa_pool_refill(sk, &tcp_xa_pool,
2511 							 skb_shinfo(skb)->nr_frags - i);
2512 				if (err)
2513 					goto out;
2514 
2515 				/* Will perform the exchange later */
2516 				dmabuf_cmsg.frag_token = tcp_xa_pool.tokens[tcp_xa_pool.idx];
2517 				dmabuf_cmsg.dmabuf_id = net_iov_binding_id(niov);
2518 
2519 				offset += copy;
2520 				remaining_len -= copy;
2521 
2522 				err = put_cmsg_notrunc(msg, SOL_SOCKET,
2523 						       SO_DEVMEM_DMABUF,
2524 						       sizeof(dmabuf_cmsg),
2525 						       &dmabuf_cmsg);
2526 				if (err)
2527 					goto out;
2528 
2529 				atomic_long_inc(&niov->pp_ref_count);
2530 				tcp_xa_pool.netmems[tcp_xa_pool.idx++] = skb_frag_netmem(frag);
2531 
2532 				sent += copy;
2533 
2534 				if (remaining_len == 0)
2535 					goto out;
2536 			}
2537 			start = end;
2538 		}
2539 
2540 		tcp_xa_pool_commit(sk, &tcp_xa_pool);
2541 		if (!remaining_len)
2542 			goto out;
2543 
2544 		/* if remaining_len is not satisfied yet, we need to go to the
2545 		 * next frag in the frag_list to satisfy remaining_len.
2546 		 */
2547 		skb = skb_shinfo(skb)->frag_list ?: skb->next;
2548 
2549 		offset = offset - start;
2550 	} while (skb);
2551 
2552 	if (remaining_len) {
2553 		err = -EFAULT;
2554 		goto out;
2555 	}
2556 
2557 out:
2558 	tcp_xa_pool_commit(sk, &tcp_xa_pool);
2559 	if (!sent)
2560 		sent = err;
2561 
2562 	return sent;
2563 }
2564 
2565 /*
2566  *	This routine copies from a sock struct into the user buffer.
2567  *
2568  *	Technical note: in 2.3 we work on _locked_ socket, so that
2569  *	tricks with *seq access order and skb->users are not required.
2570  *	Probably, code can be easily improved even more.
2571  */
2572 
tcp_recvmsg_locked(struct sock * sk,struct msghdr * msg,size_t len,int flags,struct scm_timestamping_internal * tss,int * cmsg_flags)2573 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
2574 			      int flags, struct scm_timestamping_internal *tss,
2575 			      int *cmsg_flags)
2576 {
2577 	struct tcp_sock *tp = tcp_sk(sk);
2578 	int last_copied_dmabuf = -1; /* uninitialized */
2579 	int copied = 0;
2580 	u32 peek_seq;
2581 	u32 *seq;
2582 	unsigned long used;
2583 	int err;
2584 	int target;		/* Read at least this many bytes */
2585 	long timeo;
2586 	struct sk_buff *skb, *last;
2587 	u32 peek_offset = 0;
2588 	u32 urg_hole = 0;
2589 
2590 	err = -ENOTCONN;
2591 	if (sk->sk_state == TCP_LISTEN)
2592 		goto out;
2593 
2594 	if (tp->recvmsg_inq) {
2595 		*cmsg_flags = TCP_CMSG_INQ;
2596 		msg->msg_get_inq = 1;
2597 	}
2598 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2599 
2600 	/* Urgent data needs to be handled specially. */
2601 	if (flags & MSG_OOB)
2602 		goto recv_urg;
2603 
2604 	if (unlikely(tp->repair)) {
2605 		err = -EPERM;
2606 		if (!(flags & MSG_PEEK))
2607 			goto out;
2608 
2609 		if (tp->repair_queue == TCP_SEND_QUEUE)
2610 			goto recv_sndq;
2611 
2612 		err = -EINVAL;
2613 		if (tp->repair_queue == TCP_NO_QUEUE)
2614 			goto out;
2615 
2616 		/* 'common' recv queue MSG_PEEK-ing */
2617 	}
2618 
2619 	seq = &tp->copied_seq;
2620 	if (flags & MSG_PEEK) {
2621 		peek_offset = max(sk_peek_offset(sk, flags), 0);
2622 		peek_seq = tp->copied_seq + peek_offset;
2623 		seq = &peek_seq;
2624 	}
2625 
2626 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2627 
2628 	do {
2629 		u32 offset;
2630 
2631 		/* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
2632 		if (unlikely(tp->urg_data) && tp->urg_seq == *seq) {
2633 			if (copied)
2634 				break;
2635 			if (signal_pending(current)) {
2636 				copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
2637 				break;
2638 			}
2639 		}
2640 
2641 		/* Next get a buffer. */
2642 
2643 		last = skb_peek_tail(&sk->sk_receive_queue);
2644 		skb_queue_walk(&sk->sk_receive_queue, skb) {
2645 			last = skb;
2646 			/* Now that we have two receive queues this
2647 			 * shouldn't happen.
2648 			 */
2649 			if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
2650 				 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n",
2651 				 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
2652 				 flags))
2653 				break;
2654 
2655 			offset = *seq - TCP_SKB_CB(skb)->seq;
2656 			if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2657 				pr_err_once("%s: found a SYN, please report !\n", __func__);
2658 				offset--;
2659 			}
2660 			if (offset < skb->len)
2661 				goto found_ok_skb;
2662 			if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2663 				goto found_fin_ok;
2664 			WARN(!(flags & MSG_PEEK),
2665 			     "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n",
2666 			     *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
2667 		}
2668 
2669 		/* Well, if we have backlog, try to process it now yet. */
2670 
2671 		if (copied >= target && !READ_ONCE(sk->sk_backlog.tail))
2672 			break;
2673 
2674 		if (copied) {
2675 			if (!timeo ||
2676 			    sk->sk_err ||
2677 			    sk->sk_state == TCP_CLOSE ||
2678 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
2679 			    signal_pending(current))
2680 				break;
2681 		} else {
2682 			if (sock_flag(sk, SOCK_DONE))
2683 				break;
2684 
2685 			if (sk->sk_err) {
2686 				copied = sock_error(sk);
2687 				break;
2688 			}
2689 
2690 			if (sk->sk_shutdown & RCV_SHUTDOWN)
2691 				break;
2692 
2693 			if (sk->sk_state == TCP_CLOSE) {
2694 				/* This occurs when user tries to read
2695 				 * from never connected socket.
2696 				 */
2697 				copied = -ENOTCONN;
2698 				break;
2699 			}
2700 
2701 			if (!timeo) {
2702 				copied = -EAGAIN;
2703 				break;
2704 			}
2705 
2706 			if (signal_pending(current)) {
2707 				copied = sock_intr_errno(timeo);
2708 				break;
2709 			}
2710 		}
2711 
2712 		if (copied >= target) {
2713 			/* Do not sleep, just process backlog. */
2714 			__sk_flush_backlog(sk);
2715 		} else {
2716 			tcp_cleanup_rbuf(sk, copied);
2717 			err = sk_wait_data(sk, &timeo, last);
2718 			if (err < 0) {
2719 				err = copied ? : err;
2720 				goto out;
2721 			}
2722 		}
2723 
2724 		if ((flags & MSG_PEEK) &&
2725 		    (peek_seq - peek_offset - copied - urg_hole != tp->copied_seq)) {
2726 			net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
2727 					    current->comm,
2728 					    task_pid_nr(current));
2729 			peek_seq = tp->copied_seq + peek_offset;
2730 		}
2731 		continue;
2732 
2733 found_ok_skb:
2734 		/* Ok so how much can we use? */
2735 		used = skb->len - offset;
2736 		if (len < used)
2737 			used = len;
2738 
2739 		/* Do we have urgent data here? */
2740 		if (unlikely(tp->urg_data)) {
2741 			u32 urg_offset = tp->urg_seq - *seq;
2742 			if (urg_offset < used) {
2743 				if (!urg_offset) {
2744 					if (!sock_flag(sk, SOCK_URGINLINE)) {
2745 						WRITE_ONCE(*seq, *seq + 1);
2746 						urg_hole++;
2747 						offset++;
2748 						used--;
2749 						if (!used)
2750 							goto skip_copy;
2751 					}
2752 				} else
2753 					used = urg_offset;
2754 			}
2755 		}
2756 
2757 		if (!(flags & MSG_TRUNC)) {
2758 			if (last_copied_dmabuf != -1 &&
2759 			    last_copied_dmabuf != !skb_frags_readable(skb))
2760 				break;
2761 
2762 			if (skb_frags_readable(skb)) {
2763 				err = skb_copy_datagram_msg(skb, offset, msg,
2764 							    used);
2765 				if (err) {
2766 					/* Exception. Bailout! */
2767 					if (!copied)
2768 						copied = -EFAULT;
2769 					break;
2770 				}
2771 			} else {
2772 				if (!(flags & MSG_SOCK_DEVMEM)) {
2773 					/* dmabuf skbs can only be received
2774 					 * with the MSG_SOCK_DEVMEM flag.
2775 					 */
2776 					if (!copied)
2777 						copied = -EFAULT;
2778 
2779 					break;
2780 				}
2781 
2782 				err = tcp_recvmsg_dmabuf(sk, skb, offset, msg,
2783 							 used);
2784 				if (err <= 0) {
2785 					if (!copied)
2786 						copied = -EFAULT;
2787 
2788 					break;
2789 				}
2790 				used = err;
2791 			}
2792 		}
2793 
2794 		last_copied_dmabuf = !skb_frags_readable(skb);
2795 
2796 		WRITE_ONCE(*seq, *seq + used);
2797 		copied += used;
2798 		len -= used;
2799 		if (flags & MSG_PEEK)
2800 			sk_peek_offset_fwd(sk, used);
2801 		else
2802 			sk_peek_offset_bwd(sk, used);
2803 		tcp_rcv_space_adjust(sk);
2804 
2805 skip_copy:
2806 		if (unlikely(tp->urg_data) && after(tp->copied_seq, tp->urg_seq)) {
2807 			WRITE_ONCE(tp->urg_data, 0);
2808 			tcp_fast_path_check(sk);
2809 		}
2810 
2811 		if (TCP_SKB_CB(skb)->has_rxtstamp) {
2812 			tcp_update_recv_tstamps(skb, tss);
2813 			*cmsg_flags |= TCP_CMSG_TS;
2814 		}
2815 
2816 		if (used + offset < skb->len)
2817 			continue;
2818 
2819 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2820 			goto found_fin_ok;
2821 		if (!(flags & MSG_PEEK))
2822 			tcp_eat_recv_skb(sk, skb);
2823 		continue;
2824 
2825 found_fin_ok:
2826 		/* Process the FIN. */
2827 		WRITE_ONCE(*seq, *seq + 1);
2828 		if (!(flags & MSG_PEEK))
2829 			tcp_eat_recv_skb(sk, skb);
2830 		break;
2831 	} while (len > 0);
2832 
2833 	/* According to UNIX98, msg_name/msg_namelen are ignored
2834 	 * on connected socket. I was just happy when found this 8) --ANK
2835 	 */
2836 
2837 	/* Clean up data we have read: This will do ACK frames. */
2838 	tcp_cleanup_rbuf(sk, copied);
2839 	return copied;
2840 
2841 out:
2842 	return err;
2843 
2844 recv_urg:
2845 	err = tcp_recv_urg(sk, msg, len, flags);
2846 	goto out;
2847 
2848 recv_sndq:
2849 	err = tcp_peek_sndq(sk, msg, len);
2850 	goto out;
2851 }
2852 
tcp_recvmsg(struct sock * sk,struct msghdr * msg,size_t len,int flags,int * addr_len)2853 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags,
2854 		int *addr_len)
2855 {
2856 	int cmsg_flags = 0, ret;
2857 	struct scm_timestamping_internal tss;
2858 
2859 	if (unlikely(flags & MSG_ERRQUEUE))
2860 		return inet_recv_error(sk, msg, len, addr_len);
2861 
2862 	if (sk_can_busy_loop(sk) &&
2863 	    skb_queue_empty_lockless(&sk->sk_receive_queue) &&
2864 	    sk->sk_state == TCP_ESTABLISHED)
2865 		sk_busy_loop(sk, flags & MSG_DONTWAIT);
2866 
2867 	lock_sock(sk);
2868 	ret = tcp_recvmsg_locked(sk, msg, len, flags, &tss, &cmsg_flags);
2869 	release_sock(sk);
2870 
2871 	if ((cmsg_flags || msg->msg_get_inq) && ret >= 0) {
2872 		if (cmsg_flags & TCP_CMSG_TS)
2873 			tcp_recv_timestamp(msg, sk, &tss);
2874 		if (msg->msg_get_inq) {
2875 			msg->msg_inq = tcp_inq_hint(sk);
2876 			if (cmsg_flags & TCP_CMSG_INQ)
2877 				put_cmsg(msg, SOL_TCP, TCP_CM_INQ,
2878 					 sizeof(msg->msg_inq), &msg->msg_inq);
2879 		}
2880 	}
2881 
2882 	trace_android_rvh_tcp_recvmsg(sk, msg, len, flags, addr_len);
2883 
2884 	return ret;
2885 }
2886 EXPORT_SYMBOL(tcp_recvmsg);
2887 
tcp_set_state(struct sock * sk,int state)2888 void tcp_set_state(struct sock *sk, int state)
2889 {
2890 	int oldstate = sk->sk_state;
2891 
2892 	trace_android_vh_tcp_state_change(sk, TCP_STATE_CHANGE_REASON_NORMAL, state);
2893 
2894 	/* We defined a new enum for TCP states that are exported in BPF
2895 	 * so as not force the internal TCP states to be frozen. The
2896 	 * following checks will detect if an internal state value ever
2897 	 * differs from the BPF value. If this ever happens, then we will
2898 	 * need to remap the internal value to the BPF value before calling
2899 	 * tcp_call_bpf_2arg.
2900 	 */
2901 	BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED);
2902 	BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT);
2903 	BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV);
2904 	BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1);
2905 	BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2);
2906 	BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT);
2907 	BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE);
2908 	BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT);
2909 	BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK);
2910 	BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN);
2911 	BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING);
2912 	BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV);
2913 	BUILD_BUG_ON((int)BPF_TCP_BOUND_INACTIVE != (int)TCP_BOUND_INACTIVE);
2914 	BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES);
2915 
2916 	/* bpf uapi header bpf.h defines an anonymous enum with values
2917 	 * BPF_TCP_* used by bpf programs. Currently gcc built vmlinux
2918 	 * is able to emit this enum in DWARF due to the above BUILD_BUG_ON.
2919 	 * But clang built vmlinux does not have this enum in DWARF
2920 	 * since clang removes the above code before generating IR/debuginfo.
2921 	 * Let us explicitly emit the type debuginfo to ensure the
2922 	 * above-mentioned anonymous enum in the vmlinux DWARF and hence BTF
2923 	 * regardless of which compiler is used.
2924 	 */
2925 	BTF_TYPE_EMIT_ENUM(BPF_TCP_ESTABLISHED);
2926 
2927 	if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG))
2928 		tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state);
2929 
2930 	switch (state) {
2931 	case TCP_ESTABLISHED:
2932 		if (oldstate != TCP_ESTABLISHED)
2933 			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2934 		break;
2935 	case TCP_CLOSE_WAIT:
2936 		if (oldstate == TCP_SYN_RECV)
2937 			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2938 		break;
2939 
2940 	case TCP_CLOSE:
2941 		if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
2942 			TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
2943 
2944 		sk->sk_prot->unhash(sk);
2945 		if (inet_csk(sk)->icsk_bind_hash &&
2946 		    !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
2947 			inet_put_port(sk);
2948 		fallthrough;
2949 	default:
2950 		if (oldstate == TCP_ESTABLISHED || oldstate == TCP_CLOSE_WAIT)
2951 			TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2952 	}
2953 
2954 	/* Change state AFTER socket is unhashed to avoid closed
2955 	 * socket sitting in hash tables.
2956 	 */
2957 	inet_sk_state_store(sk, state);
2958 }
2959 EXPORT_SYMBOL_GPL(tcp_set_state);
2960 
2961 /*
2962  *	State processing on a close. This implements the state shift for
2963  *	sending our FIN frame. Note that we only send a FIN for some
2964  *	states. A shutdown() may have already sent the FIN, or we may be
2965  *	closed.
2966  */
2967 
2968 static const unsigned char new_state[16] = {
2969   /* current state:        new state:      action:	*/
2970   [0 /* (Invalid) */]	= TCP_CLOSE,
2971   [TCP_ESTABLISHED]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2972   [TCP_SYN_SENT]	= TCP_CLOSE,
2973   [TCP_SYN_RECV]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2974   [TCP_FIN_WAIT1]	= TCP_FIN_WAIT1,
2975   [TCP_FIN_WAIT2]	= TCP_FIN_WAIT2,
2976   [TCP_TIME_WAIT]	= TCP_CLOSE,
2977   [TCP_CLOSE]		= TCP_CLOSE,
2978   [TCP_CLOSE_WAIT]	= TCP_LAST_ACK  | TCP_ACTION_FIN,
2979   [TCP_LAST_ACK]	= TCP_LAST_ACK,
2980   [TCP_LISTEN]		= TCP_CLOSE,
2981   [TCP_CLOSING]		= TCP_CLOSING,
2982   [TCP_NEW_SYN_RECV]	= TCP_CLOSE,	/* should not happen ! */
2983 };
2984 
tcp_close_state(struct sock * sk)2985 static int tcp_close_state(struct sock *sk)
2986 {
2987 	int next = (int)new_state[sk->sk_state];
2988 	int ns = next & TCP_STATE_MASK;
2989 
2990 	tcp_set_state(sk, ns);
2991 
2992 	return next & TCP_ACTION_FIN;
2993 }
2994 
2995 /*
2996  *	Shutdown the sending side of a connection. Much like close except
2997  *	that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2998  */
2999 
tcp_shutdown(struct sock * sk,int how)3000 void tcp_shutdown(struct sock *sk, int how)
3001 {
3002 	/*	We need to grab some memory, and put together a FIN,
3003 	 *	and then put it into the queue to be sent.
3004 	 *		Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
3005 	 */
3006 	if (!(how & SEND_SHUTDOWN))
3007 		return;
3008 
3009 	/* If we've already sent a FIN, or it's a closed state, skip this. */
3010 	if ((1 << sk->sk_state) &
3011 	    (TCPF_ESTABLISHED | TCPF_SYN_SENT |
3012 	     TCPF_CLOSE_WAIT)) {
3013 		/* Clear out any half completed packets.  FIN if needed. */
3014 		if (tcp_close_state(sk))
3015 			tcp_send_fin(sk);
3016 	}
3017 }
3018 EXPORT_SYMBOL(tcp_shutdown);
3019 
tcp_orphan_count_sum(void)3020 int tcp_orphan_count_sum(void)
3021 {
3022 	int i, total = 0;
3023 
3024 	for_each_possible_cpu(i)
3025 		total += per_cpu(tcp_orphan_count, i);
3026 
3027 	return max(total, 0);
3028 }
3029 
3030 static int tcp_orphan_cache;
3031 static struct timer_list tcp_orphan_timer;
3032 #define TCP_ORPHAN_TIMER_PERIOD msecs_to_jiffies(100)
3033 
tcp_orphan_update(struct timer_list * unused)3034 static void tcp_orphan_update(struct timer_list *unused)
3035 {
3036 	WRITE_ONCE(tcp_orphan_cache, tcp_orphan_count_sum());
3037 	mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
3038 }
3039 
tcp_too_many_orphans(int shift)3040 static bool tcp_too_many_orphans(int shift)
3041 {
3042 	return READ_ONCE(tcp_orphan_cache) << shift >
3043 		READ_ONCE(sysctl_tcp_max_orphans);
3044 }
3045 
tcp_out_of_memory(const struct sock * sk)3046 static bool tcp_out_of_memory(const struct sock *sk)
3047 {
3048 	if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
3049 	    sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
3050 		return true;
3051 	return false;
3052 }
3053 
tcp_check_oom(const struct sock * sk,int shift)3054 bool tcp_check_oom(const struct sock *sk, int shift)
3055 {
3056 	bool too_many_orphans, out_of_socket_memory;
3057 
3058 	too_many_orphans = tcp_too_many_orphans(shift);
3059 	out_of_socket_memory = tcp_out_of_memory(sk);
3060 
3061 	if (too_many_orphans)
3062 		net_info_ratelimited("too many orphaned sockets\n");
3063 	if (out_of_socket_memory)
3064 		net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
3065 	return too_many_orphans || out_of_socket_memory;
3066 }
3067 
__tcp_close(struct sock * sk,long timeout)3068 void __tcp_close(struct sock *sk, long timeout)
3069 {
3070 	struct sk_buff *skb;
3071 	int data_was_unread = 0;
3072 	int state;
3073 
3074 	WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
3075 
3076 	if (sk->sk_state == TCP_LISTEN) {
3077 		tcp_set_state(sk, TCP_CLOSE);
3078 
3079 		/* Special case. */
3080 		inet_csk_listen_stop(sk);
3081 
3082 		goto adjudge_to_death;
3083 	}
3084 
3085 	/*  We need to flush the recv. buffs.  We do this only on the
3086 	 *  descriptor close, not protocol-sourced closes, because the
3087 	 *  reader process may not have drained the data yet!
3088 	 */
3089 	while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
3090 		u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
3091 
3092 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
3093 			len--;
3094 		data_was_unread += len;
3095 		__kfree_skb(skb);
3096 	}
3097 
3098 	/* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
3099 	if (sk->sk_state == TCP_CLOSE)
3100 		goto adjudge_to_death;
3101 
3102 	/* As outlined in RFC 2525, section 2.17, we send a RST here because
3103 	 * data was lost. To witness the awful effects of the old behavior of
3104 	 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
3105 	 * GET in an FTP client, suspend the process, wait for the client to
3106 	 * advertise a zero window, then kill -9 the FTP client, wheee...
3107 	 * Note: timeout is always zero in such a case.
3108 	 */
3109 	if (unlikely(tcp_sk(sk)->repair)) {
3110 		sk->sk_prot->disconnect(sk, 0);
3111 	} else if (data_was_unread) {
3112 		/* Unread data was tossed, zap the connection. */
3113 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
3114 		tcp_set_state(sk, TCP_CLOSE);
3115 		tcp_send_active_reset(sk, sk->sk_allocation,
3116 				      SK_RST_REASON_TCP_ABORT_ON_CLOSE);
3117 	} else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
3118 		/* Check zero linger _after_ checking for unread data. */
3119 		sk->sk_prot->disconnect(sk, 0);
3120 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
3121 	} else if (tcp_close_state(sk)) {
3122 		/* We FIN if the application ate all the data before
3123 		 * zapping the connection.
3124 		 */
3125 
3126 		/* RED-PEN. Formally speaking, we have broken TCP state
3127 		 * machine. State transitions:
3128 		 *
3129 		 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
3130 		 * TCP_SYN_RECV	-> TCP_FIN_WAIT1 (it is difficult)
3131 		 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
3132 		 *
3133 		 * are legal only when FIN has been sent (i.e. in window),
3134 		 * rather than queued out of window. Purists blame.
3135 		 *
3136 		 * F.e. "RFC state" is ESTABLISHED,
3137 		 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
3138 		 *
3139 		 * The visible declinations are that sometimes
3140 		 * we enter time-wait state, when it is not required really
3141 		 * (harmless), do not send active resets, when they are
3142 		 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
3143 		 * they look as CLOSING or LAST_ACK for Linux)
3144 		 * Probably, I missed some more holelets.
3145 		 * 						--ANK
3146 		 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
3147 		 * in a single packet! (May consider it later but will
3148 		 * probably need API support or TCP_CORK SYN-ACK until
3149 		 * data is written and socket is closed.)
3150 		 */
3151 		tcp_send_fin(sk);
3152 	}
3153 
3154 	sk_stream_wait_close(sk, timeout);
3155 
3156 adjudge_to_death:
3157 	state = sk->sk_state;
3158 	sock_hold(sk);
3159 	sock_orphan(sk);
3160 
3161 	local_bh_disable();
3162 	bh_lock_sock(sk);
3163 	/* remove backlog if any, without releasing ownership. */
3164 	__release_sock(sk);
3165 
3166 	this_cpu_inc(tcp_orphan_count);
3167 
3168 	/* Have we already been destroyed by a softirq or backlog? */
3169 	if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
3170 		goto out;
3171 
3172 	/*	This is a (useful) BSD violating of the RFC. There is a
3173 	 *	problem with TCP as specified in that the other end could
3174 	 *	keep a socket open forever with no application left this end.
3175 	 *	We use a 1 minute timeout (about the same as BSD) then kill
3176 	 *	our end. If they send after that then tough - BUT: long enough
3177 	 *	that we won't make the old 4*rto = almost no time - whoops
3178 	 *	reset mistake.
3179 	 *
3180 	 *	Nope, it was not mistake. It is really desired behaviour
3181 	 *	f.e. on http servers, when such sockets are useless, but
3182 	 *	consume significant resources. Let's do it with special
3183 	 *	linger2	option.					--ANK
3184 	 */
3185 
3186 	if (sk->sk_state == TCP_FIN_WAIT2) {
3187 		struct tcp_sock *tp = tcp_sk(sk);
3188 		if (READ_ONCE(tp->linger2) < 0) {
3189 			tcp_set_state(sk, TCP_CLOSE);
3190 			tcp_send_active_reset(sk, GFP_ATOMIC,
3191 					      SK_RST_REASON_TCP_ABORT_ON_LINGER);
3192 			__NET_INC_STATS(sock_net(sk),
3193 					LINUX_MIB_TCPABORTONLINGER);
3194 		} else {
3195 			const int tmo = tcp_fin_time(sk);
3196 
3197 			if (tmo > TCP_TIMEWAIT_LEN) {
3198 				inet_csk_reset_keepalive_timer(sk,
3199 						tmo - TCP_TIMEWAIT_LEN);
3200 			} else {
3201 				tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
3202 				goto out;
3203 			}
3204 		}
3205 	}
3206 	if (sk->sk_state != TCP_CLOSE) {
3207 		if (tcp_check_oom(sk, 0)) {
3208 			tcp_set_state(sk, TCP_CLOSE);
3209 			tcp_send_active_reset(sk, GFP_ATOMIC,
3210 					      SK_RST_REASON_TCP_ABORT_ON_MEMORY);
3211 			__NET_INC_STATS(sock_net(sk),
3212 					LINUX_MIB_TCPABORTONMEMORY);
3213 		} else if (!check_net(sock_net(sk))) {
3214 			/* Not possible to send reset; just close */
3215 			tcp_set_state(sk, TCP_CLOSE);
3216 		}
3217 	}
3218 
3219 	if (sk->sk_state == TCP_CLOSE) {
3220 		struct request_sock *req;
3221 
3222 		req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk,
3223 						lockdep_sock_is_held(sk));
3224 		/* We could get here with a non-NULL req if the socket is
3225 		 * aborted (e.g., closed with unread data) before 3WHS
3226 		 * finishes.
3227 		 */
3228 		if (req)
3229 			reqsk_fastopen_remove(sk, req, false);
3230 		inet_csk_destroy_sock(sk);
3231 	}
3232 	/* Otherwise, socket is reprieved until protocol close. */
3233 
3234 out:
3235 	bh_unlock_sock(sk);
3236 	local_bh_enable();
3237 }
3238 
tcp_close(struct sock * sk,long timeout)3239 void tcp_close(struct sock *sk, long timeout)
3240 {
3241 	lock_sock(sk);
3242 	__tcp_close(sk, timeout);
3243 	release_sock(sk);
3244 	if (!sk->sk_net_refcnt)
3245 		inet_csk_clear_xmit_timers_sync(sk);
3246 	sock_put(sk);
3247 }
3248 EXPORT_SYMBOL(tcp_close);
3249 
3250 /* These states need RST on ABORT according to RFC793 */
3251 
tcp_need_reset(int state)3252 static inline bool tcp_need_reset(int state)
3253 {
3254 	return (1 << state) &
3255 	       (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
3256 		TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
3257 }
3258 
tcp_rtx_queue_purge(struct sock * sk)3259 static void tcp_rtx_queue_purge(struct sock *sk)
3260 {
3261 	struct rb_node *p = rb_first(&sk->tcp_rtx_queue);
3262 
3263 	tcp_sk(sk)->highest_sack = NULL;
3264 	while (p) {
3265 		struct sk_buff *skb = rb_to_skb(p);
3266 
3267 		p = rb_next(p);
3268 		/* Since we are deleting whole queue, no need to
3269 		 * list_del(&skb->tcp_tsorted_anchor)
3270 		 */
3271 		tcp_rtx_queue_unlink(skb, sk);
3272 		tcp_wmem_free_skb(sk, skb);
3273 	}
3274 }
3275 
tcp_write_queue_purge(struct sock * sk)3276 void tcp_write_queue_purge(struct sock *sk)
3277 {
3278 	struct sk_buff *skb;
3279 
3280 	tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3281 	while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) {
3282 		tcp_skb_tsorted_anchor_cleanup(skb);
3283 		tcp_wmem_free_skb(sk, skb);
3284 	}
3285 	tcp_rtx_queue_purge(sk);
3286 	INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue);
3287 	tcp_clear_all_retrans_hints(tcp_sk(sk));
3288 	tcp_sk(sk)->packets_out = 0;
3289 	inet_csk(sk)->icsk_backoff = 0;
3290 }
3291 
tcp_disconnect(struct sock * sk,int flags)3292 int tcp_disconnect(struct sock *sk, int flags)
3293 {
3294 	struct inet_sock *inet = inet_sk(sk);
3295 	struct inet_connection_sock *icsk = inet_csk(sk);
3296 	struct tcp_sock *tp = tcp_sk(sk);
3297 	int old_state = sk->sk_state;
3298 	struct request_sock *req;
3299 	u32 seq;
3300 
3301 	if (old_state != TCP_CLOSE)
3302 		tcp_set_state(sk, TCP_CLOSE);
3303 
3304 	/* ABORT function of RFC793 */
3305 	if (old_state == TCP_LISTEN) {
3306 		inet_csk_listen_stop(sk);
3307 	} else if (unlikely(tp->repair)) {
3308 		WRITE_ONCE(sk->sk_err, ECONNABORTED);
3309 	} else if (tcp_need_reset(old_state)) {
3310 		tcp_send_active_reset(sk, gfp_any(), SK_RST_REASON_TCP_STATE);
3311 		WRITE_ONCE(sk->sk_err, ECONNRESET);
3312 	} else if (tp->snd_nxt != tp->write_seq &&
3313 		   (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK)) {
3314 		/* The last check adjusts for discrepancy of Linux wrt. RFC
3315 		 * states
3316 		 */
3317 		tcp_send_active_reset(sk, gfp_any(),
3318 				      SK_RST_REASON_TCP_DISCONNECT_WITH_DATA);
3319 		WRITE_ONCE(sk->sk_err, ECONNRESET);
3320 	} else if (old_state == TCP_SYN_SENT)
3321 		WRITE_ONCE(sk->sk_err, ECONNRESET);
3322 
3323 	tcp_clear_xmit_timers(sk);
3324 	__skb_queue_purge(&sk->sk_receive_queue);
3325 	WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
3326 	WRITE_ONCE(tp->urg_data, 0);
3327 	sk_set_peek_off(sk, -1);
3328 	tcp_write_queue_purge(sk);
3329 	tcp_fastopen_active_disable_ofo_check(sk);
3330 	skb_rbtree_purge(&tp->out_of_order_queue);
3331 
3332 	inet->inet_dport = 0;
3333 
3334 	inet_bhash2_reset_saddr(sk);
3335 
3336 	WRITE_ONCE(sk->sk_shutdown, 0);
3337 	sock_reset_flag(sk, SOCK_DONE);
3338 	tp->srtt_us = 0;
3339 	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
3340 	tp->rcv_rtt_last_tsecr = 0;
3341 
3342 	seq = tp->write_seq + tp->max_window + 2;
3343 	if (!seq)
3344 		seq = 1;
3345 	WRITE_ONCE(tp->write_seq, seq);
3346 
3347 	icsk->icsk_backoff = 0;
3348 	icsk->icsk_probes_out = 0;
3349 	icsk->icsk_probes_tstamp = 0;
3350 	icsk->icsk_rto = TCP_TIMEOUT_INIT;
3351 	icsk->icsk_rto_min = TCP_RTO_MIN;
3352 	icsk->icsk_delack_max = TCP_DELACK_MAX;
3353 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
3354 	tcp_snd_cwnd_set(tp, TCP_INIT_CWND);
3355 	tp->snd_cwnd_cnt = 0;
3356 	tp->is_cwnd_limited = 0;
3357 	tp->max_packets_out = 0;
3358 	tp->window_clamp = 0;
3359 	tp->delivered = 0;
3360 	tp->delivered_ce = 0;
3361 	if (icsk->icsk_ca_ops->release)
3362 		icsk->icsk_ca_ops->release(sk);
3363 	memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv));
3364 	icsk->icsk_ca_initialized = 0;
3365 	tcp_set_ca_state(sk, TCP_CA_Open);
3366 	tp->is_sack_reneg = 0;
3367 	tcp_clear_retrans(tp);
3368 	tp->total_retrans = 0;
3369 	inet_csk_delack_init(sk);
3370 	/* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0
3371 	 * issue in __tcp_select_window()
3372 	 */
3373 	icsk->icsk_ack.rcv_mss = TCP_MIN_MSS;
3374 	memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
3375 	__sk_dst_reset(sk);
3376 	dst_release(unrcu_pointer(xchg(&sk->sk_rx_dst, NULL)));
3377 	tcp_saved_syn_free(tp);
3378 	tp->compressed_ack = 0;
3379 	tp->segs_in = 0;
3380 	tp->segs_out = 0;
3381 	tp->bytes_sent = 0;
3382 	tp->bytes_acked = 0;
3383 	tp->bytes_received = 0;
3384 	tp->bytes_retrans = 0;
3385 	tp->data_segs_in = 0;
3386 	tp->data_segs_out = 0;
3387 	tp->duplicate_sack[0].start_seq = 0;
3388 	tp->duplicate_sack[0].end_seq = 0;
3389 	tp->dsack_dups = 0;
3390 	tp->reord_seen = 0;
3391 	tp->retrans_out = 0;
3392 	tp->sacked_out = 0;
3393 	tp->tlp_high_seq = 0;
3394 	tp->last_oow_ack_time = 0;
3395 	tp->plb_rehash = 0;
3396 	/* There's a bubble in the pipe until at least the first ACK. */
3397 	tp->app_limited = ~0U;
3398 	tp->rate_app_limited = 1;
3399 	tp->rack.mstamp = 0;
3400 	tp->rack.advanced = 0;
3401 	tp->rack.reo_wnd_steps = 1;
3402 	tp->rack.last_delivered = 0;
3403 	tp->rack.reo_wnd_persist = 0;
3404 	tp->rack.dsack_seen = 0;
3405 	tp->syn_data_acked = 0;
3406 	tp->rx_opt.saw_tstamp = 0;
3407 	tp->rx_opt.dsack = 0;
3408 	tp->rx_opt.num_sacks = 0;
3409 	tp->rcv_ooopack = 0;
3410 
3411 
3412 	/* Clean up fastopen related fields */
3413 	req = rcu_dereference_protected(tp->fastopen_rsk,
3414 					lockdep_sock_is_held(sk));
3415 	if (req)
3416 		reqsk_fastopen_remove(sk, req, false);
3417 	tcp_free_fastopen_req(tp);
3418 	inet_clear_bit(DEFER_CONNECT, sk);
3419 	tp->fastopen_client_fail = 0;
3420 
3421 	WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
3422 
3423 	if (sk->sk_frag.page) {
3424 		put_page(sk->sk_frag.page);
3425 		sk->sk_frag.page = NULL;
3426 		sk->sk_frag.offset = 0;
3427 	}
3428 	sk_error_report(sk);
3429 	return 0;
3430 }
3431 EXPORT_SYMBOL(tcp_disconnect);
3432 
tcp_can_repair_sock(const struct sock * sk)3433 static inline bool tcp_can_repair_sock(const struct sock *sk)
3434 {
3435 	return sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
3436 		(sk->sk_state != TCP_LISTEN);
3437 }
3438 
tcp_repair_set_window(struct tcp_sock * tp,sockptr_t optbuf,int len)3439 static int tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len)
3440 {
3441 	struct tcp_repair_window opt;
3442 
3443 	if (!tp->repair)
3444 		return -EPERM;
3445 
3446 	if (len != sizeof(opt))
3447 		return -EINVAL;
3448 
3449 	if (copy_from_sockptr(&opt, optbuf, sizeof(opt)))
3450 		return -EFAULT;
3451 
3452 	if (opt.max_window < opt.snd_wnd)
3453 		return -EINVAL;
3454 
3455 	if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd))
3456 		return -EINVAL;
3457 
3458 	if (after(opt.rcv_wup, tp->rcv_nxt))
3459 		return -EINVAL;
3460 
3461 	tp->snd_wl1	= opt.snd_wl1;
3462 	tp->snd_wnd	= opt.snd_wnd;
3463 	tp->max_window	= opt.max_window;
3464 
3465 	tp->rcv_wnd	= opt.rcv_wnd;
3466 	tp->rcv_wup	= opt.rcv_wup;
3467 
3468 	return 0;
3469 }
3470 
tcp_repair_options_est(struct sock * sk,sockptr_t optbuf,unsigned int len)3471 static int tcp_repair_options_est(struct sock *sk, sockptr_t optbuf,
3472 		unsigned int len)
3473 {
3474 	struct tcp_sock *tp = tcp_sk(sk);
3475 	struct tcp_repair_opt opt;
3476 	size_t offset = 0;
3477 
3478 	while (len >= sizeof(opt)) {
3479 		if (copy_from_sockptr_offset(&opt, optbuf, offset, sizeof(opt)))
3480 			return -EFAULT;
3481 
3482 		offset += sizeof(opt);
3483 		len -= sizeof(opt);
3484 
3485 		switch (opt.opt_code) {
3486 		case TCPOPT_MSS:
3487 			tp->rx_opt.mss_clamp = opt.opt_val;
3488 			tcp_mtup_init(sk);
3489 			break;
3490 		case TCPOPT_WINDOW:
3491 			{
3492 				u16 snd_wscale = opt.opt_val & 0xFFFF;
3493 				u16 rcv_wscale = opt.opt_val >> 16;
3494 
3495 				if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE)
3496 					return -EFBIG;
3497 
3498 				tp->rx_opt.snd_wscale = snd_wscale;
3499 				tp->rx_opt.rcv_wscale = rcv_wscale;
3500 				tp->rx_opt.wscale_ok = 1;
3501 			}
3502 			break;
3503 		case TCPOPT_SACK_PERM:
3504 			if (opt.opt_val != 0)
3505 				return -EINVAL;
3506 
3507 			tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
3508 			break;
3509 		case TCPOPT_TIMESTAMP:
3510 			if (opt.opt_val != 0)
3511 				return -EINVAL;
3512 
3513 			tp->rx_opt.tstamp_ok = 1;
3514 			break;
3515 		}
3516 	}
3517 
3518 	return 0;
3519 }
3520 
3521 DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
3522 EXPORT_SYMBOL(tcp_tx_delay_enabled);
3523 
tcp_enable_tx_delay(void)3524 static void tcp_enable_tx_delay(void)
3525 {
3526 	if (!static_branch_unlikely(&tcp_tx_delay_enabled)) {
3527 		static int __tcp_tx_delay_enabled = 0;
3528 
3529 		if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) {
3530 			static_branch_enable(&tcp_tx_delay_enabled);
3531 			pr_info("TCP_TX_DELAY enabled\n");
3532 		}
3533 	}
3534 }
3535 
3536 /* When set indicates to always queue non-full frames.  Later the user clears
3537  * this option and we transmit any pending partial frames in the queue.  This is
3538  * meant to be used alongside sendfile() to get properly filled frames when the
3539  * user (for example) must write out headers with a write() call first and then
3540  * use sendfile to send out the data parts.
3541  *
3542  * TCP_CORK can be set together with TCP_NODELAY and it is stronger than
3543  * TCP_NODELAY.
3544  */
__tcp_sock_set_cork(struct sock * sk,bool on)3545 void __tcp_sock_set_cork(struct sock *sk, bool on)
3546 {
3547 	struct tcp_sock *tp = tcp_sk(sk);
3548 
3549 	if (on) {
3550 		tp->nonagle |= TCP_NAGLE_CORK;
3551 	} else {
3552 		tp->nonagle &= ~TCP_NAGLE_CORK;
3553 		if (tp->nonagle & TCP_NAGLE_OFF)
3554 			tp->nonagle |= TCP_NAGLE_PUSH;
3555 		tcp_push_pending_frames(sk);
3556 	}
3557 }
3558 
tcp_sock_set_cork(struct sock * sk,bool on)3559 void tcp_sock_set_cork(struct sock *sk, bool on)
3560 {
3561 	lock_sock(sk);
3562 	__tcp_sock_set_cork(sk, on);
3563 	release_sock(sk);
3564 }
3565 EXPORT_SYMBOL(tcp_sock_set_cork);
3566 
3567 /* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is
3568  * remembered, but it is not activated until cork is cleared.
3569  *
3570  * However, when TCP_NODELAY is set we make an explicit push, which overrides
3571  * even TCP_CORK for currently queued segments.
3572  */
__tcp_sock_set_nodelay(struct sock * sk,bool on)3573 void __tcp_sock_set_nodelay(struct sock *sk, bool on)
3574 {
3575 	if (on) {
3576 		tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
3577 		tcp_push_pending_frames(sk);
3578 	} else {
3579 		tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF;
3580 	}
3581 }
3582 
tcp_sock_set_nodelay(struct sock * sk)3583 void tcp_sock_set_nodelay(struct sock *sk)
3584 {
3585 	lock_sock(sk);
3586 	__tcp_sock_set_nodelay(sk, true);
3587 	release_sock(sk);
3588 }
3589 EXPORT_SYMBOL(tcp_sock_set_nodelay);
3590 
__tcp_sock_set_quickack(struct sock * sk,int val)3591 static void __tcp_sock_set_quickack(struct sock *sk, int val)
3592 {
3593 	if (!val) {
3594 		inet_csk_enter_pingpong_mode(sk);
3595 		return;
3596 	}
3597 
3598 	inet_csk_exit_pingpong_mode(sk);
3599 	if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
3600 	    inet_csk_ack_scheduled(sk)) {
3601 		inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED;
3602 		tcp_cleanup_rbuf(sk, 1);
3603 		if (!(val & 1))
3604 			inet_csk_enter_pingpong_mode(sk);
3605 	}
3606 }
3607 
tcp_sock_set_quickack(struct sock * sk,int val)3608 void tcp_sock_set_quickack(struct sock *sk, int val)
3609 {
3610 	lock_sock(sk);
3611 	__tcp_sock_set_quickack(sk, val);
3612 	release_sock(sk);
3613 }
3614 EXPORT_SYMBOL(tcp_sock_set_quickack);
3615 
tcp_sock_set_syncnt(struct sock * sk,int val)3616 int tcp_sock_set_syncnt(struct sock *sk, int val)
3617 {
3618 	if (val < 1 || val > MAX_TCP_SYNCNT)
3619 		return -EINVAL;
3620 
3621 	WRITE_ONCE(inet_csk(sk)->icsk_syn_retries, val);
3622 	return 0;
3623 }
3624 EXPORT_SYMBOL(tcp_sock_set_syncnt);
3625 
tcp_sock_set_user_timeout(struct sock * sk,int val)3626 int tcp_sock_set_user_timeout(struct sock *sk, int val)
3627 {
3628 	/* Cap the max time in ms TCP will retry or probe the window
3629 	 * before giving up and aborting (ETIMEDOUT) a connection.
3630 	 */
3631 	if (val < 0)
3632 		return -EINVAL;
3633 
3634 	WRITE_ONCE(inet_csk(sk)->icsk_user_timeout, val);
3635 	return 0;
3636 }
3637 EXPORT_SYMBOL(tcp_sock_set_user_timeout);
3638 
tcp_sock_set_keepidle_locked(struct sock * sk,int val)3639 int tcp_sock_set_keepidle_locked(struct sock *sk, int val)
3640 {
3641 	struct tcp_sock *tp = tcp_sk(sk);
3642 
3643 	if (val < 1 || val > MAX_TCP_KEEPIDLE)
3644 		return -EINVAL;
3645 
3646 	/* Paired with WRITE_ONCE() in keepalive_time_when() */
3647 	WRITE_ONCE(tp->keepalive_time, val * HZ);
3648 	if (sock_flag(sk, SOCK_KEEPOPEN) &&
3649 	    !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) {
3650 		u32 elapsed = keepalive_time_elapsed(tp);
3651 
3652 		if (tp->keepalive_time > elapsed)
3653 			elapsed = tp->keepalive_time - elapsed;
3654 		else
3655 			elapsed = 0;
3656 		inet_csk_reset_keepalive_timer(sk, elapsed);
3657 	}
3658 
3659 	return 0;
3660 }
3661 
tcp_sock_set_keepidle(struct sock * sk,int val)3662 int tcp_sock_set_keepidle(struct sock *sk, int val)
3663 {
3664 	int err;
3665 
3666 	lock_sock(sk);
3667 	err = tcp_sock_set_keepidle_locked(sk, val);
3668 	release_sock(sk);
3669 	return err;
3670 }
3671 EXPORT_SYMBOL(tcp_sock_set_keepidle);
3672 
tcp_sock_set_keepintvl(struct sock * sk,int val)3673 int tcp_sock_set_keepintvl(struct sock *sk, int val)
3674 {
3675 	if (val < 1 || val > MAX_TCP_KEEPINTVL)
3676 		return -EINVAL;
3677 
3678 	WRITE_ONCE(tcp_sk(sk)->keepalive_intvl, val * HZ);
3679 	return 0;
3680 }
3681 EXPORT_SYMBOL(tcp_sock_set_keepintvl);
3682 
tcp_sock_set_keepcnt(struct sock * sk,int val)3683 int tcp_sock_set_keepcnt(struct sock *sk, int val)
3684 {
3685 	if (val < 1 || val > MAX_TCP_KEEPCNT)
3686 		return -EINVAL;
3687 
3688 	/* Paired with READ_ONCE() in keepalive_probes() */
3689 	WRITE_ONCE(tcp_sk(sk)->keepalive_probes, val);
3690 	return 0;
3691 }
3692 EXPORT_SYMBOL(tcp_sock_set_keepcnt);
3693 
tcp_set_window_clamp(struct sock * sk,int val)3694 int tcp_set_window_clamp(struct sock *sk, int val)
3695 {
3696 	struct tcp_sock *tp = tcp_sk(sk);
3697 
3698 	if (!val) {
3699 		if (sk->sk_state != TCP_CLOSE)
3700 			return -EINVAL;
3701 		WRITE_ONCE(tp->window_clamp, 0);
3702 	} else {
3703 		u32 new_rcv_ssthresh, old_window_clamp = tp->window_clamp;
3704 		u32 new_window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
3705 						SOCK_MIN_RCVBUF / 2 : val;
3706 
3707 		if (new_window_clamp == old_window_clamp)
3708 			return 0;
3709 
3710 		WRITE_ONCE(tp->window_clamp, new_window_clamp);
3711 		if (new_window_clamp < old_window_clamp) {
3712 			/* need to apply the reserved mem provisioning only
3713 			 * when shrinking the window clamp
3714 			 */
3715 			__tcp_adjust_rcv_ssthresh(sk, tp->window_clamp);
3716 
3717 		} else {
3718 			new_rcv_ssthresh = min(tp->rcv_wnd, tp->window_clamp);
3719 			tp->rcv_ssthresh = max(new_rcv_ssthresh,
3720 					       tp->rcv_ssthresh);
3721 		}
3722 	}
3723 	return 0;
3724 }
3725 
3726 /*
3727  *	Socket option code for TCP.
3728  */
do_tcp_setsockopt(struct sock * sk,int level,int optname,sockptr_t optval,unsigned int optlen)3729 int do_tcp_setsockopt(struct sock *sk, int level, int optname,
3730 		      sockptr_t optval, unsigned int optlen)
3731 {
3732 	struct tcp_sock *tp = tcp_sk(sk);
3733 	struct inet_connection_sock *icsk = inet_csk(sk);
3734 	struct net *net = sock_net(sk);
3735 	int val;
3736 	int err = 0;
3737 
3738 	/* These are data/string values, all the others are ints */
3739 	switch (optname) {
3740 	case TCP_CONGESTION: {
3741 		char name[TCP_CA_NAME_MAX];
3742 
3743 		if (optlen < 1)
3744 			return -EINVAL;
3745 
3746 		val = strncpy_from_sockptr(name, optval,
3747 					min_t(long, TCP_CA_NAME_MAX-1, optlen));
3748 		if (val < 0)
3749 			return -EFAULT;
3750 		name[val] = 0;
3751 
3752 		sockopt_lock_sock(sk);
3753 		err = tcp_set_congestion_control(sk, name, !has_current_bpf_ctx(),
3754 						 sockopt_ns_capable(sock_net(sk)->user_ns,
3755 								    CAP_NET_ADMIN));
3756 		sockopt_release_sock(sk);
3757 		return err;
3758 	}
3759 	case TCP_ULP: {
3760 		char name[TCP_ULP_NAME_MAX];
3761 
3762 		if (optlen < 1)
3763 			return -EINVAL;
3764 
3765 		val = strncpy_from_sockptr(name, optval,
3766 					min_t(long, TCP_ULP_NAME_MAX - 1,
3767 					      optlen));
3768 		if (val < 0)
3769 			return -EFAULT;
3770 		name[val] = 0;
3771 
3772 		sockopt_lock_sock(sk);
3773 		err = tcp_set_ulp(sk, name);
3774 		sockopt_release_sock(sk);
3775 		return err;
3776 	}
3777 	case TCP_FASTOPEN_KEY: {
3778 		__u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH];
3779 		__u8 *backup_key = NULL;
3780 
3781 		/* Allow a backup key as well to facilitate key rotation
3782 		 * First key is the active one.
3783 		 */
3784 		if (optlen != TCP_FASTOPEN_KEY_LENGTH &&
3785 		    optlen != TCP_FASTOPEN_KEY_BUF_LENGTH)
3786 			return -EINVAL;
3787 
3788 		if (copy_from_sockptr(key, optval, optlen))
3789 			return -EFAULT;
3790 
3791 		if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH)
3792 			backup_key = key + TCP_FASTOPEN_KEY_LENGTH;
3793 
3794 		return tcp_fastopen_reset_cipher(net, sk, key, backup_key);
3795 	}
3796 	default:
3797 		/* fallthru */
3798 		break;
3799 	}
3800 
3801 	if (optlen < sizeof(int))
3802 		return -EINVAL;
3803 
3804 	if (copy_from_sockptr(&val, optval, sizeof(val)))
3805 		return -EFAULT;
3806 
3807 	/* Handle options that can be set without locking the socket. */
3808 	switch (optname) {
3809 	case TCP_SYNCNT:
3810 		return tcp_sock_set_syncnt(sk, val);
3811 	case TCP_USER_TIMEOUT:
3812 		return tcp_sock_set_user_timeout(sk, val);
3813 	case TCP_KEEPINTVL:
3814 		return tcp_sock_set_keepintvl(sk, val);
3815 	case TCP_KEEPCNT:
3816 		return tcp_sock_set_keepcnt(sk, val);
3817 	case TCP_LINGER2:
3818 		if (val < 0)
3819 			WRITE_ONCE(tp->linger2, -1);
3820 		else if (val > TCP_FIN_TIMEOUT_MAX / HZ)
3821 			WRITE_ONCE(tp->linger2, TCP_FIN_TIMEOUT_MAX);
3822 		else
3823 			WRITE_ONCE(tp->linger2, val * HZ);
3824 		return 0;
3825 	case TCP_DEFER_ACCEPT:
3826 		/* Translate value in seconds to number of retransmits */
3827 		WRITE_ONCE(icsk->icsk_accept_queue.rskq_defer_accept,
3828 			   secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
3829 					   TCP_RTO_MAX / HZ));
3830 		return 0;
3831 	}
3832 
3833 	sockopt_lock_sock(sk);
3834 
3835 	switch (optname) {
3836 	case TCP_MAXSEG:
3837 		/* Values greater than interface MTU won't take effect. However
3838 		 * at the point when this call is done we typically don't yet
3839 		 * know which interface is going to be used
3840 		 */
3841 		if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) {
3842 			err = -EINVAL;
3843 			break;
3844 		}
3845 		tp->rx_opt.user_mss = val;
3846 		break;
3847 
3848 	case TCP_NODELAY:
3849 		__tcp_sock_set_nodelay(sk, val);
3850 		break;
3851 
3852 	case TCP_THIN_LINEAR_TIMEOUTS:
3853 		if (val < 0 || val > 1)
3854 			err = -EINVAL;
3855 		else
3856 			tp->thin_lto = val;
3857 		break;
3858 
3859 	case TCP_THIN_DUPACK:
3860 		if (val < 0 || val > 1)
3861 			err = -EINVAL;
3862 		break;
3863 
3864 	case TCP_REPAIR:
3865 		if (!tcp_can_repair_sock(sk))
3866 			err = -EPERM;
3867 		else if (val == TCP_REPAIR_ON) {
3868 			tp->repair = 1;
3869 			sk->sk_reuse = SK_FORCE_REUSE;
3870 			tp->repair_queue = TCP_NO_QUEUE;
3871 		} else if (val == TCP_REPAIR_OFF) {
3872 			tp->repair = 0;
3873 			sk->sk_reuse = SK_NO_REUSE;
3874 			tcp_send_window_probe(sk);
3875 		} else if (val == TCP_REPAIR_OFF_NO_WP) {
3876 			tp->repair = 0;
3877 			sk->sk_reuse = SK_NO_REUSE;
3878 		} else
3879 			err = -EINVAL;
3880 
3881 		break;
3882 
3883 	case TCP_REPAIR_QUEUE:
3884 		if (!tp->repair)
3885 			err = -EPERM;
3886 		else if ((unsigned int)val < TCP_QUEUES_NR)
3887 			tp->repair_queue = val;
3888 		else
3889 			err = -EINVAL;
3890 		break;
3891 
3892 	case TCP_QUEUE_SEQ:
3893 		if (sk->sk_state != TCP_CLOSE) {
3894 			err = -EPERM;
3895 		} else if (tp->repair_queue == TCP_SEND_QUEUE) {
3896 			if (!tcp_rtx_queue_empty(sk))
3897 				err = -EPERM;
3898 			else
3899 				WRITE_ONCE(tp->write_seq, val);
3900 		} else if (tp->repair_queue == TCP_RECV_QUEUE) {
3901 			if (tp->rcv_nxt != tp->copied_seq) {
3902 				err = -EPERM;
3903 			} else {
3904 				WRITE_ONCE(tp->rcv_nxt, val);
3905 				WRITE_ONCE(tp->copied_seq, val);
3906 			}
3907 		} else {
3908 			err = -EINVAL;
3909 		}
3910 		break;
3911 
3912 	case TCP_REPAIR_OPTIONS:
3913 		if (!tp->repair)
3914 			err = -EINVAL;
3915 		else if (sk->sk_state == TCP_ESTABLISHED && !tp->bytes_sent)
3916 			err = tcp_repair_options_est(sk, optval, optlen);
3917 		else
3918 			err = -EPERM;
3919 		break;
3920 
3921 	case TCP_CORK:
3922 		__tcp_sock_set_cork(sk, val);
3923 		break;
3924 
3925 	case TCP_KEEPIDLE:
3926 		err = tcp_sock_set_keepidle_locked(sk, val);
3927 		break;
3928 	case TCP_SAVE_SYN:
3929 		/* 0: disable, 1: enable, 2: start from ether_header */
3930 		if (val < 0 || val > 2)
3931 			err = -EINVAL;
3932 		else
3933 			tp->save_syn = val;
3934 		break;
3935 
3936 	case TCP_WINDOW_CLAMP:
3937 		err = tcp_set_window_clamp(sk, val);
3938 		break;
3939 
3940 	case TCP_QUICKACK:
3941 		__tcp_sock_set_quickack(sk, val);
3942 		break;
3943 
3944 	case TCP_AO_REPAIR:
3945 		if (!tcp_can_repair_sock(sk)) {
3946 			err = -EPERM;
3947 			break;
3948 		}
3949 		err = tcp_ao_set_repair(sk, optval, optlen);
3950 		break;
3951 #ifdef CONFIG_TCP_AO
3952 	case TCP_AO_ADD_KEY:
3953 	case TCP_AO_DEL_KEY:
3954 	case TCP_AO_INFO: {
3955 		/* If this is the first TCP-AO setsockopt() on the socket,
3956 		 * sk_state has to be LISTEN or CLOSE. Allow TCP_REPAIR
3957 		 * in any state.
3958 		 */
3959 		if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE))
3960 			goto ao_parse;
3961 		if (rcu_dereference_protected(tcp_sk(sk)->ao_info,
3962 					      lockdep_sock_is_held(sk)))
3963 			goto ao_parse;
3964 		if (tp->repair)
3965 			goto ao_parse;
3966 		err = -EISCONN;
3967 		break;
3968 ao_parse:
3969 		err = tp->af_specific->ao_parse(sk, optname, optval, optlen);
3970 		break;
3971 	}
3972 #endif
3973 #ifdef CONFIG_TCP_MD5SIG
3974 	case TCP_MD5SIG:
3975 	case TCP_MD5SIG_EXT:
3976 		err = tp->af_specific->md5_parse(sk, optname, optval, optlen);
3977 		break;
3978 #endif
3979 	case TCP_FASTOPEN:
3980 		if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
3981 		    TCPF_LISTEN))) {
3982 			tcp_fastopen_init_key_once(net);
3983 
3984 			fastopen_queue_tune(sk, val);
3985 		} else {
3986 			err = -EINVAL;
3987 		}
3988 		break;
3989 	case TCP_FASTOPEN_CONNECT:
3990 		if (val > 1 || val < 0) {
3991 			err = -EINVAL;
3992 		} else if (READ_ONCE(net->ipv4.sysctl_tcp_fastopen) &
3993 			   TFO_CLIENT_ENABLE) {
3994 			if (sk->sk_state == TCP_CLOSE)
3995 				tp->fastopen_connect = val;
3996 			else
3997 				err = -EINVAL;
3998 		} else {
3999 			err = -EOPNOTSUPP;
4000 		}
4001 		break;
4002 	case TCP_FASTOPEN_NO_COOKIE:
4003 		if (val > 1 || val < 0)
4004 			err = -EINVAL;
4005 		else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
4006 			err = -EINVAL;
4007 		else
4008 			tp->fastopen_no_cookie = val;
4009 		break;
4010 	case TCP_TIMESTAMP:
4011 		if (!tp->repair) {
4012 			err = -EPERM;
4013 			break;
4014 		}
4015 		/* val is an opaque field,
4016 		 * and low order bit contains usec_ts enable bit.
4017 		 * Its a best effort, and we do not care if user makes an error.
4018 		 */
4019 		tp->tcp_usec_ts = val & 1;
4020 		WRITE_ONCE(tp->tsoffset, val - tcp_clock_ts(tp->tcp_usec_ts));
4021 		break;
4022 	case TCP_REPAIR_WINDOW:
4023 		err = tcp_repair_set_window(tp, optval, optlen);
4024 		break;
4025 	case TCP_NOTSENT_LOWAT:
4026 		WRITE_ONCE(tp->notsent_lowat, val);
4027 		sk->sk_write_space(sk);
4028 		break;
4029 	case TCP_INQ:
4030 		if (val > 1 || val < 0)
4031 			err = -EINVAL;
4032 		else
4033 			tp->recvmsg_inq = val;
4034 		break;
4035 	case TCP_TX_DELAY:
4036 		if (val)
4037 			tcp_enable_tx_delay();
4038 		WRITE_ONCE(tp->tcp_tx_delay, val);
4039 		break;
4040 	default:
4041 		err = -ENOPROTOOPT;
4042 		break;
4043 	}
4044 
4045 	sockopt_release_sock(sk);
4046 	return err;
4047 }
4048 
tcp_setsockopt(struct sock * sk,int level,int optname,sockptr_t optval,unsigned int optlen)4049 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
4050 		   unsigned int optlen)
4051 {
4052 	const struct inet_connection_sock *icsk = inet_csk(sk);
4053 
4054 	if (level != SOL_TCP)
4055 		/* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */
4056 		return READ_ONCE(icsk->icsk_af_ops)->setsockopt(sk, level, optname,
4057 								optval, optlen);
4058 	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
4059 }
4060 EXPORT_SYMBOL(tcp_setsockopt);
4061 
tcp_get_info_chrono_stats(const struct tcp_sock * tp,struct tcp_info * info)4062 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp,
4063 				      struct tcp_info *info)
4064 {
4065 	u64 stats[__TCP_CHRONO_MAX], total = 0;
4066 	enum tcp_chrono i;
4067 
4068 	for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) {
4069 		stats[i] = tp->chrono_stat[i - 1];
4070 		if (i == tp->chrono_type)
4071 			stats[i] += tcp_jiffies32 - tp->chrono_start;
4072 		stats[i] *= USEC_PER_SEC / HZ;
4073 		total += stats[i];
4074 	}
4075 
4076 	info->tcpi_busy_time = total;
4077 	info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED];
4078 	info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED];
4079 }
4080 
4081 /* Return information about state of tcp endpoint in API format. */
tcp_get_info(struct sock * sk,struct tcp_info * info)4082 void tcp_get_info(struct sock *sk, struct tcp_info *info)
4083 {
4084 	const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
4085 	const struct inet_connection_sock *icsk = inet_csk(sk);
4086 	unsigned long rate;
4087 	u32 now;
4088 	u64 rate64;
4089 	bool slow;
4090 
4091 	memset(info, 0, sizeof(*info));
4092 	if (sk->sk_type != SOCK_STREAM)
4093 		return;
4094 
4095 	info->tcpi_state = inet_sk_state_load(sk);
4096 
4097 	/* Report meaningful fields for all TCP states, including listeners */
4098 	rate = READ_ONCE(sk->sk_pacing_rate);
4099 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
4100 	info->tcpi_pacing_rate = rate64;
4101 
4102 	rate = READ_ONCE(sk->sk_max_pacing_rate);
4103 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
4104 	info->tcpi_max_pacing_rate = rate64;
4105 
4106 	info->tcpi_reordering = tp->reordering;
4107 	info->tcpi_snd_cwnd = tcp_snd_cwnd(tp);
4108 
4109 	if (info->tcpi_state == TCP_LISTEN) {
4110 		/* listeners aliased fields :
4111 		 * tcpi_unacked -> Number of children ready for accept()
4112 		 * tcpi_sacked  -> max backlog
4113 		 */
4114 		info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog);
4115 		info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog);
4116 		return;
4117 	}
4118 
4119 	slow = lock_sock_fast(sk);
4120 
4121 	info->tcpi_ca_state = icsk->icsk_ca_state;
4122 	info->tcpi_retransmits = icsk->icsk_retransmits;
4123 	info->tcpi_probes = icsk->icsk_probes_out;
4124 	info->tcpi_backoff = icsk->icsk_backoff;
4125 
4126 	if (tp->rx_opt.tstamp_ok)
4127 		info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
4128 	if (tcp_is_sack(tp))
4129 		info->tcpi_options |= TCPI_OPT_SACK;
4130 	if (tp->rx_opt.wscale_ok) {
4131 		info->tcpi_options |= TCPI_OPT_WSCALE;
4132 		info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
4133 		info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
4134 	}
4135 
4136 	if (tp->ecn_flags & TCP_ECN_OK)
4137 		info->tcpi_options |= TCPI_OPT_ECN;
4138 	if (tp->ecn_flags & TCP_ECN_SEEN)
4139 		info->tcpi_options |= TCPI_OPT_ECN_SEEN;
4140 	if (tp->syn_data_acked)
4141 		info->tcpi_options |= TCPI_OPT_SYN_DATA;
4142 	if (tp->tcp_usec_ts)
4143 		info->tcpi_options |= TCPI_OPT_USEC_TS;
4144 
4145 	info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
4146 	info->tcpi_ato = jiffies_to_usecs(min_t(u32, icsk->icsk_ack.ato,
4147 						tcp_delack_max(sk)));
4148 	info->tcpi_snd_mss = tp->mss_cache;
4149 	info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
4150 
4151 	info->tcpi_unacked = tp->packets_out;
4152 	info->tcpi_sacked = tp->sacked_out;
4153 
4154 	info->tcpi_lost = tp->lost_out;
4155 	info->tcpi_retrans = tp->retrans_out;
4156 
4157 	now = tcp_jiffies32;
4158 	info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
4159 	info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
4160 	info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
4161 
4162 	info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
4163 	info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
4164 	info->tcpi_rtt = tp->srtt_us >> 3;
4165 	info->tcpi_rttvar = tp->mdev_us >> 2;
4166 	info->tcpi_snd_ssthresh = tp->snd_ssthresh;
4167 	info->tcpi_advmss = tp->advmss;
4168 
4169 	info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3;
4170 	info->tcpi_rcv_space = tp->rcvq_space.space;
4171 
4172 	info->tcpi_total_retrans = tp->total_retrans;
4173 
4174 	info->tcpi_bytes_acked = tp->bytes_acked;
4175 	info->tcpi_bytes_received = tp->bytes_received;
4176 	info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt);
4177 	tcp_get_info_chrono_stats(tp, info);
4178 
4179 	info->tcpi_segs_out = tp->segs_out;
4180 
4181 	/* segs_in and data_segs_in can be updated from tcp_segs_in() from BH */
4182 	info->tcpi_segs_in = READ_ONCE(tp->segs_in);
4183 	info->tcpi_data_segs_in = READ_ONCE(tp->data_segs_in);
4184 
4185 	info->tcpi_min_rtt = tcp_min_rtt(tp);
4186 	info->tcpi_data_segs_out = tp->data_segs_out;
4187 
4188 	info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0;
4189 	rate64 = tcp_compute_delivery_rate(tp);
4190 	if (rate64)
4191 		info->tcpi_delivery_rate = rate64;
4192 	info->tcpi_delivered = tp->delivered;
4193 	info->tcpi_delivered_ce = tp->delivered_ce;
4194 	info->tcpi_bytes_sent = tp->bytes_sent;
4195 	info->tcpi_bytes_retrans = tp->bytes_retrans;
4196 	info->tcpi_dsack_dups = tp->dsack_dups;
4197 	info->tcpi_reord_seen = tp->reord_seen;
4198 	info->tcpi_rcv_ooopack = tp->rcv_ooopack;
4199 	info->tcpi_snd_wnd = tp->snd_wnd;
4200 	info->tcpi_rcv_wnd = tp->rcv_wnd;
4201 	info->tcpi_rehash = tp->plb_rehash + tp->timeout_rehash;
4202 	info->tcpi_fastopen_client_fail = tp->fastopen_client_fail;
4203 
4204 	info->tcpi_total_rto = tp->total_rto;
4205 	info->tcpi_total_rto_recoveries = tp->total_rto_recoveries;
4206 	info->tcpi_total_rto_time = tp->total_rto_time;
4207 	if (tp->rto_stamp)
4208 		info->tcpi_total_rto_time += tcp_clock_ms() - tp->rto_stamp;
4209 
4210 	unlock_sock_fast(sk, slow);
4211 }
4212 EXPORT_SYMBOL_GPL(tcp_get_info);
4213 
tcp_opt_stats_get_size(void)4214 static size_t tcp_opt_stats_get_size(void)
4215 {
4216 	return
4217 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */
4218 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */
4219 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */
4220 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */
4221 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */
4222 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */
4223 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */
4224 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */
4225 		nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */
4226 		nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */
4227 		nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */
4228 		nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */
4229 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */
4230 		nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */
4231 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */
4232 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */
4233 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */
4234 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */
4235 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */
4236 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */
4237 		nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */
4238 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */
4239 		nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */
4240 		nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */
4241 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_EDT */
4242 		nla_total_size(sizeof(u8)) + /* TCP_NLA_TTL */
4243 		nla_total_size(sizeof(u32)) + /* TCP_NLA_REHASH */
4244 		0;
4245 }
4246 
4247 /* Returns TTL or hop limit of an incoming packet from skb. */
tcp_skb_ttl_or_hop_limit(const struct sk_buff * skb)4248 static u8 tcp_skb_ttl_or_hop_limit(const struct sk_buff *skb)
4249 {
4250 	if (skb->protocol == htons(ETH_P_IP))
4251 		return ip_hdr(skb)->ttl;
4252 	else if (skb->protocol == htons(ETH_P_IPV6))
4253 		return ipv6_hdr(skb)->hop_limit;
4254 	else
4255 		return 0;
4256 }
4257 
tcp_get_timestamping_opt_stats(const struct sock * sk,const struct sk_buff * orig_skb,const struct sk_buff * ack_skb)4258 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk,
4259 					       const struct sk_buff *orig_skb,
4260 					       const struct sk_buff *ack_skb)
4261 {
4262 	const struct tcp_sock *tp = tcp_sk(sk);
4263 	struct sk_buff *stats;
4264 	struct tcp_info info;
4265 	unsigned long rate;
4266 	u64 rate64;
4267 
4268 	stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC);
4269 	if (!stats)
4270 		return NULL;
4271 
4272 	tcp_get_info_chrono_stats(tp, &info);
4273 	nla_put_u64_64bit(stats, TCP_NLA_BUSY,
4274 			  info.tcpi_busy_time, TCP_NLA_PAD);
4275 	nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED,
4276 			  info.tcpi_rwnd_limited, TCP_NLA_PAD);
4277 	nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED,
4278 			  info.tcpi_sndbuf_limited, TCP_NLA_PAD);
4279 	nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT,
4280 			  tp->data_segs_out, TCP_NLA_PAD);
4281 	nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS,
4282 			  tp->total_retrans, TCP_NLA_PAD);
4283 
4284 	rate = READ_ONCE(sk->sk_pacing_rate);
4285 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
4286 	nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD);
4287 
4288 	rate64 = tcp_compute_delivery_rate(tp);
4289 	nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD);
4290 
4291 	nla_put_u32(stats, TCP_NLA_SND_CWND, tcp_snd_cwnd(tp));
4292 	nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering);
4293 	nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp));
4294 
4295 	nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits);
4296 	nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited);
4297 	nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh);
4298 	nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered);
4299 	nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce);
4300 
4301 	nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una);
4302 	nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state);
4303 
4304 	nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent,
4305 			  TCP_NLA_PAD);
4306 	nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans,
4307 			  TCP_NLA_PAD);
4308 	nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups);
4309 	nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen);
4310 	nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3);
4311 	nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash);
4312 	nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT,
4313 		    max_t(int, 0, tp->write_seq - tp->snd_nxt));
4314 	nla_put_u64_64bit(stats, TCP_NLA_EDT, orig_skb->skb_mstamp_ns,
4315 			  TCP_NLA_PAD);
4316 	if (ack_skb)
4317 		nla_put_u8(stats, TCP_NLA_TTL,
4318 			   tcp_skb_ttl_or_hop_limit(ack_skb));
4319 
4320 	nla_put_u32(stats, TCP_NLA_REHASH, tp->plb_rehash + tp->timeout_rehash);
4321 	return stats;
4322 }
4323 
do_tcp_getsockopt(struct sock * sk,int level,int optname,sockptr_t optval,sockptr_t optlen)4324 int do_tcp_getsockopt(struct sock *sk, int level,
4325 		      int optname, sockptr_t optval, sockptr_t optlen)
4326 {
4327 	struct inet_connection_sock *icsk = inet_csk(sk);
4328 	struct tcp_sock *tp = tcp_sk(sk);
4329 	struct net *net = sock_net(sk);
4330 	int val, len;
4331 
4332 	if (copy_from_sockptr(&len, optlen, sizeof(int)))
4333 		return -EFAULT;
4334 
4335 	if (len < 0)
4336 		return -EINVAL;
4337 
4338 	len = min_t(unsigned int, len, sizeof(int));
4339 
4340 	switch (optname) {
4341 	case TCP_MAXSEG:
4342 		val = tp->mss_cache;
4343 		if (tp->rx_opt.user_mss &&
4344 		    ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
4345 			val = tp->rx_opt.user_mss;
4346 		if (tp->repair)
4347 			val = tp->rx_opt.mss_clamp;
4348 		break;
4349 	case TCP_NODELAY:
4350 		val = !!(tp->nonagle&TCP_NAGLE_OFF);
4351 		break;
4352 	case TCP_CORK:
4353 		val = !!(tp->nonagle&TCP_NAGLE_CORK);
4354 		break;
4355 	case TCP_KEEPIDLE:
4356 		val = keepalive_time_when(tp) / HZ;
4357 		break;
4358 	case TCP_KEEPINTVL:
4359 		val = keepalive_intvl_when(tp) / HZ;
4360 		break;
4361 	case TCP_KEEPCNT:
4362 		val = keepalive_probes(tp);
4363 		break;
4364 	case TCP_SYNCNT:
4365 		val = READ_ONCE(icsk->icsk_syn_retries) ? :
4366 			READ_ONCE(net->ipv4.sysctl_tcp_syn_retries);
4367 		break;
4368 	case TCP_LINGER2:
4369 		val = READ_ONCE(tp->linger2);
4370 		if (val >= 0)
4371 			val = (val ? : READ_ONCE(net->ipv4.sysctl_tcp_fin_timeout)) / HZ;
4372 		break;
4373 	case TCP_DEFER_ACCEPT:
4374 		val = READ_ONCE(icsk->icsk_accept_queue.rskq_defer_accept);
4375 		val = retrans_to_secs(val, TCP_TIMEOUT_INIT / HZ,
4376 				      TCP_RTO_MAX / HZ);
4377 		break;
4378 	case TCP_WINDOW_CLAMP:
4379 		val = READ_ONCE(tp->window_clamp);
4380 		break;
4381 	case TCP_INFO: {
4382 		struct tcp_info info;
4383 
4384 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4385 			return -EFAULT;
4386 
4387 		tcp_get_info(sk, &info);
4388 
4389 		len = min_t(unsigned int, len, sizeof(info));
4390 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4391 			return -EFAULT;
4392 		if (copy_to_sockptr(optval, &info, len))
4393 			return -EFAULT;
4394 		return 0;
4395 	}
4396 	case TCP_CC_INFO: {
4397 		const struct tcp_congestion_ops *ca_ops;
4398 		union tcp_cc_info info;
4399 		size_t sz = 0;
4400 		int attr;
4401 
4402 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4403 			return -EFAULT;
4404 
4405 		ca_ops = icsk->icsk_ca_ops;
4406 		if (ca_ops && ca_ops->get_info)
4407 			sz = ca_ops->get_info(sk, ~0U, &attr, &info);
4408 
4409 		len = min_t(unsigned int, len, sz);
4410 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4411 			return -EFAULT;
4412 		if (copy_to_sockptr(optval, &info, len))
4413 			return -EFAULT;
4414 		return 0;
4415 	}
4416 	case TCP_QUICKACK:
4417 		val = !inet_csk_in_pingpong_mode(sk);
4418 		break;
4419 
4420 	case TCP_CONGESTION:
4421 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4422 			return -EFAULT;
4423 		len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
4424 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4425 			return -EFAULT;
4426 		if (copy_to_sockptr(optval, icsk->icsk_ca_ops->name, len))
4427 			return -EFAULT;
4428 		return 0;
4429 
4430 	case TCP_ULP:
4431 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4432 			return -EFAULT;
4433 		len = min_t(unsigned int, len, TCP_ULP_NAME_MAX);
4434 		if (!icsk->icsk_ulp_ops) {
4435 			len = 0;
4436 			if (copy_to_sockptr(optlen, &len, sizeof(int)))
4437 				return -EFAULT;
4438 			return 0;
4439 		}
4440 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4441 			return -EFAULT;
4442 		if (copy_to_sockptr(optval, icsk->icsk_ulp_ops->name, len))
4443 			return -EFAULT;
4444 		return 0;
4445 
4446 	case TCP_FASTOPEN_KEY: {
4447 		u64 key[TCP_FASTOPEN_KEY_BUF_LENGTH / sizeof(u64)];
4448 		unsigned int key_len;
4449 
4450 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4451 			return -EFAULT;
4452 
4453 		key_len = tcp_fastopen_get_cipher(net, icsk, key) *
4454 				TCP_FASTOPEN_KEY_LENGTH;
4455 		len = min_t(unsigned int, len, key_len);
4456 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4457 			return -EFAULT;
4458 		if (copy_to_sockptr(optval, key, len))
4459 			return -EFAULT;
4460 		return 0;
4461 	}
4462 	case TCP_THIN_LINEAR_TIMEOUTS:
4463 		val = tp->thin_lto;
4464 		break;
4465 
4466 	case TCP_THIN_DUPACK:
4467 		val = 0;
4468 		break;
4469 
4470 	case TCP_REPAIR:
4471 		val = tp->repair;
4472 		break;
4473 
4474 	case TCP_REPAIR_QUEUE:
4475 		if (tp->repair)
4476 			val = tp->repair_queue;
4477 		else
4478 			return -EINVAL;
4479 		break;
4480 
4481 	case TCP_REPAIR_WINDOW: {
4482 		struct tcp_repair_window opt;
4483 
4484 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4485 			return -EFAULT;
4486 
4487 		if (len != sizeof(opt))
4488 			return -EINVAL;
4489 
4490 		if (!tp->repair)
4491 			return -EPERM;
4492 
4493 		opt.snd_wl1	= tp->snd_wl1;
4494 		opt.snd_wnd	= tp->snd_wnd;
4495 		opt.max_window	= tp->max_window;
4496 		opt.rcv_wnd	= tp->rcv_wnd;
4497 		opt.rcv_wup	= tp->rcv_wup;
4498 
4499 		if (copy_to_sockptr(optval, &opt, len))
4500 			return -EFAULT;
4501 		return 0;
4502 	}
4503 	case TCP_QUEUE_SEQ:
4504 		if (tp->repair_queue == TCP_SEND_QUEUE)
4505 			val = tp->write_seq;
4506 		else if (tp->repair_queue == TCP_RECV_QUEUE)
4507 			val = tp->rcv_nxt;
4508 		else
4509 			return -EINVAL;
4510 		break;
4511 
4512 	case TCP_USER_TIMEOUT:
4513 		val = READ_ONCE(icsk->icsk_user_timeout);
4514 		break;
4515 
4516 	case TCP_FASTOPEN:
4517 		val = READ_ONCE(icsk->icsk_accept_queue.fastopenq.max_qlen);
4518 		break;
4519 
4520 	case TCP_FASTOPEN_CONNECT:
4521 		val = tp->fastopen_connect;
4522 		break;
4523 
4524 	case TCP_FASTOPEN_NO_COOKIE:
4525 		val = tp->fastopen_no_cookie;
4526 		break;
4527 
4528 	case TCP_TX_DELAY:
4529 		val = READ_ONCE(tp->tcp_tx_delay);
4530 		break;
4531 
4532 	case TCP_TIMESTAMP:
4533 		val = tcp_clock_ts(tp->tcp_usec_ts) + READ_ONCE(tp->tsoffset);
4534 		if (tp->tcp_usec_ts)
4535 			val |= 1;
4536 		else
4537 			val &= ~1;
4538 		break;
4539 	case TCP_NOTSENT_LOWAT:
4540 		val = READ_ONCE(tp->notsent_lowat);
4541 		break;
4542 	case TCP_INQ:
4543 		val = tp->recvmsg_inq;
4544 		break;
4545 	case TCP_SAVE_SYN:
4546 		val = tp->save_syn;
4547 		break;
4548 	case TCP_SAVED_SYN: {
4549 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4550 			return -EFAULT;
4551 
4552 		sockopt_lock_sock(sk);
4553 		if (tp->saved_syn) {
4554 			if (len < tcp_saved_syn_len(tp->saved_syn)) {
4555 				len = tcp_saved_syn_len(tp->saved_syn);
4556 				if (copy_to_sockptr(optlen, &len, sizeof(int))) {
4557 					sockopt_release_sock(sk);
4558 					return -EFAULT;
4559 				}
4560 				sockopt_release_sock(sk);
4561 				return -EINVAL;
4562 			}
4563 			len = tcp_saved_syn_len(tp->saved_syn);
4564 			if (copy_to_sockptr(optlen, &len, sizeof(int))) {
4565 				sockopt_release_sock(sk);
4566 				return -EFAULT;
4567 			}
4568 			if (copy_to_sockptr(optval, tp->saved_syn->data, len)) {
4569 				sockopt_release_sock(sk);
4570 				return -EFAULT;
4571 			}
4572 			tcp_saved_syn_free(tp);
4573 			sockopt_release_sock(sk);
4574 		} else {
4575 			sockopt_release_sock(sk);
4576 			len = 0;
4577 			if (copy_to_sockptr(optlen, &len, sizeof(int)))
4578 				return -EFAULT;
4579 		}
4580 		return 0;
4581 	}
4582 #ifdef CONFIG_MMU
4583 	case TCP_ZEROCOPY_RECEIVE: {
4584 		struct scm_timestamping_internal tss;
4585 		struct tcp_zerocopy_receive zc = {};
4586 		int err;
4587 
4588 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4589 			return -EFAULT;
4590 		if (len < 0 ||
4591 		    len < offsetofend(struct tcp_zerocopy_receive, length))
4592 			return -EINVAL;
4593 		if (unlikely(len > sizeof(zc))) {
4594 			err = check_zeroed_sockptr(optval, sizeof(zc),
4595 						   len - sizeof(zc));
4596 			if (err < 1)
4597 				return err == 0 ? -EINVAL : err;
4598 			len = sizeof(zc);
4599 			if (copy_to_sockptr(optlen, &len, sizeof(int)))
4600 				return -EFAULT;
4601 		}
4602 		if (copy_from_sockptr(&zc, optval, len))
4603 			return -EFAULT;
4604 		if (zc.reserved)
4605 			return -EINVAL;
4606 		if (zc.msg_flags &  ~(TCP_VALID_ZC_MSG_FLAGS))
4607 			return -EINVAL;
4608 		sockopt_lock_sock(sk);
4609 		err = tcp_zerocopy_receive(sk, &zc, &tss);
4610 		err = BPF_CGROUP_RUN_PROG_GETSOCKOPT_KERN(sk, level, optname,
4611 							  &zc, &len, err);
4612 		sockopt_release_sock(sk);
4613 		if (len >= offsetofend(struct tcp_zerocopy_receive, msg_flags))
4614 			goto zerocopy_rcv_cmsg;
4615 		switch (len) {
4616 		case offsetofend(struct tcp_zerocopy_receive, msg_flags):
4617 			goto zerocopy_rcv_cmsg;
4618 		case offsetofend(struct tcp_zerocopy_receive, msg_controllen):
4619 		case offsetofend(struct tcp_zerocopy_receive, msg_control):
4620 		case offsetofend(struct tcp_zerocopy_receive, flags):
4621 		case offsetofend(struct tcp_zerocopy_receive, copybuf_len):
4622 		case offsetofend(struct tcp_zerocopy_receive, copybuf_address):
4623 		case offsetofend(struct tcp_zerocopy_receive, err):
4624 			goto zerocopy_rcv_sk_err;
4625 		case offsetofend(struct tcp_zerocopy_receive, inq):
4626 			goto zerocopy_rcv_inq;
4627 		case offsetofend(struct tcp_zerocopy_receive, length):
4628 		default:
4629 			goto zerocopy_rcv_out;
4630 		}
4631 zerocopy_rcv_cmsg:
4632 		if (zc.msg_flags & TCP_CMSG_TS)
4633 			tcp_zc_finalize_rx_tstamp(sk, &zc, &tss);
4634 		else
4635 			zc.msg_flags = 0;
4636 zerocopy_rcv_sk_err:
4637 		if (!err)
4638 			zc.err = sock_error(sk);
4639 zerocopy_rcv_inq:
4640 		zc.inq = tcp_inq_hint(sk);
4641 zerocopy_rcv_out:
4642 		if (!err && copy_to_sockptr(optval, &zc, len))
4643 			err = -EFAULT;
4644 		return err;
4645 	}
4646 #endif
4647 	case TCP_AO_REPAIR:
4648 		if (!tcp_can_repair_sock(sk))
4649 			return -EPERM;
4650 		return tcp_ao_get_repair(sk, optval, optlen);
4651 	case TCP_AO_GET_KEYS:
4652 	case TCP_AO_INFO: {
4653 		int err;
4654 
4655 		sockopt_lock_sock(sk);
4656 		if (optname == TCP_AO_GET_KEYS)
4657 			err = tcp_ao_get_mkts(sk, optval, optlen);
4658 		else
4659 			err = tcp_ao_get_sock_info(sk, optval, optlen);
4660 		sockopt_release_sock(sk);
4661 
4662 		return err;
4663 	}
4664 	case TCP_IS_MPTCP:
4665 		val = 0;
4666 		break;
4667 	default:
4668 		return -ENOPROTOOPT;
4669 	}
4670 
4671 	if (copy_to_sockptr(optlen, &len, sizeof(int)))
4672 		return -EFAULT;
4673 	if (copy_to_sockptr(optval, &val, len))
4674 		return -EFAULT;
4675 	return 0;
4676 }
4677 
tcp_bpf_bypass_getsockopt(int level,int optname)4678 bool tcp_bpf_bypass_getsockopt(int level, int optname)
4679 {
4680 	/* TCP do_tcp_getsockopt has optimized getsockopt implementation
4681 	 * to avoid extra socket lock for TCP_ZEROCOPY_RECEIVE.
4682 	 */
4683 	if (level == SOL_TCP && optname == TCP_ZEROCOPY_RECEIVE)
4684 		return true;
4685 
4686 	return false;
4687 }
4688 EXPORT_SYMBOL(tcp_bpf_bypass_getsockopt);
4689 
tcp_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)4690 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
4691 		   int __user *optlen)
4692 {
4693 	struct inet_connection_sock *icsk = inet_csk(sk);
4694 
4695 	if (level != SOL_TCP)
4696 		/* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */
4697 		return READ_ONCE(icsk->icsk_af_ops)->getsockopt(sk, level, optname,
4698 								optval, optlen);
4699 	return do_tcp_getsockopt(sk, level, optname, USER_SOCKPTR(optval),
4700 				 USER_SOCKPTR(optlen));
4701 }
4702 EXPORT_SYMBOL(tcp_getsockopt);
4703 
4704 #ifdef CONFIG_TCP_MD5SIG
4705 int tcp_md5_sigpool_id = -1;
4706 EXPORT_SYMBOL_GPL(tcp_md5_sigpool_id);
4707 
tcp_md5_alloc_sigpool(void)4708 int tcp_md5_alloc_sigpool(void)
4709 {
4710 	size_t scratch_size;
4711 	int ret;
4712 
4713 	scratch_size = sizeof(union tcp_md5sum_block) + sizeof(struct tcphdr);
4714 	ret = tcp_sigpool_alloc_ahash("md5", scratch_size);
4715 	if (ret >= 0) {
4716 		/* As long as any md5 sigpool was allocated, the return
4717 		 * id would stay the same. Re-write the id only for the case
4718 		 * when previously all MD5 keys were deleted and this call
4719 		 * allocates the first MD5 key, which may return a different
4720 		 * sigpool id than was used previously.
4721 		 */
4722 		WRITE_ONCE(tcp_md5_sigpool_id, ret); /* Avoids the compiler potentially being smart here */
4723 		return 0;
4724 	}
4725 	return ret;
4726 }
4727 
tcp_md5_release_sigpool(void)4728 void tcp_md5_release_sigpool(void)
4729 {
4730 	tcp_sigpool_release(READ_ONCE(tcp_md5_sigpool_id));
4731 }
4732 
tcp_md5_add_sigpool(void)4733 void tcp_md5_add_sigpool(void)
4734 {
4735 	tcp_sigpool_get(READ_ONCE(tcp_md5_sigpool_id));
4736 }
4737 
tcp_md5_hash_key(struct tcp_sigpool * hp,const struct tcp_md5sig_key * key)4738 int tcp_md5_hash_key(struct tcp_sigpool *hp,
4739 		     const struct tcp_md5sig_key *key)
4740 {
4741 	u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */
4742 	struct scatterlist sg;
4743 
4744 	sg_init_one(&sg, key->key, keylen);
4745 	ahash_request_set_crypt(hp->req, &sg, NULL, keylen);
4746 
4747 	/* We use data_race() because tcp_md5_do_add() might change
4748 	 * key->key under us
4749 	 */
4750 	return data_race(crypto_ahash_update(hp->req));
4751 }
4752 EXPORT_SYMBOL(tcp_md5_hash_key);
4753 
4754 /* Called with rcu_read_lock() */
4755 static enum skb_drop_reason
tcp_inbound_md5_hash(const struct sock * sk,const struct sk_buff * skb,const void * saddr,const void * daddr,int family,int l3index,const __u8 * hash_location)4756 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
4757 		     const void *saddr, const void *daddr,
4758 		     int family, int l3index, const __u8 *hash_location)
4759 {
4760 	/* This gets called for each TCP segment that has TCP-MD5 option.
4761 	 * We have 3 drop cases:
4762 	 * o No MD5 hash and one expected.
4763 	 * o MD5 hash and we're not expecting one.
4764 	 * o MD5 hash and its wrong.
4765 	 */
4766 	const struct tcp_sock *tp = tcp_sk(sk);
4767 	struct tcp_md5sig_key *key;
4768 	u8 newhash[16];
4769 	int genhash;
4770 
4771 	key = tcp_md5_do_lookup(sk, l3index, saddr, family);
4772 
4773 	if (!key && hash_location) {
4774 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
4775 		trace_tcp_hash_md5_unexpected(sk, skb);
4776 		return SKB_DROP_REASON_TCP_MD5UNEXPECTED;
4777 	}
4778 
4779 	/* Check the signature.
4780 	 * To support dual stack listeners, we need to handle
4781 	 * IPv4-mapped case.
4782 	 */
4783 	if (family == AF_INET)
4784 		genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, skb);
4785 	else
4786 		genhash = tp->af_specific->calc_md5_hash(newhash, key,
4787 							 NULL, skb);
4788 	if (genhash || memcmp(hash_location, newhash, 16) != 0) {
4789 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5FAILURE);
4790 		trace_tcp_hash_md5_mismatch(sk, skb);
4791 		return SKB_DROP_REASON_TCP_MD5FAILURE;
4792 	}
4793 	return SKB_NOT_DROPPED_YET;
4794 }
4795 #else
4796 static inline enum skb_drop_reason
tcp_inbound_md5_hash(const struct sock * sk,const struct sk_buff * skb,const void * saddr,const void * daddr,int family,int l3index,const __u8 * hash_location)4797 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
4798 		     const void *saddr, const void *daddr,
4799 		     int family, int l3index, const __u8 *hash_location)
4800 {
4801 	return SKB_NOT_DROPPED_YET;
4802 }
4803 
4804 #endif
4805 
4806 /* Called with rcu_read_lock() */
4807 enum skb_drop_reason
tcp_inbound_hash(struct sock * sk,const struct request_sock * req,const struct sk_buff * skb,const void * saddr,const void * daddr,int family,int dif,int sdif)4808 tcp_inbound_hash(struct sock *sk, const struct request_sock *req,
4809 		 const struct sk_buff *skb,
4810 		 const void *saddr, const void *daddr,
4811 		 int family, int dif, int sdif)
4812 {
4813 	const struct tcphdr *th = tcp_hdr(skb);
4814 	const struct tcp_ao_hdr *aoh;
4815 	const __u8 *md5_location;
4816 	int l3index;
4817 
4818 	/* Invalid option or two times meet any of auth options */
4819 	if (tcp_parse_auth_options(th, &md5_location, &aoh)) {
4820 		trace_tcp_hash_bad_header(sk, skb);
4821 		return SKB_DROP_REASON_TCP_AUTH_HDR;
4822 	}
4823 
4824 	if (req) {
4825 		if (tcp_rsk_used_ao(req) != !!aoh) {
4826 			u8 keyid, rnext, maclen;
4827 
4828 			if (aoh) {
4829 				keyid = aoh->keyid;
4830 				rnext = aoh->rnext_keyid;
4831 				maclen = tcp_ao_hdr_maclen(aoh);
4832 			} else {
4833 				keyid = rnext = maclen = 0;
4834 			}
4835 
4836 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAOBAD);
4837 			trace_tcp_ao_handshake_failure(sk, skb, keyid, rnext, maclen);
4838 			return SKB_DROP_REASON_TCP_AOFAILURE;
4839 		}
4840 	}
4841 
4842 	/* sdif set, means packet ingressed via a device
4843 	 * in an L3 domain and dif is set to the l3mdev
4844 	 */
4845 	l3index = sdif ? dif : 0;
4846 
4847 	/* Fast path: unsigned segments */
4848 	if (likely(!md5_location && !aoh)) {
4849 		/* Drop if there's TCP-MD5 or TCP-AO key with any rcvid/sndid
4850 		 * for the remote peer. On TCP-AO established connection
4851 		 * the last key is impossible to remove, so there's
4852 		 * always at least one current_key.
4853 		 */
4854 		if (tcp_ao_required(sk, saddr, family, l3index, true)) {
4855 			trace_tcp_hash_ao_required(sk, skb);
4856 			return SKB_DROP_REASON_TCP_AONOTFOUND;
4857 		}
4858 		if (unlikely(tcp_md5_do_lookup(sk, l3index, saddr, family))) {
4859 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
4860 			trace_tcp_hash_md5_required(sk, skb);
4861 			return SKB_DROP_REASON_TCP_MD5NOTFOUND;
4862 		}
4863 		return SKB_NOT_DROPPED_YET;
4864 	}
4865 
4866 	if (aoh)
4867 		return tcp_inbound_ao_hash(sk, skb, family, req, l3index, aoh);
4868 
4869 	return tcp_inbound_md5_hash(sk, skb, saddr, daddr, family,
4870 				    l3index, md5_location);
4871 }
4872 EXPORT_SYMBOL_GPL(tcp_inbound_hash);
4873 
tcp_done(struct sock * sk)4874 void tcp_done(struct sock *sk)
4875 {
4876 	struct request_sock *req;
4877 
4878 	/* We might be called with a new socket, after
4879 	 * inet_csk_prepare_forced_close() has been called
4880 	 * so we can not use lockdep_sock_is_held(sk)
4881 	 */
4882 	req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1);
4883 
4884 	if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
4885 		TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
4886 
4887 	tcp_set_state(sk, TCP_CLOSE);
4888 	tcp_clear_xmit_timers(sk);
4889 	if (req)
4890 		reqsk_fastopen_remove(sk, req, false);
4891 
4892 	WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
4893 
4894 	if (!sock_flag(sk, SOCK_DEAD))
4895 		sk->sk_state_change(sk);
4896 	else
4897 		inet_csk_destroy_sock(sk);
4898 }
4899 EXPORT_SYMBOL_GPL(tcp_done);
4900 
tcp_abort(struct sock * sk,int err)4901 int tcp_abort(struct sock *sk, int err)
4902 {
4903 	int state = inet_sk_state_load(sk);
4904 
4905 	if (state == TCP_NEW_SYN_RECV) {
4906 		struct request_sock *req = inet_reqsk(sk);
4907 
4908 		local_bh_disable();
4909 		inet_csk_reqsk_queue_drop(req->rsk_listener, req);
4910 		local_bh_enable();
4911 		return 0;
4912 	}
4913 	if (state == TCP_TIME_WAIT) {
4914 		struct inet_timewait_sock *tw = inet_twsk(sk);
4915 
4916 		refcount_inc(&tw->tw_refcnt);
4917 		local_bh_disable();
4918 		inet_twsk_deschedule_put(tw);
4919 		local_bh_enable();
4920 		return 0;
4921 	}
4922 
4923 	/* BPF context ensures sock locking. */
4924 	if (!has_current_bpf_ctx())
4925 		/* Don't race with userspace socket closes such as tcp_close. */
4926 		lock_sock(sk);
4927 
4928 	/* Avoid closing the same socket twice. */
4929 	if (sk->sk_state == TCP_CLOSE) {
4930 		if (!has_current_bpf_ctx())
4931 			release_sock(sk);
4932 		return -ENOENT;
4933 	}
4934 
4935 	if (sk->sk_state == TCP_LISTEN) {
4936 		tcp_set_state(sk, TCP_CLOSE);
4937 		inet_csk_listen_stop(sk);
4938 	}
4939 
4940 	/* Don't race with BH socket closes such as inet_csk_listen_stop. */
4941 	local_bh_disable();
4942 	bh_lock_sock(sk);
4943 
4944 	if (tcp_need_reset(sk->sk_state))
4945 		tcp_send_active_reset(sk, GFP_ATOMIC,
4946 				      SK_RST_REASON_TCP_STATE);
4947 	tcp_done_with_error(sk, err);
4948 
4949 	bh_unlock_sock(sk);
4950 	local_bh_enable();
4951 	if (!has_current_bpf_ctx())
4952 		release_sock(sk);
4953 	return 0;
4954 }
4955 EXPORT_SYMBOL_GPL(tcp_abort);
4956 
4957 extern struct tcp_congestion_ops tcp_reno;
4958 
4959 static __initdata unsigned long thash_entries;
set_thash_entries(char * str)4960 static int __init set_thash_entries(char *str)
4961 {
4962 	ssize_t ret;
4963 
4964 	if (!str)
4965 		return 0;
4966 
4967 	ret = kstrtoul(str, 0, &thash_entries);
4968 	if (ret)
4969 		return 0;
4970 
4971 	return 1;
4972 }
4973 __setup("thash_entries=", set_thash_entries);
4974 
tcp_init_mem(void)4975 static void __init tcp_init_mem(void)
4976 {
4977 	unsigned long limit = nr_free_buffer_pages() / 16;
4978 
4979 	limit = max(limit, 128UL);
4980 	sysctl_tcp_mem[0] = limit / 4 * 3;		/* 4.68 % */
4981 	sysctl_tcp_mem[1] = limit;			/* 6.25 % */
4982 	sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2;	/* 9.37 % */
4983 }
4984 
tcp_struct_check(void)4985 static void __init tcp_struct_check(void)
4986 {
4987 	/* TX read-mostly hotpath cache lines */
4988 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, max_window);
4989 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, rcv_ssthresh);
4990 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, reordering);
4991 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, notsent_lowat);
4992 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, gso_segs);
4993 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, lost_skb_hint);
4994 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, retransmit_skb_hint);
4995 	CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_tx, 40);
4996 
4997 	/* TXRX read-mostly hotpath cache lines */
4998 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, tsoffset);
4999 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, snd_wnd);
5000 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, mss_cache);
5001 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, snd_cwnd);
5002 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, prr_out);
5003 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, lost_out);
5004 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, sacked_out);
5005 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, scaling_ratio);
5006 	CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_txrx, 32);
5007 
5008 	/* RX read-mostly hotpath cache lines */
5009 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, copied_seq);
5010 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, rcv_tstamp);
5011 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, snd_wl1);
5012 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, tlp_high_seq);
5013 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, rttvar_us);
5014 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, retrans_out);
5015 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, advmss);
5016 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, urg_data);
5017 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, lost);
5018 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, rtt_min);
5019 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, out_of_order_queue);
5020 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, snd_ssthresh);
5021 	CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_rx, 69);
5022 
5023 	/* TX read-write hotpath cache lines */
5024 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, segs_out);
5025 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, data_segs_out);
5026 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, bytes_sent);
5027 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, snd_sml);
5028 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, chrono_start);
5029 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, chrono_stat);
5030 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, write_seq);
5031 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, pushed_seq);
5032 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, lsndtime);
5033 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, mdev_us);
5034 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, tcp_wstamp_ns);
5035 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, rtt_seq);
5036 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, tsorted_sent_queue);
5037 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, highest_sack);
5038 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, ecn_flags);
5039 	CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_write_tx, 89);
5040 
5041 	/* TXRX read-write hotpath cache lines */
5042 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, pred_flags);
5043 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, tcp_clock_cache);
5044 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, tcp_mstamp);
5045 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rcv_nxt);
5046 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_nxt);
5047 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_una);
5048 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, window_clamp);
5049 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, srtt_us);
5050 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, packets_out);
5051 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_up);
5052 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, delivered);
5053 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, delivered_ce);
5054 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, app_limited);
5055 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rcv_wnd);
5056 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rx_opt);
5057 
5058 	/* 32bit arches with 8byte alignment on u64 fields might need padding
5059 	 * before tcp_clock_cache.
5060 	 */
5061 	CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_write_txrx, 92 + 4);
5062 
5063 	/* RX read-write hotpath cache lines */
5064 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, bytes_received);
5065 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, segs_in);
5066 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, data_segs_in);
5067 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_wup);
5068 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, max_packets_out);
5069 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, cwnd_usage_seq);
5070 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rate_delivered);
5071 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rate_interval_us);
5072 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_rtt_last_tsecr);
5073 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, first_tx_mstamp);
5074 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, delivered_mstamp);
5075 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, bytes_acked);
5076 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_rtt_est);
5077 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcvq_space);
5078 	CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_write_rx, 99);
5079 }
5080 
tcp_init(void)5081 void __init tcp_init(void)
5082 {
5083 	int max_rshare, max_wshare, cnt;
5084 	unsigned long limit;
5085 	unsigned int i;
5086 
5087 	BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE);
5088 	BUILD_BUG_ON(sizeof(struct tcp_skb_cb) >
5089 		     sizeof_field(struct sk_buff, cb));
5090 
5091 	tcp_struct_check();
5092 
5093 	percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
5094 
5095 	timer_setup(&tcp_orphan_timer, tcp_orphan_update, TIMER_DEFERRABLE);
5096 	mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
5097 
5098 	inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash",
5099 			    thash_entries, 21,  /* one slot per 2 MB*/
5100 			    0, 64 * 1024);
5101 	tcp_hashinfo.bind_bucket_cachep =
5102 		kmem_cache_create("tcp_bind_bucket",
5103 				  sizeof(struct inet_bind_bucket), 0,
5104 				  SLAB_HWCACHE_ALIGN | SLAB_PANIC |
5105 				  SLAB_ACCOUNT,
5106 				  NULL);
5107 	tcp_hashinfo.bind2_bucket_cachep =
5108 		kmem_cache_create("tcp_bind2_bucket",
5109 				  sizeof(struct inet_bind2_bucket), 0,
5110 				  SLAB_HWCACHE_ALIGN | SLAB_PANIC |
5111 				  SLAB_ACCOUNT,
5112 				  NULL);
5113 
5114 	/* Size and allocate the main established and bind bucket
5115 	 * hash tables.
5116 	 *
5117 	 * The methodology is similar to that of the buffer cache.
5118 	 */
5119 	tcp_hashinfo.ehash =
5120 		alloc_large_system_hash("TCP established",
5121 					sizeof(struct inet_ehash_bucket),
5122 					thash_entries,
5123 					17, /* one slot per 128 KB of memory */
5124 					0,
5125 					NULL,
5126 					&tcp_hashinfo.ehash_mask,
5127 					0,
5128 					thash_entries ? 0 : 512 * 1024);
5129 	for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
5130 		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
5131 
5132 	if (inet_ehash_locks_alloc(&tcp_hashinfo))
5133 		panic("TCP: failed to alloc ehash_locks");
5134 	tcp_hashinfo.bhash =
5135 		alloc_large_system_hash("TCP bind",
5136 					2 * sizeof(struct inet_bind_hashbucket),
5137 					tcp_hashinfo.ehash_mask + 1,
5138 					17, /* one slot per 128 KB of memory */
5139 					0,
5140 					&tcp_hashinfo.bhash_size,
5141 					NULL,
5142 					0,
5143 					64 * 1024);
5144 	tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
5145 	tcp_hashinfo.bhash2 = tcp_hashinfo.bhash + tcp_hashinfo.bhash_size;
5146 	for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
5147 		spin_lock_init(&tcp_hashinfo.bhash[i].lock);
5148 		INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
5149 		spin_lock_init(&tcp_hashinfo.bhash2[i].lock);
5150 		INIT_HLIST_HEAD(&tcp_hashinfo.bhash2[i].chain);
5151 	}
5152 
5153 	tcp_hashinfo.pernet = false;
5154 
5155 	cnt = tcp_hashinfo.ehash_mask + 1;
5156 	sysctl_tcp_max_orphans = cnt / 2;
5157 
5158 	tcp_init_mem();
5159 	/* Set per-socket limits to no more than 1/128 the pressure threshold */
5160 	limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
5161 	max_wshare = min(4UL*1024*1024, limit);
5162 	max_rshare = min(6UL*1024*1024, limit);
5163 
5164 	init_net.ipv4.sysctl_tcp_wmem[0] = PAGE_SIZE;
5165 	init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024;
5166 	init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
5167 
5168 	init_net.ipv4.sysctl_tcp_rmem[0] = PAGE_SIZE;
5169 	init_net.ipv4.sysctl_tcp_rmem[1] = 131072;
5170 	init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare);
5171 
5172 	pr_info("Hash tables configured (established %u bind %u)\n",
5173 		tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
5174 
5175 	tcp_v4_init();
5176 	tcp_metrics_init();
5177 	BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
5178 	tcp_tasklet_init();
5179 	mptcp_init();
5180 }
5181