1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * This module enables machines with Intel VT-x extensions to run virtual
6 * machines without emulation or binary translation.
7 *
8 * Copyright (C) 2006 Qumranet, Inc.
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10 *
11 * Authors:
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
14 */
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16
17 #include <linux/highmem.h>
18 #include <linux/hrtimer.h>
19 #include <linux/kernel.h>
20 #include <linux/kvm_host.h>
21 #include <linux/module.h>
22 #include <linux/moduleparam.h>
23 #include <linux/mod_devicetable.h>
24 #include <linux/mm.h>
25 #include <linux/objtool.h>
26 #include <linux/sched.h>
27 #include <linux/sched/smt.h>
28 #include <linux/slab.h>
29 #include <linux/tboot.h>
30 #include <linux/trace_events.h>
31 #include <linux/entry-kvm.h>
32
33 #include <asm/apic.h>
34 #include <asm/asm.h>
35 #include <asm/cpu.h>
36 #include <asm/cpu_device_id.h>
37 #include <asm/debugreg.h>
38 #include <asm/desc.h>
39 #include <asm/fpu/api.h>
40 #include <asm/fpu/xstate.h>
41 #include <asm/fred.h>
42 #include <asm/idtentry.h>
43 #include <asm/io.h>
44 #include <asm/irq_remapping.h>
45 #include <asm/reboot.h>
46 #include <asm/perf_event.h>
47 #include <asm/mmu_context.h>
48 #include <asm/mshyperv.h>
49 #include <asm/mwait.h>
50 #include <asm/spec-ctrl.h>
51 #include <asm/vmx.h>
52
53 #include <trace/events/ipi.h>
54
55 #include "capabilities.h"
56 #include "cpuid.h"
57 #include "hyperv.h"
58 #include "kvm_onhyperv.h"
59 #include "irq.h"
60 #include "kvm_cache_regs.h"
61 #include "lapic.h"
62 #include "mmu.h"
63 #include "nested.h"
64 #include "pmu.h"
65 #include "sgx.h"
66 #include "trace.h"
67 #include "vmcs.h"
68 #include "vmcs12.h"
69 #include "vmx.h"
70 #include "x86.h"
71 #include "x86_ops.h"
72 #include "smm.h"
73 #include "vmx_onhyperv.h"
74 #include "posted_intr.h"
75
76 MODULE_AUTHOR("Qumranet");
77 MODULE_DESCRIPTION("KVM support for VMX (Intel VT-x) extensions");
78 MODULE_LICENSE("GPL");
79
80 #ifdef MODULE
81 static const struct x86_cpu_id vmx_cpu_id[] = {
82 X86_MATCH_FEATURE(X86_FEATURE_VMX, NULL),
83 {}
84 };
85 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
86 #endif
87
88 bool __read_mostly enable_vpid = 1;
89 module_param_named(vpid, enable_vpid, bool, 0444);
90
91 static bool __read_mostly enable_vnmi = 1;
92 module_param_named(vnmi, enable_vnmi, bool, 0444);
93
94 bool __read_mostly flexpriority_enabled = 1;
95 module_param_named(flexpriority, flexpriority_enabled, bool, 0444);
96
97 bool __read_mostly enable_ept = 1;
98 module_param_named(ept, enable_ept, bool, 0444);
99
100 bool __read_mostly enable_unrestricted_guest = 1;
101 module_param_named(unrestricted_guest,
102 enable_unrestricted_guest, bool, 0444);
103
104 bool __read_mostly enable_ept_ad_bits = 1;
105 module_param_named(eptad, enable_ept_ad_bits, bool, 0444);
106
107 static bool __read_mostly emulate_invalid_guest_state = true;
108 module_param(emulate_invalid_guest_state, bool, 0444);
109
110 static bool __read_mostly fasteoi = 1;
111 module_param(fasteoi, bool, 0444);
112
113 module_param(enable_apicv, bool, 0444);
114
115 bool __read_mostly enable_ipiv = true;
116 module_param(enable_ipiv, bool, 0444);
117
118 /*
119 * If nested=1, nested virtualization is supported, i.e., guests may use
120 * VMX and be a hypervisor for its own guests. If nested=0, guests may not
121 * use VMX instructions.
122 */
123 static bool __read_mostly nested = 1;
124 module_param(nested, bool, 0444);
125
126 bool __read_mostly enable_pml = 1;
127 module_param_named(pml, enable_pml, bool, 0444);
128
129 static bool __read_mostly error_on_inconsistent_vmcs_config = true;
130 module_param(error_on_inconsistent_vmcs_config, bool, 0444);
131
132 static bool __read_mostly dump_invalid_vmcs = 0;
133 module_param(dump_invalid_vmcs, bool, 0644);
134
135 #define MSR_BITMAP_MODE_X2APIC 1
136 #define MSR_BITMAP_MODE_X2APIC_APICV 2
137
138 #define KVM_VMX_TSC_MULTIPLIER_MAX 0xffffffffffffffffULL
139
140 /* Guest_tsc -> host_tsc conversion requires 64-bit division. */
141 static int __read_mostly cpu_preemption_timer_multi;
142 static bool __read_mostly enable_preemption_timer = 1;
143 #ifdef CONFIG_X86_64
144 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
145 #endif
146
147 extern bool __read_mostly allow_smaller_maxphyaddr;
148 module_param(allow_smaller_maxphyaddr, bool, S_IRUGO);
149
150 #define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD)
151 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE
152 #define KVM_VM_CR0_ALWAYS_ON \
153 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
154
155 #define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE
156 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
157 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
158
159 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
160
161 #define MSR_IA32_RTIT_STATUS_MASK (~(RTIT_STATUS_FILTEREN | \
162 RTIT_STATUS_CONTEXTEN | RTIT_STATUS_TRIGGEREN | \
163 RTIT_STATUS_ERROR | RTIT_STATUS_STOPPED | \
164 RTIT_STATUS_BYTECNT))
165
166 /*
167 * List of MSRs that can be directly passed to the guest.
168 * In addition to these x2apic, PT and LBR MSRs are handled specially.
169 */
170 static u32 vmx_possible_passthrough_msrs[MAX_POSSIBLE_PASSTHROUGH_MSRS] = {
171 MSR_IA32_SPEC_CTRL,
172 MSR_IA32_PRED_CMD,
173 MSR_IA32_FLUSH_CMD,
174 MSR_IA32_TSC,
175 #ifdef CONFIG_X86_64
176 MSR_FS_BASE,
177 MSR_GS_BASE,
178 MSR_KERNEL_GS_BASE,
179 MSR_IA32_XFD,
180 MSR_IA32_XFD_ERR,
181 #endif
182 MSR_IA32_SYSENTER_CS,
183 MSR_IA32_SYSENTER_ESP,
184 MSR_IA32_SYSENTER_EIP,
185 MSR_CORE_C1_RES,
186 MSR_CORE_C3_RESIDENCY,
187 MSR_CORE_C6_RESIDENCY,
188 MSR_CORE_C7_RESIDENCY,
189 };
190
191 /*
192 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
193 * ple_gap: upper bound on the amount of time between two successive
194 * executions of PAUSE in a loop. Also indicate if ple enabled.
195 * According to test, this time is usually smaller than 128 cycles.
196 * ple_window: upper bound on the amount of time a guest is allowed to execute
197 * in a PAUSE loop. Tests indicate that most spinlocks are held for
198 * less than 2^12 cycles
199 * Time is measured based on a counter that runs at the same rate as the TSC,
200 * refer SDM volume 3b section 21.6.13 & 22.1.3.
201 */
202 static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP;
203 module_param(ple_gap, uint, 0444);
204
205 static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
206 module_param(ple_window, uint, 0444);
207
208 /* Default doubles per-vcpu window every exit. */
209 static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
210 module_param(ple_window_grow, uint, 0444);
211
212 /* Default resets per-vcpu window every exit to ple_window. */
213 static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
214 module_param(ple_window_shrink, uint, 0444);
215
216 /* Default is to compute the maximum so we can never overflow. */
217 static unsigned int ple_window_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
218 module_param(ple_window_max, uint, 0444);
219
220 /* Default is SYSTEM mode, 1 for host-guest mode (which is BROKEN) */
221 int __read_mostly pt_mode = PT_MODE_SYSTEM;
222 #ifdef CONFIG_BROKEN
223 module_param(pt_mode, int, S_IRUGO);
224 #endif
225
226 struct x86_pmu_lbr __ro_after_init vmx_lbr_caps;
227
228 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush);
229 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond);
230 static DEFINE_MUTEX(vmx_l1d_flush_mutex);
231
232 /* Storage for pre module init parameter parsing */
233 static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO;
234
235 static const struct {
236 const char *option;
237 bool for_parse;
238 } vmentry_l1d_param[] = {
239 [VMENTER_L1D_FLUSH_AUTO] = {"auto", true},
240 [VMENTER_L1D_FLUSH_NEVER] = {"never", true},
241 [VMENTER_L1D_FLUSH_COND] = {"cond", true},
242 [VMENTER_L1D_FLUSH_ALWAYS] = {"always", true},
243 [VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false},
244 [VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false},
245 };
246
247 #define L1D_CACHE_ORDER 4
248 static void *vmx_l1d_flush_pages;
249
vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)250 static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)
251 {
252 struct page *page;
253 unsigned int i;
254
255 if (!boot_cpu_has_bug(X86_BUG_L1TF)) {
256 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
257 return 0;
258 }
259
260 if (!enable_ept) {
261 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED;
262 return 0;
263 }
264
265 if (kvm_host.arch_capabilities & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) {
266 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
267 return 0;
268 }
269
270 /* If set to auto use the default l1tf mitigation method */
271 if (l1tf == VMENTER_L1D_FLUSH_AUTO) {
272 switch (l1tf_mitigation) {
273 case L1TF_MITIGATION_OFF:
274 l1tf = VMENTER_L1D_FLUSH_NEVER;
275 break;
276 case L1TF_MITIGATION_FLUSH_NOWARN:
277 case L1TF_MITIGATION_FLUSH:
278 case L1TF_MITIGATION_FLUSH_NOSMT:
279 l1tf = VMENTER_L1D_FLUSH_COND;
280 break;
281 case L1TF_MITIGATION_FULL:
282 case L1TF_MITIGATION_FULL_FORCE:
283 l1tf = VMENTER_L1D_FLUSH_ALWAYS;
284 break;
285 }
286 } else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) {
287 l1tf = VMENTER_L1D_FLUSH_ALWAYS;
288 }
289
290 if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages &&
291 !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) {
292 /*
293 * This allocation for vmx_l1d_flush_pages is not tied to a VM
294 * lifetime and so should not be charged to a memcg.
295 */
296 page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER);
297 if (!page)
298 return -ENOMEM;
299 vmx_l1d_flush_pages = page_address(page);
300
301 /*
302 * Initialize each page with a different pattern in
303 * order to protect against KSM in the nested
304 * virtualization case.
305 */
306 for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) {
307 memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1,
308 PAGE_SIZE);
309 }
310 }
311
312 l1tf_vmx_mitigation = l1tf;
313
314 if (l1tf != VMENTER_L1D_FLUSH_NEVER)
315 static_branch_enable(&vmx_l1d_should_flush);
316 else
317 static_branch_disable(&vmx_l1d_should_flush);
318
319 if (l1tf == VMENTER_L1D_FLUSH_COND)
320 static_branch_enable(&vmx_l1d_flush_cond);
321 else
322 static_branch_disable(&vmx_l1d_flush_cond);
323 return 0;
324 }
325
vmentry_l1d_flush_parse(const char * s)326 static int vmentry_l1d_flush_parse(const char *s)
327 {
328 unsigned int i;
329
330 if (s) {
331 for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) {
332 if (vmentry_l1d_param[i].for_parse &&
333 sysfs_streq(s, vmentry_l1d_param[i].option))
334 return i;
335 }
336 }
337 return -EINVAL;
338 }
339
vmentry_l1d_flush_set(const char * s,const struct kernel_param * kp)340 static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp)
341 {
342 int l1tf, ret;
343
344 l1tf = vmentry_l1d_flush_parse(s);
345 if (l1tf < 0)
346 return l1tf;
347
348 if (!boot_cpu_has(X86_BUG_L1TF))
349 return 0;
350
351 /*
352 * Has vmx_init() run already? If not then this is the pre init
353 * parameter parsing. In that case just store the value and let
354 * vmx_init() do the proper setup after enable_ept has been
355 * established.
356 */
357 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) {
358 vmentry_l1d_flush_param = l1tf;
359 return 0;
360 }
361
362 mutex_lock(&vmx_l1d_flush_mutex);
363 ret = vmx_setup_l1d_flush(l1tf);
364 mutex_unlock(&vmx_l1d_flush_mutex);
365 return ret;
366 }
367
vmentry_l1d_flush_get(char * s,const struct kernel_param * kp)368 static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp)
369 {
370 if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param)))
371 return sysfs_emit(s, "???\n");
372
373 return sysfs_emit(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option);
374 }
375
vmx_disable_fb_clear(struct vcpu_vmx * vmx)376 static __always_inline void vmx_disable_fb_clear(struct vcpu_vmx *vmx)
377 {
378 u64 msr;
379
380 if (!vmx->disable_fb_clear)
381 return;
382
383 msr = __rdmsr(MSR_IA32_MCU_OPT_CTRL);
384 msr |= FB_CLEAR_DIS;
385 native_wrmsrl(MSR_IA32_MCU_OPT_CTRL, msr);
386 /* Cache the MSR value to avoid reading it later */
387 vmx->msr_ia32_mcu_opt_ctrl = msr;
388 }
389
vmx_enable_fb_clear(struct vcpu_vmx * vmx)390 static __always_inline void vmx_enable_fb_clear(struct vcpu_vmx *vmx)
391 {
392 if (!vmx->disable_fb_clear)
393 return;
394
395 vmx->msr_ia32_mcu_opt_ctrl &= ~FB_CLEAR_DIS;
396 native_wrmsrl(MSR_IA32_MCU_OPT_CTRL, vmx->msr_ia32_mcu_opt_ctrl);
397 }
398
vmx_update_fb_clear_dis(struct kvm_vcpu * vcpu,struct vcpu_vmx * vmx)399 static void vmx_update_fb_clear_dis(struct kvm_vcpu *vcpu, struct vcpu_vmx *vmx)
400 {
401 /*
402 * Disable VERW's behavior of clearing CPU buffers for the guest if the
403 * CPU isn't affected by MDS/TAA, and the host hasn't forcefully enabled
404 * the mitigation. Disabling the clearing behavior provides a
405 * performance boost for guests that aren't aware that manually clearing
406 * CPU buffers is unnecessary, at the cost of MSR accesses on VM-Entry
407 * and VM-Exit.
408 */
409 vmx->disable_fb_clear = !cpu_feature_enabled(X86_FEATURE_CLEAR_CPU_BUF) &&
410 (kvm_host.arch_capabilities & ARCH_CAP_FB_CLEAR_CTRL) &&
411 !boot_cpu_has_bug(X86_BUG_MDS) &&
412 !boot_cpu_has_bug(X86_BUG_TAA);
413
414 /*
415 * If guest will not execute VERW, there is no need to set FB_CLEAR_DIS
416 * at VMEntry. Skip the MSR read/write when a guest has no use case to
417 * execute VERW.
418 */
419 if ((vcpu->arch.arch_capabilities & ARCH_CAP_FB_CLEAR) ||
420 ((vcpu->arch.arch_capabilities & ARCH_CAP_MDS_NO) &&
421 (vcpu->arch.arch_capabilities & ARCH_CAP_TAA_NO) &&
422 (vcpu->arch.arch_capabilities & ARCH_CAP_PSDP_NO) &&
423 (vcpu->arch.arch_capabilities & ARCH_CAP_FBSDP_NO) &&
424 (vcpu->arch.arch_capabilities & ARCH_CAP_SBDR_SSDP_NO)))
425 vmx->disable_fb_clear = false;
426 }
427
428 static const struct kernel_param_ops vmentry_l1d_flush_ops = {
429 .set = vmentry_l1d_flush_set,
430 .get = vmentry_l1d_flush_get,
431 };
432 module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644);
433
434 static u32 vmx_segment_access_rights(struct kvm_segment *var);
435
436 void vmx_vmexit(void);
437
438 #define vmx_insn_failed(fmt...) \
439 do { \
440 WARN_ONCE(1, fmt); \
441 pr_warn_ratelimited(fmt); \
442 } while (0)
443
vmread_error(unsigned long field)444 noinline void vmread_error(unsigned long field)
445 {
446 vmx_insn_failed("vmread failed: field=%lx\n", field);
447 }
448
449 #ifndef CONFIG_CC_HAS_ASM_GOTO_OUTPUT
vmread_error_trampoline2(unsigned long field,bool fault)450 noinstr void vmread_error_trampoline2(unsigned long field, bool fault)
451 {
452 if (fault) {
453 kvm_spurious_fault();
454 } else {
455 instrumentation_begin();
456 vmread_error(field);
457 instrumentation_end();
458 }
459 }
460 #endif
461
vmwrite_error(unsigned long field,unsigned long value)462 noinline void vmwrite_error(unsigned long field, unsigned long value)
463 {
464 vmx_insn_failed("vmwrite failed: field=%lx val=%lx err=%u\n",
465 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
466 }
467
vmclear_error(struct vmcs * vmcs,u64 phys_addr)468 noinline void vmclear_error(struct vmcs *vmcs, u64 phys_addr)
469 {
470 vmx_insn_failed("vmclear failed: %p/%llx err=%u\n",
471 vmcs, phys_addr, vmcs_read32(VM_INSTRUCTION_ERROR));
472 }
473
vmptrld_error(struct vmcs * vmcs,u64 phys_addr)474 noinline void vmptrld_error(struct vmcs *vmcs, u64 phys_addr)
475 {
476 vmx_insn_failed("vmptrld failed: %p/%llx err=%u\n",
477 vmcs, phys_addr, vmcs_read32(VM_INSTRUCTION_ERROR));
478 }
479
invvpid_error(unsigned long ext,u16 vpid,gva_t gva)480 noinline void invvpid_error(unsigned long ext, u16 vpid, gva_t gva)
481 {
482 vmx_insn_failed("invvpid failed: ext=0x%lx vpid=%u gva=0x%lx\n",
483 ext, vpid, gva);
484 }
485
invept_error(unsigned long ext,u64 eptp,gpa_t gpa)486 noinline void invept_error(unsigned long ext, u64 eptp, gpa_t gpa)
487 {
488 vmx_insn_failed("invept failed: ext=0x%lx eptp=%llx gpa=0x%llx\n",
489 ext, eptp, gpa);
490 }
491
492 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
493 DEFINE_PER_CPU(struct vmcs *, current_vmcs);
494 /*
495 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
496 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
497 */
498 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
499
500 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
501 static DEFINE_SPINLOCK(vmx_vpid_lock);
502
503 struct vmcs_config vmcs_config __ro_after_init;
504 struct vmx_capability vmx_capability __ro_after_init;
505
506 #define VMX_SEGMENT_FIELD(seg) \
507 [VCPU_SREG_##seg] = { \
508 .selector = GUEST_##seg##_SELECTOR, \
509 .base = GUEST_##seg##_BASE, \
510 .limit = GUEST_##seg##_LIMIT, \
511 .ar_bytes = GUEST_##seg##_AR_BYTES, \
512 }
513
514 static const struct kvm_vmx_segment_field {
515 unsigned selector;
516 unsigned base;
517 unsigned limit;
518 unsigned ar_bytes;
519 } kvm_vmx_segment_fields[] = {
520 VMX_SEGMENT_FIELD(CS),
521 VMX_SEGMENT_FIELD(DS),
522 VMX_SEGMENT_FIELD(ES),
523 VMX_SEGMENT_FIELD(FS),
524 VMX_SEGMENT_FIELD(GS),
525 VMX_SEGMENT_FIELD(SS),
526 VMX_SEGMENT_FIELD(TR),
527 VMX_SEGMENT_FIELD(LDTR),
528 };
529
530
531 static unsigned long host_idt_base;
532
533 #if IS_ENABLED(CONFIG_HYPERV)
534 static bool __read_mostly enlightened_vmcs = true;
535 module_param(enlightened_vmcs, bool, 0444);
536
hv_enable_l2_tlb_flush(struct kvm_vcpu * vcpu)537 static int hv_enable_l2_tlb_flush(struct kvm_vcpu *vcpu)
538 {
539 struct hv_enlightened_vmcs *evmcs;
540 hpa_t partition_assist_page = hv_get_partition_assist_page(vcpu);
541
542 if (partition_assist_page == INVALID_PAGE)
543 return -ENOMEM;
544
545 evmcs = (struct hv_enlightened_vmcs *)to_vmx(vcpu)->loaded_vmcs->vmcs;
546
547 evmcs->partition_assist_page = partition_assist_page;
548 evmcs->hv_vm_id = (unsigned long)vcpu->kvm;
549 evmcs->hv_enlightenments_control.nested_flush_hypercall = 1;
550
551 return 0;
552 }
553
hv_init_evmcs(void)554 static __init void hv_init_evmcs(void)
555 {
556 int cpu;
557
558 if (!enlightened_vmcs)
559 return;
560
561 /*
562 * Enlightened VMCS usage should be recommended and the host needs
563 * to support eVMCS v1 or above.
564 */
565 if (ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED &&
566 (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >=
567 KVM_EVMCS_VERSION) {
568
569 /* Check that we have assist pages on all online CPUs */
570 for_each_online_cpu(cpu) {
571 if (!hv_get_vp_assist_page(cpu)) {
572 enlightened_vmcs = false;
573 break;
574 }
575 }
576
577 if (enlightened_vmcs) {
578 pr_info("Using Hyper-V Enlightened VMCS\n");
579 static_branch_enable(&__kvm_is_using_evmcs);
580 }
581
582 if (ms_hyperv.nested_features & HV_X64_NESTED_DIRECT_FLUSH)
583 vt_x86_ops.enable_l2_tlb_flush
584 = hv_enable_l2_tlb_flush;
585 } else {
586 enlightened_vmcs = false;
587 }
588 }
589
hv_reset_evmcs(void)590 static void hv_reset_evmcs(void)
591 {
592 struct hv_vp_assist_page *vp_ap;
593
594 if (!kvm_is_using_evmcs())
595 return;
596
597 /*
598 * KVM should enable eVMCS if and only if all CPUs have a VP assist
599 * page, and should reject CPU onlining if eVMCS is enabled the CPU
600 * doesn't have a VP assist page allocated.
601 */
602 vp_ap = hv_get_vp_assist_page(smp_processor_id());
603 if (WARN_ON_ONCE(!vp_ap))
604 return;
605
606 /*
607 * Reset everything to support using non-enlightened VMCS access later
608 * (e.g. when we reload the module with enlightened_vmcs=0)
609 */
610 vp_ap->nested_control.features.directhypercall = 0;
611 vp_ap->current_nested_vmcs = 0;
612 vp_ap->enlighten_vmentry = 0;
613 }
614
615 #else /* IS_ENABLED(CONFIG_HYPERV) */
hv_init_evmcs(void)616 static void hv_init_evmcs(void) {}
hv_reset_evmcs(void)617 static void hv_reset_evmcs(void) {}
618 #endif /* IS_ENABLED(CONFIG_HYPERV) */
619
620 /*
621 * Comment's format: document - errata name - stepping - processor name.
622 * Refer from
623 * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
624 */
625 static u32 vmx_preemption_cpu_tfms[] = {
626 /* 323344.pdf - BA86 - D0 - Xeon 7500 Series */
627 0x000206E6,
628 /* 323056.pdf - AAX65 - C2 - Xeon L3406 */
629 /* 322814.pdf - AAT59 - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
630 /* 322911.pdf - AAU65 - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
631 0x00020652,
632 /* 322911.pdf - AAU65 - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
633 0x00020655,
634 /* 322373.pdf - AAO95 - B1 - Xeon 3400 Series */
635 /* 322166.pdf - AAN92 - B1 - i7-800 and i5-700 Desktop */
636 /*
637 * 320767.pdf - AAP86 - B1 -
638 * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
639 */
640 0x000106E5,
641 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */
642 0x000106A0,
643 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */
644 0x000106A1,
645 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
646 0x000106A4,
647 /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
648 /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
649 /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
650 0x000106A5,
651 /* Xeon E3-1220 V2 */
652 0x000306A8,
653 };
654
cpu_has_broken_vmx_preemption_timer(void)655 static inline bool cpu_has_broken_vmx_preemption_timer(void)
656 {
657 u32 eax = cpuid_eax(0x00000001), i;
658
659 /* Clear the reserved bits */
660 eax &= ~(0x3U << 14 | 0xfU << 28);
661 for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
662 if (eax == vmx_preemption_cpu_tfms[i])
663 return true;
664
665 return false;
666 }
667
cpu_need_virtualize_apic_accesses(struct kvm_vcpu * vcpu)668 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
669 {
670 return flexpriority_enabled && lapic_in_kernel(vcpu);
671 }
672
vmx_get_passthrough_msr_slot(u32 msr)673 static int vmx_get_passthrough_msr_slot(u32 msr)
674 {
675 int i;
676
677 switch (msr) {
678 case 0x800 ... 0x8ff:
679 /* x2APIC MSRs. These are handled in vmx_update_msr_bitmap_x2apic() */
680 return -ENOENT;
681 case MSR_IA32_RTIT_STATUS:
682 case MSR_IA32_RTIT_OUTPUT_BASE:
683 case MSR_IA32_RTIT_OUTPUT_MASK:
684 case MSR_IA32_RTIT_CR3_MATCH:
685 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
686 /* PT MSRs. These are handled in pt_update_intercept_for_msr() */
687 case MSR_LBR_SELECT:
688 case MSR_LBR_TOS:
689 case MSR_LBR_INFO_0 ... MSR_LBR_INFO_0 + 31:
690 case MSR_LBR_NHM_FROM ... MSR_LBR_NHM_FROM + 31:
691 case MSR_LBR_NHM_TO ... MSR_LBR_NHM_TO + 31:
692 case MSR_LBR_CORE_FROM ... MSR_LBR_CORE_FROM + 8:
693 case MSR_LBR_CORE_TO ... MSR_LBR_CORE_TO + 8:
694 /* LBR MSRs. These are handled in vmx_update_intercept_for_lbr_msrs() */
695 return -ENOENT;
696 }
697
698 for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++) {
699 if (vmx_possible_passthrough_msrs[i] == msr)
700 return i;
701 }
702
703 WARN(1, "Invalid MSR %x, please adapt vmx_possible_passthrough_msrs[]", msr);
704 return -ENOENT;
705 }
706
vmx_find_uret_msr(struct vcpu_vmx * vmx,u32 msr)707 struct vmx_uret_msr *vmx_find_uret_msr(struct vcpu_vmx *vmx, u32 msr)
708 {
709 int i;
710
711 i = kvm_find_user_return_msr(msr);
712 if (i >= 0)
713 return &vmx->guest_uret_msrs[i];
714 return NULL;
715 }
716
vmx_set_guest_uret_msr(struct vcpu_vmx * vmx,struct vmx_uret_msr * msr,u64 data)717 static int vmx_set_guest_uret_msr(struct vcpu_vmx *vmx,
718 struct vmx_uret_msr *msr, u64 data)
719 {
720 unsigned int slot = msr - vmx->guest_uret_msrs;
721 int ret = 0;
722
723 if (msr->load_into_hardware) {
724 preempt_disable();
725 ret = kvm_set_user_return_msr(slot, data, msr->mask);
726 preempt_enable();
727 }
728 if (!ret)
729 msr->data = data;
730 return ret;
731 }
732
733 /*
734 * Disable VMX and clear CR4.VMXE (even if VMXOFF faults)
735 *
736 * Note, VMXOFF causes a #UD if the CPU is !post-VMXON, but it's impossible to
737 * atomically track post-VMXON state, e.g. this may be called in NMI context.
738 * Eat all faults as all other faults on VMXOFF faults are mode related, i.e.
739 * faults are guaranteed to be due to the !post-VMXON check unless the CPU is
740 * magically in RM, VM86, compat mode, or at CPL>0.
741 */
kvm_cpu_vmxoff(void)742 static int kvm_cpu_vmxoff(void)
743 {
744 asm goto("1: vmxoff\n\t"
745 _ASM_EXTABLE(1b, %l[fault])
746 ::: "cc", "memory" : fault);
747
748 cr4_clear_bits(X86_CR4_VMXE);
749 return 0;
750
751 fault:
752 cr4_clear_bits(X86_CR4_VMXE);
753 return -EIO;
754 }
755
vmx_emergency_disable_virtualization_cpu(void)756 void vmx_emergency_disable_virtualization_cpu(void)
757 {
758 int cpu = raw_smp_processor_id();
759 struct loaded_vmcs *v;
760
761 kvm_rebooting = true;
762
763 /*
764 * Note, CR4.VMXE can be _cleared_ in NMI context, but it can only be
765 * set in task context. If this races with VMX is disabled by an NMI,
766 * VMCLEAR and VMXOFF may #UD, but KVM will eat those faults due to
767 * kvm_rebooting set.
768 */
769 if (!(__read_cr4() & X86_CR4_VMXE))
770 return;
771
772 list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
773 loaded_vmcss_on_cpu_link) {
774 vmcs_clear(v->vmcs);
775 if (v->shadow_vmcs)
776 vmcs_clear(v->shadow_vmcs);
777 }
778
779 kvm_cpu_vmxoff();
780 }
781
__loaded_vmcs_clear(void * arg)782 static void __loaded_vmcs_clear(void *arg)
783 {
784 struct loaded_vmcs *loaded_vmcs = arg;
785 int cpu = raw_smp_processor_id();
786
787 if (loaded_vmcs->cpu != cpu)
788 return; /* vcpu migration can race with cpu offline */
789 if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
790 per_cpu(current_vmcs, cpu) = NULL;
791
792 vmcs_clear(loaded_vmcs->vmcs);
793 if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
794 vmcs_clear(loaded_vmcs->shadow_vmcs);
795
796 list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
797
798 /*
799 * Ensure all writes to loaded_vmcs, including deleting it from its
800 * current percpu list, complete before setting loaded_vmcs->cpu to
801 * -1, otherwise a different cpu can see loaded_vmcs->cpu == -1 first
802 * and add loaded_vmcs to its percpu list before it's deleted from this
803 * cpu's list. Pairs with the smp_rmb() in vmx_vcpu_load_vmcs().
804 */
805 smp_wmb();
806
807 loaded_vmcs->cpu = -1;
808 loaded_vmcs->launched = 0;
809 }
810
loaded_vmcs_clear(struct loaded_vmcs * loaded_vmcs)811 void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
812 {
813 int cpu = loaded_vmcs->cpu;
814
815 if (cpu != -1)
816 smp_call_function_single(cpu,
817 __loaded_vmcs_clear, loaded_vmcs, 1);
818 }
819
vmx_segment_cache_test_set(struct vcpu_vmx * vmx,unsigned seg,unsigned field)820 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
821 unsigned field)
822 {
823 bool ret;
824 u32 mask = 1 << (seg * SEG_FIELD_NR + field);
825
826 if (!kvm_register_is_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS)) {
827 kvm_register_mark_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS);
828 vmx->segment_cache.bitmask = 0;
829 }
830 ret = vmx->segment_cache.bitmask & mask;
831 vmx->segment_cache.bitmask |= mask;
832 return ret;
833 }
834
vmx_read_guest_seg_selector(struct vcpu_vmx * vmx,unsigned seg)835 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
836 {
837 u16 *p = &vmx->segment_cache.seg[seg].selector;
838
839 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
840 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
841 return *p;
842 }
843
vmx_read_guest_seg_base(struct vcpu_vmx * vmx,unsigned seg)844 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
845 {
846 ulong *p = &vmx->segment_cache.seg[seg].base;
847
848 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
849 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
850 return *p;
851 }
852
vmx_read_guest_seg_limit(struct vcpu_vmx * vmx,unsigned seg)853 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
854 {
855 u32 *p = &vmx->segment_cache.seg[seg].limit;
856
857 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
858 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
859 return *p;
860 }
861
vmx_read_guest_seg_ar(struct vcpu_vmx * vmx,unsigned seg)862 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
863 {
864 u32 *p = &vmx->segment_cache.seg[seg].ar;
865
866 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
867 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
868 return *p;
869 }
870
vmx_update_exception_bitmap(struct kvm_vcpu * vcpu)871 void vmx_update_exception_bitmap(struct kvm_vcpu *vcpu)
872 {
873 u32 eb;
874
875 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
876 (1u << DB_VECTOR) | (1u << AC_VECTOR);
877 /*
878 * #VE isn't used for VMX. To test against unexpected changes
879 * related to #VE for VMX, intercept unexpected #VE and warn on it.
880 */
881 if (IS_ENABLED(CONFIG_KVM_INTEL_PROVE_VE))
882 eb |= 1u << VE_VECTOR;
883 /*
884 * Guest access to VMware backdoor ports could legitimately
885 * trigger #GP because of TSS I/O permission bitmap.
886 * We intercept those #GP and allow access to them anyway
887 * as VMware does.
888 */
889 if (enable_vmware_backdoor)
890 eb |= (1u << GP_VECTOR);
891 if ((vcpu->guest_debug &
892 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
893 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
894 eb |= 1u << BP_VECTOR;
895 if (to_vmx(vcpu)->rmode.vm86_active)
896 eb = ~0;
897 if (!vmx_need_pf_intercept(vcpu))
898 eb &= ~(1u << PF_VECTOR);
899
900 /* When we are running a nested L2 guest and L1 specified for it a
901 * certain exception bitmap, we must trap the same exceptions and pass
902 * them to L1. When running L2, we will only handle the exceptions
903 * specified above if L1 did not want them.
904 */
905 if (is_guest_mode(vcpu))
906 eb |= get_vmcs12(vcpu)->exception_bitmap;
907 else {
908 int mask = 0, match = 0;
909
910 if (enable_ept && (eb & (1u << PF_VECTOR))) {
911 /*
912 * If EPT is enabled, #PF is currently only intercepted
913 * if MAXPHYADDR is smaller on the guest than on the
914 * host. In that case we only care about present,
915 * non-reserved faults. For vmcs02, however, PFEC_MASK
916 * and PFEC_MATCH are set in prepare_vmcs02_rare.
917 */
918 mask = PFERR_PRESENT_MASK | PFERR_RSVD_MASK;
919 match = PFERR_PRESENT_MASK;
920 }
921 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, mask);
922 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, match);
923 }
924
925 /*
926 * Disabling xfd interception indicates that dynamic xfeatures
927 * might be used in the guest. Always trap #NM in this case
928 * to save guest xfd_err timely.
929 */
930 if (vcpu->arch.xfd_no_write_intercept)
931 eb |= (1u << NM_VECTOR);
932
933 vmcs_write32(EXCEPTION_BITMAP, eb);
934 }
935
936 /*
937 * Check if MSR is intercepted for currently loaded MSR bitmap.
938 */
msr_write_intercepted(struct vcpu_vmx * vmx,u32 msr)939 static bool msr_write_intercepted(struct vcpu_vmx *vmx, u32 msr)
940 {
941 if (!(exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS))
942 return true;
943
944 return vmx_test_msr_bitmap_write(vmx->loaded_vmcs->msr_bitmap, msr);
945 }
946
__vmx_vcpu_run_flags(struct vcpu_vmx * vmx)947 unsigned int __vmx_vcpu_run_flags(struct vcpu_vmx *vmx)
948 {
949 unsigned int flags = 0;
950
951 if (vmx->loaded_vmcs->launched)
952 flags |= VMX_RUN_VMRESUME;
953
954 /*
955 * If writes to the SPEC_CTRL MSR aren't intercepted, the guest is free
956 * to change it directly without causing a vmexit. In that case read
957 * it after vmexit and store it in vmx->spec_ctrl.
958 */
959 if (!msr_write_intercepted(vmx, MSR_IA32_SPEC_CTRL))
960 flags |= VMX_RUN_SAVE_SPEC_CTRL;
961
962 return flags;
963 }
964
clear_atomic_switch_msr_special(struct vcpu_vmx * vmx,unsigned long entry,unsigned long exit)965 static __always_inline void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
966 unsigned long entry, unsigned long exit)
967 {
968 vm_entry_controls_clearbit(vmx, entry);
969 vm_exit_controls_clearbit(vmx, exit);
970 }
971
vmx_find_loadstore_msr_slot(struct vmx_msrs * m,u32 msr)972 int vmx_find_loadstore_msr_slot(struct vmx_msrs *m, u32 msr)
973 {
974 unsigned int i;
975
976 for (i = 0; i < m->nr; ++i) {
977 if (m->val[i].index == msr)
978 return i;
979 }
980 return -ENOENT;
981 }
982
clear_atomic_switch_msr(struct vcpu_vmx * vmx,unsigned msr)983 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
984 {
985 int i;
986 struct msr_autoload *m = &vmx->msr_autoload;
987
988 switch (msr) {
989 case MSR_EFER:
990 if (cpu_has_load_ia32_efer()) {
991 clear_atomic_switch_msr_special(vmx,
992 VM_ENTRY_LOAD_IA32_EFER,
993 VM_EXIT_LOAD_IA32_EFER);
994 return;
995 }
996 break;
997 case MSR_CORE_PERF_GLOBAL_CTRL:
998 if (cpu_has_load_perf_global_ctrl()) {
999 clear_atomic_switch_msr_special(vmx,
1000 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1001 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
1002 return;
1003 }
1004 break;
1005 }
1006 i = vmx_find_loadstore_msr_slot(&m->guest, msr);
1007 if (i < 0)
1008 goto skip_guest;
1009 --m->guest.nr;
1010 m->guest.val[i] = m->guest.val[m->guest.nr];
1011 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
1012
1013 skip_guest:
1014 i = vmx_find_loadstore_msr_slot(&m->host, msr);
1015 if (i < 0)
1016 return;
1017
1018 --m->host.nr;
1019 m->host.val[i] = m->host.val[m->host.nr];
1020 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
1021 }
1022
add_atomic_switch_msr_special(struct vcpu_vmx * vmx,unsigned long entry,unsigned long exit,unsigned long guest_val_vmcs,unsigned long host_val_vmcs,u64 guest_val,u64 host_val)1023 static __always_inline void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1024 unsigned long entry, unsigned long exit,
1025 unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
1026 u64 guest_val, u64 host_val)
1027 {
1028 vmcs_write64(guest_val_vmcs, guest_val);
1029 if (host_val_vmcs != HOST_IA32_EFER)
1030 vmcs_write64(host_val_vmcs, host_val);
1031 vm_entry_controls_setbit(vmx, entry);
1032 vm_exit_controls_setbit(vmx, exit);
1033 }
1034
add_atomic_switch_msr(struct vcpu_vmx * vmx,unsigned msr,u64 guest_val,u64 host_val,bool entry_only)1035 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
1036 u64 guest_val, u64 host_val, bool entry_only)
1037 {
1038 int i, j = 0;
1039 struct msr_autoload *m = &vmx->msr_autoload;
1040
1041 switch (msr) {
1042 case MSR_EFER:
1043 if (cpu_has_load_ia32_efer()) {
1044 add_atomic_switch_msr_special(vmx,
1045 VM_ENTRY_LOAD_IA32_EFER,
1046 VM_EXIT_LOAD_IA32_EFER,
1047 GUEST_IA32_EFER,
1048 HOST_IA32_EFER,
1049 guest_val, host_val);
1050 return;
1051 }
1052 break;
1053 case MSR_CORE_PERF_GLOBAL_CTRL:
1054 if (cpu_has_load_perf_global_ctrl()) {
1055 add_atomic_switch_msr_special(vmx,
1056 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1057 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
1058 GUEST_IA32_PERF_GLOBAL_CTRL,
1059 HOST_IA32_PERF_GLOBAL_CTRL,
1060 guest_val, host_val);
1061 return;
1062 }
1063 break;
1064 case MSR_IA32_PEBS_ENABLE:
1065 /* PEBS needs a quiescent period after being disabled (to write
1066 * a record). Disabling PEBS through VMX MSR swapping doesn't
1067 * provide that period, so a CPU could write host's record into
1068 * guest's memory.
1069 */
1070 wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
1071 }
1072
1073 i = vmx_find_loadstore_msr_slot(&m->guest, msr);
1074 if (!entry_only)
1075 j = vmx_find_loadstore_msr_slot(&m->host, msr);
1076
1077 if ((i < 0 && m->guest.nr == MAX_NR_LOADSTORE_MSRS) ||
1078 (j < 0 && m->host.nr == MAX_NR_LOADSTORE_MSRS)) {
1079 printk_once(KERN_WARNING "Not enough msr switch entries. "
1080 "Can't add msr %x\n", msr);
1081 return;
1082 }
1083 if (i < 0) {
1084 i = m->guest.nr++;
1085 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
1086 }
1087 m->guest.val[i].index = msr;
1088 m->guest.val[i].value = guest_val;
1089
1090 if (entry_only)
1091 return;
1092
1093 if (j < 0) {
1094 j = m->host.nr++;
1095 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
1096 }
1097 m->host.val[j].index = msr;
1098 m->host.val[j].value = host_val;
1099 }
1100
update_transition_efer(struct vcpu_vmx * vmx)1101 static bool update_transition_efer(struct vcpu_vmx *vmx)
1102 {
1103 u64 guest_efer = vmx->vcpu.arch.efer;
1104 u64 ignore_bits = 0;
1105 int i;
1106
1107 /* Shadow paging assumes NX to be available. */
1108 if (!enable_ept)
1109 guest_efer |= EFER_NX;
1110
1111 /*
1112 * LMA and LME handled by hardware; SCE meaningless outside long mode.
1113 */
1114 ignore_bits |= EFER_SCE;
1115 #ifdef CONFIG_X86_64
1116 ignore_bits |= EFER_LMA | EFER_LME;
1117 /* SCE is meaningful only in long mode on Intel */
1118 if (guest_efer & EFER_LMA)
1119 ignore_bits &= ~(u64)EFER_SCE;
1120 #endif
1121
1122 /*
1123 * On EPT, we can't emulate NX, so we must switch EFER atomically.
1124 * On CPUs that support "load IA32_EFER", always switch EFER
1125 * atomically, since it's faster than switching it manually.
1126 */
1127 if (cpu_has_load_ia32_efer() ||
1128 (enable_ept && ((vmx->vcpu.arch.efer ^ kvm_host.efer) & EFER_NX))) {
1129 if (!(guest_efer & EFER_LMA))
1130 guest_efer &= ~EFER_LME;
1131 if (guest_efer != kvm_host.efer)
1132 add_atomic_switch_msr(vmx, MSR_EFER,
1133 guest_efer, kvm_host.efer, false);
1134 else
1135 clear_atomic_switch_msr(vmx, MSR_EFER);
1136 return false;
1137 }
1138
1139 i = kvm_find_user_return_msr(MSR_EFER);
1140 if (i < 0)
1141 return false;
1142
1143 clear_atomic_switch_msr(vmx, MSR_EFER);
1144
1145 guest_efer &= ~ignore_bits;
1146 guest_efer |= kvm_host.efer & ignore_bits;
1147
1148 vmx->guest_uret_msrs[i].data = guest_efer;
1149 vmx->guest_uret_msrs[i].mask = ~ignore_bits;
1150
1151 return true;
1152 }
1153
1154 #ifdef CONFIG_X86_32
1155 /*
1156 * On 32-bit kernels, VM exits still load the FS and GS bases from the
1157 * VMCS rather than the segment table. KVM uses this helper to figure
1158 * out the current bases to poke them into the VMCS before entry.
1159 */
segment_base(u16 selector)1160 static unsigned long segment_base(u16 selector)
1161 {
1162 struct desc_struct *table;
1163 unsigned long v;
1164
1165 if (!(selector & ~SEGMENT_RPL_MASK))
1166 return 0;
1167
1168 table = get_current_gdt_ro();
1169
1170 if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
1171 u16 ldt_selector = kvm_read_ldt();
1172
1173 if (!(ldt_selector & ~SEGMENT_RPL_MASK))
1174 return 0;
1175
1176 table = (struct desc_struct *)segment_base(ldt_selector);
1177 }
1178 v = get_desc_base(&table[selector >> 3]);
1179 return v;
1180 }
1181 #endif
1182
pt_can_write_msr(struct vcpu_vmx * vmx)1183 static inline bool pt_can_write_msr(struct vcpu_vmx *vmx)
1184 {
1185 return vmx_pt_mode_is_host_guest() &&
1186 !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
1187 }
1188
pt_output_base_valid(struct kvm_vcpu * vcpu,u64 base)1189 static inline bool pt_output_base_valid(struct kvm_vcpu *vcpu, u64 base)
1190 {
1191 /* The base must be 128-byte aligned and a legal physical address. */
1192 return kvm_vcpu_is_legal_aligned_gpa(vcpu, base, 128);
1193 }
1194
pt_load_msr(struct pt_ctx * ctx,u32 addr_range)1195 static inline void pt_load_msr(struct pt_ctx *ctx, u32 addr_range)
1196 {
1197 u32 i;
1198
1199 wrmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1200 wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1201 wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1202 wrmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1203 for (i = 0; i < addr_range; i++) {
1204 wrmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1205 wrmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1206 }
1207 }
1208
pt_save_msr(struct pt_ctx * ctx,u32 addr_range)1209 static inline void pt_save_msr(struct pt_ctx *ctx, u32 addr_range)
1210 {
1211 u32 i;
1212
1213 rdmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1214 rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1215 rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1216 rdmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1217 for (i = 0; i < addr_range; i++) {
1218 rdmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1219 rdmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1220 }
1221 }
1222
pt_guest_enter(struct vcpu_vmx * vmx)1223 static void pt_guest_enter(struct vcpu_vmx *vmx)
1224 {
1225 if (vmx_pt_mode_is_system())
1226 return;
1227
1228 /*
1229 * GUEST_IA32_RTIT_CTL is already set in the VMCS.
1230 * Save host state before VM entry.
1231 */
1232 rdmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1233 if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1234 wrmsrl(MSR_IA32_RTIT_CTL, 0);
1235 pt_save_msr(&vmx->pt_desc.host, vmx->pt_desc.num_address_ranges);
1236 pt_load_msr(&vmx->pt_desc.guest, vmx->pt_desc.num_address_ranges);
1237 }
1238 }
1239
pt_guest_exit(struct vcpu_vmx * vmx)1240 static void pt_guest_exit(struct vcpu_vmx *vmx)
1241 {
1242 if (vmx_pt_mode_is_system())
1243 return;
1244
1245 if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1246 pt_save_msr(&vmx->pt_desc.guest, vmx->pt_desc.num_address_ranges);
1247 pt_load_msr(&vmx->pt_desc.host, vmx->pt_desc.num_address_ranges);
1248 }
1249
1250 /*
1251 * KVM requires VM_EXIT_CLEAR_IA32_RTIT_CTL to expose PT to the guest,
1252 * i.e. RTIT_CTL is always cleared on VM-Exit. Restore it if necessary.
1253 */
1254 if (vmx->pt_desc.host.ctl)
1255 wrmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1256 }
1257
vmx_set_host_fs_gs(struct vmcs_host_state * host,u16 fs_sel,u16 gs_sel,unsigned long fs_base,unsigned long gs_base)1258 void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel,
1259 unsigned long fs_base, unsigned long gs_base)
1260 {
1261 if (unlikely(fs_sel != host->fs_sel)) {
1262 if (!(fs_sel & 7))
1263 vmcs_write16(HOST_FS_SELECTOR, fs_sel);
1264 else
1265 vmcs_write16(HOST_FS_SELECTOR, 0);
1266 host->fs_sel = fs_sel;
1267 }
1268 if (unlikely(gs_sel != host->gs_sel)) {
1269 if (!(gs_sel & 7))
1270 vmcs_write16(HOST_GS_SELECTOR, gs_sel);
1271 else
1272 vmcs_write16(HOST_GS_SELECTOR, 0);
1273 host->gs_sel = gs_sel;
1274 }
1275 if (unlikely(fs_base != host->fs_base)) {
1276 vmcs_writel(HOST_FS_BASE, fs_base);
1277 host->fs_base = fs_base;
1278 }
1279 if (unlikely(gs_base != host->gs_base)) {
1280 vmcs_writel(HOST_GS_BASE, gs_base);
1281 host->gs_base = gs_base;
1282 }
1283 }
1284
vmx_prepare_switch_to_guest(struct kvm_vcpu * vcpu)1285 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
1286 {
1287 struct vcpu_vmx *vmx = to_vmx(vcpu);
1288 struct vmcs_host_state *host_state;
1289 #ifdef CONFIG_X86_64
1290 int cpu = raw_smp_processor_id();
1291 #endif
1292 unsigned long fs_base, gs_base;
1293 u16 fs_sel, gs_sel;
1294 int i;
1295
1296 /*
1297 * Note that guest MSRs to be saved/restored can also be changed
1298 * when guest state is loaded. This happens when guest transitions
1299 * to/from long-mode by setting MSR_EFER.LMA.
1300 */
1301 if (!vmx->guest_uret_msrs_loaded) {
1302 vmx->guest_uret_msrs_loaded = true;
1303 for (i = 0; i < kvm_nr_uret_msrs; ++i) {
1304 if (!vmx->guest_uret_msrs[i].load_into_hardware)
1305 continue;
1306
1307 kvm_set_user_return_msr(i,
1308 vmx->guest_uret_msrs[i].data,
1309 vmx->guest_uret_msrs[i].mask);
1310 }
1311 }
1312
1313 if (vmx->nested.need_vmcs12_to_shadow_sync)
1314 nested_sync_vmcs12_to_shadow(vcpu);
1315
1316 if (vmx->guest_state_loaded)
1317 return;
1318
1319 host_state = &vmx->loaded_vmcs->host_state;
1320
1321 /*
1322 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
1323 * allow segment selectors with cpl > 0 or ti == 1.
1324 */
1325 host_state->ldt_sel = kvm_read_ldt();
1326
1327 #ifdef CONFIG_X86_64
1328 savesegment(ds, host_state->ds_sel);
1329 savesegment(es, host_state->es_sel);
1330
1331 gs_base = cpu_kernelmode_gs_base(cpu);
1332 if (likely(is_64bit_mm(current->mm))) {
1333 current_save_fsgs();
1334 fs_sel = current->thread.fsindex;
1335 gs_sel = current->thread.gsindex;
1336 fs_base = current->thread.fsbase;
1337 vmx->msr_host_kernel_gs_base = current->thread.gsbase;
1338 } else {
1339 savesegment(fs, fs_sel);
1340 savesegment(gs, gs_sel);
1341 fs_base = read_msr(MSR_FS_BASE);
1342 vmx->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE);
1343 }
1344
1345 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1346 #else
1347 savesegment(fs, fs_sel);
1348 savesegment(gs, gs_sel);
1349 fs_base = segment_base(fs_sel);
1350 gs_base = segment_base(gs_sel);
1351 #endif
1352
1353 vmx_set_host_fs_gs(host_state, fs_sel, gs_sel, fs_base, gs_base);
1354 vmx->guest_state_loaded = true;
1355 }
1356
vmx_prepare_switch_to_host(struct vcpu_vmx * vmx)1357 static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx)
1358 {
1359 struct vmcs_host_state *host_state;
1360
1361 if (!vmx->guest_state_loaded)
1362 return;
1363
1364 host_state = &vmx->loaded_vmcs->host_state;
1365
1366 ++vmx->vcpu.stat.host_state_reload;
1367
1368 #ifdef CONFIG_X86_64
1369 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1370 #endif
1371 if (host_state->ldt_sel || (host_state->gs_sel & 7)) {
1372 kvm_load_ldt(host_state->ldt_sel);
1373 #ifdef CONFIG_X86_64
1374 load_gs_index(host_state->gs_sel);
1375 #else
1376 loadsegment(gs, host_state->gs_sel);
1377 #endif
1378 }
1379 if (host_state->fs_sel & 7)
1380 loadsegment(fs, host_state->fs_sel);
1381 #ifdef CONFIG_X86_64
1382 if (unlikely(host_state->ds_sel | host_state->es_sel)) {
1383 loadsegment(ds, host_state->ds_sel);
1384 loadsegment(es, host_state->es_sel);
1385 }
1386 #endif
1387 invalidate_tss_limit();
1388 #ifdef CONFIG_X86_64
1389 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1390 #endif
1391 load_fixmap_gdt(raw_smp_processor_id());
1392 vmx->guest_state_loaded = false;
1393 vmx->guest_uret_msrs_loaded = false;
1394 }
1395
1396 #ifdef CONFIG_X86_64
vmx_read_guest_kernel_gs_base(struct vcpu_vmx * vmx)1397 static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx)
1398 {
1399 preempt_disable();
1400 if (vmx->guest_state_loaded)
1401 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1402 preempt_enable();
1403 return vmx->msr_guest_kernel_gs_base;
1404 }
1405
vmx_write_guest_kernel_gs_base(struct vcpu_vmx * vmx,u64 data)1406 static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data)
1407 {
1408 preempt_disable();
1409 if (vmx->guest_state_loaded)
1410 wrmsrl(MSR_KERNEL_GS_BASE, data);
1411 preempt_enable();
1412 vmx->msr_guest_kernel_gs_base = data;
1413 }
1414 #endif
1415
grow_ple_window(struct kvm_vcpu * vcpu)1416 static void grow_ple_window(struct kvm_vcpu *vcpu)
1417 {
1418 struct vcpu_vmx *vmx = to_vmx(vcpu);
1419 unsigned int old = vmx->ple_window;
1420
1421 vmx->ple_window = __grow_ple_window(old, ple_window,
1422 ple_window_grow,
1423 ple_window_max);
1424
1425 if (vmx->ple_window != old) {
1426 vmx->ple_window_dirty = true;
1427 trace_kvm_ple_window_update(vcpu->vcpu_id,
1428 vmx->ple_window, old);
1429 }
1430 }
1431
shrink_ple_window(struct kvm_vcpu * vcpu)1432 static void shrink_ple_window(struct kvm_vcpu *vcpu)
1433 {
1434 struct vcpu_vmx *vmx = to_vmx(vcpu);
1435 unsigned int old = vmx->ple_window;
1436
1437 vmx->ple_window = __shrink_ple_window(old, ple_window,
1438 ple_window_shrink,
1439 ple_window);
1440
1441 if (vmx->ple_window != old) {
1442 vmx->ple_window_dirty = true;
1443 trace_kvm_ple_window_update(vcpu->vcpu_id,
1444 vmx->ple_window, old);
1445 }
1446 }
1447
vmx_vcpu_load_vmcs(struct kvm_vcpu * vcpu,int cpu,struct loaded_vmcs * buddy)1448 void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu,
1449 struct loaded_vmcs *buddy)
1450 {
1451 struct vcpu_vmx *vmx = to_vmx(vcpu);
1452 bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
1453 struct vmcs *prev;
1454
1455 if (!already_loaded) {
1456 loaded_vmcs_clear(vmx->loaded_vmcs);
1457 local_irq_disable();
1458
1459 /*
1460 * Ensure loaded_vmcs->cpu is read before adding loaded_vmcs to
1461 * this cpu's percpu list, otherwise it may not yet be deleted
1462 * from its previous cpu's percpu list. Pairs with the
1463 * smb_wmb() in __loaded_vmcs_clear().
1464 */
1465 smp_rmb();
1466
1467 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1468 &per_cpu(loaded_vmcss_on_cpu, cpu));
1469 local_irq_enable();
1470 }
1471
1472 prev = per_cpu(current_vmcs, cpu);
1473 if (prev != vmx->loaded_vmcs->vmcs) {
1474 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1475 vmcs_load(vmx->loaded_vmcs->vmcs);
1476
1477 /*
1478 * No indirect branch prediction barrier needed when switching
1479 * the active VMCS within a vCPU, unless IBRS is advertised to
1480 * the vCPU. To minimize the number of IBPBs executed, KVM
1481 * performs IBPB on nested VM-Exit (a single nested transition
1482 * may switch the active VMCS multiple times).
1483 */
1484 if (!buddy || WARN_ON_ONCE(buddy->vmcs != prev))
1485 indirect_branch_prediction_barrier();
1486 }
1487
1488 if (!already_loaded) {
1489 void *gdt = get_current_gdt_ro();
1490
1491 /*
1492 * Flush all EPTP/VPID contexts, the new pCPU may have stale
1493 * TLB entries from its previous association with the vCPU.
1494 */
1495 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1496
1497 /*
1498 * Linux uses per-cpu TSS and GDT, so set these when switching
1499 * processors. See 22.2.4.
1500 */
1501 vmcs_writel(HOST_TR_BASE,
1502 (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss);
1503 vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt); /* 22.2.4 */
1504
1505 if (IS_ENABLED(CONFIG_IA32_EMULATION) || IS_ENABLED(CONFIG_X86_32)) {
1506 /* 22.2.3 */
1507 vmcs_writel(HOST_IA32_SYSENTER_ESP,
1508 (unsigned long)(cpu_entry_stack(cpu) + 1));
1509 }
1510
1511 vmx->loaded_vmcs->cpu = cpu;
1512 }
1513 }
1514
1515 /*
1516 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1517 * vcpu mutex is already taken.
1518 */
vmx_vcpu_load(struct kvm_vcpu * vcpu,int cpu)1519 void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1520 {
1521 if (vcpu->scheduled_out && !kvm_pause_in_guest(vcpu->kvm))
1522 shrink_ple_window(vcpu);
1523
1524 vmx_vcpu_load_vmcs(vcpu, cpu, NULL);
1525
1526 vmx_vcpu_pi_load(vcpu, cpu);
1527 }
1528
vmx_vcpu_put(struct kvm_vcpu * vcpu)1529 void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1530 {
1531 vmx_vcpu_pi_put(vcpu);
1532
1533 vmx_prepare_switch_to_host(to_vmx(vcpu));
1534 }
1535
vmx_emulation_required(struct kvm_vcpu * vcpu)1536 bool vmx_emulation_required(struct kvm_vcpu *vcpu)
1537 {
1538 return emulate_invalid_guest_state && !vmx_guest_state_valid(vcpu);
1539 }
1540
vmx_get_rflags(struct kvm_vcpu * vcpu)1541 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1542 {
1543 struct vcpu_vmx *vmx = to_vmx(vcpu);
1544 unsigned long rflags, save_rflags;
1545
1546 if (!kvm_register_is_available(vcpu, VCPU_EXREG_RFLAGS)) {
1547 kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1548 rflags = vmcs_readl(GUEST_RFLAGS);
1549 if (vmx->rmode.vm86_active) {
1550 rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1551 save_rflags = vmx->rmode.save_rflags;
1552 rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1553 }
1554 vmx->rflags = rflags;
1555 }
1556 return vmx->rflags;
1557 }
1558
vmx_set_rflags(struct kvm_vcpu * vcpu,unsigned long rflags)1559 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1560 {
1561 struct vcpu_vmx *vmx = to_vmx(vcpu);
1562 unsigned long old_rflags;
1563
1564 /*
1565 * Unlike CR0 and CR4, RFLAGS handling requires checking if the vCPU
1566 * is an unrestricted guest in order to mark L2 as needing emulation
1567 * if L1 runs L2 as a restricted guest.
1568 */
1569 if (is_unrestricted_guest(vcpu)) {
1570 kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1571 vmx->rflags = rflags;
1572 vmcs_writel(GUEST_RFLAGS, rflags);
1573 return;
1574 }
1575
1576 old_rflags = vmx_get_rflags(vcpu);
1577 vmx->rflags = rflags;
1578 if (vmx->rmode.vm86_active) {
1579 vmx->rmode.save_rflags = rflags;
1580 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1581 }
1582 vmcs_writel(GUEST_RFLAGS, rflags);
1583
1584 if ((old_rflags ^ vmx->rflags) & X86_EFLAGS_VM)
1585 vmx->emulation_required = vmx_emulation_required(vcpu);
1586 }
1587
vmx_get_if_flag(struct kvm_vcpu * vcpu)1588 bool vmx_get_if_flag(struct kvm_vcpu *vcpu)
1589 {
1590 return vmx_get_rflags(vcpu) & X86_EFLAGS_IF;
1591 }
1592
vmx_get_interrupt_shadow(struct kvm_vcpu * vcpu)1593 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
1594 {
1595 u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1596 int ret = 0;
1597
1598 if (interruptibility & GUEST_INTR_STATE_STI)
1599 ret |= KVM_X86_SHADOW_INT_STI;
1600 if (interruptibility & GUEST_INTR_STATE_MOV_SS)
1601 ret |= KVM_X86_SHADOW_INT_MOV_SS;
1602
1603 return ret;
1604 }
1605
vmx_set_interrupt_shadow(struct kvm_vcpu * vcpu,int mask)1606 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1607 {
1608 u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1609 u32 interruptibility = interruptibility_old;
1610
1611 interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1612
1613 if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1614 interruptibility |= GUEST_INTR_STATE_MOV_SS;
1615 else if (mask & KVM_X86_SHADOW_INT_STI)
1616 interruptibility |= GUEST_INTR_STATE_STI;
1617
1618 if ((interruptibility != interruptibility_old))
1619 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1620 }
1621
vmx_rtit_ctl_check(struct kvm_vcpu * vcpu,u64 data)1622 static int vmx_rtit_ctl_check(struct kvm_vcpu *vcpu, u64 data)
1623 {
1624 struct vcpu_vmx *vmx = to_vmx(vcpu);
1625 unsigned long value;
1626
1627 /*
1628 * Any MSR write that attempts to change bits marked reserved will
1629 * case a #GP fault.
1630 */
1631 if (data & vmx->pt_desc.ctl_bitmask)
1632 return 1;
1633
1634 /*
1635 * Any attempt to modify IA32_RTIT_CTL while TraceEn is set will
1636 * result in a #GP unless the same write also clears TraceEn.
1637 */
1638 if ((vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) &&
1639 ((vmx->pt_desc.guest.ctl ^ data) & ~RTIT_CTL_TRACEEN))
1640 return 1;
1641
1642 /*
1643 * WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit
1644 * and FabricEn would cause #GP, if
1645 * CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0
1646 */
1647 if ((data & RTIT_CTL_TRACEEN) && !(data & RTIT_CTL_TOPA) &&
1648 !(data & RTIT_CTL_FABRIC_EN) &&
1649 !intel_pt_validate_cap(vmx->pt_desc.caps,
1650 PT_CAP_single_range_output))
1651 return 1;
1652
1653 /*
1654 * MTCFreq, CycThresh and PSBFreq encodings check, any MSR write that
1655 * utilize encodings marked reserved will cause a #GP fault.
1656 */
1657 value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc_periods);
1658 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc) &&
1659 !test_bit((data & RTIT_CTL_MTC_RANGE) >>
1660 RTIT_CTL_MTC_RANGE_OFFSET, &value))
1661 return 1;
1662 value = intel_pt_validate_cap(vmx->pt_desc.caps,
1663 PT_CAP_cycle_thresholds);
1664 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1665 !test_bit((data & RTIT_CTL_CYC_THRESH) >>
1666 RTIT_CTL_CYC_THRESH_OFFSET, &value))
1667 return 1;
1668 value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_periods);
1669 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1670 !test_bit((data & RTIT_CTL_PSB_FREQ) >>
1671 RTIT_CTL_PSB_FREQ_OFFSET, &value))
1672 return 1;
1673
1674 /*
1675 * If ADDRx_CFG is reserved or the encodings is >2 will
1676 * cause a #GP fault.
1677 */
1678 value = (data & RTIT_CTL_ADDR0) >> RTIT_CTL_ADDR0_OFFSET;
1679 if ((value && (vmx->pt_desc.num_address_ranges < 1)) || (value > 2))
1680 return 1;
1681 value = (data & RTIT_CTL_ADDR1) >> RTIT_CTL_ADDR1_OFFSET;
1682 if ((value && (vmx->pt_desc.num_address_ranges < 2)) || (value > 2))
1683 return 1;
1684 value = (data & RTIT_CTL_ADDR2) >> RTIT_CTL_ADDR2_OFFSET;
1685 if ((value && (vmx->pt_desc.num_address_ranges < 3)) || (value > 2))
1686 return 1;
1687 value = (data & RTIT_CTL_ADDR3) >> RTIT_CTL_ADDR3_OFFSET;
1688 if ((value && (vmx->pt_desc.num_address_ranges < 4)) || (value > 2))
1689 return 1;
1690
1691 return 0;
1692 }
1693
vmx_check_emulate_instruction(struct kvm_vcpu * vcpu,int emul_type,void * insn,int insn_len)1694 int vmx_check_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type,
1695 void *insn, int insn_len)
1696 {
1697 /*
1698 * Emulation of instructions in SGX enclaves is impossible as RIP does
1699 * not point at the failing instruction, and even if it did, the code
1700 * stream is inaccessible. Inject #UD instead of exiting to userspace
1701 * so that guest userspace can't DoS the guest simply by triggering
1702 * emulation (enclaves are CPL3 only).
1703 */
1704 if (to_vmx(vcpu)->exit_reason.enclave_mode) {
1705 kvm_queue_exception(vcpu, UD_VECTOR);
1706 return X86EMUL_PROPAGATE_FAULT;
1707 }
1708 return X86EMUL_CONTINUE;
1709 }
1710
skip_emulated_instruction(struct kvm_vcpu * vcpu)1711 static int skip_emulated_instruction(struct kvm_vcpu *vcpu)
1712 {
1713 union vmx_exit_reason exit_reason = to_vmx(vcpu)->exit_reason;
1714 unsigned long rip, orig_rip;
1715 u32 instr_len;
1716
1717 /*
1718 * Using VMCS.VM_EXIT_INSTRUCTION_LEN on EPT misconfig depends on
1719 * undefined behavior: Intel's SDM doesn't mandate the VMCS field be
1720 * set when EPT misconfig occurs. In practice, real hardware updates
1721 * VM_EXIT_INSTRUCTION_LEN on EPT misconfig, but other hypervisors
1722 * (namely Hyper-V) don't set it due to it being undefined behavior,
1723 * i.e. we end up advancing IP with some random value.
1724 */
1725 if (!static_cpu_has(X86_FEATURE_HYPERVISOR) ||
1726 exit_reason.basic != EXIT_REASON_EPT_MISCONFIG) {
1727 instr_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1728
1729 /*
1730 * Emulating an enclave's instructions isn't supported as KVM
1731 * cannot access the enclave's memory or its true RIP, e.g. the
1732 * vmcs.GUEST_RIP points at the exit point of the enclave, not
1733 * the RIP that actually triggered the VM-Exit. But, because
1734 * most instructions that cause VM-Exit will #UD in an enclave,
1735 * most instruction-based VM-Exits simply do not occur.
1736 *
1737 * There are a few exceptions, notably the debug instructions
1738 * INT1ICEBRK and INT3, as they are allowed in debug enclaves
1739 * and generate #DB/#BP as expected, which KVM might intercept.
1740 * But again, the CPU does the dirty work and saves an instr
1741 * length of zero so VMMs don't shoot themselves in the foot.
1742 * WARN if KVM tries to skip a non-zero length instruction on
1743 * a VM-Exit from an enclave.
1744 */
1745 if (!instr_len)
1746 goto rip_updated;
1747
1748 WARN_ONCE(exit_reason.enclave_mode,
1749 "skipping instruction after SGX enclave VM-Exit");
1750
1751 orig_rip = kvm_rip_read(vcpu);
1752 rip = orig_rip + instr_len;
1753 #ifdef CONFIG_X86_64
1754 /*
1755 * We need to mask out the high 32 bits of RIP if not in 64-bit
1756 * mode, but just finding out that we are in 64-bit mode is
1757 * quite expensive. Only do it if there was a carry.
1758 */
1759 if (unlikely(((rip ^ orig_rip) >> 31) == 3) && !is_64_bit_mode(vcpu))
1760 rip = (u32)rip;
1761 #endif
1762 kvm_rip_write(vcpu, rip);
1763 } else {
1764 if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
1765 return 0;
1766 }
1767
1768 rip_updated:
1769 /* skipping an emulated instruction also counts */
1770 vmx_set_interrupt_shadow(vcpu, 0);
1771
1772 return 1;
1773 }
1774
1775 /*
1776 * Recognizes a pending MTF VM-exit and records the nested state for later
1777 * delivery.
1778 */
vmx_update_emulated_instruction(struct kvm_vcpu * vcpu)1779 void vmx_update_emulated_instruction(struct kvm_vcpu *vcpu)
1780 {
1781 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1782 struct vcpu_vmx *vmx = to_vmx(vcpu);
1783
1784 if (!is_guest_mode(vcpu))
1785 return;
1786
1787 /*
1788 * Per the SDM, MTF takes priority over debug-trap exceptions besides
1789 * TSS T-bit traps and ICEBP (INT1). KVM doesn't emulate T-bit traps
1790 * or ICEBP (in the emulator proper), and skipping of ICEBP after an
1791 * intercepted #DB deliberately avoids single-step #DB and MTF updates
1792 * as ICEBP is higher priority than both. As instruction emulation is
1793 * completed at this point (i.e. KVM is at the instruction boundary),
1794 * any #DB exception pending delivery must be a debug-trap of lower
1795 * priority than MTF. Record the pending MTF state to be delivered in
1796 * vmx_check_nested_events().
1797 */
1798 if (nested_cpu_has_mtf(vmcs12) &&
1799 (!vcpu->arch.exception.pending ||
1800 vcpu->arch.exception.vector == DB_VECTOR) &&
1801 (!vcpu->arch.exception_vmexit.pending ||
1802 vcpu->arch.exception_vmexit.vector == DB_VECTOR)) {
1803 vmx->nested.mtf_pending = true;
1804 kvm_make_request(KVM_REQ_EVENT, vcpu);
1805 } else {
1806 vmx->nested.mtf_pending = false;
1807 }
1808 }
1809
vmx_skip_emulated_instruction(struct kvm_vcpu * vcpu)1810 int vmx_skip_emulated_instruction(struct kvm_vcpu *vcpu)
1811 {
1812 vmx_update_emulated_instruction(vcpu);
1813 return skip_emulated_instruction(vcpu);
1814 }
1815
vmx_clear_hlt(struct kvm_vcpu * vcpu)1816 static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
1817 {
1818 /*
1819 * Ensure that we clear the HLT state in the VMCS. We don't need to
1820 * explicitly skip the instruction because if the HLT state is set,
1821 * then the instruction is already executing and RIP has already been
1822 * advanced.
1823 */
1824 if (kvm_hlt_in_guest(vcpu->kvm) &&
1825 vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
1826 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
1827 }
1828
vmx_inject_exception(struct kvm_vcpu * vcpu)1829 void vmx_inject_exception(struct kvm_vcpu *vcpu)
1830 {
1831 struct kvm_queued_exception *ex = &vcpu->arch.exception;
1832 u32 intr_info = ex->vector | INTR_INFO_VALID_MASK;
1833 struct vcpu_vmx *vmx = to_vmx(vcpu);
1834
1835 kvm_deliver_exception_payload(vcpu, ex);
1836
1837 if (ex->has_error_code) {
1838 /*
1839 * Despite the error code being architecturally defined as 32
1840 * bits, and the VMCS field being 32 bits, Intel CPUs and thus
1841 * VMX don't actually supporting setting bits 31:16. Hardware
1842 * will (should) never provide a bogus error code, but AMD CPUs
1843 * do generate error codes with bits 31:16 set, and so KVM's
1844 * ABI lets userspace shove in arbitrary 32-bit values. Drop
1845 * the upper bits to avoid VM-Fail, losing information that
1846 * doesn't really exist is preferable to killing the VM.
1847 */
1848 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, (u16)ex->error_code);
1849 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1850 }
1851
1852 if (vmx->rmode.vm86_active) {
1853 int inc_eip = 0;
1854 if (kvm_exception_is_soft(ex->vector))
1855 inc_eip = vcpu->arch.event_exit_inst_len;
1856 kvm_inject_realmode_interrupt(vcpu, ex->vector, inc_eip);
1857 return;
1858 }
1859
1860 WARN_ON_ONCE(vmx->emulation_required);
1861
1862 if (kvm_exception_is_soft(ex->vector)) {
1863 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1864 vmx->vcpu.arch.event_exit_inst_len);
1865 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1866 } else
1867 intr_info |= INTR_TYPE_HARD_EXCEPTION;
1868
1869 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
1870
1871 vmx_clear_hlt(vcpu);
1872 }
1873
vmx_setup_uret_msr(struct vcpu_vmx * vmx,unsigned int msr,bool load_into_hardware)1874 static void vmx_setup_uret_msr(struct vcpu_vmx *vmx, unsigned int msr,
1875 bool load_into_hardware)
1876 {
1877 struct vmx_uret_msr *uret_msr;
1878
1879 uret_msr = vmx_find_uret_msr(vmx, msr);
1880 if (!uret_msr)
1881 return;
1882
1883 uret_msr->load_into_hardware = load_into_hardware;
1884 }
1885
1886 /*
1887 * Configuring user return MSRs to automatically save, load, and restore MSRs
1888 * that need to be shoved into hardware when running the guest. Note, omitting
1889 * an MSR here does _NOT_ mean it's not emulated, only that it will not be
1890 * loaded into hardware when running the guest.
1891 */
vmx_setup_uret_msrs(struct vcpu_vmx * vmx)1892 static void vmx_setup_uret_msrs(struct vcpu_vmx *vmx)
1893 {
1894 #ifdef CONFIG_X86_64
1895 bool load_syscall_msrs;
1896
1897 /*
1898 * The SYSCALL MSRs are only needed on long mode guests, and only
1899 * when EFER.SCE is set.
1900 */
1901 load_syscall_msrs = is_long_mode(&vmx->vcpu) &&
1902 (vmx->vcpu.arch.efer & EFER_SCE);
1903
1904 vmx_setup_uret_msr(vmx, MSR_STAR, load_syscall_msrs);
1905 vmx_setup_uret_msr(vmx, MSR_LSTAR, load_syscall_msrs);
1906 vmx_setup_uret_msr(vmx, MSR_SYSCALL_MASK, load_syscall_msrs);
1907 #endif
1908 vmx_setup_uret_msr(vmx, MSR_EFER, update_transition_efer(vmx));
1909
1910 vmx_setup_uret_msr(vmx, MSR_TSC_AUX,
1911 guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP) ||
1912 guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDPID));
1913
1914 /*
1915 * hle=0, rtm=0, tsx_ctrl=1 can be found with some combinations of new
1916 * kernel and old userspace. If those guests run on a tsx=off host, do
1917 * allow guests to use TSX_CTRL, but don't change the value in hardware
1918 * so that TSX remains always disabled.
1919 */
1920 vmx_setup_uret_msr(vmx, MSR_IA32_TSX_CTRL, boot_cpu_has(X86_FEATURE_RTM));
1921
1922 /*
1923 * The set of MSRs to load may have changed, reload MSRs before the
1924 * next VM-Enter.
1925 */
1926 vmx->guest_uret_msrs_loaded = false;
1927 }
1928
vmx_get_l2_tsc_offset(struct kvm_vcpu * vcpu)1929 u64 vmx_get_l2_tsc_offset(struct kvm_vcpu *vcpu)
1930 {
1931 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1932
1933 if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING))
1934 return vmcs12->tsc_offset;
1935
1936 return 0;
1937 }
1938
vmx_get_l2_tsc_multiplier(struct kvm_vcpu * vcpu)1939 u64 vmx_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu)
1940 {
1941 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1942
1943 if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING) &&
1944 nested_cpu_has2(vmcs12, SECONDARY_EXEC_TSC_SCALING))
1945 return vmcs12->tsc_multiplier;
1946
1947 return kvm_caps.default_tsc_scaling_ratio;
1948 }
1949
vmx_write_tsc_offset(struct kvm_vcpu * vcpu)1950 void vmx_write_tsc_offset(struct kvm_vcpu *vcpu)
1951 {
1952 vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
1953 }
1954
vmx_write_tsc_multiplier(struct kvm_vcpu * vcpu)1955 void vmx_write_tsc_multiplier(struct kvm_vcpu *vcpu)
1956 {
1957 vmcs_write64(TSC_MULTIPLIER, vcpu->arch.tsc_scaling_ratio);
1958 }
1959
1960 /*
1961 * Userspace is allowed to set any supported IA32_FEATURE_CONTROL regardless of
1962 * guest CPUID. Note, KVM allows userspace to set "VMX in SMX" to maintain
1963 * backwards compatibility even though KVM doesn't support emulating SMX. And
1964 * because userspace set "VMX in SMX", the guest must also be allowed to set it,
1965 * e.g. if the MSR is left unlocked and the guest does a RMW operation.
1966 */
1967 #define KVM_SUPPORTED_FEATURE_CONTROL (FEAT_CTL_LOCKED | \
1968 FEAT_CTL_VMX_ENABLED_INSIDE_SMX | \
1969 FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX | \
1970 FEAT_CTL_SGX_LC_ENABLED | \
1971 FEAT_CTL_SGX_ENABLED | \
1972 FEAT_CTL_LMCE_ENABLED)
1973
is_vmx_feature_control_msr_valid(struct vcpu_vmx * vmx,struct msr_data * msr)1974 static inline bool is_vmx_feature_control_msr_valid(struct vcpu_vmx *vmx,
1975 struct msr_data *msr)
1976 {
1977 uint64_t valid_bits;
1978
1979 /*
1980 * Ensure KVM_SUPPORTED_FEATURE_CONTROL is updated when new bits are
1981 * exposed to the guest.
1982 */
1983 WARN_ON_ONCE(vmx->msr_ia32_feature_control_valid_bits &
1984 ~KVM_SUPPORTED_FEATURE_CONTROL);
1985
1986 if (!msr->host_initiated &&
1987 (vmx->msr_ia32_feature_control & FEAT_CTL_LOCKED))
1988 return false;
1989
1990 if (msr->host_initiated)
1991 valid_bits = KVM_SUPPORTED_FEATURE_CONTROL;
1992 else
1993 valid_bits = vmx->msr_ia32_feature_control_valid_bits;
1994
1995 return !(msr->data & ~valid_bits);
1996 }
1997
vmx_get_feature_msr(u32 msr,u64 * data)1998 int vmx_get_feature_msr(u32 msr, u64 *data)
1999 {
2000 switch (msr) {
2001 case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
2002 if (!nested)
2003 return 1;
2004 return vmx_get_vmx_msr(&vmcs_config.nested, msr, data);
2005 default:
2006 return KVM_MSR_RET_UNSUPPORTED;
2007 }
2008 }
2009
2010 /*
2011 * Reads an msr value (of 'msr_info->index') into 'msr_info->data'.
2012 * Returns 0 on success, non-0 otherwise.
2013 * Assumes vcpu_load() was already called.
2014 */
vmx_get_msr(struct kvm_vcpu * vcpu,struct msr_data * msr_info)2015 int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2016 {
2017 struct vcpu_vmx *vmx = to_vmx(vcpu);
2018 struct vmx_uret_msr *msr;
2019 u32 index;
2020
2021 switch (msr_info->index) {
2022 #ifdef CONFIG_X86_64
2023 case MSR_FS_BASE:
2024 msr_info->data = vmcs_readl(GUEST_FS_BASE);
2025 break;
2026 case MSR_GS_BASE:
2027 msr_info->data = vmcs_readl(GUEST_GS_BASE);
2028 break;
2029 case MSR_KERNEL_GS_BASE:
2030 msr_info->data = vmx_read_guest_kernel_gs_base(vmx);
2031 break;
2032 #endif
2033 case MSR_EFER:
2034 return kvm_get_msr_common(vcpu, msr_info);
2035 case MSR_IA32_TSX_CTRL:
2036 if (!msr_info->host_initiated &&
2037 !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
2038 return 1;
2039 goto find_uret_msr;
2040 case MSR_IA32_UMWAIT_CONTROL:
2041 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
2042 return 1;
2043
2044 msr_info->data = vmx->msr_ia32_umwait_control;
2045 break;
2046 case MSR_IA32_SPEC_CTRL:
2047 if (!msr_info->host_initiated &&
2048 !guest_has_spec_ctrl_msr(vcpu))
2049 return 1;
2050
2051 msr_info->data = to_vmx(vcpu)->spec_ctrl;
2052 break;
2053 case MSR_IA32_SYSENTER_CS:
2054 msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
2055 break;
2056 case MSR_IA32_SYSENTER_EIP:
2057 msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
2058 break;
2059 case MSR_IA32_SYSENTER_ESP:
2060 msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
2061 break;
2062 case MSR_IA32_BNDCFGS:
2063 if (!kvm_mpx_supported() ||
2064 (!msr_info->host_initiated &&
2065 !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
2066 return 1;
2067 msr_info->data = vmcs_read64(GUEST_BNDCFGS);
2068 break;
2069 case MSR_IA32_MCG_EXT_CTL:
2070 if (!msr_info->host_initiated &&
2071 !(vmx->msr_ia32_feature_control &
2072 FEAT_CTL_LMCE_ENABLED))
2073 return 1;
2074 msr_info->data = vcpu->arch.mcg_ext_ctl;
2075 break;
2076 case MSR_IA32_FEAT_CTL:
2077 msr_info->data = vmx->msr_ia32_feature_control;
2078 break;
2079 case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
2080 if (!msr_info->host_initiated &&
2081 !guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC))
2082 return 1;
2083 msr_info->data = to_vmx(vcpu)->msr_ia32_sgxlepubkeyhash
2084 [msr_info->index - MSR_IA32_SGXLEPUBKEYHASH0];
2085 break;
2086 case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
2087 if (!guest_can_use(vcpu, X86_FEATURE_VMX))
2088 return 1;
2089 if (vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index,
2090 &msr_info->data))
2091 return 1;
2092 #ifdef CONFIG_KVM_HYPERV
2093 /*
2094 * Enlightened VMCS v1 doesn't have certain VMCS fields but
2095 * instead of just ignoring the features, different Hyper-V
2096 * versions are either trying to use them and fail or do some
2097 * sanity checking and refuse to boot. Filter all unsupported
2098 * features out.
2099 */
2100 if (!msr_info->host_initiated && guest_cpuid_has_evmcs(vcpu))
2101 nested_evmcs_filter_control_msr(vcpu, msr_info->index,
2102 &msr_info->data);
2103 #endif
2104 break;
2105 case MSR_IA32_RTIT_CTL:
2106 if (!vmx_pt_mode_is_host_guest())
2107 return 1;
2108 msr_info->data = vmx->pt_desc.guest.ctl;
2109 break;
2110 case MSR_IA32_RTIT_STATUS:
2111 if (!vmx_pt_mode_is_host_guest())
2112 return 1;
2113 msr_info->data = vmx->pt_desc.guest.status;
2114 break;
2115 case MSR_IA32_RTIT_CR3_MATCH:
2116 if (!vmx_pt_mode_is_host_guest() ||
2117 !intel_pt_validate_cap(vmx->pt_desc.caps,
2118 PT_CAP_cr3_filtering))
2119 return 1;
2120 msr_info->data = vmx->pt_desc.guest.cr3_match;
2121 break;
2122 case MSR_IA32_RTIT_OUTPUT_BASE:
2123 if (!vmx_pt_mode_is_host_guest() ||
2124 (!intel_pt_validate_cap(vmx->pt_desc.caps,
2125 PT_CAP_topa_output) &&
2126 !intel_pt_validate_cap(vmx->pt_desc.caps,
2127 PT_CAP_single_range_output)))
2128 return 1;
2129 msr_info->data = vmx->pt_desc.guest.output_base;
2130 break;
2131 case MSR_IA32_RTIT_OUTPUT_MASK:
2132 if (!vmx_pt_mode_is_host_guest() ||
2133 (!intel_pt_validate_cap(vmx->pt_desc.caps,
2134 PT_CAP_topa_output) &&
2135 !intel_pt_validate_cap(vmx->pt_desc.caps,
2136 PT_CAP_single_range_output)))
2137 return 1;
2138 msr_info->data = vmx->pt_desc.guest.output_mask;
2139 break;
2140 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
2141 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
2142 if (!vmx_pt_mode_is_host_guest() ||
2143 (index >= 2 * vmx->pt_desc.num_address_ranges))
2144 return 1;
2145 if (index % 2)
2146 msr_info->data = vmx->pt_desc.guest.addr_b[index / 2];
2147 else
2148 msr_info->data = vmx->pt_desc.guest.addr_a[index / 2];
2149 break;
2150 case MSR_IA32_DEBUGCTLMSR:
2151 msr_info->data = vmx_guest_debugctl_read();
2152 break;
2153 default:
2154 find_uret_msr:
2155 msr = vmx_find_uret_msr(vmx, msr_info->index);
2156 if (msr) {
2157 msr_info->data = msr->data;
2158 break;
2159 }
2160 return kvm_get_msr_common(vcpu, msr_info);
2161 }
2162
2163 return 0;
2164 }
2165
nested_vmx_truncate_sysenter_addr(struct kvm_vcpu * vcpu,u64 data)2166 static u64 nested_vmx_truncate_sysenter_addr(struct kvm_vcpu *vcpu,
2167 u64 data)
2168 {
2169 #ifdef CONFIG_X86_64
2170 if (!guest_cpuid_has(vcpu, X86_FEATURE_LM))
2171 return (u32)data;
2172 #endif
2173 return (unsigned long)data;
2174 }
2175
vmx_get_supported_debugctl(struct kvm_vcpu * vcpu,bool host_initiated)2176 u64 vmx_get_supported_debugctl(struct kvm_vcpu *vcpu, bool host_initiated)
2177 {
2178 u64 debugctl = 0;
2179
2180 if (boot_cpu_has(X86_FEATURE_BUS_LOCK_DETECT) &&
2181 (host_initiated || guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT)))
2182 debugctl |= DEBUGCTLMSR_BUS_LOCK_DETECT;
2183
2184 if ((kvm_caps.supported_perf_cap & PMU_CAP_LBR_FMT) &&
2185 (host_initiated || intel_pmu_lbr_is_enabled(vcpu)))
2186 debugctl |= DEBUGCTLMSR_LBR | DEBUGCTLMSR_FREEZE_LBRS_ON_PMI;
2187
2188 if (boot_cpu_has(X86_FEATURE_RTM) &&
2189 (host_initiated || guest_cpuid_has(vcpu, X86_FEATURE_RTM)))
2190 debugctl |= DEBUGCTLMSR_RTM_DEBUG;
2191
2192 return debugctl;
2193 }
2194
vmx_is_valid_debugctl(struct kvm_vcpu * vcpu,u64 data,bool host_initiated)2195 bool vmx_is_valid_debugctl(struct kvm_vcpu *vcpu, u64 data, bool host_initiated)
2196 {
2197 u64 invalid;
2198
2199 invalid = data & ~vmx_get_supported_debugctl(vcpu, host_initiated);
2200 if (invalid & (DEBUGCTLMSR_BTF | DEBUGCTLMSR_LBR)) {
2201 kvm_pr_unimpl_wrmsr(vcpu, MSR_IA32_DEBUGCTLMSR, data);
2202 invalid &= ~(DEBUGCTLMSR_BTF | DEBUGCTLMSR_LBR);
2203 }
2204 return !invalid;
2205 }
2206
2207 /*
2208 * Writes msr value into the appropriate "register".
2209 * Returns 0 on success, non-0 otherwise.
2210 * Assumes vcpu_load() was already called.
2211 */
vmx_set_msr(struct kvm_vcpu * vcpu,struct msr_data * msr_info)2212 int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2213 {
2214 struct vcpu_vmx *vmx = to_vmx(vcpu);
2215 struct vmx_uret_msr *msr;
2216 int ret = 0;
2217 u32 msr_index = msr_info->index;
2218 u64 data = msr_info->data;
2219 u32 index;
2220
2221 switch (msr_index) {
2222 case MSR_EFER:
2223 ret = kvm_set_msr_common(vcpu, msr_info);
2224 break;
2225 #ifdef CONFIG_X86_64
2226 case MSR_FS_BASE:
2227 vmx_segment_cache_clear(vmx);
2228 vmcs_writel(GUEST_FS_BASE, data);
2229 break;
2230 case MSR_GS_BASE:
2231 vmx_segment_cache_clear(vmx);
2232 vmcs_writel(GUEST_GS_BASE, data);
2233 break;
2234 case MSR_KERNEL_GS_BASE:
2235 vmx_write_guest_kernel_gs_base(vmx, data);
2236 break;
2237 case MSR_IA32_XFD:
2238 ret = kvm_set_msr_common(vcpu, msr_info);
2239 /*
2240 * Always intercepting WRMSR could incur non-negligible
2241 * overhead given xfd might be changed frequently in
2242 * guest context switch. Disable write interception
2243 * upon the first write with a non-zero value (indicating
2244 * potential usage on dynamic xfeatures). Also update
2245 * exception bitmap to trap #NM for proper virtualization
2246 * of guest xfd_err.
2247 */
2248 if (!ret && data) {
2249 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_XFD,
2250 MSR_TYPE_RW);
2251 vcpu->arch.xfd_no_write_intercept = true;
2252 vmx_update_exception_bitmap(vcpu);
2253 }
2254 break;
2255 #endif
2256 case MSR_IA32_SYSENTER_CS:
2257 if (is_guest_mode(vcpu))
2258 get_vmcs12(vcpu)->guest_sysenter_cs = data;
2259 vmcs_write32(GUEST_SYSENTER_CS, data);
2260 break;
2261 case MSR_IA32_SYSENTER_EIP:
2262 if (is_guest_mode(vcpu)) {
2263 data = nested_vmx_truncate_sysenter_addr(vcpu, data);
2264 get_vmcs12(vcpu)->guest_sysenter_eip = data;
2265 }
2266 vmcs_writel(GUEST_SYSENTER_EIP, data);
2267 break;
2268 case MSR_IA32_SYSENTER_ESP:
2269 if (is_guest_mode(vcpu)) {
2270 data = nested_vmx_truncate_sysenter_addr(vcpu, data);
2271 get_vmcs12(vcpu)->guest_sysenter_esp = data;
2272 }
2273 vmcs_writel(GUEST_SYSENTER_ESP, data);
2274 break;
2275 case MSR_IA32_DEBUGCTLMSR:
2276 if (!vmx_is_valid_debugctl(vcpu, data, msr_info->host_initiated))
2277 return 1;
2278
2279 data &= vmx_get_supported_debugctl(vcpu, msr_info->host_initiated);
2280
2281 if (is_guest_mode(vcpu) && get_vmcs12(vcpu)->vm_exit_controls &
2282 VM_EXIT_SAVE_DEBUG_CONTROLS)
2283 get_vmcs12(vcpu)->guest_ia32_debugctl = data;
2284
2285 vmx_guest_debugctl_write(vcpu, data);
2286
2287 if (intel_pmu_lbr_is_enabled(vcpu) && !to_vmx(vcpu)->lbr_desc.event &&
2288 (data & DEBUGCTLMSR_LBR))
2289 intel_pmu_create_guest_lbr_event(vcpu);
2290 return 0;
2291 case MSR_IA32_BNDCFGS:
2292 if (!kvm_mpx_supported() ||
2293 (!msr_info->host_initiated &&
2294 !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
2295 return 1;
2296 if (is_noncanonical_msr_address(data & PAGE_MASK, vcpu) ||
2297 (data & MSR_IA32_BNDCFGS_RSVD))
2298 return 1;
2299
2300 if (is_guest_mode(vcpu) &&
2301 ((vmx->nested.msrs.entry_ctls_high & VM_ENTRY_LOAD_BNDCFGS) ||
2302 (vmx->nested.msrs.exit_ctls_high & VM_EXIT_CLEAR_BNDCFGS)))
2303 get_vmcs12(vcpu)->guest_bndcfgs = data;
2304
2305 vmcs_write64(GUEST_BNDCFGS, data);
2306 break;
2307 case MSR_IA32_UMWAIT_CONTROL:
2308 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
2309 return 1;
2310
2311 /* The reserved bit 1 and non-32 bit [63:32] should be zero */
2312 if (data & (BIT_ULL(1) | GENMASK_ULL(63, 32)))
2313 return 1;
2314
2315 vmx->msr_ia32_umwait_control = data;
2316 break;
2317 case MSR_IA32_SPEC_CTRL:
2318 if (!msr_info->host_initiated &&
2319 !guest_has_spec_ctrl_msr(vcpu))
2320 return 1;
2321
2322 if (kvm_spec_ctrl_test_value(data))
2323 return 1;
2324
2325 vmx->spec_ctrl = data;
2326 if (!data)
2327 break;
2328
2329 /*
2330 * For non-nested:
2331 * When it's written (to non-zero) for the first time, pass
2332 * it through.
2333 *
2334 * For nested:
2335 * The handling of the MSR bitmap for L2 guests is done in
2336 * nested_vmx_prepare_msr_bitmap. We should not touch the
2337 * vmcs02.msr_bitmap here since it gets completely overwritten
2338 * in the merging. We update the vmcs01 here for L1 as well
2339 * since it will end up touching the MSR anyway now.
2340 */
2341 vmx_disable_intercept_for_msr(vcpu,
2342 MSR_IA32_SPEC_CTRL,
2343 MSR_TYPE_RW);
2344 break;
2345 case MSR_IA32_TSX_CTRL:
2346 if (!msr_info->host_initiated &&
2347 !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
2348 return 1;
2349 if (data & ~(TSX_CTRL_RTM_DISABLE | TSX_CTRL_CPUID_CLEAR))
2350 return 1;
2351 goto find_uret_msr;
2352 case MSR_IA32_CR_PAT:
2353 ret = kvm_set_msr_common(vcpu, msr_info);
2354 if (ret)
2355 break;
2356
2357 if (is_guest_mode(vcpu) &&
2358 get_vmcs12(vcpu)->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
2359 get_vmcs12(vcpu)->guest_ia32_pat = data;
2360
2361 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
2362 vmcs_write64(GUEST_IA32_PAT, data);
2363 break;
2364 case MSR_IA32_MCG_EXT_CTL:
2365 if ((!msr_info->host_initiated &&
2366 !(to_vmx(vcpu)->msr_ia32_feature_control &
2367 FEAT_CTL_LMCE_ENABLED)) ||
2368 (data & ~MCG_EXT_CTL_LMCE_EN))
2369 return 1;
2370 vcpu->arch.mcg_ext_ctl = data;
2371 break;
2372 case MSR_IA32_FEAT_CTL:
2373 if (!is_vmx_feature_control_msr_valid(vmx, msr_info))
2374 return 1;
2375
2376 vmx->msr_ia32_feature_control = data;
2377 if (msr_info->host_initiated && data == 0)
2378 vmx_leave_nested(vcpu);
2379
2380 /* SGX may be enabled/disabled by guest's firmware */
2381 vmx_write_encls_bitmap(vcpu, NULL);
2382 break;
2383 case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
2384 /*
2385 * On real hardware, the LE hash MSRs are writable before
2386 * the firmware sets bit 0 in MSR 0x7a ("activating" SGX),
2387 * at which point SGX related bits in IA32_FEATURE_CONTROL
2388 * become writable.
2389 *
2390 * KVM does not emulate SGX activation for simplicity, so
2391 * allow writes to the LE hash MSRs if IA32_FEATURE_CONTROL
2392 * is unlocked. This is technically not architectural
2393 * behavior, but it's close enough.
2394 */
2395 if (!msr_info->host_initiated &&
2396 (!guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC) ||
2397 ((vmx->msr_ia32_feature_control & FEAT_CTL_LOCKED) &&
2398 !(vmx->msr_ia32_feature_control & FEAT_CTL_SGX_LC_ENABLED))))
2399 return 1;
2400 vmx->msr_ia32_sgxlepubkeyhash
2401 [msr_index - MSR_IA32_SGXLEPUBKEYHASH0] = data;
2402 break;
2403 case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
2404 if (!msr_info->host_initiated)
2405 return 1; /* they are read-only */
2406 if (!guest_can_use(vcpu, X86_FEATURE_VMX))
2407 return 1;
2408 return vmx_set_vmx_msr(vcpu, msr_index, data);
2409 case MSR_IA32_RTIT_CTL:
2410 if (!vmx_pt_mode_is_host_guest() ||
2411 vmx_rtit_ctl_check(vcpu, data) ||
2412 vmx->nested.vmxon)
2413 return 1;
2414 vmcs_write64(GUEST_IA32_RTIT_CTL, data);
2415 vmx->pt_desc.guest.ctl = data;
2416 pt_update_intercept_for_msr(vcpu);
2417 break;
2418 case MSR_IA32_RTIT_STATUS:
2419 if (!pt_can_write_msr(vmx))
2420 return 1;
2421 if (data & MSR_IA32_RTIT_STATUS_MASK)
2422 return 1;
2423 vmx->pt_desc.guest.status = data;
2424 break;
2425 case MSR_IA32_RTIT_CR3_MATCH:
2426 if (!pt_can_write_msr(vmx))
2427 return 1;
2428 if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2429 PT_CAP_cr3_filtering))
2430 return 1;
2431 vmx->pt_desc.guest.cr3_match = data;
2432 break;
2433 case MSR_IA32_RTIT_OUTPUT_BASE:
2434 if (!pt_can_write_msr(vmx))
2435 return 1;
2436 if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2437 PT_CAP_topa_output) &&
2438 !intel_pt_validate_cap(vmx->pt_desc.caps,
2439 PT_CAP_single_range_output))
2440 return 1;
2441 if (!pt_output_base_valid(vcpu, data))
2442 return 1;
2443 vmx->pt_desc.guest.output_base = data;
2444 break;
2445 case MSR_IA32_RTIT_OUTPUT_MASK:
2446 if (!pt_can_write_msr(vmx))
2447 return 1;
2448 if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2449 PT_CAP_topa_output) &&
2450 !intel_pt_validate_cap(vmx->pt_desc.caps,
2451 PT_CAP_single_range_output))
2452 return 1;
2453 vmx->pt_desc.guest.output_mask = data;
2454 break;
2455 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
2456 if (!pt_can_write_msr(vmx))
2457 return 1;
2458 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
2459 if (index >= 2 * vmx->pt_desc.num_address_ranges)
2460 return 1;
2461 if (is_noncanonical_msr_address(data, vcpu))
2462 return 1;
2463 if (index % 2)
2464 vmx->pt_desc.guest.addr_b[index / 2] = data;
2465 else
2466 vmx->pt_desc.guest.addr_a[index / 2] = data;
2467 break;
2468 case MSR_IA32_PERF_CAPABILITIES:
2469 if (data && !vcpu_to_pmu(vcpu)->version)
2470 return 1;
2471 if (data & PMU_CAP_LBR_FMT) {
2472 if ((data & PMU_CAP_LBR_FMT) !=
2473 (kvm_caps.supported_perf_cap & PMU_CAP_LBR_FMT))
2474 return 1;
2475 if (!cpuid_model_is_consistent(vcpu))
2476 return 1;
2477 }
2478 if (data & PERF_CAP_PEBS_FORMAT) {
2479 if ((data & PERF_CAP_PEBS_MASK) !=
2480 (kvm_caps.supported_perf_cap & PERF_CAP_PEBS_MASK))
2481 return 1;
2482 if (!guest_cpuid_has(vcpu, X86_FEATURE_DS))
2483 return 1;
2484 if (!guest_cpuid_has(vcpu, X86_FEATURE_DTES64))
2485 return 1;
2486 if (!cpuid_model_is_consistent(vcpu))
2487 return 1;
2488 }
2489 ret = kvm_set_msr_common(vcpu, msr_info);
2490 break;
2491
2492 default:
2493 find_uret_msr:
2494 msr = vmx_find_uret_msr(vmx, msr_index);
2495 if (msr)
2496 ret = vmx_set_guest_uret_msr(vmx, msr, data);
2497 else
2498 ret = kvm_set_msr_common(vcpu, msr_info);
2499 }
2500
2501 /* FB_CLEAR may have changed, also update the FB_CLEAR_DIS behavior */
2502 if (msr_index == MSR_IA32_ARCH_CAPABILITIES)
2503 vmx_update_fb_clear_dis(vcpu, vmx);
2504
2505 return ret;
2506 }
2507
vmx_cache_reg(struct kvm_vcpu * vcpu,enum kvm_reg reg)2508 void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2509 {
2510 unsigned long guest_owned_bits;
2511
2512 kvm_register_mark_available(vcpu, reg);
2513
2514 switch (reg) {
2515 case VCPU_REGS_RSP:
2516 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2517 break;
2518 case VCPU_REGS_RIP:
2519 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2520 break;
2521 case VCPU_EXREG_PDPTR:
2522 if (enable_ept)
2523 ept_save_pdptrs(vcpu);
2524 break;
2525 case VCPU_EXREG_CR0:
2526 guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
2527
2528 vcpu->arch.cr0 &= ~guest_owned_bits;
2529 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & guest_owned_bits;
2530 break;
2531 case VCPU_EXREG_CR3:
2532 /*
2533 * When intercepting CR3 loads, e.g. for shadowing paging, KVM's
2534 * CR3 is loaded into hardware, not the guest's CR3.
2535 */
2536 if (!(exec_controls_get(to_vmx(vcpu)) & CPU_BASED_CR3_LOAD_EXITING))
2537 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
2538 break;
2539 case VCPU_EXREG_CR4:
2540 guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
2541
2542 vcpu->arch.cr4 &= ~guest_owned_bits;
2543 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & guest_owned_bits;
2544 break;
2545 default:
2546 KVM_BUG_ON(1, vcpu->kvm);
2547 break;
2548 }
2549 }
2550
2551 /*
2552 * There is no X86_FEATURE for SGX yet, but anyway we need to query CPUID
2553 * directly instead of going through cpu_has(), to ensure KVM is trapping
2554 * ENCLS whenever it's supported in hardware. It does not matter whether
2555 * the host OS supports or has enabled SGX.
2556 */
cpu_has_sgx(void)2557 static bool cpu_has_sgx(void)
2558 {
2559 return cpuid_eax(0) >= 0x12 && (cpuid_eax(0x12) & BIT(0));
2560 }
2561
adjust_vmx_controls(u32 ctl_min,u32 ctl_opt,u32 msr,u32 * result)2562 static int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt, u32 msr, u32 *result)
2563 {
2564 u32 vmx_msr_low, vmx_msr_high;
2565 u32 ctl = ctl_min | ctl_opt;
2566
2567 rdmsr(msr, vmx_msr_low, vmx_msr_high);
2568
2569 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2570 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
2571
2572 /* Ensure minimum (required) set of control bits are supported. */
2573 if (ctl_min & ~ctl)
2574 return -EIO;
2575
2576 *result = ctl;
2577 return 0;
2578 }
2579
adjust_vmx_controls64(u64 ctl_opt,u32 msr)2580 static u64 adjust_vmx_controls64(u64 ctl_opt, u32 msr)
2581 {
2582 u64 allowed;
2583
2584 rdmsrl(msr, allowed);
2585
2586 return ctl_opt & allowed;
2587 }
2588
setup_vmcs_config(struct vmcs_config * vmcs_conf,struct vmx_capability * vmx_cap)2589 static int setup_vmcs_config(struct vmcs_config *vmcs_conf,
2590 struct vmx_capability *vmx_cap)
2591 {
2592 u32 _pin_based_exec_control = 0;
2593 u32 _cpu_based_exec_control = 0;
2594 u32 _cpu_based_2nd_exec_control = 0;
2595 u64 _cpu_based_3rd_exec_control = 0;
2596 u32 _vmexit_control = 0;
2597 u32 _vmentry_control = 0;
2598 u64 basic_msr;
2599 u64 misc_msr;
2600 int i;
2601
2602 /*
2603 * LOAD/SAVE_DEBUG_CONTROLS are absent because both are mandatory.
2604 * SAVE_IA32_PAT and SAVE_IA32_EFER are absent because KVM always
2605 * intercepts writes to PAT and EFER, i.e. never enables those controls.
2606 */
2607 struct {
2608 u32 entry_control;
2609 u32 exit_control;
2610 } const vmcs_entry_exit_pairs[] = {
2611 { VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL, VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL },
2612 { VM_ENTRY_LOAD_IA32_PAT, VM_EXIT_LOAD_IA32_PAT },
2613 { VM_ENTRY_LOAD_IA32_EFER, VM_EXIT_LOAD_IA32_EFER },
2614 { VM_ENTRY_LOAD_BNDCFGS, VM_EXIT_CLEAR_BNDCFGS },
2615 { VM_ENTRY_LOAD_IA32_RTIT_CTL, VM_EXIT_CLEAR_IA32_RTIT_CTL },
2616 };
2617
2618 memset(vmcs_conf, 0, sizeof(*vmcs_conf));
2619
2620 if (adjust_vmx_controls(KVM_REQUIRED_VMX_CPU_BASED_VM_EXEC_CONTROL,
2621 KVM_OPTIONAL_VMX_CPU_BASED_VM_EXEC_CONTROL,
2622 MSR_IA32_VMX_PROCBASED_CTLS,
2623 &_cpu_based_exec_control))
2624 return -EIO;
2625 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
2626 if (adjust_vmx_controls(KVM_REQUIRED_VMX_SECONDARY_VM_EXEC_CONTROL,
2627 KVM_OPTIONAL_VMX_SECONDARY_VM_EXEC_CONTROL,
2628 MSR_IA32_VMX_PROCBASED_CTLS2,
2629 &_cpu_based_2nd_exec_control))
2630 return -EIO;
2631 }
2632 if (!IS_ENABLED(CONFIG_KVM_INTEL_PROVE_VE))
2633 _cpu_based_2nd_exec_control &= ~SECONDARY_EXEC_EPT_VIOLATION_VE;
2634
2635 #ifndef CONFIG_X86_64
2636 if (!(_cpu_based_2nd_exec_control &
2637 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2638 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2639 #endif
2640
2641 if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2642 _cpu_based_2nd_exec_control &= ~(
2643 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2644 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2645 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
2646
2647 rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP,
2648 &vmx_cap->ept, &vmx_cap->vpid);
2649
2650 if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) &&
2651 vmx_cap->ept) {
2652 pr_warn_once("EPT CAP should not exist if not support "
2653 "1-setting enable EPT VM-execution control\n");
2654
2655 if (error_on_inconsistent_vmcs_config)
2656 return -EIO;
2657
2658 vmx_cap->ept = 0;
2659 _cpu_based_2nd_exec_control &= ~SECONDARY_EXEC_EPT_VIOLATION_VE;
2660 }
2661 if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) &&
2662 vmx_cap->vpid) {
2663 pr_warn_once("VPID CAP should not exist if not support "
2664 "1-setting enable VPID VM-execution control\n");
2665
2666 if (error_on_inconsistent_vmcs_config)
2667 return -EIO;
2668
2669 vmx_cap->vpid = 0;
2670 }
2671
2672 if (!cpu_has_sgx())
2673 _cpu_based_2nd_exec_control &= ~SECONDARY_EXEC_ENCLS_EXITING;
2674
2675 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_TERTIARY_CONTROLS)
2676 _cpu_based_3rd_exec_control =
2677 adjust_vmx_controls64(KVM_OPTIONAL_VMX_TERTIARY_VM_EXEC_CONTROL,
2678 MSR_IA32_VMX_PROCBASED_CTLS3);
2679
2680 if (adjust_vmx_controls(KVM_REQUIRED_VMX_VM_EXIT_CONTROLS,
2681 KVM_OPTIONAL_VMX_VM_EXIT_CONTROLS,
2682 MSR_IA32_VMX_EXIT_CTLS,
2683 &_vmexit_control))
2684 return -EIO;
2685
2686 if (adjust_vmx_controls(KVM_REQUIRED_VMX_PIN_BASED_VM_EXEC_CONTROL,
2687 KVM_OPTIONAL_VMX_PIN_BASED_VM_EXEC_CONTROL,
2688 MSR_IA32_VMX_PINBASED_CTLS,
2689 &_pin_based_exec_control))
2690 return -EIO;
2691
2692 if (cpu_has_broken_vmx_preemption_timer())
2693 _pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
2694 if (!(_cpu_based_2nd_exec_control &
2695 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
2696 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
2697
2698 if (adjust_vmx_controls(KVM_REQUIRED_VMX_VM_ENTRY_CONTROLS,
2699 KVM_OPTIONAL_VMX_VM_ENTRY_CONTROLS,
2700 MSR_IA32_VMX_ENTRY_CTLS,
2701 &_vmentry_control))
2702 return -EIO;
2703
2704 for (i = 0; i < ARRAY_SIZE(vmcs_entry_exit_pairs); i++) {
2705 u32 n_ctrl = vmcs_entry_exit_pairs[i].entry_control;
2706 u32 x_ctrl = vmcs_entry_exit_pairs[i].exit_control;
2707
2708 if (!(_vmentry_control & n_ctrl) == !(_vmexit_control & x_ctrl))
2709 continue;
2710
2711 pr_warn_once("Inconsistent VM-Entry/VM-Exit pair, entry = %x, exit = %x\n",
2712 _vmentry_control & n_ctrl, _vmexit_control & x_ctrl);
2713
2714 if (error_on_inconsistent_vmcs_config)
2715 return -EIO;
2716
2717 _vmentry_control &= ~n_ctrl;
2718 _vmexit_control &= ~x_ctrl;
2719 }
2720
2721 /*
2722 * Some cpus support VM_{ENTRY,EXIT}_IA32_PERF_GLOBAL_CTRL but they
2723 * can't be used due to an errata where VM Exit may incorrectly clear
2724 * IA32_PERF_GLOBAL_CTRL[34:32]. Workaround the errata by using the
2725 * MSR load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2726 */
2727 switch (boot_cpu_data.x86_vfm) {
2728 case INTEL_NEHALEM_EP: /* AAK155 */
2729 case INTEL_NEHALEM: /* AAP115 */
2730 case INTEL_WESTMERE: /* AAT100 */
2731 case INTEL_WESTMERE_EP: /* BC86,AAY89,BD102 */
2732 case INTEL_NEHALEM_EX: /* BA97 */
2733 _vmentry_control &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
2734 _vmexit_control &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
2735 pr_warn_once("VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
2736 "does not work properly. Using workaround\n");
2737 break;
2738 default:
2739 break;
2740 }
2741
2742 rdmsrl(MSR_IA32_VMX_BASIC, basic_msr);
2743
2744 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2745 if (vmx_basic_vmcs_size(basic_msr) > PAGE_SIZE)
2746 return -EIO;
2747
2748 #ifdef CONFIG_X86_64
2749 /*
2750 * KVM expects to be able to shove all legal physical addresses into
2751 * VMCS fields for 64-bit kernels, and per the SDM, "This bit is always
2752 * 0 for processors that support Intel 64 architecture".
2753 */
2754 if (basic_msr & VMX_BASIC_32BIT_PHYS_ADDR_ONLY)
2755 return -EIO;
2756 #endif
2757
2758 /* Require Write-Back (WB) memory type for VMCS accesses. */
2759 if (vmx_basic_vmcs_mem_type(basic_msr) != X86_MEMTYPE_WB)
2760 return -EIO;
2761
2762 rdmsrl(MSR_IA32_VMX_MISC, misc_msr);
2763
2764 vmcs_conf->basic = basic_msr;
2765 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2766 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
2767 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
2768 vmcs_conf->cpu_based_3rd_exec_ctrl = _cpu_based_3rd_exec_control;
2769 vmcs_conf->vmexit_ctrl = _vmexit_control;
2770 vmcs_conf->vmentry_ctrl = _vmentry_control;
2771 vmcs_conf->misc = misc_msr;
2772
2773 #if IS_ENABLED(CONFIG_HYPERV)
2774 if (enlightened_vmcs)
2775 evmcs_sanitize_exec_ctrls(vmcs_conf);
2776 #endif
2777
2778 return 0;
2779 }
2780
__kvm_is_vmx_supported(void)2781 static bool __kvm_is_vmx_supported(void)
2782 {
2783 int cpu = smp_processor_id();
2784
2785 if (!(cpuid_ecx(1) & feature_bit(VMX))) {
2786 pr_err("VMX not supported by CPU %d\n", cpu);
2787 return false;
2788 }
2789
2790 if (!this_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
2791 !this_cpu_has(X86_FEATURE_VMX)) {
2792 pr_err("VMX not enabled (by BIOS) in MSR_IA32_FEAT_CTL on CPU %d\n", cpu);
2793 return false;
2794 }
2795
2796 return true;
2797 }
2798
kvm_is_vmx_supported(void)2799 static bool kvm_is_vmx_supported(void)
2800 {
2801 bool supported;
2802
2803 migrate_disable();
2804 supported = __kvm_is_vmx_supported();
2805 migrate_enable();
2806
2807 return supported;
2808 }
2809
vmx_check_processor_compat(void)2810 int vmx_check_processor_compat(void)
2811 {
2812 int cpu = raw_smp_processor_id();
2813 struct vmcs_config vmcs_conf;
2814 struct vmx_capability vmx_cap;
2815
2816 if (!__kvm_is_vmx_supported())
2817 return -EIO;
2818
2819 if (setup_vmcs_config(&vmcs_conf, &vmx_cap) < 0) {
2820 pr_err("Failed to setup VMCS config on CPU %d\n", cpu);
2821 return -EIO;
2822 }
2823 if (nested)
2824 nested_vmx_setup_ctls_msrs(&vmcs_conf, vmx_cap.ept);
2825 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config))) {
2826 pr_err("Inconsistent VMCS config on CPU %d\n", cpu);
2827 return -EIO;
2828 }
2829 return 0;
2830 }
2831
kvm_cpu_vmxon(u64 vmxon_pointer)2832 static int kvm_cpu_vmxon(u64 vmxon_pointer)
2833 {
2834 u64 msr;
2835
2836 cr4_set_bits(X86_CR4_VMXE);
2837
2838 asm goto("1: vmxon %[vmxon_pointer]\n\t"
2839 _ASM_EXTABLE(1b, %l[fault])
2840 : : [vmxon_pointer] "m"(vmxon_pointer)
2841 : : fault);
2842 return 0;
2843
2844 fault:
2845 WARN_ONCE(1, "VMXON faulted, MSR_IA32_FEAT_CTL (0x3a) = 0x%llx\n",
2846 rdmsrl_safe(MSR_IA32_FEAT_CTL, &msr) ? 0xdeadbeef : msr);
2847 cr4_clear_bits(X86_CR4_VMXE);
2848
2849 return -EFAULT;
2850 }
2851
vmx_enable_virtualization_cpu(void)2852 int vmx_enable_virtualization_cpu(void)
2853 {
2854 int cpu = raw_smp_processor_id();
2855 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2856 int r;
2857
2858 if (cr4_read_shadow() & X86_CR4_VMXE)
2859 return -EBUSY;
2860
2861 /*
2862 * This can happen if we hot-added a CPU but failed to allocate
2863 * VP assist page for it.
2864 */
2865 if (kvm_is_using_evmcs() && !hv_get_vp_assist_page(cpu))
2866 return -EFAULT;
2867
2868 intel_pt_handle_vmx(1);
2869
2870 r = kvm_cpu_vmxon(phys_addr);
2871 if (r) {
2872 intel_pt_handle_vmx(0);
2873 return r;
2874 }
2875
2876 return 0;
2877 }
2878
vmclear_local_loaded_vmcss(void)2879 static void vmclear_local_loaded_vmcss(void)
2880 {
2881 int cpu = raw_smp_processor_id();
2882 struct loaded_vmcs *v, *n;
2883
2884 list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2885 loaded_vmcss_on_cpu_link)
2886 __loaded_vmcs_clear(v);
2887 }
2888
vmx_disable_virtualization_cpu(void)2889 void vmx_disable_virtualization_cpu(void)
2890 {
2891 vmclear_local_loaded_vmcss();
2892
2893 if (kvm_cpu_vmxoff())
2894 kvm_spurious_fault();
2895
2896 hv_reset_evmcs();
2897
2898 intel_pt_handle_vmx(0);
2899 }
2900
alloc_vmcs_cpu(bool shadow,int cpu,gfp_t flags)2901 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags)
2902 {
2903 int node = cpu_to_node(cpu);
2904 struct page *pages;
2905 struct vmcs *vmcs;
2906
2907 pages = __alloc_pages_node(node, flags, 0);
2908 if (!pages)
2909 return NULL;
2910 vmcs = page_address(pages);
2911 memset(vmcs, 0, vmx_basic_vmcs_size(vmcs_config.basic));
2912
2913 /* KVM supports Enlightened VMCS v1 only */
2914 if (kvm_is_using_evmcs())
2915 vmcs->hdr.revision_id = KVM_EVMCS_VERSION;
2916 else
2917 vmcs->hdr.revision_id = vmx_basic_vmcs_revision_id(vmcs_config.basic);
2918
2919 if (shadow)
2920 vmcs->hdr.shadow_vmcs = 1;
2921 return vmcs;
2922 }
2923
free_vmcs(struct vmcs * vmcs)2924 void free_vmcs(struct vmcs *vmcs)
2925 {
2926 free_page((unsigned long)vmcs);
2927 }
2928
2929 /*
2930 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
2931 */
free_loaded_vmcs(struct loaded_vmcs * loaded_vmcs)2932 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2933 {
2934 if (!loaded_vmcs->vmcs)
2935 return;
2936 loaded_vmcs_clear(loaded_vmcs);
2937 free_vmcs(loaded_vmcs->vmcs);
2938 loaded_vmcs->vmcs = NULL;
2939 if (loaded_vmcs->msr_bitmap)
2940 free_page((unsigned long)loaded_vmcs->msr_bitmap);
2941 WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
2942 }
2943
alloc_loaded_vmcs(struct loaded_vmcs * loaded_vmcs)2944 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2945 {
2946 loaded_vmcs->vmcs = alloc_vmcs(false);
2947 if (!loaded_vmcs->vmcs)
2948 return -ENOMEM;
2949
2950 vmcs_clear(loaded_vmcs->vmcs);
2951
2952 loaded_vmcs->shadow_vmcs = NULL;
2953 loaded_vmcs->hv_timer_soft_disabled = false;
2954 loaded_vmcs->cpu = -1;
2955 loaded_vmcs->launched = 0;
2956
2957 if (cpu_has_vmx_msr_bitmap()) {
2958 loaded_vmcs->msr_bitmap = (unsigned long *)
2959 __get_free_page(GFP_KERNEL_ACCOUNT);
2960 if (!loaded_vmcs->msr_bitmap)
2961 goto out_vmcs;
2962 memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE);
2963 }
2964
2965 memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state));
2966 memset(&loaded_vmcs->controls_shadow, 0,
2967 sizeof(struct vmcs_controls_shadow));
2968
2969 return 0;
2970
2971 out_vmcs:
2972 free_loaded_vmcs(loaded_vmcs);
2973 return -ENOMEM;
2974 }
2975
free_kvm_area(void)2976 static void free_kvm_area(void)
2977 {
2978 int cpu;
2979
2980 for_each_possible_cpu(cpu) {
2981 free_vmcs(per_cpu(vmxarea, cpu));
2982 per_cpu(vmxarea, cpu) = NULL;
2983 }
2984 }
2985
alloc_kvm_area(void)2986 static __init int alloc_kvm_area(void)
2987 {
2988 int cpu;
2989
2990 for_each_possible_cpu(cpu) {
2991 struct vmcs *vmcs;
2992
2993 vmcs = alloc_vmcs_cpu(false, cpu, GFP_KERNEL);
2994 if (!vmcs) {
2995 free_kvm_area();
2996 return -ENOMEM;
2997 }
2998
2999 /*
3000 * When eVMCS is enabled, alloc_vmcs_cpu() sets
3001 * vmcs->revision_id to KVM_EVMCS_VERSION instead of
3002 * revision_id reported by MSR_IA32_VMX_BASIC.
3003 *
3004 * However, even though not explicitly documented by
3005 * TLFS, VMXArea passed as VMXON argument should
3006 * still be marked with revision_id reported by
3007 * physical CPU.
3008 */
3009 if (kvm_is_using_evmcs())
3010 vmcs->hdr.revision_id = vmx_basic_vmcs_revision_id(vmcs_config.basic);
3011
3012 per_cpu(vmxarea, cpu) = vmcs;
3013 }
3014 return 0;
3015 }
3016
fix_pmode_seg(struct kvm_vcpu * vcpu,int seg,struct kvm_segment * save)3017 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
3018 struct kvm_segment *save)
3019 {
3020 if (!emulate_invalid_guest_state) {
3021 /*
3022 * CS and SS RPL should be equal during guest entry according
3023 * to VMX spec, but in reality it is not always so. Since vcpu
3024 * is in the middle of the transition from real mode to
3025 * protected mode it is safe to assume that RPL 0 is a good
3026 * default value.
3027 */
3028 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
3029 save->selector &= ~SEGMENT_RPL_MASK;
3030 save->dpl = save->selector & SEGMENT_RPL_MASK;
3031 save->s = 1;
3032 }
3033 __vmx_set_segment(vcpu, save, seg);
3034 }
3035
enter_pmode(struct kvm_vcpu * vcpu)3036 static void enter_pmode(struct kvm_vcpu *vcpu)
3037 {
3038 unsigned long flags;
3039 struct vcpu_vmx *vmx = to_vmx(vcpu);
3040
3041 /*
3042 * Update real mode segment cache. It may be not up-to-date if segment
3043 * register was written while vcpu was in a guest mode.
3044 */
3045 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3046 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3047 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3048 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3049 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3050 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3051
3052 vmx->rmode.vm86_active = 0;
3053
3054 __vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3055
3056 flags = vmcs_readl(GUEST_RFLAGS);
3057 flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
3058 flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
3059 vmcs_writel(GUEST_RFLAGS, flags);
3060
3061 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
3062 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
3063
3064 vmx_update_exception_bitmap(vcpu);
3065
3066 fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3067 fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3068 fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3069 fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3070 fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3071 fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3072 }
3073
fix_rmode_seg(int seg,struct kvm_segment * save)3074 static void fix_rmode_seg(int seg, struct kvm_segment *save)
3075 {
3076 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3077 struct kvm_segment var = *save;
3078
3079 var.dpl = 0x3;
3080 if (seg == VCPU_SREG_CS)
3081 var.type = 0x3;
3082
3083 if (!emulate_invalid_guest_state) {
3084 var.selector = var.base >> 4;
3085 var.base = var.base & 0xffff0;
3086 var.limit = 0xffff;
3087 var.g = 0;
3088 var.db = 0;
3089 var.present = 1;
3090 var.s = 1;
3091 var.l = 0;
3092 var.unusable = 0;
3093 var.type = 0x3;
3094 var.avl = 0;
3095 if (save->base & 0xf)
3096 pr_warn_once("segment base is not paragraph aligned "
3097 "when entering protected mode (seg=%d)", seg);
3098 }
3099
3100 vmcs_write16(sf->selector, var.selector);
3101 vmcs_writel(sf->base, var.base);
3102 vmcs_write32(sf->limit, var.limit);
3103 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
3104 }
3105
enter_rmode(struct kvm_vcpu * vcpu)3106 static void enter_rmode(struct kvm_vcpu *vcpu)
3107 {
3108 unsigned long flags;
3109 struct vcpu_vmx *vmx = to_vmx(vcpu);
3110 struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm);
3111
3112 /*
3113 * KVM should never use VM86 to virtualize Real Mode when L2 is active,
3114 * as using VM86 is unnecessary if unrestricted guest is enabled, and
3115 * if unrestricted guest is disabled, VM-Enter (from L1) with CR0.PG=0
3116 * should VM-Fail and KVM should reject userspace attempts to stuff
3117 * CR0.PG=0 when L2 is active.
3118 */
3119 WARN_ON_ONCE(is_guest_mode(vcpu));
3120
3121 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3122 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3123 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3124 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3125 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3126 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3127 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3128
3129 vmx->rmode.vm86_active = 1;
3130
3131 vmx_segment_cache_clear(vmx);
3132
3133 vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr);
3134 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
3135 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
3136
3137 flags = vmcs_readl(GUEST_RFLAGS);
3138 vmx->rmode.save_rflags = flags;
3139
3140 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
3141
3142 vmcs_writel(GUEST_RFLAGS, flags);
3143 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
3144 vmx_update_exception_bitmap(vcpu);
3145
3146 fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3147 fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3148 fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3149 fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3150 fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3151 fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3152 }
3153
vmx_set_efer(struct kvm_vcpu * vcpu,u64 efer)3154 int vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
3155 {
3156 struct vcpu_vmx *vmx = to_vmx(vcpu);
3157
3158 /* Nothing to do if hardware doesn't support EFER. */
3159 if (!vmx_find_uret_msr(vmx, MSR_EFER))
3160 return 0;
3161
3162 vcpu->arch.efer = efer;
3163 #ifdef CONFIG_X86_64
3164 if (efer & EFER_LMA)
3165 vm_entry_controls_setbit(vmx, VM_ENTRY_IA32E_MODE);
3166 else
3167 vm_entry_controls_clearbit(vmx, VM_ENTRY_IA32E_MODE);
3168 #else
3169 if (KVM_BUG_ON(efer & EFER_LMA, vcpu->kvm))
3170 return 1;
3171 #endif
3172
3173 vmx_setup_uret_msrs(vmx);
3174 return 0;
3175 }
3176
3177 #ifdef CONFIG_X86_64
3178
enter_lmode(struct kvm_vcpu * vcpu)3179 static void enter_lmode(struct kvm_vcpu *vcpu)
3180 {
3181 u32 guest_tr_ar;
3182
3183 vmx_segment_cache_clear(to_vmx(vcpu));
3184
3185 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
3186 if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
3187 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
3188 __func__);
3189 vmcs_write32(GUEST_TR_AR_BYTES,
3190 (guest_tr_ar & ~VMX_AR_TYPE_MASK)
3191 | VMX_AR_TYPE_BUSY_64_TSS);
3192 }
3193 vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
3194 }
3195
exit_lmode(struct kvm_vcpu * vcpu)3196 static void exit_lmode(struct kvm_vcpu *vcpu)
3197 {
3198 vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
3199 }
3200
3201 #endif
3202
vmx_flush_tlb_all(struct kvm_vcpu * vcpu)3203 void vmx_flush_tlb_all(struct kvm_vcpu *vcpu)
3204 {
3205 struct vcpu_vmx *vmx = to_vmx(vcpu);
3206
3207 /*
3208 * INVEPT must be issued when EPT is enabled, irrespective of VPID, as
3209 * the CPU is not required to invalidate guest-physical mappings on
3210 * VM-Entry, even if VPID is disabled. Guest-physical mappings are
3211 * associated with the root EPT structure and not any particular VPID
3212 * (INVVPID also isn't required to invalidate guest-physical mappings).
3213 */
3214 if (enable_ept) {
3215 ept_sync_global();
3216 } else if (enable_vpid) {
3217 if (cpu_has_vmx_invvpid_global()) {
3218 vpid_sync_vcpu_global();
3219 } else {
3220 vpid_sync_vcpu_single(vmx->vpid);
3221 vpid_sync_vcpu_single(vmx->nested.vpid02);
3222 }
3223 }
3224 }
3225
vmx_get_current_vpid(struct kvm_vcpu * vcpu)3226 static inline int vmx_get_current_vpid(struct kvm_vcpu *vcpu)
3227 {
3228 if (is_guest_mode(vcpu) && nested_cpu_has_vpid(get_vmcs12(vcpu)))
3229 return nested_get_vpid02(vcpu);
3230 return to_vmx(vcpu)->vpid;
3231 }
3232
vmx_flush_tlb_current(struct kvm_vcpu * vcpu)3233 void vmx_flush_tlb_current(struct kvm_vcpu *vcpu)
3234 {
3235 struct kvm_mmu *mmu = vcpu->arch.mmu;
3236 u64 root_hpa = mmu->root.hpa;
3237
3238 /* No flush required if the current context is invalid. */
3239 if (!VALID_PAGE(root_hpa))
3240 return;
3241
3242 if (enable_ept)
3243 ept_sync_context(construct_eptp(vcpu, root_hpa,
3244 mmu->root_role.level));
3245 else
3246 vpid_sync_context(vmx_get_current_vpid(vcpu));
3247 }
3248
vmx_flush_tlb_gva(struct kvm_vcpu * vcpu,gva_t addr)3249 void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr)
3250 {
3251 /*
3252 * vpid_sync_vcpu_addr() is a nop if vpid==0, see the comment in
3253 * vmx_flush_tlb_guest() for an explanation of why this is ok.
3254 */
3255 vpid_sync_vcpu_addr(vmx_get_current_vpid(vcpu), addr);
3256 }
3257
vmx_flush_tlb_guest(struct kvm_vcpu * vcpu)3258 void vmx_flush_tlb_guest(struct kvm_vcpu *vcpu)
3259 {
3260 /*
3261 * vpid_sync_context() is a nop if vpid==0, e.g. if enable_vpid==0 or a
3262 * vpid couldn't be allocated for this vCPU. VM-Enter and VM-Exit are
3263 * required to flush GVA->{G,H}PA mappings from the TLB if vpid is
3264 * disabled (VM-Enter with vpid enabled and vpid==0 is disallowed),
3265 * i.e. no explicit INVVPID is necessary.
3266 */
3267 vpid_sync_context(vmx_get_current_vpid(vcpu));
3268 }
3269
vmx_ept_load_pdptrs(struct kvm_vcpu * vcpu)3270 void vmx_ept_load_pdptrs(struct kvm_vcpu *vcpu)
3271 {
3272 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3273
3274 if (!kvm_register_is_dirty(vcpu, VCPU_EXREG_PDPTR))
3275 return;
3276
3277 if (is_pae_paging(vcpu)) {
3278 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
3279 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
3280 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
3281 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
3282 }
3283 }
3284
ept_save_pdptrs(struct kvm_vcpu * vcpu)3285 void ept_save_pdptrs(struct kvm_vcpu *vcpu)
3286 {
3287 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3288
3289 if (WARN_ON_ONCE(!is_pae_paging(vcpu)))
3290 return;
3291
3292 mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
3293 mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
3294 mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
3295 mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
3296
3297 kvm_register_mark_available(vcpu, VCPU_EXREG_PDPTR);
3298 }
3299
3300 #define CR3_EXITING_BITS (CPU_BASED_CR3_LOAD_EXITING | \
3301 CPU_BASED_CR3_STORE_EXITING)
3302
vmx_is_valid_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)3303 bool vmx_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3304 {
3305 if (is_guest_mode(vcpu))
3306 return nested_guest_cr0_valid(vcpu, cr0);
3307
3308 if (to_vmx(vcpu)->nested.vmxon)
3309 return nested_host_cr0_valid(vcpu, cr0);
3310
3311 return true;
3312 }
3313
vmx_set_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)3314 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3315 {
3316 struct vcpu_vmx *vmx = to_vmx(vcpu);
3317 unsigned long hw_cr0, old_cr0_pg;
3318 u32 tmp;
3319
3320 old_cr0_pg = kvm_read_cr0_bits(vcpu, X86_CR0_PG);
3321
3322 hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF);
3323 if (enable_unrestricted_guest)
3324 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
3325 else {
3326 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
3327 if (!enable_ept)
3328 hw_cr0 |= X86_CR0_WP;
3329
3330 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
3331 enter_pmode(vcpu);
3332
3333 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
3334 enter_rmode(vcpu);
3335 }
3336
3337 vmcs_writel(CR0_READ_SHADOW, cr0);
3338 vmcs_writel(GUEST_CR0, hw_cr0);
3339 vcpu->arch.cr0 = cr0;
3340 kvm_register_mark_available(vcpu, VCPU_EXREG_CR0);
3341
3342 #ifdef CONFIG_X86_64
3343 if (vcpu->arch.efer & EFER_LME) {
3344 if (!old_cr0_pg && (cr0 & X86_CR0_PG))
3345 enter_lmode(vcpu);
3346 else if (old_cr0_pg && !(cr0 & X86_CR0_PG))
3347 exit_lmode(vcpu);
3348 }
3349 #endif
3350
3351 if (enable_ept && !enable_unrestricted_guest) {
3352 /*
3353 * Ensure KVM has an up-to-date snapshot of the guest's CR3. If
3354 * the below code _enables_ CR3 exiting, vmx_cache_reg() will
3355 * (correctly) stop reading vmcs.GUEST_CR3 because it thinks
3356 * KVM's CR3 is installed.
3357 */
3358 if (!kvm_register_is_available(vcpu, VCPU_EXREG_CR3))
3359 vmx_cache_reg(vcpu, VCPU_EXREG_CR3);
3360
3361 /*
3362 * When running with EPT but not unrestricted guest, KVM must
3363 * intercept CR3 accesses when paging is _disabled_. This is
3364 * necessary because restricted guests can't actually run with
3365 * paging disabled, and so KVM stuffs its own CR3 in order to
3366 * run the guest when identity mapped page tables.
3367 *
3368 * Do _NOT_ check the old CR0.PG, e.g. to optimize away the
3369 * update, it may be stale with respect to CR3 interception,
3370 * e.g. after nested VM-Enter.
3371 *
3372 * Lastly, honor L1's desires, i.e. intercept CR3 loads and/or
3373 * stores to forward them to L1, even if KVM does not need to
3374 * intercept them to preserve its identity mapped page tables.
3375 */
3376 if (!(cr0 & X86_CR0_PG)) {
3377 exec_controls_setbit(vmx, CR3_EXITING_BITS);
3378 } else if (!is_guest_mode(vcpu)) {
3379 exec_controls_clearbit(vmx, CR3_EXITING_BITS);
3380 } else {
3381 tmp = exec_controls_get(vmx);
3382 tmp &= ~CR3_EXITING_BITS;
3383 tmp |= get_vmcs12(vcpu)->cpu_based_vm_exec_control & CR3_EXITING_BITS;
3384 exec_controls_set(vmx, tmp);
3385 }
3386
3387 /* Note, vmx_set_cr4() consumes the new vcpu->arch.cr0. */
3388 if ((old_cr0_pg ^ cr0) & X86_CR0_PG)
3389 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3390
3391 /*
3392 * When !CR0_PG -> CR0_PG, vcpu->arch.cr3 becomes active, but
3393 * GUEST_CR3 is still vmx->ept_identity_map_addr if EPT + !URG.
3394 */
3395 if (!(old_cr0_pg & X86_CR0_PG) && (cr0 & X86_CR0_PG))
3396 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
3397 }
3398
3399 /* depends on vcpu->arch.cr0 to be set to a new value */
3400 vmx->emulation_required = vmx_emulation_required(vcpu);
3401 }
3402
vmx_get_max_ept_level(void)3403 static int vmx_get_max_ept_level(void)
3404 {
3405 if (cpu_has_vmx_ept_5levels())
3406 return 5;
3407 return 4;
3408 }
3409
construct_eptp(struct kvm_vcpu * vcpu,hpa_t root_hpa,int root_level)3410 u64 construct_eptp(struct kvm_vcpu *vcpu, hpa_t root_hpa, int root_level)
3411 {
3412 u64 eptp = VMX_EPTP_MT_WB;
3413
3414 eptp |= (root_level == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4;
3415
3416 if (enable_ept_ad_bits &&
3417 (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu)))
3418 eptp |= VMX_EPTP_AD_ENABLE_BIT;
3419 eptp |= root_hpa;
3420
3421 return eptp;
3422 }
3423
vmx_load_mmu_pgd(struct kvm_vcpu * vcpu,hpa_t root_hpa,int root_level)3424 void vmx_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa, int root_level)
3425 {
3426 struct kvm *kvm = vcpu->kvm;
3427 bool update_guest_cr3 = true;
3428 unsigned long guest_cr3;
3429 u64 eptp;
3430
3431 if (enable_ept) {
3432 eptp = construct_eptp(vcpu, root_hpa, root_level);
3433 vmcs_write64(EPT_POINTER, eptp);
3434
3435 hv_track_root_tdp(vcpu, root_hpa);
3436
3437 if (!enable_unrestricted_guest && !is_paging(vcpu))
3438 guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr;
3439 else if (kvm_register_is_dirty(vcpu, VCPU_EXREG_CR3))
3440 guest_cr3 = vcpu->arch.cr3;
3441 else /* vmcs.GUEST_CR3 is already up-to-date. */
3442 update_guest_cr3 = false;
3443 vmx_ept_load_pdptrs(vcpu);
3444 } else {
3445 guest_cr3 = root_hpa | kvm_get_active_pcid(vcpu) |
3446 kvm_get_active_cr3_lam_bits(vcpu);
3447 }
3448
3449 if (update_guest_cr3)
3450 vmcs_writel(GUEST_CR3, guest_cr3);
3451 }
3452
vmx_is_valid_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)3453 bool vmx_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3454 {
3455 /*
3456 * We operate under the default treatment of SMM, so VMX cannot be
3457 * enabled under SMM. Note, whether or not VMXE is allowed at all,
3458 * i.e. is a reserved bit, is handled by common x86 code.
3459 */
3460 if ((cr4 & X86_CR4_VMXE) && is_smm(vcpu))
3461 return false;
3462
3463 if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
3464 return false;
3465
3466 return true;
3467 }
3468
vmx_set_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)3469 void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3470 {
3471 unsigned long old_cr4 = kvm_read_cr4(vcpu);
3472 struct vcpu_vmx *vmx = to_vmx(vcpu);
3473 unsigned long hw_cr4;
3474
3475 /*
3476 * Pass through host's Machine Check Enable value to hw_cr4, which
3477 * is in force while we are in guest mode. Do not let guests control
3478 * this bit, even if host CR4.MCE == 0.
3479 */
3480 hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE);
3481 if (enable_unrestricted_guest)
3482 hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST;
3483 else if (vmx->rmode.vm86_active)
3484 hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON;
3485 else
3486 hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON;
3487
3488 if (vmx_umip_emulated()) {
3489 if (cr4 & X86_CR4_UMIP) {
3490 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_DESC);
3491 hw_cr4 &= ~X86_CR4_UMIP;
3492 } else if (!is_guest_mode(vcpu) ||
3493 !nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC)) {
3494 secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_DESC);
3495 }
3496 }
3497
3498 vcpu->arch.cr4 = cr4;
3499 kvm_register_mark_available(vcpu, VCPU_EXREG_CR4);
3500
3501 if (!enable_unrestricted_guest) {
3502 if (enable_ept) {
3503 if (!is_paging(vcpu)) {
3504 hw_cr4 &= ~X86_CR4_PAE;
3505 hw_cr4 |= X86_CR4_PSE;
3506 } else if (!(cr4 & X86_CR4_PAE)) {
3507 hw_cr4 &= ~X86_CR4_PAE;
3508 }
3509 }
3510
3511 /*
3512 * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
3513 * hardware. To emulate this behavior, SMEP/SMAP/PKU needs
3514 * to be manually disabled when guest switches to non-paging
3515 * mode.
3516 *
3517 * If !enable_unrestricted_guest, the CPU is always running
3518 * with CR0.PG=1 and CR4 needs to be modified.
3519 * If enable_unrestricted_guest, the CPU automatically
3520 * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
3521 */
3522 if (!is_paging(vcpu))
3523 hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
3524 }
3525
3526 vmcs_writel(CR4_READ_SHADOW, cr4);
3527 vmcs_writel(GUEST_CR4, hw_cr4);
3528
3529 if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
3530 kvm_update_cpuid_runtime(vcpu);
3531 }
3532
vmx_get_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)3533 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3534 {
3535 struct vcpu_vmx *vmx = to_vmx(vcpu);
3536 u32 ar;
3537
3538 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3539 *var = vmx->rmode.segs[seg];
3540 if (seg == VCPU_SREG_TR
3541 || var->selector == vmx_read_guest_seg_selector(vmx, seg))
3542 return;
3543 var->base = vmx_read_guest_seg_base(vmx, seg);
3544 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3545 return;
3546 }
3547 var->base = vmx_read_guest_seg_base(vmx, seg);
3548 var->limit = vmx_read_guest_seg_limit(vmx, seg);
3549 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3550 ar = vmx_read_guest_seg_ar(vmx, seg);
3551 var->unusable = (ar >> 16) & 1;
3552 var->type = ar & 15;
3553 var->s = (ar >> 4) & 1;
3554 var->dpl = (ar >> 5) & 3;
3555 /*
3556 * Some userspaces do not preserve unusable property. Since usable
3557 * segment has to be present according to VMX spec we can use present
3558 * property to amend userspace bug by making unusable segment always
3559 * nonpresent. vmx_segment_access_rights() already marks nonpresent
3560 * segment as unusable.
3561 */
3562 var->present = !var->unusable;
3563 var->avl = (ar >> 12) & 1;
3564 var->l = (ar >> 13) & 1;
3565 var->db = (ar >> 14) & 1;
3566 var->g = (ar >> 15) & 1;
3567 }
3568
vmx_get_segment_base(struct kvm_vcpu * vcpu,int seg)3569 u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3570 {
3571 struct kvm_segment s;
3572
3573 if (to_vmx(vcpu)->rmode.vm86_active) {
3574 vmx_get_segment(vcpu, &s, seg);
3575 return s.base;
3576 }
3577 return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3578 }
3579
vmx_get_cpl(struct kvm_vcpu * vcpu)3580 int vmx_get_cpl(struct kvm_vcpu *vcpu)
3581 {
3582 struct vcpu_vmx *vmx = to_vmx(vcpu);
3583
3584 if (unlikely(vmx->rmode.vm86_active))
3585 return 0;
3586 else {
3587 int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
3588 return VMX_AR_DPL(ar);
3589 }
3590 }
3591
vmx_segment_access_rights(struct kvm_segment * var)3592 static u32 vmx_segment_access_rights(struct kvm_segment *var)
3593 {
3594 u32 ar;
3595
3596 ar = var->type & 15;
3597 ar |= (var->s & 1) << 4;
3598 ar |= (var->dpl & 3) << 5;
3599 ar |= (var->present & 1) << 7;
3600 ar |= (var->avl & 1) << 12;
3601 ar |= (var->l & 1) << 13;
3602 ar |= (var->db & 1) << 14;
3603 ar |= (var->g & 1) << 15;
3604 ar |= (var->unusable || !var->present) << 16;
3605
3606 return ar;
3607 }
3608
__vmx_set_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)3609 void __vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3610 {
3611 struct vcpu_vmx *vmx = to_vmx(vcpu);
3612 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3613
3614 vmx_segment_cache_clear(vmx);
3615
3616 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3617 vmx->rmode.segs[seg] = *var;
3618 if (seg == VCPU_SREG_TR)
3619 vmcs_write16(sf->selector, var->selector);
3620 else if (var->s)
3621 fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
3622 return;
3623 }
3624
3625 vmcs_writel(sf->base, var->base);
3626 vmcs_write32(sf->limit, var->limit);
3627 vmcs_write16(sf->selector, var->selector);
3628
3629 /*
3630 * Fix the "Accessed" bit in AR field of segment registers for older
3631 * qemu binaries.
3632 * IA32 arch specifies that at the time of processor reset the
3633 * "Accessed" bit in the AR field of segment registers is 1. And qemu
3634 * is setting it to 0 in the userland code. This causes invalid guest
3635 * state vmexit when "unrestricted guest" mode is turned on.
3636 * Fix for this setup issue in cpu_reset is being pushed in the qemu
3637 * tree. Newer qemu binaries with that qemu fix would not need this
3638 * kvm hack.
3639 */
3640 if (is_unrestricted_guest(vcpu) && (seg != VCPU_SREG_LDTR))
3641 var->type |= 0x1; /* Accessed */
3642
3643 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
3644 }
3645
vmx_set_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)3646 void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3647 {
3648 __vmx_set_segment(vcpu, var, seg);
3649
3650 to_vmx(vcpu)->emulation_required = vmx_emulation_required(vcpu);
3651 }
3652
vmx_get_cs_db_l_bits(struct kvm_vcpu * vcpu,int * db,int * l)3653 void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3654 {
3655 u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3656
3657 *db = (ar >> 14) & 1;
3658 *l = (ar >> 13) & 1;
3659 }
3660
vmx_get_idt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)3661 void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3662 {
3663 dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3664 dt->address = vmcs_readl(GUEST_IDTR_BASE);
3665 }
3666
vmx_set_idt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)3667 void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3668 {
3669 vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3670 vmcs_writel(GUEST_IDTR_BASE, dt->address);
3671 }
3672
vmx_get_gdt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)3673 void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3674 {
3675 dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3676 dt->address = vmcs_readl(GUEST_GDTR_BASE);
3677 }
3678
vmx_set_gdt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)3679 void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3680 {
3681 vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3682 vmcs_writel(GUEST_GDTR_BASE, dt->address);
3683 }
3684
rmode_segment_valid(struct kvm_vcpu * vcpu,int seg)3685 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3686 {
3687 struct kvm_segment var;
3688 u32 ar;
3689
3690 vmx_get_segment(vcpu, &var, seg);
3691 var.dpl = 0x3;
3692 if (seg == VCPU_SREG_CS)
3693 var.type = 0x3;
3694 ar = vmx_segment_access_rights(&var);
3695
3696 if (var.base != (var.selector << 4))
3697 return false;
3698 if (var.limit != 0xffff)
3699 return false;
3700 if (ar != 0xf3)
3701 return false;
3702
3703 return true;
3704 }
3705
code_segment_valid(struct kvm_vcpu * vcpu)3706 static bool code_segment_valid(struct kvm_vcpu *vcpu)
3707 {
3708 struct kvm_segment cs;
3709 unsigned int cs_rpl;
3710
3711 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3712 cs_rpl = cs.selector & SEGMENT_RPL_MASK;
3713
3714 if (cs.unusable)
3715 return false;
3716 if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
3717 return false;
3718 if (!cs.s)
3719 return false;
3720 if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
3721 if (cs.dpl > cs_rpl)
3722 return false;
3723 } else {
3724 if (cs.dpl != cs_rpl)
3725 return false;
3726 }
3727 if (!cs.present)
3728 return false;
3729
3730 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3731 return true;
3732 }
3733
stack_segment_valid(struct kvm_vcpu * vcpu)3734 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3735 {
3736 struct kvm_segment ss;
3737 unsigned int ss_rpl;
3738
3739 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3740 ss_rpl = ss.selector & SEGMENT_RPL_MASK;
3741
3742 if (ss.unusable)
3743 return true;
3744 if (ss.type != 3 && ss.type != 7)
3745 return false;
3746 if (!ss.s)
3747 return false;
3748 if (ss.dpl != ss_rpl) /* DPL != RPL */
3749 return false;
3750 if (!ss.present)
3751 return false;
3752
3753 return true;
3754 }
3755
data_segment_valid(struct kvm_vcpu * vcpu,int seg)3756 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3757 {
3758 struct kvm_segment var;
3759 unsigned int rpl;
3760
3761 vmx_get_segment(vcpu, &var, seg);
3762 rpl = var.selector & SEGMENT_RPL_MASK;
3763
3764 if (var.unusable)
3765 return true;
3766 if (!var.s)
3767 return false;
3768 if (!var.present)
3769 return false;
3770 if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
3771 if (var.dpl < rpl) /* DPL < RPL */
3772 return false;
3773 }
3774
3775 /* TODO: Add other members to kvm_segment_field to allow checking for other access
3776 * rights flags
3777 */
3778 return true;
3779 }
3780
tr_valid(struct kvm_vcpu * vcpu)3781 static bool tr_valid(struct kvm_vcpu *vcpu)
3782 {
3783 struct kvm_segment tr;
3784
3785 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3786
3787 if (tr.unusable)
3788 return false;
3789 if (tr.selector & SEGMENT_TI_MASK) /* TI = 1 */
3790 return false;
3791 if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3792 return false;
3793 if (!tr.present)
3794 return false;
3795
3796 return true;
3797 }
3798
ldtr_valid(struct kvm_vcpu * vcpu)3799 static bool ldtr_valid(struct kvm_vcpu *vcpu)
3800 {
3801 struct kvm_segment ldtr;
3802
3803 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3804
3805 if (ldtr.unusable)
3806 return true;
3807 if (ldtr.selector & SEGMENT_TI_MASK) /* TI = 1 */
3808 return false;
3809 if (ldtr.type != 2)
3810 return false;
3811 if (!ldtr.present)
3812 return false;
3813
3814 return true;
3815 }
3816
cs_ss_rpl_check(struct kvm_vcpu * vcpu)3817 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3818 {
3819 struct kvm_segment cs, ss;
3820
3821 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3822 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3823
3824 return ((cs.selector & SEGMENT_RPL_MASK) ==
3825 (ss.selector & SEGMENT_RPL_MASK));
3826 }
3827
3828 /*
3829 * Check if guest state is valid. Returns true if valid, false if
3830 * not.
3831 * We assume that registers are always usable
3832 */
__vmx_guest_state_valid(struct kvm_vcpu * vcpu)3833 bool __vmx_guest_state_valid(struct kvm_vcpu *vcpu)
3834 {
3835 /* real mode guest state checks */
3836 if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
3837 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3838 return false;
3839 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3840 return false;
3841 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3842 return false;
3843 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3844 return false;
3845 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3846 return false;
3847 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3848 return false;
3849 } else {
3850 /* protected mode guest state checks */
3851 if (!cs_ss_rpl_check(vcpu))
3852 return false;
3853 if (!code_segment_valid(vcpu))
3854 return false;
3855 if (!stack_segment_valid(vcpu))
3856 return false;
3857 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3858 return false;
3859 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3860 return false;
3861 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3862 return false;
3863 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3864 return false;
3865 if (!tr_valid(vcpu))
3866 return false;
3867 if (!ldtr_valid(vcpu))
3868 return false;
3869 }
3870 /* TODO:
3871 * - Add checks on RIP
3872 * - Add checks on RFLAGS
3873 */
3874
3875 return true;
3876 }
3877
init_rmode_tss(struct kvm * kvm,void __user * ua)3878 static int init_rmode_tss(struct kvm *kvm, void __user *ua)
3879 {
3880 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
3881 u16 data;
3882 int i;
3883
3884 for (i = 0; i < 3; i++) {
3885 if (__copy_to_user(ua + PAGE_SIZE * i, zero_page, PAGE_SIZE))
3886 return -EFAULT;
3887 }
3888
3889 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
3890 if (__copy_to_user(ua + TSS_IOPB_BASE_OFFSET, &data, sizeof(u16)))
3891 return -EFAULT;
3892
3893 data = ~0;
3894 if (__copy_to_user(ua + RMODE_TSS_SIZE - 1, &data, sizeof(u8)))
3895 return -EFAULT;
3896
3897 return 0;
3898 }
3899
init_rmode_identity_map(struct kvm * kvm)3900 static int init_rmode_identity_map(struct kvm *kvm)
3901 {
3902 struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
3903 int i, r = 0;
3904 void __user *uaddr;
3905 u32 tmp;
3906
3907 /* Protect kvm_vmx->ept_identity_pagetable_done. */
3908 mutex_lock(&kvm->slots_lock);
3909
3910 if (likely(kvm_vmx->ept_identity_pagetable_done))
3911 goto out;
3912
3913 if (!kvm_vmx->ept_identity_map_addr)
3914 kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
3915
3916 uaddr = __x86_set_memory_region(kvm,
3917 IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
3918 kvm_vmx->ept_identity_map_addr,
3919 PAGE_SIZE);
3920 if (IS_ERR(uaddr)) {
3921 r = PTR_ERR(uaddr);
3922 goto out;
3923 }
3924
3925 /* Set up identity-mapping pagetable for EPT in real mode */
3926 for (i = 0; i < (PAGE_SIZE / sizeof(tmp)); i++) {
3927 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3928 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3929 if (__copy_to_user(uaddr + i * sizeof(tmp), &tmp, sizeof(tmp))) {
3930 r = -EFAULT;
3931 goto out;
3932 }
3933 }
3934 kvm_vmx->ept_identity_pagetable_done = true;
3935
3936 out:
3937 mutex_unlock(&kvm->slots_lock);
3938 return r;
3939 }
3940
seg_setup(int seg)3941 static void seg_setup(int seg)
3942 {
3943 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3944 unsigned int ar;
3945
3946 vmcs_write16(sf->selector, 0);
3947 vmcs_writel(sf->base, 0);
3948 vmcs_write32(sf->limit, 0xffff);
3949 ar = 0x93;
3950 if (seg == VCPU_SREG_CS)
3951 ar |= 0x08; /* code segment */
3952
3953 vmcs_write32(sf->ar_bytes, ar);
3954 }
3955
allocate_vpid(void)3956 int allocate_vpid(void)
3957 {
3958 int vpid;
3959
3960 if (!enable_vpid)
3961 return 0;
3962 spin_lock(&vmx_vpid_lock);
3963 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
3964 if (vpid < VMX_NR_VPIDS)
3965 __set_bit(vpid, vmx_vpid_bitmap);
3966 else
3967 vpid = 0;
3968 spin_unlock(&vmx_vpid_lock);
3969 return vpid;
3970 }
3971
free_vpid(int vpid)3972 void free_vpid(int vpid)
3973 {
3974 if (!enable_vpid || vpid == 0)
3975 return;
3976 spin_lock(&vmx_vpid_lock);
3977 __clear_bit(vpid, vmx_vpid_bitmap);
3978 spin_unlock(&vmx_vpid_lock);
3979 }
3980
vmx_msr_bitmap_l01_changed(struct vcpu_vmx * vmx)3981 static void vmx_msr_bitmap_l01_changed(struct vcpu_vmx *vmx)
3982 {
3983 /*
3984 * When KVM is a nested hypervisor on top of Hyper-V and uses
3985 * 'Enlightened MSR Bitmap' feature L0 needs to know that MSR
3986 * bitmap has changed.
3987 */
3988 if (kvm_is_using_evmcs()) {
3989 struct hv_enlightened_vmcs *evmcs = (void *)vmx->vmcs01.vmcs;
3990
3991 if (evmcs->hv_enlightenments_control.msr_bitmap)
3992 evmcs->hv_clean_fields &=
3993 ~HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP;
3994 }
3995
3996 vmx->nested.force_msr_bitmap_recalc = true;
3997 }
3998
vmx_disable_intercept_for_msr(struct kvm_vcpu * vcpu,u32 msr,int type)3999 void vmx_disable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type)
4000 {
4001 struct vcpu_vmx *vmx = to_vmx(vcpu);
4002 unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
4003 int idx;
4004
4005 if (!cpu_has_vmx_msr_bitmap())
4006 return;
4007
4008 vmx_msr_bitmap_l01_changed(vmx);
4009
4010 /*
4011 * Mark the desired intercept state in shadow bitmap, this is needed
4012 * for resync when the MSR filters change.
4013 */
4014 idx = vmx_get_passthrough_msr_slot(msr);
4015 if (idx >= 0) {
4016 if (type & MSR_TYPE_R)
4017 clear_bit(idx, vmx->shadow_msr_intercept.read);
4018 if (type & MSR_TYPE_W)
4019 clear_bit(idx, vmx->shadow_msr_intercept.write);
4020 }
4021
4022 if ((type & MSR_TYPE_R) &&
4023 !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ)) {
4024 vmx_set_msr_bitmap_read(msr_bitmap, msr);
4025 type &= ~MSR_TYPE_R;
4026 }
4027
4028 if ((type & MSR_TYPE_W) &&
4029 !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE)) {
4030 vmx_set_msr_bitmap_write(msr_bitmap, msr);
4031 type &= ~MSR_TYPE_W;
4032 }
4033
4034 if (type & MSR_TYPE_R)
4035 vmx_clear_msr_bitmap_read(msr_bitmap, msr);
4036
4037 if (type & MSR_TYPE_W)
4038 vmx_clear_msr_bitmap_write(msr_bitmap, msr);
4039 }
4040
vmx_enable_intercept_for_msr(struct kvm_vcpu * vcpu,u32 msr,int type)4041 void vmx_enable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type)
4042 {
4043 struct vcpu_vmx *vmx = to_vmx(vcpu);
4044 unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
4045 int idx;
4046
4047 if (!cpu_has_vmx_msr_bitmap())
4048 return;
4049
4050 vmx_msr_bitmap_l01_changed(vmx);
4051
4052 /*
4053 * Mark the desired intercept state in shadow bitmap, this is needed
4054 * for resync when the MSR filter changes.
4055 */
4056 idx = vmx_get_passthrough_msr_slot(msr);
4057 if (idx >= 0) {
4058 if (type & MSR_TYPE_R)
4059 set_bit(idx, vmx->shadow_msr_intercept.read);
4060 if (type & MSR_TYPE_W)
4061 set_bit(idx, vmx->shadow_msr_intercept.write);
4062 }
4063
4064 if (type & MSR_TYPE_R)
4065 vmx_set_msr_bitmap_read(msr_bitmap, msr);
4066
4067 if (type & MSR_TYPE_W)
4068 vmx_set_msr_bitmap_write(msr_bitmap, msr);
4069 }
4070
vmx_update_msr_bitmap_x2apic(struct kvm_vcpu * vcpu)4071 static void vmx_update_msr_bitmap_x2apic(struct kvm_vcpu *vcpu)
4072 {
4073 /*
4074 * x2APIC indices for 64-bit accesses into the RDMSR and WRMSR halves
4075 * of the MSR bitmap. KVM emulates APIC registers up through 0x3f0,
4076 * i.e. MSR 0x83f, and so only needs to dynamically manipulate 64 bits.
4077 */
4078 const int read_idx = APIC_BASE_MSR / BITS_PER_LONG_LONG;
4079 const int write_idx = read_idx + (0x800 / sizeof(u64));
4080 struct vcpu_vmx *vmx = to_vmx(vcpu);
4081 u64 *msr_bitmap = (u64 *)vmx->vmcs01.msr_bitmap;
4082 u8 mode;
4083
4084 if (!cpu_has_vmx_msr_bitmap() || WARN_ON_ONCE(!lapic_in_kernel(vcpu)))
4085 return;
4086
4087 if (cpu_has_secondary_exec_ctrls() &&
4088 (secondary_exec_controls_get(vmx) &
4089 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
4090 mode = MSR_BITMAP_MODE_X2APIC;
4091 if (enable_apicv && kvm_vcpu_apicv_active(vcpu))
4092 mode |= MSR_BITMAP_MODE_X2APIC_APICV;
4093 } else {
4094 mode = 0;
4095 }
4096
4097 if (mode == vmx->x2apic_msr_bitmap_mode)
4098 return;
4099
4100 vmx->x2apic_msr_bitmap_mode = mode;
4101
4102 /*
4103 * Reset the bitmap for MSRs 0x800 - 0x83f. Leave AMD's uber-extended
4104 * registers (0x840 and above) intercepted, KVM doesn't support them.
4105 * Intercept all writes by default and poke holes as needed. Pass
4106 * through reads for all valid registers by default in x2APIC+APICv
4107 * mode, only the current timer count needs on-demand emulation by KVM.
4108 */
4109 if (mode & MSR_BITMAP_MODE_X2APIC_APICV)
4110 msr_bitmap[read_idx] = ~kvm_lapic_readable_reg_mask(vcpu->arch.apic);
4111 else
4112 msr_bitmap[read_idx] = ~0ull;
4113 msr_bitmap[write_idx] = ~0ull;
4114
4115 /*
4116 * TPR reads and writes can be virtualized even if virtual interrupt
4117 * delivery is not in use.
4118 */
4119 vmx_set_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW,
4120 !(mode & MSR_BITMAP_MODE_X2APIC));
4121
4122 if (mode & MSR_BITMAP_MODE_X2APIC_APICV) {
4123 vmx_enable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_RW);
4124 vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_EOI), MSR_TYPE_W);
4125 vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W);
4126 if (enable_ipiv)
4127 vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_ICR), MSR_TYPE_RW);
4128 }
4129 }
4130
pt_update_intercept_for_msr(struct kvm_vcpu * vcpu)4131 void pt_update_intercept_for_msr(struct kvm_vcpu *vcpu)
4132 {
4133 struct vcpu_vmx *vmx = to_vmx(vcpu);
4134 bool flag = !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
4135 u32 i;
4136
4137 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_STATUS, MSR_TYPE_RW, flag);
4138 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_BASE, MSR_TYPE_RW, flag);
4139 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_MASK, MSR_TYPE_RW, flag);
4140 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_CR3_MATCH, MSR_TYPE_RW, flag);
4141 for (i = 0; i < vmx->pt_desc.num_address_ranges; i++) {
4142 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_A + i * 2, MSR_TYPE_RW, flag);
4143 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_B + i * 2, MSR_TYPE_RW, flag);
4144 }
4145 }
4146
vmx_msr_filter_changed(struct kvm_vcpu * vcpu)4147 void vmx_msr_filter_changed(struct kvm_vcpu *vcpu)
4148 {
4149 struct vcpu_vmx *vmx = to_vmx(vcpu);
4150 u32 i;
4151
4152 if (!cpu_has_vmx_msr_bitmap())
4153 return;
4154
4155 /*
4156 * Redo intercept permissions for MSRs that KVM is passing through to
4157 * the guest. Disabling interception will check the new MSR filter and
4158 * ensure that KVM enables interception if usersepace wants to filter
4159 * the MSR. MSRs that KVM is already intercepting don't need to be
4160 * refreshed since KVM is going to intercept them regardless of what
4161 * userspace wants.
4162 */
4163 for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++) {
4164 u32 msr = vmx_possible_passthrough_msrs[i];
4165
4166 if (!test_bit(i, vmx->shadow_msr_intercept.read))
4167 vmx_disable_intercept_for_msr(vcpu, msr, MSR_TYPE_R);
4168
4169 if (!test_bit(i, vmx->shadow_msr_intercept.write))
4170 vmx_disable_intercept_for_msr(vcpu, msr, MSR_TYPE_W);
4171 }
4172
4173 /* PT MSRs can be passed through iff PT is exposed to the guest. */
4174 if (vmx_pt_mode_is_host_guest())
4175 pt_update_intercept_for_msr(vcpu);
4176 }
4177
kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu * vcpu,int pi_vec)4178 static inline void kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu,
4179 int pi_vec)
4180 {
4181 #ifdef CONFIG_SMP
4182 if (vcpu->mode == IN_GUEST_MODE) {
4183 /*
4184 * The vector of the virtual has already been set in the PIR.
4185 * Send a notification event to deliver the virtual interrupt
4186 * unless the vCPU is the currently running vCPU, i.e. the
4187 * event is being sent from a fastpath VM-Exit handler, in
4188 * which case the PIR will be synced to the vIRR before
4189 * re-entering the guest.
4190 *
4191 * When the target is not the running vCPU, the following
4192 * possibilities emerge:
4193 *
4194 * Case 1: vCPU stays in non-root mode. Sending a notification
4195 * event posts the interrupt to the vCPU.
4196 *
4197 * Case 2: vCPU exits to root mode and is still runnable. The
4198 * PIR will be synced to the vIRR before re-entering the guest.
4199 * Sending a notification event is ok as the host IRQ handler
4200 * will ignore the spurious event.
4201 *
4202 * Case 3: vCPU exits to root mode and is blocked. vcpu_block()
4203 * has already synced PIR to vIRR and never blocks the vCPU if
4204 * the vIRR is not empty. Therefore, a blocked vCPU here does
4205 * not wait for any requested interrupts in PIR, and sending a
4206 * notification event also results in a benign, spurious event.
4207 */
4208
4209 if (vcpu != kvm_get_running_vcpu())
4210 __apic_send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec);
4211 return;
4212 }
4213 #endif
4214 /*
4215 * The vCPU isn't in the guest; wake the vCPU in case it is blocking,
4216 * otherwise do nothing as KVM will grab the highest priority pending
4217 * IRQ via ->sync_pir_to_irr() in vcpu_enter_guest().
4218 */
4219 kvm_vcpu_wake_up(vcpu);
4220 }
4221
vmx_deliver_nested_posted_interrupt(struct kvm_vcpu * vcpu,int vector)4222 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
4223 int vector)
4224 {
4225 struct vcpu_vmx *vmx = to_vmx(vcpu);
4226
4227 /*
4228 * DO NOT query the vCPU's vmcs12, as vmcs12 is dynamically allocated
4229 * and freed, and must not be accessed outside of vcpu->mutex. The
4230 * vCPU's cached PI NV is valid if and only if posted interrupts
4231 * enabled in its vmcs12, i.e. checking the vector also checks that
4232 * L1 has enabled posted interrupts for L2.
4233 */
4234 if (is_guest_mode(vcpu) &&
4235 vector == vmx->nested.posted_intr_nv) {
4236 /*
4237 * If a posted intr is not recognized by hardware,
4238 * we will accomplish it in the next vmentry.
4239 */
4240 vmx->nested.pi_pending = true;
4241 kvm_make_request(KVM_REQ_EVENT, vcpu);
4242
4243 /*
4244 * This pairs with the smp_mb_*() after setting vcpu->mode in
4245 * vcpu_enter_guest() to guarantee the vCPU sees the event
4246 * request if triggering a posted interrupt "fails" because
4247 * vcpu->mode != IN_GUEST_MODE. The extra barrier is needed as
4248 * the smb_wmb() in kvm_make_request() only ensures everything
4249 * done before making the request is visible when the request
4250 * is visible, it doesn't ensure ordering between the store to
4251 * vcpu->requests and the load from vcpu->mode.
4252 */
4253 smp_mb__after_atomic();
4254
4255 /* the PIR and ON have been set by L1. */
4256 kvm_vcpu_trigger_posted_interrupt(vcpu, POSTED_INTR_NESTED_VECTOR);
4257 return 0;
4258 }
4259 return -1;
4260 }
4261 /*
4262 * Send interrupt to vcpu via posted interrupt way.
4263 * 1. If target vcpu is running(non-root mode), send posted interrupt
4264 * notification to vcpu and hardware will sync PIR to vIRR atomically.
4265 * 2. If target vcpu isn't running(root mode), kick it to pick up the
4266 * interrupt from PIR in next vmentry.
4267 */
vmx_deliver_posted_interrupt(struct kvm_vcpu * vcpu,int vector)4268 static int vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
4269 {
4270 struct vcpu_vmx *vmx = to_vmx(vcpu);
4271 int r;
4272
4273 r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
4274 if (!r)
4275 return 0;
4276
4277 /* Note, this is called iff the local APIC is in-kernel. */
4278 if (!vcpu->arch.apic->apicv_active)
4279 return -1;
4280
4281 if (pi_test_and_set_pir(vector, &vmx->pi_desc))
4282 return 0;
4283
4284 /* If a previous notification has sent the IPI, nothing to do. */
4285 if (pi_test_and_set_on(&vmx->pi_desc))
4286 return 0;
4287
4288 /*
4289 * The implied barrier in pi_test_and_set_on() pairs with the smp_mb_*()
4290 * after setting vcpu->mode in vcpu_enter_guest(), thus the vCPU is
4291 * guaranteed to see PID.ON=1 and sync the PIR to IRR if triggering a
4292 * posted interrupt "fails" because vcpu->mode != IN_GUEST_MODE.
4293 */
4294 kvm_vcpu_trigger_posted_interrupt(vcpu, POSTED_INTR_VECTOR);
4295 return 0;
4296 }
4297
vmx_deliver_interrupt(struct kvm_lapic * apic,int delivery_mode,int trig_mode,int vector)4298 void vmx_deliver_interrupt(struct kvm_lapic *apic, int delivery_mode,
4299 int trig_mode, int vector)
4300 {
4301 struct kvm_vcpu *vcpu = apic->vcpu;
4302
4303 if (vmx_deliver_posted_interrupt(vcpu, vector)) {
4304 kvm_lapic_set_irr(vector, apic);
4305 kvm_make_request(KVM_REQ_EVENT, vcpu);
4306 kvm_vcpu_kick(vcpu);
4307 } else {
4308 trace_kvm_apicv_accept_irq(vcpu->vcpu_id, delivery_mode,
4309 trig_mode, vector);
4310 }
4311 }
4312
4313 /*
4314 * Set up the vmcs's constant host-state fields, i.e., host-state fields that
4315 * will not change in the lifetime of the guest.
4316 * Note that host-state that does change is set elsewhere. E.g., host-state
4317 * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
4318 */
vmx_set_constant_host_state(struct vcpu_vmx * vmx)4319 void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
4320 {
4321 u32 low32, high32;
4322 unsigned long tmpl;
4323 unsigned long cr0, cr3, cr4;
4324
4325 cr0 = read_cr0();
4326 WARN_ON(cr0 & X86_CR0_TS);
4327 vmcs_writel(HOST_CR0, cr0); /* 22.2.3 */
4328
4329 /*
4330 * Save the most likely value for this task's CR3 in the VMCS.
4331 * We can't use __get_current_cr3_fast() because we're not atomic.
4332 */
4333 cr3 = __read_cr3();
4334 vmcs_writel(HOST_CR3, cr3); /* 22.2.3 FIXME: shadow tables */
4335 vmx->loaded_vmcs->host_state.cr3 = cr3;
4336
4337 /* Save the most likely value for this task's CR4 in the VMCS. */
4338 cr4 = cr4_read_shadow();
4339 vmcs_writel(HOST_CR4, cr4); /* 22.2.3, 22.2.5 */
4340 vmx->loaded_vmcs->host_state.cr4 = cr4;
4341
4342 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
4343 #ifdef CONFIG_X86_64
4344 /*
4345 * Load null selectors, so we can avoid reloading them in
4346 * vmx_prepare_switch_to_host(), in case userspace uses
4347 * the null selectors too (the expected case).
4348 */
4349 vmcs_write16(HOST_DS_SELECTOR, 0);
4350 vmcs_write16(HOST_ES_SELECTOR, 0);
4351 #else
4352 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
4353 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
4354 #endif
4355 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
4356 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
4357
4358 vmcs_writel(HOST_IDTR_BASE, host_idt_base); /* 22.2.4 */
4359
4360 vmcs_writel(HOST_RIP, (unsigned long)vmx_vmexit); /* 22.2.5 */
4361
4362 rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
4363 vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
4364
4365 /*
4366 * SYSENTER is used for 32-bit system calls on either 32-bit or
4367 * 64-bit kernels. It is always zero If neither is allowed, otherwise
4368 * vmx_vcpu_load_vmcs loads it with the per-CPU entry stack (and may
4369 * have already done so!).
4370 */
4371 if (!IS_ENABLED(CONFIG_IA32_EMULATION) && !IS_ENABLED(CONFIG_X86_32))
4372 vmcs_writel(HOST_IA32_SYSENTER_ESP, 0);
4373
4374 rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
4375 vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */
4376
4377 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
4378 rdmsr(MSR_IA32_CR_PAT, low32, high32);
4379 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
4380 }
4381
4382 if (cpu_has_load_ia32_efer())
4383 vmcs_write64(HOST_IA32_EFER, kvm_host.efer);
4384 }
4385
set_cr4_guest_host_mask(struct vcpu_vmx * vmx)4386 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
4387 {
4388 struct kvm_vcpu *vcpu = &vmx->vcpu;
4389
4390 vcpu->arch.cr4_guest_owned_bits = KVM_POSSIBLE_CR4_GUEST_BITS &
4391 ~vcpu->arch.cr4_guest_rsvd_bits;
4392 if (!enable_ept) {
4393 vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_TLBFLUSH_BITS;
4394 vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_PDPTR_BITS;
4395 }
4396 if (is_guest_mode(&vmx->vcpu))
4397 vcpu->arch.cr4_guest_owned_bits &=
4398 ~get_vmcs12(vcpu)->cr4_guest_host_mask;
4399 vmcs_writel(CR4_GUEST_HOST_MASK, ~vcpu->arch.cr4_guest_owned_bits);
4400 }
4401
vmx_pin_based_exec_ctrl(struct vcpu_vmx * vmx)4402 static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
4403 {
4404 u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
4405
4406 if (!kvm_vcpu_apicv_active(&vmx->vcpu))
4407 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
4408
4409 if (!enable_vnmi)
4410 pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS;
4411
4412 if (!enable_preemption_timer)
4413 pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
4414
4415 return pin_based_exec_ctrl;
4416 }
4417
vmx_vmentry_ctrl(void)4418 static u32 vmx_vmentry_ctrl(void)
4419 {
4420 u32 vmentry_ctrl = vmcs_config.vmentry_ctrl;
4421
4422 if (vmx_pt_mode_is_system())
4423 vmentry_ctrl &= ~(VM_ENTRY_PT_CONCEAL_PIP |
4424 VM_ENTRY_LOAD_IA32_RTIT_CTL);
4425 /*
4426 * IA32e mode, and loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically.
4427 */
4428 vmentry_ctrl &= ~(VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL |
4429 VM_ENTRY_LOAD_IA32_EFER |
4430 VM_ENTRY_IA32E_MODE);
4431
4432 return vmentry_ctrl;
4433 }
4434
vmx_vmexit_ctrl(void)4435 static u32 vmx_vmexit_ctrl(void)
4436 {
4437 u32 vmexit_ctrl = vmcs_config.vmexit_ctrl;
4438
4439 /*
4440 * Not used by KVM and never set in vmcs01 or vmcs02, but emulated for
4441 * nested virtualization and thus allowed to be set in vmcs12.
4442 */
4443 vmexit_ctrl &= ~(VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER |
4444 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER);
4445
4446 if (vmx_pt_mode_is_system())
4447 vmexit_ctrl &= ~(VM_EXIT_PT_CONCEAL_PIP |
4448 VM_EXIT_CLEAR_IA32_RTIT_CTL);
4449 /* Loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically */
4450 return vmexit_ctrl &
4451 ~(VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL | VM_EXIT_LOAD_IA32_EFER);
4452 }
4453
vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu * vcpu)4454 void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
4455 {
4456 struct vcpu_vmx *vmx = to_vmx(vcpu);
4457
4458 if (is_guest_mode(vcpu)) {
4459 vmx->nested.update_vmcs01_apicv_status = true;
4460 return;
4461 }
4462
4463 pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4464
4465 if (kvm_vcpu_apicv_active(vcpu)) {
4466 secondary_exec_controls_setbit(vmx,
4467 SECONDARY_EXEC_APIC_REGISTER_VIRT |
4468 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4469 if (enable_ipiv)
4470 tertiary_exec_controls_setbit(vmx, TERTIARY_EXEC_IPI_VIRT);
4471 } else {
4472 secondary_exec_controls_clearbit(vmx,
4473 SECONDARY_EXEC_APIC_REGISTER_VIRT |
4474 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4475 if (enable_ipiv)
4476 tertiary_exec_controls_clearbit(vmx, TERTIARY_EXEC_IPI_VIRT);
4477 }
4478
4479 vmx_update_msr_bitmap_x2apic(vcpu);
4480 }
4481
vmx_exec_control(struct vcpu_vmx * vmx)4482 static u32 vmx_exec_control(struct vcpu_vmx *vmx)
4483 {
4484 u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
4485
4486 /*
4487 * Not used by KVM, but fully supported for nesting, i.e. are allowed in
4488 * vmcs12 and propagated to vmcs02 when set in vmcs12.
4489 */
4490 exec_control &= ~(CPU_BASED_RDTSC_EXITING |
4491 CPU_BASED_USE_IO_BITMAPS |
4492 CPU_BASED_MONITOR_TRAP_FLAG |
4493 CPU_BASED_PAUSE_EXITING);
4494
4495 /* INTR_WINDOW_EXITING and NMI_WINDOW_EXITING are toggled dynamically */
4496 exec_control &= ~(CPU_BASED_INTR_WINDOW_EXITING |
4497 CPU_BASED_NMI_WINDOW_EXITING);
4498
4499 if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
4500 exec_control &= ~CPU_BASED_MOV_DR_EXITING;
4501
4502 if (!cpu_need_tpr_shadow(&vmx->vcpu))
4503 exec_control &= ~CPU_BASED_TPR_SHADOW;
4504
4505 #ifdef CONFIG_X86_64
4506 if (exec_control & CPU_BASED_TPR_SHADOW)
4507 exec_control &= ~(CPU_BASED_CR8_LOAD_EXITING |
4508 CPU_BASED_CR8_STORE_EXITING);
4509 else
4510 exec_control |= CPU_BASED_CR8_STORE_EXITING |
4511 CPU_BASED_CR8_LOAD_EXITING;
4512 #endif
4513 /* No need to intercept CR3 access or INVPLG when using EPT. */
4514 if (enable_ept)
4515 exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
4516 CPU_BASED_CR3_STORE_EXITING |
4517 CPU_BASED_INVLPG_EXITING);
4518 if (kvm_mwait_in_guest(vmx->vcpu.kvm))
4519 exec_control &= ~(CPU_BASED_MWAIT_EXITING |
4520 CPU_BASED_MONITOR_EXITING);
4521 if (kvm_hlt_in_guest(vmx->vcpu.kvm))
4522 exec_control &= ~CPU_BASED_HLT_EXITING;
4523 return exec_control;
4524 }
4525
vmx_tertiary_exec_control(struct vcpu_vmx * vmx)4526 static u64 vmx_tertiary_exec_control(struct vcpu_vmx *vmx)
4527 {
4528 u64 exec_control = vmcs_config.cpu_based_3rd_exec_ctrl;
4529
4530 /*
4531 * IPI virtualization relies on APICv. Disable IPI virtualization if
4532 * APICv is inhibited.
4533 */
4534 if (!enable_ipiv || !kvm_vcpu_apicv_active(&vmx->vcpu))
4535 exec_control &= ~TERTIARY_EXEC_IPI_VIRT;
4536
4537 return exec_control;
4538 }
4539
4540 /*
4541 * Adjust a single secondary execution control bit to intercept/allow an
4542 * instruction in the guest. This is usually done based on whether or not a
4543 * feature has been exposed to the guest in order to correctly emulate faults.
4544 */
4545 static inline void
vmx_adjust_secondary_exec_control(struct vcpu_vmx * vmx,u32 * exec_control,u32 control,bool enabled,bool exiting)4546 vmx_adjust_secondary_exec_control(struct vcpu_vmx *vmx, u32 *exec_control,
4547 u32 control, bool enabled, bool exiting)
4548 {
4549 /*
4550 * If the control is for an opt-in feature, clear the control if the
4551 * feature is not exposed to the guest, i.e. not enabled. If the
4552 * control is opt-out, i.e. an exiting control, clear the control if
4553 * the feature _is_ exposed to the guest, i.e. exiting/interception is
4554 * disabled for the associated instruction. Note, the caller is
4555 * responsible presetting exec_control to set all supported bits.
4556 */
4557 if (enabled == exiting)
4558 *exec_control &= ~control;
4559
4560 /*
4561 * Update the nested MSR settings so that a nested VMM can/can't set
4562 * controls for features that are/aren't exposed to the guest.
4563 */
4564 if (nested) {
4565 /*
4566 * All features that can be added or removed to VMX MSRs must
4567 * be supported in the first place for nested virtualization.
4568 */
4569 if (WARN_ON_ONCE(!(vmcs_config.nested.secondary_ctls_high & control)))
4570 enabled = false;
4571
4572 if (enabled)
4573 vmx->nested.msrs.secondary_ctls_high |= control;
4574 else
4575 vmx->nested.msrs.secondary_ctls_high &= ~control;
4576 }
4577 }
4578
4579 /*
4580 * Wrapper macro for the common case of adjusting a secondary execution control
4581 * based on a single guest CPUID bit, with a dedicated feature bit. This also
4582 * verifies that the control is actually supported by KVM and hardware.
4583 */
4584 #define vmx_adjust_sec_exec_control(vmx, exec_control, name, feat_name, ctrl_name, exiting) \
4585 ({ \
4586 struct kvm_vcpu *__vcpu = &(vmx)->vcpu; \
4587 bool __enabled; \
4588 \
4589 if (cpu_has_vmx_##name()) { \
4590 if (kvm_is_governed_feature(X86_FEATURE_##feat_name)) \
4591 __enabled = guest_can_use(__vcpu, X86_FEATURE_##feat_name); \
4592 else \
4593 __enabled = guest_cpuid_has(__vcpu, X86_FEATURE_##feat_name); \
4594 vmx_adjust_secondary_exec_control(vmx, exec_control, SECONDARY_EXEC_##ctrl_name,\
4595 __enabled, exiting); \
4596 } \
4597 })
4598
4599 /* More macro magic for ENABLE_/opt-in versus _EXITING/opt-out controls. */
4600 #define vmx_adjust_sec_exec_feature(vmx, exec_control, lname, uname) \
4601 vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, ENABLE_##uname, false)
4602
4603 #define vmx_adjust_sec_exec_exiting(vmx, exec_control, lname, uname) \
4604 vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, uname##_EXITING, true)
4605
vmx_secondary_exec_control(struct vcpu_vmx * vmx)4606 static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
4607 {
4608 struct kvm_vcpu *vcpu = &vmx->vcpu;
4609
4610 u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
4611
4612 if (vmx_pt_mode_is_system())
4613 exec_control &= ~(SECONDARY_EXEC_PT_USE_GPA | SECONDARY_EXEC_PT_CONCEAL_VMX);
4614 if (!cpu_need_virtualize_apic_accesses(vcpu))
4615 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
4616 if (vmx->vpid == 0)
4617 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
4618 if (!enable_ept) {
4619 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
4620 exec_control &= ~SECONDARY_EXEC_EPT_VIOLATION_VE;
4621 enable_unrestricted_guest = 0;
4622 }
4623 if (!enable_unrestricted_guest)
4624 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
4625 if (kvm_pause_in_guest(vmx->vcpu.kvm))
4626 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
4627 if (!kvm_vcpu_apicv_active(vcpu))
4628 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
4629 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4630 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
4631
4632 /*
4633 * KVM doesn't support VMFUNC for L1, but the control is set in KVM's
4634 * base configuration as KVM emulates VMFUNC[EPTP_SWITCHING] for L2.
4635 */
4636 exec_control &= ~SECONDARY_EXEC_ENABLE_VMFUNC;
4637
4638 /* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP,
4639 * in vmx_set_cr4. */
4640 exec_control &= ~SECONDARY_EXEC_DESC;
4641
4642 /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4643 (handle_vmptrld).
4644 We can NOT enable shadow_vmcs here because we don't have yet
4645 a current VMCS12
4646 */
4647 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
4648
4649 /*
4650 * PML is enabled/disabled when dirty logging of memsmlots changes, but
4651 * it needs to be set here when dirty logging is already active, e.g.
4652 * if this vCPU was created after dirty logging was enabled.
4653 */
4654 if (!enable_pml || !atomic_read(&vcpu->kvm->nr_memslots_dirty_logging))
4655 exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
4656
4657 vmx_adjust_sec_exec_feature(vmx, &exec_control, xsaves, XSAVES);
4658
4659 /*
4660 * RDPID is also gated by ENABLE_RDTSCP, turn on the control if either
4661 * feature is exposed to the guest. This creates a virtualization hole
4662 * if both are supported in hardware but only one is exposed to the
4663 * guest, but letting the guest execute RDTSCP or RDPID when either one
4664 * is advertised is preferable to emulating the advertised instruction
4665 * in KVM on #UD, and obviously better than incorrectly injecting #UD.
4666 */
4667 if (cpu_has_vmx_rdtscp()) {
4668 bool rdpid_or_rdtscp_enabled =
4669 guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) ||
4670 guest_cpuid_has(vcpu, X86_FEATURE_RDPID);
4671
4672 vmx_adjust_secondary_exec_control(vmx, &exec_control,
4673 SECONDARY_EXEC_ENABLE_RDTSCP,
4674 rdpid_or_rdtscp_enabled, false);
4675 }
4676
4677 vmx_adjust_sec_exec_feature(vmx, &exec_control, invpcid, INVPCID);
4678
4679 vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdrand, RDRAND);
4680 vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdseed, RDSEED);
4681
4682 vmx_adjust_sec_exec_control(vmx, &exec_control, waitpkg, WAITPKG,
4683 ENABLE_USR_WAIT_PAUSE, false);
4684
4685 if (!vcpu->kvm->arch.bus_lock_detection_enabled)
4686 exec_control &= ~SECONDARY_EXEC_BUS_LOCK_DETECTION;
4687
4688 if (!kvm_notify_vmexit_enabled(vcpu->kvm))
4689 exec_control &= ~SECONDARY_EXEC_NOTIFY_VM_EXITING;
4690
4691 return exec_control;
4692 }
4693
vmx_get_pid_table_order(struct kvm * kvm)4694 static inline int vmx_get_pid_table_order(struct kvm *kvm)
4695 {
4696 return get_order(kvm->arch.max_vcpu_ids * sizeof(*to_kvm_vmx(kvm)->pid_table));
4697 }
4698
vmx_alloc_ipiv_pid_table(struct kvm * kvm)4699 static int vmx_alloc_ipiv_pid_table(struct kvm *kvm)
4700 {
4701 struct page *pages;
4702 struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
4703
4704 if (!irqchip_in_kernel(kvm) || !enable_ipiv)
4705 return 0;
4706
4707 if (kvm_vmx->pid_table)
4708 return 0;
4709
4710 pages = alloc_pages(GFP_KERNEL_ACCOUNT | __GFP_ZERO,
4711 vmx_get_pid_table_order(kvm));
4712 if (!pages)
4713 return -ENOMEM;
4714
4715 kvm_vmx->pid_table = (void *)page_address(pages);
4716 return 0;
4717 }
4718
vmx_vcpu_precreate(struct kvm * kvm)4719 int vmx_vcpu_precreate(struct kvm *kvm)
4720 {
4721 return vmx_alloc_ipiv_pid_table(kvm);
4722 }
4723
4724 #define VMX_XSS_EXIT_BITMAP 0
4725
init_vmcs(struct vcpu_vmx * vmx)4726 static void init_vmcs(struct vcpu_vmx *vmx)
4727 {
4728 struct kvm *kvm = vmx->vcpu.kvm;
4729 struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
4730
4731 if (nested)
4732 nested_vmx_set_vmcs_shadowing_bitmap();
4733
4734 if (cpu_has_vmx_msr_bitmap())
4735 vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap));
4736
4737 vmcs_write64(VMCS_LINK_POINTER, INVALID_GPA); /* 22.3.1.5 */
4738
4739 /* Control */
4740 pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4741
4742 exec_controls_set(vmx, vmx_exec_control(vmx));
4743
4744 if (cpu_has_secondary_exec_ctrls()) {
4745 secondary_exec_controls_set(vmx, vmx_secondary_exec_control(vmx));
4746 if (vmx->ve_info)
4747 vmcs_write64(VE_INFORMATION_ADDRESS,
4748 __pa(vmx->ve_info));
4749 }
4750
4751 if (cpu_has_tertiary_exec_ctrls())
4752 tertiary_exec_controls_set(vmx, vmx_tertiary_exec_control(vmx));
4753
4754 if (enable_apicv && lapic_in_kernel(&vmx->vcpu)) {
4755 vmcs_write64(EOI_EXIT_BITMAP0, 0);
4756 vmcs_write64(EOI_EXIT_BITMAP1, 0);
4757 vmcs_write64(EOI_EXIT_BITMAP2, 0);
4758 vmcs_write64(EOI_EXIT_BITMAP3, 0);
4759
4760 vmcs_write16(GUEST_INTR_STATUS, 0);
4761
4762 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4763 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
4764 }
4765
4766 if (vmx_can_use_ipiv(&vmx->vcpu)) {
4767 vmcs_write64(PID_POINTER_TABLE, __pa(kvm_vmx->pid_table));
4768 vmcs_write16(LAST_PID_POINTER_INDEX, kvm->arch.max_vcpu_ids - 1);
4769 }
4770
4771 if (!kvm_pause_in_guest(kvm)) {
4772 vmcs_write32(PLE_GAP, ple_gap);
4773 vmx->ple_window = ple_window;
4774 vmx->ple_window_dirty = true;
4775 }
4776
4777 if (kvm_notify_vmexit_enabled(kvm))
4778 vmcs_write32(NOTIFY_WINDOW, kvm->arch.notify_window);
4779
4780 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4781 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
4782 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
4783
4784 vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */
4785 vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */
4786 vmx_set_constant_host_state(vmx);
4787 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4788 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4789
4790 if (cpu_has_vmx_vmfunc())
4791 vmcs_write64(VM_FUNCTION_CONTROL, 0);
4792
4793 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4794 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
4795 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
4796 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
4797 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
4798
4799 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
4800 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
4801
4802 vm_exit_controls_set(vmx, vmx_vmexit_ctrl());
4803
4804 /* 22.2.1, 20.8.1 */
4805 vm_entry_controls_set(vmx, vmx_vmentry_ctrl());
4806
4807 vmx->vcpu.arch.cr0_guest_owned_bits = vmx_l1_guest_owned_cr0_bits();
4808 vmcs_writel(CR0_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr0_guest_owned_bits);
4809
4810 set_cr4_guest_host_mask(vmx);
4811
4812 if (vmx->vpid != 0)
4813 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4814
4815 if (cpu_has_vmx_xsaves())
4816 vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
4817
4818 if (enable_pml) {
4819 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
4820 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
4821 }
4822
4823 vmx_write_encls_bitmap(&vmx->vcpu, NULL);
4824
4825 if (vmx_pt_mode_is_host_guest()) {
4826 memset(&vmx->pt_desc, 0, sizeof(vmx->pt_desc));
4827 /* Bit[6~0] are forced to 1, writes are ignored. */
4828 vmx->pt_desc.guest.output_mask = 0x7F;
4829 vmcs_write64(GUEST_IA32_RTIT_CTL, 0);
4830 }
4831
4832 vmcs_write32(GUEST_SYSENTER_CS, 0);
4833 vmcs_writel(GUEST_SYSENTER_ESP, 0);
4834 vmcs_writel(GUEST_SYSENTER_EIP, 0);
4835
4836 vmx_guest_debugctl_write(&vmx->vcpu, 0);
4837
4838 if (cpu_has_vmx_tpr_shadow()) {
4839 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4840 if (cpu_need_tpr_shadow(&vmx->vcpu))
4841 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
4842 __pa(vmx->vcpu.arch.apic->regs));
4843 vmcs_write32(TPR_THRESHOLD, 0);
4844 }
4845
4846 vmx_setup_uret_msrs(vmx);
4847 }
4848
__vmx_vcpu_reset(struct kvm_vcpu * vcpu)4849 static void __vmx_vcpu_reset(struct kvm_vcpu *vcpu)
4850 {
4851 struct vcpu_vmx *vmx = to_vmx(vcpu);
4852
4853 init_vmcs(vmx);
4854
4855 if (nested)
4856 memcpy(&vmx->nested.msrs, &vmcs_config.nested, sizeof(vmx->nested.msrs));
4857
4858 vcpu_setup_sgx_lepubkeyhash(vcpu);
4859
4860 vmx->nested.posted_intr_nv = -1;
4861 vmx->nested.vmxon_ptr = INVALID_GPA;
4862 vmx->nested.current_vmptr = INVALID_GPA;
4863
4864 #ifdef CONFIG_KVM_HYPERV
4865 vmx->nested.hv_evmcs_vmptr = EVMPTR_INVALID;
4866 #endif
4867
4868 vcpu->arch.microcode_version = 0x100000000ULL;
4869 vmx->msr_ia32_feature_control_valid_bits = FEAT_CTL_LOCKED;
4870
4871 /*
4872 * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR
4873 * or POSTED_INTR_WAKEUP_VECTOR.
4874 */
4875 vmx->pi_desc.nv = POSTED_INTR_VECTOR;
4876 __pi_set_sn(&vmx->pi_desc);
4877 }
4878
vmx_vcpu_reset(struct kvm_vcpu * vcpu,bool init_event)4879 void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
4880 {
4881 struct vcpu_vmx *vmx = to_vmx(vcpu);
4882
4883 if (!init_event)
4884 __vmx_vcpu_reset(vcpu);
4885
4886 vmx->rmode.vm86_active = 0;
4887 vmx->spec_ctrl = 0;
4888
4889 vmx->msr_ia32_umwait_control = 0;
4890
4891 vmx->hv_deadline_tsc = -1;
4892 kvm_set_cr8(vcpu, 0);
4893
4894 seg_setup(VCPU_SREG_CS);
4895 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
4896 vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
4897
4898 seg_setup(VCPU_SREG_DS);
4899 seg_setup(VCPU_SREG_ES);
4900 seg_setup(VCPU_SREG_FS);
4901 seg_setup(VCPU_SREG_GS);
4902 seg_setup(VCPU_SREG_SS);
4903
4904 vmcs_write16(GUEST_TR_SELECTOR, 0);
4905 vmcs_writel(GUEST_TR_BASE, 0);
4906 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4907 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4908
4909 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4910 vmcs_writel(GUEST_LDTR_BASE, 0);
4911 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4912 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4913
4914 vmcs_writel(GUEST_GDTR_BASE, 0);
4915 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4916
4917 vmcs_writel(GUEST_IDTR_BASE, 0);
4918 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4919
4920 vmx_segment_cache_clear(vmx);
4921 kvm_register_mark_available(vcpu, VCPU_EXREG_SEGMENTS);
4922
4923 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
4924 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4925 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4926 if (kvm_mpx_supported())
4927 vmcs_write64(GUEST_BNDCFGS, 0);
4928
4929 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
4930
4931 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4932
4933 vpid_sync_context(vmx->vpid);
4934
4935 vmx_update_fb_clear_dis(vcpu, vmx);
4936 }
4937
vmx_enable_irq_window(struct kvm_vcpu * vcpu)4938 void vmx_enable_irq_window(struct kvm_vcpu *vcpu)
4939 {
4940 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
4941 }
4942
vmx_enable_nmi_window(struct kvm_vcpu * vcpu)4943 void vmx_enable_nmi_window(struct kvm_vcpu *vcpu)
4944 {
4945 if (!enable_vnmi ||
4946 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
4947 vmx_enable_irq_window(vcpu);
4948 return;
4949 }
4950
4951 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
4952 }
4953
vmx_inject_irq(struct kvm_vcpu * vcpu,bool reinjected)4954 void vmx_inject_irq(struct kvm_vcpu *vcpu, bool reinjected)
4955 {
4956 struct vcpu_vmx *vmx = to_vmx(vcpu);
4957 uint32_t intr;
4958 int irq = vcpu->arch.interrupt.nr;
4959
4960 trace_kvm_inj_virq(irq, vcpu->arch.interrupt.soft, reinjected);
4961
4962 ++vcpu->stat.irq_injections;
4963 if (vmx->rmode.vm86_active) {
4964 int inc_eip = 0;
4965 if (vcpu->arch.interrupt.soft)
4966 inc_eip = vcpu->arch.event_exit_inst_len;
4967 kvm_inject_realmode_interrupt(vcpu, irq, inc_eip);
4968 return;
4969 }
4970 intr = irq | INTR_INFO_VALID_MASK;
4971 if (vcpu->arch.interrupt.soft) {
4972 intr |= INTR_TYPE_SOFT_INTR;
4973 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4974 vmx->vcpu.arch.event_exit_inst_len);
4975 } else
4976 intr |= INTR_TYPE_EXT_INTR;
4977 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
4978
4979 vmx_clear_hlt(vcpu);
4980 }
4981
vmx_inject_nmi(struct kvm_vcpu * vcpu)4982 void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4983 {
4984 struct vcpu_vmx *vmx = to_vmx(vcpu);
4985
4986 if (!enable_vnmi) {
4987 /*
4988 * Tracking the NMI-blocked state in software is built upon
4989 * finding the next open IRQ window. This, in turn, depends on
4990 * well-behaving guests: They have to keep IRQs disabled at
4991 * least as long as the NMI handler runs. Otherwise we may
4992 * cause NMI nesting, maybe breaking the guest. But as this is
4993 * highly unlikely, we can live with the residual risk.
4994 */
4995 vmx->loaded_vmcs->soft_vnmi_blocked = 1;
4996 vmx->loaded_vmcs->vnmi_blocked_time = 0;
4997 }
4998
4999 ++vcpu->stat.nmi_injections;
5000 vmx->loaded_vmcs->nmi_known_unmasked = false;
5001
5002 if (vmx->rmode.vm86_active) {
5003 kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0);
5004 return;
5005 }
5006
5007 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
5008 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
5009
5010 vmx_clear_hlt(vcpu);
5011 }
5012
vmx_get_nmi_mask(struct kvm_vcpu * vcpu)5013 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
5014 {
5015 struct vcpu_vmx *vmx = to_vmx(vcpu);
5016 bool masked;
5017
5018 if (!enable_vnmi)
5019 return vmx->loaded_vmcs->soft_vnmi_blocked;
5020 if (vmx->loaded_vmcs->nmi_known_unmasked)
5021 return false;
5022 masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
5023 vmx->loaded_vmcs->nmi_known_unmasked = !masked;
5024 return masked;
5025 }
5026
vmx_set_nmi_mask(struct kvm_vcpu * vcpu,bool masked)5027 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
5028 {
5029 struct vcpu_vmx *vmx = to_vmx(vcpu);
5030
5031 if (!enable_vnmi) {
5032 if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) {
5033 vmx->loaded_vmcs->soft_vnmi_blocked = masked;
5034 vmx->loaded_vmcs->vnmi_blocked_time = 0;
5035 }
5036 } else {
5037 vmx->loaded_vmcs->nmi_known_unmasked = !masked;
5038 if (masked)
5039 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5040 GUEST_INTR_STATE_NMI);
5041 else
5042 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
5043 GUEST_INTR_STATE_NMI);
5044 }
5045 }
5046
vmx_nmi_blocked(struct kvm_vcpu * vcpu)5047 bool vmx_nmi_blocked(struct kvm_vcpu *vcpu)
5048 {
5049 if (is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
5050 return false;
5051
5052 if (!enable_vnmi && to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked)
5053 return true;
5054
5055 return (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5056 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI |
5057 GUEST_INTR_STATE_NMI));
5058 }
5059
vmx_nmi_allowed(struct kvm_vcpu * vcpu,bool for_injection)5060 int vmx_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
5061 {
5062 if (to_vmx(vcpu)->nested.nested_run_pending)
5063 return -EBUSY;
5064
5065 /* An NMI must not be injected into L2 if it's supposed to VM-Exit. */
5066 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
5067 return -EBUSY;
5068
5069 return !vmx_nmi_blocked(vcpu);
5070 }
5071
__vmx_interrupt_blocked(struct kvm_vcpu * vcpu)5072 bool __vmx_interrupt_blocked(struct kvm_vcpu *vcpu)
5073 {
5074 return !(vmx_get_rflags(vcpu) & X86_EFLAGS_IF) ||
5075 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5076 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
5077 }
5078
vmx_interrupt_blocked(struct kvm_vcpu * vcpu)5079 bool vmx_interrupt_blocked(struct kvm_vcpu *vcpu)
5080 {
5081 if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
5082 return false;
5083
5084 return __vmx_interrupt_blocked(vcpu);
5085 }
5086
vmx_interrupt_allowed(struct kvm_vcpu * vcpu,bool for_injection)5087 int vmx_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection)
5088 {
5089 if (to_vmx(vcpu)->nested.nested_run_pending)
5090 return -EBUSY;
5091
5092 /*
5093 * An IRQ must not be injected into L2 if it's supposed to VM-Exit,
5094 * e.g. if the IRQ arrived asynchronously after checking nested events.
5095 */
5096 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
5097 return -EBUSY;
5098
5099 return !vmx_interrupt_blocked(vcpu);
5100 }
5101
vmx_set_tss_addr(struct kvm * kvm,unsigned int addr)5102 int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
5103 {
5104 void __user *ret;
5105
5106 if (enable_unrestricted_guest)
5107 return 0;
5108
5109 mutex_lock(&kvm->slots_lock);
5110 ret = __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
5111 PAGE_SIZE * 3);
5112 mutex_unlock(&kvm->slots_lock);
5113
5114 if (IS_ERR(ret))
5115 return PTR_ERR(ret);
5116
5117 to_kvm_vmx(kvm)->tss_addr = addr;
5118
5119 return init_rmode_tss(kvm, ret);
5120 }
5121
vmx_set_identity_map_addr(struct kvm * kvm,u64 ident_addr)5122 int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
5123 {
5124 to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr;
5125 return 0;
5126 }
5127
rmode_exception(struct kvm_vcpu * vcpu,int vec)5128 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
5129 {
5130 switch (vec) {
5131 case BP_VECTOR:
5132 /*
5133 * Update instruction length as we may reinject the exception
5134 * from user space while in guest debugging mode.
5135 */
5136 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
5137 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5138 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
5139 return false;
5140 fallthrough;
5141 case DB_VECTOR:
5142 return !(vcpu->guest_debug &
5143 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP));
5144 case DE_VECTOR:
5145 case OF_VECTOR:
5146 case BR_VECTOR:
5147 case UD_VECTOR:
5148 case DF_VECTOR:
5149 case SS_VECTOR:
5150 case GP_VECTOR:
5151 case MF_VECTOR:
5152 return true;
5153 }
5154 return false;
5155 }
5156
handle_rmode_exception(struct kvm_vcpu * vcpu,int vec,u32 err_code)5157 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
5158 int vec, u32 err_code)
5159 {
5160 /*
5161 * Instruction with address size override prefix opcode 0x67
5162 * Cause the #SS fault with 0 error code in VM86 mode.
5163 */
5164 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
5165 if (kvm_emulate_instruction(vcpu, 0)) {
5166 if (vcpu->arch.halt_request) {
5167 vcpu->arch.halt_request = 0;
5168 return kvm_emulate_halt_noskip(vcpu);
5169 }
5170 return 1;
5171 }
5172 return 0;
5173 }
5174
5175 /*
5176 * Forward all other exceptions that are valid in real mode.
5177 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
5178 * the required debugging infrastructure rework.
5179 */
5180 kvm_queue_exception(vcpu, vec);
5181 return 1;
5182 }
5183
handle_machine_check(struct kvm_vcpu * vcpu)5184 static int handle_machine_check(struct kvm_vcpu *vcpu)
5185 {
5186 /* handled by vmx_vcpu_run() */
5187 return 1;
5188 }
5189
5190 /*
5191 * If the host has split lock detection disabled, then #AC is
5192 * unconditionally injected into the guest, which is the pre split lock
5193 * detection behaviour.
5194 *
5195 * If the host has split lock detection enabled then #AC is
5196 * only injected into the guest when:
5197 * - Guest CPL == 3 (user mode)
5198 * - Guest has #AC detection enabled in CR0
5199 * - Guest EFLAGS has AC bit set
5200 */
vmx_guest_inject_ac(struct kvm_vcpu * vcpu)5201 bool vmx_guest_inject_ac(struct kvm_vcpu *vcpu)
5202 {
5203 if (!boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
5204 return true;
5205
5206 return vmx_get_cpl(vcpu) == 3 && kvm_is_cr0_bit_set(vcpu, X86_CR0_AM) &&
5207 (kvm_get_rflags(vcpu) & X86_EFLAGS_AC);
5208 }
5209
handle_exception_nmi(struct kvm_vcpu * vcpu)5210 static int handle_exception_nmi(struct kvm_vcpu *vcpu)
5211 {
5212 struct vcpu_vmx *vmx = to_vmx(vcpu);
5213 struct kvm_run *kvm_run = vcpu->run;
5214 u32 intr_info, ex_no, error_code;
5215 unsigned long cr2, dr6;
5216 u32 vect_info;
5217
5218 vect_info = vmx->idt_vectoring_info;
5219 intr_info = vmx_get_intr_info(vcpu);
5220
5221 /*
5222 * Machine checks are handled by handle_exception_irqoff(), or by
5223 * vmx_vcpu_run() if a #MC occurs on VM-Entry. NMIs are handled by
5224 * vmx_vcpu_enter_exit().
5225 */
5226 if (is_machine_check(intr_info) || is_nmi(intr_info))
5227 return 1;
5228
5229 /*
5230 * Queue the exception here instead of in handle_nm_fault_irqoff().
5231 * This ensures the nested_vmx check is not skipped so vmexit can
5232 * be reflected to L1 (when it intercepts #NM) before reaching this
5233 * point.
5234 */
5235 if (is_nm_fault(intr_info)) {
5236 kvm_queue_exception(vcpu, NM_VECTOR);
5237 return 1;
5238 }
5239
5240 if (is_invalid_opcode(intr_info))
5241 return handle_ud(vcpu);
5242
5243 if (WARN_ON_ONCE(is_ve_fault(intr_info))) {
5244 struct vmx_ve_information *ve_info = vmx->ve_info;
5245
5246 WARN_ONCE(ve_info->exit_reason != EXIT_REASON_EPT_VIOLATION,
5247 "Unexpected #VE on VM-Exit reason 0x%x", ve_info->exit_reason);
5248 dump_vmcs(vcpu);
5249 kvm_mmu_print_sptes(vcpu, ve_info->guest_physical_address, "#VE");
5250 return 1;
5251 }
5252
5253 error_code = 0;
5254 if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
5255 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
5256
5257 if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) {
5258 WARN_ON_ONCE(!enable_vmware_backdoor);
5259
5260 /*
5261 * VMware backdoor emulation on #GP interception only handles
5262 * IN{S}, OUT{S}, and RDPMC, none of which generate a non-zero
5263 * error code on #GP.
5264 */
5265 if (error_code) {
5266 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
5267 return 1;
5268 }
5269 return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP);
5270 }
5271
5272 /*
5273 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
5274 * MMIO, it is better to report an internal error.
5275 * See the comments in vmx_handle_exit.
5276 */
5277 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
5278 !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
5279 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5280 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
5281 vcpu->run->internal.ndata = 4;
5282 vcpu->run->internal.data[0] = vect_info;
5283 vcpu->run->internal.data[1] = intr_info;
5284 vcpu->run->internal.data[2] = error_code;
5285 vcpu->run->internal.data[3] = vcpu->arch.last_vmentry_cpu;
5286 return 0;
5287 }
5288
5289 if (is_page_fault(intr_info)) {
5290 cr2 = vmx_get_exit_qual(vcpu);
5291 if (enable_ept && !vcpu->arch.apf.host_apf_flags) {
5292 /*
5293 * EPT will cause page fault only if we need to
5294 * detect illegal GPAs.
5295 */
5296 WARN_ON_ONCE(!allow_smaller_maxphyaddr);
5297 kvm_fixup_and_inject_pf_error(vcpu, cr2, error_code);
5298 return 1;
5299 } else
5300 return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0);
5301 }
5302
5303 ex_no = intr_info & INTR_INFO_VECTOR_MASK;
5304
5305 if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
5306 return handle_rmode_exception(vcpu, ex_no, error_code);
5307
5308 switch (ex_no) {
5309 case DB_VECTOR:
5310 dr6 = vmx_get_exit_qual(vcpu);
5311 if (!(vcpu->guest_debug &
5312 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
5313 /*
5314 * If the #DB was due to ICEBP, a.k.a. INT1, skip the
5315 * instruction. ICEBP generates a trap-like #DB, but
5316 * despite its interception control being tied to #DB,
5317 * is an instruction intercept, i.e. the VM-Exit occurs
5318 * on the ICEBP itself. Use the inner "skip" helper to
5319 * avoid single-step #DB and MTF updates, as ICEBP is
5320 * higher priority. Note, skipping ICEBP still clears
5321 * STI and MOVSS blocking.
5322 *
5323 * For all other #DBs, set vmcs.PENDING_DBG_EXCEPTIONS.BS
5324 * if single-step is enabled in RFLAGS and STI or MOVSS
5325 * blocking is active, as the CPU doesn't set the bit
5326 * on VM-Exit due to #DB interception. VM-Entry has a
5327 * consistency check that a single-step #DB is pending
5328 * in this scenario as the previous instruction cannot
5329 * have toggled RFLAGS.TF 0=>1 (because STI and POP/MOV
5330 * don't modify RFLAGS), therefore the one instruction
5331 * delay when activating single-step breakpoints must
5332 * have already expired. Note, the CPU sets/clears BS
5333 * as appropriate for all other VM-Exits types.
5334 */
5335 if (is_icebp(intr_info))
5336 WARN_ON(!skip_emulated_instruction(vcpu));
5337 else if ((vmx_get_rflags(vcpu) & X86_EFLAGS_TF) &&
5338 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5339 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS)))
5340 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
5341 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS) | DR6_BS);
5342
5343 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
5344 return 1;
5345 }
5346 kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
5347 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
5348 fallthrough;
5349 case BP_VECTOR:
5350 /*
5351 * Update instruction length as we may reinject #BP from
5352 * user space while in guest debugging mode. Reading it for
5353 * #DB as well causes no harm, it is not used in that case.
5354 */
5355 vmx->vcpu.arch.event_exit_inst_len =
5356 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5357 kvm_run->exit_reason = KVM_EXIT_DEBUG;
5358 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5359 kvm_run->debug.arch.exception = ex_no;
5360 break;
5361 case AC_VECTOR:
5362 if (vmx_guest_inject_ac(vcpu)) {
5363 kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
5364 return 1;
5365 }
5366
5367 /*
5368 * Handle split lock. Depending on detection mode this will
5369 * either warn and disable split lock detection for this
5370 * task or force SIGBUS on it.
5371 */
5372 if (handle_guest_split_lock(kvm_rip_read(vcpu)))
5373 return 1;
5374 fallthrough;
5375 default:
5376 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
5377 kvm_run->ex.exception = ex_no;
5378 kvm_run->ex.error_code = error_code;
5379 break;
5380 }
5381 return 0;
5382 }
5383
handle_external_interrupt(struct kvm_vcpu * vcpu)5384 static __always_inline int handle_external_interrupt(struct kvm_vcpu *vcpu)
5385 {
5386 ++vcpu->stat.irq_exits;
5387 return 1;
5388 }
5389
handle_triple_fault(struct kvm_vcpu * vcpu)5390 static int handle_triple_fault(struct kvm_vcpu *vcpu)
5391 {
5392 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5393 vcpu->mmio_needed = 0;
5394 return 0;
5395 }
5396
handle_io(struct kvm_vcpu * vcpu)5397 static int handle_io(struct kvm_vcpu *vcpu)
5398 {
5399 unsigned long exit_qualification;
5400 int size, in, string;
5401 unsigned port;
5402
5403 exit_qualification = vmx_get_exit_qual(vcpu);
5404 string = (exit_qualification & 16) != 0;
5405
5406 ++vcpu->stat.io_exits;
5407
5408 if (string)
5409 return kvm_emulate_instruction(vcpu, 0);
5410
5411 port = exit_qualification >> 16;
5412 size = (exit_qualification & 7) + 1;
5413 in = (exit_qualification & 8) != 0;
5414
5415 return kvm_fast_pio(vcpu, size, port, in);
5416 }
5417
vmx_patch_hypercall(struct kvm_vcpu * vcpu,unsigned char * hypercall)5418 void vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
5419 {
5420 /*
5421 * Patch in the VMCALL instruction:
5422 */
5423 hypercall[0] = 0x0f;
5424 hypercall[1] = 0x01;
5425 hypercall[2] = 0xc1;
5426 }
5427
5428 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
handle_set_cr0(struct kvm_vcpu * vcpu,unsigned long val)5429 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
5430 {
5431 if (is_guest_mode(vcpu)) {
5432 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5433 unsigned long orig_val = val;
5434
5435 /*
5436 * We get here when L2 changed cr0 in a way that did not change
5437 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
5438 * but did change L0 shadowed bits. So we first calculate the
5439 * effective cr0 value that L1 would like to write into the
5440 * hardware. It consists of the L2-owned bits from the new
5441 * value combined with the L1-owned bits from L1's guest_cr0.
5442 */
5443 val = (val & ~vmcs12->cr0_guest_host_mask) |
5444 (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
5445
5446 if (kvm_set_cr0(vcpu, val))
5447 return 1;
5448 vmcs_writel(CR0_READ_SHADOW, orig_val);
5449 return 0;
5450 } else {
5451 return kvm_set_cr0(vcpu, val);
5452 }
5453 }
5454
handle_set_cr4(struct kvm_vcpu * vcpu,unsigned long val)5455 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
5456 {
5457 if (is_guest_mode(vcpu)) {
5458 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5459 unsigned long orig_val = val;
5460
5461 /* analogously to handle_set_cr0 */
5462 val = (val & ~vmcs12->cr4_guest_host_mask) |
5463 (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
5464 if (kvm_set_cr4(vcpu, val))
5465 return 1;
5466 vmcs_writel(CR4_READ_SHADOW, orig_val);
5467 return 0;
5468 } else
5469 return kvm_set_cr4(vcpu, val);
5470 }
5471
handle_desc(struct kvm_vcpu * vcpu)5472 static int handle_desc(struct kvm_vcpu *vcpu)
5473 {
5474 /*
5475 * UMIP emulation relies on intercepting writes to CR4.UMIP, i.e. this
5476 * and other code needs to be updated if UMIP can be guest owned.
5477 */
5478 BUILD_BUG_ON(KVM_POSSIBLE_CR4_GUEST_BITS & X86_CR4_UMIP);
5479
5480 WARN_ON_ONCE(!kvm_is_cr4_bit_set(vcpu, X86_CR4_UMIP));
5481 return kvm_emulate_instruction(vcpu, 0);
5482 }
5483
handle_cr(struct kvm_vcpu * vcpu)5484 static int handle_cr(struct kvm_vcpu *vcpu)
5485 {
5486 unsigned long exit_qualification, val;
5487 int cr;
5488 int reg;
5489 int err;
5490 int ret;
5491
5492 exit_qualification = vmx_get_exit_qual(vcpu);
5493 cr = exit_qualification & 15;
5494 reg = (exit_qualification >> 8) & 15;
5495 switch ((exit_qualification >> 4) & 3) {
5496 case 0: /* mov to cr */
5497 val = kvm_register_read(vcpu, reg);
5498 trace_kvm_cr_write(cr, val);
5499 switch (cr) {
5500 case 0:
5501 err = handle_set_cr0(vcpu, val);
5502 return kvm_complete_insn_gp(vcpu, err);
5503 case 3:
5504 WARN_ON_ONCE(enable_unrestricted_guest);
5505
5506 err = kvm_set_cr3(vcpu, val);
5507 return kvm_complete_insn_gp(vcpu, err);
5508 case 4:
5509 err = handle_set_cr4(vcpu, val);
5510 return kvm_complete_insn_gp(vcpu, err);
5511 case 8: {
5512 u8 cr8_prev = kvm_get_cr8(vcpu);
5513 u8 cr8 = (u8)val;
5514 err = kvm_set_cr8(vcpu, cr8);
5515 ret = kvm_complete_insn_gp(vcpu, err);
5516 if (lapic_in_kernel(vcpu))
5517 return ret;
5518 if (cr8_prev <= cr8)
5519 return ret;
5520 /*
5521 * TODO: we might be squashing a
5522 * KVM_GUESTDBG_SINGLESTEP-triggered
5523 * KVM_EXIT_DEBUG here.
5524 */
5525 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
5526 return 0;
5527 }
5528 }
5529 break;
5530 case 2: /* clts */
5531 KVM_BUG(1, vcpu->kvm, "Guest always owns CR0.TS");
5532 return -EIO;
5533 case 1: /*mov from cr*/
5534 switch (cr) {
5535 case 3:
5536 WARN_ON_ONCE(enable_unrestricted_guest);
5537
5538 val = kvm_read_cr3(vcpu);
5539 kvm_register_write(vcpu, reg, val);
5540 trace_kvm_cr_read(cr, val);
5541 return kvm_skip_emulated_instruction(vcpu);
5542 case 8:
5543 val = kvm_get_cr8(vcpu);
5544 kvm_register_write(vcpu, reg, val);
5545 trace_kvm_cr_read(cr, val);
5546 return kvm_skip_emulated_instruction(vcpu);
5547 }
5548 break;
5549 case 3: /* lmsw */
5550 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5551 trace_kvm_cr_write(0, (kvm_read_cr0_bits(vcpu, ~0xful) | val));
5552 kvm_lmsw(vcpu, val);
5553
5554 return kvm_skip_emulated_instruction(vcpu);
5555 default:
5556 break;
5557 }
5558 vcpu->run->exit_reason = 0;
5559 vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
5560 (int)(exit_qualification >> 4) & 3, cr);
5561 return 0;
5562 }
5563
handle_dr(struct kvm_vcpu * vcpu)5564 static int handle_dr(struct kvm_vcpu *vcpu)
5565 {
5566 unsigned long exit_qualification;
5567 int dr, dr7, reg;
5568 int err = 1;
5569
5570 exit_qualification = vmx_get_exit_qual(vcpu);
5571 dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
5572
5573 /* First, if DR does not exist, trigger UD */
5574 if (!kvm_require_dr(vcpu, dr))
5575 return 1;
5576
5577 if (vmx_get_cpl(vcpu) > 0)
5578 goto out;
5579
5580 dr7 = vmcs_readl(GUEST_DR7);
5581 if (dr7 & DR7_GD) {
5582 /*
5583 * As the vm-exit takes precedence over the debug trap, we
5584 * need to emulate the latter, either for the host or the
5585 * guest debugging itself.
5586 */
5587 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5588 vcpu->run->debug.arch.dr6 = DR6_BD | DR6_ACTIVE_LOW;
5589 vcpu->run->debug.arch.dr7 = dr7;
5590 vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5591 vcpu->run->debug.arch.exception = DB_VECTOR;
5592 vcpu->run->exit_reason = KVM_EXIT_DEBUG;
5593 return 0;
5594 } else {
5595 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BD);
5596 return 1;
5597 }
5598 }
5599
5600 if (vcpu->guest_debug == 0) {
5601 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5602
5603 /*
5604 * No more DR vmexits; force a reload of the debug registers
5605 * and reenter on this instruction. The next vmexit will
5606 * retrieve the full state of the debug registers.
5607 */
5608 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
5609 return 1;
5610 }
5611
5612 reg = DEBUG_REG_ACCESS_REG(exit_qualification);
5613 if (exit_qualification & TYPE_MOV_FROM_DR) {
5614 kvm_register_write(vcpu, reg, kvm_get_dr(vcpu, dr));
5615 err = 0;
5616 } else {
5617 err = kvm_set_dr(vcpu, dr, kvm_register_read(vcpu, reg));
5618 }
5619
5620 out:
5621 return kvm_complete_insn_gp(vcpu, err);
5622 }
5623
vmx_sync_dirty_debug_regs(struct kvm_vcpu * vcpu)5624 void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
5625 {
5626 get_debugreg(vcpu->arch.db[0], 0);
5627 get_debugreg(vcpu->arch.db[1], 1);
5628 get_debugreg(vcpu->arch.db[2], 2);
5629 get_debugreg(vcpu->arch.db[3], 3);
5630 get_debugreg(vcpu->arch.dr6, 6);
5631 vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
5632
5633 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
5634 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5635
5636 /*
5637 * exc_debug expects dr6 to be cleared after it runs, avoid that it sees
5638 * a stale dr6 from the guest.
5639 */
5640 set_debugreg(DR6_RESERVED, 6);
5641 }
5642
vmx_set_dr7(struct kvm_vcpu * vcpu,unsigned long val)5643 void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
5644 {
5645 vmcs_writel(GUEST_DR7, val);
5646 }
5647
handle_tpr_below_threshold(struct kvm_vcpu * vcpu)5648 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
5649 {
5650 kvm_apic_update_ppr(vcpu);
5651 return 1;
5652 }
5653
handle_interrupt_window(struct kvm_vcpu * vcpu)5654 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
5655 {
5656 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
5657
5658 kvm_make_request(KVM_REQ_EVENT, vcpu);
5659
5660 ++vcpu->stat.irq_window_exits;
5661 return 1;
5662 }
5663
handle_invlpg(struct kvm_vcpu * vcpu)5664 static int handle_invlpg(struct kvm_vcpu *vcpu)
5665 {
5666 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5667
5668 kvm_mmu_invlpg(vcpu, exit_qualification);
5669 return kvm_skip_emulated_instruction(vcpu);
5670 }
5671
handle_apic_access(struct kvm_vcpu * vcpu)5672 static int handle_apic_access(struct kvm_vcpu *vcpu)
5673 {
5674 if (likely(fasteoi)) {
5675 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5676 int access_type, offset;
5677
5678 access_type = exit_qualification & APIC_ACCESS_TYPE;
5679 offset = exit_qualification & APIC_ACCESS_OFFSET;
5680 /*
5681 * Sane guest uses MOV to write EOI, with written value
5682 * not cared. So make a short-circuit here by avoiding
5683 * heavy instruction emulation.
5684 */
5685 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
5686 (offset == APIC_EOI)) {
5687 kvm_lapic_set_eoi(vcpu);
5688 return kvm_skip_emulated_instruction(vcpu);
5689 }
5690 }
5691 return kvm_emulate_instruction(vcpu, 0);
5692 }
5693
handle_apic_eoi_induced(struct kvm_vcpu * vcpu)5694 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
5695 {
5696 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5697 int vector = exit_qualification & 0xff;
5698
5699 /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5700 kvm_apic_set_eoi_accelerated(vcpu, vector);
5701 return 1;
5702 }
5703
handle_apic_write(struct kvm_vcpu * vcpu)5704 static int handle_apic_write(struct kvm_vcpu *vcpu)
5705 {
5706 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5707
5708 /*
5709 * APIC-write VM-Exit is trap-like, KVM doesn't need to advance RIP and
5710 * hardware has done any necessary aliasing, offset adjustments, etc...
5711 * for the access. I.e. the correct value has already been written to
5712 * the vAPIC page for the correct 16-byte chunk. KVM needs only to
5713 * retrieve the register value and emulate the access.
5714 */
5715 u32 offset = exit_qualification & 0xff0;
5716
5717 kvm_apic_write_nodecode(vcpu, offset);
5718 return 1;
5719 }
5720
handle_task_switch(struct kvm_vcpu * vcpu)5721 static int handle_task_switch(struct kvm_vcpu *vcpu)
5722 {
5723 struct vcpu_vmx *vmx = to_vmx(vcpu);
5724 unsigned long exit_qualification;
5725 bool has_error_code = false;
5726 u32 error_code = 0;
5727 u16 tss_selector;
5728 int reason, type, idt_v, idt_index;
5729
5730 idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
5731 idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
5732 type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
5733
5734 exit_qualification = vmx_get_exit_qual(vcpu);
5735
5736 reason = (u32)exit_qualification >> 30;
5737 if (reason == TASK_SWITCH_GATE && idt_v) {
5738 switch (type) {
5739 case INTR_TYPE_NMI_INTR:
5740 vcpu->arch.nmi_injected = false;
5741 vmx_set_nmi_mask(vcpu, true);
5742 break;
5743 case INTR_TYPE_EXT_INTR:
5744 case INTR_TYPE_SOFT_INTR:
5745 kvm_clear_interrupt_queue(vcpu);
5746 break;
5747 case INTR_TYPE_HARD_EXCEPTION:
5748 if (vmx->idt_vectoring_info &
5749 VECTORING_INFO_DELIVER_CODE_MASK) {
5750 has_error_code = true;
5751 error_code =
5752 vmcs_read32(IDT_VECTORING_ERROR_CODE);
5753 }
5754 fallthrough;
5755 case INTR_TYPE_SOFT_EXCEPTION:
5756 kvm_clear_exception_queue(vcpu);
5757 break;
5758 default:
5759 break;
5760 }
5761 }
5762 tss_selector = exit_qualification;
5763
5764 if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5765 type != INTR_TYPE_EXT_INTR &&
5766 type != INTR_TYPE_NMI_INTR))
5767 WARN_ON(!skip_emulated_instruction(vcpu));
5768
5769 /*
5770 * TODO: What about debug traps on tss switch?
5771 * Are we supposed to inject them and update dr6?
5772 */
5773 return kvm_task_switch(vcpu, tss_selector,
5774 type == INTR_TYPE_SOFT_INTR ? idt_index : -1,
5775 reason, has_error_code, error_code);
5776 }
5777
handle_ept_violation(struct kvm_vcpu * vcpu)5778 static int handle_ept_violation(struct kvm_vcpu *vcpu)
5779 {
5780 unsigned long exit_qualification;
5781 gpa_t gpa;
5782 u64 error_code;
5783
5784 exit_qualification = vmx_get_exit_qual(vcpu);
5785
5786 /*
5787 * EPT violation happened while executing iret from NMI,
5788 * "blocked by NMI" bit has to be set before next VM entry.
5789 * There are errata that may cause this bit to not be set:
5790 * AAK134, BY25.
5791 */
5792 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5793 enable_vnmi &&
5794 (exit_qualification & INTR_INFO_UNBLOCK_NMI))
5795 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
5796
5797 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5798 trace_kvm_page_fault(vcpu, gpa, exit_qualification);
5799
5800 /* Is it a read fault? */
5801 error_code = (exit_qualification & EPT_VIOLATION_ACC_READ)
5802 ? PFERR_USER_MASK : 0;
5803 /* Is it a write fault? */
5804 error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE)
5805 ? PFERR_WRITE_MASK : 0;
5806 /* Is it a fetch fault? */
5807 error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR)
5808 ? PFERR_FETCH_MASK : 0;
5809 /* ept page table entry is present? */
5810 error_code |= (exit_qualification & EPT_VIOLATION_RWX_MASK)
5811 ? PFERR_PRESENT_MASK : 0;
5812
5813 if (error_code & EPT_VIOLATION_GVA_IS_VALID)
5814 error_code |= (exit_qualification & EPT_VIOLATION_GVA_TRANSLATED) ?
5815 PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK;
5816
5817 /*
5818 * Check that the GPA doesn't exceed physical memory limits, as that is
5819 * a guest page fault. We have to emulate the instruction here, because
5820 * if the illegal address is that of a paging structure, then
5821 * EPT_VIOLATION_ACC_WRITE bit is set. Alternatively, if supported we
5822 * would also use advanced VM-exit information for EPT violations to
5823 * reconstruct the page fault error code.
5824 */
5825 if (unlikely(allow_smaller_maxphyaddr && !kvm_vcpu_is_legal_gpa(vcpu, gpa)))
5826 return kvm_emulate_instruction(vcpu, 0);
5827
5828 return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
5829 }
5830
handle_ept_misconfig(struct kvm_vcpu * vcpu)5831 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
5832 {
5833 gpa_t gpa;
5834
5835 if (vmx_check_emulate_instruction(vcpu, EMULTYPE_PF, NULL, 0))
5836 return 1;
5837
5838 /*
5839 * A nested guest cannot optimize MMIO vmexits, because we have an
5840 * nGPA here instead of the required GPA.
5841 */
5842 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5843 if (!is_guest_mode(vcpu) &&
5844 !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
5845 trace_kvm_fast_mmio(gpa);
5846 return kvm_skip_emulated_instruction(vcpu);
5847 }
5848
5849 return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0);
5850 }
5851
handle_nmi_window(struct kvm_vcpu * vcpu)5852 static int handle_nmi_window(struct kvm_vcpu *vcpu)
5853 {
5854 if (KVM_BUG_ON(!enable_vnmi, vcpu->kvm))
5855 return -EIO;
5856
5857 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
5858 ++vcpu->stat.nmi_window_exits;
5859 kvm_make_request(KVM_REQ_EVENT, vcpu);
5860
5861 return 1;
5862 }
5863
vmx_emulation_required_with_pending_exception(struct kvm_vcpu * vcpu)5864 static bool vmx_emulation_required_with_pending_exception(struct kvm_vcpu *vcpu)
5865 {
5866 struct vcpu_vmx *vmx = to_vmx(vcpu);
5867
5868 return vmx->emulation_required && !vmx->rmode.vm86_active &&
5869 (kvm_is_exception_pending(vcpu) || vcpu->arch.exception.injected);
5870 }
5871
handle_invalid_guest_state(struct kvm_vcpu * vcpu)5872 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
5873 {
5874 struct vcpu_vmx *vmx = to_vmx(vcpu);
5875 bool intr_window_requested;
5876 unsigned count = 130;
5877
5878 intr_window_requested = exec_controls_get(vmx) &
5879 CPU_BASED_INTR_WINDOW_EXITING;
5880
5881 while (vmx->emulation_required && count-- != 0) {
5882 if (intr_window_requested && !vmx_interrupt_blocked(vcpu))
5883 return handle_interrupt_window(&vmx->vcpu);
5884
5885 if (kvm_test_request(KVM_REQ_EVENT, vcpu))
5886 return 1;
5887
5888 if (!kvm_emulate_instruction(vcpu, 0))
5889 return 0;
5890
5891 if (vmx_emulation_required_with_pending_exception(vcpu)) {
5892 kvm_prepare_emulation_failure_exit(vcpu);
5893 return 0;
5894 }
5895
5896 if (vcpu->arch.halt_request) {
5897 vcpu->arch.halt_request = 0;
5898 return kvm_emulate_halt_noskip(vcpu);
5899 }
5900
5901 /*
5902 * Note, return 1 and not 0, vcpu_run() will invoke
5903 * xfer_to_guest_mode() which will create a proper return
5904 * code.
5905 */
5906 if (__xfer_to_guest_mode_work_pending())
5907 return 1;
5908 }
5909
5910 return 1;
5911 }
5912
vmx_vcpu_pre_run(struct kvm_vcpu * vcpu)5913 int vmx_vcpu_pre_run(struct kvm_vcpu *vcpu)
5914 {
5915 if (vmx_emulation_required_with_pending_exception(vcpu)) {
5916 kvm_prepare_emulation_failure_exit(vcpu);
5917 return 0;
5918 }
5919
5920 return 1;
5921 }
5922
5923 /*
5924 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
5925 * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
5926 */
handle_pause(struct kvm_vcpu * vcpu)5927 static int handle_pause(struct kvm_vcpu *vcpu)
5928 {
5929 if (!kvm_pause_in_guest(vcpu->kvm))
5930 grow_ple_window(vcpu);
5931
5932 /*
5933 * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting"
5934 * VM-execution control is ignored if CPL > 0. OTOH, KVM
5935 * never set PAUSE_EXITING and just set PLE if supported,
5936 * so the vcpu must be CPL=0 if it gets a PAUSE exit.
5937 */
5938 kvm_vcpu_on_spin(vcpu, true);
5939 return kvm_skip_emulated_instruction(vcpu);
5940 }
5941
handle_monitor_trap(struct kvm_vcpu * vcpu)5942 static int handle_monitor_trap(struct kvm_vcpu *vcpu)
5943 {
5944 return 1;
5945 }
5946
handle_invpcid(struct kvm_vcpu * vcpu)5947 static int handle_invpcid(struct kvm_vcpu *vcpu)
5948 {
5949 u32 vmx_instruction_info;
5950 unsigned long type;
5951 gva_t gva;
5952 struct {
5953 u64 pcid;
5954 u64 gla;
5955 } operand;
5956 int gpr_index;
5957
5958 if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
5959 kvm_queue_exception(vcpu, UD_VECTOR);
5960 return 1;
5961 }
5962
5963 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5964 gpr_index = vmx_get_instr_info_reg2(vmx_instruction_info);
5965 type = kvm_register_read(vcpu, gpr_index);
5966
5967 /* According to the Intel instruction reference, the memory operand
5968 * is read even if it isn't needed (e.g., for type==all)
5969 */
5970 if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5971 vmx_instruction_info, false,
5972 sizeof(operand), &gva))
5973 return 1;
5974
5975 return kvm_handle_invpcid(vcpu, type, gva);
5976 }
5977
handle_pml_full(struct kvm_vcpu * vcpu)5978 static int handle_pml_full(struct kvm_vcpu *vcpu)
5979 {
5980 unsigned long exit_qualification;
5981
5982 trace_kvm_pml_full(vcpu->vcpu_id);
5983
5984 exit_qualification = vmx_get_exit_qual(vcpu);
5985
5986 /*
5987 * PML buffer FULL happened while executing iret from NMI,
5988 * "blocked by NMI" bit has to be set before next VM entry.
5989 */
5990 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5991 enable_vnmi &&
5992 (exit_qualification & INTR_INFO_UNBLOCK_NMI))
5993 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5994 GUEST_INTR_STATE_NMI);
5995
5996 /*
5997 * PML buffer already flushed at beginning of VMEXIT. Nothing to do
5998 * here.., and there's no userspace involvement needed for PML.
5999 */
6000 return 1;
6001 }
6002
handle_fastpath_preemption_timer(struct kvm_vcpu * vcpu,bool force_immediate_exit)6003 static fastpath_t handle_fastpath_preemption_timer(struct kvm_vcpu *vcpu,
6004 bool force_immediate_exit)
6005 {
6006 struct vcpu_vmx *vmx = to_vmx(vcpu);
6007
6008 /*
6009 * In the *extremely* unlikely scenario that this is a spurious VM-Exit
6010 * due to the timer expiring while it was "soft" disabled, just eat the
6011 * exit and re-enter the guest.
6012 */
6013 if (unlikely(vmx->loaded_vmcs->hv_timer_soft_disabled))
6014 return EXIT_FASTPATH_REENTER_GUEST;
6015
6016 /*
6017 * If the timer expired because KVM used it to force an immediate exit,
6018 * then mission accomplished.
6019 */
6020 if (force_immediate_exit)
6021 return EXIT_FASTPATH_EXIT_HANDLED;
6022
6023 /*
6024 * If L2 is active, go down the slow path as emulating the guest timer
6025 * expiration likely requires synthesizing a nested VM-Exit.
6026 */
6027 if (is_guest_mode(vcpu))
6028 return EXIT_FASTPATH_NONE;
6029
6030 kvm_lapic_expired_hv_timer(vcpu);
6031 return EXIT_FASTPATH_REENTER_GUEST;
6032 }
6033
handle_preemption_timer(struct kvm_vcpu * vcpu)6034 static int handle_preemption_timer(struct kvm_vcpu *vcpu)
6035 {
6036 /*
6037 * This non-fastpath handler is reached if and only if the preemption
6038 * timer was being used to emulate a guest timer while L2 is active.
6039 * All other scenarios are supposed to be handled in the fastpath.
6040 */
6041 WARN_ON_ONCE(!is_guest_mode(vcpu));
6042 kvm_lapic_expired_hv_timer(vcpu);
6043 return 1;
6044 }
6045
6046 /*
6047 * When nested=0, all VMX instruction VM Exits filter here. The handlers
6048 * are overwritten by nested_vmx_setup() when nested=1.
6049 */
handle_vmx_instruction(struct kvm_vcpu * vcpu)6050 static int handle_vmx_instruction(struct kvm_vcpu *vcpu)
6051 {
6052 kvm_queue_exception(vcpu, UD_VECTOR);
6053 return 1;
6054 }
6055
6056 #ifndef CONFIG_X86_SGX_KVM
handle_encls(struct kvm_vcpu * vcpu)6057 static int handle_encls(struct kvm_vcpu *vcpu)
6058 {
6059 /*
6060 * SGX virtualization is disabled. There is no software enable bit for
6061 * SGX, so KVM intercepts all ENCLS leafs and injects a #UD to prevent
6062 * the guest from executing ENCLS (when SGX is supported by hardware).
6063 */
6064 kvm_queue_exception(vcpu, UD_VECTOR);
6065 return 1;
6066 }
6067 #endif /* CONFIG_X86_SGX_KVM */
6068
handle_bus_lock_vmexit(struct kvm_vcpu * vcpu)6069 static int handle_bus_lock_vmexit(struct kvm_vcpu *vcpu)
6070 {
6071 /*
6072 * Hardware may or may not set the BUS_LOCK_DETECTED flag on BUS_LOCK
6073 * VM-Exits. Unconditionally set the flag here and leave the handling to
6074 * vmx_handle_exit().
6075 */
6076 to_vmx(vcpu)->exit_reason.bus_lock_detected = true;
6077 return 1;
6078 }
6079
handle_notify(struct kvm_vcpu * vcpu)6080 static int handle_notify(struct kvm_vcpu *vcpu)
6081 {
6082 unsigned long exit_qual = vmx_get_exit_qual(vcpu);
6083 bool context_invalid = exit_qual & NOTIFY_VM_CONTEXT_INVALID;
6084
6085 ++vcpu->stat.notify_window_exits;
6086
6087 /*
6088 * Notify VM exit happened while executing iret from NMI,
6089 * "blocked by NMI" bit has to be set before next VM entry.
6090 */
6091 if (enable_vnmi && (exit_qual & INTR_INFO_UNBLOCK_NMI))
6092 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
6093 GUEST_INTR_STATE_NMI);
6094
6095 if (vcpu->kvm->arch.notify_vmexit_flags & KVM_X86_NOTIFY_VMEXIT_USER ||
6096 context_invalid) {
6097 vcpu->run->exit_reason = KVM_EXIT_NOTIFY;
6098 vcpu->run->notify.flags = context_invalid ?
6099 KVM_NOTIFY_CONTEXT_INVALID : 0;
6100 return 0;
6101 }
6102
6103 return 1;
6104 }
6105
6106 /*
6107 * The exit handlers return 1 if the exit was handled fully and guest execution
6108 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
6109 * to be done to userspace and return 0.
6110 */
6111 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
6112 [EXIT_REASON_EXCEPTION_NMI] = handle_exception_nmi,
6113 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
6114 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
6115 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
6116 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
6117 [EXIT_REASON_CR_ACCESS] = handle_cr,
6118 [EXIT_REASON_DR_ACCESS] = handle_dr,
6119 [EXIT_REASON_CPUID] = kvm_emulate_cpuid,
6120 [EXIT_REASON_MSR_READ] = kvm_emulate_rdmsr,
6121 [EXIT_REASON_MSR_WRITE] = kvm_emulate_wrmsr,
6122 [EXIT_REASON_INTERRUPT_WINDOW] = handle_interrupt_window,
6123 [EXIT_REASON_HLT] = kvm_emulate_halt,
6124 [EXIT_REASON_INVD] = kvm_emulate_invd,
6125 [EXIT_REASON_INVLPG] = handle_invlpg,
6126 [EXIT_REASON_RDPMC] = kvm_emulate_rdpmc,
6127 [EXIT_REASON_VMCALL] = kvm_emulate_hypercall,
6128 [EXIT_REASON_VMCLEAR] = handle_vmx_instruction,
6129 [EXIT_REASON_VMLAUNCH] = handle_vmx_instruction,
6130 [EXIT_REASON_VMPTRLD] = handle_vmx_instruction,
6131 [EXIT_REASON_VMPTRST] = handle_vmx_instruction,
6132 [EXIT_REASON_VMREAD] = handle_vmx_instruction,
6133 [EXIT_REASON_VMRESUME] = handle_vmx_instruction,
6134 [EXIT_REASON_VMWRITE] = handle_vmx_instruction,
6135 [EXIT_REASON_VMOFF] = handle_vmx_instruction,
6136 [EXIT_REASON_VMON] = handle_vmx_instruction,
6137 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
6138 [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
6139 [EXIT_REASON_APIC_WRITE] = handle_apic_write,
6140 [EXIT_REASON_EOI_INDUCED] = handle_apic_eoi_induced,
6141 [EXIT_REASON_WBINVD] = kvm_emulate_wbinvd,
6142 [EXIT_REASON_XSETBV] = kvm_emulate_xsetbv,
6143 [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
6144 [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
6145 [EXIT_REASON_GDTR_IDTR] = handle_desc,
6146 [EXIT_REASON_LDTR_TR] = handle_desc,
6147 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
6148 [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
6149 [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
6150 [EXIT_REASON_MWAIT_INSTRUCTION] = kvm_emulate_mwait,
6151 [EXIT_REASON_MONITOR_TRAP_FLAG] = handle_monitor_trap,
6152 [EXIT_REASON_MONITOR_INSTRUCTION] = kvm_emulate_monitor,
6153 [EXIT_REASON_INVEPT] = handle_vmx_instruction,
6154 [EXIT_REASON_INVVPID] = handle_vmx_instruction,
6155 [EXIT_REASON_RDRAND] = kvm_handle_invalid_op,
6156 [EXIT_REASON_RDSEED] = kvm_handle_invalid_op,
6157 [EXIT_REASON_PML_FULL] = handle_pml_full,
6158 [EXIT_REASON_INVPCID] = handle_invpcid,
6159 [EXIT_REASON_VMFUNC] = handle_vmx_instruction,
6160 [EXIT_REASON_PREEMPTION_TIMER] = handle_preemption_timer,
6161 [EXIT_REASON_ENCLS] = handle_encls,
6162 [EXIT_REASON_BUS_LOCK] = handle_bus_lock_vmexit,
6163 [EXIT_REASON_NOTIFY] = handle_notify,
6164 };
6165
6166 static const int kvm_vmx_max_exit_handlers =
6167 ARRAY_SIZE(kvm_vmx_exit_handlers);
6168
vmx_get_exit_info(struct kvm_vcpu * vcpu,u32 * reason,u64 * info1,u64 * info2,u32 * intr_info,u32 * error_code)6169 void vmx_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason,
6170 u64 *info1, u64 *info2, u32 *intr_info, u32 *error_code)
6171 {
6172 struct vcpu_vmx *vmx = to_vmx(vcpu);
6173
6174 *reason = vmx->exit_reason.full;
6175 *info1 = vmx_get_exit_qual(vcpu);
6176 if (!(vmx->exit_reason.failed_vmentry)) {
6177 *info2 = vmx->idt_vectoring_info;
6178 *intr_info = vmx_get_intr_info(vcpu);
6179 if (is_exception_with_error_code(*intr_info))
6180 *error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
6181 else
6182 *error_code = 0;
6183 } else {
6184 *info2 = 0;
6185 *intr_info = 0;
6186 *error_code = 0;
6187 }
6188 }
6189
vmx_destroy_pml_buffer(struct vcpu_vmx * vmx)6190 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
6191 {
6192 if (vmx->pml_pg) {
6193 __free_page(vmx->pml_pg);
6194 vmx->pml_pg = NULL;
6195 }
6196 }
6197
vmx_flush_pml_buffer(struct kvm_vcpu * vcpu)6198 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
6199 {
6200 struct vcpu_vmx *vmx = to_vmx(vcpu);
6201 u64 *pml_buf;
6202 u16 pml_idx;
6203
6204 pml_idx = vmcs_read16(GUEST_PML_INDEX);
6205
6206 /* Do nothing if PML buffer is empty */
6207 if (pml_idx == (PML_ENTITY_NUM - 1))
6208 return;
6209
6210 /* PML index always points to next available PML buffer entity */
6211 if (pml_idx >= PML_ENTITY_NUM)
6212 pml_idx = 0;
6213 else
6214 pml_idx++;
6215
6216 pml_buf = page_address(vmx->pml_pg);
6217 for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
6218 u64 gpa;
6219
6220 gpa = pml_buf[pml_idx];
6221 WARN_ON(gpa & (PAGE_SIZE - 1));
6222 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
6223 }
6224
6225 /* reset PML index */
6226 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
6227 }
6228
vmx_dump_sel(char * name,uint32_t sel)6229 static void vmx_dump_sel(char *name, uint32_t sel)
6230 {
6231 pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
6232 name, vmcs_read16(sel),
6233 vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
6234 vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
6235 vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
6236 }
6237
vmx_dump_dtsel(char * name,uint32_t limit)6238 static void vmx_dump_dtsel(char *name, uint32_t limit)
6239 {
6240 pr_err("%s limit=0x%08x, base=0x%016lx\n",
6241 name, vmcs_read32(limit),
6242 vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
6243 }
6244
vmx_dump_msrs(char * name,struct vmx_msrs * m)6245 static void vmx_dump_msrs(char *name, struct vmx_msrs *m)
6246 {
6247 unsigned int i;
6248 struct vmx_msr_entry *e;
6249
6250 pr_err("MSR %s:\n", name);
6251 for (i = 0, e = m->val; i < m->nr; ++i, ++e)
6252 pr_err(" %2d: msr=0x%08x value=0x%016llx\n", i, e->index, e->value);
6253 }
6254
dump_vmcs(struct kvm_vcpu * vcpu)6255 void dump_vmcs(struct kvm_vcpu *vcpu)
6256 {
6257 struct vcpu_vmx *vmx = to_vmx(vcpu);
6258 u32 vmentry_ctl, vmexit_ctl;
6259 u32 cpu_based_exec_ctrl, pin_based_exec_ctrl, secondary_exec_control;
6260 u64 tertiary_exec_control;
6261 unsigned long cr4;
6262 int efer_slot;
6263
6264 if (!dump_invalid_vmcs) {
6265 pr_warn_ratelimited("set kvm_intel.dump_invalid_vmcs=1 to dump internal KVM state.\n");
6266 return;
6267 }
6268
6269 vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
6270 vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
6271 cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
6272 pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
6273 cr4 = vmcs_readl(GUEST_CR4);
6274
6275 if (cpu_has_secondary_exec_ctrls())
6276 secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
6277 else
6278 secondary_exec_control = 0;
6279
6280 if (cpu_has_tertiary_exec_ctrls())
6281 tertiary_exec_control = vmcs_read64(TERTIARY_VM_EXEC_CONTROL);
6282 else
6283 tertiary_exec_control = 0;
6284
6285 pr_err("VMCS %p, last attempted VM-entry on CPU %d\n",
6286 vmx->loaded_vmcs->vmcs, vcpu->arch.last_vmentry_cpu);
6287 pr_err("*** Guest State ***\n");
6288 pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
6289 vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
6290 vmcs_readl(CR0_GUEST_HOST_MASK));
6291 pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
6292 cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
6293 pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
6294 if (cpu_has_vmx_ept()) {
6295 pr_err("PDPTR0 = 0x%016llx PDPTR1 = 0x%016llx\n",
6296 vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
6297 pr_err("PDPTR2 = 0x%016llx PDPTR3 = 0x%016llx\n",
6298 vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
6299 }
6300 pr_err("RSP = 0x%016lx RIP = 0x%016lx\n",
6301 vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
6302 pr_err("RFLAGS=0x%08lx DR7 = 0x%016lx\n",
6303 vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
6304 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
6305 vmcs_readl(GUEST_SYSENTER_ESP),
6306 vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
6307 vmx_dump_sel("CS: ", GUEST_CS_SELECTOR);
6308 vmx_dump_sel("DS: ", GUEST_DS_SELECTOR);
6309 vmx_dump_sel("SS: ", GUEST_SS_SELECTOR);
6310 vmx_dump_sel("ES: ", GUEST_ES_SELECTOR);
6311 vmx_dump_sel("FS: ", GUEST_FS_SELECTOR);
6312 vmx_dump_sel("GS: ", GUEST_GS_SELECTOR);
6313 vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
6314 vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
6315 vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
6316 vmx_dump_sel("TR: ", GUEST_TR_SELECTOR);
6317 efer_slot = vmx_find_loadstore_msr_slot(&vmx->msr_autoload.guest, MSR_EFER);
6318 if (vmentry_ctl & VM_ENTRY_LOAD_IA32_EFER)
6319 pr_err("EFER= 0x%016llx\n", vmcs_read64(GUEST_IA32_EFER));
6320 else if (efer_slot >= 0)
6321 pr_err("EFER= 0x%016llx (autoload)\n",
6322 vmx->msr_autoload.guest.val[efer_slot].value);
6323 else if (vmentry_ctl & VM_ENTRY_IA32E_MODE)
6324 pr_err("EFER= 0x%016llx (effective)\n",
6325 vcpu->arch.efer | (EFER_LMA | EFER_LME));
6326 else
6327 pr_err("EFER= 0x%016llx (effective)\n",
6328 vcpu->arch.efer & ~(EFER_LMA | EFER_LME));
6329 if (vmentry_ctl & VM_ENTRY_LOAD_IA32_PAT)
6330 pr_err("PAT = 0x%016llx\n", vmcs_read64(GUEST_IA32_PAT));
6331 pr_err("DebugCtl = 0x%016llx DebugExceptions = 0x%016lx\n",
6332 vmcs_read64(GUEST_IA32_DEBUGCTL),
6333 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
6334 if (cpu_has_load_perf_global_ctrl() &&
6335 vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
6336 pr_err("PerfGlobCtl = 0x%016llx\n",
6337 vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
6338 if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
6339 pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
6340 pr_err("Interruptibility = %08x ActivityState = %08x\n",
6341 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
6342 vmcs_read32(GUEST_ACTIVITY_STATE));
6343 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
6344 pr_err("InterruptStatus = %04x\n",
6345 vmcs_read16(GUEST_INTR_STATUS));
6346 if (vmcs_read32(VM_ENTRY_MSR_LOAD_COUNT) > 0)
6347 vmx_dump_msrs("guest autoload", &vmx->msr_autoload.guest);
6348 if (vmcs_read32(VM_EXIT_MSR_STORE_COUNT) > 0)
6349 vmx_dump_msrs("guest autostore", &vmx->msr_autostore.guest);
6350
6351 pr_err("*** Host State ***\n");
6352 pr_err("RIP = 0x%016lx RSP = 0x%016lx\n",
6353 vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
6354 pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
6355 vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
6356 vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
6357 vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
6358 vmcs_read16(HOST_TR_SELECTOR));
6359 pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
6360 vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
6361 vmcs_readl(HOST_TR_BASE));
6362 pr_err("GDTBase=%016lx IDTBase=%016lx\n",
6363 vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
6364 pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
6365 vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
6366 vmcs_readl(HOST_CR4));
6367 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
6368 vmcs_readl(HOST_IA32_SYSENTER_ESP),
6369 vmcs_read32(HOST_IA32_SYSENTER_CS),
6370 vmcs_readl(HOST_IA32_SYSENTER_EIP));
6371 if (vmexit_ctl & VM_EXIT_LOAD_IA32_EFER)
6372 pr_err("EFER= 0x%016llx\n", vmcs_read64(HOST_IA32_EFER));
6373 if (vmexit_ctl & VM_EXIT_LOAD_IA32_PAT)
6374 pr_err("PAT = 0x%016llx\n", vmcs_read64(HOST_IA32_PAT));
6375 if (cpu_has_load_perf_global_ctrl() &&
6376 vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
6377 pr_err("PerfGlobCtl = 0x%016llx\n",
6378 vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
6379 if (vmcs_read32(VM_EXIT_MSR_LOAD_COUNT) > 0)
6380 vmx_dump_msrs("host autoload", &vmx->msr_autoload.host);
6381
6382 pr_err("*** Control State ***\n");
6383 pr_err("CPUBased=0x%08x SecondaryExec=0x%08x TertiaryExec=0x%016llx\n",
6384 cpu_based_exec_ctrl, secondary_exec_control, tertiary_exec_control);
6385 pr_err("PinBased=0x%08x EntryControls=%08x ExitControls=%08x\n",
6386 pin_based_exec_ctrl, vmentry_ctl, vmexit_ctl);
6387 pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
6388 vmcs_read32(EXCEPTION_BITMAP),
6389 vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
6390 vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
6391 pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
6392 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
6393 vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
6394 vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
6395 pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
6396 vmcs_read32(VM_EXIT_INTR_INFO),
6397 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
6398 vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
6399 pr_err(" reason=%08x qualification=%016lx\n",
6400 vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
6401 pr_err("IDTVectoring: info=%08x errcode=%08x\n",
6402 vmcs_read32(IDT_VECTORING_INFO_FIELD),
6403 vmcs_read32(IDT_VECTORING_ERROR_CODE));
6404 pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
6405 if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
6406 pr_err("TSC Multiplier = 0x%016llx\n",
6407 vmcs_read64(TSC_MULTIPLIER));
6408 if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW) {
6409 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
6410 u16 status = vmcs_read16(GUEST_INTR_STATUS);
6411 pr_err("SVI|RVI = %02x|%02x ", status >> 8, status & 0xff);
6412 }
6413 pr_cont("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
6414 if (secondary_exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
6415 pr_err("APIC-access addr = 0x%016llx ", vmcs_read64(APIC_ACCESS_ADDR));
6416 pr_cont("virt-APIC addr = 0x%016llx\n", vmcs_read64(VIRTUAL_APIC_PAGE_ADDR));
6417 }
6418 if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
6419 pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
6420 if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
6421 pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
6422 if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
6423 pr_err("PLE Gap=%08x Window=%08x\n",
6424 vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
6425 if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
6426 pr_err("Virtual processor ID = 0x%04x\n",
6427 vmcs_read16(VIRTUAL_PROCESSOR_ID));
6428 if (secondary_exec_control & SECONDARY_EXEC_EPT_VIOLATION_VE) {
6429 struct vmx_ve_information *ve_info = vmx->ve_info;
6430 u64 ve_info_pa = vmcs_read64(VE_INFORMATION_ADDRESS);
6431
6432 /*
6433 * If KVM is dumping the VMCS, then something has gone wrong
6434 * already. Derefencing an address from the VMCS, which could
6435 * very well be corrupted, is a terrible idea. The virtual
6436 * address is known so use it.
6437 */
6438 pr_err("VE info address = 0x%016llx%s\n", ve_info_pa,
6439 ve_info_pa == __pa(ve_info) ? "" : "(corrupted!)");
6440 pr_err("ve_info: 0x%08x 0x%08x 0x%016llx 0x%016llx 0x%016llx 0x%04x\n",
6441 ve_info->exit_reason, ve_info->delivery,
6442 ve_info->exit_qualification,
6443 ve_info->guest_linear_address,
6444 ve_info->guest_physical_address, ve_info->eptp_index);
6445 }
6446 }
6447
6448 /*
6449 * The guest has exited. See if we can fix it or if we need userspace
6450 * assistance.
6451 */
__vmx_handle_exit(struct kvm_vcpu * vcpu,fastpath_t exit_fastpath)6452 static int __vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
6453 {
6454 struct vcpu_vmx *vmx = to_vmx(vcpu);
6455 union vmx_exit_reason exit_reason = vmx->exit_reason;
6456 u32 vectoring_info = vmx->idt_vectoring_info;
6457 u16 exit_handler_index;
6458
6459 /*
6460 * Flush logged GPAs PML buffer, this will make dirty_bitmap more
6461 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
6462 * querying dirty_bitmap, we only need to kick all vcpus out of guest
6463 * mode as if vcpus is in root mode, the PML buffer must has been
6464 * flushed already. Note, PML is never enabled in hardware while
6465 * running L2.
6466 */
6467 if (enable_pml && !is_guest_mode(vcpu))
6468 vmx_flush_pml_buffer(vcpu);
6469
6470 /*
6471 * KVM should never reach this point with a pending nested VM-Enter.
6472 * More specifically, short-circuiting VM-Entry to emulate L2 due to
6473 * invalid guest state should never happen as that means KVM knowingly
6474 * allowed a nested VM-Enter with an invalid vmcs12. More below.
6475 */
6476 if (KVM_BUG_ON(vmx->nested.nested_run_pending, vcpu->kvm))
6477 return -EIO;
6478
6479 if (is_guest_mode(vcpu)) {
6480 /*
6481 * PML is never enabled when running L2, bail immediately if a
6482 * PML full exit occurs as something is horribly wrong.
6483 */
6484 if (exit_reason.basic == EXIT_REASON_PML_FULL)
6485 goto unexpected_vmexit;
6486
6487 /*
6488 * The host physical addresses of some pages of guest memory
6489 * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC
6490 * Page). The CPU may write to these pages via their host
6491 * physical address while L2 is running, bypassing any
6492 * address-translation-based dirty tracking (e.g. EPT write
6493 * protection).
6494 *
6495 * Mark them dirty on every exit from L2 to prevent them from
6496 * getting out of sync with dirty tracking.
6497 */
6498 nested_mark_vmcs12_pages_dirty(vcpu);
6499
6500 /*
6501 * Synthesize a triple fault if L2 state is invalid. In normal
6502 * operation, nested VM-Enter rejects any attempt to enter L2
6503 * with invalid state. However, those checks are skipped if
6504 * state is being stuffed via RSM or KVM_SET_NESTED_STATE. If
6505 * L2 state is invalid, it means either L1 modified SMRAM state
6506 * or userspace provided bad state. Synthesize TRIPLE_FAULT as
6507 * doing so is architecturally allowed in the RSM case, and is
6508 * the least awful solution for the userspace case without
6509 * risking false positives.
6510 */
6511 if (vmx->emulation_required) {
6512 nested_vmx_vmexit(vcpu, EXIT_REASON_TRIPLE_FAULT, 0, 0);
6513 return 1;
6514 }
6515
6516 if (nested_vmx_reflect_vmexit(vcpu))
6517 return 1;
6518 }
6519
6520 /* If guest state is invalid, start emulating. L2 is handled above. */
6521 if (vmx->emulation_required)
6522 return handle_invalid_guest_state(vcpu);
6523
6524 if (exit_reason.failed_vmentry) {
6525 dump_vmcs(vcpu);
6526 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6527 vcpu->run->fail_entry.hardware_entry_failure_reason
6528 = exit_reason.full;
6529 vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
6530 return 0;
6531 }
6532
6533 if (unlikely(vmx->fail)) {
6534 dump_vmcs(vcpu);
6535 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6536 vcpu->run->fail_entry.hardware_entry_failure_reason
6537 = vmcs_read32(VM_INSTRUCTION_ERROR);
6538 vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
6539 return 0;
6540 }
6541
6542 /*
6543 * Note:
6544 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
6545 * delivery event since it indicates guest is accessing MMIO.
6546 * The vm-exit can be triggered again after return to guest that
6547 * will cause infinite loop.
6548 */
6549 if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
6550 (exit_reason.basic != EXIT_REASON_EXCEPTION_NMI &&
6551 exit_reason.basic != EXIT_REASON_EPT_VIOLATION &&
6552 exit_reason.basic != EXIT_REASON_PML_FULL &&
6553 exit_reason.basic != EXIT_REASON_APIC_ACCESS &&
6554 exit_reason.basic != EXIT_REASON_TASK_SWITCH &&
6555 exit_reason.basic != EXIT_REASON_NOTIFY)) {
6556 int ndata = 3;
6557
6558 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6559 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
6560 vcpu->run->internal.data[0] = vectoring_info;
6561 vcpu->run->internal.data[1] = exit_reason.full;
6562 vcpu->run->internal.data[2] = vmx_get_exit_qual(vcpu);
6563 if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG) {
6564 vcpu->run->internal.data[ndata++] =
6565 vmcs_read64(GUEST_PHYSICAL_ADDRESS);
6566 }
6567 vcpu->run->internal.data[ndata++] = vcpu->arch.last_vmentry_cpu;
6568 vcpu->run->internal.ndata = ndata;
6569 return 0;
6570 }
6571
6572 if (unlikely(!enable_vnmi &&
6573 vmx->loaded_vmcs->soft_vnmi_blocked)) {
6574 if (!vmx_interrupt_blocked(vcpu)) {
6575 vmx->loaded_vmcs->soft_vnmi_blocked = 0;
6576 } else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL &&
6577 vcpu->arch.nmi_pending) {
6578 /*
6579 * This CPU don't support us in finding the end of an
6580 * NMI-blocked window if the guest runs with IRQs
6581 * disabled. So we pull the trigger after 1 s of
6582 * futile waiting, but inform the user about this.
6583 */
6584 printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
6585 "state on VCPU %d after 1 s timeout\n",
6586 __func__, vcpu->vcpu_id);
6587 vmx->loaded_vmcs->soft_vnmi_blocked = 0;
6588 }
6589 }
6590
6591 if (exit_fastpath != EXIT_FASTPATH_NONE)
6592 return 1;
6593
6594 if (exit_reason.basic >= kvm_vmx_max_exit_handlers)
6595 goto unexpected_vmexit;
6596 #ifdef CONFIG_MITIGATION_RETPOLINE
6597 if (exit_reason.basic == EXIT_REASON_MSR_WRITE)
6598 return kvm_emulate_wrmsr(vcpu);
6599 else if (exit_reason.basic == EXIT_REASON_PREEMPTION_TIMER)
6600 return handle_preemption_timer(vcpu);
6601 else if (exit_reason.basic == EXIT_REASON_INTERRUPT_WINDOW)
6602 return handle_interrupt_window(vcpu);
6603 else if (exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT)
6604 return handle_external_interrupt(vcpu);
6605 else if (exit_reason.basic == EXIT_REASON_HLT)
6606 return kvm_emulate_halt(vcpu);
6607 else if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG)
6608 return handle_ept_misconfig(vcpu);
6609 #endif
6610
6611 exit_handler_index = array_index_nospec((u16)exit_reason.basic,
6612 kvm_vmx_max_exit_handlers);
6613 if (!kvm_vmx_exit_handlers[exit_handler_index])
6614 goto unexpected_vmexit;
6615
6616 return kvm_vmx_exit_handlers[exit_handler_index](vcpu);
6617
6618 unexpected_vmexit:
6619 vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n",
6620 exit_reason.full);
6621 dump_vmcs(vcpu);
6622 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6623 vcpu->run->internal.suberror =
6624 KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
6625 vcpu->run->internal.ndata = 2;
6626 vcpu->run->internal.data[0] = exit_reason.full;
6627 vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
6628 return 0;
6629 }
6630
vmx_handle_exit(struct kvm_vcpu * vcpu,fastpath_t exit_fastpath)6631 int vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
6632 {
6633 int ret = __vmx_handle_exit(vcpu, exit_fastpath);
6634
6635 /*
6636 * Exit to user space when bus lock detected to inform that there is
6637 * a bus lock in guest.
6638 */
6639 if (to_vmx(vcpu)->exit_reason.bus_lock_detected) {
6640 if (ret > 0)
6641 vcpu->run->exit_reason = KVM_EXIT_X86_BUS_LOCK;
6642
6643 vcpu->run->flags |= KVM_RUN_X86_BUS_LOCK;
6644 return 0;
6645 }
6646 return ret;
6647 }
6648
6649 /*
6650 * Software based L1D cache flush which is used when microcode providing
6651 * the cache control MSR is not loaded.
6652 *
6653 * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to
6654 * flush it is required to read in 64 KiB because the replacement algorithm
6655 * is not exactly LRU. This could be sized at runtime via topology
6656 * information but as all relevant affected CPUs have 32KiB L1D cache size
6657 * there is no point in doing so.
6658 */
vmx_l1d_flush(struct kvm_vcpu * vcpu)6659 static noinstr void vmx_l1d_flush(struct kvm_vcpu *vcpu)
6660 {
6661 int size = PAGE_SIZE << L1D_CACHE_ORDER;
6662
6663 /*
6664 * This code is only executed when the flush mode is 'cond' or
6665 * 'always'
6666 */
6667 if (static_branch_likely(&vmx_l1d_flush_cond)) {
6668 bool flush_l1d;
6669
6670 /*
6671 * Clear the per-vcpu flush bit, it gets set again if the vCPU
6672 * is reloaded, i.e. if the vCPU is scheduled out or if KVM
6673 * exits to userspace, or if KVM reaches one of the unsafe
6674 * VMEXIT handlers, e.g. if KVM calls into the emulator.
6675 */
6676 flush_l1d = vcpu->arch.l1tf_flush_l1d;
6677 vcpu->arch.l1tf_flush_l1d = false;
6678
6679 /*
6680 * Clear the per-cpu flush bit, it gets set again from
6681 * the interrupt handlers.
6682 */
6683 flush_l1d |= kvm_get_cpu_l1tf_flush_l1d();
6684 kvm_clear_cpu_l1tf_flush_l1d();
6685
6686 if (!flush_l1d)
6687 return;
6688 }
6689
6690 vcpu->stat.l1d_flush++;
6691
6692 if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) {
6693 native_wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
6694 return;
6695 }
6696
6697 asm volatile(
6698 /* First ensure the pages are in the TLB */
6699 "xorl %%eax, %%eax\n"
6700 ".Lpopulate_tlb:\n\t"
6701 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6702 "addl $4096, %%eax\n\t"
6703 "cmpl %%eax, %[size]\n\t"
6704 "jne .Lpopulate_tlb\n\t"
6705 "xorl %%eax, %%eax\n\t"
6706 "cpuid\n\t"
6707 /* Now fill the cache */
6708 "xorl %%eax, %%eax\n"
6709 ".Lfill_cache:\n"
6710 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6711 "addl $64, %%eax\n\t"
6712 "cmpl %%eax, %[size]\n\t"
6713 "jne .Lfill_cache\n\t"
6714 "lfence\n"
6715 :: [flush_pages] "r" (vmx_l1d_flush_pages),
6716 [size] "r" (size)
6717 : "eax", "ebx", "ecx", "edx");
6718 }
6719
vmx_update_cr8_intercept(struct kvm_vcpu * vcpu,int tpr,int irr)6720 void vmx_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
6721 {
6722 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6723 int tpr_threshold;
6724
6725 if (is_guest_mode(vcpu) &&
6726 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
6727 return;
6728
6729 tpr_threshold = (irr == -1 || tpr < irr) ? 0 : irr;
6730 if (is_guest_mode(vcpu))
6731 to_vmx(vcpu)->nested.l1_tpr_threshold = tpr_threshold;
6732 else
6733 vmcs_write32(TPR_THRESHOLD, tpr_threshold);
6734 }
6735
vmx_set_virtual_apic_mode(struct kvm_vcpu * vcpu)6736 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
6737 {
6738 struct vcpu_vmx *vmx = to_vmx(vcpu);
6739 u32 sec_exec_control;
6740
6741 if (!lapic_in_kernel(vcpu))
6742 return;
6743
6744 if (!flexpriority_enabled &&
6745 !cpu_has_vmx_virtualize_x2apic_mode())
6746 return;
6747
6748 /* Postpone execution until vmcs01 is the current VMCS. */
6749 if (is_guest_mode(vcpu)) {
6750 vmx->nested.change_vmcs01_virtual_apic_mode = true;
6751 return;
6752 }
6753
6754 sec_exec_control = secondary_exec_controls_get(vmx);
6755 sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
6756 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
6757
6758 switch (kvm_get_apic_mode(vcpu)) {
6759 case LAPIC_MODE_INVALID:
6760 WARN_ONCE(true, "Invalid local APIC state");
6761 break;
6762 case LAPIC_MODE_DISABLED:
6763 break;
6764 case LAPIC_MODE_XAPIC:
6765 if (flexpriority_enabled) {
6766 sec_exec_control |=
6767 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6768 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
6769
6770 /*
6771 * Flush the TLB, reloading the APIC access page will
6772 * only do so if its physical address has changed, but
6773 * the guest may have inserted a non-APIC mapping into
6774 * the TLB while the APIC access page was disabled.
6775 */
6776 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
6777 }
6778 break;
6779 case LAPIC_MODE_X2APIC:
6780 if (cpu_has_vmx_virtualize_x2apic_mode())
6781 sec_exec_control |=
6782 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
6783 break;
6784 }
6785 secondary_exec_controls_set(vmx, sec_exec_control);
6786
6787 vmx_update_msr_bitmap_x2apic(vcpu);
6788 }
6789
vmx_set_apic_access_page_addr(struct kvm_vcpu * vcpu)6790 void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu)
6791 {
6792 const gfn_t gfn = APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT;
6793 struct kvm *kvm = vcpu->kvm;
6794 struct kvm_memslots *slots = kvm_memslots(kvm);
6795 struct kvm_memory_slot *slot;
6796 unsigned long mmu_seq;
6797 kvm_pfn_t pfn;
6798
6799 /* Defer reload until vmcs01 is the current VMCS. */
6800 if (is_guest_mode(vcpu)) {
6801 to_vmx(vcpu)->nested.reload_vmcs01_apic_access_page = true;
6802 return;
6803 }
6804
6805 if (!(secondary_exec_controls_get(to_vmx(vcpu)) &
6806 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
6807 return;
6808
6809 /*
6810 * Explicitly grab the memslot using KVM's internal slot ID to ensure
6811 * KVM doesn't unintentionally grab a userspace memslot. It _should_
6812 * be impossible for userspace to create a memslot for the APIC when
6813 * APICv is enabled, but paranoia won't hurt in this case.
6814 */
6815 slot = id_to_memslot(slots, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT);
6816 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
6817 return;
6818
6819 /*
6820 * Ensure that the mmu_notifier sequence count is read before KVM
6821 * retrieves the pfn from the primary MMU. Note, the memslot is
6822 * protected by SRCU, not the mmu_notifier. Pairs with the smp_wmb()
6823 * in kvm_mmu_invalidate_end().
6824 */
6825 mmu_seq = kvm->mmu_invalidate_seq;
6826 smp_rmb();
6827
6828 /*
6829 * No need to retry if the memslot does not exist or is invalid. KVM
6830 * controls the APIC-access page memslot, and only deletes the memslot
6831 * if APICv is permanently inhibited, i.e. the memslot won't reappear.
6832 */
6833 pfn = gfn_to_pfn_memslot(slot, gfn);
6834 if (is_error_noslot_pfn(pfn))
6835 return;
6836
6837 read_lock(&vcpu->kvm->mmu_lock);
6838 if (mmu_invalidate_retry_gfn(kvm, mmu_seq, gfn)) {
6839 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
6840 read_unlock(&vcpu->kvm->mmu_lock);
6841 goto out;
6842 }
6843
6844 vmcs_write64(APIC_ACCESS_ADDR, pfn_to_hpa(pfn));
6845 read_unlock(&vcpu->kvm->mmu_lock);
6846
6847 /*
6848 * No need for a manual TLB flush at this point, KVM has already done a
6849 * flush if there were SPTEs pointing at the previous page.
6850 */
6851 out:
6852 /*
6853 * Do not pin apic access page in memory, the MMU notifier
6854 * will call us again if it is migrated or swapped out.
6855 */
6856 kvm_release_pfn_clean(pfn);
6857 }
6858
vmx_hwapic_isr_update(struct kvm_vcpu * vcpu,int max_isr)6859 void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
6860 {
6861 u16 status;
6862 u8 old;
6863
6864 /*
6865 * If L2 is active, defer the SVI update until vmcs01 is loaded, as SVI
6866 * is only relevant for if and only if Virtual Interrupt Delivery is
6867 * enabled in vmcs12, and if VID is enabled then L2 EOIs affect L2's
6868 * vAPIC, not L1's vAPIC. KVM must update vmcs01 on the next nested
6869 * VM-Exit, otherwise L1 with run with a stale SVI.
6870 */
6871 if (is_guest_mode(vcpu)) {
6872 /*
6873 * KVM is supposed to forward intercepted L2 EOIs to L1 if VID
6874 * is enabled in vmcs12; as above, the EOIs affect L2's vAPIC.
6875 * Note, userspace can stuff state while L2 is active; assert
6876 * that VID is disabled if and only if the vCPU is in KVM_RUN
6877 * to avoid false positives if userspace is setting APIC state.
6878 */
6879 WARN_ON_ONCE(vcpu->wants_to_run &&
6880 nested_cpu_has_vid(get_vmcs12(vcpu)));
6881 to_vmx(vcpu)->nested.update_vmcs01_hwapic_isr = true;
6882 return;
6883 }
6884
6885 if (max_isr == -1)
6886 max_isr = 0;
6887
6888 status = vmcs_read16(GUEST_INTR_STATUS);
6889 old = status >> 8;
6890 if (max_isr != old) {
6891 status &= 0xff;
6892 status |= max_isr << 8;
6893 vmcs_write16(GUEST_INTR_STATUS, status);
6894 }
6895 }
6896
vmx_set_rvi(int vector)6897 static void vmx_set_rvi(int vector)
6898 {
6899 u16 status;
6900 u8 old;
6901
6902 if (vector == -1)
6903 vector = 0;
6904
6905 status = vmcs_read16(GUEST_INTR_STATUS);
6906 old = (u8)status & 0xff;
6907 if ((u8)vector != old) {
6908 status &= ~0xff;
6909 status |= (u8)vector;
6910 vmcs_write16(GUEST_INTR_STATUS, status);
6911 }
6912 }
6913
vmx_hwapic_irr_update(struct kvm_vcpu * vcpu,int max_irr)6914 void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
6915 {
6916 /*
6917 * When running L2, updating RVI is only relevant when
6918 * vmcs12 virtual-interrupt-delivery enabled.
6919 * However, it can be enabled only when L1 also
6920 * intercepts external-interrupts and in that case
6921 * we should not update vmcs02 RVI but instead intercept
6922 * interrupt. Therefore, do nothing when running L2.
6923 */
6924 if (!is_guest_mode(vcpu))
6925 vmx_set_rvi(max_irr);
6926 }
6927
vmx_sync_pir_to_irr(struct kvm_vcpu * vcpu)6928 int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
6929 {
6930 struct vcpu_vmx *vmx = to_vmx(vcpu);
6931 int max_irr;
6932 bool got_posted_interrupt;
6933
6934 if (KVM_BUG_ON(!enable_apicv, vcpu->kvm))
6935 return -EIO;
6936
6937 if (pi_test_on(&vmx->pi_desc)) {
6938 pi_clear_on(&vmx->pi_desc);
6939 /*
6940 * IOMMU can write to PID.ON, so the barrier matters even on UP.
6941 * But on x86 this is just a compiler barrier anyway.
6942 */
6943 smp_mb__after_atomic();
6944 got_posted_interrupt =
6945 kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr);
6946 } else {
6947 max_irr = kvm_lapic_find_highest_irr(vcpu);
6948 got_posted_interrupt = false;
6949 }
6950
6951 /*
6952 * Newly recognized interrupts are injected via either virtual interrupt
6953 * delivery (RVI) or KVM_REQ_EVENT. Virtual interrupt delivery is
6954 * disabled in two cases:
6955 *
6956 * 1) If L2 is running and the vCPU has a new pending interrupt. If L1
6957 * wants to exit on interrupts, KVM_REQ_EVENT is needed to synthesize a
6958 * VM-Exit to L1. If L1 doesn't want to exit, the interrupt is injected
6959 * into L2, but KVM doesn't use virtual interrupt delivery to inject
6960 * interrupts into L2, and so KVM_REQ_EVENT is again needed.
6961 *
6962 * 2) If APICv is disabled for this vCPU, assigned devices may still
6963 * attempt to post interrupts. The posted interrupt vector will cause
6964 * a VM-Exit and the subsequent entry will call sync_pir_to_irr.
6965 */
6966 if (!is_guest_mode(vcpu) && kvm_vcpu_apicv_active(vcpu))
6967 vmx_set_rvi(max_irr);
6968 else if (got_posted_interrupt)
6969 kvm_make_request(KVM_REQ_EVENT, vcpu);
6970
6971 return max_irr;
6972 }
6973
vmx_load_eoi_exitmap(struct kvm_vcpu * vcpu,u64 * eoi_exit_bitmap)6974 void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
6975 {
6976 if (!kvm_vcpu_apicv_active(vcpu))
6977 return;
6978
6979 vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
6980 vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
6981 vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
6982 vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
6983 }
6984
vmx_apicv_pre_state_restore(struct kvm_vcpu * vcpu)6985 void vmx_apicv_pre_state_restore(struct kvm_vcpu *vcpu)
6986 {
6987 struct vcpu_vmx *vmx = to_vmx(vcpu);
6988
6989 pi_clear_on(&vmx->pi_desc);
6990 memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir));
6991 }
6992
6993 void vmx_do_interrupt_irqoff(unsigned long entry);
6994 void vmx_do_nmi_irqoff(void);
6995
handle_nm_fault_irqoff(struct kvm_vcpu * vcpu)6996 static void handle_nm_fault_irqoff(struct kvm_vcpu *vcpu)
6997 {
6998 /*
6999 * Save xfd_err to guest_fpu before interrupt is enabled, so the
7000 * MSR value is not clobbered by the host activity before the guest
7001 * has chance to consume it.
7002 *
7003 * Do not blindly read xfd_err here, since this exception might
7004 * be caused by L1 interception on a platform which doesn't
7005 * support xfd at all.
7006 *
7007 * Do it conditionally upon guest_fpu::xfd. xfd_err matters
7008 * only when xfd contains a non-zero value.
7009 *
7010 * Queuing exception is done in vmx_handle_exit. See comment there.
7011 */
7012 if (vcpu->arch.guest_fpu.fpstate->xfd)
7013 rdmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err);
7014 }
7015
handle_exception_irqoff(struct kvm_vcpu * vcpu,u32 intr_info)7016 static void handle_exception_irqoff(struct kvm_vcpu *vcpu, u32 intr_info)
7017 {
7018 /* if exit due to PF check for async PF */
7019 if (is_page_fault(intr_info))
7020 vcpu->arch.apf.host_apf_flags = kvm_read_and_reset_apf_flags();
7021 /* if exit due to NM, handle before interrupts are enabled */
7022 else if (is_nm_fault(intr_info))
7023 handle_nm_fault_irqoff(vcpu);
7024 /* Handle machine checks before interrupts are enabled */
7025 else if (is_machine_check(intr_info))
7026 kvm_machine_check();
7027 }
7028
handle_external_interrupt_irqoff(struct kvm_vcpu * vcpu,u32 intr_info)7029 static void handle_external_interrupt_irqoff(struct kvm_vcpu *vcpu,
7030 u32 intr_info)
7031 {
7032 unsigned int vector = intr_info & INTR_INFO_VECTOR_MASK;
7033
7034 if (KVM_BUG(!is_external_intr(intr_info), vcpu->kvm,
7035 "unexpected VM-Exit interrupt info: 0x%x", intr_info))
7036 return;
7037
7038 kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ);
7039 if (cpu_feature_enabled(X86_FEATURE_FRED))
7040 fred_entry_from_kvm(EVENT_TYPE_EXTINT, vector);
7041 else
7042 vmx_do_interrupt_irqoff(gate_offset((gate_desc *)host_idt_base + vector));
7043 kvm_after_interrupt(vcpu);
7044
7045 vcpu->arch.at_instruction_boundary = true;
7046 }
7047
vmx_handle_exit_irqoff(struct kvm_vcpu * vcpu)7048 void vmx_handle_exit_irqoff(struct kvm_vcpu *vcpu)
7049 {
7050 struct vcpu_vmx *vmx = to_vmx(vcpu);
7051
7052 if (vmx->emulation_required)
7053 return;
7054
7055 if (vmx->exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT)
7056 handle_external_interrupt_irqoff(vcpu, vmx_get_intr_info(vcpu));
7057 else if (vmx->exit_reason.basic == EXIT_REASON_EXCEPTION_NMI)
7058 handle_exception_irqoff(vcpu, vmx_get_intr_info(vcpu));
7059 }
7060
7061 /*
7062 * The kvm parameter can be NULL (module initialization, or invocation before
7063 * VM creation). Be sure to check the kvm parameter before using it.
7064 */
vmx_has_emulated_msr(struct kvm * kvm,u32 index)7065 bool vmx_has_emulated_msr(struct kvm *kvm, u32 index)
7066 {
7067 switch (index) {
7068 case MSR_IA32_SMBASE:
7069 if (!IS_ENABLED(CONFIG_KVM_SMM))
7070 return false;
7071 /*
7072 * We cannot do SMM unless we can run the guest in big
7073 * real mode.
7074 */
7075 return enable_unrestricted_guest || emulate_invalid_guest_state;
7076 case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
7077 return nested;
7078 case MSR_AMD64_VIRT_SPEC_CTRL:
7079 case MSR_AMD64_TSC_RATIO:
7080 /* This is AMD only. */
7081 return false;
7082 default:
7083 return true;
7084 }
7085 }
7086
vmx_recover_nmi_blocking(struct vcpu_vmx * vmx)7087 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
7088 {
7089 u32 exit_intr_info;
7090 bool unblock_nmi;
7091 u8 vector;
7092 bool idtv_info_valid;
7093
7094 idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
7095
7096 if (enable_vnmi) {
7097 if (vmx->loaded_vmcs->nmi_known_unmasked)
7098 return;
7099
7100 exit_intr_info = vmx_get_intr_info(&vmx->vcpu);
7101 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
7102 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
7103 /*
7104 * SDM 3: 27.7.1.2 (September 2008)
7105 * Re-set bit "block by NMI" before VM entry if vmexit caused by
7106 * a guest IRET fault.
7107 * SDM 3: 23.2.2 (September 2008)
7108 * Bit 12 is undefined in any of the following cases:
7109 * If the VM exit sets the valid bit in the IDT-vectoring
7110 * information field.
7111 * If the VM exit is due to a double fault.
7112 */
7113 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
7114 vector != DF_VECTOR && !idtv_info_valid)
7115 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
7116 GUEST_INTR_STATE_NMI);
7117 else
7118 vmx->loaded_vmcs->nmi_known_unmasked =
7119 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
7120 & GUEST_INTR_STATE_NMI);
7121 } else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked))
7122 vmx->loaded_vmcs->vnmi_blocked_time +=
7123 ktime_to_ns(ktime_sub(ktime_get(),
7124 vmx->loaded_vmcs->entry_time));
7125 }
7126
__vmx_complete_interrupts(struct kvm_vcpu * vcpu,u32 idt_vectoring_info,int instr_len_field,int error_code_field)7127 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
7128 u32 idt_vectoring_info,
7129 int instr_len_field,
7130 int error_code_field)
7131 {
7132 u8 vector;
7133 int type;
7134 bool idtv_info_valid;
7135
7136 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
7137
7138 vcpu->arch.nmi_injected = false;
7139 kvm_clear_exception_queue(vcpu);
7140 kvm_clear_interrupt_queue(vcpu);
7141
7142 if (!idtv_info_valid)
7143 return;
7144
7145 kvm_make_request(KVM_REQ_EVENT, vcpu);
7146
7147 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
7148 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
7149
7150 switch (type) {
7151 case INTR_TYPE_NMI_INTR:
7152 vcpu->arch.nmi_injected = true;
7153 /*
7154 * SDM 3: 27.7.1.2 (September 2008)
7155 * Clear bit "block by NMI" before VM entry if a NMI
7156 * delivery faulted.
7157 */
7158 vmx_set_nmi_mask(vcpu, false);
7159 break;
7160 case INTR_TYPE_SOFT_EXCEPTION:
7161 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
7162 fallthrough;
7163 case INTR_TYPE_HARD_EXCEPTION:
7164 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
7165 u32 err = vmcs_read32(error_code_field);
7166 kvm_requeue_exception_e(vcpu, vector, err);
7167 } else
7168 kvm_requeue_exception(vcpu, vector);
7169 break;
7170 case INTR_TYPE_SOFT_INTR:
7171 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
7172 fallthrough;
7173 case INTR_TYPE_EXT_INTR:
7174 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
7175 break;
7176 default:
7177 break;
7178 }
7179 }
7180
vmx_complete_interrupts(struct vcpu_vmx * vmx)7181 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
7182 {
7183 __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
7184 VM_EXIT_INSTRUCTION_LEN,
7185 IDT_VECTORING_ERROR_CODE);
7186 }
7187
vmx_cancel_injection(struct kvm_vcpu * vcpu)7188 void vmx_cancel_injection(struct kvm_vcpu *vcpu)
7189 {
7190 __vmx_complete_interrupts(vcpu,
7191 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
7192 VM_ENTRY_INSTRUCTION_LEN,
7193 VM_ENTRY_EXCEPTION_ERROR_CODE);
7194
7195 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
7196 }
7197
atomic_switch_perf_msrs(struct vcpu_vmx * vmx)7198 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
7199 {
7200 int i, nr_msrs;
7201 struct perf_guest_switch_msr *msrs;
7202 struct kvm_pmu *pmu = vcpu_to_pmu(&vmx->vcpu);
7203
7204 pmu->host_cross_mapped_mask = 0;
7205 if (pmu->pebs_enable & pmu->global_ctrl)
7206 intel_pmu_cross_mapped_check(pmu);
7207
7208 /* Note, nr_msrs may be garbage if perf_guest_get_msrs() returns NULL. */
7209 msrs = perf_guest_get_msrs(&nr_msrs, (void *)pmu);
7210 if (!msrs)
7211 return;
7212
7213 for (i = 0; i < nr_msrs; i++)
7214 if (msrs[i].host == msrs[i].guest)
7215 clear_atomic_switch_msr(vmx, msrs[i].msr);
7216 else
7217 add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
7218 msrs[i].host, false);
7219 }
7220
vmx_update_hv_timer(struct kvm_vcpu * vcpu,bool force_immediate_exit)7221 static void vmx_update_hv_timer(struct kvm_vcpu *vcpu, bool force_immediate_exit)
7222 {
7223 struct vcpu_vmx *vmx = to_vmx(vcpu);
7224 u64 tscl;
7225 u32 delta_tsc;
7226
7227 if (force_immediate_exit) {
7228 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, 0);
7229 vmx->loaded_vmcs->hv_timer_soft_disabled = false;
7230 } else if (vmx->hv_deadline_tsc != -1) {
7231 tscl = rdtsc();
7232 if (vmx->hv_deadline_tsc > tscl)
7233 /* set_hv_timer ensures the delta fits in 32-bits */
7234 delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
7235 cpu_preemption_timer_multi);
7236 else
7237 delta_tsc = 0;
7238
7239 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc);
7240 vmx->loaded_vmcs->hv_timer_soft_disabled = false;
7241 } else if (!vmx->loaded_vmcs->hv_timer_soft_disabled) {
7242 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, -1);
7243 vmx->loaded_vmcs->hv_timer_soft_disabled = true;
7244 }
7245 }
7246
vmx_update_host_rsp(struct vcpu_vmx * vmx,unsigned long host_rsp)7247 void noinstr vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp)
7248 {
7249 if (unlikely(host_rsp != vmx->loaded_vmcs->host_state.rsp)) {
7250 vmx->loaded_vmcs->host_state.rsp = host_rsp;
7251 vmcs_writel(HOST_RSP, host_rsp);
7252 }
7253 }
7254
vmx_spec_ctrl_restore_host(struct vcpu_vmx * vmx,unsigned int flags)7255 void noinstr vmx_spec_ctrl_restore_host(struct vcpu_vmx *vmx,
7256 unsigned int flags)
7257 {
7258 u64 hostval = this_cpu_read(x86_spec_ctrl_current);
7259
7260 if (!cpu_feature_enabled(X86_FEATURE_MSR_SPEC_CTRL))
7261 return;
7262
7263 if (flags & VMX_RUN_SAVE_SPEC_CTRL)
7264 vmx->spec_ctrl = __rdmsr(MSR_IA32_SPEC_CTRL);
7265
7266 /*
7267 * If the guest/host SPEC_CTRL values differ, restore the host value.
7268 *
7269 * For legacy IBRS, the IBRS bit always needs to be written after
7270 * transitioning from a less privileged predictor mode, regardless of
7271 * whether the guest/host values differ.
7272 */
7273 if (cpu_feature_enabled(X86_FEATURE_KERNEL_IBRS) ||
7274 vmx->spec_ctrl != hostval)
7275 native_wrmsrl(MSR_IA32_SPEC_CTRL, hostval);
7276
7277 barrier_nospec();
7278 }
7279
vmx_exit_handlers_fastpath(struct kvm_vcpu * vcpu,bool force_immediate_exit)7280 static fastpath_t vmx_exit_handlers_fastpath(struct kvm_vcpu *vcpu,
7281 bool force_immediate_exit)
7282 {
7283 /*
7284 * If L2 is active, some VMX preemption timer exits can be handled in
7285 * the fastpath even, all other exits must use the slow path.
7286 */
7287 if (is_guest_mode(vcpu) &&
7288 to_vmx(vcpu)->exit_reason.basic != EXIT_REASON_PREEMPTION_TIMER)
7289 return EXIT_FASTPATH_NONE;
7290
7291 switch (to_vmx(vcpu)->exit_reason.basic) {
7292 case EXIT_REASON_MSR_WRITE:
7293 return handle_fastpath_set_msr_irqoff(vcpu);
7294 case EXIT_REASON_PREEMPTION_TIMER:
7295 return handle_fastpath_preemption_timer(vcpu, force_immediate_exit);
7296 case EXIT_REASON_HLT:
7297 return handle_fastpath_hlt(vcpu);
7298 default:
7299 return EXIT_FASTPATH_NONE;
7300 }
7301 }
7302
vmx_vcpu_enter_exit(struct kvm_vcpu * vcpu,unsigned int flags)7303 static noinstr void vmx_vcpu_enter_exit(struct kvm_vcpu *vcpu,
7304 unsigned int flags)
7305 {
7306 struct vcpu_vmx *vmx = to_vmx(vcpu);
7307
7308 guest_state_enter_irqoff();
7309
7310 /*
7311 * L1D Flush includes CPU buffer clear to mitigate MDS, but VERW
7312 * mitigation for MDS is done late in VMentry and is still
7313 * executed in spite of L1D Flush. This is because an extra VERW
7314 * should not matter much after the big hammer L1D Flush.
7315 */
7316 if (static_branch_unlikely(&vmx_l1d_should_flush))
7317 vmx_l1d_flush(vcpu);
7318 else if (static_branch_unlikely(&mmio_stale_data_clear) &&
7319 kvm_arch_has_assigned_device(vcpu->kvm))
7320 x86_clear_cpu_buffers();
7321
7322 vmx_disable_fb_clear(vmx);
7323
7324 if (vcpu->arch.cr2 != native_read_cr2())
7325 native_write_cr2(vcpu->arch.cr2);
7326
7327 vmx->fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs,
7328 flags);
7329
7330 vcpu->arch.cr2 = native_read_cr2();
7331 vcpu->arch.regs_avail &= ~VMX_REGS_LAZY_LOAD_SET;
7332
7333 vmx->idt_vectoring_info = 0;
7334
7335 vmx_enable_fb_clear(vmx);
7336
7337 if (unlikely(vmx->fail)) {
7338 vmx->exit_reason.full = 0xdead;
7339 goto out;
7340 }
7341
7342 vmx->exit_reason.full = vmcs_read32(VM_EXIT_REASON);
7343 if (likely(!vmx->exit_reason.failed_vmentry))
7344 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
7345
7346 if ((u16)vmx->exit_reason.basic == EXIT_REASON_EXCEPTION_NMI &&
7347 is_nmi(vmx_get_intr_info(vcpu))) {
7348 kvm_before_interrupt(vcpu, KVM_HANDLING_NMI);
7349 if (cpu_feature_enabled(X86_FEATURE_FRED))
7350 fred_entry_from_kvm(EVENT_TYPE_NMI, NMI_VECTOR);
7351 else
7352 vmx_do_nmi_irqoff();
7353 kvm_after_interrupt(vcpu);
7354 }
7355
7356 out:
7357 guest_state_exit_irqoff();
7358 }
7359
vmx_vcpu_run(struct kvm_vcpu * vcpu,u64 run_flags)7360 fastpath_t vmx_vcpu_run(struct kvm_vcpu *vcpu, u64 run_flags)
7361 {
7362 bool force_immediate_exit = run_flags & KVM_RUN_FORCE_IMMEDIATE_EXIT;
7363 struct vcpu_vmx *vmx = to_vmx(vcpu);
7364 unsigned long cr3, cr4;
7365
7366 /* Record the guest's net vcpu time for enforced NMI injections. */
7367 if (unlikely(!enable_vnmi &&
7368 vmx->loaded_vmcs->soft_vnmi_blocked))
7369 vmx->loaded_vmcs->entry_time = ktime_get();
7370
7371 /*
7372 * Don't enter VMX if guest state is invalid, let the exit handler
7373 * start emulation until we arrive back to a valid state. Synthesize a
7374 * consistency check VM-Exit due to invalid guest state and bail.
7375 */
7376 if (unlikely(vmx->emulation_required)) {
7377 vmx->fail = 0;
7378
7379 vmx->exit_reason.full = EXIT_REASON_INVALID_STATE;
7380 vmx->exit_reason.failed_vmentry = 1;
7381 kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_1);
7382 vmx->exit_qualification = ENTRY_FAIL_DEFAULT;
7383 kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_2);
7384 vmx->exit_intr_info = 0;
7385 return EXIT_FASTPATH_NONE;
7386 }
7387
7388 trace_kvm_entry(vcpu, force_immediate_exit);
7389
7390 if (vmx->ple_window_dirty) {
7391 vmx->ple_window_dirty = false;
7392 vmcs_write32(PLE_WINDOW, vmx->ple_window);
7393 }
7394
7395 /*
7396 * We did this in prepare_switch_to_guest, because it needs to
7397 * be within srcu_read_lock.
7398 */
7399 WARN_ON_ONCE(vmx->nested.need_vmcs12_to_shadow_sync);
7400
7401 if (kvm_register_is_dirty(vcpu, VCPU_REGS_RSP))
7402 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
7403 if (kvm_register_is_dirty(vcpu, VCPU_REGS_RIP))
7404 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
7405 vcpu->arch.regs_dirty = 0;
7406
7407 if (run_flags & KVM_RUN_LOAD_GUEST_DR6)
7408 set_debugreg(vcpu->arch.dr6, 6);
7409
7410 if (run_flags & KVM_RUN_LOAD_DEBUGCTL)
7411 vmx_reload_guest_debugctl(vcpu);
7412
7413 /*
7414 * Refresh vmcs.HOST_CR3 if necessary. This must be done immediately
7415 * prior to VM-Enter, as the kernel may load a new ASID (PCID) any time
7416 * it switches back to the current->mm, which can occur in KVM context
7417 * when switching to a temporary mm to patch kernel code, e.g. if KVM
7418 * toggles a static key while handling a VM-Exit.
7419 */
7420 cr3 = __get_current_cr3_fast();
7421 if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
7422 vmcs_writel(HOST_CR3, cr3);
7423 vmx->loaded_vmcs->host_state.cr3 = cr3;
7424 }
7425
7426 cr4 = cr4_read_shadow();
7427 if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
7428 vmcs_writel(HOST_CR4, cr4);
7429 vmx->loaded_vmcs->host_state.cr4 = cr4;
7430 }
7431
7432 /* When single-stepping over STI and MOV SS, we must clear the
7433 * corresponding interruptibility bits in the guest state. Otherwise
7434 * vmentry fails as it then expects bit 14 (BS) in pending debug
7435 * exceptions being set, but that's not correct for the guest debugging
7436 * case. */
7437 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7438 vmx_set_interrupt_shadow(vcpu, 0);
7439
7440 kvm_load_guest_xsave_state(vcpu);
7441
7442 pt_guest_enter(vmx);
7443
7444 atomic_switch_perf_msrs(vmx);
7445 if (intel_pmu_lbr_is_enabled(vcpu))
7446 vmx_passthrough_lbr_msrs(vcpu);
7447
7448 if (enable_preemption_timer)
7449 vmx_update_hv_timer(vcpu, force_immediate_exit);
7450 else if (force_immediate_exit)
7451 smp_send_reschedule(vcpu->cpu);
7452
7453 kvm_wait_lapic_expire(vcpu);
7454
7455 /* The actual VMENTER/EXIT is in the .noinstr.text section. */
7456 vmx_vcpu_enter_exit(vcpu, __vmx_vcpu_run_flags(vmx));
7457
7458 /* All fields are clean at this point */
7459 if (kvm_is_using_evmcs()) {
7460 current_evmcs->hv_clean_fields |=
7461 HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
7462
7463 current_evmcs->hv_vp_id = kvm_hv_get_vpindex(vcpu);
7464 }
7465
7466 /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
7467 if (vcpu->arch.host_debugctl)
7468 update_debugctlmsr(vcpu->arch.host_debugctl);
7469
7470 #ifndef CONFIG_X86_64
7471 /*
7472 * The sysexit path does not restore ds/es, so we must set them to
7473 * a reasonable value ourselves.
7474 *
7475 * We can't defer this to vmx_prepare_switch_to_host() since that
7476 * function may be executed in interrupt context, which saves and
7477 * restore segments around it, nullifying its effect.
7478 */
7479 loadsegment(ds, __USER_DS);
7480 loadsegment(es, __USER_DS);
7481 #endif
7482
7483 pt_guest_exit(vmx);
7484
7485 kvm_load_host_xsave_state(vcpu);
7486
7487 if (is_guest_mode(vcpu)) {
7488 /*
7489 * Track VMLAUNCH/VMRESUME that have made past guest state
7490 * checking.
7491 */
7492 if (vmx->nested.nested_run_pending &&
7493 !vmx->exit_reason.failed_vmentry)
7494 ++vcpu->stat.nested_run;
7495
7496 vmx->nested.nested_run_pending = 0;
7497 }
7498
7499 if (unlikely(vmx->fail))
7500 return EXIT_FASTPATH_NONE;
7501
7502 if (unlikely((u16)vmx->exit_reason.basic == EXIT_REASON_MCE_DURING_VMENTRY))
7503 kvm_machine_check();
7504
7505 trace_kvm_exit(vcpu, KVM_ISA_VMX);
7506
7507 if (unlikely(vmx->exit_reason.failed_vmentry))
7508 return EXIT_FASTPATH_NONE;
7509
7510 vmx->loaded_vmcs->launched = 1;
7511
7512 vmx_recover_nmi_blocking(vmx);
7513 vmx_complete_interrupts(vmx);
7514
7515 return vmx_exit_handlers_fastpath(vcpu, force_immediate_exit);
7516 }
7517
vmx_vcpu_free(struct kvm_vcpu * vcpu)7518 void vmx_vcpu_free(struct kvm_vcpu *vcpu)
7519 {
7520 struct vcpu_vmx *vmx = to_vmx(vcpu);
7521
7522 if (enable_pml)
7523 vmx_destroy_pml_buffer(vmx);
7524 free_vpid(vmx->vpid);
7525 nested_vmx_free_vcpu(vcpu);
7526 free_loaded_vmcs(vmx->loaded_vmcs);
7527 free_page((unsigned long)vmx->ve_info);
7528 }
7529
vmx_vcpu_create(struct kvm_vcpu * vcpu)7530 int vmx_vcpu_create(struct kvm_vcpu *vcpu)
7531 {
7532 struct vmx_uret_msr *tsx_ctrl;
7533 struct vcpu_vmx *vmx;
7534 int i, err;
7535
7536 BUILD_BUG_ON(offsetof(struct vcpu_vmx, vcpu) != 0);
7537 vmx = to_vmx(vcpu);
7538
7539 INIT_LIST_HEAD(&vmx->pi_wakeup_list);
7540
7541 err = -ENOMEM;
7542
7543 vmx->vpid = allocate_vpid();
7544
7545 /*
7546 * If PML is turned on, failure on enabling PML just results in failure
7547 * of creating the vcpu, therefore we can simplify PML logic (by
7548 * avoiding dealing with cases, such as enabling PML partially on vcpus
7549 * for the guest), etc.
7550 */
7551 if (enable_pml) {
7552 vmx->pml_pg = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
7553 if (!vmx->pml_pg)
7554 goto free_vpid;
7555 }
7556
7557 for (i = 0; i < kvm_nr_uret_msrs; ++i)
7558 vmx->guest_uret_msrs[i].mask = -1ull;
7559 if (boot_cpu_has(X86_FEATURE_RTM)) {
7560 /*
7561 * TSX_CTRL_CPUID_CLEAR is handled in the CPUID interception.
7562 * Keep the host value unchanged to avoid changing CPUID bits
7563 * under the host kernel's feet.
7564 */
7565 tsx_ctrl = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL);
7566 if (tsx_ctrl)
7567 tsx_ctrl->mask = ~(u64)TSX_CTRL_CPUID_CLEAR;
7568 }
7569
7570 err = alloc_loaded_vmcs(&vmx->vmcs01);
7571 if (err < 0)
7572 goto free_pml;
7573
7574 /*
7575 * Use Hyper-V 'Enlightened MSR Bitmap' feature when KVM runs as a
7576 * nested (L1) hypervisor and Hyper-V in L0 supports it. Enable the
7577 * feature only for vmcs01, KVM currently isn't equipped to realize any
7578 * performance benefits from enabling it for vmcs02.
7579 */
7580 if (kvm_is_using_evmcs() &&
7581 (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) {
7582 struct hv_enlightened_vmcs *evmcs = (void *)vmx->vmcs01.vmcs;
7583
7584 evmcs->hv_enlightenments_control.msr_bitmap = 1;
7585 }
7586
7587 /* The MSR bitmap starts with all ones */
7588 bitmap_fill(vmx->shadow_msr_intercept.read, MAX_POSSIBLE_PASSTHROUGH_MSRS);
7589 bitmap_fill(vmx->shadow_msr_intercept.write, MAX_POSSIBLE_PASSTHROUGH_MSRS);
7590
7591 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_TSC, MSR_TYPE_R);
7592 #ifdef CONFIG_X86_64
7593 vmx_disable_intercept_for_msr(vcpu, MSR_FS_BASE, MSR_TYPE_RW);
7594 vmx_disable_intercept_for_msr(vcpu, MSR_GS_BASE, MSR_TYPE_RW);
7595 vmx_disable_intercept_for_msr(vcpu, MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
7596 #endif
7597 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW);
7598 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW);
7599 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW);
7600 if (kvm_cstate_in_guest(vcpu->kvm)) {
7601 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C1_RES, MSR_TYPE_R);
7602 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C3_RESIDENCY, MSR_TYPE_R);
7603 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C6_RESIDENCY, MSR_TYPE_R);
7604 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C7_RESIDENCY, MSR_TYPE_R);
7605 }
7606
7607 vmx->loaded_vmcs = &vmx->vmcs01;
7608
7609 if (cpu_need_virtualize_apic_accesses(vcpu)) {
7610 err = kvm_alloc_apic_access_page(vcpu->kvm);
7611 if (err)
7612 goto free_vmcs;
7613 }
7614
7615 if (enable_ept && !enable_unrestricted_guest) {
7616 err = init_rmode_identity_map(vcpu->kvm);
7617 if (err)
7618 goto free_vmcs;
7619 }
7620
7621 err = -ENOMEM;
7622 if (vmcs_config.cpu_based_2nd_exec_ctrl & SECONDARY_EXEC_EPT_VIOLATION_VE) {
7623 struct page *page;
7624
7625 BUILD_BUG_ON(sizeof(*vmx->ve_info) > PAGE_SIZE);
7626
7627 /* ve_info must be page aligned. */
7628 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
7629 if (!page)
7630 goto free_vmcs;
7631
7632 vmx->ve_info = page_to_virt(page);
7633 }
7634
7635 if (vmx_can_use_ipiv(vcpu))
7636 WRITE_ONCE(to_kvm_vmx(vcpu->kvm)->pid_table[vcpu->vcpu_id],
7637 __pa(&vmx->pi_desc) | PID_TABLE_ENTRY_VALID);
7638
7639 return 0;
7640
7641 free_vmcs:
7642 free_loaded_vmcs(vmx->loaded_vmcs);
7643 free_pml:
7644 vmx_destroy_pml_buffer(vmx);
7645 free_vpid:
7646 free_vpid(vmx->vpid);
7647 return err;
7648 }
7649
7650 #define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
7651 #define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
7652
vmx_vm_init(struct kvm * kvm)7653 int vmx_vm_init(struct kvm *kvm)
7654 {
7655 if (!ple_gap)
7656 kvm->arch.pause_in_guest = true;
7657
7658 if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) {
7659 switch (l1tf_mitigation) {
7660 case L1TF_MITIGATION_OFF:
7661 case L1TF_MITIGATION_FLUSH_NOWARN:
7662 /* 'I explicitly don't care' is set */
7663 break;
7664 case L1TF_MITIGATION_FLUSH:
7665 case L1TF_MITIGATION_FLUSH_NOSMT:
7666 case L1TF_MITIGATION_FULL:
7667 /*
7668 * Warn upon starting the first VM in a potentially
7669 * insecure environment.
7670 */
7671 if (sched_smt_active())
7672 pr_warn_once(L1TF_MSG_SMT);
7673 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER)
7674 pr_warn_once(L1TF_MSG_L1D);
7675 break;
7676 case L1TF_MITIGATION_FULL_FORCE:
7677 /* Flush is enforced */
7678 break;
7679 }
7680 }
7681 return 0;
7682 }
7683
vmx_get_mt_mask(struct kvm_vcpu * vcpu,gfn_t gfn,bool is_mmio)7684 u8 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
7685 {
7686 /*
7687 * Force UC for host MMIO regions, as allowing the guest to access MMIO
7688 * with cacheable accesses will result in Machine Checks.
7689 */
7690 if (is_mmio)
7691 return MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
7692
7693 /*
7694 * Force WB and ignore guest PAT if the VM does NOT have a non-coherent
7695 * device attached. Letting the guest control memory types on Intel
7696 * CPUs may result in unexpected behavior, and so KVM's ABI is to trust
7697 * the guest to behave only as a last resort.
7698 */
7699 if (!kvm_arch_has_noncoherent_dma(vcpu->kvm))
7700 return (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT) | VMX_EPT_IPAT_BIT;
7701
7702 return (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT);
7703 }
7704
vmcs_set_secondary_exec_control(struct vcpu_vmx * vmx,u32 new_ctl)7705 static void vmcs_set_secondary_exec_control(struct vcpu_vmx *vmx, u32 new_ctl)
7706 {
7707 /*
7708 * These bits in the secondary execution controls field
7709 * are dynamic, the others are mostly based on the hypervisor
7710 * architecture and the guest's CPUID. Do not touch the
7711 * dynamic bits.
7712 */
7713 u32 mask =
7714 SECONDARY_EXEC_SHADOW_VMCS |
7715 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
7716 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
7717 SECONDARY_EXEC_DESC;
7718
7719 u32 cur_ctl = secondary_exec_controls_get(vmx);
7720
7721 secondary_exec_controls_set(vmx, (new_ctl & ~mask) | (cur_ctl & mask));
7722 }
7723
7724 /*
7725 * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
7726 * (indicating "allowed-1") if they are supported in the guest's CPUID.
7727 */
nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu * vcpu)7728 static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu)
7729 {
7730 struct vcpu_vmx *vmx = to_vmx(vcpu);
7731 struct kvm_cpuid_entry2 *entry;
7732
7733 vmx->nested.msrs.cr0_fixed1 = 0xffffffff;
7734 vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE;
7735
7736 #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do { \
7737 if (entry && (entry->_reg & (_cpuid_mask))) \
7738 vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask); \
7739 } while (0)
7740
7741 entry = kvm_find_cpuid_entry(vcpu, 0x1);
7742 cr4_fixed1_update(X86_CR4_VME, edx, feature_bit(VME));
7743 cr4_fixed1_update(X86_CR4_PVI, edx, feature_bit(VME));
7744 cr4_fixed1_update(X86_CR4_TSD, edx, feature_bit(TSC));
7745 cr4_fixed1_update(X86_CR4_DE, edx, feature_bit(DE));
7746 cr4_fixed1_update(X86_CR4_PSE, edx, feature_bit(PSE));
7747 cr4_fixed1_update(X86_CR4_PAE, edx, feature_bit(PAE));
7748 cr4_fixed1_update(X86_CR4_MCE, edx, feature_bit(MCE));
7749 cr4_fixed1_update(X86_CR4_PGE, edx, feature_bit(PGE));
7750 cr4_fixed1_update(X86_CR4_OSFXSR, edx, feature_bit(FXSR));
7751 cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, feature_bit(XMM));
7752 cr4_fixed1_update(X86_CR4_VMXE, ecx, feature_bit(VMX));
7753 cr4_fixed1_update(X86_CR4_SMXE, ecx, feature_bit(SMX));
7754 cr4_fixed1_update(X86_CR4_PCIDE, ecx, feature_bit(PCID));
7755 cr4_fixed1_update(X86_CR4_OSXSAVE, ecx, feature_bit(XSAVE));
7756
7757 entry = kvm_find_cpuid_entry_index(vcpu, 0x7, 0);
7758 cr4_fixed1_update(X86_CR4_FSGSBASE, ebx, feature_bit(FSGSBASE));
7759 cr4_fixed1_update(X86_CR4_SMEP, ebx, feature_bit(SMEP));
7760 cr4_fixed1_update(X86_CR4_SMAP, ebx, feature_bit(SMAP));
7761 cr4_fixed1_update(X86_CR4_PKE, ecx, feature_bit(PKU));
7762 cr4_fixed1_update(X86_CR4_UMIP, ecx, feature_bit(UMIP));
7763 cr4_fixed1_update(X86_CR4_LA57, ecx, feature_bit(LA57));
7764
7765 entry = kvm_find_cpuid_entry_index(vcpu, 0x7, 1);
7766 cr4_fixed1_update(X86_CR4_LAM_SUP, eax, feature_bit(LAM));
7767
7768 #undef cr4_fixed1_update
7769 }
7770
update_intel_pt_cfg(struct kvm_vcpu * vcpu)7771 static void update_intel_pt_cfg(struct kvm_vcpu *vcpu)
7772 {
7773 struct vcpu_vmx *vmx = to_vmx(vcpu);
7774 struct kvm_cpuid_entry2 *best = NULL;
7775 int i;
7776
7777 for (i = 0; i < PT_CPUID_LEAVES; i++) {
7778 best = kvm_find_cpuid_entry_index(vcpu, 0x14, i);
7779 if (!best)
7780 return;
7781 vmx->pt_desc.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM] = best->eax;
7782 vmx->pt_desc.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM] = best->ebx;
7783 vmx->pt_desc.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM] = best->ecx;
7784 vmx->pt_desc.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM] = best->edx;
7785 }
7786
7787 /* Get the number of configurable Address Ranges for filtering */
7788 vmx->pt_desc.num_address_ranges = intel_pt_validate_cap(vmx->pt_desc.caps,
7789 PT_CAP_num_address_ranges);
7790
7791 /* Initialize and clear the no dependency bits */
7792 vmx->pt_desc.ctl_bitmask = ~(RTIT_CTL_TRACEEN | RTIT_CTL_OS |
7793 RTIT_CTL_USR | RTIT_CTL_TSC_EN | RTIT_CTL_DISRETC |
7794 RTIT_CTL_BRANCH_EN);
7795
7796 /*
7797 * If CPUID.(EAX=14H,ECX=0):EBX[0]=1 CR3Filter can be set otherwise
7798 * will inject an #GP
7799 */
7800 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering))
7801 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_CR3EN;
7802
7803 /*
7804 * If CPUID.(EAX=14H,ECX=0):EBX[1]=1 CYCEn, CycThresh and
7805 * PSBFreq can be set
7806 */
7807 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc))
7808 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_CYCLEACC |
7809 RTIT_CTL_CYC_THRESH | RTIT_CTL_PSB_FREQ);
7810
7811 /*
7812 * If CPUID.(EAX=14H,ECX=0):EBX[3]=1 MTCEn and MTCFreq can be set
7813 */
7814 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc))
7815 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_MTC_EN |
7816 RTIT_CTL_MTC_RANGE);
7817
7818 /* If CPUID.(EAX=14H,ECX=0):EBX[4]=1 FUPonPTW and PTWEn can be set */
7819 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_ptwrite))
7820 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_FUP_ON_PTW |
7821 RTIT_CTL_PTW_EN);
7822
7823 /* If CPUID.(EAX=14H,ECX=0):EBX[5]=1 PwrEvEn can be set */
7824 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_power_event_trace))
7825 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_PWR_EVT_EN;
7826
7827 /* If CPUID.(EAX=14H,ECX=0):ECX[0]=1 ToPA can be set */
7828 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output))
7829 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_TOPA;
7830
7831 /* If CPUID.(EAX=14H,ECX=0):ECX[3]=1 FabricEn can be set */
7832 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_output_subsys))
7833 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_FABRIC_EN;
7834
7835 /* unmask address range configure area */
7836 for (i = 0; i < vmx->pt_desc.num_address_ranges; i++)
7837 vmx->pt_desc.ctl_bitmask &= ~(0xfULL << (32 + i * 4));
7838 }
7839
vmx_vcpu_after_set_cpuid(struct kvm_vcpu * vcpu)7840 void vmx_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
7841 {
7842 struct vcpu_vmx *vmx = to_vmx(vcpu);
7843
7844 /*
7845 * XSAVES is effectively enabled if and only if XSAVE is also exposed
7846 * to the guest. XSAVES depends on CR4.OSXSAVE, and CR4.OSXSAVE can be
7847 * set if and only if XSAVE is supported.
7848 */
7849 if (boot_cpu_has(X86_FEATURE_XSAVE) &&
7850 guest_cpuid_has(vcpu, X86_FEATURE_XSAVE))
7851 kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_XSAVES);
7852
7853 kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_VMX);
7854 kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_LAM);
7855
7856 vmx_setup_uret_msrs(vmx);
7857
7858 if (cpu_has_secondary_exec_ctrls())
7859 vmcs_set_secondary_exec_control(vmx,
7860 vmx_secondary_exec_control(vmx));
7861
7862 if (guest_can_use(vcpu, X86_FEATURE_VMX))
7863 vmx->msr_ia32_feature_control_valid_bits |=
7864 FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7865 FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
7866 else
7867 vmx->msr_ia32_feature_control_valid_bits &=
7868 ~(FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7869 FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX);
7870
7871 if (guest_can_use(vcpu, X86_FEATURE_VMX))
7872 nested_vmx_cr_fixed1_bits_update(vcpu);
7873
7874 if (boot_cpu_has(X86_FEATURE_INTEL_PT) &&
7875 guest_cpuid_has(vcpu, X86_FEATURE_INTEL_PT))
7876 update_intel_pt_cfg(vcpu);
7877
7878 if (boot_cpu_has(X86_FEATURE_RTM)) {
7879 struct vmx_uret_msr *msr;
7880 msr = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL);
7881 if (msr) {
7882 bool enabled = guest_cpuid_has(vcpu, X86_FEATURE_RTM);
7883 vmx_set_guest_uret_msr(vmx, msr, enabled ? 0 : TSX_CTRL_RTM_DISABLE);
7884 }
7885 }
7886
7887 if (kvm_cpu_cap_has(X86_FEATURE_XFD))
7888 vmx_set_intercept_for_msr(vcpu, MSR_IA32_XFD_ERR, MSR_TYPE_R,
7889 !guest_cpuid_has(vcpu, X86_FEATURE_XFD));
7890
7891 if (boot_cpu_has(X86_FEATURE_IBPB))
7892 vmx_set_intercept_for_msr(vcpu, MSR_IA32_PRED_CMD, MSR_TYPE_W,
7893 !guest_has_pred_cmd_msr(vcpu));
7894
7895 if (boot_cpu_has(X86_FEATURE_FLUSH_L1D))
7896 vmx_set_intercept_for_msr(vcpu, MSR_IA32_FLUSH_CMD, MSR_TYPE_W,
7897 !guest_cpuid_has(vcpu, X86_FEATURE_FLUSH_L1D));
7898
7899 set_cr4_guest_host_mask(vmx);
7900
7901 vmx_write_encls_bitmap(vcpu, NULL);
7902 if (guest_cpuid_has(vcpu, X86_FEATURE_SGX))
7903 vmx->msr_ia32_feature_control_valid_bits |= FEAT_CTL_SGX_ENABLED;
7904 else
7905 vmx->msr_ia32_feature_control_valid_bits &= ~FEAT_CTL_SGX_ENABLED;
7906
7907 if (guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC))
7908 vmx->msr_ia32_feature_control_valid_bits |=
7909 FEAT_CTL_SGX_LC_ENABLED;
7910 else
7911 vmx->msr_ia32_feature_control_valid_bits &=
7912 ~FEAT_CTL_SGX_LC_ENABLED;
7913
7914 /* Refresh #PF interception to account for MAXPHYADDR changes. */
7915 vmx_update_exception_bitmap(vcpu);
7916 }
7917
vmx_get_perf_capabilities(void)7918 static __init u64 vmx_get_perf_capabilities(void)
7919 {
7920 u64 perf_cap = PMU_CAP_FW_WRITES;
7921 u64 host_perf_cap = 0;
7922
7923 if (!enable_pmu)
7924 return 0;
7925
7926 if (boot_cpu_has(X86_FEATURE_PDCM))
7927 rdmsrl(MSR_IA32_PERF_CAPABILITIES, host_perf_cap);
7928
7929 if (!cpu_feature_enabled(X86_FEATURE_ARCH_LBR)) {
7930 x86_perf_get_lbr(&vmx_lbr_caps);
7931
7932 /*
7933 * KVM requires LBR callstack support, as the overhead due to
7934 * context switching LBRs without said support is too high.
7935 * See intel_pmu_create_guest_lbr_event() for more info.
7936 */
7937 if (!vmx_lbr_caps.has_callstack)
7938 memset(&vmx_lbr_caps, 0, sizeof(vmx_lbr_caps));
7939 else if (vmx_lbr_caps.nr)
7940 perf_cap |= host_perf_cap & PMU_CAP_LBR_FMT;
7941 }
7942
7943 if (vmx_pebs_supported()) {
7944 perf_cap |= host_perf_cap & PERF_CAP_PEBS_MASK;
7945
7946 /*
7947 * Disallow adaptive PEBS as it is functionally broken, can be
7948 * used by the guest to read *host* LBRs, and can be used to
7949 * bypass userspace event filters. To correctly and safely
7950 * support adaptive PEBS, KVM needs to:
7951 *
7952 * 1. Account for the ADAPTIVE flag when (re)programming fixed
7953 * counters.
7954 *
7955 * 2. Gain support from perf (or take direct control of counter
7956 * programming) to support events without adaptive PEBS
7957 * enabled for the hardware counter.
7958 *
7959 * 3. Ensure LBR MSRs cannot hold host data on VM-Entry with
7960 * adaptive PEBS enabled and MSR_PEBS_DATA_CFG.LBRS=1.
7961 *
7962 * 4. Document which PMU events are effectively exposed to the
7963 * guest via adaptive PEBS, and make adaptive PEBS mutually
7964 * exclusive with KVM_SET_PMU_EVENT_FILTER if necessary.
7965 */
7966 perf_cap &= ~PERF_CAP_PEBS_BASELINE;
7967 }
7968
7969 return perf_cap;
7970 }
7971
vmx_set_cpu_caps(void)7972 static __init void vmx_set_cpu_caps(void)
7973 {
7974 kvm_set_cpu_caps();
7975
7976 /* CPUID 0x1 */
7977 if (nested)
7978 kvm_cpu_cap_set(X86_FEATURE_VMX);
7979
7980 /* CPUID 0x7 */
7981 if (kvm_mpx_supported())
7982 kvm_cpu_cap_check_and_set(X86_FEATURE_MPX);
7983 if (!cpu_has_vmx_invpcid())
7984 kvm_cpu_cap_clear(X86_FEATURE_INVPCID);
7985 if (vmx_pt_mode_is_host_guest())
7986 kvm_cpu_cap_check_and_set(X86_FEATURE_INTEL_PT);
7987 if (vmx_pebs_supported()) {
7988 kvm_cpu_cap_check_and_set(X86_FEATURE_DS);
7989 kvm_cpu_cap_check_and_set(X86_FEATURE_DTES64);
7990 }
7991
7992 if (!enable_pmu)
7993 kvm_cpu_cap_clear(X86_FEATURE_PDCM);
7994 kvm_caps.supported_perf_cap = vmx_get_perf_capabilities();
7995
7996 if (!enable_sgx) {
7997 kvm_cpu_cap_clear(X86_FEATURE_SGX);
7998 kvm_cpu_cap_clear(X86_FEATURE_SGX_LC);
7999 kvm_cpu_cap_clear(X86_FEATURE_SGX1);
8000 kvm_cpu_cap_clear(X86_FEATURE_SGX2);
8001 kvm_cpu_cap_clear(X86_FEATURE_SGX_EDECCSSA);
8002 }
8003
8004 if (vmx_umip_emulated())
8005 kvm_cpu_cap_set(X86_FEATURE_UMIP);
8006
8007 /* CPUID 0xD.1 */
8008 kvm_caps.supported_xss = 0;
8009 if (!cpu_has_vmx_xsaves())
8010 kvm_cpu_cap_clear(X86_FEATURE_XSAVES);
8011
8012 /* CPUID 0x80000001 and 0x7 (RDPID) */
8013 if (!cpu_has_vmx_rdtscp()) {
8014 kvm_cpu_cap_clear(X86_FEATURE_RDTSCP);
8015 kvm_cpu_cap_clear(X86_FEATURE_RDPID);
8016 }
8017
8018 if (cpu_has_vmx_waitpkg())
8019 kvm_cpu_cap_check_and_set(X86_FEATURE_WAITPKG);
8020 }
8021
vmx_check_intercept_io(struct kvm_vcpu * vcpu,struct x86_instruction_info * info)8022 static int vmx_check_intercept_io(struct kvm_vcpu *vcpu,
8023 struct x86_instruction_info *info)
8024 {
8025 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8026 unsigned short port;
8027 bool intercept;
8028 int size;
8029
8030 if (info->intercept == x86_intercept_in ||
8031 info->intercept == x86_intercept_ins) {
8032 port = info->src_val;
8033 size = info->dst_bytes;
8034 } else {
8035 port = info->dst_val;
8036 size = info->src_bytes;
8037 }
8038
8039 /*
8040 * If the 'use IO bitmaps' VM-execution control is 0, IO instruction
8041 * VM-exits depend on the 'unconditional IO exiting' VM-execution
8042 * control.
8043 *
8044 * Otherwise, IO instruction VM-exits are controlled by the IO bitmaps.
8045 */
8046 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
8047 intercept = nested_cpu_has(vmcs12,
8048 CPU_BASED_UNCOND_IO_EXITING);
8049 else
8050 intercept = nested_vmx_check_io_bitmaps(vcpu, port, size);
8051
8052 /* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED. */
8053 return intercept ? X86EMUL_UNHANDLEABLE : X86EMUL_CONTINUE;
8054 }
8055
vmx_check_intercept(struct kvm_vcpu * vcpu,struct x86_instruction_info * info,enum x86_intercept_stage stage,struct x86_exception * exception)8056 int vmx_check_intercept(struct kvm_vcpu *vcpu,
8057 struct x86_instruction_info *info,
8058 enum x86_intercept_stage stage,
8059 struct x86_exception *exception)
8060 {
8061 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8062
8063 switch (info->intercept) {
8064 /*
8065 * RDPID causes #UD if disabled through secondary execution controls.
8066 * Because it is marked as EmulateOnUD, we need to intercept it here.
8067 * Note, RDPID is hidden behind ENABLE_RDTSCP.
8068 */
8069 case x86_intercept_rdpid:
8070 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_RDTSCP)) {
8071 exception->vector = UD_VECTOR;
8072 exception->error_code_valid = false;
8073 return X86EMUL_PROPAGATE_FAULT;
8074 }
8075 break;
8076
8077 case x86_intercept_in:
8078 case x86_intercept_ins:
8079 case x86_intercept_out:
8080 case x86_intercept_outs:
8081 return vmx_check_intercept_io(vcpu, info);
8082
8083 case x86_intercept_lgdt:
8084 case x86_intercept_lidt:
8085 case x86_intercept_lldt:
8086 case x86_intercept_ltr:
8087 case x86_intercept_sgdt:
8088 case x86_intercept_sidt:
8089 case x86_intercept_sldt:
8090 case x86_intercept_str:
8091 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC))
8092 return X86EMUL_CONTINUE;
8093
8094 /* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED. */
8095 break;
8096
8097 case x86_intercept_pause:
8098 /*
8099 * PAUSE is a single-byte NOP with a REPE prefix, i.e. collides
8100 * with vanilla NOPs in the emulator. Apply the interception
8101 * check only to actual PAUSE instructions. Don't check
8102 * PAUSE-loop-exiting, software can't expect a given PAUSE to
8103 * exit, i.e. KVM is within its rights to allow L2 to execute
8104 * the PAUSE.
8105 */
8106 if ((info->rep_prefix != REPE_PREFIX) ||
8107 !nested_cpu_has2(vmcs12, CPU_BASED_PAUSE_EXITING))
8108 return X86EMUL_CONTINUE;
8109
8110 break;
8111
8112 /* TODO: check more intercepts... */
8113 default:
8114 break;
8115 }
8116
8117 return X86EMUL_UNHANDLEABLE;
8118 }
8119
8120 #ifdef CONFIG_X86_64
8121 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */
u64_shl_div_u64(u64 a,unsigned int shift,u64 divisor,u64 * result)8122 static inline int u64_shl_div_u64(u64 a, unsigned int shift,
8123 u64 divisor, u64 *result)
8124 {
8125 u64 low = a << shift, high = a >> (64 - shift);
8126
8127 /* To avoid the overflow on divq */
8128 if (high >= divisor)
8129 return 1;
8130
8131 /* Low hold the result, high hold rem which is discarded */
8132 asm("divq %2\n\t" : "=a" (low), "=d" (high) :
8133 "rm" (divisor), "0" (low), "1" (high));
8134 *result = low;
8135
8136 return 0;
8137 }
8138
vmx_set_hv_timer(struct kvm_vcpu * vcpu,u64 guest_deadline_tsc,bool * expired)8139 int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc,
8140 bool *expired)
8141 {
8142 struct vcpu_vmx *vmx;
8143 u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles;
8144 struct kvm_timer *ktimer = &vcpu->arch.apic->lapic_timer;
8145
8146 vmx = to_vmx(vcpu);
8147 tscl = rdtsc();
8148 guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
8149 delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
8150 lapic_timer_advance_cycles = nsec_to_cycles(vcpu,
8151 ktimer->timer_advance_ns);
8152
8153 if (delta_tsc > lapic_timer_advance_cycles)
8154 delta_tsc -= lapic_timer_advance_cycles;
8155 else
8156 delta_tsc = 0;
8157
8158 /* Convert to host delta tsc if tsc scaling is enabled */
8159 if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio &&
8160 delta_tsc && u64_shl_div_u64(delta_tsc,
8161 kvm_caps.tsc_scaling_ratio_frac_bits,
8162 vcpu->arch.l1_tsc_scaling_ratio, &delta_tsc))
8163 return -ERANGE;
8164
8165 /*
8166 * If the delta tsc can't fit in the 32 bit after the multi shift,
8167 * we can't use the preemption timer.
8168 * It's possible that it fits on later vmentries, but checking
8169 * on every vmentry is costly so we just use an hrtimer.
8170 */
8171 if (delta_tsc >> (cpu_preemption_timer_multi + 32))
8172 return -ERANGE;
8173
8174 vmx->hv_deadline_tsc = tscl + delta_tsc;
8175 *expired = !delta_tsc;
8176 return 0;
8177 }
8178
vmx_cancel_hv_timer(struct kvm_vcpu * vcpu)8179 void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
8180 {
8181 to_vmx(vcpu)->hv_deadline_tsc = -1;
8182 }
8183 #endif
8184
vmx_update_cpu_dirty_logging(struct kvm_vcpu * vcpu)8185 void vmx_update_cpu_dirty_logging(struct kvm_vcpu *vcpu)
8186 {
8187 struct vcpu_vmx *vmx = to_vmx(vcpu);
8188
8189 if (WARN_ON_ONCE(!enable_pml))
8190 return;
8191
8192 if (is_guest_mode(vcpu)) {
8193 vmx->nested.update_vmcs01_cpu_dirty_logging = true;
8194 return;
8195 }
8196
8197 /*
8198 * Note, nr_memslots_dirty_logging can be changed concurrent with this
8199 * code, but in that case another update request will be made and so
8200 * the guest will never run with a stale PML value.
8201 */
8202 if (atomic_read(&vcpu->kvm->nr_memslots_dirty_logging))
8203 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_ENABLE_PML);
8204 else
8205 secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_ENABLE_PML);
8206 }
8207
vmx_setup_mce(struct kvm_vcpu * vcpu)8208 void vmx_setup_mce(struct kvm_vcpu *vcpu)
8209 {
8210 if (vcpu->arch.mcg_cap & MCG_LMCE_P)
8211 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
8212 FEAT_CTL_LMCE_ENABLED;
8213 else
8214 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
8215 ~FEAT_CTL_LMCE_ENABLED;
8216 }
8217
8218 #ifdef CONFIG_KVM_SMM
vmx_smi_allowed(struct kvm_vcpu * vcpu,bool for_injection)8219 int vmx_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
8220 {
8221 /* we need a nested vmexit to enter SMM, postpone if run is pending */
8222 if (to_vmx(vcpu)->nested.nested_run_pending)
8223 return -EBUSY;
8224 return !is_smm(vcpu);
8225 }
8226
vmx_enter_smm(struct kvm_vcpu * vcpu,union kvm_smram * smram)8227 int vmx_enter_smm(struct kvm_vcpu *vcpu, union kvm_smram *smram)
8228 {
8229 struct vcpu_vmx *vmx = to_vmx(vcpu);
8230
8231 /*
8232 * TODO: Implement custom flows for forcing the vCPU out/in of L2 on
8233 * SMI and RSM. Using the common VM-Exit + VM-Enter routines is wrong
8234 * SMI and RSM only modify state that is saved and restored via SMRAM.
8235 * E.g. most MSRs are left untouched, but many are modified by VM-Exit
8236 * and VM-Enter, and thus L2's values may be corrupted on SMI+RSM.
8237 */
8238 vmx->nested.smm.guest_mode = is_guest_mode(vcpu);
8239 if (vmx->nested.smm.guest_mode)
8240 nested_vmx_vmexit(vcpu, -1, 0, 0);
8241
8242 vmx->nested.smm.vmxon = vmx->nested.vmxon;
8243 vmx->nested.vmxon = false;
8244 vmx_clear_hlt(vcpu);
8245 return 0;
8246 }
8247
vmx_leave_smm(struct kvm_vcpu * vcpu,const union kvm_smram * smram)8248 int vmx_leave_smm(struct kvm_vcpu *vcpu, const union kvm_smram *smram)
8249 {
8250 struct vcpu_vmx *vmx = to_vmx(vcpu);
8251 int ret;
8252
8253 if (vmx->nested.smm.vmxon) {
8254 vmx->nested.vmxon = true;
8255 vmx->nested.smm.vmxon = false;
8256 }
8257
8258 if (vmx->nested.smm.guest_mode) {
8259 ret = nested_vmx_enter_non_root_mode(vcpu, false);
8260 if (ret)
8261 return ret;
8262
8263 vmx->nested.nested_run_pending = 1;
8264 vmx->nested.smm.guest_mode = false;
8265 }
8266 return 0;
8267 }
8268
vmx_enable_smi_window(struct kvm_vcpu * vcpu)8269 void vmx_enable_smi_window(struct kvm_vcpu *vcpu)
8270 {
8271 /* RSM will cause a vmexit anyway. */
8272 }
8273 #endif
8274
vmx_apic_init_signal_blocked(struct kvm_vcpu * vcpu)8275 bool vmx_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
8276 {
8277 return to_vmx(vcpu)->nested.vmxon && !is_guest_mode(vcpu);
8278 }
8279
vmx_migrate_timers(struct kvm_vcpu * vcpu)8280 void vmx_migrate_timers(struct kvm_vcpu *vcpu)
8281 {
8282 if (is_guest_mode(vcpu)) {
8283 struct hrtimer *timer = &to_vmx(vcpu)->nested.preemption_timer;
8284
8285 if (hrtimer_try_to_cancel(timer) == 1)
8286 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
8287 }
8288 }
8289
vmx_hardware_unsetup(void)8290 void vmx_hardware_unsetup(void)
8291 {
8292 kvm_set_posted_intr_wakeup_handler(NULL);
8293
8294 if (nested)
8295 nested_vmx_hardware_unsetup();
8296
8297 free_kvm_area();
8298 }
8299
vmx_vm_destroy(struct kvm * kvm)8300 void vmx_vm_destroy(struct kvm *kvm)
8301 {
8302 struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
8303
8304 free_pages((unsigned long)kvm_vmx->pid_table, vmx_get_pid_table_order(kvm));
8305 }
8306
8307 /*
8308 * Note, the SDM states that the linear address is masked *after* the modified
8309 * canonicality check, whereas KVM masks (untags) the address and then performs
8310 * a "normal" canonicality check. Functionally, the two methods are identical,
8311 * and when the masking occurs relative to the canonicality check isn't visible
8312 * to software, i.e. KVM's behavior doesn't violate the SDM.
8313 */
vmx_get_untagged_addr(struct kvm_vcpu * vcpu,gva_t gva,unsigned int flags)8314 gva_t vmx_get_untagged_addr(struct kvm_vcpu *vcpu, gva_t gva, unsigned int flags)
8315 {
8316 int lam_bit;
8317 unsigned long cr3_bits;
8318
8319 if (flags & (X86EMUL_F_FETCH | X86EMUL_F_IMPLICIT | X86EMUL_F_INVLPG))
8320 return gva;
8321
8322 if (!is_64_bit_mode(vcpu))
8323 return gva;
8324
8325 /*
8326 * Bit 63 determines if the address should be treated as user address
8327 * or a supervisor address.
8328 */
8329 if (!(gva & BIT_ULL(63))) {
8330 cr3_bits = kvm_get_active_cr3_lam_bits(vcpu);
8331 if (!(cr3_bits & (X86_CR3_LAM_U57 | X86_CR3_LAM_U48)))
8332 return gva;
8333
8334 /* LAM_U48 is ignored if LAM_U57 is set. */
8335 lam_bit = cr3_bits & X86_CR3_LAM_U57 ? 56 : 47;
8336 } else {
8337 if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_LAM_SUP))
8338 return gva;
8339
8340 lam_bit = kvm_is_cr4_bit_set(vcpu, X86_CR4_LA57) ? 56 : 47;
8341 }
8342
8343 /*
8344 * Untag the address by sign-extending the lam_bit, but NOT to bit 63.
8345 * Bit 63 is retained from the raw virtual address so that untagging
8346 * doesn't change a user access to a supervisor access, and vice versa.
8347 */
8348 return (sign_extend64(gva, lam_bit) & ~BIT_ULL(63)) | (gva & BIT_ULL(63));
8349 }
8350
vmx_handle_intel_pt_intr(void)8351 static unsigned int vmx_handle_intel_pt_intr(void)
8352 {
8353 struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
8354
8355 /* '0' on failure so that the !PT case can use a RET0 static call. */
8356 if (!vcpu || !kvm_handling_nmi_from_guest(vcpu))
8357 return 0;
8358
8359 kvm_make_request(KVM_REQ_PMI, vcpu);
8360 __set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT,
8361 (unsigned long *)&vcpu->arch.pmu.global_status);
8362 return 1;
8363 }
8364
vmx_setup_user_return_msrs(void)8365 static __init void vmx_setup_user_return_msrs(void)
8366 {
8367
8368 /*
8369 * Though SYSCALL is only supported in 64-bit mode on Intel CPUs, kvm
8370 * will emulate SYSCALL in legacy mode if the vendor string in guest
8371 * CPUID.0:{EBX,ECX,EDX} is "AuthenticAMD" or "AMDisbetter!" To
8372 * support this emulation, MSR_STAR is included in the list for i386,
8373 * but is never loaded into hardware. MSR_CSTAR is also never loaded
8374 * into hardware and is here purely for emulation purposes.
8375 */
8376 const u32 vmx_uret_msrs_list[] = {
8377 #ifdef CONFIG_X86_64
8378 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
8379 #endif
8380 MSR_EFER, MSR_TSC_AUX, MSR_STAR,
8381 MSR_IA32_TSX_CTRL,
8382 };
8383 int i;
8384
8385 BUILD_BUG_ON(ARRAY_SIZE(vmx_uret_msrs_list) != MAX_NR_USER_RETURN_MSRS);
8386
8387 for (i = 0; i < ARRAY_SIZE(vmx_uret_msrs_list); ++i)
8388 kvm_add_user_return_msr(vmx_uret_msrs_list[i]);
8389 }
8390
vmx_setup_me_spte_mask(void)8391 static void __init vmx_setup_me_spte_mask(void)
8392 {
8393 u64 me_mask = 0;
8394
8395 /*
8396 * On pre-MKTME system, boot_cpu_data.x86_phys_bits equals to
8397 * kvm_host.maxphyaddr. On MKTME and/or TDX capable systems,
8398 * boot_cpu_data.x86_phys_bits holds the actual physical address
8399 * w/o the KeyID bits, and kvm_host.maxphyaddr equals to
8400 * MAXPHYADDR reported by CPUID. Those bits between are KeyID bits.
8401 */
8402 if (boot_cpu_data.x86_phys_bits != kvm_host.maxphyaddr)
8403 me_mask = rsvd_bits(boot_cpu_data.x86_phys_bits,
8404 kvm_host.maxphyaddr - 1);
8405
8406 /*
8407 * Unlike SME, host kernel doesn't support setting up any
8408 * MKTME KeyID on Intel platforms. No memory encryption
8409 * bits should be included into the SPTE.
8410 */
8411 kvm_mmu_set_me_spte_mask(0, me_mask);
8412 }
8413
vmx_hardware_setup(void)8414 __init int vmx_hardware_setup(void)
8415 {
8416 unsigned long host_bndcfgs;
8417 struct desc_ptr dt;
8418 int r;
8419
8420 store_idt(&dt);
8421 host_idt_base = dt.address;
8422
8423 vmx_setup_user_return_msrs();
8424
8425 if (setup_vmcs_config(&vmcs_config, &vmx_capability) < 0)
8426 return -EIO;
8427
8428 if (boot_cpu_has(X86_FEATURE_NX))
8429 kvm_enable_efer_bits(EFER_NX);
8430
8431 if (boot_cpu_has(X86_FEATURE_MPX)) {
8432 rdmsrl(MSR_IA32_BNDCFGS, host_bndcfgs);
8433 WARN_ONCE(host_bndcfgs, "BNDCFGS in host will be lost");
8434 }
8435
8436 if (!cpu_has_vmx_mpx())
8437 kvm_caps.supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS |
8438 XFEATURE_MASK_BNDCSR);
8439
8440 if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
8441 !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
8442 enable_vpid = 0;
8443
8444 if (!cpu_has_vmx_ept() ||
8445 !cpu_has_vmx_ept_4levels() ||
8446 !cpu_has_vmx_ept_mt_wb() ||
8447 !cpu_has_vmx_invept_global())
8448 enable_ept = 0;
8449
8450 /* NX support is required for shadow paging. */
8451 if (!enable_ept && !boot_cpu_has(X86_FEATURE_NX)) {
8452 pr_err_ratelimited("NX (Execute Disable) not supported\n");
8453 return -EOPNOTSUPP;
8454 }
8455
8456 if (!cpu_has_vmx_ept_ad_bits() || !enable_ept)
8457 enable_ept_ad_bits = 0;
8458
8459 if (!cpu_has_vmx_unrestricted_guest() || !enable_ept)
8460 enable_unrestricted_guest = 0;
8461
8462 if (!cpu_has_vmx_flexpriority())
8463 flexpriority_enabled = 0;
8464
8465 if (!cpu_has_virtual_nmis())
8466 enable_vnmi = 0;
8467
8468 #ifdef CONFIG_X86_SGX_KVM
8469 if (!cpu_has_vmx_encls_vmexit())
8470 enable_sgx = false;
8471 #endif
8472
8473 /*
8474 * set_apic_access_page_addr() is used to reload apic access
8475 * page upon invalidation. No need to do anything if not
8476 * using the APIC_ACCESS_ADDR VMCS field.
8477 */
8478 if (!flexpriority_enabled)
8479 vt_x86_ops.set_apic_access_page_addr = NULL;
8480
8481 if (!cpu_has_vmx_tpr_shadow())
8482 vt_x86_ops.update_cr8_intercept = NULL;
8483
8484 #if IS_ENABLED(CONFIG_HYPERV)
8485 if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH
8486 && enable_ept) {
8487 vt_x86_ops.flush_remote_tlbs = hv_flush_remote_tlbs;
8488 vt_x86_ops.flush_remote_tlbs_range = hv_flush_remote_tlbs_range;
8489 }
8490 #endif
8491
8492 if (!cpu_has_vmx_ple()) {
8493 ple_gap = 0;
8494 ple_window = 0;
8495 ple_window_grow = 0;
8496 ple_window_max = 0;
8497 ple_window_shrink = 0;
8498 }
8499
8500 if (!cpu_has_vmx_apicv())
8501 enable_apicv = 0;
8502 if (!enable_apicv)
8503 vt_x86_ops.sync_pir_to_irr = NULL;
8504
8505 if (!enable_apicv || !cpu_has_vmx_ipiv())
8506 enable_ipiv = false;
8507
8508 if (cpu_has_vmx_tsc_scaling())
8509 kvm_caps.has_tsc_control = true;
8510
8511 kvm_caps.max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
8512 kvm_caps.tsc_scaling_ratio_frac_bits = 48;
8513 kvm_caps.has_bus_lock_exit = cpu_has_vmx_bus_lock_detection();
8514 kvm_caps.has_notify_vmexit = cpu_has_notify_vmexit();
8515
8516 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
8517
8518 if (enable_ept)
8519 kvm_mmu_set_ept_masks(enable_ept_ad_bits,
8520 cpu_has_vmx_ept_execute_only());
8521
8522 /*
8523 * Setup shadow_me_value/shadow_me_mask to include MKTME KeyID
8524 * bits to shadow_zero_check.
8525 */
8526 vmx_setup_me_spte_mask();
8527
8528 kvm_configure_mmu(enable_ept, 0, vmx_get_max_ept_level(),
8529 ept_caps_to_lpage_level(vmx_capability.ept));
8530
8531 /*
8532 * Only enable PML when hardware supports PML feature, and both EPT
8533 * and EPT A/D bit features are enabled -- PML depends on them to work.
8534 */
8535 if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
8536 enable_pml = 0;
8537
8538 if (!enable_pml)
8539 vt_x86_ops.cpu_dirty_log_size = 0;
8540
8541 if (!cpu_has_vmx_preemption_timer())
8542 enable_preemption_timer = false;
8543
8544 if (enable_preemption_timer) {
8545 u64 use_timer_freq = 5000ULL * 1000 * 1000;
8546
8547 cpu_preemption_timer_multi =
8548 vmx_misc_preemption_timer_rate(vmcs_config.misc);
8549
8550 if (tsc_khz)
8551 use_timer_freq = (u64)tsc_khz * 1000;
8552 use_timer_freq >>= cpu_preemption_timer_multi;
8553
8554 /*
8555 * KVM "disables" the preemption timer by setting it to its max
8556 * value. Don't use the timer if it might cause spurious exits
8557 * at a rate faster than 0.1 Hz (of uninterrupted guest time).
8558 */
8559 if (use_timer_freq > 0xffffffffu / 10)
8560 enable_preemption_timer = false;
8561 }
8562
8563 if (!enable_preemption_timer) {
8564 vt_x86_ops.set_hv_timer = NULL;
8565 vt_x86_ops.cancel_hv_timer = NULL;
8566 }
8567
8568 kvm_caps.supported_mce_cap |= MCG_LMCE_P;
8569 kvm_caps.supported_mce_cap |= MCG_CMCI_P;
8570
8571 if (pt_mode != PT_MODE_SYSTEM && pt_mode != PT_MODE_HOST_GUEST)
8572 return -EINVAL;
8573 if (!enable_ept || !enable_pmu || !cpu_has_vmx_intel_pt())
8574 pt_mode = PT_MODE_SYSTEM;
8575 if (pt_mode == PT_MODE_HOST_GUEST)
8576 vt_init_ops.handle_intel_pt_intr = vmx_handle_intel_pt_intr;
8577 else
8578 vt_init_ops.handle_intel_pt_intr = NULL;
8579
8580 setup_default_sgx_lepubkeyhash();
8581
8582 if (nested) {
8583 nested_vmx_setup_ctls_msrs(&vmcs_config, vmx_capability.ept);
8584
8585 r = nested_vmx_hardware_setup(kvm_vmx_exit_handlers);
8586 if (r)
8587 return r;
8588 }
8589
8590 vmx_set_cpu_caps();
8591
8592 r = alloc_kvm_area();
8593 if (r && nested)
8594 nested_vmx_hardware_unsetup();
8595
8596 kvm_set_posted_intr_wakeup_handler(pi_wakeup_handler);
8597
8598 return r;
8599 }
8600
vmx_cleanup_l1d_flush(void)8601 static void vmx_cleanup_l1d_flush(void)
8602 {
8603 if (vmx_l1d_flush_pages) {
8604 free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER);
8605 vmx_l1d_flush_pages = NULL;
8606 }
8607 /* Restore state so sysfs ignores VMX */
8608 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
8609 }
8610
__vmx_exit(void)8611 static void __vmx_exit(void)
8612 {
8613 allow_smaller_maxphyaddr = false;
8614
8615 vmx_cleanup_l1d_flush();
8616 }
8617
vmx_exit(void)8618 static void vmx_exit(void)
8619 {
8620 kvm_exit();
8621 __vmx_exit();
8622 kvm_x86_vendor_exit();
8623
8624 }
8625 module_exit(vmx_exit);
8626
vmx_init(void)8627 static int __init vmx_init(void)
8628 {
8629 int r, cpu;
8630
8631 if (!kvm_is_vmx_supported())
8632 return -EOPNOTSUPP;
8633
8634 /*
8635 * Note, hv_init_evmcs() touches only VMX knobs, i.e. there's nothing
8636 * to unwind if a later step fails.
8637 */
8638 hv_init_evmcs();
8639
8640 r = kvm_x86_vendor_init(&vt_init_ops);
8641 if (r)
8642 return r;
8643
8644 /*
8645 * Must be called after common x86 init so enable_ept is properly set
8646 * up. Hand the parameter mitigation value in which was stored in
8647 * the pre module init parser. If no parameter was given, it will
8648 * contain 'auto' which will be turned into the default 'cond'
8649 * mitigation mode.
8650 */
8651 r = vmx_setup_l1d_flush(vmentry_l1d_flush_param);
8652 if (r)
8653 goto err_l1d_flush;
8654
8655 for_each_possible_cpu(cpu) {
8656 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
8657
8658 pi_init_cpu(cpu);
8659 }
8660
8661 vmx_check_vmcs12_offsets();
8662
8663 /*
8664 * Shadow paging doesn't have a (further) performance penalty
8665 * from GUEST_MAXPHYADDR < HOST_MAXPHYADDR so enable it
8666 * by default
8667 */
8668 if (!enable_ept)
8669 allow_smaller_maxphyaddr = true;
8670
8671 /*
8672 * Common KVM initialization _must_ come last, after this, /dev/kvm is
8673 * exposed to userspace!
8674 */
8675 r = kvm_init(sizeof(struct vcpu_vmx), __alignof__(struct vcpu_vmx),
8676 THIS_MODULE);
8677 if (r)
8678 goto err_kvm_init;
8679
8680 return 0;
8681
8682 err_kvm_init:
8683 __vmx_exit();
8684 err_l1d_flush:
8685 kvm_x86_vendor_exit();
8686 return r;
8687 }
8688 module_init(vmx_init);
8689