• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * VMware vSockets Driver
4  *
5  * Copyright (C) 2007-2013 VMware, Inc. All rights reserved.
6  */
7 
8 /* Implementation notes:
9  *
10  * - There are two kinds of sockets: those created by user action (such as
11  * calling socket(2)) and those created by incoming connection request packets.
12  *
13  * - There are two "global" tables, one for bound sockets (sockets that have
14  * specified an address that they are responsible for) and one for connected
15  * sockets (sockets that have established a connection with another socket).
16  * These tables are "global" in that all sockets on the system are placed
17  * within them. - Note, though, that the bound table contains an extra entry
18  * for a list of unbound sockets and SOCK_DGRAM sockets will always remain in
19  * that list. The bound table is used solely for lookup of sockets when packets
20  * are received and that's not necessary for SOCK_DGRAM sockets since we create
21  * a datagram handle for each and need not perform a lookup.  Keeping SOCK_DGRAM
22  * sockets out of the bound hash buckets will reduce the chance of collisions
23  * when looking for SOCK_STREAM sockets and prevents us from having to check the
24  * socket type in the hash table lookups.
25  *
26  * - Sockets created by user action will either be "client" sockets that
27  * initiate a connection or "server" sockets that listen for connections; we do
28  * not support simultaneous connects (two "client" sockets connecting).
29  *
30  * - "Server" sockets are referred to as listener sockets throughout this
31  * implementation because they are in the TCP_LISTEN state.  When a
32  * connection request is received (the second kind of socket mentioned above),
33  * we create a new socket and refer to it as a pending socket.  These pending
34  * sockets are placed on the pending connection list of the listener socket.
35  * When future packets are received for the address the listener socket is
36  * bound to, we check if the source of the packet is from one that has an
37  * existing pending connection.  If it does, we process the packet for the
38  * pending socket.  When that socket reaches the connected state, it is removed
39  * from the listener socket's pending list and enqueued in the listener
40  * socket's accept queue.  Callers of accept(2) will accept connected sockets
41  * from the listener socket's accept queue.  If the socket cannot be accepted
42  * for some reason then it is marked rejected.  Once the connection is
43  * accepted, it is owned by the user process and the responsibility for cleanup
44  * falls with that user process.
45  *
46  * - It is possible that these pending sockets will never reach the connected
47  * state; in fact, we may never receive another packet after the connection
48  * request.  Because of this, we must schedule a cleanup function to run in the
49  * future, after some amount of time passes where a connection should have been
50  * established.  This function ensures that the socket is off all lists so it
51  * cannot be retrieved, then drops all references to the socket so it is cleaned
52  * up (sock_put() -> sk_free() -> our sk_destruct implementation).  Note this
53  * function will also cleanup rejected sockets, those that reach the connected
54  * state but leave it before they have been accepted.
55  *
56  * - Lock ordering for pending or accept queue sockets is:
57  *
58  *     lock_sock(listener);
59  *     lock_sock_nested(pending, SINGLE_DEPTH_NESTING);
60  *
61  * Using explicit nested locking keeps lockdep happy since normally only one
62  * lock of a given class may be taken at a time.
63  *
64  * - Sockets created by user action will be cleaned up when the user process
65  * calls close(2), causing our release implementation to be called. Our release
66  * implementation will perform some cleanup then drop the last reference so our
67  * sk_destruct implementation is invoked.  Our sk_destruct implementation will
68  * perform additional cleanup that's common for both types of sockets.
69  *
70  * - A socket's reference count is what ensures that the structure won't be
71  * freed.  Each entry in a list (such as the "global" bound and connected tables
72  * and the listener socket's pending list and connected queue) ensures a
73  * reference.  When we defer work until process context and pass a socket as our
74  * argument, we must ensure the reference count is increased to ensure the
75  * socket isn't freed before the function is run; the deferred function will
76  * then drop the reference.
77  *
78  * - sk->sk_state uses the TCP state constants because they are widely used by
79  * other address families and exposed to userspace tools like ss(8):
80  *
81  *   TCP_CLOSE - unconnected
82  *   TCP_SYN_SENT - connecting
83  *   TCP_ESTABLISHED - connected
84  *   TCP_CLOSING - disconnecting
85  *   TCP_LISTEN - listening
86  */
87 
88 #include <linux/compat.h>
89 #include <linux/types.h>
90 #include <linux/bitops.h>
91 #include <linux/cred.h>
92 #include <linux/errqueue.h>
93 #include <linux/init.h>
94 #include <linux/io.h>
95 #include <linux/kernel.h>
96 #include <linux/sched/signal.h>
97 #include <linux/kmod.h>
98 #include <linux/list.h>
99 #include <linux/miscdevice.h>
100 #include <linux/module.h>
101 #include <linux/mutex.h>
102 #include <linux/net.h>
103 #include <linux/poll.h>
104 #include <linux/random.h>
105 #include <linux/skbuff.h>
106 #include <linux/smp.h>
107 #include <linux/socket.h>
108 #include <linux/stddef.h>
109 #include <linux/unistd.h>
110 #include <linux/wait.h>
111 #include <linux/workqueue.h>
112 #include <net/sock.h>
113 #include <net/af_vsock.h>
114 #include <uapi/linux/vm_sockets.h>
115 #include <uapi/asm-generic/ioctls.h>
116 
117 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr);
118 static void vsock_sk_destruct(struct sock *sk);
119 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
120 static void vsock_close(struct sock *sk, long timeout);
121 
122 /* Protocol family. */
123 struct proto vsock_proto = {
124 	.name = "AF_VSOCK",
125 	.owner = THIS_MODULE,
126 	.obj_size = sizeof(struct vsock_sock),
127 	.close = vsock_close,
128 #ifdef CONFIG_BPF_SYSCALL
129 	.psock_update_sk_prot = vsock_bpf_update_proto,
130 #endif
131 };
132 
133 /* The default peer timeout indicates how long we will wait for a peer response
134  * to a control message.
135  */
136 #define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ)
137 
138 #define VSOCK_DEFAULT_BUFFER_SIZE     (1024 * 256)
139 #define VSOCK_DEFAULT_BUFFER_MAX_SIZE (1024 * 256)
140 #define VSOCK_DEFAULT_BUFFER_MIN_SIZE 128
141 
142 /* Transport used for host->guest communication */
143 static const struct vsock_transport *transport_h2g;
144 /* Transport used for guest->host communication */
145 static const struct vsock_transport *transport_g2h;
146 /* Transport used for DGRAM communication */
147 static const struct vsock_transport *transport_dgram;
148 /* Transport used for local communication */
149 static const struct vsock_transport *transport_local;
150 static DEFINE_MUTEX(vsock_register_mutex);
151 
152 /**** UTILS ****/
153 
154 /* Each bound VSocket is stored in the bind hash table and each connected
155  * VSocket is stored in the connected hash table.
156  *
157  * Unbound sockets are all put on the same list attached to the end of the hash
158  * table (vsock_unbound_sockets).  Bound sockets are added to the hash table in
159  * the bucket that their local address hashes to (vsock_bound_sockets(addr)
160  * represents the list that addr hashes to).
161  *
162  * Specifically, we initialize the vsock_bind_table array to a size of
163  * VSOCK_HASH_SIZE + 1 so that vsock_bind_table[0] through
164  * vsock_bind_table[VSOCK_HASH_SIZE - 1] are for bound sockets and
165  * vsock_bind_table[VSOCK_HASH_SIZE] is for unbound sockets.  The hash function
166  * mods with VSOCK_HASH_SIZE to ensure this.
167  */
168 #define MAX_PORT_RETRIES        24
169 
170 #define VSOCK_HASH(addr)        ((addr)->svm_port % VSOCK_HASH_SIZE)
171 #define vsock_bound_sockets(addr) (&vsock_bind_table[VSOCK_HASH(addr)])
172 #define vsock_unbound_sockets     (&vsock_bind_table[VSOCK_HASH_SIZE])
173 
174 /* XXX This can probably be implemented in a better way. */
175 #define VSOCK_CONN_HASH(src, dst)				\
176 	(((src)->svm_cid ^ (dst)->svm_port) % VSOCK_HASH_SIZE)
177 #define vsock_connected_sockets(src, dst)		\
178 	(&vsock_connected_table[VSOCK_CONN_HASH(src, dst)])
179 #define vsock_connected_sockets_vsk(vsk)				\
180 	vsock_connected_sockets(&(vsk)->remote_addr, &(vsk)->local_addr)
181 
182 struct list_head vsock_bind_table[VSOCK_HASH_SIZE + 1];
183 EXPORT_SYMBOL_GPL(vsock_bind_table);
184 struct list_head vsock_connected_table[VSOCK_HASH_SIZE];
185 EXPORT_SYMBOL_GPL(vsock_connected_table);
186 DEFINE_SPINLOCK(vsock_table_lock);
187 EXPORT_SYMBOL_GPL(vsock_table_lock);
188 
189 /* Autobind this socket to the local address if necessary. */
vsock_auto_bind(struct vsock_sock * vsk)190 static int vsock_auto_bind(struct vsock_sock *vsk)
191 {
192 	struct sock *sk = sk_vsock(vsk);
193 	struct sockaddr_vm local_addr;
194 
195 	if (vsock_addr_bound(&vsk->local_addr))
196 		return 0;
197 	vsock_addr_init(&local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
198 	return __vsock_bind(sk, &local_addr);
199 }
200 
vsock_init_tables(void)201 static void vsock_init_tables(void)
202 {
203 	int i;
204 
205 	for (i = 0; i < ARRAY_SIZE(vsock_bind_table); i++)
206 		INIT_LIST_HEAD(&vsock_bind_table[i]);
207 
208 	for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++)
209 		INIT_LIST_HEAD(&vsock_connected_table[i]);
210 }
211 
__vsock_insert_bound(struct list_head * list,struct vsock_sock * vsk)212 static void __vsock_insert_bound(struct list_head *list,
213 				 struct vsock_sock *vsk)
214 {
215 	sock_hold(&vsk->sk);
216 	list_add(&vsk->bound_table, list);
217 }
218 
__vsock_insert_connected(struct list_head * list,struct vsock_sock * vsk)219 static void __vsock_insert_connected(struct list_head *list,
220 				     struct vsock_sock *vsk)
221 {
222 	sock_hold(&vsk->sk);
223 	list_add(&vsk->connected_table, list);
224 }
225 
__vsock_remove_bound(struct vsock_sock * vsk)226 static void __vsock_remove_bound(struct vsock_sock *vsk)
227 {
228 	list_del_init(&vsk->bound_table);
229 	sock_put(&vsk->sk);
230 }
231 
__vsock_remove_connected(struct vsock_sock * vsk)232 static void __vsock_remove_connected(struct vsock_sock *vsk)
233 {
234 	list_del_init(&vsk->connected_table);
235 	sock_put(&vsk->sk);
236 }
237 
__vsock_find_bound_socket(struct sockaddr_vm * addr)238 static struct sock *__vsock_find_bound_socket(struct sockaddr_vm *addr)
239 {
240 	struct vsock_sock *vsk;
241 
242 	list_for_each_entry(vsk, vsock_bound_sockets(addr), bound_table) {
243 		if (vsock_addr_equals_addr(addr, &vsk->local_addr))
244 			return sk_vsock(vsk);
245 
246 		if (addr->svm_port == vsk->local_addr.svm_port &&
247 		    (vsk->local_addr.svm_cid == VMADDR_CID_ANY ||
248 		     addr->svm_cid == VMADDR_CID_ANY))
249 			return sk_vsock(vsk);
250 	}
251 
252 	return NULL;
253 }
254 
__vsock_find_connected_socket(struct sockaddr_vm * src,struct sockaddr_vm * dst)255 static struct sock *__vsock_find_connected_socket(struct sockaddr_vm *src,
256 						  struct sockaddr_vm *dst)
257 {
258 	struct vsock_sock *vsk;
259 
260 	list_for_each_entry(vsk, vsock_connected_sockets(src, dst),
261 			    connected_table) {
262 		if (vsock_addr_equals_addr(src, &vsk->remote_addr) &&
263 		    dst->svm_port == vsk->local_addr.svm_port) {
264 			return sk_vsock(vsk);
265 		}
266 	}
267 
268 	return NULL;
269 }
270 
vsock_insert_unbound(struct vsock_sock * vsk)271 static void vsock_insert_unbound(struct vsock_sock *vsk)
272 {
273 	spin_lock_bh(&vsock_table_lock);
274 	__vsock_insert_bound(vsock_unbound_sockets, vsk);
275 	spin_unlock_bh(&vsock_table_lock);
276 }
277 
vsock_insert_connected(struct vsock_sock * vsk)278 void vsock_insert_connected(struct vsock_sock *vsk)
279 {
280 	struct list_head *list = vsock_connected_sockets(
281 		&vsk->remote_addr, &vsk->local_addr);
282 
283 	spin_lock_bh(&vsock_table_lock);
284 	__vsock_insert_connected(list, vsk);
285 	spin_unlock_bh(&vsock_table_lock);
286 }
287 EXPORT_SYMBOL_GPL(vsock_insert_connected);
288 
vsock_remove_bound(struct vsock_sock * vsk)289 void vsock_remove_bound(struct vsock_sock *vsk)
290 {
291 	spin_lock_bh(&vsock_table_lock);
292 	if (__vsock_in_bound_table(vsk))
293 		__vsock_remove_bound(vsk);
294 	spin_unlock_bh(&vsock_table_lock);
295 }
296 EXPORT_SYMBOL_GPL(vsock_remove_bound);
297 
vsock_remove_connected(struct vsock_sock * vsk)298 void vsock_remove_connected(struct vsock_sock *vsk)
299 {
300 	spin_lock_bh(&vsock_table_lock);
301 	if (__vsock_in_connected_table(vsk))
302 		__vsock_remove_connected(vsk);
303 	spin_unlock_bh(&vsock_table_lock);
304 }
305 EXPORT_SYMBOL_GPL(vsock_remove_connected);
306 
vsock_find_bound_socket(struct sockaddr_vm * addr)307 struct sock *vsock_find_bound_socket(struct sockaddr_vm *addr)
308 {
309 	struct sock *sk;
310 
311 	spin_lock_bh(&vsock_table_lock);
312 	sk = __vsock_find_bound_socket(addr);
313 	if (sk)
314 		sock_hold(sk);
315 
316 	spin_unlock_bh(&vsock_table_lock);
317 
318 	return sk;
319 }
320 EXPORT_SYMBOL_GPL(vsock_find_bound_socket);
321 
vsock_find_connected_socket(struct sockaddr_vm * src,struct sockaddr_vm * dst)322 struct sock *vsock_find_connected_socket(struct sockaddr_vm *src,
323 					 struct sockaddr_vm *dst)
324 {
325 	struct sock *sk;
326 
327 	spin_lock_bh(&vsock_table_lock);
328 	sk = __vsock_find_connected_socket(src, dst);
329 	if (sk)
330 		sock_hold(sk);
331 
332 	spin_unlock_bh(&vsock_table_lock);
333 
334 	return sk;
335 }
336 EXPORT_SYMBOL_GPL(vsock_find_connected_socket);
337 
vsock_remove_sock(struct vsock_sock * vsk)338 void vsock_remove_sock(struct vsock_sock *vsk)
339 {
340 	/* Transport reassignment must not remove the binding. */
341 	if (sock_flag(sk_vsock(vsk), SOCK_DEAD))
342 		vsock_remove_bound(vsk);
343 
344 	vsock_remove_connected(vsk);
345 }
346 EXPORT_SYMBOL_GPL(vsock_remove_sock);
347 
vsock_for_each_connected_socket(struct vsock_transport * transport,void (* fn)(struct sock * sk))348 void vsock_for_each_connected_socket(struct vsock_transport *transport,
349 				     void (*fn)(struct sock *sk))
350 {
351 	int i;
352 
353 	spin_lock_bh(&vsock_table_lock);
354 
355 	for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++) {
356 		struct vsock_sock *vsk;
357 		list_for_each_entry(vsk, &vsock_connected_table[i],
358 				    connected_table) {
359 			if (vsk->transport != transport)
360 				continue;
361 
362 			fn(sk_vsock(vsk));
363 		}
364 	}
365 
366 	spin_unlock_bh(&vsock_table_lock);
367 }
368 EXPORT_SYMBOL_GPL(vsock_for_each_connected_socket);
369 
vsock_add_pending(struct sock * listener,struct sock * pending)370 void vsock_add_pending(struct sock *listener, struct sock *pending)
371 {
372 	struct vsock_sock *vlistener;
373 	struct vsock_sock *vpending;
374 
375 	vlistener = vsock_sk(listener);
376 	vpending = vsock_sk(pending);
377 
378 	sock_hold(pending);
379 	sock_hold(listener);
380 	list_add_tail(&vpending->pending_links, &vlistener->pending_links);
381 }
382 EXPORT_SYMBOL_GPL(vsock_add_pending);
383 
vsock_remove_pending(struct sock * listener,struct sock * pending)384 void vsock_remove_pending(struct sock *listener, struct sock *pending)
385 {
386 	struct vsock_sock *vpending = vsock_sk(pending);
387 
388 	list_del_init(&vpending->pending_links);
389 	sock_put(listener);
390 	sock_put(pending);
391 }
392 EXPORT_SYMBOL_GPL(vsock_remove_pending);
393 
vsock_enqueue_accept(struct sock * listener,struct sock * connected)394 void vsock_enqueue_accept(struct sock *listener, struct sock *connected)
395 {
396 	struct vsock_sock *vlistener;
397 	struct vsock_sock *vconnected;
398 
399 	vlistener = vsock_sk(listener);
400 	vconnected = vsock_sk(connected);
401 
402 	sock_hold(connected);
403 	sock_hold(listener);
404 	list_add_tail(&vconnected->accept_queue, &vlistener->accept_queue);
405 }
406 EXPORT_SYMBOL_GPL(vsock_enqueue_accept);
407 
vsock_use_local_transport(unsigned int remote_cid)408 static bool vsock_use_local_transport(unsigned int remote_cid)
409 {
410 	lockdep_assert_held(&vsock_register_mutex);
411 
412 	if (!transport_local)
413 		return false;
414 
415 	if (remote_cid == VMADDR_CID_LOCAL)
416 		return true;
417 
418 	if (transport_g2h) {
419 		return remote_cid == transport_g2h->get_local_cid();
420 	} else {
421 		return remote_cid == VMADDR_CID_HOST;
422 	}
423 }
424 
vsock_deassign_transport(struct vsock_sock * vsk)425 static void vsock_deassign_transport(struct vsock_sock *vsk)
426 {
427 	if (!vsk->transport)
428 		return;
429 
430 	vsk->transport->destruct(vsk);
431 	module_put(vsk->transport->module);
432 	vsk->transport = NULL;
433 }
434 
435 /* Assign a transport to a socket and call the .init transport callback.
436  *
437  * Note: for connection oriented socket this must be called when vsk->remote_addr
438  * is set (e.g. during the connect() or when a connection request on a listener
439  * socket is received).
440  * The vsk->remote_addr is used to decide which transport to use:
441  *  - remote CID == VMADDR_CID_LOCAL or g2h->local_cid or VMADDR_CID_HOST if
442  *    g2h is not loaded, will use local transport;
443  *  - remote CID <= VMADDR_CID_HOST or h2g is not loaded or remote flags field
444  *    includes VMADDR_FLAG_TO_HOST flag value, will use guest->host transport;
445  *  - remote CID > VMADDR_CID_HOST will use host->guest transport;
446  */
vsock_assign_transport(struct vsock_sock * vsk,struct vsock_sock * psk)447 int vsock_assign_transport(struct vsock_sock *vsk, struct vsock_sock *psk)
448 {
449 	const struct vsock_transport *new_transport;
450 	struct sock *sk = sk_vsock(vsk);
451 	unsigned int remote_cid = vsk->remote_addr.svm_cid;
452 	__u8 remote_flags;
453 	int ret;
454 
455 	/* If the packet is coming with the source and destination CIDs higher
456 	 * than VMADDR_CID_HOST, then a vsock channel where all the packets are
457 	 * forwarded to the host should be established. Then the host will
458 	 * need to forward the packets to the guest.
459 	 *
460 	 * The flag is set on the (listen) receive path (psk is not NULL). On
461 	 * the connect path the flag can be set by the user space application.
462 	 */
463 	if (psk && vsk->local_addr.svm_cid > VMADDR_CID_HOST &&
464 	    vsk->remote_addr.svm_cid > VMADDR_CID_HOST)
465 		vsk->remote_addr.svm_flags |= VMADDR_FLAG_TO_HOST;
466 
467 	remote_flags = vsk->remote_addr.svm_flags;
468 
469 	mutex_lock(&vsock_register_mutex);
470 
471 	switch (sk->sk_type) {
472 	case SOCK_DGRAM:
473 		new_transport = transport_dgram;
474 		break;
475 	case SOCK_STREAM:
476 	case SOCK_SEQPACKET:
477 		if (vsock_use_local_transport(remote_cid))
478 			new_transport = transport_local;
479 		else if (remote_cid <= VMADDR_CID_HOST || !transport_h2g ||
480 			 (remote_flags & VMADDR_FLAG_TO_HOST))
481 			new_transport = transport_g2h;
482 		else
483 			new_transport = transport_h2g;
484 		break;
485 	default:
486 		ret = -ESOCKTNOSUPPORT;
487 		goto err;
488 	}
489 
490 	if (vsk->transport) {
491 		if (vsk->transport == new_transport) {
492 			ret = 0;
493 			goto err;
494 		}
495 
496 		/* transport->release() must be called with sock lock acquired.
497 		 * This path can only be taken during vsock_connect(), where we
498 		 * have already held the sock lock. In the other cases, this
499 		 * function is called on a new socket which is not assigned to
500 		 * any transport.
501 		 */
502 		vsk->transport->release(vsk);
503 		vsock_deassign_transport(vsk);
504 
505 		/* transport's release() and destruct() can touch some socket
506 		 * state, since we are reassigning the socket to a new transport
507 		 * during vsock_connect(), let's reset these fields to have a
508 		 * clean state.
509 		 */
510 		sock_reset_flag(sk, SOCK_DONE);
511 		sk->sk_state = TCP_CLOSE;
512 		vsk->peer_shutdown = 0;
513 	}
514 
515 	/* We increase the module refcnt to prevent the transport unloading
516 	 * while there are open sockets assigned to it.
517 	 */
518 	if (!new_transport || !try_module_get(new_transport->module)) {
519 		ret = -ENODEV;
520 		goto err;
521 	}
522 
523 	/* It's safe to release the mutex after a successful try_module_get().
524 	 * Whichever transport `new_transport` points at, it won't go away until
525 	 * the last module_put() below or in vsock_deassign_transport().
526 	 */
527 	mutex_unlock(&vsock_register_mutex);
528 
529 	if (sk->sk_type == SOCK_SEQPACKET) {
530 		if (!new_transport->seqpacket_allow ||
531 		    !new_transport->seqpacket_allow(remote_cid)) {
532 			module_put(new_transport->module);
533 			return -ESOCKTNOSUPPORT;
534 		}
535 	}
536 
537 	ret = new_transport->init(vsk, psk);
538 	if (ret) {
539 		module_put(new_transport->module);
540 		return ret;
541 	}
542 
543 	vsk->transport = new_transport;
544 
545 	return 0;
546 err:
547 	mutex_unlock(&vsock_register_mutex);
548 	return ret;
549 }
550 EXPORT_SYMBOL_GPL(vsock_assign_transport);
551 
552 /*
553  * Provide safe access to static transport_{h2g,g2h,dgram,local} callbacks.
554  * Otherwise we may race with module removal. Do not use on `vsk->transport`.
555  */
vsock_registered_transport_cid(const struct vsock_transport ** transport)556 static u32 vsock_registered_transport_cid(const struct vsock_transport **transport)
557 {
558 	u32 cid = VMADDR_CID_ANY;
559 
560 	mutex_lock(&vsock_register_mutex);
561 	if (*transport)
562 		cid = (*transport)->get_local_cid();
563 	mutex_unlock(&vsock_register_mutex);
564 
565 	return cid;
566 }
567 
vsock_find_cid(unsigned int cid)568 bool vsock_find_cid(unsigned int cid)
569 {
570 	if (cid == vsock_registered_transport_cid(&transport_g2h))
571 		return true;
572 
573 	if (transport_h2g && cid == VMADDR_CID_HOST)
574 		return true;
575 
576 	if (transport_local && cid == VMADDR_CID_LOCAL)
577 		return true;
578 
579 	return false;
580 }
581 EXPORT_SYMBOL_GPL(vsock_find_cid);
582 
vsock_dequeue_accept(struct sock * listener)583 static struct sock *vsock_dequeue_accept(struct sock *listener)
584 {
585 	struct vsock_sock *vlistener;
586 	struct vsock_sock *vconnected;
587 
588 	vlistener = vsock_sk(listener);
589 
590 	if (list_empty(&vlistener->accept_queue))
591 		return NULL;
592 
593 	vconnected = list_entry(vlistener->accept_queue.next,
594 				struct vsock_sock, accept_queue);
595 
596 	list_del_init(&vconnected->accept_queue);
597 	sock_put(listener);
598 	/* The caller will need a reference on the connected socket so we let
599 	 * it call sock_put().
600 	 */
601 
602 	return sk_vsock(vconnected);
603 }
604 
vsock_is_accept_queue_empty(struct sock * sk)605 static bool vsock_is_accept_queue_empty(struct sock *sk)
606 {
607 	struct vsock_sock *vsk = vsock_sk(sk);
608 	return list_empty(&vsk->accept_queue);
609 }
610 
vsock_is_pending(struct sock * sk)611 static bool vsock_is_pending(struct sock *sk)
612 {
613 	struct vsock_sock *vsk = vsock_sk(sk);
614 	return !list_empty(&vsk->pending_links);
615 }
616 
vsock_send_shutdown(struct sock * sk,int mode)617 static int vsock_send_shutdown(struct sock *sk, int mode)
618 {
619 	struct vsock_sock *vsk = vsock_sk(sk);
620 
621 	if (!vsk->transport)
622 		return -ENODEV;
623 
624 	return vsk->transport->shutdown(vsk, mode);
625 }
626 
vsock_pending_work(struct work_struct * work)627 static void vsock_pending_work(struct work_struct *work)
628 {
629 	struct sock *sk;
630 	struct sock *listener;
631 	struct vsock_sock *vsk;
632 	bool cleanup;
633 
634 	vsk = container_of(work, struct vsock_sock, pending_work.work);
635 	sk = sk_vsock(vsk);
636 	listener = vsk->listener;
637 	cleanup = true;
638 
639 	lock_sock(listener);
640 	lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
641 
642 	if (vsock_is_pending(sk)) {
643 		vsock_remove_pending(listener, sk);
644 
645 		sk_acceptq_removed(listener);
646 	} else if (!vsk->rejected) {
647 		/* We are not on the pending list and accept() did not reject
648 		 * us, so we must have been accepted by our user process.  We
649 		 * just need to drop our references to the sockets and be on
650 		 * our way.
651 		 */
652 		cleanup = false;
653 		goto out;
654 	}
655 
656 	/* We need to remove ourself from the global connected sockets list so
657 	 * incoming packets can't find this socket, and to reduce the reference
658 	 * count.
659 	 */
660 	vsock_remove_connected(vsk);
661 
662 	sk->sk_state = TCP_CLOSE;
663 
664 out:
665 	release_sock(sk);
666 	release_sock(listener);
667 	if (cleanup)
668 		sock_put(sk);
669 
670 	sock_put(sk);
671 	sock_put(listener);
672 }
673 
674 /**** SOCKET OPERATIONS ****/
675 
__vsock_bind_connectible(struct vsock_sock * vsk,struct sockaddr_vm * addr)676 static int __vsock_bind_connectible(struct vsock_sock *vsk,
677 				    struct sockaddr_vm *addr)
678 {
679 	static u32 port;
680 	struct sockaddr_vm new_addr;
681 
682 	if (!port)
683 		port = get_random_u32_above(LAST_RESERVED_PORT);
684 
685 	vsock_addr_init(&new_addr, addr->svm_cid, addr->svm_port);
686 
687 	if (addr->svm_port == VMADDR_PORT_ANY) {
688 		bool found = false;
689 		unsigned int i;
690 
691 		for (i = 0; i < MAX_PORT_RETRIES; i++) {
692 			if (port == VMADDR_PORT_ANY ||
693 			    port <= LAST_RESERVED_PORT)
694 				port = LAST_RESERVED_PORT + 1;
695 
696 			new_addr.svm_port = port++;
697 
698 			if (!__vsock_find_bound_socket(&new_addr)) {
699 				found = true;
700 				break;
701 			}
702 		}
703 
704 		if (!found)
705 			return -EADDRNOTAVAIL;
706 	} else {
707 		/* If port is in reserved range, ensure caller
708 		 * has necessary privileges.
709 		 */
710 		if (addr->svm_port <= LAST_RESERVED_PORT &&
711 		    !capable(CAP_NET_BIND_SERVICE)) {
712 			return -EACCES;
713 		}
714 
715 		if (__vsock_find_bound_socket(&new_addr))
716 			return -EADDRINUSE;
717 	}
718 
719 	vsock_addr_init(&vsk->local_addr, new_addr.svm_cid, new_addr.svm_port);
720 
721 	/* Remove connection oriented sockets from the unbound list and add them
722 	 * to the hash table for easy lookup by its address.  The unbound list
723 	 * is simply an extra entry at the end of the hash table, a trick used
724 	 * by AF_UNIX.
725 	 */
726 	__vsock_remove_bound(vsk);
727 	__vsock_insert_bound(vsock_bound_sockets(&vsk->local_addr), vsk);
728 
729 	return 0;
730 }
731 
__vsock_bind_dgram(struct vsock_sock * vsk,struct sockaddr_vm * addr)732 static int __vsock_bind_dgram(struct vsock_sock *vsk,
733 			      struct sockaddr_vm *addr)
734 {
735 	return vsk->transport->dgram_bind(vsk, addr);
736 }
737 
__vsock_bind(struct sock * sk,struct sockaddr_vm * addr)738 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr)
739 {
740 	struct vsock_sock *vsk = vsock_sk(sk);
741 	int retval;
742 
743 	/* First ensure this socket isn't already bound. */
744 	if (vsock_addr_bound(&vsk->local_addr))
745 		return -EINVAL;
746 
747 	/* Now bind to the provided address or select appropriate values if
748 	 * none are provided (VMADDR_CID_ANY and VMADDR_PORT_ANY).  Note that
749 	 * like AF_INET prevents binding to a non-local IP address (in most
750 	 * cases), we only allow binding to a local CID.
751 	 */
752 	if (addr->svm_cid != VMADDR_CID_ANY && !vsock_find_cid(addr->svm_cid))
753 		return -EADDRNOTAVAIL;
754 
755 	switch (sk->sk_socket->type) {
756 	case SOCK_STREAM:
757 	case SOCK_SEQPACKET:
758 		spin_lock_bh(&vsock_table_lock);
759 		retval = __vsock_bind_connectible(vsk, addr);
760 		spin_unlock_bh(&vsock_table_lock);
761 		break;
762 
763 	case SOCK_DGRAM:
764 		retval = __vsock_bind_dgram(vsk, addr);
765 		break;
766 
767 	default:
768 		retval = -EINVAL;
769 		break;
770 	}
771 
772 	return retval;
773 }
774 
775 static void vsock_connect_timeout(struct work_struct *work);
776 
__vsock_create(struct net * net,struct socket * sock,struct sock * parent,gfp_t priority,unsigned short type,int kern)777 static struct sock *__vsock_create(struct net *net,
778 				   struct socket *sock,
779 				   struct sock *parent,
780 				   gfp_t priority,
781 				   unsigned short type,
782 				   int kern)
783 {
784 	struct sock *sk;
785 	struct vsock_sock *psk;
786 	struct vsock_sock *vsk;
787 
788 	sk = sk_alloc(net, AF_VSOCK, priority, &vsock_proto, kern);
789 	if (!sk)
790 		return NULL;
791 
792 	sock_init_data(sock, sk);
793 
794 	/* sk->sk_type is normally set in sock_init_data, but only if sock is
795 	 * non-NULL. We make sure that our sockets always have a type by
796 	 * setting it here if needed.
797 	 */
798 	if (!sock)
799 		sk->sk_type = type;
800 
801 	vsk = vsock_sk(sk);
802 	vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
803 	vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
804 
805 	sk->sk_destruct = vsock_sk_destruct;
806 	sk->sk_backlog_rcv = vsock_queue_rcv_skb;
807 	sock_reset_flag(sk, SOCK_DONE);
808 
809 	INIT_LIST_HEAD(&vsk->bound_table);
810 	INIT_LIST_HEAD(&vsk->connected_table);
811 	vsk->listener = NULL;
812 	INIT_LIST_HEAD(&vsk->pending_links);
813 	INIT_LIST_HEAD(&vsk->accept_queue);
814 	vsk->rejected = false;
815 	vsk->sent_request = false;
816 	vsk->ignore_connecting_rst = false;
817 	vsk->peer_shutdown = 0;
818 	INIT_DELAYED_WORK(&vsk->connect_work, vsock_connect_timeout);
819 	INIT_DELAYED_WORK(&vsk->pending_work, vsock_pending_work);
820 
821 	psk = parent ? vsock_sk(parent) : NULL;
822 	if (parent) {
823 		vsk->trusted = psk->trusted;
824 		vsk->owner = get_cred(psk->owner);
825 		vsk->connect_timeout = psk->connect_timeout;
826 		vsk->buffer_size = psk->buffer_size;
827 		vsk->buffer_min_size = psk->buffer_min_size;
828 		vsk->buffer_max_size = psk->buffer_max_size;
829 		security_sk_clone(parent, sk);
830 	} else {
831 		vsk->trusted = ns_capable_noaudit(&init_user_ns, CAP_NET_ADMIN);
832 		vsk->owner = get_current_cred();
833 		vsk->connect_timeout = VSOCK_DEFAULT_CONNECT_TIMEOUT;
834 		vsk->buffer_size = VSOCK_DEFAULT_BUFFER_SIZE;
835 		vsk->buffer_min_size = VSOCK_DEFAULT_BUFFER_MIN_SIZE;
836 		vsk->buffer_max_size = VSOCK_DEFAULT_BUFFER_MAX_SIZE;
837 	}
838 
839 	return sk;
840 }
841 
sock_type_connectible(u16 type)842 static bool sock_type_connectible(u16 type)
843 {
844 	return (type == SOCK_STREAM) || (type == SOCK_SEQPACKET);
845 }
846 
__vsock_release(struct sock * sk,int level)847 static void __vsock_release(struct sock *sk, int level)
848 {
849 	struct vsock_sock *vsk;
850 	struct sock *pending;
851 
852 	vsk = vsock_sk(sk);
853 	pending = NULL;	/* Compiler warning. */
854 
855 	/* When "level" is SINGLE_DEPTH_NESTING, use the nested
856 	 * version to avoid the warning "possible recursive locking
857 	 * detected". When "level" is 0, lock_sock_nested(sk, level)
858 	 * is the same as lock_sock(sk).
859 	 */
860 	lock_sock_nested(sk, level);
861 
862 	/* Indicate to vsock_remove_sock() that the socket is being released and
863 	 * can be removed from the bound_table. Unlike transport reassignment
864 	 * case, where the socket must remain bound despite vsock_remove_sock()
865 	 * being called from the transport release() callback.
866 	 */
867 	sock_set_flag(sk, SOCK_DEAD);
868 
869 	if (vsk->transport)
870 		vsk->transport->release(vsk);
871 	else if (sock_type_connectible(sk->sk_type))
872 		vsock_remove_sock(vsk);
873 
874 	sock_orphan(sk);
875 	sk->sk_shutdown = SHUTDOWN_MASK;
876 
877 	skb_queue_purge(&sk->sk_receive_queue);
878 
879 	/* Clean up any sockets that never were accepted. */
880 	while ((pending = vsock_dequeue_accept(sk)) != NULL) {
881 		__vsock_release(pending, SINGLE_DEPTH_NESTING);
882 		sock_put(pending);
883 	}
884 
885 	release_sock(sk);
886 	sock_put(sk);
887 }
888 
vsock_sk_destruct(struct sock * sk)889 static void vsock_sk_destruct(struct sock *sk)
890 {
891 	struct vsock_sock *vsk = vsock_sk(sk);
892 
893 	/* Flush MSG_ZEROCOPY leftovers. */
894 	__skb_queue_purge(&sk->sk_error_queue);
895 
896 	vsock_deassign_transport(vsk);
897 
898 	/* When clearing these addresses, there's no need to set the family and
899 	 * possibly register the address family with the kernel.
900 	 */
901 	vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
902 	vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
903 
904 	put_cred(vsk->owner);
905 }
906 
vsock_queue_rcv_skb(struct sock * sk,struct sk_buff * skb)907 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
908 {
909 	int err;
910 
911 	err = sock_queue_rcv_skb(sk, skb);
912 	if (err)
913 		kfree_skb(skb);
914 
915 	return err;
916 }
917 
vsock_create_connected(struct sock * parent)918 struct sock *vsock_create_connected(struct sock *parent)
919 {
920 	return __vsock_create(sock_net(parent), NULL, parent, GFP_KERNEL,
921 			      parent->sk_type, 0);
922 }
923 EXPORT_SYMBOL_GPL(vsock_create_connected);
924 
vsock_stream_has_data(struct vsock_sock * vsk)925 s64 vsock_stream_has_data(struct vsock_sock *vsk)
926 {
927 	if (WARN_ON(!vsk->transport))
928 		return 0;
929 
930 	return vsk->transport->stream_has_data(vsk);
931 }
932 EXPORT_SYMBOL_GPL(vsock_stream_has_data);
933 
vsock_connectible_has_data(struct vsock_sock * vsk)934 s64 vsock_connectible_has_data(struct vsock_sock *vsk)
935 {
936 	struct sock *sk = sk_vsock(vsk);
937 
938 	if (WARN_ON(!vsk->transport))
939 		return 0;
940 
941 	if (sk->sk_type == SOCK_SEQPACKET)
942 		return vsk->transport->seqpacket_has_data(vsk);
943 	else
944 		return vsock_stream_has_data(vsk);
945 }
946 EXPORT_SYMBOL_GPL(vsock_connectible_has_data);
947 
vsock_stream_has_space(struct vsock_sock * vsk)948 s64 vsock_stream_has_space(struct vsock_sock *vsk)
949 {
950 	if (WARN_ON(!vsk->transport))
951 		return 0;
952 
953 	return vsk->transport->stream_has_space(vsk);
954 }
955 EXPORT_SYMBOL_GPL(vsock_stream_has_space);
956 
vsock_data_ready(struct sock * sk)957 void vsock_data_ready(struct sock *sk)
958 {
959 	struct vsock_sock *vsk = vsock_sk(sk);
960 
961 	if (vsock_stream_has_data(vsk) >= sk->sk_rcvlowat ||
962 	    sock_flag(sk, SOCK_DONE))
963 		sk->sk_data_ready(sk);
964 }
965 EXPORT_SYMBOL_GPL(vsock_data_ready);
966 
967 /* Dummy callback required by sockmap.
968  * See unconditional call of saved_close() in sock_map_close().
969  */
vsock_close(struct sock * sk,long timeout)970 static void vsock_close(struct sock *sk, long timeout)
971 {
972 }
973 
vsock_release(struct socket * sock)974 static int vsock_release(struct socket *sock)
975 {
976 	struct sock *sk = sock->sk;
977 
978 	if (!sk)
979 		return 0;
980 
981 	sk->sk_prot->close(sk, 0);
982 	__vsock_release(sk, 0);
983 	sock->sk = NULL;
984 	sock->state = SS_FREE;
985 
986 	return 0;
987 }
988 
989 static int
vsock_bind(struct socket * sock,struct sockaddr * addr,int addr_len)990 vsock_bind(struct socket *sock, struct sockaddr *addr, int addr_len)
991 {
992 	int err;
993 	struct sock *sk;
994 	struct sockaddr_vm *vm_addr;
995 
996 	sk = sock->sk;
997 
998 	if (vsock_addr_cast(addr, addr_len, &vm_addr) != 0)
999 		return -EINVAL;
1000 
1001 	lock_sock(sk);
1002 	err = __vsock_bind(sk, vm_addr);
1003 	release_sock(sk);
1004 
1005 	return err;
1006 }
1007 
vsock_getname(struct socket * sock,struct sockaddr * addr,int peer)1008 static int vsock_getname(struct socket *sock,
1009 			 struct sockaddr *addr, int peer)
1010 {
1011 	int err;
1012 	struct sock *sk;
1013 	struct vsock_sock *vsk;
1014 	struct sockaddr_vm *vm_addr;
1015 
1016 	sk = sock->sk;
1017 	vsk = vsock_sk(sk);
1018 	err = 0;
1019 
1020 	lock_sock(sk);
1021 
1022 	if (peer) {
1023 		if (sock->state != SS_CONNECTED) {
1024 			err = -ENOTCONN;
1025 			goto out;
1026 		}
1027 		vm_addr = &vsk->remote_addr;
1028 	} else {
1029 		vm_addr = &vsk->local_addr;
1030 	}
1031 
1032 	if (!vm_addr) {
1033 		err = -EINVAL;
1034 		goto out;
1035 	}
1036 
1037 	/* sys_getsockname() and sys_getpeername() pass us a
1038 	 * MAX_SOCK_ADDR-sized buffer and don't set addr_len.  Unfortunately
1039 	 * that macro is defined in socket.c instead of .h, so we hardcode its
1040 	 * value here.
1041 	 */
1042 	BUILD_BUG_ON(sizeof(*vm_addr) > 128);
1043 	memcpy(addr, vm_addr, sizeof(*vm_addr));
1044 	err = sizeof(*vm_addr);
1045 
1046 out:
1047 	release_sock(sk);
1048 	return err;
1049 }
1050 
vsock_shutdown(struct socket * sock,int mode)1051 static int vsock_shutdown(struct socket *sock, int mode)
1052 {
1053 	int err;
1054 	struct sock *sk;
1055 
1056 	/* User level uses SHUT_RD (0) and SHUT_WR (1), but the kernel uses
1057 	 * RCV_SHUTDOWN (1) and SEND_SHUTDOWN (2), so we must increment mode
1058 	 * here like the other address families do.  Note also that the
1059 	 * increment makes SHUT_RDWR (2) into RCV_SHUTDOWN | SEND_SHUTDOWN (3),
1060 	 * which is what we want.
1061 	 */
1062 	mode++;
1063 
1064 	if ((mode & ~SHUTDOWN_MASK) || !mode)
1065 		return -EINVAL;
1066 
1067 	/* If this is a connection oriented socket and it is not connected then
1068 	 * bail out immediately.  If it is a DGRAM socket then we must first
1069 	 * kick the socket so that it wakes up from any sleeping calls, for
1070 	 * example recv(), and then afterwards return the error.
1071 	 */
1072 
1073 	sk = sock->sk;
1074 
1075 	lock_sock(sk);
1076 	if (sock->state == SS_UNCONNECTED) {
1077 		err = -ENOTCONN;
1078 		if (sock_type_connectible(sk->sk_type))
1079 			goto out;
1080 	} else {
1081 		sock->state = SS_DISCONNECTING;
1082 		err = 0;
1083 	}
1084 
1085 	/* Receive and send shutdowns are treated alike. */
1086 	mode = mode & (RCV_SHUTDOWN | SEND_SHUTDOWN);
1087 	if (mode) {
1088 		sk->sk_shutdown |= mode;
1089 		sk->sk_state_change(sk);
1090 
1091 		if (sock_type_connectible(sk->sk_type)) {
1092 			sock_reset_flag(sk, SOCK_DONE);
1093 			vsock_send_shutdown(sk, mode);
1094 		}
1095 	}
1096 
1097 out:
1098 	release_sock(sk);
1099 	return err;
1100 }
1101 
vsock_poll(struct file * file,struct socket * sock,poll_table * wait)1102 static __poll_t vsock_poll(struct file *file, struct socket *sock,
1103 			       poll_table *wait)
1104 {
1105 	struct sock *sk;
1106 	__poll_t mask;
1107 	struct vsock_sock *vsk;
1108 
1109 	sk = sock->sk;
1110 	vsk = vsock_sk(sk);
1111 
1112 	poll_wait(file, sk_sleep(sk), wait);
1113 	mask = 0;
1114 
1115 	if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue))
1116 		/* Signify that there has been an error on this socket. */
1117 		mask |= EPOLLERR;
1118 
1119 	/* INET sockets treat local write shutdown and peer write shutdown as a
1120 	 * case of EPOLLHUP set.
1121 	 */
1122 	if ((sk->sk_shutdown == SHUTDOWN_MASK) ||
1123 	    ((sk->sk_shutdown & SEND_SHUTDOWN) &&
1124 	     (vsk->peer_shutdown & SEND_SHUTDOWN))) {
1125 		mask |= EPOLLHUP;
1126 	}
1127 
1128 	if (sk->sk_shutdown & RCV_SHUTDOWN ||
1129 	    vsk->peer_shutdown & SEND_SHUTDOWN) {
1130 		mask |= EPOLLRDHUP;
1131 	}
1132 
1133 	if (sk_is_readable(sk))
1134 		mask |= EPOLLIN | EPOLLRDNORM;
1135 
1136 	if (sock->type == SOCK_DGRAM) {
1137 		/* For datagram sockets we can read if there is something in
1138 		 * the queue and write as long as the socket isn't shutdown for
1139 		 * sending.
1140 		 */
1141 		if (!skb_queue_empty_lockless(&sk->sk_receive_queue) ||
1142 		    (sk->sk_shutdown & RCV_SHUTDOWN)) {
1143 			mask |= EPOLLIN | EPOLLRDNORM;
1144 		}
1145 
1146 		if (!(sk->sk_shutdown & SEND_SHUTDOWN))
1147 			mask |= EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND;
1148 
1149 	} else if (sock_type_connectible(sk->sk_type)) {
1150 		const struct vsock_transport *transport;
1151 
1152 		lock_sock(sk);
1153 
1154 		transport = vsk->transport;
1155 
1156 		/* Listening sockets that have connections in their accept
1157 		 * queue can be read.
1158 		 */
1159 		if (sk->sk_state == TCP_LISTEN
1160 		    && !vsock_is_accept_queue_empty(sk))
1161 			mask |= EPOLLIN | EPOLLRDNORM;
1162 
1163 		/* If there is something in the queue then we can read. */
1164 		if (transport && transport->stream_is_active(vsk) &&
1165 		    !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1166 			bool data_ready_now = false;
1167 			int target = sock_rcvlowat(sk, 0, INT_MAX);
1168 			int ret = transport->notify_poll_in(
1169 					vsk, target, &data_ready_now);
1170 			if (ret < 0) {
1171 				mask |= EPOLLERR;
1172 			} else {
1173 				if (data_ready_now)
1174 					mask |= EPOLLIN | EPOLLRDNORM;
1175 
1176 			}
1177 		}
1178 
1179 		/* Sockets whose connections have been closed, reset, or
1180 		 * terminated should also be considered read, and we check the
1181 		 * shutdown flag for that.
1182 		 */
1183 		if (sk->sk_shutdown & RCV_SHUTDOWN ||
1184 		    vsk->peer_shutdown & SEND_SHUTDOWN) {
1185 			mask |= EPOLLIN | EPOLLRDNORM;
1186 		}
1187 
1188 		/* Connected sockets that can produce data can be written. */
1189 		if (transport && sk->sk_state == TCP_ESTABLISHED) {
1190 			if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
1191 				bool space_avail_now = false;
1192 				int ret = transport->notify_poll_out(
1193 						vsk, 1, &space_avail_now);
1194 				if (ret < 0) {
1195 					mask |= EPOLLERR;
1196 				} else {
1197 					if (space_avail_now)
1198 						/* Remove EPOLLWRBAND since INET
1199 						 * sockets are not setting it.
1200 						 */
1201 						mask |= EPOLLOUT | EPOLLWRNORM;
1202 
1203 				}
1204 			}
1205 		}
1206 
1207 		/* Simulate INET socket poll behaviors, which sets
1208 		 * EPOLLOUT|EPOLLWRNORM when peer is closed and nothing to read,
1209 		 * but local send is not shutdown.
1210 		 */
1211 		if (sk->sk_state == TCP_CLOSE || sk->sk_state == TCP_CLOSING) {
1212 			if (!(sk->sk_shutdown & SEND_SHUTDOWN))
1213 				mask |= EPOLLOUT | EPOLLWRNORM;
1214 
1215 		}
1216 
1217 		release_sock(sk);
1218 	}
1219 
1220 	return mask;
1221 }
1222 
vsock_read_skb(struct sock * sk,skb_read_actor_t read_actor)1223 static int vsock_read_skb(struct sock *sk, skb_read_actor_t read_actor)
1224 {
1225 	struct vsock_sock *vsk = vsock_sk(sk);
1226 
1227 	if (WARN_ON_ONCE(!vsk->transport))
1228 		return -ENODEV;
1229 
1230 	return vsk->transport->read_skb(vsk, read_actor);
1231 }
1232 
vsock_dgram_sendmsg(struct socket * sock,struct msghdr * msg,size_t len)1233 static int vsock_dgram_sendmsg(struct socket *sock, struct msghdr *msg,
1234 			       size_t len)
1235 {
1236 	int err;
1237 	struct sock *sk;
1238 	struct vsock_sock *vsk;
1239 	struct sockaddr_vm *remote_addr;
1240 	const struct vsock_transport *transport;
1241 
1242 	if (msg->msg_flags & MSG_OOB)
1243 		return -EOPNOTSUPP;
1244 
1245 	/* For now, MSG_DONTWAIT is always assumed... */
1246 	err = 0;
1247 	sk = sock->sk;
1248 	vsk = vsock_sk(sk);
1249 
1250 	lock_sock(sk);
1251 
1252 	transport = vsk->transport;
1253 
1254 	err = vsock_auto_bind(vsk);
1255 	if (err)
1256 		goto out;
1257 
1258 
1259 	/* If the provided message contains an address, use that.  Otherwise
1260 	 * fall back on the socket's remote handle (if it has been connected).
1261 	 */
1262 	if (msg->msg_name &&
1263 	    vsock_addr_cast(msg->msg_name, msg->msg_namelen,
1264 			    &remote_addr) == 0) {
1265 		/* Ensure this address is of the right type and is a valid
1266 		 * destination.
1267 		 */
1268 
1269 		if (remote_addr->svm_cid == VMADDR_CID_ANY)
1270 			remote_addr->svm_cid = transport->get_local_cid();
1271 
1272 		if (!vsock_addr_bound(remote_addr)) {
1273 			err = -EINVAL;
1274 			goto out;
1275 		}
1276 	} else if (sock->state == SS_CONNECTED) {
1277 		remote_addr = &vsk->remote_addr;
1278 
1279 		if (remote_addr->svm_cid == VMADDR_CID_ANY)
1280 			remote_addr->svm_cid = transport->get_local_cid();
1281 
1282 		/* XXX Should connect() or this function ensure remote_addr is
1283 		 * bound?
1284 		 */
1285 		if (!vsock_addr_bound(&vsk->remote_addr)) {
1286 			err = -EINVAL;
1287 			goto out;
1288 		}
1289 	} else {
1290 		err = -EINVAL;
1291 		goto out;
1292 	}
1293 
1294 	if (!transport->dgram_allow(remote_addr->svm_cid,
1295 				    remote_addr->svm_port)) {
1296 		err = -EINVAL;
1297 		goto out;
1298 	}
1299 
1300 	err = transport->dgram_enqueue(vsk, remote_addr, msg, len);
1301 
1302 out:
1303 	release_sock(sk);
1304 	return err;
1305 }
1306 
vsock_dgram_connect(struct socket * sock,struct sockaddr * addr,int addr_len,int flags)1307 static int vsock_dgram_connect(struct socket *sock,
1308 			       struct sockaddr *addr, int addr_len, int flags)
1309 {
1310 	int err;
1311 	struct sock *sk;
1312 	struct vsock_sock *vsk;
1313 	struct sockaddr_vm *remote_addr;
1314 
1315 	sk = sock->sk;
1316 	vsk = vsock_sk(sk);
1317 
1318 	err = vsock_addr_cast(addr, addr_len, &remote_addr);
1319 	if (err == -EAFNOSUPPORT && remote_addr->svm_family == AF_UNSPEC) {
1320 		lock_sock(sk);
1321 		vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY,
1322 				VMADDR_PORT_ANY);
1323 		sock->state = SS_UNCONNECTED;
1324 		release_sock(sk);
1325 		return 0;
1326 	} else if (err != 0)
1327 		return -EINVAL;
1328 
1329 	lock_sock(sk);
1330 
1331 	err = vsock_auto_bind(vsk);
1332 	if (err)
1333 		goto out;
1334 
1335 	if (!vsk->transport->dgram_allow(remote_addr->svm_cid,
1336 					 remote_addr->svm_port)) {
1337 		err = -EINVAL;
1338 		goto out;
1339 	}
1340 
1341 	memcpy(&vsk->remote_addr, remote_addr, sizeof(vsk->remote_addr));
1342 	sock->state = SS_CONNECTED;
1343 
1344 	/* sock map disallows redirection of non-TCP sockets with sk_state !=
1345 	 * TCP_ESTABLISHED (see sock_map_redirect_allowed()), so we set
1346 	 * TCP_ESTABLISHED here to allow redirection of connected vsock dgrams.
1347 	 *
1348 	 * This doesn't seem to be abnormal state for datagram sockets, as the
1349 	 * same approach can be see in other datagram socket types as well
1350 	 * (such as unix sockets).
1351 	 */
1352 	sk->sk_state = TCP_ESTABLISHED;
1353 
1354 out:
1355 	release_sock(sk);
1356 	return err;
1357 }
1358 
__vsock_dgram_recvmsg(struct socket * sock,struct msghdr * msg,size_t len,int flags)1359 int __vsock_dgram_recvmsg(struct socket *sock, struct msghdr *msg,
1360 			  size_t len, int flags)
1361 {
1362 	struct sock *sk = sock->sk;
1363 	struct vsock_sock *vsk = vsock_sk(sk);
1364 
1365 	return vsk->transport->dgram_dequeue(vsk, msg, len, flags);
1366 }
1367 
vsock_dgram_recvmsg(struct socket * sock,struct msghdr * msg,size_t len,int flags)1368 int vsock_dgram_recvmsg(struct socket *sock, struct msghdr *msg,
1369 			size_t len, int flags)
1370 {
1371 #ifdef CONFIG_BPF_SYSCALL
1372 	struct sock *sk = sock->sk;
1373 	const struct proto *prot;
1374 
1375 	prot = READ_ONCE(sk->sk_prot);
1376 	if (prot != &vsock_proto)
1377 		return prot->recvmsg(sk, msg, len, flags, NULL);
1378 #endif
1379 
1380 	return __vsock_dgram_recvmsg(sock, msg, len, flags);
1381 }
1382 EXPORT_SYMBOL_GPL(vsock_dgram_recvmsg);
1383 
vsock_do_ioctl(struct socket * sock,unsigned int cmd,int __user * arg)1384 static int vsock_do_ioctl(struct socket *sock, unsigned int cmd,
1385 			  int __user *arg)
1386 {
1387 	struct sock *sk = sock->sk;
1388 	struct vsock_sock *vsk;
1389 	int ret;
1390 
1391 	vsk = vsock_sk(sk);
1392 
1393 	switch (cmd) {
1394 	case SIOCOUTQ: {
1395 		ssize_t n_bytes;
1396 
1397 		if (!vsk->transport || !vsk->transport->unsent_bytes) {
1398 			ret = -EOPNOTSUPP;
1399 			break;
1400 		}
1401 
1402 		if (sock_type_connectible(sk->sk_type) && sk->sk_state == TCP_LISTEN) {
1403 			ret = -EINVAL;
1404 			break;
1405 		}
1406 
1407 		n_bytes = vsk->transport->unsent_bytes(vsk);
1408 		if (n_bytes < 0) {
1409 			ret = n_bytes;
1410 			break;
1411 		}
1412 
1413 		ret = put_user(n_bytes, arg);
1414 		break;
1415 	}
1416 	default:
1417 		ret = -ENOIOCTLCMD;
1418 	}
1419 
1420 	return ret;
1421 }
1422 
vsock_ioctl(struct socket * sock,unsigned int cmd,unsigned long arg)1423 static int vsock_ioctl(struct socket *sock, unsigned int cmd,
1424 		       unsigned long arg)
1425 {
1426 	int ret;
1427 
1428 	lock_sock(sock->sk);
1429 	ret = vsock_do_ioctl(sock, cmd, (int __user *)arg);
1430 	release_sock(sock->sk);
1431 
1432 	return ret;
1433 }
1434 
1435 static const struct proto_ops vsock_dgram_ops = {
1436 	.family = PF_VSOCK,
1437 	.owner = THIS_MODULE,
1438 	.release = vsock_release,
1439 	.bind = vsock_bind,
1440 	.connect = vsock_dgram_connect,
1441 	.socketpair = sock_no_socketpair,
1442 	.accept = sock_no_accept,
1443 	.getname = vsock_getname,
1444 	.poll = vsock_poll,
1445 	.ioctl = vsock_ioctl,
1446 	.listen = sock_no_listen,
1447 	.shutdown = vsock_shutdown,
1448 	.sendmsg = vsock_dgram_sendmsg,
1449 	.recvmsg = vsock_dgram_recvmsg,
1450 	.mmap = sock_no_mmap,
1451 	.read_skb = vsock_read_skb,
1452 };
1453 
vsock_transport_cancel_pkt(struct vsock_sock * vsk)1454 static int vsock_transport_cancel_pkt(struct vsock_sock *vsk)
1455 {
1456 	const struct vsock_transport *transport = vsk->transport;
1457 
1458 	if (!transport || !transport->cancel_pkt)
1459 		return -EOPNOTSUPP;
1460 
1461 	return transport->cancel_pkt(vsk);
1462 }
1463 
vsock_connect_timeout(struct work_struct * work)1464 static void vsock_connect_timeout(struct work_struct *work)
1465 {
1466 	struct sock *sk;
1467 	struct vsock_sock *vsk;
1468 
1469 	vsk = container_of(work, struct vsock_sock, connect_work.work);
1470 	sk = sk_vsock(vsk);
1471 
1472 	lock_sock(sk);
1473 	if (sk->sk_state == TCP_SYN_SENT &&
1474 	    (sk->sk_shutdown != SHUTDOWN_MASK)) {
1475 		sk->sk_state = TCP_CLOSE;
1476 		sk->sk_socket->state = SS_UNCONNECTED;
1477 		sk->sk_err = ETIMEDOUT;
1478 		sk_error_report(sk);
1479 		vsock_transport_cancel_pkt(vsk);
1480 	}
1481 	release_sock(sk);
1482 
1483 	sock_put(sk);
1484 }
1485 
vsock_connect(struct socket * sock,struct sockaddr * addr,int addr_len,int flags)1486 static int vsock_connect(struct socket *sock, struct sockaddr *addr,
1487 			 int addr_len, int flags)
1488 {
1489 	int err;
1490 	struct sock *sk;
1491 	struct vsock_sock *vsk;
1492 	const struct vsock_transport *transport;
1493 	struct sockaddr_vm *remote_addr;
1494 	long timeout;
1495 	DEFINE_WAIT(wait);
1496 
1497 	err = 0;
1498 	sk = sock->sk;
1499 	vsk = vsock_sk(sk);
1500 
1501 	lock_sock(sk);
1502 
1503 	/* XXX AF_UNSPEC should make us disconnect like AF_INET. */
1504 	switch (sock->state) {
1505 	case SS_CONNECTED:
1506 		err = -EISCONN;
1507 		goto out;
1508 	case SS_DISCONNECTING:
1509 		err = -EINVAL;
1510 		goto out;
1511 	case SS_CONNECTING:
1512 		/* This continues on so we can move sock into the SS_CONNECTED
1513 		 * state once the connection has completed (at which point err
1514 		 * will be set to zero also).  Otherwise, we will either wait
1515 		 * for the connection or return -EALREADY should this be a
1516 		 * non-blocking call.
1517 		 */
1518 		err = -EALREADY;
1519 		if (flags & O_NONBLOCK)
1520 			goto out;
1521 		break;
1522 	default:
1523 		if ((sk->sk_state == TCP_LISTEN) ||
1524 		    vsock_addr_cast(addr, addr_len, &remote_addr) != 0) {
1525 			err = -EINVAL;
1526 			goto out;
1527 		}
1528 
1529 		/* Set the remote address that we are connecting to. */
1530 		memcpy(&vsk->remote_addr, remote_addr,
1531 		       sizeof(vsk->remote_addr));
1532 
1533 		err = vsock_assign_transport(vsk, NULL);
1534 		if (err)
1535 			goto out;
1536 
1537 		transport = vsk->transport;
1538 
1539 		/* The hypervisor and well-known contexts do not have socket
1540 		 * endpoints.
1541 		 */
1542 		if (!transport ||
1543 		    !transport->stream_allow(remote_addr->svm_cid,
1544 					     remote_addr->svm_port)) {
1545 			err = -ENETUNREACH;
1546 			goto out;
1547 		}
1548 
1549 		if (vsock_msgzerocopy_allow(transport)) {
1550 			set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags);
1551 		} else if (sock_flag(sk, SOCK_ZEROCOPY)) {
1552 			/* If this option was set before 'connect()',
1553 			 * when transport was unknown, check that this
1554 			 * feature is supported here.
1555 			 */
1556 			err = -EOPNOTSUPP;
1557 			goto out;
1558 		}
1559 
1560 		err = vsock_auto_bind(vsk);
1561 		if (err)
1562 			goto out;
1563 
1564 		sk->sk_state = TCP_SYN_SENT;
1565 
1566 		err = transport->connect(vsk);
1567 		if (err < 0)
1568 			goto out;
1569 
1570 		/* sk_err might have been set as a result of an earlier
1571 		 * (failed) connect attempt.
1572 		 */
1573 		sk->sk_err = 0;
1574 
1575 		/* Mark sock as connecting and set the error code to in
1576 		 * progress in case this is a non-blocking connect.
1577 		 */
1578 		sock->state = SS_CONNECTING;
1579 		err = -EINPROGRESS;
1580 	}
1581 
1582 	/* The receive path will handle all communication until we are able to
1583 	 * enter the connected state.  Here we wait for the connection to be
1584 	 * completed or a notification of an error.
1585 	 */
1586 	timeout = vsk->connect_timeout;
1587 	prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1588 
1589 	/* If the socket is already closing or it is in an error state, there
1590 	 * is no point in waiting.
1591 	 */
1592 	while (sk->sk_state != TCP_ESTABLISHED &&
1593 	       sk->sk_state != TCP_CLOSING && sk->sk_err == 0) {
1594 		if (flags & O_NONBLOCK) {
1595 			/* If we're not going to block, we schedule a timeout
1596 			 * function to generate a timeout on the connection
1597 			 * attempt, in case the peer doesn't respond in a
1598 			 * timely manner. We hold on to the socket until the
1599 			 * timeout fires.
1600 			 */
1601 			sock_hold(sk);
1602 
1603 			/* If the timeout function is already scheduled,
1604 			 * reschedule it, then ungrab the socket refcount to
1605 			 * keep it balanced.
1606 			 */
1607 			if (mod_delayed_work(system_wq, &vsk->connect_work,
1608 					     timeout))
1609 				sock_put(sk);
1610 
1611 			/* Skip ahead to preserve error code set above. */
1612 			goto out_wait;
1613 		}
1614 
1615 		release_sock(sk);
1616 		timeout = schedule_timeout(timeout);
1617 		lock_sock(sk);
1618 
1619 		if (signal_pending(current)) {
1620 			err = sock_intr_errno(timeout);
1621 			sk->sk_state = sk->sk_state == TCP_ESTABLISHED ? TCP_CLOSING : TCP_CLOSE;
1622 			sock->state = SS_UNCONNECTED;
1623 			vsock_transport_cancel_pkt(vsk);
1624 			vsock_remove_connected(vsk);
1625 			goto out_wait;
1626 		} else if ((sk->sk_state != TCP_ESTABLISHED) && (timeout == 0)) {
1627 			err = -ETIMEDOUT;
1628 			sk->sk_state = TCP_CLOSE;
1629 			sock->state = SS_UNCONNECTED;
1630 			vsock_transport_cancel_pkt(vsk);
1631 			goto out_wait;
1632 		}
1633 
1634 		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1635 	}
1636 
1637 	if (sk->sk_err) {
1638 		err = -sk->sk_err;
1639 		sk->sk_state = TCP_CLOSE;
1640 		sock->state = SS_UNCONNECTED;
1641 	} else {
1642 		err = 0;
1643 	}
1644 
1645 out_wait:
1646 	finish_wait(sk_sleep(sk), &wait);
1647 out:
1648 	release_sock(sk);
1649 	return err;
1650 }
1651 
vsock_accept(struct socket * sock,struct socket * newsock,struct proto_accept_arg * arg)1652 static int vsock_accept(struct socket *sock, struct socket *newsock,
1653 			struct proto_accept_arg *arg)
1654 {
1655 	struct sock *listener;
1656 	int err;
1657 	struct sock *connected;
1658 	struct vsock_sock *vconnected;
1659 	long timeout;
1660 	DEFINE_WAIT(wait);
1661 
1662 	err = 0;
1663 	listener = sock->sk;
1664 
1665 	lock_sock(listener);
1666 
1667 	if (!sock_type_connectible(sock->type)) {
1668 		err = -EOPNOTSUPP;
1669 		goto out;
1670 	}
1671 
1672 	if (listener->sk_state != TCP_LISTEN) {
1673 		err = -EINVAL;
1674 		goto out;
1675 	}
1676 
1677 	/* Wait for children sockets to appear; these are the new sockets
1678 	 * created upon connection establishment.
1679 	 */
1680 	timeout = sock_rcvtimeo(listener, arg->flags & O_NONBLOCK);
1681 	prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1682 
1683 	while ((connected = vsock_dequeue_accept(listener)) == NULL &&
1684 	       listener->sk_err == 0) {
1685 		release_sock(listener);
1686 		timeout = schedule_timeout(timeout);
1687 		finish_wait(sk_sleep(listener), &wait);
1688 		lock_sock(listener);
1689 
1690 		if (signal_pending(current)) {
1691 			err = sock_intr_errno(timeout);
1692 			goto out;
1693 		} else if (timeout == 0) {
1694 			err = -EAGAIN;
1695 			goto out;
1696 		}
1697 
1698 		prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1699 	}
1700 	finish_wait(sk_sleep(listener), &wait);
1701 
1702 	if (listener->sk_err)
1703 		err = -listener->sk_err;
1704 
1705 	if (connected) {
1706 		sk_acceptq_removed(listener);
1707 
1708 		lock_sock_nested(connected, SINGLE_DEPTH_NESTING);
1709 		vconnected = vsock_sk(connected);
1710 
1711 		/* If the listener socket has received an error, then we should
1712 		 * reject this socket and return.  Note that we simply mark the
1713 		 * socket rejected, drop our reference, and let the cleanup
1714 		 * function handle the cleanup; the fact that we found it in
1715 		 * the listener's accept queue guarantees that the cleanup
1716 		 * function hasn't run yet.
1717 		 */
1718 		if (err) {
1719 			vconnected->rejected = true;
1720 		} else {
1721 			newsock->state = SS_CONNECTED;
1722 			sock_graft(connected, newsock);
1723 			if (vsock_msgzerocopy_allow(vconnected->transport))
1724 				set_bit(SOCK_SUPPORT_ZC,
1725 					&connected->sk_socket->flags);
1726 		}
1727 
1728 		release_sock(connected);
1729 		sock_put(connected);
1730 	}
1731 
1732 out:
1733 	release_sock(listener);
1734 	return err;
1735 }
1736 
vsock_listen(struct socket * sock,int backlog)1737 static int vsock_listen(struct socket *sock, int backlog)
1738 {
1739 	int err;
1740 	struct sock *sk;
1741 	struct vsock_sock *vsk;
1742 
1743 	sk = sock->sk;
1744 
1745 	lock_sock(sk);
1746 
1747 	if (!sock_type_connectible(sk->sk_type)) {
1748 		err = -EOPNOTSUPP;
1749 		goto out;
1750 	}
1751 
1752 	if (sock->state != SS_UNCONNECTED) {
1753 		err = -EINVAL;
1754 		goto out;
1755 	}
1756 
1757 	vsk = vsock_sk(sk);
1758 
1759 	if (!vsock_addr_bound(&vsk->local_addr)) {
1760 		err = -EINVAL;
1761 		goto out;
1762 	}
1763 
1764 	sk->sk_max_ack_backlog = backlog;
1765 	sk->sk_state = TCP_LISTEN;
1766 
1767 	err = 0;
1768 
1769 out:
1770 	release_sock(sk);
1771 	return err;
1772 }
1773 
vsock_update_buffer_size(struct vsock_sock * vsk,const struct vsock_transport * transport,u64 val)1774 static void vsock_update_buffer_size(struct vsock_sock *vsk,
1775 				     const struct vsock_transport *transport,
1776 				     u64 val)
1777 {
1778 	if (val > vsk->buffer_max_size)
1779 		val = vsk->buffer_max_size;
1780 
1781 	if (val < vsk->buffer_min_size)
1782 		val = vsk->buffer_min_size;
1783 
1784 	if (val != vsk->buffer_size &&
1785 	    transport && transport->notify_buffer_size)
1786 		transport->notify_buffer_size(vsk, &val);
1787 
1788 	vsk->buffer_size = val;
1789 }
1790 
vsock_connectible_setsockopt(struct socket * sock,int level,int optname,sockptr_t optval,unsigned int optlen)1791 static int vsock_connectible_setsockopt(struct socket *sock,
1792 					int level,
1793 					int optname,
1794 					sockptr_t optval,
1795 					unsigned int optlen)
1796 {
1797 	int err;
1798 	struct sock *sk;
1799 	struct vsock_sock *vsk;
1800 	const struct vsock_transport *transport;
1801 	u64 val;
1802 
1803 	if (level != AF_VSOCK && level != SOL_SOCKET)
1804 		return -ENOPROTOOPT;
1805 
1806 #define COPY_IN(_v)                                       \
1807 	do {						  \
1808 		if (optlen < sizeof(_v)) {		  \
1809 			err = -EINVAL;			  \
1810 			goto exit;			  \
1811 		}					  \
1812 		if (copy_from_sockptr(&_v, optval, sizeof(_v)) != 0) {	\
1813 			err = -EFAULT;					\
1814 			goto exit;					\
1815 		}							\
1816 	} while (0)
1817 
1818 	err = 0;
1819 	sk = sock->sk;
1820 	vsk = vsock_sk(sk);
1821 
1822 	lock_sock(sk);
1823 
1824 	transport = vsk->transport;
1825 
1826 	if (level == SOL_SOCKET) {
1827 		int zerocopy;
1828 
1829 		if (optname != SO_ZEROCOPY) {
1830 			release_sock(sk);
1831 			return sock_setsockopt(sock, level, optname, optval, optlen);
1832 		}
1833 
1834 		/* Use 'int' type here, because variable to
1835 		 * set this option usually has this type.
1836 		 */
1837 		COPY_IN(zerocopy);
1838 
1839 		if (zerocopy < 0 || zerocopy > 1) {
1840 			err = -EINVAL;
1841 			goto exit;
1842 		}
1843 
1844 		if (transport && !vsock_msgzerocopy_allow(transport)) {
1845 			err = -EOPNOTSUPP;
1846 			goto exit;
1847 		}
1848 
1849 		sock_valbool_flag(sk, SOCK_ZEROCOPY, zerocopy);
1850 		goto exit;
1851 	}
1852 
1853 	switch (optname) {
1854 	case SO_VM_SOCKETS_BUFFER_SIZE:
1855 		COPY_IN(val);
1856 		vsock_update_buffer_size(vsk, transport, val);
1857 		break;
1858 
1859 	case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1860 		COPY_IN(val);
1861 		vsk->buffer_max_size = val;
1862 		vsock_update_buffer_size(vsk, transport, vsk->buffer_size);
1863 		break;
1864 
1865 	case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1866 		COPY_IN(val);
1867 		vsk->buffer_min_size = val;
1868 		vsock_update_buffer_size(vsk, transport, vsk->buffer_size);
1869 		break;
1870 
1871 	case SO_VM_SOCKETS_CONNECT_TIMEOUT_NEW:
1872 	case SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD: {
1873 		struct __kernel_sock_timeval tv;
1874 
1875 		err = sock_copy_user_timeval(&tv, optval, optlen,
1876 					     optname == SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD);
1877 		if (err)
1878 			break;
1879 		if (tv.tv_sec >= 0 && tv.tv_usec < USEC_PER_SEC &&
1880 		    tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)) {
1881 			vsk->connect_timeout = tv.tv_sec * HZ +
1882 				DIV_ROUND_UP((unsigned long)tv.tv_usec, (USEC_PER_SEC / HZ));
1883 			if (vsk->connect_timeout == 0)
1884 				vsk->connect_timeout =
1885 				    VSOCK_DEFAULT_CONNECT_TIMEOUT;
1886 
1887 		} else {
1888 			err = -ERANGE;
1889 		}
1890 		break;
1891 	}
1892 
1893 	default:
1894 		err = -ENOPROTOOPT;
1895 		break;
1896 	}
1897 
1898 #undef COPY_IN
1899 
1900 exit:
1901 	release_sock(sk);
1902 	return err;
1903 }
1904 
vsock_connectible_getsockopt(struct socket * sock,int level,int optname,char __user * optval,int __user * optlen)1905 static int vsock_connectible_getsockopt(struct socket *sock,
1906 					int level, int optname,
1907 					char __user *optval,
1908 					int __user *optlen)
1909 {
1910 	struct sock *sk = sock->sk;
1911 	struct vsock_sock *vsk = vsock_sk(sk);
1912 
1913 	union {
1914 		u64 val64;
1915 		struct old_timeval32 tm32;
1916 		struct __kernel_old_timeval tm;
1917 		struct  __kernel_sock_timeval stm;
1918 	} v;
1919 
1920 	int lv = sizeof(v.val64);
1921 	int len;
1922 
1923 	if (level != AF_VSOCK)
1924 		return -ENOPROTOOPT;
1925 
1926 	if (get_user(len, optlen))
1927 		return -EFAULT;
1928 
1929 	memset(&v, 0, sizeof(v));
1930 
1931 	switch (optname) {
1932 	case SO_VM_SOCKETS_BUFFER_SIZE:
1933 		v.val64 = vsk->buffer_size;
1934 		break;
1935 
1936 	case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1937 		v.val64 = vsk->buffer_max_size;
1938 		break;
1939 
1940 	case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1941 		v.val64 = vsk->buffer_min_size;
1942 		break;
1943 
1944 	case SO_VM_SOCKETS_CONNECT_TIMEOUT_NEW:
1945 	case SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD:
1946 		lv = sock_get_timeout(vsk->connect_timeout, &v,
1947 				      optname == SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD);
1948 		break;
1949 
1950 	default:
1951 		return -ENOPROTOOPT;
1952 	}
1953 
1954 	if (len < lv)
1955 		return -EINVAL;
1956 	if (len > lv)
1957 		len = lv;
1958 	if (copy_to_user(optval, &v, len))
1959 		return -EFAULT;
1960 
1961 	if (put_user(len, optlen))
1962 		return -EFAULT;
1963 
1964 	return 0;
1965 }
1966 
vsock_connectible_sendmsg(struct socket * sock,struct msghdr * msg,size_t len)1967 static int vsock_connectible_sendmsg(struct socket *sock, struct msghdr *msg,
1968 				     size_t len)
1969 {
1970 	struct sock *sk;
1971 	struct vsock_sock *vsk;
1972 	const struct vsock_transport *transport;
1973 	ssize_t total_written;
1974 	long timeout;
1975 	int err;
1976 	struct vsock_transport_send_notify_data send_data;
1977 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
1978 
1979 	sk = sock->sk;
1980 	vsk = vsock_sk(sk);
1981 	total_written = 0;
1982 	err = 0;
1983 
1984 	if (msg->msg_flags & MSG_OOB)
1985 		return -EOPNOTSUPP;
1986 
1987 	lock_sock(sk);
1988 
1989 	transport = vsk->transport;
1990 
1991 	/* Callers should not provide a destination with connection oriented
1992 	 * sockets.
1993 	 */
1994 	if (msg->msg_namelen) {
1995 		err = sk->sk_state == TCP_ESTABLISHED ? -EISCONN : -EOPNOTSUPP;
1996 		goto out;
1997 	}
1998 
1999 	/* Send data only if both sides are not shutdown in the direction. */
2000 	if (sk->sk_shutdown & SEND_SHUTDOWN ||
2001 	    vsk->peer_shutdown & RCV_SHUTDOWN) {
2002 		err = -EPIPE;
2003 		goto out;
2004 	}
2005 
2006 	if (!transport || sk->sk_state != TCP_ESTABLISHED ||
2007 	    !vsock_addr_bound(&vsk->local_addr)) {
2008 		err = -ENOTCONN;
2009 		goto out;
2010 	}
2011 
2012 	if (!vsock_addr_bound(&vsk->remote_addr)) {
2013 		err = -EDESTADDRREQ;
2014 		goto out;
2015 	}
2016 
2017 	if (msg->msg_flags & MSG_ZEROCOPY &&
2018 	    !vsock_msgzerocopy_allow(transport)) {
2019 		err = -EOPNOTSUPP;
2020 		goto out;
2021 	}
2022 
2023 	/* Wait for room in the produce queue to enqueue our user's data. */
2024 	timeout = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
2025 
2026 	err = transport->notify_send_init(vsk, &send_data);
2027 	if (err < 0)
2028 		goto out;
2029 
2030 	while (total_written < len) {
2031 		ssize_t written;
2032 
2033 		add_wait_queue(sk_sleep(sk), &wait);
2034 		while (vsock_stream_has_space(vsk) == 0 &&
2035 		       sk->sk_err == 0 &&
2036 		       !(sk->sk_shutdown & SEND_SHUTDOWN) &&
2037 		       !(vsk->peer_shutdown & RCV_SHUTDOWN)) {
2038 
2039 			/* Don't wait for non-blocking sockets. */
2040 			if (timeout == 0) {
2041 				err = -EAGAIN;
2042 				remove_wait_queue(sk_sleep(sk), &wait);
2043 				goto out_err;
2044 			}
2045 
2046 			err = transport->notify_send_pre_block(vsk, &send_data);
2047 			if (err < 0) {
2048 				remove_wait_queue(sk_sleep(sk), &wait);
2049 				goto out_err;
2050 			}
2051 
2052 			release_sock(sk);
2053 			timeout = wait_woken(&wait, TASK_INTERRUPTIBLE, timeout);
2054 			lock_sock(sk);
2055 			if (signal_pending(current)) {
2056 				err = sock_intr_errno(timeout);
2057 				remove_wait_queue(sk_sleep(sk), &wait);
2058 				goto out_err;
2059 			} else if (timeout == 0) {
2060 				err = -EAGAIN;
2061 				remove_wait_queue(sk_sleep(sk), &wait);
2062 				goto out_err;
2063 			}
2064 		}
2065 		remove_wait_queue(sk_sleep(sk), &wait);
2066 
2067 		/* These checks occur both as part of and after the loop
2068 		 * conditional since we need to check before and after
2069 		 * sleeping.
2070 		 */
2071 		if (sk->sk_err) {
2072 			err = -sk->sk_err;
2073 			goto out_err;
2074 		} else if ((sk->sk_shutdown & SEND_SHUTDOWN) ||
2075 			   (vsk->peer_shutdown & RCV_SHUTDOWN)) {
2076 			err = -EPIPE;
2077 			goto out_err;
2078 		}
2079 
2080 		err = transport->notify_send_pre_enqueue(vsk, &send_data);
2081 		if (err < 0)
2082 			goto out_err;
2083 
2084 		/* Note that enqueue will only write as many bytes as are free
2085 		 * in the produce queue, so we don't need to ensure len is
2086 		 * smaller than the queue size.  It is the caller's
2087 		 * responsibility to check how many bytes we were able to send.
2088 		 */
2089 
2090 		if (sk->sk_type == SOCK_SEQPACKET) {
2091 			written = transport->seqpacket_enqueue(vsk,
2092 						msg, len - total_written);
2093 		} else {
2094 			written = transport->stream_enqueue(vsk,
2095 					msg, len - total_written);
2096 		}
2097 
2098 		if (written < 0) {
2099 			err = written;
2100 			goto out_err;
2101 		}
2102 
2103 		total_written += written;
2104 
2105 		err = transport->notify_send_post_enqueue(
2106 				vsk, written, &send_data);
2107 		if (err < 0)
2108 			goto out_err;
2109 
2110 	}
2111 
2112 out_err:
2113 	if (total_written > 0) {
2114 		/* Return number of written bytes only if:
2115 		 * 1) SOCK_STREAM socket.
2116 		 * 2) SOCK_SEQPACKET socket when whole buffer is sent.
2117 		 */
2118 		if (sk->sk_type == SOCK_STREAM || total_written == len)
2119 			err = total_written;
2120 	}
2121 out:
2122 	if (sk->sk_type == SOCK_STREAM)
2123 		err = sk_stream_error(sk, msg->msg_flags, err);
2124 
2125 	release_sock(sk);
2126 	return err;
2127 }
2128 
vsock_connectible_wait_data(struct sock * sk,struct wait_queue_entry * wait,long timeout,struct vsock_transport_recv_notify_data * recv_data,size_t target)2129 static int vsock_connectible_wait_data(struct sock *sk,
2130 				       struct wait_queue_entry *wait,
2131 				       long timeout,
2132 				       struct vsock_transport_recv_notify_data *recv_data,
2133 				       size_t target)
2134 {
2135 	const struct vsock_transport *transport;
2136 	struct vsock_sock *vsk;
2137 	s64 data;
2138 	int err;
2139 
2140 	vsk = vsock_sk(sk);
2141 	err = 0;
2142 	transport = vsk->transport;
2143 
2144 	while (1) {
2145 		prepare_to_wait(sk_sleep(sk), wait, TASK_INTERRUPTIBLE);
2146 		data = vsock_connectible_has_data(vsk);
2147 		if (data != 0)
2148 			break;
2149 
2150 		if (sk->sk_err != 0 ||
2151 		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
2152 		    (vsk->peer_shutdown & SEND_SHUTDOWN)) {
2153 			break;
2154 		}
2155 
2156 		/* Don't wait for non-blocking sockets. */
2157 		if (timeout == 0) {
2158 			err = -EAGAIN;
2159 			break;
2160 		}
2161 
2162 		if (recv_data) {
2163 			err = transport->notify_recv_pre_block(vsk, target, recv_data);
2164 			if (err < 0)
2165 				break;
2166 		}
2167 
2168 		release_sock(sk);
2169 		timeout = schedule_timeout(timeout);
2170 		lock_sock(sk);
2171 
2172 		if (signal_pending(current)) {
2173 			err = sock_intr_errno(timeout);
2174 			break;
2175 		} else if (timeout == 0) {
2176 			err = -EAGAIN;
2177 			break;
2178 		}
2179 	}
2180 
2181 	finish_wait(sk_sleep(sk), wait);
2182 
2183 	if (err)
2184 		return err;
2185 
2186 	/* Internal transport error when checking for available
2187 	 * data. XXX This should be changed to a connection
2188 	 * reset in a later change.
2189 	 */
2190 	if (data < 0)
2191 		return -ENOMEM;
2192 
2193 	return data;
2194 }
2195 
__vsock_stream_recvmsg(struct sock * sk,struct msghdr * msg,size_t len,int flags)2196 static int __vsock_stream_recvmsg(struct sock *sk, struct msghdr *msg,
2197 				  size_t len, int flags)
2198 {
2199 	struct vsock_transport_recv_notify_data recv_data;
2200 	const struct vsock_transport *transport;
2201 	struct vsock_sock *vsk;
2202 	ssize_t copied;
2203 	size_t target;
2204 	long timeout;
2205 	int err;
2206 
2207 	DEFINE_WAIT(wait);
2208 
2209 	vsk = vsock_sk(sk);
2210 	transport = vsk->transport;
2211 
2212 	/* We must not copy less than target bytes into the user's buffer
2213 	 * before returning successfully, so we wait for the consume queue to
2214 	 * have that much data to consume before dequeueing.  Note that this
2215 	 * makes it impossible to handle cases where target is greater than the
2216 	 * queue size.
2217 	 */
2218 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2219 	if (target >= transport->stream_rcvhiwat(vsk)) {
2220 		err = -ENOMEM;
2221 		goto out;
2222 	}
2223 	timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2224 	copied = 0;
2225 
2226 	err = transport->notify_recv_init(vsk, target, &recv_data);
2227 	if (err < 0)
2228 		goto out;
2229 
2230 
2231 	while (1) {
2232 		ssize_t read;
2233 
2234 		err = vsock_connectible_wait_data(sk, &wait, timeout,
2235 						  &recv_data, target);
2236 		if (err <= 0)
2237 			break;
2238 
2239 		err = transport->notify_recv_pre_dequeue(vsk, target,
2240 							 &recv_data);
2241 		if (err < 0)
2242 			break;
2243 
2244 		read = transport->stream_dequeue(vsk, msg, len - copied, flags);
2245 		if (read < 0) {
2246 			err = read;
2247 			break;
2248 		}
2249 
2250 		copied += read;
2251 
2252 		err = transport->notify_recv_post_dequeue(vsk, target, read,
2253 						!(flags & MSG_PEEK), &recv_data);
2254 		if (err < 0)
2255 			goto out;
2256 
2257 		if (read >= target || flags & MSG_PEEK)
2258 			break;
2259 
2260 		target -= read;
2261 	}
2262 
2263 	if (sk->sk_err)
2264 		err = -sk->sk_err;
2265 	else if (sk->sk_shutdown & RCV_SHUTDOWN)
2266 		err = 0;
2267 
2268 	if (copied > 0)
2269 		err = copied;
2270 
2271 out:
2272 	return err;
2273 }
2274 
__vsock_seqpacket_recvmsg(struct sock * sk,struct msghdr * msg,size_t len,int flags)2275 static int __vsock_seqpacket_recvmsg(struct sock *sk, struct msghdr *msg,
2276 				     size_t len, int flags)
2277 {
2278 	const struct vsock_transport *transport;
2279 	struct vsock_sock *vsk;
2280 	ssize_t msg_len;
2281 	long timeout;
2282 	int err = 0;
2283 	DEFINE_WAIT(wait);
2284 
2285 	vsk = vsock_sk(sk);
2286 	transport = vsk->transport;
2287 
2288 	timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2289 
2290 	err = vsock_connectible_wait_data(sk, &wait, timeout, NULL, 0);
2291 	if (err <= 0)
2292 		goto out;
2293 
2294 	msg_len = transport->seqpacket_dequeue(vsk, msg, flags);
2295 
2296 	if (msg_len < 0) {
2297 		err = msg_len;
2298 		goto out;
2299 	}
2300 
2301 	if (sk->sk_err) {
2302 		err = -sk->sk_err;
2303 	} else if (sk->sk_shutdown & RCV_SHUTDOWN) {
2304 		err = 0;
2305 	} else {
2306 		/* User sets MSG_TRUNC, so return real length of
2307 		 * packet.
2308 		 */
2309 		if (flags & MSG_TRUNC)
2310 			err = msg_len;
2311 		else
2312 			err = len - msg_data_left(msg);
2313 
2314 		/* Always set MSG_TRUNC if real length of packet is
2315 		 * bigger than user's buffer.
2316 		 */
2317 		if (msg_len > len)
2318 			msg->msg_flags |= MSG_TRUNC;
2319 	}
2320 
2321 out:
2322 	return err;
2323 }
2324 
2325 int
__vsock_connectible_recvmsg(struct socket * sock,struct msghdr * msg,size_t len,int flags)2326 __vsock_connectible_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
2327 			    int flags)
2328 {
2329 	struct sock *sk;
2330 	struct vsock_sock *vsk;
2331 	const struct vsock_transport *transport;
2332 	int err;
2333 
2334 	sk = sock->sk;
2335 
2336 	if (unlikely(flags & MSG_ERRQUEUE))
2337 		return sock_recv_errqueue(sk, msg, len, SOL_VSOCK, VSOCK_RECVERR);
2338 
2339 	vsk = vsock_sk(sk);
2340 	err = 0;
2341 
2342 	lock_sock(sk);
2343 
2344 	transport = vsk->transport;
2345 
2346 	if (!transport || sk->sk_state != TCP_ESTABLISHED) {
2347 		/* Recvmsg is supposed to return 0 if a peer performs an
2348 		 * orderly shutdown. Differentiate between that case and when a
2349 		 * peer has not connected or a local shutdown occurred with the
2350 		 * SOCK_DONE flag.
2351 		 */
2352 		if (sock_flag(sk, SOCK_DONE))
2353 			err = 0;
2354 		else
2355 			err = -ENOTCONN;
2356 
2357 		goto out;
2358 	}
2359 
2360 	if (flags & MSG_OOB) {
2361 		err = -EOPNOTSUPP;
2362 		goto out;
2363 	}
2364 
2365 	/* We don't check peer_shutdown flag here since peer may actually shut
2366 	 * down, but there can be data in the queue that a local socket can
2367 	 * receive.
2368 	 */
2369 	if (sk->sk_shutdown & RCV_SHUTDOWN) {
2370 		err = 0;
2371 		goto out;
2372 	}
2373 
2374 	/* It is valid on Linux to pass in a zero-length receive buffer.  This
2375 	 * is not an error.  We may as well bail out now.
2376 	 */
2377 	if (!len) {
2378 		err = 0;
2379 		goto out;
2380 	}
2381 
2382 	if (sk->sk_type == SOCK_STREAM)
2383 		err = __vsock_stream_recvmsg(sk, msg, len, flags);
2384 	else
2385 		err = __vsock_seqpacket_recvmsg(sk, msg, len, flags);
2386 
2387 out:
2388 	release_sock(sk);
2389 	return err;
2390 }
2391 
2392 int
vsock_connectible_recvmsg(struct socket * sock,struct msghdr * msg,size_t len,int flags)2393 vsock_connectible_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
2394 			  int flags)
2395 {
2396 #ifdef CONFIG_BPF_SYSCALL
2397 	struct sock *sk = sock->sk;
2398 	const struct proto *prot;
2399 
2400 	prot = READ_ONCE(sk->sk_prot);
2401 	if (prot != &vsock_proto)
2402 		return prot->recvmsg(sk, msg, len, flags, NULL);
2403 #endif
2404 
2405 	return __vsock_connectible_recvmsg(sock, msg, len, flags);
2406 }
2407 EXPORT_SYMBOL_GPL(vsock_connectible_recvmsg);
2408 
vsock_set_rcvlowat(struct sock * sk,int val)2409 static int vsock_set_rcvlowat(struct sock *sk, int val)
2410 {
2411 	const struct vsock_transport *transport;
2412 	struct vsock_sock *vsk;
2413 
2414 	vsk = vsock_sk(sk);
2415 
2416 	if (val > vsk->buffer_size)
2417 		return -EINVAL;
2418 
2419 	transport = vsk->transport;
2420 
2421 	if (transport && transport->notify_set_rcvlowat) {
2422 		int err;
2423 
2424 		err = transport->notify_set_rcvlowat(vsk, val);
2425 		if (err)
2426 			return err;
2427 	}
2428 
2429 	WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
2430 	return 0;
2431 }
2432 
2433 static const struct proto_ops vsock_stream_ops = {
2434 	.family = PF_VSOCK,
2435 	.owner = THIS_MODULE,
2436 	.release = vsock_release,
2437 	.bind = vsock_bind,
2438 	.connect = vsock_connect,
2439 	.socketpair = sock_no_socketpair,
2440 	.accept = vsock_accept,
2441 	.getname = vsock_getname,
2442 	.poll = vsock_poll,
2443 	.ioctl = vsock_ioctl,
2444 	.listen = vsock_listen,
2445 	.shutdown = vsock_shutdown,
2446 	.setsockopt = vsock_connectible_setsockopt,
2447 	.getsockopt = vsock_connectible_getsockopt,
2448 	.sendmsg = vsock_connectible_sendmsg,
2449 	.recvmsg = vsock_connectible_recvmsg,
2450 	.mmap = sock_no_mmap,
2451 	.set_rcvlowat = vsock_set_rcvlowat,
2452 	.read_skb = vsock_read_skb,
2453 };
2454 
2455 static const struct proto_ops vsock_seqpacket_ops = {
2456 	.family = PF_VSOCK,
2457 	.owner = THIS_MODULE,
2458 	.release = vsock_release,
2459 	.bind = vsock_bind,
2460 	.connect = vsock_connect,
2461 	.socketpair = sock_no_socketpair,
2462 	.accept = vsock_accept,
2463 	.getname = vsock_getname,
2464 	.poll = vsock_poll,
2465 	.ioctl = vsock_ioctl,
2466 	.listen = vsock_listen,
2467 	.shutdown = vsock_shutdown,
2468 	.setsockopt = vsock_connectible_setsockopt,
2469 	.getsockopt = vsock_connectible_getsockopt,
2470 	.sendmsg = vsock_connectible_sendmsg,
2471 	.recvmsg = vsock_connectible_recvmsg,
2472 	.mmap = sock_no_mmap,
2473 	.read_skb = vsock_read_skb,
2474 };
2475 
vsock_create(struct net * net,struct socket * sock,int protocol,int kern)2476 static int vsock_create(struct net *net, struct socket *sock,
2477 			int protocol, int kern)
2478 {
2479 	struct vsock_sock *vsk;
2480 	struct sock *sk;
2481 	int ret;
2482 
2483 	if (!sock)
2484 		return -EINVAL;
2485 
2486 	if (protocol && protocol != PF_VSOCK)
2487 		return -EPROTONOSUPPORT;
2488 
2489 	switch (sock->type) {
2490 	case SOCK_DGRAM:
2491 		sock->ops = &vsock_dgram_ops;
2492 		break;
2493 	case SOCK_STREAM:
2494 		sock->ops = &vsock_stream_ops;
2495 		break;
2496 	case SOCK_SEQPACKET:
2497 		sock->ops = &vsock_seqpacket_ops;
2498 		break;
2499 	default:
2500 		return -ESOCKTNOSUPPORT;
2501 	}
2502 
2503 	sock->state = SS_UNCONNECTED;
2504 
2505 	sk = __vsock_create(net, sock, NULL, GFP_KERNEL, 0, kern);
2506 	if (!sk)
2507 		return -ENOMEM;
2508 
2509 	vsk = vsock_sk(sk);
2510 
2511 	if (sock->type == SOCK_DGRAM) {
2512 		ret = vsock_assign_transport(vsk, NULL);
2513 		if (ret < 0) {
2514 			sock_put(sk);
2515 			return ret;
2516 		}
2517 	}
2518 
2519 	/* SOCK_DGRAM doesn't have 'setsockopt' callback set in its
2520 	 * proto_ops, so there is no handler for custom logic.
2521 	 */
2522 	if (sock_type_connectible(sock->type))
2523 		set_bit(SOCK_CUSTOM_SOCKOPT, &sk->sk_socket->flags);
2524 
2525 	vsock_insert_unbound(vsk);
2526 
2527 	return 0;
2528 }
2529 
2530 static const struct net_proto_family vsock_family_ops = {
2531 	.family = AF_VSOCK,
2532 	.create = vsock_create,
2533 	.owner = THIS_MODULE,
2534 };
2535 
vsock_dev_do_ioctl(struct file * filp,unsigned int cmd,void __user * ptr)2536 static long vsock_dev_do_ioctl(struct file *filp,
2537 			       unsigned int cmd, void __user *ptr)
2538 {
2539 	u32 __user *p = ptr;
2540 	int retval = 0;
2541 	u32 cid;
2542 
2543 	switch (cmd) {
2544 	case IOCTL_VM_SOCKETS_GET_LOCAL_CID:
2545 		/* To be compatible with the VMCI behavior, we prioritize the
2546 		 * guest CID instead of well-know host CID (VMADDR_CID_HOST).
2547 		 */
2548 		cid = vsock_registered_transport_cid(&transport_g2h);
2549 		if (cid == VMADDR_CID_ANY)
2550 			cid = vsock_registered_transport_cid(&transport_h2g);
2551 		if (cid == VMADDR_CID_ANY)
2552 			cid = vsock_registered_transport_cid(&transport_local);
2553 
2554 		if (put_user(cid, p) != 0)
2555 			retval = -EFAULT;
2556 		break;
2557 
2558 	default:
2559 		retval = -ENOIOCTLCMD;
2560 	}
2561 
2562 	return retval;
2563 }
2564 
vsock_dev_ioctl(struct file * filp,unsigned int cmd,unsigned long arg)2565 static long vsock_dev_ioctl(struct file *filp,
2566 			    unsigned int cmd, unsigned long arg)
2567 {
2568 	return vsock_dev_do_ioctl(filp, cmd, (void __user *)arg);
2569 }
2570 
2571 #ifdef CONFIG_COMPAT
vsock_dev_compat_ioctl(struct file * filp,unsigned int cmd,unsigned long arg)2572 static long vsock_dev_compat_ioctl(struct file *filp,
2573 				   unsigned int cmd, unsigned long arg)
2574 {
2575 	return vsock_dev_do_ioctl(filp, cmd, compat_ptr(arg));
2576 }
2577 #endif
2578 
2579 static const struct file_operations vsock_device_ops = {
2580 	.owner		= THIS_MODULE,
2581 	.unlocked_ioctl	= vsock_dev_ioctl,
2582 #ifdef CONFIG_COMPAT
2583 	.compat_ioctl	= vsock_dev_compat_ioctl,
2584 #endif
2585 	.open		= nonseekable_open,
2586 };
2587 
2588 static struct miscdevice vsock_device = {
2589 	.name		= "vsock",
2590 	.fops		= &vsock_device_ops,
2591 };
2592 
vsock_init(void)2593 static int __init vsock_init(void)
2594 {
2595 	int err = 0;
2596 
2597 	vsock_init_tables();
2598 
2599 	vsock_proto.owner = THIS_MODULE;
2600 	vsock_device.minor = MISC_DYNAMIC_MINOR;
2601 	err = misc_register(&vsock_device);
2602 	if (err) {
2603 		pr_err("Failed to register misc device\n");
2604 		goto err_reset_transport;
2605 	}
2606 
2607 	err = proto_register(&vsock_proto, 1);	/* we want our slab */
2608 	if (err) {
2609 		pr_err("Cannot register vsock protocol\n");
2610 		goto err_deregister_misc;
2611 	}
2612 
2613 	err = sock_register(&vsock_family_ops);
2614 	if (err) {
2615 		pr_err("could not register af_vsock (%d) address family: %d\n",
2616 		       AF_VSOCK, err);
2617 		goto err_unregister_proto;
2618 	}
2619 
2620 	vsock_bpf_build_proto();
2621 
2622 	return 0;
2623 
2624 err_unregister_proto:
2625 	proto_unregister(&vsock_proto);
2626 err_deregister_misc:
2627 	misc_deregister(&vsock_device);
2628 err_reset_transport:
2629 	return err;
2630 }
2631 
vsock_exit(void)2632 static void __exit vsock_exit(void)
2633 {
2634 	misc_deregister(&vsock_device);
2635 	sock_unregister(AF_VSOCK);
2636 	proto_unregister(&vsock_proto);
2637 }
2638 
vsock_core_get_transport(struct vsock_sock * vsk)2639 const struct vsock_transport *vsock_core_get_transport(struct vsock_sock *vsk)
2640 {
2641 	return vsk->transport;
2642 }
2643 EXPORT_SYMBOL_GPL(vsock_core_get_transport);
2644 
vsock_core_register(const struct vsock_transport * t,int features)2645 int vsock_core_register(const struct vsock_transport *t, int features)
2646 {
2647 	const struct vsock_transport *t_h2g, *t_g2h, *t_dgram, *t_local;
2648 	int err = mutex_lock_interruptible(&vsock_register_mutex);
2649 
2650 	if (err)
2651 		return err;
2652 
2653 	t_h2g = transport_h2g;
2654 	t_g2h = transport_g2h;
2655 	t_dgram = transport_dgram;
2656 	t_local = transport_local;
2657 
2658 	if (features & VSOCK_TRANSPORT_F_H2G) {
2659 		if (t_h2g) {
2660 			err = -EBUSY;
2661 			goto err_busy;
2662 		}
2663 		t_h2g = t;
2664 	}
2665 
2666 	if (features & VSOCK_TRANSPORT_F_G2H) {
2667 		if (t_g2h) {
2668 			err = -EBUSY;
2669 			goto err_busy;
2670 		}
2671 		t_g2h = t;
2672 	}
2673 
2674 	if (features & VSOCK_TRANSPORT_F_DGRAM) {
2675 		if (t_dgram) {
2676 			err = -EBUSY;
2677 			goto err_busy;
2678 		}
2679 		t_dgram = t;
2680 	}
2681 
2682 	if (features & VSOCK_TRANSPORT_F_LOCAL) {
2683 		if (t_local) {
2684 			err = -EBUSY;
2685 			goto err_busy;
2686 		}
2687 		t_local = t;
2688 	}
2689 
2690 	transport_h2g = t_h2g;
2691 	transport_g2h = t_g2h;
2692 	transport_dgram = t_dgram;
2693 	transport_local = t_local;
2694 
2695 err_busy:
2696 	mutex_unlock(&vsock_register_mutex);
2697 	return err;
2698 }
2699 EXPORT_SYMBOL_GPL(vsock_core_register);
2700 
vsock_core_unregister(const struct vsock_transport * t)2701 void vsock_core_unregister(const struct vsock_transport *t)
2702 {
2703 	mutex_lock(&vsock_register_mutex);
2704 
2705 	if (transport_h2g == t)
2706 		transport_h2g = NULL;
2707 
2708 	if (transport_g2h == t)
2709 		transport_g2h = NULL;
2710 
2711 	if (transport_dgram == t)
2712 		transport_dgram = NULL;
2713 
2714 	if (transport_local == t)
2715 		transport_local = NULL;
2716 
2717 	mutex_unlock(&vsock_register_mutex);
2718 }
2719 EXPORT_SYMBOL_GPL(vsock_core_unregister);
2720 
2721 module_init(vsock_init);
2722 module_exit(vsock_exit);
2723 
2724 MODULE_AUTHOR("VMware, Inc.");
2725 MODULE_DESCRIPTION("VMware Virtual Socket Family");
2726 MODULE_VERSION("1.0.2.0-k");
2727 MODULE_LICENSE("GPL v2");
2728