1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * VMware vSockets Driver
4 *
5 * Copyright (C) 2007-2013 VMware, Inc. All rights reserved.
6 */
7
8 /* Implementation notes:
9 *
10 * - There are two kinds of sockets: those created by user action (such as
11 * calling socket(2)) and those created by incoming connection request packets.
12 *
13 * - There are two "global" tables, one for bound sockets (sockets that have
14 * specified an address that they are responsible for) and one for connected
15 * sockets (sockets that have established a connection with another socket).
16 * These tables are "global" in that all sockets on the system are placed
17 * within them. - Note, though, that the bound table contains an extra entry
18 * for a list of unbound sockets and SOCK_DGRAM sockets will always remain in
19 * that list. The bound table is used solely for lookup of sockets when packets
20 * are received and that's not necessary for SOCK_DGRAM sockets since we create
21 * a datagram handle for each and need not perform a lookup. Keeping SOCK_DGRAM
22 * sockets out of the bound hash buckets will reduce the chance of collisions
23 * when looking for SOCK_STREAM sockets and prevents us from having to check the
24 * socket type in the hash table lookups.
25 *
26 * - Sockets created by user action will either be "client" sockets that
27 * initiate a connection or "server" sockets that listen for connections; we do
28 * not support simultaneous connects (two "client" sockets connecting).
29 *
30 * - "Server" sockets are referred to as listener sockets throughout this
31 * implementation because they are in the TCP_LISTEN state. When a
32 * connection request is received (the second kind of socket mentioned above),
33 * we create a new socket and refer to it as a pending socket. These pending
34 * sockets are placed on the pending connection list of the listener socket.
35 * When future packets are received for the address the listener socket is
36 * bound to, we check if the source of the packet is from one that has an
37 * existing pending connection. If it does, we process the packet for the
38 * pending socket. When that socket reaches the connected state, it is removed
39 * from the listener socket's pending list and enqueued in the listener
40 * socket's accept queue. Callers of accept(2) will accept connected sockets
41 * from the listener socket's accept queue. If the socket cannot be accepted
42 * for some reason then it is marked rejected. Once the connection is
43 * accepted, it is owned by the user process and the responsibility for cleanup
44 * falls with that user process.
45 *
46 * - It is possible that these pending sockets will never reach the connected
47 * state; in fact, we may never receive another packet after the connection
48 * request. Because of this, we must schedule a cleanup function to run in the
49 * future, after some amount of time passes where a connection should have been
50 * established. This function ensures that the socket is off all lists so it
51 * cannot be retrieved, then drops all references to the socket so it is cleaned
52 * up (sock_put() -> sk_free() -> our sk_destruct implementation). Note this
53 * function will also cleanup rejected sockets, those that reach the connected
54 * state but leave it before they have been accepted.
55 *
56 * - Lock ordering for pending or accept queue sockets is:
57 *
58 * lock_sock(listener);
59 * lock_sock_nested(pending, SINGLE_DEPTH_NESTING);
60 *
61 * Using explicit nested locking keeps lockdep happy since normally only one
62 * lock of a given class may be taken at a time.
63 *
64 * - Sockets created by user action will be cleaned up when the user process
65 * calls close(2), causing our release implementation to be called. Our release
66 * implementation will perform some cleanup then drop the last reference so our
67 * sk_destruct implementation is invoked. Our sk_destruct implementation will
68 * perform additional cleanup that's common for both types of sockets.
69 *
70 * - A socket's reference count is what ensures that the structure won't be
71 * freed. Each entry in a list (such as the "global" bound and connected tables
72 * and the listener socket's pending list and connected queue) ensures a
73 * reference. When we defer work until process context and pass a socket as our
74 * argument, we must ensure the reference count is increased to ensure the
75 * socket isn't freed before the function is run; the deferred function will
76 * then drop the reference.
77 *
78 * - sk->sk_state uses the TCP state constants because they are widely used by
79 * other address families and exposed to userspace tools like ss(8):
80 *
81 * TCP_CLOSE - unconnected
82 * TCP_SYN_SENT - connecting
83 * TCP_ESTABLISHED - connected
84 * TCP_CLOSING - disconnecting
85 * TCP_LISTEN - listening
86 */
87
88 #include <linux/compat.h>
89 #include <linux/types.h>
90 #include <linux/bitops.h>
91 #include <linux/cred.h>
92 #include <linux/errqueue.h>
93 #include <linux/init.h>
94 #include <linux/io.h>
95 #include <linux/kernel.h>
96 #include <linux/sched/signal.h>
97 #include <linux/kmod.h>
98 #include <linux/list.h>
99 #include <linux/miscdevice.h>
100 #include <linux/module.h>
101 #include <linux/mutex.h>
102 #include <linux/net.h>
103 #include <linux/poll.h>
104 #include <linux/random.h>
105 #include <linux/skbuff.h>
106 #include <linux/smp.h>
107 #include <linux/socket.h>
108 #include <linux/stddef.h>
109 #include <linux/unistd.h>
110 #include <linux/wait.h>
111 #include <linux/workqueue.h>
112 #include <net/sock.h>
113 #include <net/af_vsock.h>
114 #include <uapi/linux/vm_sockets.h>
115 #include <uapi/asm-generic/ioctls.h>
116
117 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr);
118 static void vsock_sk_destruct(struct sock *sk);
119 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
120 static void vsock_close(struct sock *sk, long timeout);
121
122 /* Protocol family. */
123 struct proto vsock_proto = {
124 .name = "AF_VSOCK",
125 .owner = THIS_MODULE,
126 .obj_size = sizeof(struct vsock_sock),
127 .close = vsock_close,
128 #ifdef CONFIG_BPF_SYSCALL
129 .psock_update_sk_prot = vsock_bpf_update_proto,
130 #endif
131 };
132
133 /* The default peer timeout indicates how long we will wait for a peer response
134 * to a control message.
135 */
136 #define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ)
137
138 #define VSOCK_DEFAULT_BUFFER_SIZE (1024 * 256)
139 #define VSOCK_DEFAULT_BUFFER_MAX_SIZE (1024 * 256)
140 #define VSOCK_DEFAULT_BUFFER_MIN_SIZE 128
141
142 /* Transport used for host->guest communication */
143 static const struct vsock_transport *transport_h2g;
144 /* Transport used for guest->host communication */
145 static const struct vsock_transport *transport_g2h;
146 /* Transport used for DGRAM communication */
147 static const struct vsock_transport *transport_dgram;
148 /* Transport used for local communication */
149 static const struct vsock_transport *transport_local;
150 static DEFINE_MUTEX(vsock_register_mutex);
151
152 /**** UTILS ****/
153
154 /* Each bound VSocket is stored in the bind hash table and each connected
155 * VSocket is stored in the connected hash table.
156 *
157 * Unbound sockets are all put on the same list attached to the end of the hash
158 * table (vsock_unbound_sockets). Bound sockets are added to the hash table in
159 * the bucket that their local address hashes to (vsock_bound_sockets(addr)
160 * represents the list that addr hashes to).
161 *
162 * Specifically, we initialize the vsock_bind_table array to a size of
163 * VSOCK_HASH_SIZE + 1 so that vsock_bind_table[0] through
164 * vsock_bind_table[VSOCK_HASH_SIZE - 1] are for bound sockets and
165 * vsock_bind_table[VSOCK_HASH_SIZE] is for unbound sockets. The hash function
166 * mods with VSOCK_HASH_SIZE to ensure this.
167 */
168 #define MAX_PORT_RETRIES 24
169
170 #define VSOCK_HASH(addr) ((addr)->svm_port % VSOCK_HASH_SIZE)
171 #define vsock_bound_sockets(addr) (&vsock_bind_table[VSOCK_HASH(addr)])
172 #define vsock_unbound_sockets (&vsock_bind_table[VSOCK_HASH_SIZE])
173
174 /* XXX This can probably be implemented in a better way. */
175 #define VSOCK_CONN_HASH(src, dst) \
176 (((src)->svm_cid ^ (dst)->svm_port) % VSOCK_HASH_SIZE)
177 #define vsock_connected_sockets(src, dst) \
178 (&vsock_connected_table[VSOCK_CONN_HASH(src, dst)])
179 #define vsock_connected_sockets_vsk(vsk) \
180 vsock_connected_sockets(&(vsk)->remote_addr, &(vsk)->local_addr)
181
182 struct list_head vsock_bind_table[VSOCK_HASH_SIZE + 1];
183 EXPORT_SYMBOL_GPL(vsock_bind_table);
184 struct list_head vsock_connected_table[VSOCK_HASH_SIZE];
185 EXPORT_SYMBOL_GPL(vsock_connected_table);
186 DEFINE_SPINLOCK(vsock_table_lock);
187 EXPORT_SYMBOL_GPL(vsock_table_lock);
188
189 /* Autobind this socket to the local address if necessary. */
vsock_auto_bind(struct vsock_sock * vsk)190 static int vsock_auto_bind(struct vsock_sock *vsk)
191 {
192 struct sock *sk = sk_vsock(vsk);
193 struct sockaddr_vm local_addr;
194
195 if (vsock_addr_bound(&vsk->local_addr))
196 return 0;
197 vsock_addr_init(&local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
198 return __vsock_bind(sk, &local_addr);
199 }
200
vsock_init_tables(void)201 static void vsock_init_tables(void)
202 {
203 int i;
204
205 for (i = 0; i < ARRAY_SIZE(vsock_bind_table); i++)
206 INIT_LIST_HEAD(&vsock_bind_table[i]);
207
208 for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++)
209 INIT_LIST_HEAD(&vsock_connected_table[i]);
210 }
211
__vsock_insert_bound(struct list_head * list,struct vsock_sock * vsk)212 static void __vsock_insert_bound(struct list_head *list,
213 struct vsock_sock *vsk)
214 {
215 sock_hold(&vsk->sk);
216 list_add(&vsk->bound_table, list);
217 }
218
__vsock_insert_connected(struct list_head * list,struct vsock_sock * vsk)219 static void __vsock_insert_connected(struct list_head *list,
220 struct vsock_sock *vsk)
221 {
222 sock_hold(&vsk->sk);
223 list_add(&vsk->connected_table, list);
224 }
225
__vsock_remove_bound(struct vsock_sock * vsk)226 static void __vsock_remove_bound(struct vsock_sock *vsk)
227 {
228 list_del_init(&vsk->bound_table);
229 sock_put(&vsk->sk);
230 }
231
__vsock_remove_connected(struct vsock_sock * vsk)232 static void __vsock_remove_connected(struct vsock_sock *vsk)
233 {
234 list_del_init(&vsk->connected_table);
235 sock_put(&vsk->sk);
236 }
237
__vsock_find_bound_socket(struct sockaddr_vm * addr)238 static struct sock *__vsock_find_bound_socket(struct sockaddr_vm *addr)
239 {
240 struct vsock_sock *vsk;
241
242 list_for_each_entry(vsk, vsock_bound_sockets(addr), bound_table) {
243 if (vsock_addr_equals_addr(addr, &vsk->local_addr))
244 return sk_vsock(vsk);
245
246 if (addr->svm_port == vsk->local_addr.svm_port &&
247 (vsk->local_addr.svm_cid == VMADDR_CID_ANY ||
248 addr->svm_cid == VMADDR_CID_ANY))
249 return sk_vsock(vsk);
250 }
251
252 return NULL;
253 }
254
__vsock_find_connected_socket(struct sockaddr_vm * src,struct sockaddr_vm * dst)255 static struct sock *__vsock_find_connected_socket(struct sockaddr_vm *src,
256 struct sockaddr_vm *dst)
257 {
258 struct vsock_sock *vsk;
259
260 list_for_each_entry(vsk, vsock_connected_sockets(src, dst),
261 connected_table) {
262 if (vsock_addr_equals_addr(src, &vsk->remote_addr) &&
263 dst->svm_port == vsk->local_addr.svm_port) {
264 return sk_vsock(vsk);
265 }
266 }
267
268 return NULL;
269 }
270
vsock_insert_unbound(struct vsock_sock * vsk)271 static void vsock_insert_unbound(struct vsock_sock *vsk)
272 {
273 spin_lock_bh(&vsock_table_lock);
274 __vsock_insert_bound(vsock_unbound_sockets, vsk);
275 spin_unlock_bh(&vsock_table_lock);
276 }
277
vsock_insert_connected(struct vsock_sock * vsk)278 void vsock_insert_connected(struct vsock_sock *vsk)
279 {
280 struct list_head *list = vsock_connected_sockets(
281 &vsk->remote_addr, &vsk->local_addr);
282
283 spin_lock_bh(&vsock_table_lock);
284 __vsock_insert_connected(list, vsk);
285 spin_unlock_bh(&vsock_table_lock);
286 }
287 EXPORT_SYMBOL_GPL(vsock_insert_connected);
288
vsock_remove_bound(struct vsock_sock * vsk)289 void vsock_remove_bound(struct vsock_sock *vsk)
290 {
291 spin_lock_bh(&vsock_table_lock);
292 if (__vsock_in_bound_table(vsk))
293 __vsock_remove_bound(vsk);
294 spin_unlock_bh(&vsock_table_lock);
295 }
296 EXPORT_SYMBOL_GPL(vsock_remove_bound);
297
vsock_remove_connected(struct vsock_sock * vsk)298 void vsock_remove_connected(struct vsock_sock *vsk)
299 {
300 spin_lock_bh(&vsock_table_lock);
301 if (__vsock_in_connected_table(vsk))
302 __vsock_remove_connected(vsk);
303 spin_unlock_bh(&vsock_table_lock);
304 }
305 EXPORT_SYMBOL_GPL(vsock_remove_connected);
306
vsock_find_bound_socket(struct sockaddr_vm * addr)307 struct sock *vsock_find_bound_socket(struct sockaddr_vm *addr)
308 {
309 struct sock *sk;
310
311 spin_lock_bh(&vsock_table_lock);
312 sk = __vsock_find_bound_socket(addr);
313 if (sk)
314 sock_hold(sk);
315
316 spin_unlock_bh(&vsock_table_lock);
317
318 return sk;
319 }
320 EXPORT_SYMBOL_GPL(vsock_find_bound_socket);
321
vsock_find_connected_socket(struct sockaddr_vm * src,struct sockaddr_vm * dst)322 struct sock *vsock_find_connected_socket(struct sockaddr_vm *src,
323 struct sockaddr_vm *dst)
324 {
325 struct sock *sk;
326
327 spin_lock_bh(&vsock_table_lock);
328 sk = __vsock_find_connected_socket(src, dst);
329 if (sk)
330 sock_hold(sk);
331
332 spin_unlock_bh(&vsock_table_lock);
333
334 return sk;
335 }
336 EXPORT_SYMBOL_GPL(vsock_find_connected_socket);
337
vsock_remove_sock(struct vsock_sock * vsk)338 void vsock_remove_sock(struct vsock_sock *vsk)
339 {
340 /* Transport reassignment must not remove the binding. */
341 if (sock_flag(sk_vsock(vsk), SOCK_DEAD))
342 vsock_remove_bound(vsk);
343
344 vsock_remove_connected(vsk);
345 }
346 EXPORT_SYMBOL_GPL(vsock_remove_sock);
347
vsock_for_each_connected_socket(struct vsock_transport * transport,void (* fn)(struct sock * sk))348 void vsock_for_each_connected_socket(struct vsock_transport *transport,
349 void (*fn)(struct sock *sk))
350 {
351 int i;
352
353 spin_lock_bh(&vsock_table_lock);
354
355 for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++) {
356 struct vsock_sock *vsk;
357 list_for_each_entry(vsk, &vsock_connected_table[i],
358 connected_table) {
359 if (vsk->transport != transport)
360 continue;
361
362 fn(sk_vsock(vsk));
363 }
364 }
365
366 spin_unlock_bh(&vsock_table_lock);
367 }
368 EXPORT_SYMBOL_GPL(vsock_for_each_connected_socket);
369
vsock_add_pending(struct sock * listener,struct sock * pending)370 void vsock_add_pending(struct sock *listener, struct sock *pending)
371 {
372 struct vsock_sock *vlistener;
373 struct vsock_sock *vpending;
374
375 vlistener = vsock_sk(listener);
376 vpending = vsock_sk(pending);
377
378 sock_hold(pending);
379 sock_hold(listener);
380 list_add_tail(&vpending->pending_links, &vlistener->pending_links);
381 }
382 EXPORT_SYMBOL_GPL(vsock_add_pending);
383
vsock_remove_pending(struct sock * listener,struct sock * pending)384 void vsock_remove_pending(struct sock *listener, struct sock *pending)
385 {
386 struct vsock_sock *vpending = vsock_sk(pending);
387
388 list_del_init(&vpending->pending_links);
389 sock_put(listener);
390 sock_put(pending);
391 }
392 EXPORT_SYMBOL_GPL(vsock_remove_pending);
393
vsock_enqueue_accept(struct sock * listener,struct sock * connected)394 void vsock_enqueue_accept(struct sock *listener, struct sock *connected)
395 {
396 struct vsock_sock *vlistener;
397 struct vsock_sock *vconnected;
398
399 vlistener = vsock_sk(listener);
400 vconnected = vsock_sk(connected);
401
402 sock_hold(connected);
403 sock_hold(listener);
404 list_add_tail(&vconnected->accept_queue, &vlistener->accept_queue);
405 }
406 EXPORT_SYMBOL_GPL(vsock_enqueue_accept);
407
vsock_use_local_transport(unsigned int remote_cid)408 static bool vsock_use_local_transport(unsigned int remote_cid)
409 {
410 lockdep_assert_held(&vsock_register_mutex);
411
412 if (!transport_local)
413 return false;
414
415 if (remote_cid == VMADDR_CID_LOCAL)
416 return true;
417
418 if (transport_g2h) {
419 return remote_cid == transport_g2h->get_local_cid();
420 } else {
421 return remote_cid == VMADDR_CID_HOST;
422 }
423 }
424
vsock_deassign_transport(struct vsock_sock * vsk)425 static void vsock_deassign_transport(struct vsock_sock *vsk)
426 {
427 if (!vsk->transport)
428 return;
429
430 vsk->transport->destruct(vsk);
431 module_put(vsk->transport->module);
432 vsk->transport = NULL;
433 }
434
435 /* Assign a transport to a socket and call the .init transport callback.
436 *
437 * Note: for connection oriented socket this must be called when vsk->remote_addr
438 * is set (e.g. during the connect() or when a connection request on a listener
439 * socket is received).
440 * The vsk->remote_addr is used to decide which transport to use:
441 * - remote CID == VMADDR_CID_LOCAL or g2h->local_cid or VMADDR_CID_HOST if
442 * g2h is not loaded, will use local transport;
443 * - remote CID <= VMADDR_CID_HOST or h2g is not loaded or remote flags field
444 * includes VMADDR_FLAG_TO_HOST flag value, will use guest->host transport;
445 * - remote CID > VMADDR_CID_HOST will use host->guest transport;
446 */
vsock_assign_transport(struct vsock_sock * vsk,struct vsock_sock * psk)447 int vsock_assign_transport(struct vsock_sock *vsk, struct vsock_sock *psk)
448 {
449 const struct vsock_transport *new_transport;
450 struct sock *sk = sk_vsock(vsk);
451 unsigned int remote_cid = vsk->remote_addr.svm_cid;
452 __u8 remote_flags;
453 int ret;
454
455 /* If the packet is coming with the source and destination CIDs higher
456 * than VMADDR_CID_HOST, then a vsock channel where all the packets are
457 * forwarded to the host should be established. Then the host will
458 * need to forward the packets to the guest.
459 *
460 * The flag is set on the (listen) receive path (psk is not NULL). On
461 * the connect path the flag can be set by the user space application.
462 */
463 if (psk && vsk->local_addr.svm_cid > VMADDR_CID_HOST &&
464 vsk->remote_addr.svm_cid > VMADDR_CID_HOST)
465 vsk->remote_addr.svm_flags |= VMADDR_FLAG_TO_HOST;
466
467 remote_flags = vsk->remote_addr.svm_flags;
468
469 mutex_lock(&vsock_register_mutex);
470
471 switch (sk->sk_type) {
472 case SOCK_DGRAM:
473 new_transport = transport_dgram;
474 break;
475 case SOCK_STREAM:
476 case SOCK_SEQPACKET:
477 if (vsock_use_local_transport(remote_cid))
478 new_transport = transport_local;
479 else if (remote_cid <= VMADDR_CID_HOST || !transport_h2g ||
480 (remote_flags & VMADDR_FLAG_TO_HOST))
481 new_transport = transport_g2h;
482 else
483 new_transport = transport_h2g;
484 break;
485 default:
486 ret = -ESOCKTNOSUPPORT;
487 goto err;
488 }
489
490 if (vsk->transport) {
491 if (vsk->transport == new_transport) {
492 ret = 0;
493 goto err;
494 }
495
496 /* transport->release() must be called with sock lock acquired.
497 * This path can only be taken during vsock_connect(), where we
498 * have already held the sock lock. In the other cases, this
499 * function is called on a new socket which is not assigned to
500 * any transport.
501 */
502 vsk->transport->release(vsk);
503 vsock_deassign_transport(vsk);
504
505 /* transport's release() and destruct() can touch some socket
506 * state, since we are reassigning the socket to a new transport
507 * during vsock_connect(), let's reset these fields to have a
508 * clean state.
509 */
510 sock_reset_flag(sk, SOCK_DONE);
511 sk->sk_state = TCP_CLOSE;
512 vsk->peer_shutdown = 0;
513 }
514
515 /* We increase the module refcnt to prevent the transport unloading
516 * while there are open sockets assigned to it.
517 */
518 if (!new_transport || !try_module_get(new_transport->module)) {
519 ret = -ENODEV;
520 goto err;
521 }
522
523 /* It's safe to release the mutex after a successful try_module_get().
524 * Whichever transport `new_transport` points at, it won't go away until
525 * the last module_put() below or in vsock_deassign_transport().
526 */
527 mutex_unlock(&vsock_register_mutex);
528
529 if (sk->sk_type == SOCK_SEQPACKET) {
530 if (!new_transport->seqpacket_allow ||
531 !new_transport->seqpacket_allow(remote_cid)) {
532 module_put(new_transport->module);
533 return -ESOCKTNOSUPPORT;
534 }
535 }
536
537 ret = new_transport->init(vsk, psk);
538 if (ret) {
539 module_put(new_transport->module);
540 return ret;
541 }
542
543 vsk->transport = new_transport;
544
545 return 0;
546 err:
547 mutex_unlock(&vsock_register_mutex);
548 return ret;
549 }
550 EXPORT_SYMBOL_GPL(vsock_assign_transport);
551
552 /*
553 * Provide safe access to static transport_{h2g,g2h,dgram,local} callbacks.
554 * Otherwise we may race with module removal. Do not use on `vsk->transport`.
555 */
vsock_registered_transport_cid(const struct vsock_transport ** transport)556 static u32 vsock_registered_transport_cid(const struct vsock_transport **transport)
557 {
558 u32 cid = VMADDR_CID_ANY;
559
560 mutex_lock(&vsock_register_mutex);
561 if (*transport)
562 cid = (*transport)->get_local_cid();
563 mutex_unlock(&vsock_register_mutex);
564
565 return cid;
566 }
567
vsock_find_cid(unsigned int cid)568 bool vsock_find_cid(unsigned int cid)
569 {
570 if (cid == vsock_registered_transport_cid(&transport_g2h))
571 return true;
572
573 if (transport_h2g && cid == VMADDR_CID_HOST)
574 return true;
575
576 if (transport_local && cid == VMADDR_CID_LOCAL)
577 return true;
578
579 return false;
580 }
581 EXPORT_SYMBOL_GPL(vsock_find_cid);
582
vsock_dequeue_accept(struct sock * listener)583 static struct sock *vsock_dequeue_accept(struct sock *listener)
584 {
585 struct vsock_sock *vlistener;
586 struct vsock_sock *vconnected;
587
588 vlistener = vsock_sk(listener);
589
590 if (list_empty(&vlistener->accept_queue))
591 return NULL;
592
593 vconnected = list_entry(vlistener->accept_queue.next,
594 struct vsock_sock, accept_queue);
595
596 list_del_init(&vconnected->accept_queue);
597 sock_put(listener);
598 /* The caller will need a reference on the connected socket so we let
599 * it call sock_put().
600 */
601
602 return sk_vsock(vconnected);
603 }
604
vsock_is_accept_queue_empty(struct sock * sk)605 static bool vsock_is_accept_queue_empty(struct sock *sk)
606 {
607 struct vsock_sock *vsk = vsock_sk(sk);
608 return list_empty(&vsk->accept_queue);
609 }
610
vsock_is_pending(struct sock * sk)611 static bool vsock_is_pending(struct sock *sk)
612 {
613 struct vsock_sock *vsk = vsock_sk(sk);
614 return !list_empty(&vsk->pending_links);
615 }
616
vsock_send_shutdown(struct sock * sk,int mode)617 static int vsock_send_shutdown(struct sock *sk, int mode)
618 {
619 struct vsock_sock *vsk = vsock_sk(sk);
620
621 if (!vsk->transport)
622 return -ENODEV;
623
624 return vsk->transport->shutdown(vsk, mode);
625 }
626
vsock_pending_work(struct work_struct * work)627 static void vsock_pending_work(struct work_struct *work)
628 {
629 struct sock *sk;
630 struct sock *listener;
631 struct vsock_sock *vsk;
632 bool cleanup;
633
634 vsk = container_of(work, struct vsock_sock, pending_work.work);
635 sk = sk_vsock(vsk);
636 listener = vsk->listener;
637 cleanup = true;
638
639 lock_sock(listener);
640 lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
641
642 if (vsock_is_pending(sk)) {
643 vsock_remove_pending(listener, sk);
644
645 sk_acceptq_removed(listener);
646 } else if (!vsk->rejected) {
647 /* We are not on the pending list and accept() did not reject
648 * us, so we must have been accepted by our user process. We
649 * just need to drop our references to the sockets and be on
650 * our way.
651 */
652 cleanup = false;
653 goto out;
654 }
655
656 /* We need to remove ourself from the global connected sockets list so
657 * incoming packets can't find this socket, and to reduce the reference
658 * count.
659 */
660 vsock_remove_connected(vsk);
661
662 sk->sk_state = TCP_CLOSE;
663
664 out:
665 release_sock(sk);
666 release_sock(listener);
667 if (cleanup)
668 sock_put(sk);
669
670 sock_put(sk);
671 sock_put(listener);
672 }
673
674 /**** SOCKET OPERATIONS ****/
675
__vsock_bind_connectible(struct vsock_sock * vsk,struct sockaddr_vm * addr)676 static int __vsock_bind_connectible(struct vsock_sock *vsk,
677 struct sockaddr_vm *addr)
678 {
679 static u32 port;
680 struct sockaddr_vm new_addr;
681
682 if (!port)
683 port = get_random_u32_above(LAST_RESERVED_PORT);
684
685 vsock_addr_init(&new_addr, addr->svm_cid, addr->svm_port);
686
687 if (addr->svm_port == VMADDR_PORT_ANY) {
688 bool found = false;
689 unsigned int i;
690
691 for (i = 0; i < MAX_PORT_RETRIES; i++) {
692 if (port == VMADDR_PORT_ANY ||
693 port <= LAST_RESERVED_PORT)
694 port = LAST_RESERVED_PORT + 1;
695
696 new_addr.svm_port = port++;
697
698 if (!__vsock_find_bound_socket(&new_addr)) {
699 found = true;
700 break;
701 }
702 }
703
704 if (!found)
705 return -EADDRNOTAVAIL;
706 } else {
707 /* If port is in reserved range, ensure caller
708 * has necessary privileges.
709 */
710 if (addr->svm_port <= LAST_RESERVED_PORT &&
711 !capable(CAP_NET_BIND_SERVICE)) {
712 return -EACCES;
713 }
714
715 if (__vsock_find_bound_socket(&new_addr))
716 return -EADDRINUSE;
717 }
718
719 vsock_addr_init(&vsk->local_addr, new_addr.svm_cid, new_addr.svm_port);
720
721 /* Remove connection oriented sockets from the unbound list and add them
722 * to the hash table for easy lookup by its address. The unbound list
723 * is simply an extra entry at the end of the hash table, a trick used
724 * by AF_UNIX.
725 */
726 __vsock_remove_bound(vsk);
727 __vsock_insert_bound(vsock_bound_sockets(&vsk->local_addr), vsk);
728
729 return 0;
730 }
731
__vsock_bind_dgram(struct vsock_sock * vsk,struct sockaddr_vm * addr)732 static int __vsock_bind_dgram(struct vsock_sock *vsk,
733 struct sockaddr_vm *addr)
734 {
735 return vsk->transport->dgram_bind(vsk, addr);
736 }
737
__vsock_bind(struct sock * sk,struct sockaddr_vm * addr)738 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr)
739 {
740 struct vsock_sock *vsk = vsock_sk(sk);
741 int retval;
742
743 /* First ensure this socket isn't already bound. */
744 if (vsock_addr_bound(&vsk->local_addr))
745 return -EINVAL;
746
747 /* Now bind to the provided address or select appropriate values if
748 * none are provided (VMADDR_CID_ANY and VMADDR_PORT_ANY). Note that
749 * like AF_INET prevents binding to a non-local IP address (in most
750 * cases), we only allow binding to a local CID.
751 */
752 if (addr->svm_cid != VMADDR_CID_ANY && !vsock_find_cid(addr->svm_cid))
753 return -EADDRNOTAVAIL;
754
755 switch (sk->sk_socket->type) {
756 case SOCK_STREAM:
757 case SOCK_SEQPACKET:
758 spin_lock_bh(&vsock_table_lock);
759 retval = __vsock_bind_connectible(vsk, addr);
760 spin_unlock_bh(&vsock_table_lock);
761 break;
762
763 case SOCK_DGRAM:
764 retval = __vsock_bind_dgram(vsk, addr);
765 break;
766
767 default:
768 retval = -EINVAL;
769 break;
770 }
771
772 return retval;
773 }
774
775 static void vsock_connect_timeout(struct work_struct *work);
776
__vsock_create(struct net * net,struct socket * sock,struct sock * parent,gfp_t priority,unsigned short type,int kern)777 static struct sock *__vsock_create(struct net *net,
778 struct socket *sock,
779 struct sock *parent,
780 gfp_t priority,
781 unsigned short type,
782 int kern)
783 {
784 struct sock *sk;
785 struct vsock_sock *psk;
786 struct vsock_sock *vsk;
787
788 sk = sk_alloc(net, AF_VSOCK, priority, &vsock_proto, kern);
789 if (!sk)
790 return NULL;
791
792 sock_init_data(sock, sk);
793
794 /* sk->sk_type is normally set in sock_init_data, but only if sock is
795 * non-NULL. We make sure that our sockets always have a type by
796 * setting it here if needed.
797 */
798 if (!sock)
799 sk->sk_type = type;
800
801 vsk = vsock_sk(sk);
802 vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
803 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
804
805 sk->sk_destruct = vsock_sk_destruct;
806 sk->sk_backlog_rcv = vsock_queue_rcv_skb;
807 sock_reset_flag(sk, SOCK_DONE);
808
809 INIT_LIST_HEAD(&vsk->bound_table);
810 INIT_LIST_HEAD(&vsk->connected_table);
811 vsk->listener = NULL;
812 INIT_LIST_HEAD(&vsk->pending_links);
813 INIT_LIST_HEAD(&vsk->accept_queue);
814 vsk->rejected = false;
815 vsk->sent_request = false;
816 vsk->ignore_connecting_rst = false;
817 vsk->peer_shutdown = 0;
818 INIT_DELAYED_WORK(&vsk->connect_work, vsock_connect_timeout);
819 INIT_DELAYED_WORK(&vsk->pending_work, vsock_pending_work);
820
821 psk = parent ? vsock_sk(parent) : NULL;
822 if (parent) {
823 vsk->trusted = psk->trusted;
824 vsk->owner = get_cred(psk->owner);
825 vsk->connect_timeout = psk->connect_timeout;
826 vsk->buffer_size = psk->buffer_size;
827 vsk->buffer_min_size = psk->buffer_min_size;
828 vsk->buffer_max_size = psk->buffer_max_size;
829 security_sk_clone(parent, sk);
830 } else {
831 vsk->trusted = ns_capable_noaudit(&init_user_ns, CAP_NET_ADMIN);
832 vsk->owner = get_current_cred();
833 vsk->connect_timeout = VSOCK_DEFAULT_CONNECT_TIMEOUT;
834 vsk->buffer_size = VSOCK_DEFAULT_BUFFER_SIZE;
835 vsk->buffer_min_size = VSOCK_DEFAULT_BUFFER_MIN_SIZE;
836 vsk->buffer_max_size = VSOCK_DEFAULT_BUFFER_MAX_SIZE;
837 }
838
839 return sk;
840 }
841
sock_type_connectible(u16 type)842 static bool sock_type_connectible(u16 type)
843 {
844 return (type == SOCK_STREAM) || (type == SOCK_SEQPACKET);
845 }
846
__vsock_release(struct sock * sk,int level)847 static void __vsock_release(struct sock *sk, int level)
848 {
849 struct vsock_sock *vsk;
850 struct sock *pending;
851
852 vsk = vsock_sk(sk);
853 pending = NULL; /* Compiler warning. */
854
855 /* When "level" is SINGLE_DEPTH_NESTING, use the nested
856 * version to avoid the warning "possible recursive locking
857 * detected". When "level" is 0, lock_sock_nested(sk, level)
858 * is the same as lock_sock(sk).
859 */
860 lock_sock_nested(sk, level);
861
862 /* Indicate to vsock_remove_sock() that the socket is being released and
863 * can be removed from the bound_table. Unlike transport reassignment
864 * case, where the socket must remain bound despite vsock_remove_sock()
865 * being called from the transport release() callback.
866 */
867 sock_set_flag(sk, SOCK_DEAD);
868
869 if (vsk->transport)
870 vsk->transport->release(vsk);
871 else if (sock_type_connectible(sk->sk_type))
872 vsock_remove_sock(vsk);
873
874 sock_orphan(sk);
875 sk->sk_shutdown = SHUTDOWN_MASK;
876
877 skb_queue_purge(&sk->sk_receive_queue);
878
879 /* Clean up any sockets that never were accepted. */
880 while ((pending = vsock_dequeue_accept(sk)) != NULL) {
881 __vsock_release(pending, SINGLE_DEPTH_NESTING);
882 sock_put(pending);
883 }
884
885 release_sock(sk);
886 sock_put(sk);
887 }
888
vsock_sk_destruct(struct sock * sk)889 static void vsock_sk_destruct(struct sock *sk)
890 {
891 struct vsock_sock *vsk = vsock_sk(sk);
892
893 /* Flush MSG_ZEROCOPY leftovers. */
894 __skb_queue_purge(&sk->sk_error_queue);
895
896 vsock_deassign_transport(vsk);
897
898 /* When clearing these addresses, there's no need to set the family and
899 * possibly register the address family with the kernel.
900 */
901 vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
902 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
903
904 put_cred(vsk->owner);
905 }
906
vsock_queue_rcv_skb(struct sock * sk,struct sk_buff * skb)907 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
908 {
909 int err;
910
911 err = sock_queue_rcv_skb(sk, skb);
912 if (err)
913 kfree_skb(skb);
914
915 return err;
916 }
917
vsock_create_connected(struct sock * parent)918 struct sock *vsock_create_connected(struct sock *parent)
919 {
920 return __vsock_create(sock_net(parent), NULL, parent, GFP_KERNEL,
921 parent->sk_type, 0);
922 }
923 EXPORT_SYMBOL_GPL(vsock_create_connected);
924
vsock_stream_has_data(struct vsock_sock * vsk)925 s64 vsock_stream_has_data(struct vsock_sock *vsk)
926 {
927 if (WARN_ON(!vsk->transport))
928 return 0;
929
930 return vsk->transport->stream_has_data(vsk);
931 }
932 EXPORT_SYMBOL_GPL(vsock_stream_has_data);
933
vsock_connectible_has_data(struct vsock_sock * vsk)934 s64 vsock_connectible_has_data(struct vsock_sock *vsk)
935 {
936 struct sock *sk = sk_vsock(vsk);
937
938 if (WARN_ON(!vsk->transport))
939 return 0;
940
941 if (sk->sk_type == SOCK_SEQPACKET)
942 return vsk->transport->seqpacket_has_data(vsk);
943 else
944 return vsock_stream_has_data(vsk);
945 }
946 EXPORT_SYMBOL_GPL(vsock_connectible_has_data);
947
vsock_stream_has_space(struct vsock_sock * vsk)948 s64 vsock_stream_has_space(struct vsock_sock *vsk)
949 {
950 if (WARN_ON(!vsk->transport))
951 return 0;
952
953 return vsk->transport->stream_has_space(vsk);
954 }
955 EXPORT_SYMBOL_GPL(vsock_stream_has_space);
956
vsock_data_ready(struct sock * sk)957 void vsock_data_ready(struct sock *sk)
958 {
959 struct vsock_sock *vsk = vsock_sk(sk);
960
961 if (vsock_stream_has_data(vsk) >= sk->sk_rcvlowat ||
962 sock_flag(sk, SOCK_DONE))
963 sk->sk_data_ready(sk);
964 }
965 EXPORT_SYMBOL_GPL(vsock_data_ready);
966
967 /* Dummy callback required by sockmap.
968 * See unconditional call of saved_close() in sock_map_close().
969 */
vsock_close(struct sock * sk,long timeout)970 static void vsock_close(struct sock *sk, long timeout)
971 {
972 }
973
vsock_release(struct socket * sock)974 static int vsock_release(struct socket *sock)
975 {
976 struct sock *sk = sock->sk;
977
978 if (!sk)
979 return 0;
980
981 sk->sk_prot->close(sk, 0);
982 __vsock_release(sk, 0);
983 sock->sk = NULL;
984 sock->state = SS_FREE;
985
986 return 0;
987 }
988
989 static int
vsock_bind(struct socket * sock,struct sockaddr * addr,int addr_len)990 vsock_bind(struct socket *sock, struct sockaddr *addr, int addr_len)
991 {
992 int err;
993 struct sock *sk;
994 struct sockaddr_vm *vm_addr;
995
996 sk = sock->sk;
997
998 if (vsock_addr_cast(addr, addr_len, &vm_addr) != 0)
999 return -EINVAL;
1000
1001 lock_sock(sk);
1002 err = __vsock_bind(sk, vm_addr);
1003 release_sock(sk);
1004
1005 return err;
1006 }
1007
vsock_getname(struct socket * sock,struct sockaddr * addr,int peer)1008 static int vsock_getname(struct socket *sock,
1009 struct sockaddr *addr, int peer)
1010 {
1011 int err;
1012 struct sock *sk;
1013 struct vsock_sock *vsk;
1014 struct sockaddr_vm *vm_addr;
1015
1016 sk = sock->sk;
1017 vsk = vsock_sk(sk);
1018 err = 0;
1019
1020 lock_sock(sk);
1021
1022 if (peer) {
1023 if (sock->state != SS_CONNECTED) {
1024 err = -ENOTCONN;
1025 goto out;
1026 }
1027 vm_addr = &vsk->remote_addr;
1028 } else {
1029 vm_addr = &vsk->local_addr;
1030 }
1031
1032 if (!vm_addr) {
1033 err = -EINVAL;
1034 goto out;
1035 }
1036
1037 /* sys_getsockname() and sys_getpeername() pass us a
1038 * MAX_SOCK_ADDR-sized buffer and don't set addr_len. Unfortunately
1039 * that macro is defined in socket.c instead of .h, so we hardcode its
1040 * value here.
1041 */
1042 BUILD_BUG_ON(sizeof(*vm_addr) > 128);
1043 memcpy(addr, vm_addr, sizeof(*vm_addr));
1044 err = sizeof(*vm_addr);
1045
1046 out:
1047 release_sock(sk);
1048 return err;
1049 }
1050
vsock_shutdown(struct socket * sock,int mode)1051 static int vsock_shutdown(struct socket *sock, int mode)
1052 {
1053 int err;
1054 struct sock *sk;
1055
1056 /* User level uses SHUT_RD (0) and SHUT_WR (1), but the kernel uses
1057 * RCV_SHUTDOWN (1) and SEND_SHUTDOWN (2), so we must increment mode
1058 * here like the other address families do. Note also that the
1059 * increment makes SHUT_RDWR (2) into RCV_SHUTDOWN | SEND_SHUTDOWN (3),
1060 * which is what we want.
1061 */
1062 mode++;
1063
1064 if ((mode & ~SHUTDOWN_MASK) || !mode)
1065 return -EINVAL;
1066
1067 /* If this is a connection oriented socket and it is not connected then
1068 * bail out immediately. If it is a DGRAM socket then we must first
1069 * kick the socket so that it wakes up from any sleeping calls, for
1070 * example recv(), and then afterwards return the error.
1071 */
1072
1073 sk = sock->sk;
1074
1075 lock_sock(sk);
1076 if (sock->state == SS_UNCONNECTED) {
1077 err = -ENOTCONN;
1078 if (sock_type_connectible(sk->sk_type))
1079 goto out;
1080 } else {
1081 sock->state = SS_DISCONNECTING;
1082 err = 0;
1083 }
1084
1085 /* Receive and send shutdowns are treated alike. */
1086 mode = mode & (RCV_SHUTDOWN | SEND_SHUTDOWN);
1087 if (mode) {
1088 sk->sk_shutdown |= mode;
1089 sk->sk_state_change(sk);
1090
1091 if (sock_type_connectible(sk->sk_type)) {
1092 sock_reset_flag(sk, SOCK_DONE);
1093 vsock_send_shutdown(sk, mode);
1094 }
1095 }
1096
1097 out:
1098 release_sock(sk);
1099 return err;
1100 }
1101
vsock_poll(struct file * file,struct socket * sock,poll_table * wait)1102 static __poll_t vsock_poll(struct file *file, struct socket *sock,
1103 poll_table *wait)
1104 {
1105 struct sock *sk;
1106 __poll_t mask;
1107 struct vsock_sock *vsk;
1108
1109 sk = sock->sk;
1110 vsk = vsock_sk(sk);
1111
1112 poll_wait(file, sk_sleep(sk), wait);
1113 mask = 0;
1114
1115 if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue))
1116 /* Signify that there has been an error on this socket. */
1117 mask |= EPOLLERR;
1118
1119 /* INET sockets treat local write shutdown and peer write shutdown as a
1120 * case of EPOLLHUP set.
1121 */
1122 if ((sk->sk_shutdown == SHUTDOWN_MASK) ||
1123 ((sk->sk_shutdown & SEND_SHUTDOWN) &&
1124 (vsk->peer_shutdown & SEND_SHUTDOWN))) {
1125 mask |= EPOLLHUP;
1126 }
1127
1128 if (sk->sk_shutdown & RCV_SHUTDOWN ||
1129 vsk->peer_shutdown & SEND_SHUTDOWN) {
1130 mask |= EPOLLRDHUP;
1131 }
1132
1133 if (sk_is_readable(sk))
1134 mask |= EPOLLIN | EPOLLRDNORM;
1135
1136 if (sock->type == SOCK_DGRAM) {
1137 /* For datagram sockets we can read if there is something in
1138 * the queue and write as long as the socket isn't shutdown for
1139 * sending.
1140 */
1141 if (!skb_queue_empty_lockless(&sk->sk_receive_queue) ||
1142 (sk->sk_shutdown & RCV_SHUTDOWN)) {
1143 mask |= EPOLLIN | EPOLLRDNORM;
1144 }
1145
1146 if (!(sk->sk_shutdown & SEND_SHUTDOWN))
1147 mask |= EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND;
1148
1149 } else if (sock_type_connectible(sk->sk_type)) {
1150 const struct vsock_transport *transport;
1151
1152 lock_sock(sk);
1153
1154 transport = vsk->transport;
1155
1156 /* Listening sockets that have connections in their accept
1157 * queue can be read.
1158 */
1159 if (sk->sk_state == TCP_LISTEN
1160 && !vsock_is_accept_queue_empty(sk))
1161 mask |= EPOLLIN | EPOLLRDNORM;
1162
1163 /* If there is something in the queue then we can read. */
1164 if (transport && transport->stream_is_active(vsk) &&
1165 !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1166 bool data_ready_now = false;
1167 int target = sock_rcvlowat(sk, 0, INT_MAX);
1168 int ret = transport->notify_poll_in(
1169 vsk, target, &data_ready_now);
1170 if (ret < 0) {
1171 mask |= EPOLLERR;
1172 } else {
1173 if (data_ready_now)
1174 mask |= EPOLLIN | EPOLLRDNORM;
1175
1176 }
1177 }
1178
1179 /* Sockets whose connections have been closed, reset, or
1180 * terminated should also be considered read, and we check the
1181 * shutdown flag for that.
1182 */
1183 if (sk->sk_shutdown & RCV_SHUTDOWN ||
1184 vsk->peer_shutdown & SEND_SHUTDOWN) {
1185 mask |= EPOLLIN | EPOLLRDNORM;
1186 }
1187
1188 /* Connected sockets that can produce data can be written. */
1189 if (transport && sk->sk_state == TCP_ESTABLISHED) {
1190 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
1191 bool space_avail_now = false;
1192 int ret = transport->notify_poll_out(
1193 vsk, 1, &space_avail_now);
1194 if (ret < 0) {
1195 mask |= EPOLLERR;
1196 } else {
1197 if (space_avail_now)
1198 /* Remove EPOLLWRBAND since INET
1199 * sockets are not setting it.
1200 */
1201 mask |= EPOLLOUT | EPOLLWRNORM;
1202
1203 }
1204 }
1205 }
1206
1207 /* Simulate INET socket poll behaviors, which sets
1208 * EPOLLOUT|EPOLLWRNORM when peer is closed and nothing to read,
1209 * but local send is not shutdown.
1210 */
1211 if (sk->sk_state == TCP_CLOSE || sk->sk_state == TCP_CLOSING) {
1212 if (!(sk->sk_shutdown & SEND_SHUTDOWN))
1213 mask |= EPOLLOUT | EPOLLWRNORM;
1214
1215 }
1216
1217 release_sock(sk);
1218 }
1219
1220 return mask;
1221 }
1222
vsock_read_skb(struct sock * sk,skb_read_actor_t read_actor)1223 static int vsock_read_skb(struct sock *sk, skb_read_actor_t read_actor)
1224 {
1225 struct vsock_sock *vsk = vsock_sk(sk);
1226
1227 if (WARN_ON_ONCE(!vsk->transport))
1228 return -ENODEV;
1229
1230 return vsk->transport->read_skb(vsk, read_actor);
1231 }
1232
vsock_dgram_sendmsg(struct socket * sock,struct msghdr * msg,size_t len)1233 static int vsock_dgram_sendmsg(struct socket *sock, struct msghdr *msg,
1234 size_t len)
1235 {
1236 int err;
1237 struct sock *sk;
1238 struct vsock_sock *vsk;
1239 struct sockaddr_vm *remote_addr;
1240 const struct vsock_transport *transport;
1241
1242 if (msg->msg_flags & MSG_OOB)
1243 return -EOPNOTSUPP;
1244
1245 /* For now, MSG_DONTWAIT is always assumed... */
1246 err = 0;
1247 sk = sock->sk;
1248 vsk = vsock_sk(sk);
1249
1250 lock_sock(sk);
1251
1252 transport = vsk->transport;
1253
1254 err = vsock_auto_bind(vsk);
1255 if (err)
1256 goto out;
1257
1258
1259 /* If the provided message contains an address, use that. Otherwise
1260 * fall back on the socket's remote handle (if it has been connected).
1261 */
1262 if (msg->msg_name &&
1263 vsock_addr_cast(msg->msg_name, msg->msg_namelen,
1264 &remote_addr) == 0) {
1265 /* Ensure this address is of the right type and is a valid
1266 * destination.
1267 */
1268
1269 if (remote_addr->svm_cid == VMADDR_CID_ANY)
1270 remote_addr->svm_cid = transport->get_local_cid();
1271
1272 if (!vsock_addr_bound(remote_addr)) {
1273 err = -EINVAL;
1274 goto out;
1275 }
1276 } else if (sock->state == SS_CONNECTED) {
1277 remote_addr = &vsk->remote_addr;
1278
1279 if (remote_addr->svm_cid == VMADDR_CID_ANY)
1280 remote_addr->svm_cid = transport->get_local_cid();
1281
1282 /* XXX Should connect() or this function ensure remote_addr is
1283 * bound?
1284 */
1285 if (!vsock_addr_bound(&vsk->remote_addr)) {
1286 err = -EINVAL;
1287 goto out;
1288 }
1289 } else {
1290 err = -EINVAL;
1291 goto out;
1292 }
1293
1294 if (!transport->dgram_allow(remote_addr->svm_cid,
1295 remote_addr->svm_port)) {
1296 err = -EINVAL;
1297 goto out;
1298 }
1299
1300 err = transport->dgram_enqueue(vsk, remote_addr, msg, len);
1301
1302 out:
1303 release_sock(sk);
1304 return err;
1305 }
1306
vsock_dgram_connect(struct socket * sock,struct sockaddr * addr,int addr_len,int flags)1307 static int vsock_dgram_connect(struct socket *sock,
1308 struct sockaddr *addr, int addr_len, int flags)
1309 {
1310 int err;
1311 struct sock *sk;
1312 struct vsock_sock *vsk;
1313 struct sockaddr_vm *remote_addr;
1314
1315 sk = sock->sk;
1316 vsk = vsock_sk(sk);
1317
1318 err = vsock_addr_cast(addr, addr_len, &remote_addr);
1319 if (err == -EAFNOSUPPORT && remote_addr->svm_family == AF_UNSPEC) {
1320 lock_sock(sk);
1321 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY,
1322 VMADDR_PORT_ANY);
1323 sock->state = SS_UNCONNECTED;
1324 release_sock(sk);
1325 return 0;
1326 } else if (err != 0)
1327 return -EINVAL;
1328
1329 lock_sock(sk);
1330
1331 err = vsock_auto_bind(vsk);
1332 if (err)
1333 goto out;
1334
1335 if (!vsk->transport->dgram_allow(remote_addr->svm_cid,
1336 remote_addr->svm_port)) {
1337 err = -EINVAL;
1338 goto out;
1339 }
1340
1341 memcpy(&vsk->remote_addr, remote_addr, sizeof(vsk->remote_addr));
1342 sock->state = SS_CONNECTED;
1343
1344 /* sock map disallows redirection of non-TCP sockets with sk_state !=
1345 * TCP_ESTABLISHED (see sock_map_redirect_allowed()), so we set
1346 * TCP_ESTABLISHED here to allow redirection of connected vsock dgrams.
1347 *
1348 * This doesn't seem to be abnormal state for datagram sockets, as the
1349 * same approach can be see in other datagram socket types as well
1350 * (such as unix sockets).
1351 */
1352 sk->sk_state = TCP_ESTABLISHED;
1353
1354 out:
1355 release_sock(sk);
1356 return err;
1357 }
1358
__vsock_dgram_recvmsg(struct socket * sock,struct msghdr * msg,size_t len,int flags)1359 int __vsock_dgram_recvmsg(struct socket *sock, struct msghdr *msg,
1360 size_t len, int flags)
1361 {
1362 struct sock *sk = sock->sk;
1363 struct vsock_sock *vsk = vsock_sk(sk);
1364
1365 return vsk->transport->dgram_dequeue(vsk, msg, len, flags);
1366 }
1367
vsock_dgram_recvmsg(struct socket * sock,struct msghdr * msg,size_t len,int flags)1368 int vsock_dgram_recvmsg(struct socket *sock, struct msghdr *msg,
1369 size_t len, int flags)
1370 {
1371 #ifdef CONFIG_BPF_SYSCALL
1372 struct sock *sk = sock->sk;
1373 const struct proto *prot;
1374
1375 prot = READ_ONCE(sk->sk_prot);
1376 if (prot != &vsock_proto)
1377 return prot->recvmsg(sk, msg, len, flags, NULL);
1378 #endif
1379
1380 return __vsock_dgram_recvmsg(sock, msg, len, flags);
1381 }
1382 EXPORT_SYMBOL_GPL(vsock_dgram_recvmsg);
1383
vsock_do_ioctl(struct socket * sock,unsigned int cmd,int __user * arg)1384 static int vsock_do_ioctl(struct socket *sock, unsigned int cmd,
1385 int __user *arg)
1386 {
1387 struct sock *sk = sock->sk;
1388 struct vsock_sock *vsk;
1389 int ret;
1390
1391 vsk = vsock_sk(sk);
1392
1393 switch (cmd) {
1394 case SIOCOUTQ: {
1395 ssize_t n_bytes;
1396
1397 if (!vsk->transport || !vsk->transport->unsent_bytes) {
1398 ret = -EOPNOTSUPP;
1399 break;
1400 }
1401
1402 if (sock_type_connectible(sk->sk_type) && sk->sk_state == TCP_LISTEN) {
1403 ret = -EINVAL;
1404 break;
1405 }
1406
1407 n_bytes = vsk->transport->unsent_bytes(vsk);
1408 if (n_bytes < 0) {
1409 ret = n_bytes;
1410 break;
1411 }
1412
1413 ret = put_user(n_bytes, arg);
1414 break;
1415 }
1416 default:
1417 ret = -ENOIOCTLCMD;
1418 }
1419
1420 return ret;
1421 }
1422
vsock_ioctl(struct socket * sock,unsigned int cmd,unsigned long arg)1423 static int vsock_ioctl(struct socket *sock, unsigned int cmd,
1424 unsigned long arg)
1425 {
1426 int ret;
1427
1428 lock_sock(sock->sk);
1429 ret = vsock_do_ioctl(sock, cmd, (int __user *)arg);
1430 release_sock(sock->sk);
1431
1432 return ret;
1433 }
1434
1435 static const struct proto_ops vsock_dgram_ops = {
1436 .family = PF_VSOCK,
1437 .owner = THIS_MODULE,
1438 .release = vsock_release,
1439 .bind = vsock_bind,
1440 .connect = vsock_dgram_connect,
1441 .socketpair = sock_no_socketpair,
1442 .accept = sock_no_accept,
1443 .getname = vsock_getname,
1444 .poll = vsock_poll,
1445 .ioctl = vsock_ioctl,
1446 .listen = sock_no_listen,
1447 .shutdown = vsock_shutdown,
1448 .sendmsg = vsock_dgram_sendmsg,
1449 .recvmsg = vsock_dgram_recvmsg,
1450 .mmap = sock_no_mmap,
1451 .read_skb = vsock_read_skb,
1452 };
1453
vsock_transport_cancel_pkt(struct vsock_sock * vsk)1454 static int vsock_transport_cancel_pkt(struct vsock_sock *vsk)
1455 {
1456 const struct vsock_transport *transport = vsk->transport;
1457
1458 if (!transport || !transport->cancel_pkt)
1459 return -EOPNOTSUPP;
1460
1461 return transport->cancel_pkt(vsk);
1462 }
1463
vsock_connect_timeout(struct work_struct * work)1464 static void vsock_connect_timeout(struct work_struct *work)
1465 {
1466 struct sock *sk;
1467 struct vsock_sock *vsk;
1468
1469 vsk = container_of(work, struct vsock_sock, connect_work.work);
1470 sk = sk_vsock(vsk);
1471
1472 lock_sock(sk);
1473 if (sk->sk_state == TCP_SYN_SENT &&
1474 (sk->sk_shutdown != SHUTDOWN_MASK)) {
1475 sk->sk_state = TCP_CLOSE;
1476 sk->sk_socket->state = SS_UNCONNECTED;
1477 sk->sk_err = ETIMEDOUT;
1478 sk_error_report(sk);
1479 vsock_transport_cancel_pkt(vsk);
1480 }
1481 release_sock(sk);
1482
1483 sock_put(sk);
1484 }
1485
vsock_connect(struct socket * sock,struct sockaddr * addr,int addr_len,int flags)1486 static int vsock_connect(struct socket *sock, struct sockaddr *addr,
1487 int addr_len, int flags)
1488 {
1489 int err;
1490 struct sock *sk;
1491 struct vsock_sock *vsk;
1492 const struct vsock_transport *transport;
1493 struct sockaddr_vm *remote_addr;
1494 long timeout;
1495 DEFINE_WAIT(wait);
1496
1497 err = 0;
1498 sk = sock->sk;
1499 vsk = vsock_sk(sk);
1500
1501 lock_sock(sk);
1502
1503 /* XXX AF_UNSPEC should make us disconnect like AF_INET. */
1504 switch (sock->state) {
1505 case SS_CONNECTED:
1506 err = -EISCONN;
1507 goto out;
1508 case SS_DISCONNECTING:
1509 err = -EINVAL;
1510 goto out;
1511 case SS_CONNECTING:
1512 /* This continues on so we can move sock into the SS_CONNECTED
1513 * state once the connection has completed (at which point err
1514 * will be set to zero also). Otherwise, we will either wait
1515 * for the connection or return -EALREADY should this be a
1516 * non-blocking call.
1517 */
1518 err = -EALREADY;
1519 if (flags & O_NONBLOCK)
1520 goto out;
1521 break;
1522 default:
1523 if ((sk->sk_state == TCP_LISTEN) ||
1524 vsock_addr_cast(addr, addr_len, &remote_addr) != 0) {
1525 err = -EINVAL;
1526 goto out;
1527 }
1528
1529 /* Set the remote address that we are connecting to. */
1530 memcpy(&vsk->remote_addr, remote_addr,
1531 sizeof(vsk->remote_addr));
1532
1533 err = vsock_assign_transport(vsk, NULL);
1534 if (err)
1535 goto out;
1536
1537 transport = vsk->transport;
1538
1539 /* The hypervisor and well-known contexts do not have socket
1540 * endpoints.
1541 */
1542 if (!transport ||
1543 !transport->stream_allow(remote_addr->svm_cid,
1544 remote_addr->svm_port)) {
1545 err = -ENETUNREACH;
1546 goto out;
1547 }
1548
1549 if (vsock_msgzerocopy_allow(transport)) {
1550 set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags);
1551 } else if (sock_flag(sk, SOCK_ZEROCOPY)) {
1552 /* If this option was set before 'connect()',
1553 * when transport was unknown, check that this
1554 * feature is supported here.
1555 */
1556 err = -EOPNOTSUPP;
1557 goto out;
1558 }
1559
1560 err = vsock_auto_bind(vsk);
1561 if (err)
1562 goto out;
1563
1564 sk->sk_state = TCP_SYN_SENT;
1565
1566 err = transport->connect(vsk);
1567 if (err < 0)
1568 goto out;
1569
1570 /* sk_err might have been set as a result of an earlier
1571 * (failed) connect attempt.
1572 */
1573 sk->sk_err = 0;
1574
1575 /* Mark sock as connecting and set the error code to in
1576 * progress in case this is a non-blocking connect.
1577 */
1578 sock->state = SS_CONNECTING;
1579 err = -EINPROGRESS;
1580 }
1581
1582 /* The receive path will handle all communication until we are able to
1583 * enter the connected state. Here we wait for the connection to be
1584 * completed or a notification of an error.
1585 */
1586 timeout = vsk->connect_timeout;
1587 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1588
1589 /* If the socket is already closing or it is in an error state, there
1590 * is no point in waiting.
1591 */
1592 while (sk->sk_state != TCP_ESTABLISHED &&
1593 sk->sk_state != TCP_CLOSING && sk->sk_err == 0) {
1594 if (flags & O_NONBLOCK) {
1595 /* If we're not going to block, we schedule a timeout
1596 * function to generate a timeout on the connection
1597 * attempt, in case the peer doesn't respond in a
1598 * timely manner. We hold on to the socket until the
1599 * timeout fires.
1600 */
1601 sock_hold(sk);
1602
1603 /* If the timeout function is already scheduled,
1604 * reschedule it, then ungrab the socket refcount to
1605 * keep it balanced.
1606 */
1607 if (mod_delayed_work(system_wq, &vsk->connect_work,
1608 timeout))
1609 sock_put(sk);
1610
1611 /* Skip ahead to preserve error code set above. */
1612 goto out_wait;
1613 }
1614
1615 release_sock(sk);
1616 timeout = schedule_timeout(timeout);
1617 lock_sock(sk);
1618
1619 if (signal_pending(current)) {
1620 err = sock_intr_errno(timeout);
1621 sk->sk_state = sk->sk_state == TCP_ESTABLISHED ? TCP_CLOSING : TCP_CLOSE;
1622 sock->state = SS_UNCONNECTED;
1623 vsock_transport_cancel_pkt(vsk);
1624 vsock_remove_connected(vsk);
1625 goto out_wait;
1626 } else if ((sk->sk_state != TCP_ESTABLISHED) && (timeout == 0)) {
1627 err = -ETIMEDOUT;
1628 sk->sk_state = TCP_CLOSE;
1629 sock->state = SS_UNCONNECTED;
1630 vsock_transport_cancel_pkt(vsk);
1631 goto out_wait;
1632 }
1633
1634 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1635 }
1636
1637 if (sk->sk_err) {
1638 err = -sk->sk_err;
1639 sk->sk_state = TCP_CLOSE;
1640 sock->state = SS_UNCONNECTED;
1641 } else {
1642 err = 0;
1643 }
1644
1645 out_wait:
1646 finish_wait(sk_sleep(sk), &wait);
1647 out:
1648 release_sock(sk);
1649 return err;
1650 }
1651
vsock_accept(struct socket * sock,struct socket * newsock,struct proto_accept_arg * arg)1652 static int vsock_accept(struct socket *sock, struct socket *newsock,
1653 struct proto_accept_arg *arg)
1654 {
1655 struct sock *listener;
1656 int err;
1657 struct sock *connected;
1658 struct vsock_sock *vconnected;
1659 long timeout;
1660 DEFINE_WAIT(wait);
1661
1662 err = 0;
1663 listener = sock->sk;
1664
1665 lock_sock(listener);
1666
1667 if (!sock_type_connectible(sock->type)) {
1668 err = -EOPNOTSUPP;
1669 goto out;
1670 }
1671
1672 if (listener->sk_state != TCP_LISTEN) {
1673 err = -EINVAL;
1674 goto out;
1675 }
1676
1677 /* Wait for children sockets to appear; these are the new sockets
1678 * created upon connection establishment.
1679 */
1680 timeout = sock_rcvtimeo(listener, arg->flags & O_NONBLOCK);
1681 prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1682
1683 while ((connected = vsock_dequeue_accept(listener)) == NULL &&
1684 listener->sk_err == 0) {
1685 release_sock(listener);
1686 timeout = schedule_timeout(timeout);
1687 finish_wait(sk_sleep(listener), &wait);
1688 lock_sock(listener);
1689
1690 if (signal_pending(current)) {
1691 err = sock_intr_errno(timeout);
1692 goto out;
1693 } else if (timeout == 0) {
1694 err = -EAGAIN;
1695 goto out;
1696 }
1697
1698 prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1699 }
1700 finish_wait(sk_sleep(listener), &wait);
1701
1702 if (listener->sk_err)
1703 err = -listener->sk_err;
1704
1705 if (connected) {
1706 sk_acceptq_removed(listener);
1707
1708 lock_sock_nested(connected, SINGLE_DEPTH_NESTING);
1709 vconnected = vsock_sk(connected);
1710
1711 /* If the listener socket has received an error, then we should
1712 * reject this socket and return. Note that we simply mark the
1713 * socket rejected, drop our reference, and let the cleanup
1714 * function handle the cleanup; the fact that we found it in
1715 * the listener's accept queue guarantees that the cleanup
1716 * function hasn't run yet.
1717 */
1718 if (err) {
1719 vconnected->rejected = true;
1720 } else {
1721 newsock->state = SS_CONNECTED;
1722 sock_graft(connected, newsock);
1723 if (vsock_msgzerocopy_allow(vconnected->transport))
1724 set_bit(SOCK_SUPPORT_ZC,
1725 &connected->sk_socket->flags);
1726 }
1727
1728 release_sock(connected);
1729 sock_put(connected);
1730 }
1731
1732 out:
1733 release_sock(listener);
1734 return err;
1735 }
1736
vsock_listen(struct socket * sock,int backlog)1737 static int vsock_listen(struct socket *sock, int backlog)
1738 {
1739 int err;
1740 struct sock *sk;
1741 struct vsock_sock *vsk;
1742
1743 sk = sock->sk;
1744
1745 lock_sock(sk);
1746
1747 if (!sock_type_connectible(sk->sk_type)) {
1748 err = -EOPNOTSUPP;
1749 goto out;
1750 }
1751
1752 if (sock->state != SS_UNCONNECTED) {
1753 err = -EINVAL;
1754 goto out;
1755 }
1756
1757 vsk = vsock_sk(sk);
1758
1759 if (!vsock_addr_bound(&vsk->local_addr)) {
1760 err = -EINVAL;
1761 goto out;
1762 }
1763
1764 sk->sk_max_ack_backlog = backlog;
1765 sk->sk_state = TCP_LISTEN;
1766
1767 err = 0;
1768
1769 out:
1770 release_sock(sk);
1771 return err;
1772 }
1773
vsock_update_buffer_size(struct vsock_sock * vsk,const struct vsock_transport * transport,u64 val)1774 static void vsock_update_buffer_size(struct vsock_sock *vsk,
1775 const struct vsock_transport *transport,
1776 u64 val)
1777 {
1778 if (val > vsk->buffer_max_size)
1779 val = vsk->buffer_max_size;
1780
1781 if (val < vsk->buffer_min_size)
1782 val = vsk->buffer_min_size;
1783
1784 if (val != vsk->buffer_size &&
1785 transport && transport->notify_buffer_size)
1786 transport->notify_buffer_size(vsk, &val);
1787
1788 vsk->buffer_size = val;
1789 }
1790
vsock_connectible_setsockopt(struct socket * sock,int level,int optname,sockptr_t optval,unsigned int optlen)1791 static int vsock_connectible_setsockopt(struct socket *sock,
1792 int level,
1793 int optname,
1794 sockptr_t optval,
1795 unsigned int optlen)
1796 {
1797 int err;
1798 struct sock *sk;
1799 struct vsock_sock *vsk;
1800 const struct vsock_transport *transport;
1801 u64 val;
1802
1803 if (level != AF_VSOCK && level != SOL_SOCKET)
1804 return -ENOPROTOOPT;
1805
1806 #define COPY_IN(_v) \
1807 do { \
1808 if (optlen < sizeof(_v)) { \
1809 err = -EINVAL; \
1810 goto exit; \
1811 } \
1812 if (copy_from_sockptr(&_v, optval, sizeof(_v)) != 0) { \
1813 err = -EFAULT; \
1814 goto exit; \
1815 } \
1816 } while (0)
1817
1818 err = 0;
1819 sk = sock->sk;
1820 vsk = vsock_sk(sk);
1821
1822 lock_sock(sk);
1823
1824 transport = vsk->transport;
1825
1826 if (level == SOL_SOCKET) {
1827 int zerocopy;
1828
1829 if (optname != SO_ZEROCOPY) {
1830 release_sock(sk);
1831 return sock_setsockopt(sock, level, optname, optval, optlen);
1832 }
1833
1834 /* Use 'int' type here, because variable to
1835 * set this option usually has this type.
1836 */
1837 COPY_IN(zerocopy);
1838
1839 if (zerocopy < 0 || zerocopy > 1) {
1840 err = -EINVAL;
1841 goto exit;
1842 }
1843
1844 if (transport && !vsock_msgzerocopy_allow(transport)) {
1845 err = -EOPNOTSUPP;
1846 goto exit;
1847 }
1848
1849 sock_valbool_flag(sk, SOCK_ZEROCOPY, zerocopy);
1850 goto exit;
1851 }
1852
1853 switch (optname) {
1854 case SO_VM_SOCKETS_BUFFER_SIZE:
1855 COPY_IN(val);
1856 vsock_update_buffer_size(vsk, transport, val);
1857 break;
1858
1859 case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1860 COPY_IN(val);
1861 vsk->buffer_max_size = val;
1862 vsock_update_buffer_size(vsk, transport, vsk->buffer_size);
1863 break;
1864
1865 case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1866 COPY_IN(val);
1867 vsk->buffer_min_size = val;
1868 vsock_update_buffer_size(vsk, transport, vsk->buffer_size);
1869 break;
1870
1871 case SO_VM_SOCKETS_CONNECT_TIMEOUT_NEW:
1872 case SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD: {
1873 struct __kernel_sock_timeval tv;
1874
1875 err = sock_copy_user_timeval(&tv, optval, optlen,
1876 optname == SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD);
1877 if (err)
1878 break;
1879 if (tv.tv_sec >= 0 && tv.tv_usec < USEC_PER_SEC &&
1880 tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)) {
1881 vsk->connect_timeout = tv.tv_sec * HZ +
1882 DIV_ROUND_UP((unsigned long)tv.tv_usec, (USEC_PER_SEC / HZ));
1883 if (vsk->connect_timeout == 0)
1884 vsk->connect_timeout =
1885 VSOCK_DEFAULT_CONNECT_TIMEOUT;
1886
1887 } else {
1888 err = -ERANGE;
1889 }
1890 break;
1891 }
1892
1893 default:
1894 err = -ENOPROTOOPT;
1895 break;
1896 }
1897
1898 #undef COPY_IN
1899
1900 exit:
1901 release_sock(sk);
1902 return err;
1903 }
1904
vsock_connectible_getsockopt(struct socket * sock,int level,int optname,char __user * optval,int __user * optlen)1905 static int vsock_connectible_getsockopt(struct socket *sock,
1906 int level, int optname,
1907 char __user *optval,
1908 int __user *optlen)
1909 {
1910 struct sock *sk = sock->sk;
1911 struct vsock_sock *vsk = vsock_sk(sk);
1912
1913 union {
1914 u64 val64;
1915 struct old_timeval32 tm32;
1916 struct __kernel_old_timeval tm;
1917 struct __kernel_sock_timeval stm;
1918 } v;
1919
1920 int lv = sizeof(v.val64);
1921 int len;
1922
1923 if (level != AF_VSOCK)
1924 return -ENOPROTOOPT;
1925
1926 if (get_user(len, optlen))
1927 return -EFAULT;
1928
1929 memset(&v, 0, sizeof(v));
1930
1931 switch (optname) {
1932 case SO_VM_SOCKETS_BUFFER_SIZE:
1933 v.val64 = vsk->buffer_size;
1934 break;
1935
1936 case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1937 v.val64 = vsk->buffer_max_size;
1938 break;
1939
1940 case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1941 v.val64 = vsk->buffer_min_size;
1942 break;
1943
1944 case SO_VM_SOCKETS_CONNECT_TIMEOUT_NEW:
1945 case SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD:
1946 lv = sock_get_timeout(vsk->connect_timeout, &v,
1947 optname == SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD);
1948 break;
1949
1950 default:
1951 return -ENOPROTOOPT;
1952 }
1953
1954 if (len < lv)
1955 return -EINVAL;
1956 if (len > lv)
1957 len = lv;
1958 if (copy_to_user(optval, &v, len))
1959 return -EFAULT;
1960
1961 if (put_user(len, optlen))
1962 return -EFAULT;
1963
1964 return 0;
1965 }
1966
vsock_connectible_sendmsg(struct socket * sock,struct msghdr * msg,size_t len)1967 static int vsock_connectible_sendmsg(struct socket *sock, struct msghdr *msg,
1968 size_t len)
1969 {
1970 struct sock *sk;
1971 struct vsock_sock *vsk;
1972 const struct vsock_transport *transport;
1973 ssize_t total_written;
1974 long timeout;
1975 int err;
1976 struct vsock_transport_send_notify_data send_data;
1977 DEFINE_WAIT_FUNC(wait, woken_wake_function);
1978
1979 sk = sock->sk;
1980 vsk = vsock_sk(sk);
1981 total_written = 0;
1982 err = 0;
1983
1984 if (msg->msg_flags & MSG_OOB)
1985 return -EOPNOTSUPP;
1986
1987 lock_sock(sk);
1988
1989 transport = vsk->transport;
1990
1991 /* Callers should not provide a destination with connection oriented
1992 * sockets.
1993 */
1994 if (msg->msg_namelen) {
1995 err = sk->sk_state == TCP_ESTABLISHED ? -EISCONN : -EOPNOTSUPP;
1996 goto out;
1997 }
1998
1999 /* Send data only if both sides are not shutdown in the direction. */
2000 if (sk->sk_shutdown & SEND_SHUTDOWN ||
2001 vsk->peer_shutdown & RCV_SHUTDOWN) {
2002 err = -EPIPE;
2003 goto out;
2004 }
2005
2006 if (!transport || sk->sk_state != TCP_ESTABLISHED ||
2007 !vsock_addr_bound(&vsk->local_addr)) {
2008 err = -ENOTCONN;
2009 goto out;
2010 }
2011
2012 if (!vsock_addr_bound(&vsk->remote_addr)) {
2013 err = -EDESTADDRREQ;
2014 goto out;
2015 }
2016
2017 if (msg->msg_flags & MSG_ZEROCOPY &&
2018 !vsock_msgzerocopy_allow(transport)) {
2019 err = -EOPNOTSUPP;
2020 goto out;
2021 }
2022
2023 /* Wait for room in the produce queue to enqueue our user's data. */
2024 timeout = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
2025
2026 err = transport->notify_send_init(vsk, &send_data);
2027 if (err < 0)
2028 goto out;
2029
2030 while (total_written < len) {
2031 ssize_t written;
2032
2033 add_wait_queue(sk_sleep(sk), &wait);
2034 while (vsock_stream_has_space(vsk) == 0 &&
2035 sk->sk_err == 0 &&
2036 !(sk->sk_shutdown & SEND_SHUTDOWN) &&
2037 !(vsk->peer_shutdown & RCV_SHUTDOWN)) {
2038
2039 /* Don't wait for non-blocking sockets. */
2040 if (timeout == 0) {
2041 err = -EAGAIN;
2042 remove_wait_queue(sk_sleep(sk), &wait);
2043 goto out_err;
2044 }
2045
2046 err = transport->notify_send_pre_block(vsk, &send_data);
2047 if (err < 0) {
2048 remove_wait_queue(sk_sleep(sk), &wait);
2049 goto out_err;
2050 }
2051
2052 release_sock(sk);
2053 timeout = wait_woken(&wait, TASK_INTERRUPTIBLE, timeout);
2054 lock_sock(sk);
2055 if (signal_pending(current)) {
2056 err = sock_intr_errno(timeout);
2057 remove_wait_queue(sk_sleep(sk), &wait);
2058 goto out_err;
2059 } else if (timeout == 0) {
2060 err = -EAGAIN;
2061 remove_wait_queue(sk_sleep(sk), &wait);
2062 goto out_err;
2063 }
2064 }
2065 remove_wait_queue(sk_sleep(sk), &wait);
2066
2067 /* These checks occur both as part of and after the loop
2068 * conditional since we need to check before and after
2069 * sleeping.
2070 */
2071 if (sk->sk_err) {
2072 err = -sk->sk_err;
2073 goto out_err;
2074 } else if ((sk->sk_shutdown & SEND_SHUTDOWN) ||
2075 (vsk->peer_shutdown & RCV_SHUTDOWN)) {
2076 err = -EPIPE;
2077 goto out_err;
2078 }
2079
2080 err = transport->notify_send_pre_enqueue(vsk, &send_data);
2081 if (err < 0)
2082 goto out_err;
2083
2084 /* Note that enqueue will only write as many bytes as are free
2085 * in the produce queue, so we don't need to ensure len is
2086 * smaller than the queue size. It is the caller's
2087 * responsibility to check how many bytes we were able to send.
2088 */
2089
2090 if (sk->sk_type == SOCK_SEQPACKET) {
2091 written = transport->seqpacket_enqueue(vsk,
2092 msg, len - total_written);
2093 } else {
2094 written = transport->stream_enqueue(vsk,
2095 msg, len - total_written);
2096 }
2097
2098 if (written < 0) {
2099 err = written;
2100 goto out_err;
2101 }
2102
2103 total_written += written;
2104
2105 err = transport->notify_send_post_enqueue(
2106 vsk, written, &send_data);
2107 if (err < 0)
2108 goto out_err;
2109
2110 }
2111
2112 out_err:
2113 if (total_written > 0) {
2114 /* Return number of written bytes only if:
2115 * 1) SOCK_STREAM socket.
2116 * 2) SOCK_SEQPACKET socket when whole buffer is sent.
2117 */
2118 if (sk->sk_type == SOCK_STREAM || total_written == len)
2119 err = total_written;
2120 }
2121 out:
2122 if (sk->sk_type == SOCK_STREAM)
2123 err = sk_stream_error(sk, msg->msg_flags, err);
2124
2125 release_sock(sk);
2126 return err;
2127 }
2128
vsock_connectible_wait_data(struct sock * sk,struct wait_queue_entry * wait,long timeout,struct vsock_transport_recv_notify_data * recv_data,size_t target)2129 static int vsock_connectible_wait_data(struct sock *sk,
2130 struct wait_queue_entry *wait,
2131 long timeout,
2132 struct vsock_transport_recv_notify_data *recv_data,
2133 size_t target)
2134 {
2135 const struct vsock_transport *transport;
2136 struct vsock_sock *vsk;
2137 s64 data;
2138 int err;
2139
2140 vsk = vsock_sk(sk);
2141 err = 0;
2142 transport = vsk->transport;
2143
2144 while (1) {
2145 prepare_to_wait(sk_sleep(sk), wait, TASK_INTERRUPTIBLE);
2146 data = vsock_connectible_has_data(vsk);
2147 if (data != 0)
2148 break;
2149
2150 if (sk->sk_err != 0 ||
2151 (sk->sk_shutdown & RCV_SHUTDOWN) ||
2152 (vsk->peer_shutdown & SEND_SHUTDOWN)) {
2153 break;
2154 }
2155
2156 /* Don't wait for non-blocking sockets. */
2157 if (timeout == 0) {
2158 err = -EAGAIN;
2159 break;
2160 }
2161
2162 if (recv_data) {
2163 err = transport->notify_recv_pre_block(vsk, target, recv_data);
2164 if (err < 0)
2165 break;
2166 }
2167
2168 release_sock(sk);
2169 timeout = schedule_timeout(timeout);
2170 lock_sock(sk);
2171
2172 if (signal_pending(current)) {
2173 err = sock_intr_errno(timeout);
2174 break;
2175 } else if (timeout == 0) {
2176 err = -EAGAIN;
2177 break;
2178 }
2179 }
2180
2181 finish_wait(sk_sleep(sk), wait);
2182
2183 if (err)
2184 return err;
2185
2186 /* Internal transport error when checking for available
2187 * data. XXX This should be changed to a connection
2188 * reset in a later change.
2189 */
2190 if (data < 0)
2191 return -ENOMEM;
2192
2193 return data;
2194 }
2195
__vsock_stream_recvmsg(struct sock * sk,struct msghdr * msg,size_t len,int flags)2196 static int __vsock_stream_recvmsg(struct sock *sk, struct msghdr *msg,
2197 size_t len, int flags)
2198 {
2199 struct vsock_transport_recv_notify_data recv_data;
2200 const struct vsock_transport *transport;
2201 struct vsock_sock *vsk;
2202 ssize_t copied;
2203 size_t target;
2204 long timeout;
2205 int err;
2206
2207 DEFINE_WAIT(wait);
2208
2209 vsk = vsock_sk(sk);
2210 transport = vsk->transport;
2211
2212 /* We must not copy less than target bytes into the user's buffer
2213 * before returning successfully, so we wait for the consume queue to
2214 * have that much data to consume before dequeueing. Note that this
2215 * makes it impossible to handle cases where target is greater than the
2216 * queue size.
2217 */
2218 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2219 if (target >= transport->stream_rcvhiwat(vsk)) {
2220 err = -ENOMEM;
2221 goto out;
2222 }
2223 timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2224 copied = 0;
2225
2226 err = transport->notify_recv_init(vsk, target, &recv_data);
2227 if (err < 0)
2228 goto out;
2229
2230
2231 while (1) {
2232 ssize_t read;
2233
2234 err = vsock_connectible_wait_data(sk, &wait, timeout,
2235 &recv_data, target);
2236 if (err <= 0)
2237 break;
2238
2239 err = transport->notify_recv_pre_dequeue(vsk, target,
2240 &recv_data);
2241 if (err < 0)
2242 break;
2243
2244 read = transport->stream_dequeue(vsk, msg, len - copied, flags);
2245 if (read < 0) {
2246 err = read;
2247 break;
2248 }
2249
2250 copied += read;
2251
2252 err = transport->notify_recv_post_dequeue(vsk, target, read,
2253 !(flags & MSG_PEEK), &recv_data);
2254 if (err < 0)
2255 goto out;
2256
2257 if (read >= target || flags & MSG_PEEK)
2258 break;
2259
2260 target -= read;
2261 }
2262
2263 if (sk->sk_err)
2264 err = -sk->sk_err;
2265 else if (sk->sk_shutdown & RCV_SHUTDOWN)
2266 err = 0;
2267
2268 if (copied > 0)
2269 err = copied;
2270
2271 out:
2272 return err;
2273 }
2274
__vsock_seqpacket_recvmsg(struct sock * sk,struct msghdr * msg,size_t len,int flags)2275 static int __vsock_seqpacket_recvmsg(struct sock *sk, struct msghdr *msg,
2276 size_t len, int flags)
2277 {
2278 const struct vsock_transport *transport;
2279 struct vsock_sock *vsk;
2280 ssize_t msg_len;
2281 long timeout;
2282 int err = 0;
2283 DEFINE_WAIT(wait);
2284
2285 vsk = vsock_sk(sk);
2286 transport = vsk->transport;
2287
2288 timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2289
2290 err = vsock_connectible_wait_data(sk, &wait, timeout, NULL, 0);
2291 if (err <= 0)
2292 goto out;
2293
2294 msg_len = transport->seqpacket_dequeue(vsk, msg, flags);
2295
2296 if (msg_len < 0) {
2297 err = msg_len;
2298 goto out;
2299 }
2300
2301 if (sk->sk_err) {
2302 err = -sk->sk_err;
2303 } else if (sk->sk_shutdown & RCV_SHUTDOWN) {
2304 err = 0;
2305 } else {
2306 /* User sets MSG_TRUNC, so return real length of
2307 * packet.
2308 */
2309 if (flags & MSG_TRUNC)
2310 err = msg_len;
2311 else
2312 err = len - msg_data_left(msg);
2313
2314 /* Always set MSG_TRUNC if real length of packet is
2315 * bigger than user's buffer.
2316 */
2317 if (msg_len > len)
2318 msg->msg_flags |= MSG_TRUNC;
2319 }
2320
2321 out:
2322 return err;
2323 }
2324
2325 int
__vsock_connectible_recvmsg(struct socket * sock,struct msghdr * msg,size_t len,int flags)2326 __vsock_connectible_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
2327 int flags)
2328 {
2329 struct sock *sk;
2330 struct vsock_sock *vsk;
2331 const struct vsock_transport *transport;
2332 int err;
2333
2334 sk = sock->sk;
2335
2336 if (unlikely(flags & MSG_ERRQUEUE))
2337 return sock_recv_errqueue(sk, msg, len, SOL_VSOCK, VSOCK_RECVERR);
2338
2339 vsk = vsock_sk(sk);
2340 err = 0;
2341
2342 lock_sock(sk);
2343
2344 transport = vsk->transport;
2345
2346 if (!transport || sk->sk_state != TCP_ESTABLISHED) {
2347 /* Recvmsg is supposed to return 0 if a peer performs an
2348 * orderly shutdown. Differentiate between that case and when a
2349 * peer has not connected or a local shutdown occurred with the
2350 * SOCK_DONE flag.
2351 */
2352 if (sock_flag(sk, SOCK_DONE))
2353 err = 0;
2354 else
2355 err = -ENOTCONN;
2356
2357 goto out;
2358 }
2359
2360 if (flags & MSG_OOB) {
2361 err = -EOPNOTSUPP;
2362 goto out;
2363 }
2364
2365 /* We don't check peer_shutdown flag here since peer may actually shut
2366 * down, but there can be data in the queue that a local socket can
2367 * receive.
2368 */
2369 if (sk->sk_shutdown & RCV_SHUTDOWN) {
2370 err = 0;
2371 goto out;
2372 }
2373
2374 /* It is valid on Linux to pass in a zero-length receive buffer. This
2375 * is not an error. We may as well bail out now.
2376 */
2377 if (!len) {
2378 err = 0;
2379 goto out;
2380 }
2381
2382 if (sk->sk_type == SOCK_STREAM)
2383 err = __vsock_stream_recvmsg(sk, msg, len, flags);
2384 else
2385 err = __vsock_seqpacket_recvmsg(sk, msg, len, flags);
2386
2387 out:
2388 release_sock(sk);
2389 return err;
2390 }
2391
2392 int
vsock_connectible_recvmsg(struct socket * sock,struct msghdr * msg,size_t len,int flags)2393 vsock_connectible_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
2394 int flags)
2395 {
2396 #ifdef CONFIG_BPF_SYSCALL
2397 struct sock *sk = sock->sk;
2398 const struct proto *prot;
2399
2400 prot = READ_ONCE(sk->sk_prot);
2401 if (prot != &vsock_proto)
2402 return prot->recvmsg(sk, msg, len, flags, NULL);
2403 #endif
2404
2405 return __vsock_connectible_recvmsg(sock, msg, len, flags);
2406 }
2407 EXPORT_SYMBOL_GPL(vsock_connectible_recvmsg);
2408
vsock_set_rcvlowat(struct sock * sk,int val)2409 static int vsock_set_rcvlowat(struct sock *sk, int val)
2410 {
2411 const struct vsock_transport *transport;
2412 struct vsock_sock *vsk;
2413
2414 vsk = vsock_sk(sk);
2415
2416 if (val > vsk->buffer_size)
2417 return -EINVAL;
2418
2419 transport = vsk->transport;
2420
2421 if (transport && transport->notify_set_rcvlowat) {
2422 int err;
2423
2424 err = transport->notify_set_rcvlowat(vsk, val);
2425 if (err)
2426 return err;
2427 }
2428
2429 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
2430 return 0;
2431 }
2432
2433 static const struct proto_ops vsock_stream_ops = {
2434 .family = PF_VSOCK,
2435 .owner = THIS_MODULE,
2436 .release = vsock_release,
2437 .bind = vsock_bind,
2438 .connect = vsock_connect,
2439 .socketpair = sock_no_socketpair,
2440 .accept = vsock_accept,
2441 .getname = vsock_getname,
2442 .poll = vsock_poll,
2443 .ioctl = vsock_ioctl,
2444 .listen = vsock_listen,
2445 .shutdown = vsock_shutdown,
2446 .setsockopt = vsock_connectible_setsockopt,
2447 .getsockopt = vsock_connectible_getsockopt,
2448 .sendmsg = vsock_connectible_sendmsg,
2449 .recvmsg = vsock_connectible_recvmsg,
2450 .mmap = sock_no_mmap,
2451 .set_rcvlowat = vsock_set_rcvlowat,
2452 .read_skb = vsock_read_skb,
2453 };
2454
2455 static const struct proto_ops vsock_seqpacket_ops = {
2456 .family = PF_VSOCK,
2457 .owner = THIS_MODULE,
2458 .release = vsock_release,
2459 .bind = vsock_bind,
2460 .connect = vsock_connect,
2461 .socketpair = sock_no_socketpair,
2462 .accept = vsock_accept,
2463 .getname = vsock_getname,
2464 .poll = vsock_poll,
2465 .ioctl = vsock_ioctl,
2466 .listen = vsock_listen,
2467 .shutdown = vsock_shutdown,
2468 .setsockopt = vsock_connectible_setsockopt,
2469 .getsockopt = vsock_connectible_getsockopt,
2470 .sendmsg = vsock_connectible_sendmsg,
2471 .recvmsg = vsock_connectible_recvmsg,
2472 .mmap = sock_no_mmap,
2473 .read_skb = vsock_read_skb,
2474 };
2475
vsock_create(struct net * net,struct socket * sock,int protocol,int kern)2476 static int vsock_create(struct net *net, struct socket *sock,
2477 int protocol, int kern)
2478 {
2479 struct vsock_sock *vsk;
2480 struct sock *sk;
2481 int ret;
2482
2483 if (!sock)
2484 return -EINVAL;
2485
2486 if (protocol && protocol != PF_VSOCK)
2487 return -EPROTONOSUPPORT;
2488
2489 switch (sock->type) {
2490 case SOCK_DGRAM:
2491 sock->ops = &vsock_dgram_ops;
2492 break;
2493 case SOCK_STREAM:
2494 sock->ops = &vsock_stream_ops;
2495 break;
2496 case SOCK_SEQPACKET:
2497 sock->ops = &vsock_seqpacket_ops;
2498 break;
2499 default:
2500 return -ESOCKTNOSUPPORT;
2501 }
2502
2503 sock->state = SS_UNCONNECTED;
2504
2505 sk = __vsock_create(net, sock, NULL, GFP_KERNEL, 0, kern);
2506 if (!sk)
2507 return -ENOMEM;
2508
2509 vsk = vsock_sk(sk);
2510
2511 if (sock->type == SOCK_DGRAM) {
2512 ret = vsock_assign_transport(vsk, NULL);
2513 if (ret < 0) {
2514 sock_put(sk);
2515 return ret;
2516 }
2517 }
2518
2519 /* SOCK_DGRAM doesn't have 'setsockopt' callback set in its
2520 * proto_ops, so there is no handler for custom logic.
2521 */
2522 if (sock_type_connectible(sock->type))
2523 set_bit(SOCK_CUSTOM_SOCKOPT, &sk->sk_socket->flags);
2524
2525 vsock_insert_unbound(vsk);
2526
2527 return 0;
2528 }
2529
2530 static const struct net_proto_family vsock_family_ops = {
2531 .family = AF_VSOCK,
2532 .create = vsock_create,
2533 .owner = THIS_MODULE,
2534 };
2535
vsock_dev_do_ioctl(struct file * filp,unsigned int cmd,void __user * ptr)2536 static long vsock_dev_do_ioctl(struct file *filp,
2537 unsigned int cmd, void __user *ptr)
2538 {
2539 u32 __user *p = ptr;
2540 int retval = 0;
2541 u32 cid;
2542
2543 switch (cmd) {
2544 case IOCTL_VM_SOCKETS_GET_LOCAL_CID:
2545 /* To be compatible with the VMCI behavior, we prioritize the
2546 * guest CID instead of well-know host CID (VMADDR_CID_HOST).
2547 */
2548 cid = vsock_registered_transport_cid(&transport_g2h);
2549 if (cid == VMADDR_CID_ANY)
2550 cid = vsock_registered_transport_cid(&transport_h2g);
2551 if (cid == VMADDR_CID_ANY)
2552 cid = vsock_registered_transport_cid(&transport_local);
2553
2554 if (put_user(cid, p) != 0)
2555 retval = -EFAULT;
2556 break;
2557
2558 default:
2559 retval = -ENOIOCTLCMD;
2560 }
2561
2562 return retval;
2563 }
2564
vsock_dev_ioctl(struct file * filp,unsigned int cmd,unsigned long arg)2565 static long vsock_dev_ioctl(struct file *filp,
2566 unsigned int cmd, unsigned long arg)
2567 {
2568 return vsock_dev_do_ioctl(filp, cmd, (void __user *)arg);
2569 }
2570
2571 #ifdef CONFIG_COMPAT
vsock_dev_compat_ioctl(struct file * filp,unsigned int cmd,unsigned long arg)2572 static long vsock_dev_compat_ioctl(struct file *filp,
2573 unsigned int cmd, unsigned long arg)
2574 {
2575 return vsock_dev_do_ioctl(filp, cmd, compat_ptr(arg));
2576 }
2577 #endif
2578
2579 static const struct file_operations vsock_device_ops = {
2580 .owner = THIS_MODULE,
2581 .unlocked_ioctl = vsock_dev_ioctl,
2582 #ifdef CONFIG_COMPAT
2583 .compat_ioctl = vsock_dev_compat_ioctl,
2584 #endif
2585 .open = nonseekable_open,
2586 };
2587
2588 static struct miscdevice vsock_device = {
2589 .name = "vsock",
2590 .fops = &vsock_device_ops,
2591 };
2592
vsock_init(void)2593 static int __init vsock_init(void)
2594 {
2595 int err = 0;
2596
2597 vsock_init_tables();
2598
2599 vsock_proto.owner = THIS_MODULE;
2600 vsock_device.minor = MISC_DYNAMIC_MINOR;
2601 err = misc_register(&vsock_device);
2602 if (err) {
2603 pr_err("Failed to register misc device\n");
2604 goto err_reset_transport;
2605 }
2606
2607 err = proto_register(&vsock_proto, 1); /* we want our slab */
2608 if (err) {
2609 pr_err("Cannot register vsock protocol\n");
2610 goto err_deregister_misc;
2611 }
2612
2613 err = sock_register(&vsock_family_ops);
2614 if (err) {
2615 pr_err("could not register af_vsock (%d) address family: %d\n",
2616 AF_VSOCK, err);
2617 goto err_unregister_proto;
2618 }
2619
2620 vsock_bpf_build_proto();
2621
2622 return 0;
2623
2624 err_unregister_proto:
2625 proto_unregister(&vsock_proto);
2626 err_deregister_misc:
2627 misc_deregister(&vsock_device);
2628 err_reset_transport:
2629 return err;
2630 }
2631
vsock_exit(void)2632 static void __exit vsock_exit(void)
2633 {
2634 misc_deregister(&vsock_device);
2635 sock_unregister(AF_VSOCK);
2636 proto_unregister(&vsock_proto);
2637 }
2638
vsock_core_get_transport(struct vsock_sock * vsk)2639 const struct vsock_transport *vsock_core_get_transport(struct vsock_sock *vsk)
2640 {
2641 return vsk->transport;
2642 }
2643 EXPORT_SYMBOL_GPL(vsock_core_get_transport);
2644
vsock_core_register(const struct vsock_transport * t,int features)2645 int vsock_core_register(const struct vsock_transport *t, int features)
2646 {
2647 const struct vsock_transport *t_h2g, *t_g2h, *t_dgram, *t_local;
2648 int err = mutex_lock_interruptible(&vsock_register_mutex);
2649
2650 if (err)
2651 return err;
2652
2653 t_h2g = transport_h2g;
2654 t_g2h = transport_g2h;
2655 t_dgram = transport_dgram;
2656 t_local = transport_local;
2657
2658 if (features & VSOCK_TRANSPORT_F_H2G) {
2659 if (t_h2g) {
2660 err = -EBUSY;
2661 goto err_busy;
2662 }
2663 t_h2g = t;
2664 }
2665
2666 if (features & VSOCK_TRANSPORT_F_G2H) {
2667 if (t_g2h) {
2668 err = -EBUSY;
2669 goto err_busy;
2670 }
2671 t_g2h = t;
2672 }
2673
2674 if (features & VSOCK_TRANSPORT_F_DGRAM) {
2675 if (t_dgram) {
2676 err = -EBUSY;
2677 goto err_busy;
2678 }
2679 t_dgram = t;
2680 }
2681
2682 if (features & VSOCK_TRANSPORT_F_LOCAL) {
2683 if (t_local) {
2684 err = -EBUSY;
2685 goto err_busy;
2686 }
2687 t_local = t;
2688 }
2689
2690 transport_h2g = t_h2g;
2691 transport_g2h = t_g2h;
2692 transport_dgram = t_dgram;
2693 transport_local = t_local;
2694
2695 err_busy:
2696 mutex_unlock(&vsock_register_mutex);
2697 return err;
2698 }
2699 EXPORT_SYMBOL_GPL(vsock_core_register);
2700
vsock_core_unregister(const struct vsock_transport * t)2701 void vsock_core_unregister(const struct vsock_transport *t)
2702 {
2703 mutex_lock(&vsock_register_mutex);
2704
2705 if (transport_h2g == t)
2706 transport_h2g = NULL;
2707
2708 if (transport_g2h == t)
2709 transport_g2h = NULL;
2710
2711 if (transport_dgram == t)
2712 transport_dgram = NULL;
2713
2714 if (transport_local == t)
2715 transport_local = NULL;
2716
2717 mutex_unlock(&vsock_register_mutex);
2718 }
2719 EXPORT_SYMBOL_GPL(vsock_core_unregister);
2720
2721 module_init(vsock_init);
2722 module_exit(vsock_exit);
2723
2724 MODULE_AUTHOR("VMware, Inc.");
2725 MODULE_DESCRIPTION("VMware Virtual Socket Family");
2726 MODULE_VERSION("1.0.2.0-k");
2727 MODULE_LICENSE("GPL v2");
2728