• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/page_alloc.c
4  *
5  *  Manages the free list, the system allocates free pages here.
6  *  Note that kmalloc() lives in slab.c
7  *
8  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
9  *  Swap reorganised 29.12.95, Stephen Tweedie
10  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16  */
17 
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/highmem.h>
21 #include <linux/interrupt.h>
22 #include <linux/jiffies.h>
23 #include <linux/memblock.h>
24 #include <linux/compiler.h>
25 #include <linux/kernel.h>
26 #include <linux/kasan.h>
27 #include <linux/kmsan.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/ratelimit.h>
31 #include <linux/oom.h>
32 #include <linux/topology.h>
33 #include <linux/sysctl.h>
34 #include <linux/cpu.h>
35 #include <linux/cpuset.h>
36 #include <linux/pagevec.h>
37 #include <linux/memory_hotplug.h>
38 #include <linux/nodemask.h>
39 #include <linux/vmstat.h>
40 #include <linux/fault-inject.h>
41 #include <linux/compaction.h>
42 #include <trace/events/kmem.h>
43 #include <trace/events/oom.h>
44 #include <linux/prefetch.h>
45 #include <linux/mm_inline.h>
46 #include <linux/mmu_notifier.h>
47 #include <linux/migrate.h>
48 #include <linux/sched/mm.h>
49 #include <linux/page_owner.h>
50 #include <linux/page_pinner.h>
51 #include <linux/page_table_check.h>
52 #include <linux/memcontrol.h>
53 #include <linux/ftrace.h>
54 #include <linux/lockdep.h>
55 #include <linux/psi.h>
56 #include <linux/khugepaged.h>
57 #include <linux/delayacct.h>
58 #include <linux/cacheinfo.h>
59 #include <linux/pgalloc_tag.h>
60 #include <trace/hooks/vmscan.h>
61 #include <trace/hooks/mm.h>
62 
63 #include <asm/div64.h>
64 #include "internal.h"
65 #include "shuffle.h"
66 #include "page_reporting.h"
67 
68 EXPORT_TRACEPOINT_SYMBOL_GPL(mm_page_alloc);
69 EXPORT_TRACEPOINT_SYMBOL_GPL(mm_page_free);
70 
71 #undef CREATE_TRACE_POINTS
72 #include <trace/hooks/mm.h>
73 
74 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
75 typedef int __bitwise fpi_t;
76 
77 /* No special request */
78 #define FPI_NONE		((__force fpi_t)0)
79 
80 /*
81  * Skip free page reporting notification for the (possibly merged) page.
82  * This does not hinder free page reporting from grabbing the page,
83  * reporting it and marking it "reported" -  it only skips notifying
84  * the free page reporting infrastructure about a newly freed page. For
85  * example, used when temporarily pulling a page from a freelist and
86  * putting it back unmodified.
87  */
88 #define FPI_SKIP_REPORT_NOTIFY	((__force fpi_t)BIT(0))
89 
90 /*
91  * Place the (possibly merged) page to the tail of the freelist. Will ignore
92  * page shuffling (relevant code - e.g., memory onlining - is expected to
93  * shuffle the whole zone).
94  *
95  * Note: No code should rely on this flag for correctness - it's purely
96  *       to allow for optimizations when handing back either fresh pages
97  *       (memory onlining) or untouched pages (page isolation, free page
98  *       reporting).
99  */
100 #define FPI_TO_TAIL		((__force fpi_t)BIT(1))
101 
102 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
103 static DEFINE_MUTEX(pcp_batch_high_lock);
104 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
105 
106 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT)
107 /*
108  * On SMP, spin_trylock is sufficient protection.
109  * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP.
110  */
111 #define pcp_trylock_prepare(flags)	do { } while (0)
112 #define pcp_trylock_finish(flag)	do { } while (0)
113 #else
114 
115 /* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */
116 #define pcp_trylock_prepare(flags)	local_irq_save(flags)
117 #define pcp_trylock_finish(flags)	local_irq_restore(flags)
118 #endif
119 
120 /*
121  * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid
122  * a migration causing the wrong PCP to be locked and remote memory being
123  * potentially allocated, pin the task to the CPU for the lookup+lock.
124  * preempt_disable is used on !RT because it is faster than migrate_disable.
125  * migrate_disable is used on RT because otherwise RT spinlock usage is
126  * interfered with and a high priority task cannot preempt the allocator.
127  */
128 #ifndef CONFIG_PREEMPT_RT
129 #define pcpu_task_pin()		preempt_disable()
130 #define pcpu_task_unpin()	preempt_enable()
131 #else
132 #define pcpu_task_pin()		migrate_disable()
133 #define pcpu_task_unpin()	migrate_enable()
134 #endif
135 
136 /*
137  * Generic helper to lookup and a per-cpu variable with an embedded spinlock.
138  * Return value should be used with equivalent unlock helper.
139  */
140 #define pcpu_spin_lock(type, member, ptr)				\
141 ({									\
142 	type *_ret;							\
143 	pcpu_task_pin();						\
144 	_ret = this_cpu_ptr(ptr);					\
145 	spin_lock(&_ret->member);					\
146 	_ret;								\
147 })
148 
149 #define pcpu_spin_trylock(type, member, ptr)				\
150 ({									\
151 	type *_ret;							\
152 	pcpu_task_pin();						\
153 	_ret = this_cpu_ptr(ptr);					\
154 	if (!spin_trylock(&_ret->member)) {				\
155 		pcpu_task_unpin();					\
156 		_ret = NULL;						\
157 	}								\
158 	_ret;								\
159 })
160 
161 #define pcpu_spin_unlock(member, ptr)					\
162 ({									\
163 	spin_unlock(&ptr->member);					\
164 	pcpu_task_unpin();						\
165 })
166 
167 /* struct per_cpu_pages specific helpers. */
168 #define pcp_spin_lock(ptr)						\
169 	pcpu_spin_lock(struct per_cpu_pages, lock, ptr)
170 
171 #define pcp_spin_trylock(ptr)						\
172 	pcpu_spin_trylock(struct per_cpu_pages, lock, ptr)
173 
174 #define pcp_spin_unlock(ptr)						\
175 	pcpu_spin_unlock(lock, ptr)
176 
177 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
178 DEFINE_PER_CPU(int, numa_node);
179 EXPORT_PER_CPU_SYMBOL(numa_node);
180 #endif
181 
182 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
183 
184 /*
185  * By default, restrict_cma_redirect is set to true, so only MOVABLE allocations
186  * marked __GFP_CMA are eligible to be redirected to CMA region. These allocations
187  * are redirected if *any* free space is available in the CMA region.
188  * When restrict_cma_redirect is false, all movable allocations
189  * are eligible for redirection to CMA region (i.e movable allocations are
190  * not restricted from CMA region), when there is sufficient space there.
191  * (see __rmqueue()).
192  */
193 DEFINE_STATIC_KEY_TRUE(restrict_cma_redirect);
194 
restrict_cma_redirect_setup(char * str)195 static int __init restrict_cma_redirect_setup(char *str)
196 {
197 #ifdef CONFIG_CMA
198 	bool res;
199 
200 	if (!kstrtobool(str, &res) && !res)
201 		static_branch_disable(&restrict_cma_redirect);
202 #else
203 	pr_warn("CONFIG_CMA not set. Ignoring restrict_cma_redirect option\n");
204 #endif
205 	return 1;
206 }
207 __setup("restrict_cma_redirect=", restrict_cma_redirect_setup);
208 
cma_redirect_restricted(void)209 static inline bool cma_redirect_restricted(void)
210 {
211 	return static_key_enabled(&restrict_cma_redirect);
212 }
213 
214 /*
215  * Return true if CMA has pcplist. We use the PCP list for CMA only if
216  * this returns true. For now, rather than define a new flag, reuse the
217  * restrict_cma_redirect flag itself to select this behavior.
218  */
cma_has_pcplist(void)219 static inline bool cma_has_pcplist(void)
220 {
221 	return static_key_enabled(&restrict_cma_redirect);
222 }
223 
224 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
225 /*
226  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
227  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
228  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
229  * defined in <linux/topology.h>.
230  */
231 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
232 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
233 #endif
234 
235 static DEFINE_MUTEX(pcpu_drain_mutex);
236 
237 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
238 volatile unsigned long latent_entropy __latent_entropy;
239 EXPORT_SYMBOL(latent_entropy);
240 #endif
241 
242 /*
243  * Array of node states.
244  */
245 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
246 	[N_POSSIBLE] = NODE_MASK_ALL,
247 	[N_ONLINE] = { { [0] = 1UL } },
248 #ifndef CONFIG_NUMA
249 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
250 #ifdef CONFIG_HIGHMEM
251 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
252 #endif
253 	[N_MEMORY] = { { [0] = 1UL } },
254 	[N_CPU] = { { [0] = 1UL } },
255 #endif	/* NUMA */
256 };
257 EXPORT_SYMBOL(node_states);
258 
259 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
260 
261 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
262 unsigned int pageblock_order __read_mostly;
263 #endif
264 
265 static void __free_pages_ok(struct page *page, unsigned int order,
266 			    fpi_t fpi_flags);
267 
268 /*
269  * results with 256, 32 in the lowmem_reserve sysctl:
270  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
271  *	1G machine -> (16M dma, 784M normal, 224M high)
272  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
273  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
274  *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
275  *
276  * TBD: should special case ZONE_DMA32 machines here - in those we normally
277  * don't need any ZONE_NORMAL reservation
278  */
279 static int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
280 #ifdef CONFIG_ZONE_DMA
281 	[ZONE_DMA] = 256,
282 #endif
283 #ifdef CONFIG_ZONE_DMA32
284 	[ZONE_DMA32] = 256,
285 #endif
286 	[ZONE_NORMAL] = 32,
287 #ifdef CONFIG_HIGHMEM
288 	[ZONE_HIGHMEM] = 0,
289 #endif
290 	[ZONE_MOVABLE] = 0,
291 };
292 
293 char * const zone_names[MAX_NR_ZONES] = {
294 #ifdef CONFIG_ZONE_DMA
295 	 "DMA",
296 #endif
297 #ifdef CONFIG_ZONE_DMA32
298 	 "DMA32",
299 #endif
300 	 "Normal",
301 #ifdef CONFIG_HIGHMEM
302 	 "HighMem",
303 #endif
304 	 "Movable",
305 #ifdef CONFIG_ZONE_DEVICE
306 	 "Device",
307 #endif
308 };
309 
310 const char * const migratetype_names[MIGRATE_TYPES] = {
311 	"Unmovable",
312 	"Movable",
313 	"Reclaimable",
314 #ifdef CONFIG_CMA
315 	"CMA",
316 #endif
317 	"HighAtomic",
318 #ifdef CONFIG_MEMORY_ISOLATION
319 	"Isolate",
320 #endif
321 };
322 
323 int min_free_kbytes = 1024;
324 int user_min_free_kbytes = -1;
325 static int watermark_boost_factor __read_mostly = 15000;
326 static int watermark_scale_factor = 10;
327 
328 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
329 int movable_zone;
330 EXPORT_SYMBOL(movable_zone);
331 
332 #if MAX_NUMNODES > 1
333 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
334 unsigned int nr_online_nodes __read_mostly = 1;
335 EXPORT_SYMBOL(nr_node_ids);
336 EXPORT_SYMBOL(nr_online_nodes);
337 #endif
338 
339 static bool page_contains_unaccepted(struct page *page, unsigned int order);
340 static bool cond_accept_memory(struct zone *zone, unsigned int order);
341 static bool __free_unaccepted(struct page *page);
342 
343 int page_group_by_mobility_disabled __read_mostly;
344 
345 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
346 /*
347  * During boot we initialize deferred pages on-demand, as needed, but once
348  * page_alloc_init_late() has finished, the deferred pages are all initialized,
349  * and we can permanently disable that path.
350  */
351 DEFINE_STATIC_KEY_TRUE(deferred_pages);
352 
deferred_pages_enabled(void)353 static inline bool deferred_pages_enabled(void)
354 {
355 	return static_branch_unlikely(&deferred_pages);
356 }
357 
358 /*
359  * deferred_grow_zone() is __init, but it is called from
360  * get_page_from_freelist() during early boot until deferred_pages permanently
361  * disables this call. This is why we have refdata wrapper to avoid warning,
362  * and to ensure that the function body gets unloaded.
363  */
364 static bool __ref
_deferred_grow_zone(struct zone * zone,unsigned int order)365 _deferred_grow_zone(struct zone *zone, unsigned int order)
366 {
367 	return deferred_grow_zone(zone, order);
368 }
369 #else
deferred_pages_enabled(void)370 static inline bool deferred_pages_enabled(void)
371 {
372 	return false;
373 }
374 
_deferred_grow_zone(struct zone * zone,unsigned int order)375 static inline bool _deferred_grow_zone(struct zone *zone, unsigned int order)
376 {
377 	return false;
378 }
379 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
380 
381 /* Return a pointer to the bitmap storing bits affecting a block of pages */
get_pageblock_bitmap(const struct page * page,unsigned long pfn)382 static inline unsigned long *get_pageblock_bitmap(const struct page *page,
383 							unsigned long pfn)
384 {
385 #ifdef CONFIG_SPARSEMEM
386 	return section_to_usemap(__pfn_to_section(pfn));
387 #else
388 	return page_zone(page)->pageblock_flags;
389 #endif /* CONFIG_SPARSEMEM */
390 }
391 
pfn_to_bitidx(const struct page * page,unsigned long pfn)392 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
393 {
394 #ifdef CONFIG_SPARSEMEM
395 	pfn &= (PAGES_PER_SECTION-1);
396 #else
397 	pfn = pfn - pageblock_start_pfn(page_zone(page)->zone_start_pfn);
398 #endif /* CONFIG_SPARSEMEM */
399 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
400 }
401 
set_reclaim_params(int wmark_scale_factor,int swappiness)402 int set_reclaim_params(int wmark_scale_factor, int swappiness)
403 {
404 	if (wmark_scale_factor > 3000 || wmark_scale_factor < 1)
405 		return -EINVAL;
406 
407 	if (swappiness > 200 || swappiness < 0)
408 		return -EINVAL;
409 
410 	WRITE_ONCE(vm_swappiness, swappiness);
411 	WRITE_ONCE(watermark_scale_factor, wmark_scale_factor);
412 
413 	setup_per_zone_wmarks();
414 
415 	return 0;
416 }
417 EXPORT_SYMBOL_GPL(set_reclaim_params);
418 
get_reclaim_params(int * wmark_scale_factor,int * swappiness)419 void get_reclaim_params(int *wmark_scale_factor, int *swappiness)
420 {
421 	*wmark_scale_factor = watermark_scale_factor;
422 	*swappiness = vm_swappiness;
423 }
424 EXPORT_SYMBOL_GPL(get_reclaim_params);
425 
426 /**
427  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
428  * @page: The page within the block of interest
429  * @pfn: The target page frame number
430  * @mask: mask of bits that the caller is interested in
431  *
432  * Return: pageblock_bits flags
433  */
get_pfnblock_flags_mask(const struct page * page,unsigned long pfn,unsigned long mask)434 unsigned long get_pfnblock_flags_mask(const struct page *page,
435 					unsigned long pfn, unsigned long mask)
436 {
437 	unsigned long *bitmap;
438 	unsigned long bitidx, word_bitidx;
439 	unsigned long word;
440 
441 	bitmap = get_pageblock_bitmap(page, pfn);
442 	bitidx = pfn_to_bitidx(page, pfn);
443 	word_bitidx = bitidx / BITS_PER_LONG;
444 	bitidx &= (BITS_PER_LONG-1);
445 	/*
446 	 * This races, without locks, with set_pfnblock_flags_mask(). Ensure
447 	 * a consistent read of the memory array, so that results, even though
448 	 * racy, are not corrupted.
449 	 */
450 	word = READ_ONCE(bitmap[word_bitidx]);
451 	return (word >> bitidx) & mask;
452 }
453 EXPORT_SYMBOL_GPL(get_pfnblock_flags_mask);
454 
isolate_anon_lru_page(struct page * page)455 int isolate_anon_lru_page(struct page *page)
456 {
457 	int ret;
458 
459 	if (!PageLRU(page) || !PageAnon(page))
460 		return -EINVAL;
461 
462 	if (!get_page_unless_zero(page))
463 		return -EINVAL;
464 
465 	ret = folio_isolate_lru(page_folio(page));
466 	put_page(page);
467 
468 	return ret;
469 }
470 EXPORT_SYMBOL_GPL(isolate_anon_lru_page);
471 
get_pfnblock_migratetype(const struct page * page,unsigned long pfn)472 static __always_inline int get_pfnblock_migratetype(const struct page *page,
473 					unsigned long pfn)
474 {
475 	return get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
476 }
477 
478 /**
479  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
480  * @page: The page within the block of interest
481  * @flags: The flags to set
482  * @pfn: The target page frame number
483  * @mask: mask of bits that the caller is interested in
484  */
set_pfnblock_flags_mask(struct page * page,unsigned long flags,unsigned long pfn,unsigned long mask)485 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
486 					unsigned long pfn,
487 					unsigned long mask)
488 {
489 	unsigned long *bitmap;
490 	unsigned long bitidx, word_bitidx;
491 	unsigned long word;
492 
493 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
494 	BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
495 
496 	bitmap = get_pageblock_bitmap(page, pfn);
497 	bitidx = pfn_to_bitidx(page, pfn);
498 	word_bitidx = bitidx / BITS_PER_LONG;
499 	bitidx &= (BITS_PER_LONG-1);
500 
501 	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
502 
503 	mask <<= bitidx;
504 	flags <<= bitidx;
505 
506 	word = READ_ONCE(bitmap[word_bitidx]);
507 	do {
508 	} while (!try_cmpxchg(&bitmap[word_bitidx], &word, (word & ~mask) | flags));
509 }
510 
set_pageblock_migratetype(struct page * page,int migratetype)511 void set_pageblock_migratetype(struct page *page, int migratetype)
512 {
513 	if (unlikely(page_group_by_mobility_disabled &&
514 		     migratetype < MIGRATE_FALLBACKS))
515 		migratetype = MIGRATE_UNMOVABLE;
516 
517 	set_pfnblock_flags_mask(page, (unsigned long)migratetype,
518 				page_to_pfn(page), MIGRATETYPE_MASK);
519 }
520 
521 #ifdef CONFIG_DEBUG_VM
page_outside_zone_boundaries(struct zone * zone,struct page * page)522 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
523 {
524 	int ret;
525 	unsigned seq;
526 	unsigned long pfn = page_to_pfn(page);
527 	unsigned long sp, start_pfn;
528 
529 	do {
530 		seq = zone_span_seqbegin(zone);
531 		start_pfn = zone->zone_start_pfn;
532 		sp = zone->spanned_pages;
533 		ret = !zone_spans_pfn(zone, pfn);
534 	} while (zone_span_seqretry(zone, seq));
535 
536 	if (ret)
537 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
538 			pfn, zone_to_nid(zone), zone->name,
539 			start_pfn, start_pfn + sp);
540 
541 	return ret;
542 }
543 
544 /*
545  * Temporary debugging check for pages not lying within a given zone.
546  */
bad_range(struct zone * zone,struct page * page)547 static bool __maybe_unused bad_range(struct zone *zone, struct page *page)
548 {
549 	if (page_outside_zone_boundaries(zone, page))
550 		return true;
551 	if (zone != page_zone(page))
552 		return true;
553 
554 	return false;
555 }
556 #else
bad_range(struct zone * zone,struct page * page)557 static inline bool __maybe_unused bad_range(struct zone *zone, struct page *page)
558 {
559 	return false;
560 }
561 #endif
562 
bad_page(struct page * page,const char * reason)563 static void bad_page(struct page *page, const char *reason)
564 {
565 	static unsigned long resume;
566 	static unsigned long nr_shown;
567 	static unsigned long nr_unshown;
568 
569 	/*
570 	 * Allow a burst of 60 reports, then keep quiet for that minute;
571 	 * or allow a steady drip of one report per second.
572 	 */
573 	if (nr_shown == 60) {
574 		if (time_before(jiffies, resume)) {
575 			nr_unshown++;
576 			goto out;
577 		}
578 		if (nr_unshown) {
579 			pr_alert(
580 			      "BUG: Bad page state: %lu messages suppressed\n",
581 				nr_unshown);
582 			nr_unshown = 0;
583 		}
584 		nr_shown = 0;
585 	}
586 	if (nr_shown++ == 0)
587 		resume = jiffies + 60 * HZ;
588 
589 	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
590 		current->comm, page_to_pfn(page));
591 	dump_page(page, reason);
592 
593 	print_modules();
594 	dump_stack();
595 out:
596 	/* Leave bad fields for debug, except PageBuddy could make trouble */
597 	if (PageBuddy(page))
598 		__ClearPageBuddy(page);
599 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
600 }
601 
602 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
603 static unsigned int pcp_thp_order __read_mostly = HPAGE_PMD_ORDER;
604 
parse_pcp_thp_order(char * s)605 static int __init parse_pcp_thp_order(char *s)
606 {
607 	int err;
608 	unsigned int order;
609 
610 	err = kstrtouint(s, 0, &order);
611 	if (err)
612 		return err;
613 
614 	if (order <= PAGE_ALLOC_COSTLY_ORDER || order > HPAGE_PMD_ORDER)
615 		return -EINVAL;
616 
617 	pcp_thp_order = order;
618 	return 0;
619 }
620 early_param("pcp_thp_order", parse_pcp_thp_order);
621 #endif
622 
order_to_pindex(int migratetype,int order)623 static inline unsigned int order_to_pindex(int migratetype, int order)
624 {
625 	bool __maybe_unused movable;
626 
627 #ifdef CONFIG_CMA
628 	/*
629 	 * We shouldn't get here for MIGRATE_CMA if those pages don't
630 	 * have their own pcp list. For instance, free_unref_page() sets
631 	 * pcpmigratetype to MIGRATE_MOVABLE.
632 	 */
633 	VM_BUG_ON(!cma_has_pcplist() && migratetype == MIGRATE_CMA);
634 #endif
635 
636 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
637 	if (order > PAGE_ALLOC_COSTLY_ORDER) {
638 		VM_BUG_ON(order != pcp_thp_order);
639 
640 		movable = migratetype == MIGRATE_MOVABLE;
641 #ifdef CONFIG_CMA
642 		movable |= migratetype == MIGRATE_CMA;
643 #endif
644 
645 		return NR_LOWORDER_PCP_LISTS + movable;
646 	}
647 #else
648 	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
649 #endif
650 
651 	return (MIGRATE_PCPTYPES * order) + migratetype;
652 }
653 
pindex_to_order(unsigned int pindex)654 static inline int pindex_to_order(unsigned int pindex)
655 {
656 	int order = pindex / MIGRATE_PCPTYPES;
657 
658 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
659 	if (pindex >= NR_LOWORDER_PCP_LISTS)
660 		order = pcp_thp_order;
661 #else
662 	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
663 #endif
664 
665 	return order;
666 }
667 
pcp_allowed_order(unsigned int order)668 static inline bool pcp_allowed_order(unsigned int order)
669 {
670 	if (order <= PAGE_ALLOC_COSTLY_ORDER)
671 		return true;
672 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
673 	if (order == pcp_thp_order)
674 		return true;
675 #endif
676 	return false;
677 }
678 
679 /*
680  * Higher-order pages are called "compound pages".  They are structured thusly:
681  *
682  * The first PAGE_SIZE page is called the "head page" and have PG_head set.
683  *
684  * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
685  * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
686  *
687  * The first tail page's ->compound_order holds the order of allocation.
688  * This usage means that zero-order pages may not be compound.
689  */
690 
prep_compound_page(struct page * page,unsigned int order)691 void prep_compound_page(struct page *page, unsigned int order)
692 {
693 	int i;
694 	int nr_pages = 1 << order;
695 
696 	__SetPageHead(page);
697 	for (i = 1; i < nr_pages; i++)
698 		prep_compound_tail(page, i);
699 
700 	prep_compound_head(page, order);
701 }
702 EXPORT_SYMBOL_GPL(prep_compound_page);
703 
set_buddy_order(struct page * page,unsigned int order)704 static inline void set_buddy_order(struct page *page, unsigned int order)
705 {
706 	set_page_private(page, order);
707 	__SetPageBuddy(page);
708 }
709 
710 #ifdef CONFIG_COMPACTION
task_capc(struct zone * zone)711 static inline struct capture_control *task_capc(struct zone *zone)
712 {
713 	struct capture_control *capc = current->capture_control;
714 
715 	return unlikely(capc) &&
716 		!(current->flags & PF_KTHREAD) &&
717 		!capc->page &&
718 		capc->cc->zone == zone ? capc : NULL;
719 }
720 
721 static inline bool
compaction_capture(struct capture_control * capc,struct page * page,int order,int migratetype)722 compaction_capture(struct capture_control *capc, struct page *page,
723 		   int order, int migratetype)
724 {
725 	if (!capc || order != capc->cc->order)
726 		return false;
727 
728 	/* Do not accidentally pollute CMA or isolated regions*/
729 	if (is_migrate_cma(migratetype) ||
730 	    is_migrate_isolate(migratetype))
731 		return false;
732 
733 	/*
734 	 * Do not let lower order allocations pollute a movable pageblock
735 	 * unless compaction is also requesting movable pages.
736 	 * This might let an unmovable request use a reclaimable pageblock
737 	 * and vice-versa but no more than normal fallback logic which can
738 	 * have trouble finding a high-order free page.
739 	 */
740 	if (order < pageblock_order && migratetype == MIGRATE_MOVABLE &&
741 	    capc->cc->migratetype != MIGRATE_MOVABLE)
742 		return false;
743 
744 	capc->page = page;
745 	return true;
746 }
747 
748 #else
task_capc(struct zone * zone)749 static inline struct capture_control *task_capc(struct zone *zone)
750 {
751 	return NULL;
752 }
753 
754 static inline bool
compaction_capture(struct capture_control * capc,struct page * page,int order,int migratetype)755 compaction_capture(struct capture_control *capc, struct page *page,
756 		   int order, int migratetype)
757 {
758 	return false;
759 }
760 #endif /* CONFIG_COMPACTION */
761 
account_freepages(struct zone * zone,int nr_pages,int migratetype)762 static inline void account_freepages(struct zone *zone, int nr_pages,
763 				     int migratetype)
764 {
765 	lockdep_assert_held(&zone->lock);
766 
767 	if (is_migrate_isolate(migratetype))
768 		return;
769 
770 	__mod_zone_page_state(zone, NR_FREE_PAGES, nr_pages);
771 
772 	if (is_migrate_cma(migratetype))
773 		__mod_zone_page_state(zone, NR_FREE_CMA_PAGES, nr_pages);
774 	else if (is_migrate_highatomic(migratetype))
775 		WRITE_ONCE(zone->nr_free_highatomic,
776 			   zone->nr_free_highatomic + nr_pages);
777 }
778 
779 /* Used for pages not on another list */
__add_to_free_list(struct page * page,struct zone * zone,unsigned int order,int migratetype,bool tail)780 static inline void __add_to_free_list(struct page *page, struct zone *zone,
781 				      unsigned int order, int migratetype,
782 				      bool tail)
783 {
784 	struct free_area *area = &zone->free_area[order];
785 
786 	VM_WARN_ONCE(get_pageblock_migratetype(page) != migratetype,
787 		     "page type is %lu, passed migratetype is %d (nr=%d)\n",
788 		     get_pageblock_migratetype(page), migratetype, 1 << order);
789 
790 	if (tail)
791 		list_add_tail(&page->buddy_list, &area->free_list[migratetype]);
792 	else
793 		list_add(&page->buddy_list, &area->free_list[migratetype]);
794 	area->nr_free++;
795 }
796 
797 /*
798  * Used for pages which are on another list. Move the pages to the tail
799  * of the list - so the moved pages won't immediately be considered for
800  * allocation again (e.g., optimization for memory onlining).
801  */
move_to_free_list(struct page * page,struct zone * zone,unsigned int order,int old_mt,int new_mt)802 static inline void move_to_free_list(struct page *page, struct zone *zone,
803 				     unsigned int order, int old_mt, int new_mt)
804 {
805 	struct free_area *area = &zone->free_area[order];
806 
807 	/* Free page moving can fail, so it happens before the type update */
808 	VM_WARN_ONCE(get_pageblock_migratetype(page) != old_mt,
809 		     "page type is %lu, passed migratetype is %d (nr=%d)\n",
810 		     get_pageblock_migratetype(page), old_mt, 1 << order);
811 
812 	list_move_tail(&page->buddy_list, &area->free_list[new_mt]);
813 
814 	account_freepages(zone, -(1 << order), old_mt);
815 	account_freepages(zone, 1 << order, new_mt);
816 }
817 
__del_page_from_free_list(struct page * page,struct zone * zone,unsigned int order,int migratetype)818 static inline void __del_page_from_free_list(struct page *page, struct zone *zone,
819 					     unsigned int order, int migratetype)
820 {
821         VM_WARN_ONCE(get_pageblock_migratetype(page) != migratetype,
822 		     "page type is %lu, passed migratetype is %d (nr=%d)\n",
823 		     get_pageblock_migratetype(page), migratetype, 1 << order);
824 
825 	/* clear reported state and update reported page count */
826 	if (page_reported(page))
827 		__ClearPageReported(page);
828 
829 	list_del(&page->buddy_list);
830 	__ClearPageBuddy(page);
831 	set_page_private(page, 0);
832 	zone->free_area[order].nr_free--;
833 }
834 
del_page_from_free_list(struct page * page,struct zone * zone,unsigned int order,int migratetype)835 static inline void del_page_from_free_list(struct page *page, struct zone *zone,
836 					   unsigned int order, int migratetype)
837 {
838 	__del_page_from_free_list(page, zone, order, migratetype);
839 	account_freepages(zone, -(1 << order), migratetype);
840 }
841 
get_page_from_free_area(struct free_area * area,int migratetype)842 static inline struct page *get_page_from_free_area(struct free_area *area,
843 					    int migratetype)
844 {
845 	return list_first_entry_or_null(&area->free_list[migratetype],
846 					struct page, buddy_list);
847 }
848 
849 /*
850  * If this is less than the 2nd largest possible page, check if the buddy
851  * of the next-higher order is free. If it is, it's possible
852  * that pages are being freed that will coalesce soon. In case,
853  * that is happening, add the free page to the tail of the list
854  * so it's less likely to be used soon and more likely to be merged
855  * as a 2-level higher order page
856  */
857 static inline bool
buddy_merge_likely(unsigned long pfn,unsigned long buddy_pfn,struct page * page,unsigned int order)858 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
859 		   struct page *page, unsigned int order)
860 {
861 	unsigned long higher_page_pfn;
862 	struct page *higher_page;
863 
864 	if (order >= MAX_PAGE_ORDER - 1)
865 		return false;
866 
867 	higher_page_pfn = buddy_pfn & pfn;
868 	higher_page = page + (higher_page_pfn - pfn);
869 
870 	return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1,
871 			NULL) != NULL;
872 }
873 
zone_max_order(struct zone * zone)874 static int zone_max_order(struct zone *zone)
875 {
876 	int max_order = MAX_PAGE_ORDER;
877 
878 	trace_android_vh_mm_customize_zone_max_order(zone, &max_order);
879 	return max_order;
880 }
881 
882 /*
883  * Freeing function for a buddy system allocator.
884  *
885  * The concept of a buddy system is to maintain direct-mapped table
886  * (containing bit values) for memory blocks of various "orders".
887  * The bottom level table contains the map for the smallest allocatable
888  * units of memory (here, pages), and each level above it describes
889  * pairs of units from the levels below, hence, "buddies".
890  * At a high level, all that happens here is marking the table entry
891  * at the bottom level available, and propagating the changes upward
892  * as necessary, plus some accounting needed to play nicely with other
893  * parts of the VM system.
894  * At each level, we keep a list of pages, which are heads of continuous
895  * free pages of length of (1 << order) and marked with PageBuddy.
896  * Page's order is recorded in page_private(page) field.
897  * So when we are allocating or freeing one, we can derive the state of the
898  * other.  That is, if we allocate a small block, and both were
899  * free, the remainder of the region must be split into blocks.
900  * If a block is freed, and its buddy is also free, then this
901  * triggers coalescing into a block of larger size.
902  *
903  * -- nyc
904  */
905 
__free_one_page(struct page * page,unsigned long pfn,struct zone * zone,unsigned int order,int migratetype,fpi_t fpi_flags)906 static inline void __free_one_page(struct page *page,
907 		unsigned long pfn,
908 		struct zone *zone, unsigned int order,
909 		int migratetype, fpi_t fpi_flags)
910 {
911 	struct capture_control *capc = task_capc(zone);
912 	unsigned long buddy_pfn = 0;
913 	unsigned long combined_pfn;
914 	struct page *buddy;
915 	bool to_tail;
916 	bool bypass = false;
917 	int max_order = zone_max_order(zone);
918 	unsigned long check_flags;
919 
920 	trace_android_vh_free_one_page_bypass(page, zone, order,
921 		migratetype, (int)fpi_flags, &bypass);
922 
923 	if (bypass)
924 		return;
925 
926 	VM_BUG_ON(!zone_is_initialized(zone));
927 	check_flags = PAGE_FLAGS_CHECK_AT_PREP;
928 	trace_android_vh_free_one_page_flag_check(&check_flags);
929 	VM_BUG_ON_PAGE(page->flags & check_flags, page);
930 
931 	VM_BUG_ON(migratetype == -1);
932 	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
933 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
934 
935 	account_freepages(zone, 1 << order, migratetype);
936 
937 	while (order < max_order) {
938 		int buddy_mt = migratetype;
939 
940 		if (compaction_capture(capc, page, order, migratetype)) {
941 			account_freepages(zone, -(1 << order), migratetype);
942 			return;
943 		}
944 
945 		buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn);
946 		if (!buddy)
947 			goto done_merging;
948 
949 		if (unlikely(order >= pageblock_order)) {
950 			/*
951 			 * We want to prevent merge between freepages on pageblock
952 			 * without fallbacks and normal pageblock. Without this,
953 			 * pageblock isolation could cause incorrect freepage or CMA
954 			 * accounting or HIGHATOMIC accounting.
955 			 */
956 			buddy_mt = get_pfnblock_migratetype(buddy, buddy_pfn);
957 
958 			if (migratetype != buddy_mt &&
959 			    (!migratetype_is_mergeable(migratetype) ||
960 			     !migratetype_is_mergeable(buddy_mt)))
961 				goto done_merging;
962 		}
963 
964 		/*
965 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
966 		 * merge with it and move up one order.
967 		 */
968 		if (page_is_guard(buddy))
969 			clear_page_guard(zone, buddy, order);
970 		else
971 			__del_page_from_free_list(buddy, zone, order, buddy_mt);
972 
973 		if (unlikely(buddy_mt != migratetype)) {
974 			/*
975 			 * Match buddy type. This ensures that an
976 			 * expand() down the line puts the sub-blocks
977 			 * on the right freelists.
978 			 */
979 			set_pageblock_migratetype(buddy, migratetype);
980 		}
981 
982 		combined_pfn = buddy_pfn & pfn;
983 		page = page + (combined_pfn - pfn);
984 		pfn = combined_pfn;
985 		order++;
986 	}
987 
988 done_merging:
989 	set_buddy_order(page, order);
990 
991 	if (fpi_flags & FPI_TO_TAIL)
992 		to_tail = true;
993 	else if (is_shuffle_order(order))
994 		to_tail = shuffle_pick_tail();
995 	else if (max_order != MAX_PAGE_ORDER)
996 		to_tail = false;
997 	else
998 		to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
999 
1000 	__add_to_free_list(page, zone, order, migratetype, to_tail);
1001 
1002 	/* Notify page reporting subsystem of freed page */
1003 	if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
1004 		page_reporting_notify_free(order);
1005 }
1006 
1007 /*
1008  * A bad page could be due to a number of fields. Instead of multiple branches,
1009  * try and check multiple fields with one check. The caller must do a detailed
1010  * check if necessary.
1011  */
page_expected_state(struct page * page,unsigned long check_flags)1012 static inline bool page_expected_state(struct page *page,
1013 					unsigned long check_flags)
1014 {
1015 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1016 		return false;
1017 
1018 	if (unlikely((unsigned long)page->mapping |
1019 			page_ref_count(page) |
1020 #ifdef CONFIG_MEMCG
1021 			page->memcg_data |
1022 #endif
1023 			page_pool_page_is_pp(page) |
1024 			(page->flags & check_flags)))
1025 		return false;
1026 
1027 	return true;
1028 }
1029 
page_bad_reason(struct page * page,unsigned long flags)1030 static const char *page_bad_reason(struct page *page, unsigned long flags)
1031 {
1032 	const char *bad_reason = NULL;
1033 
1034 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1035 		bad_reason = "nonzero mapcount";
1036 	if (unlikely(page->mapping != NULL))
1037 		bad_reason = "non-NULL mapping";
1038 	if (unlikely(page_ref_count(page) != 0))
1039 		bad_reason = "nonzero _refcount";
1040 	if (unlikely(page->flags & flags)) {
1041 		if (flags == PAGE_FLAGS_CHECK_AT_PREP)
1042 			bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
1043 		else
1044 			bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1045 	}
1046 #ifdef CONFIG_MEMCG
1047 	if (unlikely(page->memcg_data))
1048 		bad_reason = "page still charged to cgroup";
1049 #endif
1050 	if (unlikely(page_pool_page_is_pp(page)))
1051 		bad_reason = "page_pool leak";
1052 	return bad_reason;
1053 }
1054 
free_page_is_bad_report(struct page * page)1055 static void free_page_is_bad_report(struct page *page)
1056 {
1057 	bad_page(page,
1058 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
1059 }
1060 
free_page_is_bad(struct page * page)1061 static inline bool free_page_is_bad(struct page *page)
1062 {
1063 	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1064 		return false;
1065 
1066 	/* Something has gone sideways, find it */
1067 	free_page_is_bad_report(page);
1068 	return true;
1069 }
1070 
is_check_pages_enabled(void)1071 static inline bool is_check_pages_enabled(void)
1072 {
1073 	return static_branch_unlikely(&check_pages_enabled);
1074 }
1075 
free_tail_page_prepare(struct page * head_page,struct page * page)1076 static int free_tail_page_prepare(struct page *head_page, struct page *page)
1077 {
1078 	struct folio *folio = (struct folio *)head_page;
1079 	int ret = 1;
1080 
1081 	/*
1082 	 * We rely page->lru.next never has bit 0 set, unless the page
1083 	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1084 	 */
1085 	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1086 
1087 	if (!is_check_pages_enabled()) {
1088 		ret = 0;
1089 		goto out;
1090 	}
1091 	switch (page - head_page) {
1092 	case 1:
1093 		/* the first tail page: these may be in place of ->mapping */
1094 		if (unlikely(folio_entire_mapcount(folio))) {
1095 			bad_page(page, "nonzero entire_mapcount");
1096 			goto out;
1097 		}
1098 		if (unlikely(folio_large_mapcount(folio))) {
1099 			bad_page(page, "nonzero large_mapcount");
1100 			goto out;
1101 		}
1102 		if (unlikely(atomic_read(&folio->_nr_pages_mapped))) {
1103 			bad_page(page, "nonzero nr_pages_mapped");
1104 			goto out;
1105 		}
1106 		if (unlikely(atomic_read(&folio->_pincount))) {
1107 			bad_page(page, "nonzero pincount");
1108 			goto out;
1109 		}
1110 		break;
1111 	case 2:
1112 		/* the second tail page: deferred_list overlaps ->mapping */
1113 		if (unlikely(!list_empty(&folio->_deferred_list))) {
1114 			bad_page(page, "on deferred list");
1115 			goto out;
1116 		}
1117 		break;
1118 	default:
1119 		if (page->mapping != TAIL_MAPPING) {
1120 			bad_page(page, "corrupted mapping in tail page");
1121 			goto out;
1122 		}
1123 		break;
1124 	}
1125 	if (unlikely(!PageTail(page))) {
1126 		bad_page(page, "PageTail not set");
1127 		goto out;
1128 	}
1129 	if (unlikely(compound_head(page) != head_page)) {
1130 		bad_page(page, "compound_head not consistent");
1131 		goto out;
1132 	}
1133 	ret = 0;
1134 out:
1135 	page->mapping = NULL;
1136 	clear_compound_head(page);
1137 	return ret;
1138 }
1139 
1140 /*
1141  * Skip KASAN memory poisoning when either:
1142  *
1143  * 1. For generic KASAN: deferred memory initialization has not yet completed.
1144  *    Tag-based KASAN modes skip pages freed via deferred memory initialization
1145  *    using page tags instead (see below).
1146  * 2. For tag-based KASAN modes: the page has a match-all KASAN tag, indicating
1147  *    that error detection is disabled for accesses via the page address.
1148  *
1149  * Pages will have match-all tags in the following circumstances:
1150  *
1151  * 1. Pages are being initialized for the first time, including during deferred
1152  *    memory init; see the call to page_kasan_tag_reset in __init_single_page.
1153  * 2. The allocation was not unpoisoned due to __GFP_SKIP_KASAN, with the
1154  *    exception of pages unpoisoned by kasan_unpoison_vmalloc.
1155  * 3. The allocation was excluded from being checked due to sampling,
1156  *    see the call to kasan_unpoison_pages.
1157  *
1158  * Poisoning pages during deferred memory init will greatly lengthen the
1159  * process and cause problem in large memory systems as the deferred pages
1160  * initialization is done with interrupt disabled.
1161  *
1162  * Assuming that there will be no reference to those newly initialized
1163  * pages before they are ever allocated, this should have no effect on
1164  * KASAN memory tracking as the poison will be properly inserted at page
1165  * allocation time. The only corner case is when pages are allocated by
1166  * on-demand allocation and then freed again before the deferred pages
1167  * initialization is done, but this is not likely to happen.
1168  */
should_skip_kasan_poison(struct page * page)1169 static inline bool should_skip_kasan_poison(struct page *page)
1170 {
1171 	if (IS_ENABLED(CONFIG_KASAN_GENERIC))
1172 		return deferred_pages_enabled();
1173 
1174 	return page_kasan_tag(page) == KASAN_TAG_KERNEL;
1175 }
1176 
kernel_init_pages(struct page * page,int numpages)1177 static void kernel_init_pages(struct page *page, int numpages)
1178 {
1179 	int i;
1180 
1181 	/* s390's use of memset() could override KASAN redzones. */
1182 	kasan_disable_current();
1183 	for (i = 0; i < numpages; i++)
1184 		clear_highpage_kasan_tagged(page + i);
1185 	kasan_enable_current();
1186 }
1187 
1188 #ifdef CONFIG_MEM_ALLOC_PROFILING
1189 
1190 /* Should be called only if mem_alloc_profiling_enabled() */
__clear_page_tag_ref(struct page * page)1191 void __clear_page_tag_ref(struct page *page)
1192 {
1193 	union pgtag_ref_handle handle;
1194 	union codetag_ref ref;
1195 
1196 	if (get_page_tag_ref(page, &ref, &handle)) {
1197 		set_codetag_empty(&ref);
1198 		update_page_tag_ref(handle, &ref);
1199 		put_page_tag_ref(handle);
1200 	}
1201 }
1202 
1203 /* Should be called only if mem_alloc_profiling_enabled() */
1204 static noinline
__pgalloc_tag_add(struct page * page,struct task_struct * task,unsigned int nr)1205 void __pgalloc_tag_add(struct page *page, struct task_struct *task,
1206 		       unsigned int nr)
1207 {
1208 	union pgtag_ref_handle handle;
1209 	union codetag_ref ref;
1210 
1211 	if (get_page_tag_ref(page, &ref, &handle)) {
1212 		alloc_tag_add(&ref, task->alloc_tag, PAGE_SIZE * nr);
1213 		update_page_tag_ref(handle, &ref);
1214 		put_page_tag_ref(handle);
1215 	}
1216 }
1217 
pgalloc_tag_add(struct page * page,struct task_struct * task,unsigned int nr)1218 static inline void pgalloc_tag_add(struct page *page, struct task_struct *task,
1219 				   unsigned int nr)
1220 {
1221 	if (mem_alloc_profiling_enabled())
1222 		__pgalloc_tag_add(page, task, nr);
1223 }
1224 
1225 /* Should be called only if mem_alloc_profiling_enabled() */
1226 static noinline
__pgalloc_tag_sub(struct page * page,unsigned int nr)1227 void __pgalloc_tag_sub(struct page *page, unsigned int nr)
1228 {
1229 	union pgtag_ref_handle handle;
1230 	union codetag_ref ref;
1231 
1232 	if (get_page_tag_ref(page, &ref, &handle)) {
1233 		alloc_tag_sub(&ref, PAGE_SIZE * nr);
1234 		update_page_tag_ref(handle, &ref);
1235 		put_page_tag_ref(handle);
1236 	}
1237 }
1238 
pgalloc_tag_sub(struct page * page,unsigned int nr)1239 static inline void pgalloc_tag_sub(struct page *page, unsigned int nr)
1240 {
1241 	if (mem_alloc_profiling_enabled())
1242 		__pgalloc_tag_sub(page, nr);
1243 }
1244 
pgalloc_tag_sub_pages(struct page * page,unsigned int nr)1245 static inline void pgalloc_tag_sub_pages(struct page *page, unsigned int nr)
1246 {
1247 	struct alloc_tag *tag;
1248 
1249 	if (!mem_alloc_profiling_enabled())
1250 		return;
1251 
1252 	tag = __pgalloc_tag_get(page);
1253 	if (tag)
1254 		this_cpu_sub(tag->counters->bytes, PAGE_SIZE * nr);
1255 }
1256 
1257 #else /* CONFIG_MEM_ALLOC_PROFILING */
1258 
pgalloc_tag_add(struct page * page,struct task_struct * task,unsigned int nr)1259 static inline void pgalloc_tag_add(struct page *page, struct task_struct *task,
1260 				   unsigned int nr) {}
pgalloc_tag_sub(struct page * page,unsigned int nr)1261 static inline void pgalloc_tag_sub(struct page *page, unsigned int nr) {}
pgalloc_tag_sub_pages(struct page * page,unsigned int nr)1262 static inline void pgalloc_tag_sub_pages(struct page *page, unsigned int nr) {}
1263 
1264 #endif /* CONFIG_MEM_ALLOC_PROFILING */
1265 
free_pages_prepare(struct page * page,unsigned int order)1266 __always_inline bool free_pages_prepare(struct page *page,
1267 			unsigned int order)
1268 {
1269 	int bad = 0;
1270 	bool skip_kasan_poison = should_skip_kasan_poison(page);
1271 	bool init = want_init_on_free();
1272 	bool compound = PageCompound(page);
1273 	struct folio *folio = page_folio(page);
1274 
1275 	VM_BUG_ON_PAGE(PageTail(page), page);
1276 
1277 	trace_mm_page_free(page, order);
1278 	kmsan_free_page(page, order);
1279 
1280 	if (memcg_kmem_online() && PageMemcgKmem(page))
1281 		__memcg_kmem_uncharge_page(page, order);
1282 
1283 	/*
1284 	 * In rare cases, when truncation or holepunching raced with
1285 	 * munlock after VM_LOCKED was cleared, Mlocked may still be
1286 	 * found set here.  This does not indicate a problem, unless
1287 	 * "unevictable_pgs_cleared" appears worryingly large.
1288 	 */
1289 	if (unlikely(folio_test_mlocked(folio))) {
1290 		long nr_pages = folio_nr_pages(folio);
1291 
1292 		__folio_clear_mlocked(folio);
1293 		zone_stat_mod_folio(folio, NR_MLOCK, -nr_pages);
1294 		count_vm_events(UNEVICTABLE_PGCLEARED, nr_pages);
1295 	}
1296 
1297 	if (unlikely(PageHWPoison(page)) && !order) {
1298 		/* Do not let hwpoison pages hit pcplists/buddy */
1299 		reset_page_owner(page, order);
1300 		free_page_pinner(page, order);
1301 		page_table_check_free(page, order);
1302 		pgalloc_tag_sub(page, 1 << order);
1303 
1304 		/*
1305 		 * The page is isolated and accounted for.
1306 		 * Mark the codetag as empty to avoid accounting error
1307 		 * when the page is freed by unpoison_memory().
1308 		 */
1309 		clear_page_tag_ref(page);
1310 		return false;
1311 	}
1312 
1313 	VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1314 
1315 	/*
1316 	 * Check tail pages before head page information is cleared to
1317 	 * avoid checking PageCompound for order-0 pages.
1318 	 */
1319 	if (unlikely(order)) {
1320 		int i;
1321 
1322 		if (compound)
1323 			page[1].flags &= ~PAGE_FLAGS_SECOND;
1324 		for (i = 1; i < (1 << order); i++) {
1325 			if (compound)
1326 				bad += free_tail_page_prepare(page, page + i);
1327 			if (is_check_pages_enabled()) {
1328 				if (free_page_is_bad(page + i)) {
1329 					bad++;
1330 					continue;
1331 				}
1332 			}
1333 			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1334 			trace_android_vh_mm_free_page(page + i);
1335 		}
1336 	}
1337 	if (PageMappingFlags(page)) {
1338 		if (PageAnon(page))
1339 			mod_mthp_stat(order, MTHP_STAT_NR_ANON, -1);
1340 		page->mapping = NULL;
1341 	}
1342 	if (is_check_pages_enabled()) {
1343 		if (free_page_is_bad(page))
1344 			bad++;
1345 		if (bad)
1346 			return false;
1347 	}
1348 
1349 	page_cpupid_reset_last(page);
1350 	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1351 	trace_android_vh_mm_free_page(page);
1352 	reset_page_owner(page, order);
1353 	free_page_pinner(page, order);
1354 	page_table_check_free(page, order);
1355 	pgalloc_tag_sub(page, 1 << order);
1356 
1357 	if (!PageHighMem(page)) {
1358 		debug_check_no_locks_freed(page_address(page),
1359 					   PAGE_SIZE << order);
1360 		debug_check_no_obj_freed(page_address(page),
1361 					   PAGE_SIZE << order);
1362 	}
1363 
1364 	kernel_poison_pages(page, 1 << order);
1365 
1366 	/*
1367 	 * As memory initialization might be integrated into KASAN,
1368 	 * KASAN poisoning and memory initialization code must be
1369 	 * kept together to avoid discrepancies in behavior.
1370 	 *
1371 	 * With hardware tag-based KASAN, memory tags must be set before the
1372 	 * page becomes unavailable via debug_pagealloc or arch_free_page.
1373 	 */
1374 	if (!skip_kasan_poison) {
1375 		kasan_poison_pages(page, order, init);
1376 
1377 		/* Memory is already initialized if KASAN did it internally. */
1378 		if (kasan_has_integrated_init())
1379 			init = false;
1380 	}
1381 	if (init) {
1382 		trace_android_vh_free_pages_prepare_init(page, 1 << order, &init);
1383 		if (init)
1384 			kernel_init_pages(page, 1 << order);
1385 	}
1386 
1387 	/*
1388 	 * arch_free_page() can make the page's contents inaccessible.  s390
1389 	 * does this.  So nothing which can access the page's contents should
1390 	 * happen after this.
1391 	 */
1392 	arch_free_page(page, order);
1393 
1394 	debug_pagealloc_unmap_pages(page, 1 << order);
1395 
1396 	return true;
1397 }
1398 
1399 /*
1400  * Frees a number of pages from the PCP lists
1401  * Assumes all pages on list are in same zone.
1402  * count is the number of pages to free.
1403  */
free_pcppages_bulk(struct zone * zone,int count,struct per_cpu_pages * pcp,int pindex)1404 static void free_pcppages_bulk(struct zone *zone, int count,
1405 					struct per_cpu_pages *pcp,
1406 					int pindex)
1407 {
1408 	unsigned long flags;
1409 	unsigned int order;
1410 	struct page *page;
1411 
1412 	/*
1413 	 * Ensure proper count is passed which otherwise would stuck in the
1414 	 * below while (list_empty(list)) loop.
1415 	 */
1416 	count = min(pcp->count, count);
1417 
1418 	/* Ensure requested pindex is drained first. */
1419 	pindex = pindex - 1;
1420 
1421 	spin_lock_irqsave(&zone->lock, flags);
1422 
1423 	while (count > 0) {
1424 		struct list_head *list;
1425 		int nr_pages;
1426 
1427 		/* Remove pages from lists in a round-robin fashion. */
1428 		do {
1429 			if (++pindex > NR_PCP_LISTS - 1)
1430 				pindex = 0;
1431 			list = &pcp->lists[pindex];
1432 		} while (list_empty(list));
1433 
1434 		order = pindex_to_order(pindex);
1435 		nr_pages = 1 << order;
1436 		do {
1437 			unsigned long pfn;
1438 			int mt;
1439 
1440 			page = list_last_entry(list, struct page, pcp_list);
1441 			pfn = page_to_pfn(page);
1442 			mt = get_pfnblock_migratetype(page, pfn);
1443 
1444 			/* must delete to avoid corrupting pcp list */
1445 			list_del(&page->pcp_list);
1446 			count -= nr_pages;
1447 			pcp->count -= nr_pages;
1448 
1449 			__free_one_page(page, pfn, zone, order, mt, FPI_NONE);
1450 			trace_mm_page_pcpu_drain(page, order, mt);
1451 		} while (count > 0 && !list_empty(list));
1452 	}
1453 
1454 	spin_unlock_irqrestore(&zone->lock, flags);
1455 }
1456 
1457 /* Split a multi-block free page into its individual pageblocks. */
split_large_buddy(struct zone * zone,struct page * page,unsigned long pfn,int order,fpi_t fpi)1458 static void split_large_buddy(struct zone *zone, struct page *page,
1459 			      unsigned long pfn, int order, fpi_t fpi)
1460 {
1461 	unsigned long end = pfn + (1 << order);
1462 
1463 	VM_WARN_ON_ONCE(!IS_ALIGNED(pfn, 1 << order));
1464 	/* Caller removed page from freelist, buddy info cleared! */
1465 	VM_WARN_ON_ONCE(PageBuddy(page));
1466 
1467 	if (order > pageblock_order)
1468 		order = pageblock_order;
1469 
1470 	do {
1471 		int mt = get_pfnblock_migratetype(page, pfn);
1472 
1473 		__free_one_page(page, pfn, zone, order, mt, fpi);
1474 		pfn += 1 << order;
1475 		if (pfn == end)
1476 			break;
1477 		page = pfn_to_page(pfn);
1478 	} while (1);
1479 }
1480 
free_one_page(struct zone * zone,struct page * page,unsigned long pfn,unsigned int order,fpi_t fpi_flags)1481 static void free_one_page(struct zone *zone, struct page *page,
1482 			  unsigned long pfn, unsigned int order,
1483 			  fpi_t fpi_flags)
1484 {
1485 	unsigned long flags;
1486 
1487 	spin_lock_irqsave(&zone->lock, flags);
1488 	split_large_buddy(zone, page, pfn, order, fpi_flags);
1489 	spin_unlock_irqrestore(&zone->lock, flags);
1490 
1491 	__count_vm_events(PGFREE, 1 << order);
1492 }
1493 
__free_pages_ok(struct page * page,unsigned int order,fpi_t fpi_flags)1494 static void __free_pages_ok(struct page *page, unsigned int order,
1495 			    fpi_t fpi_flags)
1496 {
1497 	int migratetype;
1498 	unsigned long pfn = page_to_pfn(page);
1499 	struct zone *zone = page_zone(page);
1500 	bool skip_free_pages_prepare = false;
1501 	bool skip_free_pages_ok = false;
1502 	bool skip_free_unref_page = false;
1503 
1504 	trace_android_vh_free_pages_prepare_bypass(page, order,
1505 			fpi_flags, &skip_free_pages_prepare);
1506 	if (skip_free_pages_prepare)
1507 		goto skip_prepare;
1508 
1509 	if (!free_pages_prepare(page, order))
1510 		return;
1511 skip_prepare:
1512 	trace_android_vh_free_pages_ok_bypass(page, order,
1513 			fpi_flags, &skip_free_pages_ok);
1514 	if (skip_free_pages_ok)
1515 		return;
1516 	/*
1517 	 * Calling get_pfnblock_migratetype() without spin_lock_irqsave() here
1518 	 * is used to avoid calling get_pfnblock_migratetype() under the lock.
1519 	 * This will reduce the lock holding time.
1520 	 */
1521 	migratetype = get_pfnblock_migratetype(page, pfn);
1522 	trace_android_vh_free_unref_page_bypass(page, order, migratetype, &skip_free_unref_page);
1523 	if (skip_free_unref_page)
1524 		return;
1525 
1526 	free_one_page(zone, page, pfn, order, fpi_flags);
1527 }
1528 
1529 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
free_hpage(struct page * page,fpi_t fpi_flags)1530 void free_hpage(struct page *page, fpi_t fpi_flags)
1531 {
1532 	__free_pages_ok(page, HPAGE_PMD_ORDER, fpi_flags);
1533 }
1534 EXPORT_SYMBOL_GPL(free_hpage);
1535 #endif
1536 
__free_pages_core(struct page * page,unsigned int order,enum meminit_context context)1537 void __meminit __free_pages_core(struct page *page, unsigned int order,
1538 		enum meminit_context context)
1539 {
1540 	unsigned int nr_pages = 1 << order;
1541 	struct page *p = page;
1542 	unsigned int loop;
1543 
1544 	/*
1545 	 * When initializing the memmap, __init_single_page() sets the refcount
1546 	 * of all pages to 1 ("allocated"/"not free"). We have to set the
1547 	 * refcount of all involved pages to 0.
1548 	 *
1549 	 * Note that hotplugged memory pages are initialized to PageOffline().
1550 	 * Pages freed from memblock might be marked as reserved.
1551 	 */
1552 	if (IS_ENABLED(CONFIG_MEMORY_HOTPLUG) &&
1553 	    unlikely(context == MEMINIT_HOTPLUG)) {
1554 		for (loop = 0; loop < nr_pages; loop++, p++) {
1555 			VM_WARN_ON_ONCE(PageReserved(p));
1556 			__ClearPageOffline(p);
1557 			set_page_count(p, 0);
1558 		}
1559 
1560 		/*
1561 		 * Freeing the page with debug_pagealloc enabled will try to
1562 		 * unmap it; some archs don't like double-unmappings, so
1563 		 * map it first.
1564 		 */
1565 		debug_pagealloc_map_pages(page, nr_pages);
1566 		adjust_managed_page_count(page, nr_pages);
1567 	} else {
1568 		for (loop = 0; loop < nr_pages; loop++, p++) {
1569 			__ClearPageReserved(p);
1570 			set_page_count(p, 0);
1571 		}
1572 
1573 		/* memblock adjusts totalram_pages() manually. */
1574 		atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1575 	}
1576 
1577 	if (page_contains_unaccepted(page, order)) {
1578 		if (order == MAX_PAGE_ORDER && __free_unaccepted(page))
1579 			return;
1580 
1581 		accept_memory(page_to_phys(page), PAGE_SIZE << order);
1582 	}
1583 
1584 	/*
1585 	 * Bypass PCP and place fresh pages right to the tail, primarily
1586 	 * relevant for memory onlining.
1587 	 */
1588 	__free_pages_ok(page, order, FPI_TO_TAIL);
1589 }
1590 
1591 /*
1592  * Check that the whole (or subset of) a pageblock given by the interval of
1593  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1594  * with the migration of free compaction scanner.
1595  *
1596  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1597  *
1598  * It's possible on some configurations to have a setup like node0 node1 node0
1599  * i.e. it's possible that all pages within a zones range of pages do not
1600  * belong to a single zone. We assume that a border between node0 and node1
1601  * can occur within a single pageblock, but not a node0 node1 node0
1602  * interleaving within a single pageblock. It is therefore sufficient to check
1603  * the first and last page of a pageblock and avoid checking each individual
1604  * page in a pageblock.
1605  *
1606  * Note: the function may return non-NULL struct page even for a page block
1607  * which contains a memory hole (i.e. there is no physical memory for a subset
1608  * of the pfn range). For example, if the pageblock order is MAX_PAGE_ORDER, which
1609  * will fall into 2 sub-sections, and the end pfn of the pageblock may be hole
1610  * even though the start pfn is online and valid. This should be safe most of
1611  * the time because struct pages are still initialized via init_unavailable_range()
1612  * and pfn walkers shouldn't touch any physical memory range for which they do
1613  * not recognize any specific metadata in struct pages.
1614  */
__pageblock_pfn_to_page(unsigned long start_pfn,unsigned long end_pfn,struct zone * zone)1615 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1616 				     unsigned long end_pfn, struct zone *zone)
1617 {
1618 	struct page *start_page;
1619 	struct page *end_page;
1620 
1621 	/* end_pfn is one past the range we are checking */
1622 	end_pfn--;
1623 
1624 	if (!pfn_valid(end_pfn))
1625 		return NULL;
1626 
1627 	start_page = pfn_to_online_page(start_pfn);
1628 	if (!start_page)
1629 		return NULL;
1630 
1631 	if (page_zone(start_page) != zone)
1632 		return NULL;
1633 
1634 	end_page = pfn_to_page(end_pfn);
1635 
1636 	/* This gives a shorter code than deriving page_zone(end_page) */
1637 	if (page_zone_id(start_page) != page_zone_id(end_page))
1638 		return NULL;
1639 
1640 	return start_page;
1641 }
1642 
1643 /*
1644  * The order of subdivision here is critical for the IO subsystem.
1645  * Please do not alter this order without good reasons and regression
1646  * testing. Specifically, as large blocks of memory are subdivided,
1647  * the order in which smaller blocks are delivered depends on the order
1648  * they're subdivided in this function. This is the primary factor
1649  * influencing the order in which pages are delivered to the IO
1650  * subsystem according to empirical testing, and this is also justified
1651  * by considering the behavior of a buddy system containing a single
1652  * large block of memory acted on by a series of small allocations.
1653  * This behavior is a critical factor in sglist merging's success.
1654  *
1655  * -- nyc
1656  */
expand(struct zone * zone,struct page * page,int low,int high,int migratetype)1657 static inline unsigned int expand(struct zone *zone, struct page *page, int low,
1658 				  int high, int migratetype)
1659 {
1660 	unsigned int size = 1 << high;
1661 	unsigned int nr_added = 0;
1662 
1663 	while (high > low) {
1664 		high--;
1665 		size >>= 1;
1666 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1667 
1668 		/*
1669 		 * Mark as guard pages (or page), that will allow to
1670 		 * merge back to allocator when buddy will be freed.
1671 		 * Corresponding page table entries will not be touched,
1672 		 * pages will stay not present in virtual address space
1673 		 */
1674 		if (set_page_guard(zone, &page[size], high))
1675 			continue;
1676 
1677 		__add_to_free_list(&page[size], zone, high, migratetype, false);
1678 		set_buddy_order(&page[size], high);
1679 		nr_added += size;
1680 	}
1681 
1682 	return nr_added;
1683 }
1684 
page_del_and_expand(struct zone * zone,struct page * page,int low,int high,int migratetype)1685 static __always_inline void page_del_and_expand(struct zone *zone,
1686 						struct page *page, int low,
1687 						int high, int migratetype)
1688 {
1689 	int nr_pages = 1 << high;
1690 
1691 	__del_page_from_free_list(page, zone, high, migratetype);
1692 	nr_pages -= expand(zone, page, low, high, migratetype);
1693 	account_freepages(zone, -nr_pages, migratetype);
1694 }
1695 
check_new_page_bad(struct page * page)1696 static void check_new_page_bad(struct page *page)
1697 {
1698 	if (unlikely(page->flags & __PG_HWPOISON)) {
1699 		/* Don't complain about hwpoisoned pages */
1700 		if (PageBuddy(page))
1701 			__ClearPageBuddy(page);
1702 		return;
1703 	}
1704 
1705 	bad_page(page,
1706 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
1707 }
1708 
1709 /*
1710  * This page is about to be returned from the page allocator
1711  */
check_new_page(struct page * page)1712 static bool check_new_page(struct page *page)
1713 {
1714 	unsigned long check_flags = PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON;
1715 
1716 	trace_android_vh_check_new_page(&check_flags);
1717 
1718 	if (likely(page_expected_state(page, check_flags)))
1719 		return false;
1720 
1721 	check_new_page_bad(page);
1722 	return true;
1723 }
1724 
check_new_pages(struct page * page,unsigned int order)1725 static inline bool check_new_pages(struct page *page, unsigned int order)
1726 {
1727 	if (is_check_pages_enabled()) {
1728 		for (int i = 0; i < (1 << order); i++) {
1729 			struct page *p = page + i;
1730 
1731 			if (check_new_page(p))
1732 				return true;
1733 		}
1734 	}
1735 
1736 	return false;
1737 }
1738 
should_skip_kasan_unpoison(gfp_t flags)1739 static inline bool should_skip_kasan_unpoison(gfp_t flags)
1740 {
1741 	/* Don't skip if a software KASAN mode is enabled. */
1742 	if (IS_ENABLED(CONFIG_KASAN_GENERIC) ||
1743 	    IS_ENABLED(CONFIG_KASAN_SW_TAGS))
1744 		return false;
1745 
1746 	/* Skip, if hardware tag-based KASAN is not enabled. */
1747 	if (!kasan_hw_tags_enabled())
1748 		return true;
1749 
1750 	/*
1751 	 * With hardware tag-based KASAN enabled, skip if this has been
1752 	 * requested via __GFP_SKIP_KASAN.
1753 	 */
1754 	return flags & __GFP_SKIP_KASAN;
1755 }
1756 
should_skip_init(gfp_t flags)1757 static inline bool should_skip_init(gfp_t flags)
1758 {
1759 	/* Don't skip, if hardware tag-based KASAN is not enabled. */
1760 	if (!kasan_hw_tags_enabled())
1761 		return false;
1762 
1763 	/* For hardware tag-based KASAN, skip if requested. */
1764 	return (flags & __GFP_SKIP_ZERO);
1765 }
1766 
post_alloc_hook(struct page * page,unsigned int order,gfp_t gfp_flags)1767 inline void post_alloc_hook(struct page *page, unsigned int order,
1768 				gfp_t gfp_flags)
1769 {
1770 	int i;
1771 	bool zero_tags;
1772 	bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) &&
1773 			!should_skip_init(gfp_flags);
1774 
1775 	trace_android_vh_post_alloc_hook(page, order, &init);
1776 	zero_tags = init && (gfp_flags & __GFP_ZEROTAGS);
1777 
1778 	set_page_private(page, 0);
1779 	set_page_refcounted(page);
1780 
1781 	arch_alloc_page(page, order);
1782 	debug_pagealloc_map_pages(page, 1 << order);
1783 
1784 	/*
1785 	 * Page unpoisoning must happen before memory initialization.
1786 	 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
1787 	 * allocations and the page unpoisoning code will complain.
1788 	 */
1789 	kernel_unpoison_pages(page, 1 << order);
1790 
1791 	/*
1792 	 * As memory initialization might be integrated into KASAN,
1793 	 * KASAN unpoisoning and memory initializion code must be
1794 	 * kept together to avoid discrepancies in behavior.
1795 	 */
1796 
1797 	/*
1798 	 * If memory tags should be zeroed
1799 	 * (which happens only when memory should be initialized as well).
1800 	 */
1801 	if (zero_tags) {
1802 		/* Initialize both memory and memory tags. */
1803 		for (i = 0; i != 1 << order; ++i)
1804 			tag_clear_highpage(page + i);
1805 
1806 		/* Take note that memory was initialized by the loop above. */
1807 		init = false;
1808 	}
1809 	if (!should_skip_kasan_unpoison(gfp_flags) &&
1810 	    kasan_unpoison_pages(page, order, init)) {
1811 		/* Take note that memory was initialized by KASAN. */
1812 		if (kasan_has_integrated_init())
1813 			init = false;
1814 	} else {
1815 		/*
1816 		 * If memory tags have not been set by KASAN, reset the page
1817 		 * tags to ensure page_address() dereferencing does not fault.
1818 		 */
1819 		for (i = 0; i != 1 << order; ++i)
1820 			page_kasan_tag_reset(page + i);
1821 	}
1822 	/* If memory is still not initialized, initialize it now. */
1823 	if (init)
1824 		kernel_init_pages(page, 1 << order);
1825 
1826 	set_page_owner(page, order, gfp_flags);
1827 	page_table_check_alloc(page, order);
1828 	pgalloc_tag_add(page, current, 1 << order);
1829 }
1830 
prep_new_page(struct page * page,unsigned int order,gfp_t gfp_flags,unsigned int alloc_flags)1831 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1832 							unsigned int alloc_flags)
1833 {
1834 	post_alloc_hook(page, order, gfp_flags);
1835 
1836 	if (order && (gfp_flags & __GFP_COMP))
1837 		prep_compound_page(page, order);
1838 
1839 	/*
1840 	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1841 	 * allocate the page. The expectation is that the caller is taking
1842 	 * steps that will free more memory. The caller should avoid the page
1843 	 * being used for !PFMEMALLOC purposes.
1844 	 */
1845 	if (alloc_flags & ALLOC_NO_WATERMARKS)
1846 		set_page_pfmemalloc(page);
1847 	else
1848 		clear_page_pfmemalloc(page);
1849 	trace_android_vh_test_clear_look_around_ref(page);
1850 }
1851 
1852 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
prep_new_hpage(struct page * page,gfp_t gfp_flags,unsigned int alloc_flags)1853 void prep_new_hpage(struct page *page, gfp_t gfp_flags, unsigned int alloc_flags)
1854 {
1855 	return prep_new_page(page, HPAGE_PMD_ORDER, gfp_flags, alloc_flags);
1856 }
1857 EXPORT_SYMBOL_GPL(prep_new_hpage);
1858 #endif
1859 
1860 /*
1861  * Go through the free lists for the given migratetype and remove
1862  * the smallest available page from the freelists
1863  */
1864 static __always_inline
__rmqueue_smallest(struct zone * zone,unsigned int order,int migratetype)1865 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1866 						int migratetype)
1867 {
1868 	unsigned int current_order;
1869 	struct free_area *area;
1870 	struct page *page;
1871 
1872 	/* Find a page of the appropriate size in the preferred list */
1873 	for (current_order = order; current_order < NR_PAGE_ORDERS; ++current_order) {
1874 		area = &(zone->free_area[current_order]);
1875 		page = get_page_from_free_area(area, migratetype);
1876 		if (!page)
1877 			continue;
1878 
1879 		page_del_and_expand(zone, page, order, current_order,
1880 				    migratetype);
1881 		trace_mm_page_alloc_zone_locked(page, order, migratetype,
1882 				pcp_allowed_order(order) &&
1883 				migratetype < MIGRATE_PCPTYPES);
1884 		return page;
1885 	}
1886 
1887 	return NULL;
1888 }
1889 
1890 
1891 /*
1892  * This array describes the order lists are fallen back to when
1893  * the free lists for the desirable migrate type are depleted
1894  *
1895  * The other migratetypes do not have fallbacks.
1896  */
1897 static int fallbacks[MIGRATE_PCPTYPES][MIGRATE_FALLBACKS - 1] = {
1898 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE   },
1899 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE },
1900 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE   },
1901 };
1902 
1903 #ifdef CONFIG_CMA
__rmqueue_cma_fallback(struct zone * zone,unsigned int order)1904 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1905 					unsigned int order)
1906 {
1907 	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1908 }
1909 #else
__rmqueue_cma_fallback(struct zone * zone,unsigned int order)1910 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1911 					unsigned int order) { return NULL; }
1912 #endif
1913 
1914 /*
1915  * Change the type of a block and move all its free pages to that
1916  * type's freelist.
1917  */
__move_freepages_block(struct zone * zone,unsigned long start_pfn,int old_mt,int new_mt)1918 static int __move_freepages_block(struct zone *zone, unsigned long start_pfn,
1919 				  int old_mt, int new_mt)
1920 {
1921 	struct page *page;
1922 	unsigned long pfn, end_pfn;
1923 	unsigned int order;
1924 	int pages_moved = 0;
1925 
1926 	VM_WARN_ON(start_pfn & (pageblock_nr_pages - 1));
1927 	end_pfn = pageblock_end_pfn(start_pfn);
1928 
1929 	for (pfn = start_pfn; pfn < end_pfn;) {
1930 		page = pfn_to_page(pfn);
1931 		if (!PageBuddy(page)) {
1932 			pfn++;
1933 			continue;
1934 		}
1935 
1936 		/* Make sure we are not inadvertently changing nodes */
1937 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1938 		VM_BUG_ON_PAGE(page_zone(page) != zone, page);
1939 
1940 		order = buddy_order(page);
1941 
1942 		move_to_free_list(page, zone, order, old_mt, new_mt);
1943 
1944 		pfn += 1 << order;
1945 		pages_moved += 1 << order;
1946 	}
1947 
1948 	set_pageblock_migratetype(pfn_to_page(start_pfn), new_mt);
1949 
1950 	return pages_moved;
1951 }
1952 
prep_move_freepages_block(struct zone * zone,struct page * page,unsigned long * start_pfn,int * num_free,int * num_movable)1953 static bool prep_move_freepages_block(struct zone *zone, struct page *page,
1954 				      unsigned long *start_pfn,
1955 				      int *num_free, int *num_movable)
1956 {
1957 	unsigned long pfn, start, end;
1958 
1959 	pfn = page_to_pfn(page);
1960 	start = pageblock_start_pfn(pfn);
1961 	end = pageblock_end_pfn(pfn);
1962 
1963 	/*
1964 	 * The caller only has the lock for @zone, don't touch ranges
1965 	 * that straddle into other zones. While we could move part of
1966 	 * the range that's inside the zone, this call is usually
1967 	 * accompanied by other operations such as migratetype updates
1968 	 * which also should be locked.
1969 	 */
1970 	if (!zone_spans_pfn(zone, start))
1971 		return false;
1972 	if (!zone_spans_pfn(zone, end - 1))
1973 		return false;
1974 
1975 	*start_pfn = start;
1976 
1977 	if (num_free) {
1978 		*num_free = 0;
1979 		*num_movable = 0;
1980 		for (pfn = start; pfn < end;) {
1981 			page = pfn_to_page(pfn);
1982 			if (PageBuddy(page)) {
1983 				int nr = 1 << buddy_order(page);
1984 
1985 				*num_free += nr;
1986 				pfn += nr;
1987 				continue;
1988 			}
1989 			/*
1990 			 * We assume that pages that could be isolated for
1991 			 * migration are movable. But we don't actually try
1992 			 * isolating, as that would be expensive.
1993 			 */
1994 			if (PageLRU(page) || __PageMovable(page))
1995 				(*num_movable)++;
1996 			pfn++;
1997 		}
1998 	}
1999 
2000 	return true;
2001 }
2002 
move_freepages_block(struct zone * zone,struct page * page,int old_mt,int new_mt)2003 static int move_freepages_block(struct zone *zone, struct page *page,
2004 				int old_mt, int new_mt)
2005 {
2006 	unsigned long start_pfn;
2007 
2008 	if (!prep_move_freepages_block(zone, page, &start_pfn, NULL, NULL))
2009 		return -1;
2010 
2011 	return __move_freepages_block(zone, start_pfn, old_mt, new_mt);
2012 }
2013 
2014 #ifdef CONFIG_MEMORY_ISOLATION
2015 /* Look for a buddy that straddles start_pfn */
find_large_buddy(unsigned long start_pfn)2016 static unsigned long find_large_buddy(unsigned long start_pfn)
2017 {
2018 	int order = 0;
2019 	struct page *page;
2020 	unsigned long pfn = start_pfn;
2021 
2022 	while (!PageBuddy(page = pfn_to_page(pfn))) {
2023 		/* Nothing found */
2024 		if (++order > MAX_PAGE_ORDER)
2025 			return start_pfn;
2026 		pfn &= ~0UL << order;
2027 	}
2028 
2029 	/*
2030 	 * Found a preceding buddy, but does it straddle?
2031 	 */
2032 	if (pfn + (1 << buddy_order(page)) > start_pfn)
2033 		return pfn;
2034 
2035 	/* Nothing found */
2036 	return start_pfn;
2037 }
2038 
2039 /**
2040  * move_freepages_block_isolate - move free pages in block for page isolation
2041  * @zone: the zone
2042  * @page: the pageblock page
2043  * @migratetype: migratetype to set on the pageblock
2044  *
2045  * This is similar to move_freepages_block(), but handles the special
2046  * case encountered in page isolation, where the block of interest
2047  * might be part of a larger buddy spanning multiple pageblocks.
2048  *
2049  * Unlike the regular page allocator path, which moves pages while
2050  * stealing buddies off the freelist, page isolation is interested in
2051  * arbitrary pfn ranges that may have overlapping buddies on both ends.
2052  *
2053  * This function handles that. Straddling buddies are split into
2054  * individual pageblocks. Only the block of interest is moved.
2055  *
2056  * Returns %true if pages could be moved, %false otherwise.
2057  */
move_freepages_block_isolate(struct zone * zone,struct page * page,int migratetype)2058 bool move_freepages_block_isolate(struct zone *zone, struct page *page,
2059 				  int migratetype)
2060 {
2061 	unsigned long start_pfn, pfn;
2062 
2063 	if (!prep_move_freepages_block(zone, page, &start_pfn, NULL, NULL))
2064 		return false;
2065 
2066 	/* No splits needed if buddies can't span multiple blocks */
2067 	if (pageblock_order == MAX_PAGE_ORDER)
2068 		goto move;
2069 
2070 	/* We're a tail block in a larger buddy */
2071 	pfn = find_large_buddy(start_pfn);
2072 	if (pfn != start_pfn) {
2073 		struct page *buddy = pfn_to_page(pfn);
2074 		int order = buddy_order(buddy);
2075 
2076 		del_page_from_free_list(buddy, zone, order,
2077 					get_pfnblock_migratetype(buddy, pfn));
2078 		set_pageblock_migratetype(page, migratetype);
2079 		split_large_buddy(zone, buddy, pfn, order, FPI_NONE);
2080 		return true;
2081 	}
2082 
2083 	/* We're the starting block of a larger buddy */
2084 	if (PageBuddy(page) && buddy_order(page) > pageblock_order) {
2085 		int order = buddy_order(page);
2086 
2087 		del_page_from_free_list(page, zone, order,
2088 					get_pfnblock_migratetype(page, pfn));
2089 		set_pageblock_migratetype(page, migratetype);
2090 		split_large_buddy(zone, page, pfn, order, FPI_NONE);
2091 		return true;
2092 	}
2093 move:
2094 	__move_freepages_block(zone, start_pfn,
2095 			       get_pfnblock_migratetype(page, start_pfn),
2096 			       migratetype);
2097 	return true;
2098 }
2099 #endif /* CONFIG_MEMORY_ISOLATION */
2100 
change_pageblock_range(struct page * pageblock_page,int start_order,int migratetype)2101 static void change_pageblock_range(struct page *pageblock_page,
2102 					int start_order, int migratetype)
2103 {
2104 	int nr_pageblocks = 1 << (start_order - pageblock_order);
2105 
2106 	while (nr_pageblocks--) {
2107 		set_pageblock_migratetype(pageblock_page, migratetype);
2108 		pageblock_page += pageblock_nr_pages;
2109 	}
2110 }
2111 
boost_watermark(struct zone * zone)2112 static inline bool boost_watermark(struct zone *zone)
2113 {
2114 	unsigned long max_boost;
2115 
2116 	if (!watermark_boost_factor)
2117 		return false;
2118 	/*
2119 	 * Don't bother in zones that are unlikely to produce results.
2120 	 * On small machines, including kdump capture kernels running
2121 	 * in a small area, boosting the watermark can cause an out of
2122 	 * memory situation immediately.
2123 	 */
2124 	if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
2125 		return false;
2126 
2127 	max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2128 			watermark_boost_factor, 10000);
2129 
2130 	/*
2131 	 * high watermark may be uninitialised if fragmentation occurs
2132 	 * very early in boot so do not boost. We do not fall
2133 	 * through and boost by pageblock_nr_pages as failing
2134 	 * allocations that early means that reclaim is not going
2135 	 * to help and it may even be impossible to reclaim the
2136 	 * boosted watermark resulting in a hang.
2137 	 */
2138 	if (!max_boost)
2139 		return false;
2140 
2141 	max_boost = max(pageblock_nr_pages, max_boost);
2142 
2143 	zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2144 		max_boost);
2145 
2146 	return true;
2147 }
2148 
2149 /*
2150  * When we are falling back to another migratetype during allocation, should we
2151  * try to claim an entire block to satisfy further allocations, instead of
2152  * polluting multiple pageblocks?
2153  */
should_try_claim_block(unsigned int order,int start_mt)2154 static bool should_try_claim_block(unsigned int order, int start_mt)
2155 {
2156 	/*
2157 	 * Leaving this order check is intended, although there is
2158 	 * relaxed order check in next check. The reason is that
2159 	 * we can actually claim the whole pageblock if this condition met,
2160 	 * but, below check doesn't guarantee it and that is just heuristic
2161 	 * so could be changed anytime.
2162 	 */
2163 	if (order >= pageblock_order)
2164 		return true;
2165 
2166 	/*
2167 	 * Above a certain threshold, always try to claim, as it's likely there
2168 	 * will be more free pages in the pageblock.
2169 	 */
2170 	if (order >= pageblock_order / 2)
2171 		return true;
2172 
2173 	/*
2174 	 * Unmovable/reclaimable allocations would cause permanent
2175 	 * fragmentations if they fell back to allocating from a movable block
2176 	 * (polluting it), so we try to claim the whole block regardless of the
2177 	 * allocation size. Later movable allocations can always steal from this
2178 	 * block, which is less problematic.
2179 	 */
2180 	if (start_mt == MIGRATE_RECLAIMABLE || start_mt == MIGRATE_UNMOVABLE)
2181 		return true;
2182 
2183 	if (page_group_by_mobility_disabled)
2184 		return true;
2185 
2186 	/*
2187 	 * Movable pages won't cause permanent fragmentation, so when you alloc
2188 	 * small pages, we just need to temporarily steal unmovable or
2189 	 * reclaimable pages that are closest to the request size. After a
2190 	 * while, memory compaction may occur to form large contiguous pages,
2191 	 * and the next movable allocation may not need to steal.
2192 	 */
2193 	return false;
2194 }
2195 
2196 /*
2197  * Check whether there is a suitable fallback freepage with requested order.
2198  * If claimable is true, this function returns fallback_mt only if
2199  * we would do this whole-block claiming. This would help to reduce
2200  * fragmentation due to mixed migratetype pages in one pageblock.
2201  */
find_suitable_fallback(struct free_area * area,unsigned int order,int migratetype,bool claimable)2202 int find_suitable_fallback(struct free_area *area, unsigned int order,
2203 			   int migratetype, bool claimable)
2204 {
2205 	int i;
2206 
2207 	if (claimable && !should_try_claim_block(order, migratetype))
2208 		return -2;
2209 
2210 	if (area->nr_free == 0)
2211 		return -1;
2212 
2213 	for (i = 0; i < MIGRATE_FALLBACKS - 1 ; i++) {
2214 		int fallback_mt = fallbacks[migratetype][i];
2215 
2216 		if (!free_area_empty(area, fallback_mt))
2217 			return fallback_mt;
2218 	}
2219 
2220 	return -1;
2221 }
2222 
2223 /*
2224  * This function implements actual block claiming behaviour. If order is large
2225  * enough, we can claim the whole pageblock for the requested migratetype. If
2226  * not, we check the pageblock for constituent pages; if at least half of the
2227  * pages are free or compatible, we can still claim the whole block, so pages
2228  * freed in the future will be put on the correct free list.
2229  */
2230 static struct page *
try_to_claim_block(struct zone * zone,struct page * page,int current_order,int order,int start_type,int block_type,unsigned int alloc_flags)2231 try_to_claim_block(struct zone *zone, struct page *page,
2232 		   int current_order, int order, int start_type,
2233 		   int block_type, unsigned int alloc_flags)
2234 {
2235 	int free_pages, movable_pages, alike_pages;
2236 	unsigned long start_pfn;
2237 
2238 	/* Take ownership for orders >= pageblock_order */
2239 	if (current_order >= pageblock_order) {
2240 		unsigned int nr_added;
2241 
2242 		del_page_from_free_list(page, zone, current_order, block_type);
2243 		change_pageblock_range(page, current_order, start_type);
2244 		nr_added = expand(zone, page, order, current_order, start_type);
2245 		account_freepages(zone, nr_added, start_type);
2246 		return page;
2247 	}
2248 
2249 	/*
2250 	 * Boost watermarks to increase reclaim pressure to reduce the
2251 	 * likelihood of future fallbacks. Wake kswapd now as the node
2252 	 * may be balanced overall and kswapd will not wake naturally.
2253 	 */
2254 	if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
2255 		set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2256 
2257 	/* moving whole block can fail due to zone boundary conditions */
2258 	if (!prep_move_freepages_block(zone, page, &start_pfn, &free_pages,
2259 				       &movable_pages))
2260 		return NULL;
2261 
2262 	/*
2263 	 * Determine how many pages are compatible with our allocation.
2264 	 * For movable allocation, it's the number of movable pages which
2265 	 * we just obtained. For other types it's a bit more tricky.
2266 	 */
2267 	if (start_type == MIGRATE_MOVABLE) {
2268 		alike_pages = movable_pages;
2269 	} else {
2270 		/*
2271 		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2272 		 * to MOVABLE pageblock, consider all non-movable pages as
2273 		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2274 		 * vice versa, be conservative since we can't distinguish the
2275 		 * exact migratetype of non-movable pages.
2276 		 */
2277 		if (block_type == MIGRATE_MOVABLE)
2278 			alike_pages = pageblock_nr_pages
2279 						- (free_pages + movable_pages);
2280 		else
2281 			alike_pages = 0;
2282 	}
2283 	/*
2284 	 * If a sufficient number of pages in the block are either free or of
2285 	 * compatible migratability as our allocation, claim the whole block.
2286 	 */
2287 	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2288 			page_group_by_mobility_disabled) {
2289 		__move_freepages_block(zone, start_pfn, block_type, start_type);
2290 		return __rmqueue_smallest(zone, order, start_type);
2291 	}
2292 
2293 	return NULL;
2294 }
2295 
2296 
2297 /*
2298  * Try to allocate from some fallback migratetype by claiming the entire block,
2299  * i.e. converting it to the allocation's start migratetype.
2300  *
2301  * The use of signed ints for order and current_order is a deliberate
2302  * deviation from the rest of this file, to make the for loop
2303  * condition simpler.
2304  */
2305 static __always_inline struct page *
__rmqueue_claim(struct zone * zone,int order,int start_migratetype,unsigned int alloc_flags)2306 __rmqueue_claim(struct zone *zone, int order, int start_migratetype,
2307 						unsigned int alloc_flags)
2308 {
2309 	struct free_area *area;
2310 	int current_order;
2311 	int min_order = order;
2312 	struct page *page;
2313 	int fallback_mt;
2314 
2315 	/*
2316 	 * Do not steal pages from freelists belonging to other pageblocks
2317 	 * i.e. orders < pageblock_order. If there are no local zones free,
2318 	 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2319 	 */
2320 	if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT)
2321 		min_order = pageblock_order;
2322 
2323 	/*
2324 	 * Find the largest available free page in the other list. This roughly
2325 	 * approximates finding the pageblock with the most free pages, which
2326 	 * would be too costly to do exactly.
2327 	 */
2328 	for (current_order = MAX_PAGE_ORDER; current_order >= min_order;
2329 				--current_order) {
2330 		area = &(zone->free_area[current_order]);
2331 		fallback_mt = find_suitable_fallback(area, current_order,
2332 						     start_migratetype, true);
2333 
2334 		/* No block in that order */
2335 		if (fallback_mt == -1)
2336 			continue;
2337 
2338 		/* Advanced into orders too low to claim, abort */
2339 		if (fallback_mt == -2)
2340 			break;
2341 
2342 		page = get_page_from_free_area(area, fallback_mt);
2343 		page = try_to_claim_block(zone, page, current_order, order,
2344 					  start_migratetype, fallback_mt,
2345 					  alloc_flags);
2346 		if (page) {
2347 			trace_mm_page_alloc_extfrag(page, order, current_order,
2348 						    start_migratetype, fallback_mt);
2349 			return page;
2350 		}
2351 	}
2352 
2353 	return NULL;
2354 }
2355 
2356 /*
2357  * Try to steal a single page from some fallback migratetype. Leave the rest of
2358  * the block as its current migratetype, potentially causing fragmentation.
2359  */
2360 static __always_inline struct page *
__rmqueue_steal(struct zone * zone,int order,int start_migratetype)2361 __rmqueue_steal(struct zone *zone, int order, int start_migratetype)
2362 {
2363 	struct free_area *area;
2364 	int current_order;
2365 	struct page *page;
2366 	int fallback_mt;
2367 
2368 	for (current_order = order; current_order < NR_PAGE_ORDERS; current_order++) {
2369 		area = &(zone->free_area[current_order]);
2370 		fallback_mt = find_suitable_fallback(area, current_order,
2371 						     start_migratetype, false);
2372 		if (fallback_mt == -1)
2373 			continue;
2374 
2375 		page = get_page_from_free_area(area, fallback_mt);
2376 		page_del_and_expand(zone, page, order, current_order, fallback_mt);
2377 		trace_mm_page_alloc_extfrag(page, order, current_order,
2378 					    start_migratetype, fallback_mt);
2379 		return page;
2380 	}
2381 
2382 	return NULL;
2383 }
2384 
2385 enum rmqueue_mode {
2386 	RMQUEUE_NORMAL,
2387 	RMQUEUE_CMA,
2388 	RMQUEUE_CLAIM,
2389 	RMQUEUE_STEAL,
2390 };
2391 
2392 /*
2393  * Do the hard work of removing an element from the buddy allocator.
2394  * Call me with the zone->lock already held.
2395  */
2396 static __always_inline struct page *
__rmqueue(struct zone * zone,unsigned int order,int migratetype,unsigned int alloc_flags,enum rmqueue_mode * mode)2397 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
2398 	  unsigned int alloc_flags, enum rmqueue_mode *mode)
2399 {
2400 	struct page *page = NULL;
2401 
2402 	trace_android_vh_rmqueue_smallest_bypass(&page, zone, order, migratetype);
2403 	if (page)
2404 		return page;
2405 
2406 	if (IS_ENABLED(CONFIG_CMA)) {
2407 		/*
2408 		 * Balance movable allocations between regular and CMA areas by
2409 		 * allocating from CMA when over half of the zone's free memory
2410 		 * is in the CMA area.
2411 		 */
2412 		if (!cma_redirect_restricted() && alloc_flags & ALLOC_CMA &&
2413 		    zone_page_state(zone, NR_FREE_CMA_PAGES) >
2414 		    zone_page_state(zone, NR_FREE_PAGES) / 2) {
2415 			page = __rmqueue_cma_fallback(zone, order);
2416 			if (page)
2417 				return page;
2418 		}
2419 	}
2420 
2421 	/*
2422 	 * First try the freelists of the requested migratetype, then try
2423 	 * fallbacks modes with increasing levels of fragmentation risk.
2424 	 *
2425 	 * The fallback logic is expensive and rmqueue_bulk() calls in
2426 	 * a loop with the zone->lock held, meaning the freelists are
2427 	 * not subject to any outside changes. Remember in *mode where
2428 	 * we found pay dirt, to save us the search on the next call.
2429 	 */
2430 	switch (*mode) {
2431 	case RMQUEUE_NORMAL:
2432 		page = __rmqueue_smallest(zone, order, migratetype);
2433 		if (page)
2434 			return page;
2435 		fallthrough;
2436 	case RMQUEUE_CMA:
2437 		if (!cma_redirect_restricted() && alloc_flags & ALLOC_CMA) {
2438 			page = __rmqueue_cma_fallback(zone, order);
2439 			if (page) {
2440 				*mode = RMQUEUE_CMA;
2441 				return page;
2442 			}
2443 		}
2444 		fallthrough;
2445 	case RMQUEUE_CLAIM:
2446 		page = __rmqueue_claim(zone, order, migratetype, alloc_flags);
2447 		if (page) {
2448 			/* Replenished preferred freelist, back to normal mode. */
2449 			*mode = RMQUEUE_NORMAL;
2450 			return page;
2451 		}
2452 		fallthrough;
2453 	case RMQUEUE_STEAL:
2454 		if (!(alloc_flags & ALLOC_NOFRAGMENT)) {
2455 			page = __rmqueue_steal(zone, order, migratetype);
2456 			if (page) {
2457 				*mode = RMQUEUE_STEAL;
2458 				return page;
2459 			}
2460 		}
2461 	}
2462 
2463 	return NULL;
2464 }
2465 
2466 /*
2467  * Obtain a specified number of elements from the buddy allocator, all under
2468  * a single hold of the lock, for efficiency.  Add them to the supplied list.
2469  * Returns the number of new pages which were placed at *list.
2470  */
rmqueue_bulk(struct zone * zone,unsigned int order,unsigned long count,struct list_head * list,int migratetype,unsigned int alloc_flags)2471 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2472 			unsigned long count, struct list_head *list,
2473 			int migratetype, unsigned int alloc_flags)
2474 {
2475 	enum rmqueue_mode rmqm = RMQUEUE_NORMAL;
2476 	unsigned long flags;
2477 	int i;
2478 
2479 	spin_lock_irqsave(&zone->lock, flags);
2480 	for (i = 0; i < count; ++i) {
2481 		struct page *page;
2482 
2483 		/*
2484 		 * If CMA redirect is restricted, use CMA region only for
2485 		 * MIGRATE_CMA pages. cma_rediret_restricted() is false
2486 		 * if CONFIG_CMA is not set.
2487 		 */
2488 		if (cma_redirect_restricted() && is_migrate_cma(migratetype))
2489 			page = __rmqueue_cma_fallback(zone, order);
2490 		else
2491 			page = __rmqueue(zone, order, migratetype, alloc_flags,
2492 					 &rmqm);
2493 
2494 		if (unlikely(page == NULL))
2495 			break;
2496 
2497 		/*
2498 		 * Split buddy pages returned by expand() are received here in
2499 		 * physical page order. The page is added to the tail of
2500 		 * caller's list. From the callers perspective, the linked list
2501 		 * is ordered by page number under some conditions. This is
2502 		 * useful for IO devices that can forward direction from the
2503 		 * head, thus also in the physical page order. This is useful
2504 		 * for IO devices that can merge IO requests if the physical
2505 		 * pages are ordered properly.
2506 		 */
2507 		list_add_tail(&page->pcp_list, list);
2508 	}
2509 	spin_unlock_irqrestore(&zone->lock, flags);
2510 
2511 	return i;
2512 }
2513 
2514 /*
2515  * Called from the vmstat counter updater to decay the PCP high.
2516  * Return whether there are addition works to do.
2517  */
decay_pcp_high(struct zone * zone,struct per_cpu_pages * pcp)2518 int decay_pcp_high(struct zone *zone, struct per_cpu_pages *pcp)
2519 {
2520 	int high_min, to_drain, batch;
2521 	int todo = 0;
2522 
2523 	high_min = READ_ONCE(pcp->high_min);
2524 	batch = READ_ONCE(pcp->batch);
2525 	/*
2526 	 * Decrease pcp->high periodically to try to free possible
2527 	 * idle PCP pages.  And, avoid to free too many pages to
2528 	 * control latency.  This caps pcp->high decrement too.
2529 	 */
2530 	if (pcp->high > high_min) {
2531 		pcp->high = max3(pcp->count - (batch << CONFIG_PCP_BATCH_SCALE_MAX),
2532 				 pcp->high - (pcp->high >> 3), high_min);
2533 		if (pcp->high > high_min)
2534 			todo++;
2535 	}
2536 
2537 	to_drain = pcp->count - pcp->high;
2538 	if (to_drain > 0) {
2539 		spin_lock(&pcp->lock);
2540 		free_pcppages_bulk(zone, to_drain, pcp, 0);
2541 		spin_unlock(&pcp->lock);
2542 		todo++;
2543 	}
2544 
2545 	return todo;
2546 }
2547 
2548 #ifdef CONFIG_NUMA
2549 /*
2550  * Called from the vmstat counter updater to drain pagesets of this
2551  * currently executing processor on remote nodes after they have
2552  * expired.
2553  */
drain_zone_pages(struct zone * zone,struct per_cpu_pages * pcp)2554 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2555 {
2556 	int to_drain, batch;
2557 
2558 	batch = READ_ONCE(pcp->batch);
2559 	to_drain = min(pcp->count, batch);
2560 	if (to_drain > 0) {
2561 		spin_lock(&pcp->lock);
2562 		free_pcppages_bulk(zone, to_drain, pcp, 0);
2563 		spin_unlock(&pcp->lock);
2564 	}
2565 }
2566 #endif
2567 
2568 /*
2569  * Drain pcplists of the indicated processor and zone.
2570  */
drain_pages_zone(unsigned int cpu,struct zone * zone)2571 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2572 {
2573 	struct per_cpu_pages *pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2574 	int count;
2575 
2576 	do {
2577 		spin_lock(&pcp->lock);
2578 		count = pcp->count;
2579 		if (count) {
2580 			int to_drain = min(count,
2581 				pcp->batch << CONFIG_PCP_BATCH_SCALE_MAX);
2582 
2583 			free_pcppages_bulk(zone, to_drain, pcp, 0);
2584 			count -= to_drain;
2585 		}
2586 		spin_unlock(&pcp->lock);
2587 	} while (count);
2588 }
2589 
2590 /*
2591  * Drain pcplists of all zones on the indicated processor.
2592  */
drain_pages(unsigned int cpu)2593 static void drain_pages(unsigned int cpu)
2594 {
2595 	struct zone *zone;
2596 
2597 	for_each_populated_zone(zone) {
2598 		drain_pages_zone(cpu, zone);
2599 	}
2600 }
2601 
2602 /*
2603  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2604  */
drain_local_pages(struct zone * zone)2605 void drain_local_pages(struct zone *zone)
2606 {
2607 	int cpu = smp_processor_id();
2608 
2609 	if (zone)
2610 		drain_pages_zone(cpu, zone);
2611 	else
2612 		drain_pages(cpu);
2613 }
2614 
2615 /*
2616  * The implementation of drain_all_pages(), exposing an extra parameter to
2617  * drain on all cpus.
2618  *
2619  * drain_all_pages() is optimized to only execute on cpus where pcplists are
2620  * not empty. The check for non-emptiness can however race with a free to
2621  * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
2622  * that need the guarantee that every CPU has drained can disable the
2623  * optimizing racy check.
2624  */
__drain_all_pages(struct zone * zone,bool force_all_cpus)2625 static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
2626 {
2627 	int cpu;
2628 
2629 	/*
2630 	 * Allocate in the BSS so we won't require allocation in
2631 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2632 	 */
2633 	static cpumask_t cpus_with_pcps;
2634 
2635 	/*
2636 	 * Do not drain if one is already in progress unless it's specific to
2637 	 * a zone. Such callers are primarily CMA and memory hotplug and need
2638 	 * the drain to be complete when the call returns.
2639 	 */
2640 	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2641 		if (!zone)
2642 			return;
2643 		mutex_lock(&pcpu_drain_mutex);
2644 	}
2645 
2646 	/*
2647 	 * We don't care about racing with CPU hotplug event
2648 	 * as offline notification will cause the notified
2649 	 * cpu to drain that CPU pcps and on_each_cpu_mask
2650 	 * disables preemption as part of its processing
2651 	 */
2652 	for_each_online_cpu(cpu) {
2653 		struct per_cpu_pages *pcp;
2654 		struct zone *z;
2655 		bool has_pcps = false;
2656 
2657 		if (force_all_cpus) {
2658 			/*
2659 			 * The pcp.count check is racy, some callers need a
2660 			 * guarantee that no cpu is missed.
2661 			 */
2662 			has_pcps = true;
2663 		} else if (zone) {
2664 			pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2665 			if (pcp->count)
2666 				has_pcps = true;
2667 		} else {
2668 			for_each_populated_zone(z) {
2669 				pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
2670 				if (pcp->count) {
2671 					has_pcps = true;
2672 					break;
2673 				}
2674 			}
2675 		}
2676 
2677 		if (has_pcps)
2678 			cpumask_set_cpu(cpu, &cpus_with_pcps);
2679 		else
2680 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
2681 	}
2682 
2683 	for_each_cpu(cpu, &cpus_with_pcps) {
2684 		if (zone)
2685 			drain_pages_zone(cpu, zone);
2686 		else
2687 			drain_pages(cpu);
2688 	}
2689 
2690 	mutex_unlock(&pcpu_drain_mutex);
2691 }
2692 
2693 /*
2694  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2695  *
2696  * When zone parameter is non-NULL, spill just the single zone's pages.
2697  */
drain_all_pages(struct zone * zone)2698 void drain_all_pages(struct zone *zone)
2699 {
2700 	__drain_all_pages(zone, false);
2701 }
2702 
nr_pcp_free(struct per_cpu_pages * pcp,int batch,int high,bool free_high)2703 static int nr_pcp_free(struct per_cpu_pages *pcp, int batch, int high, bool free_high)
2704 {
2705 	int min_nr_free, max_nr_free;
2706 
2707 	/* Free as much as possible if batch freeing high-order pages. */
2708 	if (unlikely(free_high))
2709 		return min(pcp->count, batch << CONFIG_PCP_BATCH_SCALE_MAX);
2710 
2711 	/* Check for PCP disabled or boot pageset */
2712 	if (unlikely(high < batch))
2713 		return 1;
2714 
2715 	/* Leave at least pcp->batch pages on the list */
2716 	min_nr_free = batch;
2717 	max_nr_free = high - batch;
2718 
2719 	/*
2720 	 * Increase the batch number to the number of the consecutive
2721 	 * freed pages to reduce zone lock contention.
2722 	 */
2723 	batch = clamp_t(int, pcp->free_count, min_nr_free, max_nr_free);
2724 
2725 	return batch;
2726 }
2727 
nr_pcp_high(struct per_cpu_pages * pcp,struct zone * zone,int batch,bool free_high)2728 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone,
2729 		       int batch, bool free_high)
2730 {
2731 	int high, high_min, high_max;
2732 
2733 	high_min = READ_ONCE(pcp->high_min);
2734 	high_max = READ_ONCE(pcp->high_max);
2735 	high = pcp->high = clamp(pcp->high, high_min, high_max);
2736 
2737 	if (unlikely(!high))
2738 		return 0;
2739 
2740 	if (unlikely(free_high)) {
2741 		pcp->high = max(high - (batch << CONFIG_PCP_BATCH_SCALE_MAX),
2742 				high_min);
2743 		return 0;
2744 	}
2745 
2746 	/*
2747 	 * If reclaim is active, limit the number of pages that can be
2748 	 * stored on pcp lists
2749 	 */
2750 	if (test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags)) {
2751 		int free_count = max_t(int, pcp->free_count, batch);
2752 
2753 		pcp->high = max(high - free_count, high_min);
2754 		return min(batch << 2, pcp->high);
2755 	}
2756 
2757 	if (high_min == high_max)
2758 		return high;
2759 
2760 	if (test_bit(ZONE_BELOW_HIGH, &zone->flags)) {
2761 		int free_count = max_t(int, pcp->free_count, batch);
2762 
2763 		pcp->high = max(high - free_count, high_min);
2764 		high = max(pcp->count, high_min);
2765 	} else if (pcp->count >= high) {
2766 		int need_high = pcp->free_count + batch;
2767 
2768 		/* pcp->high should be large enough to hold batch freed pages */
2769 		if (pcp->high < need_high)
2770 			pcp->high = clamp(need_high, high_min, high_max);
2771 	}
2772 
2773 	return high;
2774 }
2775 
free_unref_page_commit(struct zone * zone,struct per_cpu_pages * pcp,struct page * page,int migratetype,unsigned int order)2776 static void free_unref_page_commit(struct zone *zone, struct per_cpu_pages *pcp,
2777 				   struct page *page, int migratetype,
2778 				   unsigned int order)
2779 {
2780 	int high, batch;
2781 	int pindex;
2782 	bool free_high = false;
2783 
2784 	/*
2785 	 * On freeing, reduce the number of pages that are batch allocated.
2786 	 * See nr_pcp_alloc() where alloc_factor is increased for subsequent
2787 	 * allocations.
2788 	 */
2789 	pcp->alloc_factor >>= 1;
2790 	__count_vm_events(PGFREE, 1 << order);
2791 	pindex = order_to_pindex(migratetype, order);
2792 	list_add(&page->pcp_list, &pcp->lists[pindex]);
2793 	pcp->count += 1 << order;
2794 
2795 	batch = READ_ONCE(pcp->batch);
2796 	/*
2797 	 * As high-order pages other than THP's stored on PCP can contribute
2798 	 * to fragmentation, limit the number stored when PCP is heavily
2799 	 * freeing without allocation. The remainder after bulk freeing
2800 	 * stops will be drained from vmstat refresh context.
2801 	 */
2802 	if (order && order <= PAGE_ALLOC_COSTLY_ORDER) {
2803 		free_high = (pcp->free_count >= batch &&
2804 			     (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) &&
2805 			     (!(pcp->flags & PCPF_FREE_HIGH_BATCH) ||
2806 			      pcp->count >= READ_ONCE(batch)));
2807 		pcp->flags |= PCPF_PREV_FREE_HIGH_ORDER;
2808 	} else if (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) {
2809 		pcp->flags &= ~PCPF_PREV_FREE_HIGH_ORDER;
2810 	}
2811 	if (pcp->free_count < (batch << CONFIG_PCP_BATCH_SCALE_MAX))
2812 		pcp->free_count += (1 << order);
2813 	high = nr_pcp_high(pcp, zone, batch, free_high);
2814 	if (pcp->count >= high) {
2815 		free_pcppages_bulk(zone, nr_pcp_free(pcp, batch, high, free_high),
2816 				   pcp, pindex);
2817 		if (test_bit(ZONE_BELOW_HIGH, &zone->flags) &&
2818 		    zone_watermark_ok(zone, 0, high_wmark_pages(zone),
2819 				      ZONE_MOVABLE, 0))
2820 			clear_bit(ZONE_BELOW_HIGH, &zone->flags);
2821 	}
2822 }
2823 
2824 /*
2825  * Free a pcp page
2826  */
free_unref_page(struct page * page,unsigned int order)2827 void free_unref_page(struct page *page, unsigned int order)
2828 {
2829 	unsigned long __maybe_unused UP_flags;
2830 	struct per_cpu_pages *pcp;
2831 	struct zone *zone;
2832 	unsigned long pfn = page_to_pfn(page);
2833 	int migratetype;
2834 	bool skip_free_unref_page = false;
2835 	bool skip_free_page = false;
2836 
2837 	if (!pcp_allowed_order(order)) {
2838 		__free_pages_ok(page, order, FPI_NONE);
2839 		return;
2840 	}
2841 
2842 	if (!free_pages_prepare(page, order))
2843 		return;
2844 
2845 	trace_android_vh_free_page_bypass(page, order, &skip_free_page);
2846 	if (skip_free_page)
2847 		return;
2848 	/*
2849 	 * We only track unmovable, reclaimable, movable and if restrict cma
2850 	 * fallback flag is set, CMA on pcp lists.
2851 	 * Place ISOLATE pages on the isolated list because they are being
2852 	 * offlined but treat HIGHATOMIC and CMA as movable pages so we can
2853 	 * get those areas back if necessary. Otherwise, we may have to free
2854 	 * excessively into the page allocator
2855 	 */
2856 	migratetype = get_pfnblock_migratetype(page, pfn);
2857 	trace_android_vh_free_unref_page_bypass(page, order, migratetype, &skip_free_unref_page);
2858 	if (skip_free_unref_page)
2859 		return;
2860 	if (unlikely(migratetype > MIGRATE_RECLAIMABLE)) {
2861 		if (unlikely(is_migrate_isolate(migratetype))) {
2862 			free_one_page(page_zone(page), page, pfn, order, FPI_NONE);
2863 			return;
2864 		}
2865 #ifdef CONFIG_CMA
2866 		if (!cma_has_pcplist() || migratetype != MIGRATE_CMA)
2867 #endif
2868 			migratetype = MIGRATE_MOVABLE;
2869 	}
2870 
2871 	zone = page_zone(page);
2872 	pcp_trylock_prepare(UP_flags);
2873 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2874 	if (pcp) {
2875 		free_unref_page_commit(zone, pcp, page, migratetype, order);
2876 		pcp_spin_unlock(pcp);
2877 	} else {
2878 		free_one_page(zone, page, pfn, order, FPI_NONE);
2879 	}
2880 	pcp_trylock_finish(UP_flags);
2881 }
2882 
2883 /*
2884  * Free a batch of folios
2885  */
free_unref_folios(struct folio_batch * folios)2886 void free_unref_folios(struct folio_batch *folios)
2887 {
2888 	unsigned long __maybe_unused UP_flags;
2889 	struct per_cpu_pages *pcp = NULL;
2890 	struct zone *locked_zone = NULL;
2891 	int i, j;
2892 	bool skip_free = false;
2893 
2894 	/* Prepare folios for freeing */
2895 	for (i = 0, j = 0; i < folios->nr; i++) {
2896 		struct folio *folio = folios->folios[i];
2897 		unsigned long pfn = folio_pfn(folio);
2898 		unsigned int order = folio_order(folio);
2899 		bool skip_free_folio = false;
2900 
2901 		if (!free_pages_prepare(&folio->page, order))
2902 			continue;
2903 
2904 		trace_android_vh_free_folio_bypass(folio, order,
2905 				&skip_free_folio);
2906 		if (skip_free_folio)
2907 			continue;
2908 		/*
2909 		 * Free orders not handled on the PCP directly to the
2910 		 * allocator.
2911 		 */
2912 		if (!pcp_allowed_order(order)) {
2913 			free_one_page(folio_zone(folio), &folio->page,
2914 				      pfn, order, FPI_NONE);
2915 			continue;
2916 		}
2917 		folio->private = (void *)(unsigned long)order;
2918 		if (j != i)
2919 			folios->folios[j] = folio;
2920 		j++;
2921 	}
2922 	folios->nr = j;
2923 
2924 	trace_android_vh_free_unref_folios_to_pcp_bypass(folios, &skip_free);
2925 	if (skip_free)
2926 		goto out;
2927 
2928 	for (i = 0; i < folios->nr; i++) {
2929 		struct folio *folio = folios->folios[i];
2930 		struct zone *zone = folio_zone(folio);
2931 		unsigned long pfn = folio_pfn(folio);
2932 		unsigned int order = (unsigned long)folio->private;
2933 		int migratetype;
2934 
2935 		folio->private = NULL;
2936 		migratetype = get_pfnblock_migratetype(&folio->page, pfn);
2937 
2938 		/* Different zone requires a different pcp lock */
2939 		if (zone != locked_zone ||
2940 		    is_migrate_isolate(migratetype)) {
2941 			if (pcp) {
2942 				pcp_spin_unlock(pcp);
2943 				pcp_trylock_finish(UP_flags);
2944 				locked_zone = NULL;
2945 				pcp = NULL;
2946 			}
2947 
2948 			/*
2949 			 * Free isolated pages directly to the
2950 			 * allocator, see comment in free_unref_page.
2951 			 */
2952 			if (is_migrate_isolate(migratetype)) {
2953 				free_one_page(zone, &folio->page, pfn,
2954 					      order, FPI_NONE);
2955 				continue;
2956 			}
2957 
2958 			/*
2959 			 * trylock is necessary as folios may be getting freed
2960 			 * from IRQ or SoftIRQ context after an IO completion.
2961 			 */
2962 			pcp_trylock_prepare(UP_flags);
2963 			pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2964 			if (unlikely(!pcp)) {
2965 				pcp_trylock_finish(UP_flags);
2966 				free_one_page(zone, &folio->page, pfn,
2967 					      order, FPI_NONE);
2968 				continue;
2969 			}
2970 			locked_zone = zone;
2971 		}
2972 
2973 		/*
2974 		 * Non-isolated types over MIGRATE_PCPTYPES get added
2975 		 * to the MIGRATE_MOVABLE pcp list.
2976 		 */
2977 		if (unlikely(migratetype > MIGRATE_RECLAIMABLE)) {
2978 #ifdef CONFIG_CMA
2979 			if (!cma_has_pcplist() || migratetype != MIGRATE_CMA)
2980 #endif
2981 				migratetype = MIGRATE_MOVABLE;
2982 		}
2983 
2984 		trace_mm_page_free_batched(&folio->page);
2985 		free_unref_page_commit(zone, pcp, &folio->page, migratetype,
2986 				order);
2987 	}
2988 
2989 	if (pcp) {
2990 		pcp_spin_unlock(pcp);
2991 		pcp_trylock_finish(UP_flags);
2992 	}
2993 out:
2994 	folio_batch_reinit(folios);
2995 }
2996 
2997 /*
2998  * split_page takes a non-compound higher-order page, and splits it into
2999  * n (1<<order) sub-pages: page[0..n]
3000  * Each sub-page must be freed individually.
3001  *
3002  * Note: this is probably too low level an operation for use in drivers.
3003  * Please consult with lkml before using this in your driver.
3004  */
split_page(struct page * page,unsigned int order)3005 void split_page(struct page *page, unsigned int order)
3006 {
3007 	int i;
3008 
3009 	VM_BUG_ON_PAGE(PageCompound(page), page);
3010 	VM_BUG_ON_PAGE(!page_count(page), page);
3011 
3012 	for (i = 1; i < (1 << order); i++)
3013 		set_page_refcounted(page + i);
3014 	split_page_owner(page, order, 0);
3015 	pgalloc_tag_split(page_folio(page), order, 0);
3016 	split_page_memcg(page, order, 0);
3017 }
3018 EXPORT_SYMBOL_GPL(split_page);
3019 
__isolate_free_page(struct page * page,unsigned int order)3020 int __isolate_free_page(struct page *page, unsigned int order)
3021 {
3022 	struct zone *zone = page_zone(page);
3023 	int mt = get_pageblock_migratetype(page);
3024 
3025 	if (!is_migrate_isolate(mt)) {
3026 		unsigned long watermark;
3027 		/*
3028 		 * Obey watermarks as if the page was being allocated. We can
3029 		 * emulate a high-order watermark check with a raised order-0
3030 		 * watermark, because we already know our high-order page
3031 		 * exists.
3032 		 */
3033 		watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
3034 		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3035 			return 0;
3036 	}
3037 
3038 	del_page_from_free_list(page, zone, order, mt);
3039 
3040 	/*
3041 	 * Set the pageblock if the isolated page is at least half of a
3042 	 * pageblock
3043 	 */
3044 	if (order >= pageblock_order - 1) {
3045 		struct page *endpage = page + (1 << order) - 1;
3046 		for (; page < endpage; page += pageblock_nr_pages) {
3047 			int mt = get_pageblock_migratetype(page);
3048 			/*
3049 			 * Only change normal pageblocks (i.e., they can merge
3050 			 * with others)
3051 			 */
3052 			if (migratetype_is_mergeable(mt))
3053 				move_freepages_block(zone, page, mt,
3054 						     MIGRATE_MOVABLE);
3055 		}
3056 	}
3057 
3058 	return 1UL << order;
3059 }
3060 
3061 /**
3062  * __putback_isolated_page - Return a now-isolated page back where we got it
3063  * @page: Page that was isolated
3064  * @order: Order of the isolated page
3065  * @mt: The page's pageblock's migratetype
3066  *
3067  * This function is meant to return a page pulled from the free lists via
3068  * __isolate_free_page back to the free lists they were pulled from.
3069  */
__putback_isolated_page(struct page * page,unsigned int order,int mt)3070 void __putback_isolated_page(struct page *page, unsigned int order, int mt)
3071 {
3072 	struct zone *zone = page_zone(page);
3073 
3074 	/* zone lock should be held when this function is called */
3075 	lockdep_assert_held(&zone->lock);
3076 
3077 	/* Return isolated page to tail of freelist. */
3078 	__free_one_page(page, page_to_pfn(page), zone, order, mt,
3079 			FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
3080 }
3081 
3082 /*
3083  * Update NUMA hit/miss statistics
3084  */
zone_statistics(struct zone * preferred_zone,struct zone * z,long nr_account)3085 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
3086 				   long nr_account)
3087 {
3088 #ifdef CONFIG_NUMA
3089 	enum numa_stat_item local_stat = NUMA_LOCAL;
3090 
3091 	/* skip numa counters update if numa stats is disabled */
3092 	if (!static_branch_likely(&vm_numa_stat_key))
3093 		return;
3094 
3095 	if (zone_to_nid(z) != numa_node_id())
3096 		local_stat = NUMA_OTHER;
3097 
3098 	if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3099 		__count_numa_events(z, NUMA_HIT, nr_account);
3100 	else {
3101 		__count_numa_events(z, NUMA_MISS, nr_account);
3102 		__count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
3103 	}
3104 	__count_numa_events(z, local_stat, nr_account);
3105 #endif
3106 }
3107 
3108 static __always_inline
rmqueue_buddy(struct zone * preferred_zone,struct zone * zone,unsigned int order,unsigned int alloc_flags,int migratetype)3109 struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone,
3110 			   unsigned int order, unsigned int alloc_flags,
3111 			   int migratetype)
3112 {
3113 	struct page *page;
3114 	unsigned long flags;
3115 
3116 	do {
3117 		page = NULL;
3118 		spin_lock_irqsave(&zone->lock, flags);
3119 		if (alloc_flags & ALLOC_HIGHATOMIC)
3120 			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3121 		if (!page) {
3122 			enum rmqueue_mode rmqm = RMQUEUE_NORMAL;
3123 			if (cma_redirect_restricted() &&
3124 			    alloc_flags & ALLOC_CMA)
3125 				page = __rmqueue_cma_fallback(zone, order);
3126 
3127 			if (!page)
3128 				page = __rmqueue(zone, order, migratetype,
3129 						 alloc_flags, &rmqm);
3130 			/*
3131 			 * If the allocation fails, allow OOM handling and
3132 			 * order-0 (atomic) allocs access to HIGHATOMIC
3133 			 * reserves as failing now is worse than failing a
3134 			 * high-order atomic allocation in the future.
3135 			 */
3136 			if (!page && (alloc_flags & (ALLOC_OOM|ALLOC_NON_BLOCK)))
3137 				page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3138 
3139 			if (!page) {
3140 				spin_unlock_irqrestore(&zone->lock, flags);
3141 				return NULL;
3142 			}
3143 		}
3144 		spin_unlock_irqrestore(&zone->lock, flags);
3145 	} while (check_new_pages(page, order));
3146 
3147 	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3148 	zone_statistics(preferred_zone, zone, 1);
3149 
3150 	return page;
3151 }
3152 
nr_pcp_alloc(struct per_cpu_pages * pcp,struct zone * zone,int order)3153 static int nr_pcp_alloc(struct per_cpu_pages *pcp, struct zone *zone, int order)
3154 {
3155 	int high, base_batch, batch, max_nr_alloc;
3156 	int high_max, high_min;
3157 
3158 	base_batch = READ_ONCE(pcp->batch);
3159 	high_min = READ_ONCE(pcp->high_min);
3160 	high_max = READ_ONCE(pcp->high_max);
3161 	high = pcp->high = clamp(pcp->high, high_min, high_max);
3162 
3163 	/* Check for PCP disabled or boot pageset */
3164 	if (unlikely(high < base_batch))
3165 		return 1;
3166 
3167 	if (order)
3168 		batch = base_batch;
3169 	else
3170 		batch = (base_batch << pcp->alloc_factor);
3171 
3172 	/*
3173 	 * If we had larger pcp->high, we could avoid to allocate from
3174 	 * zone.
3175 	 */
3176 	if (high_min != high_max && !test_bit(ZONE_BELOW_HIGH, &zone->flags))
3177 		high = pcp->high = min(high + batch, high_max);
3178 
3179 	if (!order) {
3180 		max_nr_alloc = max(high - pcp->count - base_batch, base_batch);
3181 		/*
3182 		 * Double the number of pages allocated each time there is
3183 		 * subsequent allocation of order-0 pages without any freeing.
3184 		 */
3185 		if (batch <= max_nr_alloc &&
3186 		    pcp->alloc_factor < CONFIG_PCP_BATCH_SCALE_MAX)
3187 			pcp->alloc_factor++;
3188 		batch = min(batch, max_nr_alloc);
3189 	}
3190 
3191 	/*
3192 	 * Scale batch relative to order if batch implies free pages
3193 	 * can be stored on the PCP. Batch can be 1 for small zones or
3194 	 * for boot pagesets which should never store free pages as
3195 	 * the pages may belong to arbitrary zones.
3196 	 */
3197 	if (batch > 1)
3198 		batch = max(batch >> order, 2);
3199 
3200 	return batch;
3201 }
3202 
3203 /* Remove page from the per-cpu list, caller must protect the list */
3204 static inline
___rmqueue_pcplist(struct zone * zone,unsigned int order,int migratetype,unsigned int alloc_flags,struct per_cpu_pages * pcp,struct list_head * list)3205 struct page *___rmqueue_pcplist(struct zone *zone, unsigned int order,
3206 			int migratetype,
3207 			unsigned int alloc_flags,
3208 			struct per_cpu_pages *pcp,
3209 			struct list_head *list)
3210 {
3211 	struct page *page;
3212 
3213 	do {
3214 		if (list_empty(list)) {
3215 			int batch = nr_pcp_alloc(pcp, zone, order);
3216 			int alloced;
3217 
3218 			trace_android_vh_rmqueue_bulk_bypass(order, pcp, migratetype, list);
3219 			if (!list_empty(list))
3220 				goto get_list;
3221 
3222 			trace_android_vh_rmqueue_pcplist_override_batch(&batch);
3223 
3224 			alloced = rmqueue_bulk(zone, order,
3225 					batch, list,
3226 					migratetype, alloc_flags);
3227 
3228 			pcp->count += alloced << order;
3229 			if (unlikely(list_empty(list)))
3230 				return NULL;
3231 		}
3232 
3233 get_list:
3234 		page = list_first_entry(list, struct page, pcp_list);
3235 		list_del(&page->pcp_list);
3236 		pcp->count -= 1 << order;
3237 	} while (check_new_pages(page, order));
3238 
3239 	return page;
3240 }
3241 
3242 static inline
__rmqueue_pcplist(struct zone * zone,unsigned int order,int migratetype,unsigned int alloc_flags,struct per_cpu_pages * pcp,struct list_head * list)3243 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
3244 			int migratetype,
3245 			unsigned int alloc_flags,
3246 			struct per_cpu_pages *pcp,
3247 			struct list_head *list)
3248 {
3249 
3250 	if (cma_redirect_restricted() && alloc_flags & ALLOC_CMA) {
3251 		struct page *page;
3252 		int cma_migratetype;
3253 
3254 		/* Use CMA pcp list */
3255 		cma_migratetype = get_cma_migrate_type();
3256 		list = &pcp->lists[order_to_pindex(cma_migratetype, order)];
3257 		page = ___rmqueue_pcplist(zone, order, cma_migratetype,
3258 					  alloc_flags, pcp, list);
3259 		if (page)
3260 			return page;
3261 	}
3262 
3263 	return ___rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp,
3264 				  list);
3265 }
3266 
3267 /* Lock and remove page from the per-cpu list */
rmqueue_pcplist(struct zone * preferred_zone,struct zone * zone,unsigned int order,int migratetype,unsigned int alloc_flags)3268 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3269 			struct zone *zone, unsigned int order,
3270 			int migratetype, unsigned int alloc_flags)
3271 {
3272 	struct per_cpu_pages *pcp;
3273 	struct list_head *list;
3274 	struct page *page;
3275 	unsigned long __maybe_unused UP_flags;
3276 
3277 	/* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
3278 	pcp_trylock_prepare(UP_flags);
3279 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
3280 	if (!pcp) {
3281 		pcp_trylock_finish(UP_flags);
3282 		return NULL;
3283 	}
3284 
3285 	/*
3286 	 * On allocation, reduce the number of pages that are batch freed.
3287 	 * See nr_pcp_free() where free_factor is increased for subsequent
3288 	 * frees.
3289 	 */
3290 	pcp->free_count >>= 1;
3291 	list = &pcp->lists[order_to_pindex(migratetype, order)];
3292 	page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
3293 	pcp_spin_unlock(pcp);
3294 	pcp_trylock_finish(UP_flags);
3295 	if (page) {
3296 		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3297 		zone_statistics(preferred_zone, zone, 1);
3298 	}
3299 	return page;
3300 }
3301 
3302 /*
3303  * Allocate a page from the given zone.
3304  * Use pcplists for THP or "cheap" high-order allocations.
3305  */
3306 
3307 /*
3308  * Do not instrument rmqueue() with KMSAN. This function may call
3309  * __msan_poison_alloca() through a call to set_pfnblock_flags_mask().
3310  * If __msan_poison_alloca() attempts to allocate pages for the stack depot, it
3311  * may call rmqueue() again, which will result in a deadlock.
3312  */
3313 __no_sanitize_memory
3314 static inline
rmqueue(struct zone * preferred_zone,struct zone * zone,unsigned int order,gfp_t gfp_flags,unsigned int alloc_flags,int migratetype)3315 struct page *rmqueue(struct zone *preferred_zone,
3316 			struct zone *zone, unsigned int order,
3317 			gfp_t gfp_flags, unsigned int alloc_flags,
3318 			int migratetype)
3319 {
3320 	struct page *page;
3321 
3322 	trace_android_vh_mm_customize_rmqueue(zone, order, &alloc_flags, &migratetype);
3323 
3324 	if (likely(pcp_allowed_order(order))) {
3325 		page = rmqueue_pcplist(preferred_zone, zone, order,
3326 				       migratetype, alloc_flags);
3327 		if (likely(page))
3328 			goto out;
3329 	}
3330 
3331 	page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags,
3332 							migratetype);
3333 	trace_android_vh_rmqueue(preferred_zone, zone, order,
3334 			gfp_flags, alloc_flags, migratetype);
3335 
3336 out:
3337 	/* Separate test+clear to avoid unnecessary atomics */
3338 	if ((alloc_flags & ALLOC_KSWAPD) &&
3339 	    unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) {
3340 		clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3341 		wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3342 	}
3343 
3344 	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3345 	return page;
3346 }
3347 
3348 /*
3349  * Reserve the pageblock(s) surrounding an allocation request for
3350  * exclusive use of high-order atomic allocations if there are no
3351  * empty page blocks that contain a page with a suitable order
3352  */
reserve_highatomic_pageblock(struct page * page,int order,struct zone * zone)3353 static void reserve_highatomic_pageblock(struct page *page, int order,
3354 					 struct zone *zone)
3355 {
3356 	int mt;
3357 	unsigned long max_managed, flags;
3358 	bool bypass = false;
3359 
3360 	/*
3361 	 * The number reserved as: minimum is 1 pageblock, maximum is
3362 	 * roughly 1% of a zone. But if 1% of a zone falls below a
3363 	 * pageblock size, then don't reserve any pageblocks.
3364 	 * Check is race-prone but harmless.
3365 	 */
3366 	if ((zone_managed_pages(zone) / 100) < pageblock_nr_pages)
3367 		return;
3368 	max_managed = ALIGN((zone_managed_pages(zone) / 100), pageblock_nr_pages);
3369 	if (zone->nr_reserved_highatomic >= max_managed)
3370 		return;
3371 	trace_android_vh_reserve_highatomic_bypass(page, &bypass);
3372 	if (bypass)
3373 		return;
3374 
3375 	spin_lock_irqsave(&zone->lock, flags);
3376 
3377 	/* Recheck the nr_reserved_highatomic limit under the lock */
3378 	if (zone->nr_reserved_highatomic >= max_managed)
3379 		goto out_unlock;
3380 
3381 	/* Yoink! */
3382 	mt = get_pageblock_migratetype(page);
3383 	/* Only reserve normal pageblocks (i.e., they can merge with others) */
3384 	if (!migratetype_is_mergeable(mt))
3385 		goto out_unlock;
3386 
3387 	if (order < pageblock_order) {
3388 		if (move_freepages_block(zone, page, mt, MIGRATE_HIGHATOMIC) == -1)
3389 			goto out_unlock;
3390 		zone->nr_reserved_highatomic += pageblock_nr_pages;
3391 	} else {
3392 		change_pageblock_range(page, order, MIGRATE_HIGHATOMIC);
3393 		zone->nr_reserved_highatomic += 1 << order;
3394 	}
3395 
3396 out_unlock:
3397 	spin_unlock_irqrestore(&zone->lock, flags);
3398 }
3399 
3400 /*
3401  * Used when an allocation is about to fail under memory pressure. This
3402  * potentially hurts the reliability of high-order allocations when under
3403  * intense memory pressure but failed atomic allocations should be easier
3404  * to recover from than an OOM.
3405  *
3406  * If @force is true, try to unreserve pageblocks even though highatomic
3407  * pageblock is exhausted.
3408  */
unreserve_highatomic_pageblock(const struct alloc_context * ac,bool force)3409 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
3410 						bool force)
3411 {
3412 	struct zonelist *zonelist = ac->zonelist;
3413 	unsigned long flags;
3414 	struct zoneref *z;
3415 	struct zone *zone;
3416 	struct page *page;
3417 	int order;
3418 	int ret;
3419 	bool skip_unreserve_highatomic = false;
3420 
3421 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
3422 								ac->nodemask) {
3423 		/*
3424 		 * Preserve at least one pageblock unless memory pressure
3425 		 * is really high.
3426 		 */
3427 		if (!force && zone->nr_reserved_highatomic <=
3428 					pageblock_nr_pages)
3429 			continue;
3430 
3431 		trace_android_vh_unreserve_highatomic_bypass(force, zone,
3432 				&skip_unreserve_highatomic);
3433 		if (skip_unreserve_highatomic)
3434 			continue;
3435 
3436 		spin_lock_irqsave(&zone->lock, flags);
3437 		for (order = 0; order < NR_PAGE_ORDERS; order++) {
3438 			struct free_area *area = &(zone->free_area[order]);
3439 			unsigned long size;
3440 
3441 			page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
3442 			if (!page)
3443 				continue;
3444 
3445 			/*
3446 			 * It should never happen but changes to
3447 			 * locking could inadvertently allow a per-cpu
3448 			 * drain to add pages to MIGRATE_HIGHATOMIC
3449 			 * while unreserving so be safe and watch for
3450 			 * underflows.
3451 			 */
3452 			size = max(pageblock_nr_pages, 1UL << order);
3453 			size = min(size, zone->nr_reserved_highatomic);
3454 			zone->nr_reserved_highatomic -= size;
3455 
3456 			/*
3457 			 * Convert to ac->migratetype and avoid the normal
3458 			 * pageblock stealing heuristics. Minimally, the caller
3459 			 * is doing the work and needs the pages. More
3460 			 * importantly, if the block was always converted to
3461 			 * MIGRATE_UNMOVABLE or another type then the number
3462 			 * of pageblocks that cannot be completely freed
3463 			 * may increase.
3464 			 */
3465 			if (order < pageblock_order)
3466 				ret = move_freepages_block(zone, page,
3467 							   MIGRATE_HIGHATOMIC,
3468 							   ac->migratetype);
3469 			else {
3470 				move_to_free_list(page, zone, order,
3471 						  MIGRATE_HIGHATOMIC,
3472 						  ac->migratetype);
3473 				change_pageblock_range(page, order,
3474 						       ac->migratetype);
3475 				ret = 1;
3476 			}
3477 			/*
3478 			 * Reserving the block(s) already succeeded,
3479 			 * so this should not fail on zone boundaries.
3480 			 */
3481 			WARN_ON_ONCE(ret == -1);
3482 			if (ret > 0) {
3483 				spin_unlock_irqrestore(&zone->lock, flags);
3484 				return ret;
3485 			}
3486 		}
3487 		spin_unlock_irqrestore(&zone->lock, flags);
3488 	}
3489 
3490 	return false;
3491 }
3492 
__zone_watermark_unusable_free(struct zone * z,unsigned int order,unsigned int alloc_flags)3493 static inline long __zone_watermark_unusable_free(struct zone *z,
3494 				unsigned int order, unsigned int alloc_flags)
3495 {
3496 	long unusable_free = (1 << order) - 1;
3497 
3498 	/*
3499 	 * If the caller does not have rights to reserves below the min
3500 	 * watermark then subtract the free pages reserved for highatomic.
3501 	 */
3502 	if (likely(!(alloc_flags & ALLOC_RESERVES)))
3503 		unusable_free += READ_ONCE(z->nr_free_highatomic);
3504 
3505 #ifdef CONFIG_CMA
3506 	/* If allocation can't use CMA areas don't use free CMA pages */
3507 	if (!(alloc_flags & ALLOC_CMA))
3508 		unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3509 #endif
3510 
3511 	return unusable_free;
3512 }
3513 
3514 /*
3515  * Return true if free base pages are above 'mark'. For high-order checks it
3516  * will return true of the order-0 watermark is reached and there is at least
3517  * one free page of a suitable size. Checking now avoids taking the zone lock
3518  * to check in the allocation paths if no pages are free.
3519  */
__zone_watermark_ok(struct zone * z,unsigned int order,unsigned long mark,int highest_zoneidx,unsigned int alloc_flags,long free_pages)3520 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3521 			 int highest_zoneidx, unsigned int alloc_flags,
3522 			 long free_pages)
3523 {
3524 	long min = mark;
3525 	int o;
3526 	bool customized = false;
3527 	bool wmark_ok = false;
3528 
3529 	trace_android_vh_mm_customize_wmark_ok(z, order, highest_zoneidx,
3530 					       &wmark_ok, &customized);
3531 	if (customized)
3532 		return wmark_ok;
3533 
3534 	/* free_pages may go negative - that's OK */
3535 	free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
3536 
3537 	if (unlikely(alloc_flags & ALLOC_RESERVES)) {
3538 		/*
3539 		 * __GFP_HIGH allows access to 50% of the min reserve as well
3540 		 * as OOM.
3541 		 */
3542 		if (alloc_flags & ALLOC_MIN_RESERVE) {
3543 			min -= min / 2;
3544 
3545 			/*
3546 			 * Non-blocking allocations (e.g. GFP_ATOMIC) can
3547 			 * access more reserves than just __GFP_HIGH. Other
3548 			 * non-blocking allocations requests such as GFP_NOWAIT
3549 			 * or (GFP_KERNEL & ~__GFP_DIRECT_RECLAIM) do not get
3550 			 * access to the min reserve.
3551 			 */
3552 			if (alloc_flags & ALLOC_NON_BLOCK)
3553 				min -= min / 4;
3554 		}
3555 
3556 		/*
3557 		 * OOM victims can try even harder than the normal reserve
3558 		 * users on the grounds that it's definitely going to be in
3559 		 * the exit path shortly and free memory. Any allocation it
3560 		 * makes during the free path will be small and short-lived.
3561 		 */
3562 		if (alloc_flags & ALLOC_OOM)
3563 			min -= min / 2;
3564 	}
3565 
3566 	/*
3567 	 * Check watermarks for an order-0 allocation request. If these
3568 	 * are not met, then a high-order request also cannot go ahead
3569 	 * even if a suitable page happened to be free.
3570 	 */
3571 	if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
3572 		return false;
3573 
3574 	/* If this is an order-0 request then the watermark is fine */
3575 	if (!order)
3576 		return true;
3577 
3578 	/* For a high-order request, check at least one suitable page is free */
3579 	for (o = order; o < NR_PAGE_ORDERS; o++) {
3580 		struct free_area *area = &z->free_area[o];
3581 		int mt;
3582 
3583 		if (!area->nr_free)
3584 			continue;
3585 
3586 		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3587 #ifdef CONFIG_CMA
3588 			/*
3589 			 * Note that this check is needed only
3590 			 * when MIGRATE_CMA < MIGRATE_PCPTYPES.
3591 			 */
3592 			if (mt == MIGRATE_CMA)
3593 				continue;
3594 #endif
3595 			if (!free_area_empty(area, mt))
3596 				return true;
3597 		}
3598 
3599 #ifdef CONFIG_CMA
3600 		if ((alloc_flags & ALLOC_CMA) &&
3601 		    !free_area_empty(area, MIGRATE_CMA)) {
3602 			return true;
3603 		}
3604 #endif
3605 		if ((alloc_flags & (ALLOC_HIGHATOMIC|ALLOC_OOM)) &&
3606 		    !free_area_empty(area, MIGRATE_HIGHATOMIC)) {
3607 			return true;
3608 		}
3609 	}
3610 	return false;
3611 }
3612 
zone_watermark_ok(struct zone * z,unsigned int order,unsigned long mark,int highest_zoneidx,unsigned int alloc_flags)3613 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3614 		      int highest_zoneidx, unsigned int alloc_flags)
3615 {
3616 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3617 					zone_page_state(z, NR_FREE_PAGES));
3618 }
3619 
zone_watermark_fast(struct zone * z,unsigned int order,unsigned long mark,int highest_zoneidx,unsigned int alloc_flags,gfp_t gfp_mask)3620 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3621 				unsigned long mark, int highest_zoneidx,
3622 				unsigned int alloc_flags, gfp_t gfp_mask)
3623 {
3624 	long free_pages;
3625 	bool is_watermark_ok = false;
3626 
3627 	free_pages = zone_page_state(z, NR_FREE_PAGES);
3628 
3629 	/*
3630 	 * Fast check for order-0 only. If this fails then the reserves
3631 	 * need to be calculated.
3632 	 */
3633 	if (!order) {
3634 		long usable_free;
3635 		long reserved;
3636 
3637 		usable_free = free_pages;
3638 		reserved = __zone_watermark_unusable_free(z, 0, alloc_flags);
3639 
3640 		/* reserved may over estimate high-atomic reserves. */
3641 		usable_free -= min(usable_free, reserved);
3642 		if (usable_free > mark + z->lowmem_reserve[highest_zoneidx])
3643 			return true;
3644 	}
3645 
3646 	trace_android_vh_watermark_fast_ok(order, gfp_mask, &is_watermark_ok);
3647 	if (is_watermark_ok)
3648 		return true;
3649 
3650 	if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3651 					free_pages))
3652 		return true;
3653 
3654 	/*
3655 	 * Ignore watermark boosting for __GFP_HIGH order-0 allocations
3656 	 * when checking the min watermark. The min watermark is the
3657 	 * point where boosting is ignored so that kswapd is woken up
3658 	 * when below the low watermark.
3659 	 */
3660 	if (unlikely(!order && (alloc_flags & ALLOC_MIN_RESERVE) && z->watermark_boost
3661 		&& ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3662 		mark = z->_watermark[WMARK_MIN];
3663 		return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3664 					alloc_flags, free_pages);
3665 	}
3666 
3667 	return false;
3668 }
3669 
zone_watermark_ok_safe(struct zone * z,unsigned int order,unsigned long mark,int highest_zoneidx)3670 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3671 			unsigned long mark, int highest_zoneidx)
3672 {
3673 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3674 
3675 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3676 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3677 
3678 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
3679 								free_pages);
3680 }
3681 
3682 #ifdef CONFIG_NUMA
3683 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE;
3684 
zone_allows_reclaim(struct zone * local_zone,struct zone * zone)3685 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3686 {
3687 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3688 				node_reclaim_distance;
3689 }
3690 #else	/* CONFIG_NUMA */
zone_allows_reclaim(struct zone * local_zone,struct zone * zone)3691 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3692 {
3693 	return true;
3694 }
3695 #endif	/* CONFIG_NUMA */
3696 
3697 /*
3698  * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3699  * fragmentation is subtle. If the preferred zone was HIGHMEM then
3700  * premature use of a lower zone may cause lowmem pressure problems that
3701  * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3702  * probably too small. It only makes sense to spread allocations to avoid
3703  * fragmentation between the Normal and DMA32 zones.
3704  */
3705 static inline unsigned int
alloc_flags_nofragment(struct zone * zone,gfp_t gfp_mask)3706 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3707 {
3708 	unsigned int alloc_flags;
3709 
3710 	/*
3711 	 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3712 	 * to save a branch.
3713 	 */
3714 	alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
3715 
3716 #ifdef CONFIG_ZONE_DMA32
3717 	if (!zone)
3718 		return alloc_flags;
3719 
3720 	if (zone_idx(zone) != ZONE_NORMAL)
3721 		return alloc_flags;
3722 
3723 	/*
3724 	 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3725 	 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3726 	 * on UMA that if Normal is populated then so is DMA32.
3727 	 */
3728 	BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3729 	if (nr_online_nodes > 1 && !populated_zone(--zone))
3730 		return alloc_flags;
3731 
3732 	alloc_flags |= ALLOC_NOFRAGMENT;
3733 #endif /* CONFIG_ZONE_DMA32 */
3734 	return alloc_flags;
3735 }
3736 
3737 /* Must be called after current_gfp_context() which can change gfp_mask */
gfp_to_alloc_flags_cma(gfp_t gfp_mask,unsigned int alloc_flags)3738 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
3739 						  unsigned int alloc_flags)
3740 {
3741 #ifdef CONFIG_CMA
3742 	bool bypass = false;
3743 
3744 	trace_android_vh_calc_alloc_flags(gfp_mask, &alloc_flags, &bypass);
3745 	if (bypass)
3746 		return alloc_flags;
3747 
3748 	/*
3749 	 * If cma_redirect_restricted is true, set ALLOC_CMA only for
3750 	 * movable allocations that have __GFP_CMA.
3751 	 */
3752 	if ((!cma_redirect_restricted() || gfp_mask & __GFP_CMA) &&
3753 	    gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3754 		alloc_flags |= ALLOC_CMA;
3755 #endif
3756 	return alloc_flags;
3757 }
3758 
3759 /*
3760  * get_page_from_freelist goes through the zonelist trying to allocate
3761  * a page.
3762  */
3763 static struct page *
get_page_from_freelist(gfp_t gfp_mask,unsigned int order,int alloc_flags,const struct alloc_context * ac)3764 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3765 						const struct alloc_context *ac)
3766 {
3767 	struct zoneref *z;
3768 	struct zone *zone;
3769 	struct pglist_data *last_pgdat = NULL;
3770 	bool last_pgdat_dirty_ok = false;
3771 	bool no_fallback;
3772 
3773 retry:
3774 	/*
3775 	 * Scan zonelist, looking for a zone with enough free.
3776 	 * See also cpuset_node_allowed() comment in kernel/cgroup/cpuset.c.
3777 	 */
3778 	no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3779 	z = ac->preferred_zoneref;
3780 	for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
3781 					ac->nodemask) {
3782 		bool use_this_zone = false;
3783 		bool suitable = true;
3784 		struct page *page;
3785 		unsigned long mark;
3786 
3787 		trace_android_vh_mm_customize_suitable_zone(zone, gfp_mask, order, ac->highest_zoneidx,
3788 							    &use_this_zone, &suitable);
3789 		if (!suitable)
3790 			continue;
3791 
3792 		if (use_this_zone)
3793 			goto try_this_zone;
3794 
3795 		if (cpusets_enabled() &&
3796 			(alloc_flags & ALLOC_CPUSET) &&
3797 			!__cpuset_zone_allowed(zone, gfp_mask))
3798 				continue;
3799 		/*
3800 		 * When allocating a page cache page for writing, we
3801 		 * want to get it from a node that is within its dirty
3802 		 * limit, such that no single node holds more than its
3803 		 * proportional share of globally allowed dirty pages.
3804 		 * The dirty limits take into account the node's
3805 		 * lowmem reserves and high watermark so that kswapd
3806 		 * should be able to balance it without having to
3807 		 * write pages from its LRU list.
3808 		 *
3809 		 * XXX: For now, allow allocations to potentially
3810 		 * exceed the per-node dirty limit in the slowpath
3811 		 * (spread_dirty_pages unset) before going into reclaim,
3812 		 * which is important when on a NUMA setup the allowed
3813 		 * nodes are together not big enough to reach the
3814 		 * global limit.  The proper fix for these situations
3815 		 * will require awareness of nodes in the
3816 		 * dirty-throttling and the flusher threads.
3817 		 */
3818 		if (ac->spread_dirty_pages) {
3819 			if (last_pgdat != zone->zone_pgdat) {
3820 				last_pgdat = zone->zone_pgdat;
3821 				last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat);
3822 			}
3823 
3824 			if (!last_pgdat_dirty_ok)
3825 				continue;
3826 		}
3827 
3828 		if (no_fallback && nr_online_nodes > 1 &&
3829 		    zone != zonelist_zone(ac->preferred_zoneref)) {
3830 			int local_nid;
3831 
3832 			/*
3833 			 * If moving to a remote node, retry but allow
3834 			 * fragmenting fallbacks. Locality is more important
3835 			 * than fragmentation avoidance.
3836 			 */
3837 			local_nid = zonelist_node_idx(ac->preferred_zoneref);
3838 			if (zone_to_nid(zone) != local_nid) {
3839 				alloc_flags &= ~ALLOC_NOFRAGMENT;
3840 				goto retry;
3841 			}
3842 		}
3843 
3844 		cond_accept_memory(zone, order);
3845 
3846 		/*
3847 		 * Detect whether the number of free pages is below high
3848 		 * watermark.  If so, we will decrease pcp->high and free
3849 		 * PCP pages in free path to reduce the possibility of
3850 		 * premature page reclaiming.  Detection is done here to
3851 		 * avoid to do that in hotter free path.
3852 		 */
3853 		if (test_bit(ZONE_BELOW_HIGH, &zone->flags))
3854 			goto check_alloc_wmark;
3855 
3856 		mark = high_wmark_pages(zone);
3857 		if (zone_watermark_fast(zone, order, mark,
3858 					ac->highest_zoneidx, alloc_flags,
3859 					gfp_mask))
3860 			goto try_this_zone;
3861 		else
3862 			set_bit(ZONE_BELOW_HIGH, &zone->flags);
3863 
3864 check_alloc_wmark:
3865 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3866 		trace_android_vh_get_page_wmark(alloc_flags, &mark);
3867 		if (!zone_watermark_fast(zone, order, mark,
3868 				       ac->highest_zoneidx, alloc_flags,
3869 				       gfp_mask)) {
3870 			int ret;
3871 
3872 			if (cond_accept_memory(zone, order))
3873 				goto try_this_zone;
3874 
3875 			/*
3876 			 * Watermark failed for this zone, but see if we can
3877 			 * grow this zone if it contains deferred pages.
3878 			 */
3879 			if (deferred_pages_enabled()) {
3880 				if (_deferred_grow_zone(zone, order))
3881 					goto try_this_zone;
3882 			}
3883 			/* Checked here to keep the fast path fast */
3884 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3885 			if (alloc_flags & ALLOC_NO_WATERMARKS)
3886 				goto try_this_zone;
3887 
3888 			if (!node_reclaim_enabled() ||
3889 			    !zone_allows_reclaim(zonelist_zone(ac->preferred_zoneref), zone))
3890 				continue;
3891 
3892 			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3893 			switch (ret) {
3894 			case NODE_RECLAIM_NOSCAN:
3895 				/* did not scan */
3896 				continue;
3897 			case NODE_RECLAIM_FULL:
3898 				/* scanned but unreclaimable */
3899 				continue;
3900 			default:
3901 				/* did we reclaim enough */
3902 				if (zone_watermark_ok(zone, order, mark,
3903 					ac->highest_zoneidx, alloc_flags))
3904 					goto try_this_zone;
3905 
3906 				continue;
3907 			}
3908 		}
3909 
3910 try_this_zone:
3911 		page = rmqueue(zonelist_zone(ac->preferred_zoneref), zone, order,
3912 				gfp_mask, alloc_flags, ac->migratetype);
3913 		if (page) {
3914 			prep_new_page(page, order, gfp_mask, alloc_flags);
3915 
3916 			/*
3917 			 * If this is a high-order atomic allocation then check
3918 			 * if the pageblock should be reserved for the future
3919 			 */
3920 			if (unlikely(alloc_flags & ALLOC_HIGHATOMIC))
3921 				reserve_highatomic_pageblock(page, order, zone);
3922 
3923 			return page;
3924 		} else {
3925 			if (cond_accept_memory(zone, order))
3926 				goto try_this_zone;
3927 
3928 			/* Try again if zone has deferred pages */
3929 			if (deferred_pages_enabled()) {
3930 				if (_deferred_grow_zone(zone, order))
3931 					goto try_this_zone;
3932 			}
3933 		}
3934 	}
3935 
3936 	/*
3937 	 * It's possible on a UMA machine to get through all zones that are
3938 	 * fragmented. If avoiding fragmentation, reset and try again.
3939 	 */
3940 	if (no_fallback) {
3941 		alloc_flags &= ~ALLOC_NOFRAGMENT;
3942 		goto retry;
3943 	}
3944 
3945 	return NULL;
3946 }
3947 
warn_alloc_show_mem(gfp_t gfp_mask,nodemask_t * nodemask)3948 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3949 {
3950 	unsigned int filter = SHOW_MEM_FILTER_NODES;
3951 	bool bypass = false;
3952 
3953 	trace_android_vh_warn_alloc_show_mem_bypass(&bypass);
3954 	if (bypass)
3955 		return;
3956 	/*
3957 	 * This documents exceptions given to allocations in certain
3958 	 * contexts that are allowed to allocate outside current's set
3959 	 * of allowed nodes.
3960 	 */
3961 	if (!(gfp_mask & __GFP_NOMEMALLOC))
3962 		if (tsk_is_oom_victim(current) ||
3963 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
3964 			filter &= ~SHOW_MEM_FILTER_NODES;
3965 	if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3966 		filter &= ~SHOW_MEM_FILTER_NODES;
3967 
3968 	__show_mem(filter, nodemask, gfp_zone(gfp_mask));
3969 }
3970 
warn_alloc(gfp_t gfp_mask,nodemask_t * nodemask,const char * fmt,...)3971 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3972 {
3973 	struct va_format vaf;
3974 	va_list args;
3975 	static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
3976 
3977 	trace_android_vh_warn_alloc_tune_ratelimit(&nopage_rs);
3978 	if ((gfp_mask & __GFP_NOWARN) ||
3979 	     !__ratelimit(&nopage_rs) ||
3980 	     ((gfp_mask & __GFP_DMA) && !has_managed_dma()))
3981 		return;
3982 
3983 	va_start(args, fmt);
3984 	vaf.fmt = fmt;
3985 	vaf.va = &args;
3986 	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
3987 			current->comm, &vaf, gfp_mask, &gfp_mask,
3988 			nodemask_pr_args(nodemask));
3989 	va_end(args);
3990 
3991 	cpuset_print_current_mems_allowed();
3992 	pr_cont("\n");
3993 	dump_stack();
3994 	warn_alloc_show_mem(gfp_mask, nodemask);
3995 }
3996 
3997 static inline struct page *
__alloc_pages_cpuset_fallback(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac)3998 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3999 			      unsigned int alloc_flags,
4000 			      const struct alloc_context *ac)
4001 {
4002 	struct page *page;
4003 
4004 	page = get_page_from_freelist(gfp_mask, order,
4005 			alloc_flags|ALLOC_CPUSET, ac);
4006 	/*
4007 	 * fallback to ignore cpuset restriction if our nodes
4008 	 * are depleted
4009 	 */
4010 	if (!page)
4011 		page = get_page_from_freelist(gfp_mask, order,
4012 				alloc_flags, ac);
4013 
4014 	return page;
4015 }
4016 
4017 static inline struct page *
__alloc_pages_may_oom(gfp_t gfp_mask,unsigned int order,const struct alloc_context * ac,unsigned long * did_some_progress)4018 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
4019 	const struct alloc_context *ac, unsigned long *did_some_progress)
4020 {
4021 	struct oom_control oc = {
4022 		.zonelist = ac->zonelist,
4023 		.nodemask = ac->nodemask,
4024 		.memcg = NULL,
4025 		.gfp_mask = gfp_mask,
4026 		.order = order,
4027 	};
4028 	struct page *page;
4029 
4030 	*did_some_progress = 0;
4031 
4032 	/*
4033 	 * Acquire the oom lock.  If that fails, somebody else is
4034 	 * making progress for us.
4035 	 */
4036 	if (!mutex_trylock(&oom_lock)) {
4037 		*did_some_progress = 1;
4038 		schedule_timeout_uninterruptible(1);
4039 		trace_android_vh_mm_may_oom_exit(&oc, *did_some_progress);
4040 		return NULL;
4041 	}
4042 
4043 	/*
4044 	 * Go through the zonelist yet one more time, keep very high watermark
4045 	 * here, this is only to catch a parallel oom killing, we must fail if
4046 	 * we're still under heavy pressure. But make sure that this reclaim
4047 	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
4048 	 * allocation which will never fail due to oom_lock already held.
4049 	 */
4050 	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
4051 				      ~__GFP_DIRECT_RECLAIM, order,
4052 				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
4053 	if (page)
4054 		goto out;
4055 
4056 	/* Coredumps can quickly deplete all memory reserves */
4057 	if (current->flags & PF_DUMPCORE)
4058 		goto out;
4059 	/* The OOM killer will not help higher order allocs */
4060 	if (order > PAGE_ALLOC_COSTLY_ORDER)
4061 		goto out;
4062 	/*
4063 	 * We have already exhausted all our reclaim opportunities without any
4064 	 * success so it is time to admit defeat. We will skip the OOM killer
4065 	 * because it is very likely that the caller has a more reasonable
4066 	 * fallback than shooting a random task.
4067 	 *
4068 	 * The OOM killer may not free memory on a specific node.
4069 	 */
4070 	if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
4071 		goto out;
4072 	/* The OOM killer does not needlessly kill tasks for lowmem */
4073 	if (ac->highest_zoneidx < ZONE_NORMAL)
4074 		goto out;
4075 	if (pm_suspended_storage())
4076 		goto out;
4077 	/*
4078 	 * XXX: GFP_NOFS allocations should rather fail than rely on
4079 	 * other request to make a forward progress.
4080 	 * We are in an unfortunate situation where out_of_memory cannot
4081 	 * do much for this context but let's try it to at least get
4082 	 * access to memory reserved if the current task is killed (see
4083 	 * out_of_memory). Once filesystems are ready to handle allocation
4084 	 * failures more gracefully we should just bail out here.
4085 	 */
4086 
4087 	/* Exhausted what can be done so it's blame time */
4088 	if (out_of_memory(&oc) ||
4089 	    WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) {
4090 		*did_some_progress = 1;
4091 
4092 		/*
4093 		 * Help non-failing allocations by giving them access to memory
4094 		 * reserves
4095 		 */
4096 		if (gfp_mask & __GFP_NOFAIL)
4097 			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
4098 					ALLOC_NO_WATERMARKS, ac);
4099 	}
4100 out:
4101 	mutex_unlock(&oom_lock);
4102 	trace_android_vh_mm_may_oom_exit(&oc, *did_some_progress);
4103 	return page;
4104 }
4105 
4106 /*
4107  * Maximum number of compaction retries with a progress before OOM
4108  * killer is consider as the only way to move forward.
4109  */
4110 #define MAX_COMPACT_RETRIES 16
4111 
4112 #ifdef CONFIG_COMPACTION
4113 /* Try memory compaction for high-order allocations before reclaim */
4114 static struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac,enum compact_priority prio,enum compact_result * compact_result)4115 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4116 		unsigned int alloc_flags, const struct alloc_context *ac,
4117 		enum compact_priority prio, enum compact_result *compact_result)
4118 {
4119 	struct page *page = NULL;
4120 	unsigned long pflags;
4121 	unsigned int noreclaim_flag;
4122 
4123 	if (!order)
4124 		return NULL;
4125 
4126 	psi_memstall_enter(&pflags);
4127 	delayacct_compact_start();
4128 	noreclaim_flag = memalloc_noreclaim_save();
4129 
4130 	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
4131 								prio, &page);
4132 
4133 	memalloc_noreclaim_restore(noreclaim_flag);
4134 	psi_memstall_leave(&pflags);
4135 	delayacct_compact_end();
4136 
4137 	if (*compact_result == COMPACT_SKIPPED)
4138 		return NULL;
4139 	/*
4140 	 * At least in one zone compaction wasn't deferred or skipped, so let's
4141 	 * count a compaction stall
4142 	 */
4143 	count_vm_event(COMPACTSTALL);
4144 
4145 	/* Prep a captured page if available */
4146 	if (page)
4147 		prep_new_page(page, order, gfp_mask, alloc_flags);
4148 
4149 	/* Try get a page from the freelist if available */
4150 	if (!page)
4151 		page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4152 
4153 	if (page) {
4154 		struct zone *zone = page_zone(page);
4155 
4156 		zone->compact_blockskip_flush = false;
4157 		compaction_defer_reset(zone, order, true);
4158 		count_vm_event(COMPACTSUCCESS);
4159 		return page;
4160 	}
4161 
4162 	/*
4163 	 * It's bad if compaction run occurs and fails. The most likely reason
4164 	 * is that pages exist, but not enough to satisfy watermarks.
4165 	 */
4166 	count_vm_event(COMPACTFAIL);
4167 
4168 	cond_resched();
4169 
4170 	return NULL;
4171 }
4172 
4173 static inline bool
should_compact_retry(struct alloc_context * ac,int order,int alloc_flags,enum compact_result compact_result,enum compact_priority * compact_priority,int * compaction_retries)4174 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
4175 		     enum compact_result compact_result,
4176 		     enum compact_priority *compact_priority,
4177 		     int *compaction_retries)
4178 {
4179 	int max_retries = MAX_COMPACT_RETRIES;
4180 	int min_priority;
4181 	bool ret = false;
4182 	int retries = *compaction_retries;
4183 	enum compact_priority priority = *compact_priority;
4184 
4185 	if (!order)
4186 		return false;
4187 
4188 	if (fatal_signal_pending(current))
4189 		return false;
4190 
4191 	/*
4192 	 * Compaction was skipped due to a lack of free order-0
4193 	 * migration targets. Continue if reclaim can help.
4194 	 */
4195 	if (compact_result == COMPACT_SKIPPED) {
4196 		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
4197 		goto out;
4198 	}
4199 
4200 	/*
4201 	 * Compaction managed to coalesce some page blocks, but the
4202 	 * allocation failed presumably due to a race. Retry some.
4203 	 */
4204 	if (compact_result == COMPACT_SUCCESS) {
4205 		/*
4206 		 * !costly requests are much more important than
4207 		 * __GFP_RETRY_MAYFAIL costly ones because they are de
4208 		 * facto nofail and invoke OOM killer to move on while
4209 		 * costly can fail and users are ready to cope with
4210 		 * that. 1/4 retries is rather arbitrary but we would
4211 		 * need much more detailed feedback from compaction to
4212 		 * make a better decision.
4213 		 */
4214 		if (order > PAGE_ALLOC_COSTLY_ORDER)
4215 			max_retries /= 4;
4216 
4217 		if (++(*compaction_retries) <= max_retries) {
4218 			ret = true;
4219 			goto out;
4220 		}
4221 	}
4222 
4223 	/*
4224 	 * Compaction failed. Retry with increasing priority.
4225 	 */
4226 	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4227 			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
4228 
4229 	if (*compact_priority > min_priority) {
4230 		(*compact_priority)--;
4231 		*compaction_retries = 0;
4232 		ret = true;
4233 	}
4234 out:
4235 	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4236 	return ret;
4237 }
4238 #else
4239 static inline struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac,enum compact_priority prio,enum compact_result * compact_result)4240 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4241 		unsigned int alloc_flags, const struct alloc_context *ac,
4242 		enum compact_priority prio, enum compact_result *compact_result)
4243 {
4244 	*compact_result = COMPACT_SKIPPED;
4245 	return NULL;
4246 }
4247 
4248 static inline bool
should_compact_retry(struct alloc_context * ac,unsigned int order,int alloc_flags,enum compact_result compact_result,enum compact_priority * compact_priority,int * compaction_retries)4249 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4250 		     enum compact_result compact_result,
4251 		     enum compact_priority *compact_priority,
4252 		     int *compaction_retries)
4253 {
4254 	struct zone *zone;
4255 	struct zoneref *z;
4256 
4257 	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4258 		return false;
4259 
4260 	/*
4261 	 * There are setups with compaction disabled which would prefer to loop
4262 	 * inside the allocator rather than hit the oom killer prematurely.
4263 	 * Let's give them a good hope and keep retrying while the order-0
4264 	 * watermarks are OK.
4265 	 */
4266 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4267 				ac->highest_zoneidx, ac->nodemask) {
4268 		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
4269 					ac->highest_zoneidx, alloc_flags))
4270 			return true;
4271 	}
4272 	return false;
4273 }
4274 #endif /* CONFIG_COMPACTION */
4275 
4276 #ifdef CONFIG_LOCKDEP
4277 static struct lockdep_map __fs_reclaim_map =
4278 	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4279 
__need_reclaim(gfp_t gfp_mask)4280 static bool __need_reclaim(gfp_t gfp_mask)
4281 {
4282 	/* no reclaim without waiting on it */
4283 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4284 		return false;
4285 
4286 	/* this guy won't enter reclaim */
4287 	if (current->flags & PF_MEMALLOC)
4288 		return false;
4289 
4290 	if (gfp_mask & __GFP_NOLOCKDEP)
4291 		return false;
4292 
4293 	return true;
4294 }
4295 
__fs_reclaim_acquire(unsigned long ip)4296 void __fs_reclaim_acquire(unsigned long ip)
4297 {
4298 	lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip);
4299 }
4300 
__fs_reclaim_release(unsigned long ip)4301 void __fs_reclaim_release(unsigned long ip)
4302 {
4303 	lock_release(&__fs_reclaim_map, ip);
4304 }
4305 
fs_reclaim_acquire(gfp_t gfp_mask)4306 void fs_reclaim_acquire(gfp_t gfp_mask)
4307 {
4308 	gfp_mask = current_gfp_context(gfp_mask);
4309 
4310 	if (__need_reclaim(gfp_mask)) {
4311 		if (gfp_mask & __GFP_FS)
4312 			__fs_reclaim_acquire(_RET_IP_);
4313 
4314 #ifdef CONFIG_MMU_NOTIFIER
4315 		lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
4316 		lock_map_release(&__mmu_notifier_invalidate_range_start_map);
4317 #endif
4318 
4319 	}
4320 }
4321 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4322 
fs_reclaim_release(gfp_t gfp_mask)4323 void fs_reclaim_release(gfp_t gfp_mask)
4324 {
4325 	gfp_mask = current_gfp_context(gfp_mask);
4326 
4327 	if (__need_reclaim(gfp_mask)) {
4328 		if (gfp_mask & __GFP_FS)
4329 			__fs_reclaim_release(_RET_IP_);
4330 	}
4331 }
4332 EXPORT_SYMBOL_GPL(fs_reclaim_release);
4333 #endif
4334 
4335 /*
4336  * Zonelists may change due to hotplug during allocation. Detect when zonelists
4337  * have been rebuilt so allocation retries. Reader side does not lock and
4338  * retries the allocation if zonelist changes. Writer side is protected by the
4339  * embedded spin_lock.
4340  */
4341 static DEFINE_SEQLOCK(zonelist_update_seq);
4342 
zonelist_iter_begin(void)4343 static unsigned int zonelist_iter_begin(void)
4344 {
4345 	if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
4346 		return read_seqbegin(&zonelist_update_seq);
4347 
4348 	return 0;
4349 }
4350 
check_retry_zonelist(unsigned int seq)4351 static unsigned int check_retry_zonelist(unsigned int seq)
4352 {
4353 	if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
4354 		return read_seqretry(&zonelist_update_seq, seq);
4355 
4356 	return seq;
4357 }
4358 
4359 /* Perform direct synchronous page reclaim */
4360 static unsigned long
__perform_reclaim(gfp_t gfp_mask,unsigned int order,const struct alloc_context * ac)4361 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
4362 					const struct alloc_context *ac)
4363 {
4364 	unsigned int noreclaim_flag;
4365 	unsigned long progress;
4366 
4367 	cond_resched();
4368 
4369 	/* We now go into synchronous reclaim */
4370 	cpuset_memory_pressure_bump();
4371 	fs_reclaim_acquire(gfp_mask);
4372 	noreclaim_flag = memalloc_noreclaim_save();
4373 
4374 	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4375 								ac->nodemask);
4376 
4377 	memalloc_noreclaim_restore(noreclaim_flag);
4378 	fs_reclaim_release(gfp_mask);
4379 
4380 	cond_resched();
4381 
4382 	return progress;
4383 }
4384 
4385 /* The really slow allocator path where we enter direct reclaim */
4386 static inline struct page *
__alloc_pages_direct_reclaim(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac,unsigned long * did_some_progress)4387 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4388 		unsigned int alloc_flags, const struct alloc_context *ac,
4389 		unsigned long *did_some_progress)
4390 {
4391 	int retry_times = 0;
4392 	struct page *page = NULL;
4393 	unsigned long pflags;
4394 	bool drained = false;
4395 	bool skip_pcp_drain = false;
4396 
4397 	trace_android_vh_mm_direct_reclaim_enter(order);
4398 	psi_memstall_enter(&pflags);
4399 	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4400 	if (unlikely(!(*did_some_progress)))
4401 		goto out;
4402 
4403 retry:
4404 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4405 
4406 	/*
4407 	 * If an allocation failed after direct reclaim, it could be because
4408 	 * pages are pinned on the per-cpu lists or in high alloc reserves.
4409 	 * Shrink them and try again
4410 	 */
4411 	if (!page && !drained) {
4412 		unreserve_highatomic_pageblock(ac, false);
4413 		trace_android_vh_drain_all_pages_bypass(gfp_mask, order,
4414 			alloc_flags, ac->migratetype, *did_some_progress, &skip_pcp_drain);
4415 		if (!skip_pcp_drain)
4416 			drain_all_pages(NULL);
4417 		drained = true;
4418 		++retry_times;
4419 		goto retry;
4420 	}
4421 out:
4422 	psi_memstall_leave(&pflags);
4423 	trace_android_vh_mm_direct_reclaim_exit(*did_some_progress, retry_times);
4424 	return page;
4425 }
4426 
wake_all_kswapds(unsigned int order,gfp_t gfp_mask,const struct alloc_context * ac)4427 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4428 			     const struct alloc_context *ac)
4429 {
4430 	struct zoneref *z;
4431 	struct zone *zone;
4432 	pg_data_t *last_pgdat = NULL;
4433 	enum zone_type highest_zoneidx = ac->highest_zoneidx;
4434 
4435 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
4436 					ac->nodemask) {
4437 		if (!managed_zone(zone))
4438 			continue;
4439 		if (last_pgdat != zone->zone_pgdat) {
4440 			wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
4441 			last_pgdat = zone->zone_pgdat;
4442 		}
4443 	}
4444 }
4445 
4446 static inline unsigned int
gfp_to_alloc_flags(gfp_t gfp_mask,unsigned int order)4447 gfp_to_alloc_flags(gfp_t gfp_mask, unsigned int order)
4448 {
4449 	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
4450 
4451 	/*
4452 	 * __GFP_HIGH is assumed to be the same as ALLOC_MIN_RESERVE
4453 	 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4454 	 * to save two branches.
4455 	 */
4456 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_MIN_RESERVE);
4457 	BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
4458 
4459 	/*
4460 	 * The caller may dip into page reserves a bit more if the caller
4461 	 * cannot run direct reclaim, or if the caller has realtime scheduling
4462 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
4463 	 * set both ALLOC_NON_BLOCK and ALLOC_MIN_RESERVE(__GFP_HIGH).
4464 	 */
4465 	alloc_flags |= (__force int)
4466 		(gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
4467 
4468 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) {
4469 		/*
4470 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4471 		 * if it can't schedule.
4472 		 */
4473 		if (!(gfp_mask & __GFP_NOMEMALLOC)) {
4474 			alloc_flags |= ALLOC_NON_BLOCK;
4475 
4476 			if (order > 0)
4477 				alloc_flags |= ALLOC_HIGHATOMIC;
4478 		}
4479 
4480 		/*
4481 		 * Ignore cpuset mems for non-blocking __GFP_HIGH (probably
4482 		 * GFP_ATOMIC) rather than fail, see the comment for
4483 		 * cpuset_node_allowed().
4484 		 */
4485 		if (alloc_flags & ALLOC_MIN_RESERVE)
4486 			alloc_flags &= ~ALLOC_CPUSET;
4487 	} else if (unlikely(rt_or_dl_task(current)) && in_task())
4488 		alloc_flags |= ALLOC_MIN_RESERVE;
4489 
4490 	alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
4491 
4492 	return alloc_flags;
4493 }
4494 
oom_reserves_allowed(struct task_struct * tsk)4495 static bool oom_reserves_allowed(struct task_struct *tsk)
4496 {
4497 	if (!tsk_is_oom_victim(tsk))
4498 		return false;
4499 
4500 	/*
4501 	 * !MMU doesn't have oom reaper so give access to memory reserves
4502 	 * only to the thread with TIF_MEMDIE set
4503 	 */
4504 	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4505 		return false;
4506 
4507 	return true;
4508 }
4509 
4510 /*
4511  * Distinguish requests which really need access to full memory
4512  * reserves from oom victims which can live with a portion of it
4513  */
__gfp_pfmemalloc_flags(gfp_t gfp_mask)4514 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4515 {
4516 	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4517 		return 0;
4518 	if (gfp_mask & __GFP_MEMALLOC)
4519 		return ALLOC_NO_WATERMARKS;
4520 	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4521 		return ALLOC_NO_WATERMARKS;
4522 	if (!in_interrupt()) {
4523 		if (current->flags & PF_MEMALLOC)
4524 			return ALLOC_NO_WATERMARKS;
4525 		else if (oom_reserves_allowed(current))
4526 			return ALLOC_OOM;
4527 	}
4528 
4529 	return 0;
4530 }
4531 
gfp_pfmemalloc_allowed(gfp_t gfp_mask)4532 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4533 {
4534 	return !!__gfp_pfmemalloc_flags(gfp_mask);
4535 }
4536 
4537 /*
4538  * Checks whether it makes sense to retry the reclaim to make a forward progress
4539  * for the given allocation request.
4540  *
4541  * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4542  * without success, or when we couldn't even meet the watermark if we
4543  * reclaimed all remaining pages on the LRU lists.
4544  *
4545  * Returns true if a retry is viable or false to enter the oom path.
4546  */
4547 static inline bool
should_reclaim_retry(gfp_t gfp_mask,unsigned order,struct alloc_context * ac,int alloc_flags,bool did_some_progress,int * no_progress_loops)4548 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4549 		     struct alloc_context *ac, int alloc_flags,
4550 		     bool did_some_progress, int *no_progress_loops)
4551 {
4552 	struct zone *zone;
4553 	struct zoneref *z;
4554 	bool ret = false;
4555 
4556 	/*
4557 	 * Costly allocations might have made a progress but this doesn't mean
4558 	 * their order will become available due to high fragmentation so
4559 	 * always increment the no progress counter for them
4560 	 */
4561 	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4562 		*no_progress_loops = 0;
4563 	else
4564 		(*no_progress_loops)++;
4565 
4566 	if (*no_progress_loops > MAX_RECLAIM_RETRIES)
4567 		goto out;
4568 
4569 
4570 	/*
4571 	 * Keep reclaiming pages while there is a chance this will lead
4572 	 * somewhere.  If none of the target zones can satisfy our allocation
4573 	 * request even if all reclaimable pages are considered then we are
4574 	 * screwed and have to go OOM.
4575 	 */
4576 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4577 				ac->highest_zoneidx, ac->nodemask) {
4578 		unsigned long available;
4579 		unsigned long reclaimable;
4580 		unsigned long min_wmark = min_wmark_pages(zone);
4581 		bool wmark;
4582 
4583 		if (cpusets_enabled() &&
4584 			(alloc_flags & ALLOC_CPUSET) &&
4585 			!__cpuset_zone_allowed(zone, gfp_mask))
4586 				continue;
4587 
4588 		available = reclaimable = zone_reclaimable_pages(zone);
4589 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4590 
4591 		/*
4592 		 * Would the allocation succeed if we reclaimed all
4593 		 * reclaimable pages?
4594 		 */
4595 		wmark = __zone_watermark_ok(zone, order, min_wmark,
4596 				ac->highest_zoneidx, alloc_flags, available);
4597 		trace_reclaim_retry_zone(z, order, reclaimable,
4598 				available, min_wmark, *no_progress_loops, wmark);
4599 		if (wmark) {
4600 			ret = true;
4601 			break;
4602 		}
4603 	}
4604 
4605 	/*
4606 	 * Memory allocation/reclaim might be called from a WQ context and the
4607 	 * current implementation of the WQ concurrency control doesn't
4608 	 * recognize that a particular WQ is congested if the worker thread is
4609 	 * looping without ever sleeping. Therefore we have to do a short sleep
4610 	 * here rather than calling cond_resched().
4611 	 */
4612 	if (current->flags & PF_WQ_WORKER)
4613 		schedule_timeout_uninterruptible(1);
4614 	else
4615 		cond_resched();
4616 out:
4617 	/* Before OOM, exhaust highatomic_reserve */
4618 	if (!ret)
4619 		return unreserve_highatomic_pageblock(ac, true);
4620 
4621 	return ret;
4622 }
4623 
4624 static inline bool
check_retry_cpuset(int cpuset_mems_cookie,struct alloc_context * ac)4625 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4626 {
4627 	/*
4628 	 * It's possible that cpuset's mems_allowed and the nodemask from
4629 	 * mempolicy don't intersect. This should be normally dealt with by
4630 	 * policy_nodemask(), but it's possible to race with cpuset update in
4631 	 * such a way the check therein was true, and then it became false
4632 	 * before we got our cpuset_mems_cookie here.
4633 	 * This assumes that for all allocations, ac->nodemask can come only
4634 	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4635 	 * when it does not intersect with the cpuset restrictions) or the
4636 	 * caller can deal with a violated nodemask.
4637 	 */
4638 	if (cpusets_enabled() && ac->nodemask &&
4639 			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4640 		ac->nodemask = NULL;
4641 		return true;
4642 	}
4643 
4644 	/*
4645 	 * When updating a task's mems_allowed or mempolicy nodemask, it is
4646 	 * possible to race with parallel threads in such a way that our
4647 	 * allocation can fail while the mask is being updated. If we are about
4648 	 * to fail, check if the cpuset changed during allocation and if so,
4649 	 * retry.
4650 	 */
4651 	if (read_mems_allowed_retry(cpuset_mems_cookie))
4652 		return true;
4653 
4654 	return false;
4655 }
4656 
4657 static inline struct page *
__alloc_pages_slowpath(gfp_t gfp_mask,unsigned int order,struct alloc_context * ac)4658 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4659 						struct alloc_context *ac)
4660 {
4661 	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4662 	bool can_compact = gfp_compaction_allowed(gfp_mask);
4663 	bool nofail = gfp_mask & __GFP_NOFAIL;
4664 	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4665 	struct page *page = NULL;
4666 	unsigned int alloc_flags;
4667 	unsigned long did_some_progress = 0;
4668 	enum compact_priority compact_priority;
4669 	enum compact_result compact_result;
4670 	int compaction_retries;
4671 	int no_progress_loops;
4672 	unsigned int cpuset_mems_cookie;
4673 	unsigned int zonelist_iter_cookie;
4674 	int reserve_flags;
4675 	unsigned long alloc_start = jiffies;
4676 	unsigned long pages_reclaimed = 0;
4677 	int retry_loop_count = 0;
4678 	u64 stime = 0;
4679 	bool should_alloc_retry = false;
4680 	unsigned long direct_reclaim_retries = 0;
4681 
4682 	if (unlikely(nofail)) {
4683 		/*
4684 		 * We most definitely don't want callers attempting to
4685 		 * allocate greater than order-1 page units with __GFP_NOFAIL.
4686 		 */
4687 		WARN_ON_ONCE(order > 1);
4688 		/*
4689 		 * Also we don't support __GFP_NOFAIL without __GFP_DIRECT_RECLAIM,
4690 		 * otherwise, we may result in lockup.
4691 		 */
4692 		WARN_ON_ONCE(!can_direct_reclaim);
4693 		/*
4694 		 * PF_MEMALLOC request from this context is rather bizarre
4695 		 * because we cannot reclaim anything and only can loop waiting
4696 		 * for somebody to do a work for us.
4697 		 */
4698 		WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4699 	}
4700 	trace_android_vh_alloc_pages_slowpath_start(&stime);
4701 
4702 restart:
4703 	compaction_retries = 0;
4704 	no_progress_loops = 0;
4705 	compact_result = COMPACT_SKIPPED;
4706 	compact_priority = DEF_COMPACT_PRIORITY;
4707 	cpuset_mems_cookie = read_mems_allowed_begin();
4708 	zonelist_iter_cookie = zonelist_iter_begin();
4709 
4710 	/*
4711 	 * The fast path uses conservative alloc_flags to succeed only until
4712 	 * kswapd needs to be woken up, and to avoid the cost of setting up
4713 	 * alloc_flags precisely. So we do that now.
4714 	 */
4715 	alloc_flags = gfp_to_alloc_flags(gfp_mask, order);
4716 
4717 	/*
4718 	 * We need to recalculate the starting point for the zonelist iterator
4719 	 * because we might have used different nodemask in the fast path, or
4720 	 * there was a cpuset modification and we are retrying - otherwise we
4721 	 * could end up iterating over non-eligible zones endlessly.
4722 	 */
4723 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4724 					ac->highest_zoneidx, ac->nodemask);
4725 	if (!zonelist_zone(ac->preferred_zoneref))
4726 		goto nopage;
4727 
4728 	/*
4729 	 * Check for insane configurations where the cpuset doesn't contain
4730 	 * any suitable zone to satisfy the request - e.g. non-movable
4731 	 * GFP_HIGHUSER allocations from MOVABLE nodes only.
4732 	 */
4733 	if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) {
4734 		struct zoneref *z = first_zones_zonelist(ac->zonelist,
4735 					ac->highest_zoneidx,
4736 					&cpuset_current_mems_allowed);
4737 		if (!zonelist_zone(z))
4738 			goto nopage;
4739 	}
4740 
4741 	if (alloc_flags & ALLOC_KSWAPD)
4742 		wake_all_kswapds(order, gfp_mask, ac);
4743 
4744 	if (can_direct_reclaim && !direct_reclaim_retries && !(current->flags & PF_MEMALLOC))
4745 		trace_android_rvh_alloc_pages_reclaim_start(gfp_mask, order, &alloc_flags);
4746 
4747 	/*
4748 	 * The adjusted alloc_flags might result in immediate success, so try
4749 	 * that first
4750 	 */
4751 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4752 	if (page)
4753 		goto got_pg;
4754 
4755 	/*
4756 	 * For costly allocations, try direct compaction first, as it's likely
4757 	 * that we have enough base pages and don't need to reclaim. For non-
4758 	 * movable high-order allocations, do that as well, as compaction will
4759 	 * try prevent permanent fragmentation by migrating from blocks of the
4760 	 * same migratetype.
4761 	 * Don't try this for allocations that are allowed to ignore
4762 	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4763 	 */
4764 	if (can_direct_reclaim && can_compact &&
4765 			(costly_order ||
4766 			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4767 			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
4768 		page = __alloc_pages_direct_compact(gfp_mask, order,
4769 						alloc_flags, ac,
4770 						INIT_COMPACT_PRIORITY,
4771 						&compact_result);
4772 		if (page)
4773 			goto got_pg;
4774 
4775 		/*
4776 		 * Checks for costly allocations with __GFP_NORETRY, which
4777 		 * includes some THP page fault allocations
4778 		 */
4779 		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4780 			/*
4781 			 * If allocating entire pageblock(s) and compaction
4782 			 * failed because all zones are below low watermarks
4783 			 * or is prohibited because it recently failed at this
4784 			 * order, fail immediately unless the allocator has
4785 			 * requested compaction and reclaim retry.
4786 			 *
4787 			 * Reclaim is
4788 			 *  - potentially very expensive because zones are far
4789 			 *    below their low watermarks or this is part of very
4790 			 *    bursty high order allocations,
4791 			 *  - not guaranteed to help because isolate_freepages()
4792 			 *    may not iterate over freed pages as part of its
4793 			 *    linear scan, and
4794 			 *  - unlikely to make entire pageblocks free on its
4795 			 *    own.
4796 			 */
4797 			if (compact_result == COMPACT_SKIPPED ||
4798 			    compact_result == COMPACT_DEFERRED)
4799 				goto nopage;
4800 
4801 			/*
4802 			 * Looks like reclaim/compaction is worth trying, but
4803 			 * sync compaction could be very expensive, so keep
4804 			 * using async compaction.
4805 			 */
4806 			compact_priority = INIT_COMPACT_PRIORITY;
4807 		}
4808 	}
4809 
4810 retry:
4811 	retry_loop_count++;
4812 
4813 	/*
4814 	 * Deal with possible cpuset update races or zonelist updates to avoid
4815 	 * infinite retries.
4816 	 */
4817 	if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4818 	    check_retry_zonelist(zonelist_iter_cookie))
4819 		goto restart;
4820 
4821 	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4822 	if (alloc_flags & ALLOC_KSWAPD)
4823 		wake_all_kswapds(order, gfp_mask, ac);
4824 
4825 	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4826 	if (reserve_flags)
4827 		alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags) |
4828 					  (alloc_flags & ALLOC_KSWAPD);
4829 
4830 	/*
4831 	 * Reset the nodemask and zonelist iterators if memory policies can be
4832 	 * ignored. These allocations are high priority and system rather than
4833 	 * user oriented.
4834 	 */
4835 	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4836 		ac->nodemask = NULL;
4837 		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4838 					ac->highest_zoneidx, ac->nodemask);
4839 	}
4840 
4841 	/* Attempt with potentially adjusted zonelist and alloc_flags */
4842 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4843 	if (page)
4844 		goto got_pg;
4845 
4846 	/* Caller is not willing to reclaim, we can't balance anything */
4847 	if (!can_direct_reclaim)
4848 		goto nopage;
4849 
4850 	/* Avoid recursion of direct reclaim */
4851 	if (current->flags & PF_MEMALLOC)
4852 		goto nopage;
4853 
4854 	trace_android_vh_should_alloc_pages_retry(gfp_mask, order, &alloc_flags,
4855 		ac->migratetype, ac->preferred_zoneref->zone, &page, &should_alloc_retry);
4856 	if (should_alloc_retry)
4857 		goto retry;
4858 
4859 	trace_android_vh_alloc_pages_reclaim_bypass(gfp_mask, order,
4860 		alloc_flags, ac->migratetype, &page);
4861 
4862 	if (page)
4863 		goto got_pg;
4864 
4865 	if (direct_reclaim_retries < ULONG_MAX)
4866 		direct_reclaim_retries++;
4867 
4868 	/* Try direct reclaim and then allocating */
4869 	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4870 							&did_some_progress);
4871 	pages_reclaimed += did_some_progress;
4872 	if (page)
4873 		goto got_pg;
4874 
4875 	/* Try direct compaction and then allocating */
4876 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4877 					compact_priority, &compact_result);
4878 	if (page)
4879 		goto got_pg;
4880 
4881 	/* Do not loop if specifically requested */
4882 	if (gfp_mask & __GFP_NORETRY)
4883 		goto nopage;
4884 
4885 	/*
4886 	 * Do not retry costly high order allocations unless they are
4887 	 * __GFP_RETRY_MAYFAIL and we can compact
4888 	 */
4889 	if (costly_order && (!can_compact ||
4890 			     !(gfp_mask & __GFP_RETRY_MAYFAIL)))
4891 		goto nopage;
4892 
4893 	trace_android_rvh_alloc_pages_reclaim_cycle_end(gfp_mask, order,
4894 		&alloc_flags, &did_some_progress, &no_progress_loops, direct_reclaim_retries);
4895 
4896 	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4897 				 did_some_progress > 0, &no_progress_loops))
4898 		goto retry;
4899 
4900 	/*
4901 	 * It doesn't make any sense to retry for the compaction if the order-0
4902 	 * reclaim is not able to make any progress because the current
4903 	 * implementation of the compaction depends on the sufficient amount
4904 	 * of free memory (see __compaction_suitable)
4905 	 */
4906 	if (did_some_progress > 0 && can_compact &&
4907 			should_compact_retry(ac, order, alloc_flags,
4908 				compact_result, &compact_priority,
4909 				&compaction_retries))
4910 		goto retry;
4911 
4912 
4913 	/*
4914 	 * Deal with possible cpuset update races or zonelist updates to avoid
4915 	 * a unnecessary OOM kill.
4916 	 */
4917 	if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4918 	    check_retry_zonelist(zonelist_iter_cookie))
4919 		goto restart;
4920 
4921 	/* Reclaim has failed us, start killing things */
4922 	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4923 	if (page)
4924 		goto got_pg;
4925 
4926 	/* Avoid allocations with no watermarks from looping endlessly */
4927 	if (tsk_is_oom_victim(current) &&
4928 	    (alloc_flags & ALLOC_OOM ||
4929 	     (gfp_mask & __GFP_NOMEMALLOC)))
4930 		goto nopage;
4931 
4932 	/* Retry as long as the OOM killer is making progress */
4933 	if (did_some_progress) {
4934 		no_progress_loops = 0;
4935 		goto retry;
4936 	}
4937 
4938 nopage:
4939 	/*
4940 	 * Deal with possible cpuset update races or zonelist updates to avoid
4941 	 * a unnecessary OOM kill.
4942 	 */
4943 	if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4944 	    check_retry_zonelist(zonelist_iter_cookie))
4945 		goto restart;
4946 
4947 	/*
4948 	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4949 	 * we always retry
4950 	 */
4951 	if (unlikely(nofail)) {
4952 		/*
4953 		 * Lacking direct_reclaim we can't do anything to reclaim memory,
4954 		 * we disregard these unreasonable nofail requests and still
4955 		 * return NULL
4956 		 */
4957 		if (!can_direct_reclaim)
4958 			goto fail;
4959 
4960 		/*
4961 		 * Help non-failing allocations by giving some access to memory
4962 		 * reserves normally used for high priority non-blocking
4963 		 * allocations but do not use ALLOC_NO_WATERMARKS because this
4964 		 * could deplete whole memory reserves which would just make
4965 		 * the situation worse.
4966 		 */
4967 		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_MIN_RESERVE, ac);
4968 		if (page)
4969 			goto got_pg;
4970 
4971 		cond_resched();
4972 		goto retry;
4973 	}
4974 fail:
4975 	trace_android_vh_alloc_pages_failure_bypass(gfp_mask, order,
4976 		alloc_flags, ac->migratetype, &page);
4977 	if (page)
4978 		goto got_pg;
4979 
4980 	warn_alloc(gfp_mask, ac->nodemask,
4981 			"page allocation failure: order:%u", order);
4982 got_pg:
4983 	trace_android_vh_alloc_pages_slowpath_end(&gfp_mask, order, alloc_start,
4984 			stime, did_some_progress, pages_reclaimed, retry_loop_count);
4985 	return page;
4986 }
4987 
prepare_alloc_pages(gfp_t gfp_mask,unsigned int order,int preferred_nid,nodemask_t * nodemask,struct alloc_context * ac,gfp_t * alloc_gfp,unsigned int * alloc_flags)4988 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4989 		int preferred_nid, nodemask_t *nodemask,
4990 		struct alloc_context *ac, gfp_t *alloc_gfp,
4991 		unsigned int *alloc_flags)
4992 {
4993 	ac->highest_zoneidx = gfp_zone(gfp_mask);
4994 	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4995 	ac->nodemask = nodemask;
4996 	ac->migratetype = gfp_migratetype(gfp_mask);
4997 
4998 	if (cpusets_enabled()) {
4999 		*alloc_gfp |= __GFP_HARDWALL;
5000 		/*
5001 		 * When we are in the interrupt context, it is irrelevant
5002 		 * to the current task context. It means that any node ok.
5003 		 */
5004 		if (in_task() && !ac->nodemask)
5005 			ac->nodemask = &cpuset_current_mems_allowed;
5006 		else
5007 			*alloc_flags |= ALLOC_CPUSET;
5008 	}
5009 
5010 	might_alloc(gfp_mask);
5011 
5012 	if (should_fail_alloc_page(gfp_mask, order))
5013 		return false;
5014 
5015 	*alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
5016 
5017 	/* Dirty zone balancing only done in the fast path */
5018 	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
5019 
5020 	/*
5021 	 * The preferred zone is used for statistics but crucially it is
5022 	 * also used as the starting point for the zonelist iterator. It
5023 	 * may get reset for allocations that ignore memory policies.
5024 	 */
5025 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5026 					ac->highest_zoneidx, ac->nodemask);
5027 
5028 	return true;
5029 }
5030 
5031 /*
5032  * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
5033  * @gfp: GFP flags for the allocation
5034  * @preferred_nid: The preferred NUMA node ID to allocate from
5035  * @nodemask: Set of nodes to allocate from, may be NULL
5036  * @nr_pages: The number of pages desired on the list or array
5037  * @page_list: Optional list to store the allocated pages
5038  * @page_array: Optional array to store the pages
5039  *
5040  * This is a batched version of the page allocator that attempts to
5041  * allocate nr_pages quickly. Pages are added to page_list if page_list
5042  * is not NULL, otherwise it is assumed that the page_array is valid.
5043  *
5044  * For lists, nr_pages is the number of pages that should be allocated.
5045  *
5046  * For arrays, only NULL elements are populated with pages and nr_pages
5047  * is the maximum number of pages that will be stored in the array.
5048  *
5049  * Returns the number of pages on the list or array.
5050  */
alloc_pages_bulk_noprof(gfp_t gfp,int preferred_nid,nodemask_t * nodemask,int nr_pages,struct list_head * page_list,struct page ** page_array)5051 unsigned long alloc_pages_bulk_noprof(gfp_t gfp, int preferred_nid,
5052 			nodemask_t *nodemask, int nr_pages,
5053 			struct list_head *page_list,
5054 			struct page **page_array)
5055 {
5056 	struct page *page;
5057 	unsigned long __maybe_unused UP_flags;
5058 	struct zone *zone;
5059 	struct zoneref *z;
5060 	struct per_cpu_pages *pcp;
5061 	struct list_head *pcp_list;
5062 	struct alloc_context ac;
5063 	gfp_t alloc_gfp;
5064 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
5065 	int nr_populated = 0, nr_account = 0;
5066 
5067 	/*
5068 	 * Skip populated array elements to determine if any pages need
5069 	 * to be allocated before disabling IRQs.
5070 	 */
5071 	while (page_array && nr_populated < nr_pages && page_array[nr_populated])
5072 		nr_populated++;
5073 
5074 	/* No pages requested? */
5075 	if (unlikely(nr_pages <= 0))
5076 		goto out;
5077 
5078 	/* Already populated array? */
5079 	if (unlikely(page_array && nr_pages - nr_populated == 0))
5080 		goto out;
5081 
5082 	/* Bulk allocator does not support memcg accounting. */
5083 	if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT))
5084 		goto failed;
5085 
5086 	/* Use the single page allocator for one page. */
5087 	if (nr_pages - nr_populated == 1)
5088 		goto failed;
5089 
5090 #ifdef CONFIG_PAGE_OWNER
5091 	/*
5092 	 * PAGE_OWNER may recurse into the allocator to allocate space to
5093 	 * save the stack with pagesets.lock held. Releasing/reacquiring
5094 	 * removes much of the performance benefit of bulk allocation so
5095 	 * force the caller to allocate one page at a time as it'll have
5096 	 * similar performance to added complexity to the bulk allocator.
5097 	 */
5098 	if (static_branch_unlikely(&page_owner_inited))
5099 		goto failed;
5100 #endif
5101 
5102 	/* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
5103 	gfp &= gfp_allowed_mask;
5104 	alloc_gfp = gfp;
5105 	if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
5106 		goto out;
5107 	gfp = alloc_gfp;
5108 
5109 	/* Find an allowed local zone that meets the low watermark. */
5110 	z = ac.preferred_zoneref;
5111 	for_next_zone_zonelist_nodemask(zone, z, ac.highest_zoneidx, ac.nodemask) {
5112 		unsigned long mark;
5113 
5114 		if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
5115 		    !__cpuset_zone_allowed(zone, gfp)) {
5116 			continue;
5117 		}
5118 
5119 		if (nr_online_nodes > 1 && zone != zonelist_zone(ac.preferred_zoneref) &&
5120 		    zone_to_nid(zone) != zonelist_node_idx(ac.preferred_zoneref)) {
5121 			goto failed;
5122 		}
5123 
5124 		cond_accept_memory(zone, 0);
5125 retry_this_zone:
5126 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
5127 		if (zone_watermark_fast(zone, 0,  mark,
5128 				zonelist_zone_idx(ac.preferred_zoneref),
5129 				alloc_flags, gfp)) {
5130 			break;
5131 		}
5132 
5133 		if (cond_accept_memory(zone, 0))
5134 			goto retry_this_zone;
5135 
5136 		/* Try again if zone has deferred pages */
5137 		if (deferred_pages_enabled()) {
5138 			if (_deferred_grow_zone(zone, 0))
5139 				goto retry_this_zone;
5140 		}
5141 	}
5142 
5143 	/*
5144 	 * If there are no allowed local zones that meets the watermarks then
5145 	 * try to allocate a single page and reclaim if necessary.
5146 	 */
5147 	if (unlikely(!zone))
5148 		goto failed;
5149 
5150 	/* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
5151 	pcp_trylock_prepare(UP_flags);
5152 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
5153 	if (!pcp)
5154 		goto failed_irq;
5155 
5156 	/* Attempt the batch allocation */
5157 	pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
5158 	while (nr_populated < nr_pages) {
5159 
5160 		/* Skip existing pages */
5161 		if (page_array && page_array[nr_populated]) {
5162 			nr_populated++;
5163 			continue;
5164 		}
5165 
5166 		page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
5167 								pcp, pcp_list);
5168 		if (unlikely(!page)) {
5169 			/* Try and allocate at least one page */
5170 			if (!nr_account) {
5171 				pcp_spin_unlock(pcp);
5172 				goto failed_irq;
5173 			}
5174 			break;
5175 		}
5176 		nr_account++;
5177 
5178 		prep_new_page(page, 0, gfp, 0);
5179 		if (page_list)
5180 			list_add(&page->lru, page_list);
5181 		else
5182 			page_array[nr_populated] = page;
5183 		nr_populated++;
5184 	}
5185 
5186 	pcp_spin_unlock(pcp);
5187 	pcp_trylock_finish(UP_flags);
5188 
5189 	__count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
5190 	zone_statistics(zonelist_zone(ac.preferred_zoneref), zone, nr_account);
5191 
5192 out:
5193 	return nr_populated;
5194 
5195 failed_irq:
5196 	pcp_trylock_finish(UP_flags);
5197 
5198 failed:
5199 	page = __alloc_pages_noprof(gfp, 0, preferred_nid, nodemask);
5200 	if (page) {
5201 		if (page_list)
5202 			list_add(&page->lru, page_list);
5203 		else
5204 			page_array[nr_populated] = page;
5205 		nr_populated++;
5206 	}
5207 
5208 	goto out;
5209 }
5210 EXPORT_SYMBOL_GPL(alloc_pages_bulk_noprof);
5211 
5212 /*
5213  * This is the 'heart' of the zoned buddy allocator.
5214  */
__alloc_pages_noprof(gfp_t gfp,unsigned int order,int preferred_nid,nodemask_t * nodemask)5215 struct page *__alloc_pages_noprof(gfp_t gfp, unsigned int order,
5216 				      int preferred_nid, nodemask_t *nodemask)
5217 {
5218 	struct page *page = NULL;
5219 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
5220 	gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
5221 	struct alloc_context ac = { };
5222 
5223 	trace_android_vh_alloc_pages_entry(&gfp, order, preferred_nid, nodemask);
5224 	/*
5225 	 * There are several places where we assume that the order value is sane
5226 	 * so bail out early if the request is out of bound.
5227 	 */
5228 	if (WARN_ON_ONCE_GFP(order > MAX_PAGE_ORDER, gfp))
5229 		return NULL;
5230 
5231 	gfp &= gfp_allowed_mask;
5232 	/*
5233 	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
5234 	 * resp. GFP_NOIO which has to be inherited for all allocation requests
5235 	 * from a particular context which has been marked by
5236 	 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
5237 	 * movable zones are not used during allocation.
5238 	 */
5239 	gfp = current_gfp_context(gfp);
5240 	alloc_gfp = gfp;
5241 	if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
5242 			&alloc_gfp, &alloc_flags))
5243 		return NULL;
5244 
5245 	trace_android_vh_mm_customize_ac(gfp, order, &ac.zonelist, &ac.preferred_zoneref,
5246 					 &ac.highest_zoneidx, &alloc_flags);
5247 
5248 	trace_android_rvh_try_alloc_pages_gfp(&page, order, gfp, gfp_zone(gfp));
5249 	if (page)
5250 		goto out;
5251 	/*
5252 	 * Forbid the first pass from falling back to types that fragment
5253 	 * memory until all local zones are considered.
5254 	 */
5255 	alloc_flags |= alloc_flags_nofragment(zonelist_zone(ac.preferred_zoneref), gfp);
5256 
5257 	/* First allocation attempt */
5258 	page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
5259 	if (likely(page))
5260 		goto out;
5261 
5262 	alloc_gfp = gfp;
5263 	ac.spread_dirty_pages = false;
5264 
5265 	/*
5266 	 * Restore the original nodemask if it was potentially replaced with
5267 	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
5268 	 */
5269 	ac.nodemask = nodemask;
5270 	trace_android_vh_customize_alloc_gfp(&alloc_gfp, order);
5271 
5272 	page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
5273 
5274 out:
5275 	if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT) && page &&
5276 	    unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
5277 		__free_pages(page, order);
5278 		page = NULL;
5279 	}
5280 
5281 	trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
5282 	kmsan_alloc_page(page, order, alloc_gfp);
5283 
5284 	return page;
5285 }
5286 EXPORT_SYMBOL(__alloc_pages_noprof);
5287 
__folio_alloc_noprof(gfp_t gfp,unsigned int order,int preferred_nid,nodemask_t * nodemask)5288 struct folio *__folio_alloc_noprof(gfp_t gfp, unsigned int order, int preferred_nid,
5289 		nodemask_t *nodemask)
5290 {
5291 	struct page *page = __alloc_pages_noprof(gfp | __GFP_COMP, order,
5292 					preferred_nid, nodemask);
5293 	return page_rmappable_folio(page);
5294 }
5295 EXPORT_SYMBOL(__folio_alloc_noprof);
5296 
5297 /*
5298  * Common helper functions. Never use with __GFP_HIGHMEM because the returned
5299  * address cannot represent highmem pages. Use alloc_pages and then kmap if
5300  * you need to access high mem.
5301  */
get_free_pages_noprof(gfp_t gfp_mask,unsigned int order)5302 unsigned long get_free_pages_noprof(gfp_t gfp_mask, unsigned int order)
5303 {
5304 	struct page *page;
5305 
5306 	page = alloc_pages_noprof(gfp_mask & ~__GFP_HIGHMEM, order);
5307 	if (!page)
5308 		return 0;
5309 	return (unsigned long) page_address(page);
5310 }
5311 EXPORT_SYMBOL(get_free_pages_noprof);
5312 
get_zeroed_page_noprof(gfp_t gfp_mask)5313 unsigned long get_zeroed_page_noprof(gfp_t gfp_mask)
5314 {
5315 	return get_free_pages_noprof(gfp_mask | __GFP_ZERO, 0);
5316 }
5317 EXPORT_SYMBOL(get_zeroed_page_noprof);
5318 
5319 /**
5320  * __free_pages - Free pages allocated with alloc_pages().
5321  * @page: The page pointer returned from alloc_pages().
5322  * @order: The order of the allocation.
5323  *
5324  * This function can free multi-page allocations that are not compound
5325  * pages.  It does not check that the @order passed in matches that of
5326  * the allocation, so it is easy to leak memory.  Freeing more memory
5327  * than was allocated will probably emit a warning.
5328  *
5329  * If the last reference to this page is speculative, it will be released
5330  * by put_page() which only frees the first page of a non-compound
5331  * allocation.  To prevent the remaining pages from being leaked, we free
5332  * the subsequent pages here.  If you want to use the page's reference
5333  * count to decide when to free the allocation, you should allocate a
5334  * compound page, and use put_page() instead of __free_pages().
5335  *
5336  * Context: May be called in interrupt context or while holding a normal
5337  * spinlock, but not in NMI context or while holding a raw spinlock.
5338  */
__free_pages(struct page * page,unsigned int order)5339 void __free_pages(struct page *page, unsigned int order)
5340 {
5341 	/* get PageHead before we drop reference */
5342 	int head = PageHead(page);
5343 
5344 	if (put_page_testzero(page))
5345 		free_unref_page(page, order);
5346 	else if (!head) {
5347 		pgalloc_tag_sub_pages(page, (1 << order) - 1);
5348 		while (order-- > 0)
5349 			free_unref_page(page + (1 << order), order);
5350 	}
5351 }
5352 EXPORT_SYMBOL(__free_pages);
5353 
free_pages(unsigned long addr,unsigned int order)5354 void free_pages(unsigned long addr, unsigned int order)
5355 {
5356 	if (addr != 0) {
5357 		VM_BUG_ON(!virt_addr_valid((void *)addr));
5358 		__free_pages(virt_to_page((void *)addr), order);
5359 	}
5360 }
5361 
5362 EXPORT_SYMBOL(free_pages);
5363 
5364 /*
5365  * Page Fragment:
5366  *  An arbitrary-length arbitrary-offset area of memory which resides
5367  *  within a 0 or higher order page.  Multiple fragments within that page
5368  *  are individually refcounted, in the page's reference counter.
5369  *
5370  * The page_frag functions below provide a simple allocation framework for
5371  * page fragments.  This is used by the network stack and network device
5372  * drivers to provide a backing region of memory for use as either an
5373  * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
5374  */
__page_frag_cache_refill(struct page_frag_cache * nc,gfp_t gfp_mask)5375 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
5376 					     gfp_t gfp_mask)
5377 {
5378 	struct page *page = NULL;
5379 	gfp_t gfp = gfp_mask;
5380 
5381 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5382 	gfp_mask = (gfp_mask & ~__GFP_DIRECT_RECLAIM) |  __GFP_COMP |
5383 		   __GFP_NOWARN | __GFP_NORETRY | __GFP_NOMEMALLOC;
5384 	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
5385 				PAGE_FRAG_CACHE_MAX_ORDER);
5386 	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
5387 #endif
5388 	if (unlikely(!page))
5389 		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
5390 
5391 	nc->va = page ? page_address(page) : NULL;
5392 
5393 	return page;
5394 }
5395 
page_frag_cache_drain(struct page_frag_cache * nc)5396 void page_frag_cache_drain(struct page_frag_cache *nc)
5397 {
5398 	if (!nc->va)
5399 		return;
5400 
5401 	__page_frag_cache_drain(virt_to_head_page(nc->va), nc->pagecnt_bias);
5402 	nc->va = NULL;
5403 }
5404 EXPORT_SYMBOL(page_frag_cache_drain);
5405 
__page_frag_cache_drain(struct page * page,unsigned int count)5406 void __page_frag_cache_drain(struct page *page, unsigned int count)
5407 {
5408 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
5409 
5410 	if (page_ref_sub_and_test(page, count))
5411 		free_unref_page(page, compound_order(page));
5412 }
5413 EXPORT_SYMBOL(__page_frag_cache_drain);
5414 
__page_frag_alloc_align(struct page_frag_cache * nc,unsigned int fragsz,gfp_t gfp_mask,unsigned int align_mask)5415 void *__page_frag_alloc_align(struct page_frag_cache *nc,
5416 			      unsigned int fragsz, gfp_t gfp_mask,
5417 			      unsigned int align_mask)
5418 {
5419 	unsigned int size = PAGE_SIZE;
5420 	struct page *page;
5421 	int offset;
5422 
5423 	if (unlikely(!nc->va)) {
5424 refill:
5425 		page = __page_frag_cache_refill(nc, gfp_mask);
5426 		if (!page)
5427 			return NULL;
5428 
5429 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5430 		/* if size can vary use size else just use PAGE_SIZE */
5431 		size = nc->size;
5432 #endif
5433 		/* Even if we own the page, we do not use atomic_set().
5434 		 * This would break get_page_unless_zero() users.
5435 		 */
5436 		page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
5437 
5438 		/* reset page count bias and offset to start of new frag */
5439 		nc->pfmemalloc = page_is_pfmemalloc(page);
5440 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5441 		nc->offset = size;
5442 	}
5443 
5444 	offset = nc->offset - fragsz;
5445 	if (unlikely(offset < 0)) {
5446 		page = virt_to_page(nc->va);
5447 
5448 		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
5449 			goto refill;
5450 
5451 		if (unlikely(nc->pfmemalloc)) {
5452 			free_unref_page(page, compound_order(page));
5453 			goto refill;
5454 		}
5455 
5456 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5457 		/* if size can vary use size else just use PAGE_SIZE */
5458 		size = nc->size;
5459 #endif
5460 		/* OK, page count is 0, we can safely set it */
5461 		set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
5462 
5463 		/* reset page count bias and offset to start of new frag */
5464 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5465 		offset = size - fragsz;
5466 		if (unlikely(offset < 0)) {
5467 			/*
5468 			 * The caller is trying to allocate a fragment
5469 			 * with fragsz > PAGE_SIZE but the cache isn't big
5470 			 * enough to satisfy the request, this may
5471 			 * happen in low memory conditions.
5472 			 * We don't release the cache page because
5473 			 * it could make memory pressure worse
5474 			 * so we simply return NULL here.
5475 			 */
5476 			return NULL;
5477 		}
5478 	}
5479 
5480 	nc->pagecnt_bias--;
5481 	offset &= align_mask;
5482 	nc->offset = offset;
5483 
5484 	return nc->va + offset;
5485 }
5486 EXPORT_SYMBOL(__page_frag_alloc_align);
5487 
5488 /*
5489  * Frees a page fragment allocated out of either a compound or order 0 page.
5490  */
page_frag_free(void * addr)5491 void page_frag_free(void *addr)
5492 {
5493 	struct page *page = virt_to_head_page(addr);
5494 
5495 	if (unlikely(put_page_testzero(page)))
5496 		free_unref_page(page, compound_order(page));
5497 }
5498 EXPORT_SYMBOL(page_frag_free);
5499 
make_alloc_exact(unsigned long addr,unsigned int order,size_t size)5500 static void *make_alloc_exact(unsigned long addr, unsigned int order,
5501 		size_t size)
5502 {
5503 	if (addr) {
5504 		unsigned long nr = DIV_ROUND_UP(size, PAGE_SIZE);
5505 		struct page *page = virt_to_page((void *)addr);
5506 		struct page *last = page + nr;
5507 
5508 		split_page_owner(page, order, 0);
5509 		pgalloc_tag_split(page_folio(page), order, 0);
5510 		split_page_memcg(page, order, 0);
5511 		while (page < --last)
5512 			set_page_refcounted(last);
5513 
5514 		last = page + (1UL << order);
5515 		for (page += nr; page < last; page++)
5516 			__free_pages_ok(page, 0, FPI_TO_TAIL);
5517 	}
5518 	return (void *)addr;
5519 }
5520 
5521 /**
5522  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5523  * @size: the number of bytes to allocate
5524  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5525  *
5526  * This function is similar to alloc_pages(), except that it allocates the
5527  * minimum number of pages to satisfy the request.  alloc_pages() can only
5528  * allocate memory in power-of-two pages.
5529  *
5530  * This function is also limited by MAX_PAGE_ORDER.
5531  *
5532  * Memory allocated by this function must be released by free_pages_exact().
5533  *
5534  * Return: pointer to the allocated area or %NULL in case of error.
5535  */
alloc_pages_exact_noprof(size_t size,gfp_t gfp_mask)5536 void *alloc_pages_exact_noprof(size_t size, gfp_t gfp_mask)
5537 {
5538 	unsigned int order = get_order(size);
5539 	unsigned long addr;
5540 
5541 	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5542 		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
5543 
5544 	addr = get_free_pages_noprof(gfp_mask, order);
5545 	return make_alloc_exact(addr, order, size);
5546 }
5547 EXPORT_SYMBOL(alloc_pages_exact_noprof);
5548 
5549 /**
5550  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5551  *			   pages on a node.
5552  * @nid: the preferred node ID where memory should be allocated
5553  * @size: the number of bytes to allocate
5554  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5555  *
5556  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5557  * back.
5558  *
5559  * Return: pointer to the allocated area or %NULL in case of error.
5560  */
alloc_pages_exact_nid_noprof(int nid,size_t size,gfp_t gfp_mask)5561 void * __meminit alloc_pages_exact_nid_noprof(int nid, size_t size, gfp_t gfp_mask)
5562 {
5563 	unsigned int order = get_order(size);
5564 	struct page *p;
5565 
5566 	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5567 		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
5568 
5569 	p = alloc_pages_node_noprof(nid, gfp_mask, order);
5570 	if (!p)
5571 		return NULL;
5572 	return make_alloc_exact((unsigned long)page_address(p), order, size);
5573 }
5574 
5575 /**
5576  * free_pages_exact - release memory allocated via alloc_pages_exact()
5577  * @virt: the value returned by alloc_pages_exact.
5578  * @size: size of allocation, same value as passed to alloc_pages_exact().
5579  *
5580  * Release the memory allocated by a previous call to alloc_pages_exact.
5581  */
free_pages_exact(void * virt,size_t size)5582 void free_pages_exact(void *virt, size_t size)
5583 {
5584 	unsigned long addr = (unsigned long)virt;
5585 	unsigned long end = addr + PAGE_ALIGN(size);
5586 
5587 	while (addr < end) {
5588 		free_page(addr);
5589 		addr += PAGE_SIZE;
5590 	}
5591 }
5592 EXPORT_SYMBOL(free_pages_exact);
5593 
5594 /**
5595  * nr_free_zone_pages - count number of pages beyond high watermark
5596  * @offset: The zone index of the highest zone
5597  *
5598  * nr_free_zone_pages() counts the number of pages which are beyond the
5599  * high watermark within all zones at or below a given zone index.  For each
5600  * zone, the number of pages is calculated as:
5601  *
5602  *     nr_free_zone_pages = managed_pages - high_pages
5603  *
5604  * Return: number of pages beyond high watermark.
5605  */
nr_free_zone_pages(int offset)5606 static unsigned long nr_free_zone_pages(int offset)
5607 {
5608 	struct zoneref *z;
5609 	struct zone *zone;
5610 
5611 	/* Just pick one node, since fallback list is circular */
5612 	unsigned long sum = 0;
5613 
5614 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5615 
5616 	for_each_zone_zonelist(zone, z, zonelist, offset) {
5617 		unsigned long size = zone_managed_pages(zone);
5618 		unsigned long high = high_wmark_pages(zone);
5619 		if (size > high)
5620 			sum += size - high;
5621 	}
5622 
5623 	return sum;
5624 }
5625 
5626 /**
5627  * nr_free_buffer_pages - count number of pages beyond high watermark
5628  *
5629  * nr_free_buffer_pages() counts the number of pages which are beyond the high
5630  * watermark within ZONE_DMA and ZONE_NORMAL.
5631  *
5632  * Return: number of pages beyond high watermark within ZONE_DMA and
5633  * ZONE_NORMAL.
5634  */
nr_free_buffer_pages(void)5635 unsigned long nr_free_buffer_pages(void)
5636 {
5637 	return nr_free_zone_pages(gfp_zone(GFP_USER));
5638 }
5639 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5640 
zoneref_set_zone(struct zone * zone,struct zoneref * zoneref)5641 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5642 {
5643 	zoneref->zone = zone;
5644 	zoneref->zone_idx = zone_idx(zone);
5645 }
5646 
5647 /*
5648  * Builds allocation fallback zone lists.
5649  *
5650  * Add all populated zones of a node to the zonelist.
5651  */
build_zonerefs_node(pg_data_t * pgdat,struct zoneref * zonerefs)5652 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
5653 {
5654 	struct zone *zone;
5655 	enum zone_type zone_type = MAX_NR_ZONES;
5656 	int nr_zones = 0;
5657 
5658 	do {
5659 		zone_type--;
5660 		zone = pgdat->node_zones + zone_type;
5661 		if (populated_zone(zone)) {
5662 			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5663 			check_highest_zone(zone_type);
5664 		}
5665 	} while (zone_type);
5666 
5667 	return nr_zones;
5668 }
5669 
5670 #ifdef CONFIG_NUMA
5671 
__parse_numa_zonelist_order(char * s)5672 static int __parse_numa_zonelist_order(char *s)
5673 {
5674 	/*
5675 	 * We used to support different zonelists modes but they turned
5676 	 * out to be just not useful. Let's keep the warning in place
5677 	 * if somebody still use the cmd line parameter so that we do
5678 	 * not fail it silently
5679 	 */
5680 	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5681 		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
5682 		return -EINVAL;
5683 	}
5684 	return 0;
5685 }
5686 
5687 static char numa_zonelist_order[] = "Node";
5688 #define NUMA_ZONELIST_ORDER_LEN	16
5689 /*
5690  * sysctl handler for numa_zonelist_order
5691  */
numa_zonelist_order_handler(const struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)5692 static int numa_zonelist_order_handler(const struct ctl_table *table, int write,
5693 		void *buffer, size_t *length, loff_t *ppos)
5694 {
5695 	if (write)
5696 		return __parse_numa_zonelist_order(buffer);
5697 	return proc_dostring(table, write, buffer, length, ppos);
5698 }
5699 
5700 static int node_load[MAX_NUMNODES];
5701 
5702 /**
5703  * find_next_best_node - find the next node that should appear in a given node's fallback list
5704  * @node: node whose fallback list we're appending
5705  * @used_node_mask: nodemask_t of already used nodes
5706  *
5707  * We use a number of factors to determine which is the next node that should
5708  * appear on a given node's fallback list.  The node should not have appeared
5709  * already in @node's fallback list, and it should be the next closest node
5710  * according to the distance array (which contains arbitrary distance values
5711  * from each node to each node in the system), and should also prefer nodes
5712  * with no CPUs, since presumably they'll have very little allocation pressure
5713  * on them otherwise.
5714  *
5715  * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
5716  */
find_next_best_node(int node,nodemask_t * used_node_mask)5717 int find_next_best_node(int node, nodemask_t *used_node_mask)
5718 {
5719 	int n, val;
5720 	int min_val = INT_MAX;
5721 	int best_node = NUMA_NO_NODE;
5722 
5723 	/*
5724 	 * Use the local node if we haven't already, but for memoryless local
5725 	 * node, we should skip it and fall back to other nodes.
5726 	 */
5727 	if (!node_isset(node, *used_node_mask) && node_state(node, N_MEMORY)) {
5728 		node_set(node, *used_node_mask);
5729 		return node;
5730 	}
5731 
5732 	for_each_node_state(n, N_MEMORY) {
5733 
5734 		/* Don't want a node to appear more than once */
5735 		if (node_isset(n, *used_node_mask))
5736 			continue;
5737 
5738 		/* Use the distance array to find the distance */
5739 		val = node_distance(node, n);
5740 
5741 		/* Penalize nodes under us ("prefer the next node") */
5742 		val += (n < node);
5743 
5744 		/* Give preference to headless and unused nodes */
5745 		if (!cpumask_empty(cpumask_of_node(n)))
5746 			val += PENALTY_FOR_NODE_WITH_CPUS;
5747 
5748 		/* Slight preference for less loaded node */
5749 		val *= MAX_NUMNODES;
5750 		val += node_load[n];
5751 
5752 		if (val < min_val) {
5753 			min_val = val;
5754 			best_node = n;
5755 		}
5756 	}
5757 
5758 	if (best_node >= 0)
5759 		node_set(best_node, *used_node_mask);
5760 
5761 	return best_node;
5762 }
5763 
5764 
5765 /*
5766  * Build zonelists ordered by node and zones within node.
5767  * This results in maximum locality--normal zone overflows into local
5768  * DMA zone, if any--but risks exhausting DMA zone.
5769  */
build_zonelists_in_node_order(pg_data_t * pgdat,int * node_order,unsigned nr_nodes)5770 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5771 		unsigned nr_nodes)
5772 {
5773 	struct zoneref *zonerefs;
5774 	int i;
5775 
5776 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5777 
5778 	for (i = 0; i < nr_nodes; i++) {
5779 		int nr_zones;
5780 
5781 		pg_data_t *node = NODE_DATA(node_order[i]);
5782 
5783 		nr_zones = build_zonerefs_node(node, zonerefs);
5784 		zonerefs += nr_zones;
5785 	}
5786 	zonerefs->zone = NULL;
5787 	zonerefs->zone_idx = 0;
5788 }
5789 
5790 /*
5791  * Build __GFP_THISNODE zonelists
5792  */
build_thisnode_zonelists(pg_data_t * pgdat)5793 static void build_thisnode_zonelists(pg_data_t *pgdat)
5794 {
5795 	struct zoneref *zonerefs;
5796 	int nr_zones;
5797 
5798 	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5799 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5800 	zonerefs += nr_zones;
5801 	zonerefs->zone = NULL;
5802 	zonerefs->zone_idx = 0;
5803 }
5804 
5805 /*
5806  * Build zonelists ordered by zone and nodes within zones.
5807  * This results in conserving DMA zone[s] until all Normal memory is
5808  * exhausted, but results in overflowing to remote node while memory
5809  * may still exist in local DMA zone.
5810  */
5811 
build_zonelists(pg_data_t * pgdat)5812 static void build_zonelists(pg_data_t *pgdat)
5813 {
5814 	static int node_order[MAX_NUMNODES];
5815 	int node, nr_nodes = 0;
5816 	nodemask_t used_mask = NODE_MASK_NONE;
5817 	int local_node, prev_node;
5818 
5819 	/* NUMA-aware ordering of nodes */
5820 	local_node = pgdat->node_id;
5821 	prev_node = local_node;
5822 
5823 	memset(node_order, 0, sizeof(node_order));
5824 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5825 		/*
5826 		 * We don't want to pressure a particular node.
5827 		 * So adding penalty to the first node in same
5828 		 * distance group to make it round-robin.
5829 		 */
5830 		if (node_distance(local_node, node) !=
5831 		    node_distance(local_node, prev_node))
5832 			node_load[node] += 1;
5833 
5834 		node_order[nr_nodes++] = node;
5835 		prev_node = node;
5836 	}
5837 
5838 	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5839 	build_thisnode_zonelists(pgdat);
5840 	pr_info("Fallback order for Node %d: ", local_node);
5841 	for (node = 0; node < nr_nodes; node++)
5842 		pr_cont("%d ", node_order[node]);
5843 	pr_cont("\n");
5844 }
5845 
5846 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5847 /*
5848  * Return node id of node used for "local" allocations.
5849  * I.e., first node id of first zone in arg node's generic zonelist.
5850  * Used for initializing percpu 'numa_mem', which is used primarily
5851  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5852  */
local_memory_node(int node)5853 int local_memory_node(int node)
5854 {
5855 	struct zoneref *z;
5856 
5857 	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5858 				   gfp_zone(GFP_KERNEL),
5859 				   NULL);
5860 	return zonelist_node_idx(z);
5861 }
5862 #endif
5863 
5864 static void setup_min_unmapped_ratio(void);
5865 static void setup_min_slab_ratio(void);
5866 #else	/* CONFIG_NUMA */
5867 
build_zonelists(pg_data_t * pgdat)5868 static void build_zonelists(pg_data_t *pgdat)
5869 {
5870 	struct zoneref *zonerefs;
5871 	int nr_zones;
5872 
5873 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5874 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5875 	zonerefs += nr_zones;
5876 
5877 	zonerefs->zone = NULL;
5878 	zonerefs->zone_idx = 0;
5879 }
5880 
5881 #endif	/* CONFIG_NUMA */
5882 
5883 /*
5884  * Boot pageset table. One per cpu which is going to be used for all
5885  * zones and all nodes. The parameters will be set in such a way
5886  * that an item put on a list will immediately be handed over to
5887  * the buddy list. This is safe since pageset manipulation is done
5888  * with interrupts disabled.
5889  *
5890  * The boot_pagesets must be kept even after bootup is complete for
5891  * unused processors and/or zones. They do play a role for bootstrapping
5892  * hotplugged processors.
5893  *
5894  * zoneinfo_show() and maybe other functions do
5895  * not check if the processor is online before following the pageset pointer.
5896  * Other parts of the kernel may not check if the zone is available.
5897  */
5898 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
5899 /* These effectively disable the pcplists in the boot pageset completely */
5900 #define BOOT_PAGESET_HIGH	0
5901 #define BOOT_PAGESET_BATCH	1
5902 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
5903 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
5904 
__build_all_zonelists(void * data)5905 static void __build_all_zonelists(void *data)
5906 {
5907 	int nid;
5908 	int __maybe_unused cpu;
5909 	pg_data_t *self = data;
5910 	unsigned long flags;
5911 
5912 	/*
5913 	 * The zonelist_update_seq must be acquired with irqsave because the
5914 	 * reader can be invoked from IRQ with GFP_ATOMIC.
5915 	 */
5916 	write_seqlock_irqsave(&zonelist_update_seq, flags);
5917 	/*
5918 	 * Also disable synchronous printk() to prevent any printk() from
5919 	 * trying to hold port->lock, for
5920 	 * tty_insert_flip_string_and_push_buffer() on other CPU might be
5921 	 * calling kmalloc(GFP_ATOMIC | __GFP_NOWARN) with port->lock held.
5922 	 */
5923 	printk_deferred_enter();
5924 
5925 #ifdef CONFIG_NUMA
5926 	memset(node_load, 0, sizeof(node_load));
5927 #endif
5928 
5929 	/*
5930 	 * This node is hotadded and no memory is yet present.   So just
5931 	 * building zonelists is fine - no need to touch other nodes.
5932 	 */
5933 	if (self && !node_online(self->node_id)) {
5934 		build_zonelists(self);
5935 	} else {
5936 		/*
5937 		 * All possible nodes have pgdat preallocated
5938 		 * in free_area_init
5939 		 */
5940 		for_each_node(nid) {
5941 			pg_data_t *pgdat = NODE_DATA(nid);
5942 
5943 			build_zonelists(pgdat);
5944 		}
5945 
5946 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5947 		/*
5948 		 * We now know the "local memory node" for each node--
5949 		 * i.e., the node of the first zone in the generic zonelist.
5950 		 * Set up numa_mem percpu variable for on-line cpus.  During
5951 		 * boot, only the boot cpu should be on-line;  we'll init the
5952 		 * secondary cpus' numa_mem as they come on-line.  During
5953 		 * node/memory hotplug, we'll fixup all on-line cpus.
5954 		 */
5955 		for_each_online_cpu(cpu)
5956 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5957 #endif
5958 	}
5959 
5960 	printk_deferred_exit();
5961 	write_sequnlock_irqrestore(&zonelist_update_seq, flags);
5962 }
5963 
5964 static noinline void __init
build_all_zonelists_init(void)5965 build_all_zonelists_init(void)
5966 {
5967 	int cpu;
5968 
5969 	__build_all_zonelists(NULL);
5970 
5971 	/*
5972 	 * Initialize the boot_pagesets that are going to be used
5973 	 * for bootstrapping processors. The real pagesets for
5974 	 * each zone will be allocated later when the per cpu
5975 	 * allocator is available.
5976 	 *
5977 	 * boot_pagesets are used also for bootstrapping offline
5978 	 * cpus if the system is already booted because the pagesets
5979 	 * are needed to initialize allocators on a specific cpu too.
5980 	 * F.e. the percpu allocator needs the page allocator which
5981 	 * needs the percpu allocator in order to allocate its pagesets
5982 	 * (a chicken-egg dilemma).
5983 	 */
5984 	for_each_possible_cpu(cpu)
5985 		per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
5986 
5987 	mminit_verify_zonelist();
5988 	cpuset_init_current_mems_allowed();
5989 }
5990 
5991 /*
5992  * unless system_state == SYSTEM_BOOTING.
5993  *
5994  * __ref due to call of __init annotated helper build_all_zonelists_init
5995  * [protected by SYSTEM_BOOTING].
5996  */
build_all_zonelists(pg_data_t * pgdat)5997 void __ref build_all_zonelists(pg_data_t *pgdat)
5998 {
5999 	unsigned long vm_total_pages;
6000 
6001 	if (system_state == SYSTEM_BOOTING) {
6002 		build_all_zonelists_init();
6003 	} else {
6004 		__build_all_zonelists(pgdat);
6005 		/* cpuset refresh routine should be here */
6006 	}
6007 	/* Get the number of free pages beyond high watermark in all zones. */
6008 	vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
6009 	/*
6010 	 * Disable grouping by mobility if the number of pages in the
6011 	 * system is too low to allow the mechanism to work. It would be
6012 	 * more accurate, but expensive to check per-zone. This check is
6013 	 * made on memory-hotadd so a system can start with mobility
6014 	 * disabled and enable it later
6015 	 */
6016 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
6017 		page_group_by_mobility_disabled = 1;
6018 	else
6019 		page_group_by_mobility_disabled = 0;
6020 
6021 	pr_info("Built %u zonelists, mobility grouping %s.  Total pages: %ld\n",
6022 		nr_online_nodes,
6023 		page_group_by_mobility_disabled ? "off" : "on",
6024 		vm_total_pages);
6025 #ifdef CONFIG_NUMA
6026 	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
6027 #endif
6028 }
6029 
zone_batchsize(struct zone * zone)6030 static int zone_batchsize(struct zone *zone)
6031 {
6032 #ifdef CONFIG_MMU
6033 	int batch;
6034 
6035 	/*
6036 	 * The number of pages to batch allocate is either ~0.1%
6037 	 * of the zone or 1MB, whichever is smaller. The batch
6038 	 * size is striking a balance between allocation latency
6039 	 * and zone lock contention.
6040 	 */
6041 	batch = min(zone_managed_pages(zone) >> 10, SZ_1M / PAGE_SIZE);
6042 	batch /= 4;		/* We effectively *= 4 below */
6043 	if (batch < 1)
6044 		batch = 1;
6045 
6046 	/*
6047 	 * Clamp the batch to a 2^n - 1 value. Having a power
6048 	 * of 2 value was found to be more likely to have
6049 	 * suboptimal cache aliasing properties in some cases.
6050 	 *
6051 	 * For example if 2 tasks are alternately allocating
6052 	 * batches of pages, one task can end up with a lot
6053 	 * of pages of one half of the possible page colors
6054 	 * and the other with pages of the other colors.
6055 	 */
6056 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
6057 
6058 	return batch;
6059 
6060 #else
6061 	/* The deferral and batching of frees should be suppressed under NOMMU
6062 	 * conditions.
6063 	 *
6064 	 * The problem is that NOMMU needs to be able to allocate large chunks
6065 	 * of contiguous memory as there's no hardware page translation to
6066 	 * assemble apparent contiguous memory from discontiguous pages.
6067 	 *
6068 	 * Queueing large contiguous runs of pages for batching, however,
6069 	 * causes the pages to actually be freed in smaller chunks.  As there
6070 	 * can be a significant delay between the individual batches being
6071 	 * recycled, this leads to the once large chunks of space being
6072 	 * fragmented and becoming unavailable for high-order allocations.
6073 	 */
6074 	return 0;
6075 #endif
6076 }
6077 
6078 static int percpu_pagelist_high_fraction;
zone_highsize(struct zone * zone,int batch,int cpu_online,int high_fraction)6079 static int zone_highsize(struct zone *zone, int batch, int cpu_online,
6080 			 int high_fraction)
6081 {
6082 #ifdef CONFIG_MMU
6083 	int high;
6084 	int nr_split_cpus;
6085 	unsigned long total_pages;
6086 
6087 	if (!high_fraction) {
6088 		/*
6089 		 * By default, the high value of the pcp is based on the zone
6090 		 * low watermark so that if they are full then background
6091 		 * reclaim will not be started prematurely.
6092 		 */
6093 		total_pages = low_wmark_pages(zone);
6094 	} else {
6095 		/*
6096 		 * If percpu_pagelist_high_fraction is configured, the high
6097 		 * value is based on a fraction of the managed pages in the
6098 		 * zone.
6099 		 */
6100 		total_pages = zone_managed_pages(zone) / high_fraction;
6101 	}
6102 
6103 	/*
6104 	 * Split the high value across all online CPUs local to the zone. Note
6105 	 * that early in boot that CPUs may not be online yet and that during
6106 	 * CPU hotplug that the cpumask is not yet updated when a CPU is being
6107 	 * onlined. For memory nodes that have no CPUs, split the high value
6108 	 * across all online CPUs to mitigate the risk that reclaim is triggered
6109 	 * prematurely due to pages stored on pcp lists.
6110 	 */
6111 	nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
6112 	if (!nr_split_cpus)
6113 		nr_split_cpus = num_online_cpus();
6114 	high = total_pages / nr_split_cpus;
6115 
6116 	/*
6117 	 * Ensure high is at least batch*4. The multiple is based on the
6118 	 * historical relationship between high and batch.
6119 	 */
6120 	high = max(high, batch << 2);
6121 
6122 	return high;
6123 #else
6124 	return 0;
6125 #endif
6126 }
6127 
6128 /*
6129  * pcp->high and pcp->batch values are related and generally batch is lower
6130  * than high. They are also related to pcp->count such that count is lower
6131  * than high, and as soon as it reaches high, the pcplist is flushed.
6132  *
6133  * However, guaranteeing these relations at all times would require e.g. write
6134  * barriers here but also careful usage of read barriers at the read side, and
6135  * thus be prone to error and bad for performance. Thus the update only prevents
6136  * store tearing. Any new users of pcp->batch, pcp->high_min and pcp->high_max
6137  * should ensure they can cope with those fields changing asynchronously, and
6138  * fully trust only the pcp->count field on the local CPU with interrupts
6139  * disabled.
6140  *
6141  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
6142  * outside of boot time (or some other assurance that no concurrent updaters
6143  * exist).
6144  */
pageset_update(struct per_cpu_pages * pcp,unsigned long high_min,unsigned long high_max,unsigned long batch)6145 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high_min,
6146 			   unsigned long high_max, unsigned long batch)
6147 {
6148 	WRITE_ONCE(pcp->batch, batch);
6149 	WRITE_ONCE(pcp->high_min, high_min);
6150 	WRITE_ONCE(pcp->high_max, high_max);
6151 }
6152 
per_cpu_pages_init(struct per_cpu_pages * pcp,struct per_cpu_zonestat * pzstats)6153 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
6154 {
6155 	int pindex;
6156 
6157 	memset(pcp, 0, sizeof(*pcp));
6158 	memset(pzstats, 0, sizeof(*pzstats));
6159 
6160 	spin_lock_init(&pcp->lock);
6161 	for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
6162 		INIT_LIST_HEAD(&pcp->lists[pindex]);
6163 
6164 	/*
6165 	 * Set batch and high values safe for a boot pageset. A true percpu
6166 	 * pageset's initialization will update them subsequently. Here we don't
6167 	 * need to be as careful as pageset_update() as nobody can access the
6168 	 * pageset yet.
6169 	 */
6170 	pcp->high_min = BOOT_PAGESET_HIGH;
6171 	pcp->high_max = BOOT_PAGESET_HIGH;
6172 	pcp->batch = BOOT_PAGESET_BATCH;
6173 	pcp->free_count = 0;
6174 }
6175 
__zone_set_pageset_high_and_batch(struct zone * zone,unsigned long high_min,unsigned long high_max,unsigned long batch)6176 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high_min,
6177 					      unsigned long high_max, unsigned long batch)
6178 {
6179 	struct per_cpu_pages *pcp;
6180 	int cpu;
6181 
6182 	for_each_possible_cpu(cpu) {
6183 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
6184 		pageset_update(pcp, high_min, high_max, batch);
6185 	}
6186 }
6187 
6188 /*
6189  * Calculate and set new high and batch values for all per-cpu pagesets of a
6190  * zone based on the zone's size.
6191  */
zone_set_pageset_high_and_batch(struct zone * zone,int cpu_online)6192 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
6193 {
6194 	int new_high_min, new_high_max, new_batch;
6195 
6196 	new_batch = max(1, zone_batchsize(zone));
6197 	if (percpu_pagelist_high_fraction) {
6198 		new_high_min = zone_highsize(zone, new_batch, cpu_online,
6199 					     percpu_pagelist_high_fraction);
6200 		/*
6201 		 * PCP high is tuned manually, disable auto-tuning via
6202 		 * setting high_min and high_max to the manual value.
6203 		 */
6204 		new_high_max = new_high_min;
6205 	} else {
6206 		new_high_min = zone_highsize(zone, new_batch, cpu_online, 0);
6207 		new_high_max = zone_highsize(zone, new_batch, cpu_online,
6208 					     MIN_PERCPU_PAGELIST_HIGH_FRACTION);
6209 	}
6210 
6211 	if (zone->pageset_high_min == new_high_min &&
6212 	    zone->pageset_high_max == new_high_max &&
6213 	    zone->pageset_batch == new_batch)
6214 		return;
6215 
6216 	trace_android_vh_mm_customize_zone_pageset(zone, &new_high_min,
6217 						   &new_high_max, &new_batch);
6218 
6219 	zone->pageset_high_min = new_high_min;
6220 	zone->pageset_high_max = new_high_max;
6221 	zone->pageset_batch = new_batch;
6222 
6223 	__zone_set_pageset_high_and_batch(zone, new_high_min, new_high_max,
6224 					  new_batch);
6225 }
6226 
setup_zone_pageset(struct zone * zone)6227 void __meminit setup_zone_pageset(struct zone *zone)
6228 {
6229 	int cpu;
6230 
6231 	/* Size may be 0 on !SMP && !NUMA */
6232 	if (sizeof(struct per_cpu_zonestat) > 0)
6233 		zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
6234 
6235 	zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
6236 	for_each_possible_cpu(cpu) {
6237 		struct per_cpu_pages *pcp;
6238 		struct per_cpu_zonestat *pzstats;
6239 
6240 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
6241 		pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
6242 		per_cpu_pages_init(pcp, pzstats);
6243 	}
6244 
6245 	zone_set_pageset_high_and_batch(zone, 0);
6246 }
6247 
6248 /*
6249  * The zone indicated has a new number of managed_pages; batch sizes and percpu
6250  * page high values need to be recalculated.
6251  */
zone_pcp_update(struct zone * zone,int cpu_online)6252 static void zone_pcp_update(struct zone *zone, int cpu_online)
6253 {
6254 	mutex_lock(&pcp_batch_high_lock);
6255 	zone_set_pageset_high_and_batch(zone, cpu_online);
6256 	mutex_unlock(&pcp_batch_high_lock);
6257 }
6258 
zone_pageset_high_and_batch_update(struct zone * zone,int new_high_min,int new_high_max,int new_batch)6259 void zone_pageset_high_and_batch_update(struct zone *zone, int new_high_min,
6260 					int new_high_max, int new_batch)
6261 {
6262 	mutex_lock(&pcp_batch_high_lock);
6263 
6264 	zone->pageset_high_min = new_high_min;
6265 	zone->pageset_high_max = new_high_max;
6266 	zone->pageset_batch = new_batch;
6267 
6268 	__zone_set_pageset_high_and_batch(zone, new_high_min, new_high_max,
6269 					  new_batch);
6270 
6271 	mutex_unlock(&pcp_batch_high_lock);
6272 }
6273 EXPORT_SYMBOL_GPL(zone_pageset_high_and_batch_update);
6274 
zone_pcp_update_cacheinfo(struct zone * zone,unsigned int cpu)6275 static void zone_pcp_update_cacheinfo(struct zone *zone, unsigned int cpu)
6276 {
6277 	struct per_cpu_pages *pcp;
6278 	struct cpu_cacheinfo *cci;
6279 
6280 	pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
6281 	cci = get_cpu_cacheinfo(cpu);
6282 	/*
6283 	 * If data cache slice of CPU is large enough, "pcp->batch"
6284 	 * pages can be preserved in PCP before draining PCP for
6285 	 * consecutive high-order pages freeing without allocation.
6286 	 * This can reduce zone lock contention without hurting
6287 	 * cache-hot pages sharing.
6288 	 */
6289 	spin_lock(&pcp->lock);
6290 	if ((cci->per_cpu_data_slice_size >> PAGE_SHIFT) > 3 * pcp->batch)
6291 		pcp->flags |= PCPF_FREE_HIGH_BATCH;
6292 	else
6293 		pcp->flags &= ~PCPF_FREE_HIGH_BATCH;
6294 	spin_unlock(&pcp->lock);
6295 }
6296 
setup_pcp_cacheinfo(unsigned int cpu)6297 void setup_pcp_cacheinfo(unsigned int cpu)
6298 {
6299 	struct zone *zone;
6300 
6301 	for_each_populated_zone(zone)
6302 		zone_pcp_update_cacheinfo(zone, cpu);
6303 }
6304 
6305 /*
6306  * Allocate per cpu pagesets and initialize them.
6307  * Before this call only boot pagesets were available.
6308  */
setup_per_cpu_pageset(void)6309 void __init setup_per_cpu_pageset(void)
6310 {
6311 	struct pglist_data *pgdat;
6312 	struct zone *zone;
6313 	int __maybe_unused cpu;
6314 
6315 	for_each_populated_zone(zone)
6316 		setup_zone_pageset(zone);
6317 
6318 #ifdef CONFIG_NUMA
6319 	/*
6320 	 * Unpopulated zones continue using the boot pagesets.
6321 	 * The numa stats for these pagesets need to be reset.
6322 	 * Otherwise, they will end up skewing the stats of
6323 	 * the nodes these zones are associated with.
6324 	 */
6325 	for_each_possible_cpu(cpu) {
6326 		struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
6327 		memset(pzstats->vm_numa_event, 0,
6328 		       sizeof(pzstats->vm_numa_event));
6329 	}
6330 #endif
6331 
6332 	for_each_online_pgdat(pgdat)
6333 		pgdat->per_cpu_nodestats =
6334 			alloc_percpu(struct per_cpu_nodestat);
6335 }
6336 
zone_pcp_init(struct zone * zone)6337 __meminit void zone_pcp_init(struct zone *zone)
6338 {
6339 	/*
6340 	 * per cpu subsystem is not up at this point. The following code
6341 	 * relies on the ability of the linker to provide the
6342 	 * offset of a (static) per cpu variable into the per cpu area.
6343 	 */
6344 	zone->per_cpu_pageset = &boot_pageset;
6345 	zone->per_cpu_zonestats = &boot_zonestats;
6346 	zone->pageset_high_min = BOOT_PAGESET_HIGH;
6347 	zone->pageset_high_max = BOOT_PAGESET_HIGH;
6348 	zone->pageset_batch = BOOT_PAGESET_BATCH;
6349 
6350 	if (populated_zone(zone))
6351 		pr_debug("  %s zone: %lu pages, LIFO batch:%u\n", zone->name,
6352 			 zone->present_pages, zone_batchsize(zone));
6353 }
6354 
adjust_managed_page_count(struct page * page,long count)6355 void adjust_managed_page_count(struct page *page, long count)
6356 {
6357 	atomic_long_add(count, &page_zone(page)->managed_pages);
6358 	totalram_pages_add(count);
6359 }
6360 EXPORT_SYMBOL(adjust_managed_page_count);
6361 
free_reserved_area(void * start,void * end,int poison,const char * s)6362 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
6363 {
6364 	void *pos;
6365 	unsigned long pages = 0;
6366 
6367 	start = (void *)PAGE_ALIGN((unsigned long)start);
6368 	end = (void *)((unsigned long)end & PAGE_MASK);
6369 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
6370 		struct page *page = virt_to_page(pos);
6371 		void *direct_map_addr;
6372 
6373 		/*
6374 		 * 'direct_map_addr' might be different from 'pos'
6375 		 * because some architectures' virt_to_page()
6376 		 * work with aliases.  Getting the direct map
6377 		 * address ensures that we get a _writeable_
6378 		 * alias for the memset().
6379 		 */
6380 		direct_map_addr = page_address(page);
6381 		/*
6382 		 * Perform a kasan-unchecked memset() since this memory
6383 		 * has not been initialized.
6384 		 */
6385 		direct_map_addr = kasan_reset_tag(direct_map_addr);
6386 		if ((unsigned int)poison <= 0xFF)
6387 			memset(direct_map_addr, poison, PAGE_SIZE);
6388 
6389 		free_reserved_page(page);
6390 	}
6391 
6392 	if (pages && s) {
6393 		pr_info("Freeing %s memory: %ldK\n", s, K(pages));
6394 		if (!strcmp(s, "initrd") || !strcmp(s, "unused kernel")) {
6395 			long size;
6396 
6397 			size = -1 * (long)(pages << PAGE_SHIFT);
6398 			memblock_memsize_mod_kernel_size(size);
6399 		}
6400 	}
6401 
6402 	return pages;
6403 }
6404 
free_reserved_page(struct page * page)6405 void free_reserved_page(struct page *page)
6406 {
6407 	clear_page_tag_ref(page);
6408 	ClearPageReserved(page);
6409 	init_page_count(page);
6410 	__free_page(page);
6411 	adjust_managed_page_count(page, 1);
6412 }
6413 EXPORT_SYMBOL(free_reserved_page);
6414 
page_alloc_cpu_dead(unsigned int cpu)6415 static int page_alloc_cpu_dead(unsigned int cpu)
6416 {
6417 	struct zone *zone;
6418 
6419 	lru_add_drain_cpu(cpu);
6420 	mlock_drain_remote(cpu);
6421 	drain_pages(cpu);
6422 
6423 	/*
6424 	 * Spill the event counters of the dead processor
6425 	 * into the current processors event counters.
6426 	 * This artificially elevates the count of the current
6427 	 * processor.
6428 	 */
6429 	vm_events_fold_cpu(cpu);
6430 
6431 	/*
6432 	 * Zero the differential counters of the dead processor
6433 	 * so that the vm statistics are consistent.
6434 	 *
6435 	 * This is only okay since the processor is dead and cannot
6436 	 * race with what we are doing.
6437 	 */
6438 	cpu_vm_stats_fold(cpu);
6439 
6440 	for_each_populated_zone(zone)
6441 		zone_pcp_update(zone, 0);
6442 
6443 	return 0;
6444 }
6445 
page_alloc_cpu_online(unsigned int cpu)6446 static int page_alloc_cpu_online(unsigned int cpu)
6447 {
6448 	struct zone *zone;
6449 
6450 	for_each_populated_zone(zone)
6451 		zone_pcp_update(zone, 1);
6452 	return 0;
6453 }
6454 
page_alloc_init_cpuhp(void)6455 void __init page_alloc_init_cpuhp(void)
6456 {
6457 	int ret;
6458 
6459 	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
6460 					"mm/page_alloc:pcp",
6461 					page_alloc_cpu_online,
6462 					page_alloc_cpu_dead);
6463 	WARN_ON(ret < 0);
6464 }
6465 
6466 /*
6467  * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
6468  *	or min_free_kbytes changes.
6469  */
calculate_totalreserve_pages(void)6470 static void calculate_totalreserve_pages(void)
6471 {
6472 	struct pglist_data *pgdat;
6473 	unsigned long reserve_pages = 0;
6474 	enum zone_type i, j;
6475 	bool skip = false;
6476 
6477 	for_each_online_pgdat(pgdat) {
6478 
6479 		pgdat->totalreserve_pages = 0;
6480 
6481 		for (i = 0; i < MAX_NR_ZONES; i++) {
6482 			struct zone *zone = pgdat->node_zones + i;
6483 			long max = 0;
6484 			unsigned long managed_pages = zone_managed_pages(zone);
6485 
6486 			/* Find valid and maximum lowmem_reserve in the zone */
6487 			for (j = i; j < MAX_NR_ZONES; j++) {
6488 				if (zone->lowmem_reserve[j] > max)
6489 					max = zone->lowmem_reserve[j];
6490 			}
6491 
6492 			/* we treat the high watermark as reserved pages. */
6493 			max += high_wmark_pages(zone);
6494 
6495 			if (max > managed_pages)
6496 				max = managed_pages;
6497 
6498 			pgdat->totalreserve_pages += max;
6499 
6500 			reserve_pages += max;
6501 		}
6502 	}
6503 	totalreserve_pages = reserve_pages;
6504 	trace_android_vh_calculate_totalreserve_pages(&skip);
6505 	if (skip)
6506 		return;
6507 	trace_mm_calculate_totalreserve_pages(totalreserve_pages);
6508 }
6509 
6510 /*
6511  * setup_per_zone_lowmem_reserve - called whenever
6512  *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
6513  *	has a correct pages reserved value, so an adequate number of
6514  *	pages are left in the zone after a successful __alloc_pages().
6515  */
setup_per_zone_lowmem_reserve(void)6516 static void setup_per_zone_lowmem_reserve(void)
6517 {
6518 	struct pglist_data *pgdat;
6519 	enum zone_type i, j;
6520 
6521 	for_each_online_pgdat(pgdat) {
6522 		for (i = 0; i < MAX_NR_ZONES - 1; i++) {
6523 			struct zone *zone = &pgdat->node_zones[i];
6524 			int ratio = sysctl_lowmem_reserve_ratio[i];
6525 			bool clear = !ratio || !zone_managed_pages(zone);
6526 			unsigned long managed_pages = 0;
6527 
6528 			for (j = i + 1; j < MAX_NR_ZONES; j++) {
6529 				struct zone *upper_zone = &pgdat->node_zones[j];
6530 
6531 				managed_pages += zone_managed_pages(upper_zone);
6532 
6533 				if (clear)
6534 					zone->lowmem_reserve[j] = 0;
6535 				else
6536 					zone->lowmem_reserve[j] = managed_pages / ratio;
6537 				trace_mm_setup_per_zone_lowmem_reserve(zone, upper_zone,
6538 								       zone->lowmem_reserve[j]);
6539 			}
6540 		}
6541 	}
6542 
6543 	/* update totalreserve_pages */
6544 	calculate_totalreserve_pages();
6545 }
6546 
__setup_per_zone_wmarks(void)6547 static void __setup_per_zone_wmarks(void)
6548 {
6549 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6550 	unsigned long lowmem_pages = 0;
6551 	struct zone *zone;
6552 	unsigned long flags;
6553 
6554 	/* Calculate total number of !ZONE_HIGHMEM and !ZONE_MOVABLE pages */
6555 	for_each_zone(zone) {
6556 		if (!is_highmem(zone) && zone_idx(zone) != ZONE_MOVABLE)
6557 			lowmem_pages += zone_managed_pages(zone);
6558 	}
6559 
6560 	for_each_zone(zone) {
6561 		u64 tmp;
6562 
6563 		spin_lock_irqsave(&zone->lock, flags);
6564 		tmp = (u64)pages_min * zone_managed_pages(zone);
6565 		tmp = div64_ul(tmp, lowmem_pages);
6566 		if (is_highmem(zone) || zone_idx(zone) == ZONE_MOVABLE) {
6567 			/*
6568 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6569 			 * need highmem and movable zones pages, so cap pages_min
6570 			 * to a small  value here.
6571 			 *
6572 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
6573 			 * deltas control async page reclaim, and so should
6574 			 * not be capped for highmem and movable zones.
6575 			 */
6576 			unsigned long min_pages;
6577 
6578 			min_pages = zone_managed_pages(zone) / 1024;
6579 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
6580 			zone->_watermark[WMARK_MIN] = min_pages;
6581 		} else {
6582 			/*
6583 			 * If it's a lowmem zone, reserve a number of pages
6584 			 * proportionate to the zone's size.
6585 			 */
6586 			zone->_watermark[WMARK_MIN] = tmp;
6587 		}
6588 
6589 		/*
6590 		 * Set the kswapd watermarks distance according to the
6591 		 * scale factor in proportion to available memory, but
6592 		 * ensure a minimum size on small systems.
6593 		 */
6594 		tmp = max_t(u64, tmp >> 2,
6595 			    mult_frac(zone_managed_pages(zone),
6596 				      watermark_scale_factor, 10000));
6597 
6598 		zone->watermark_boost = 0;
6599 		zone->_watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
6600 		zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp;
6601 		zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp;
6602 		trace_mm_setup_per_zone_wmarks(zone);
6603 		trace_android_vh_init_adjust_zone_wmark(zone, tmp);
6604 
6605 		spin_unlock_irqrestore(&zone->lock, flags);
6606 	}
6607 
6608 	/* update totalreserve_pages */
6609 	calculate_totalreserve_pages();
6610 }
6611 
6612 /**
6613  * setup_per_zone_wmarks - called when min_free_kbytes changes
6614  * or when memory is hot-{added|removed}
6615  *
6616  * Ensures that the watermark[min,low,high] values for each zone are set
6617  * correctly with respect to min_free_kbytes.
6618  */
setup_per_zone_wmarks(void)6619 void setup_per_zone_wmarks(void)
6620 {
6621 	struct zone *zone;
6622 	static DEFINE_SPINLOCK(lock);
6623 
6624 	spin_lock(&lock);
6625 	__setup_per_zone_wmarks();
6626 	spin_unlock(&lock);
6627 
6628 	/*
6629 	 * The watermark size have changed so update the pcpu batch
6630 	 * and high limits or the limits may be inappropriate.
6631 	 */
6632 	for_each_zone(zone)
6633 		zone_pcp_update(zone, 0);
6634 }
6635 
6636 /*
6637  * Initialise min_free_kbytes.
6638  *
6639  * For small machines we want it small (128k min).  For large machines
6640  * we want it large (256MB max).  But it is not linear, because network
6641  * bandwidth does not increase linearly with machine size.  We use
6642  *
6643  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
6644  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
6645  *
6646  * which yields
6647  *
6648  * 16MB:	512k
6649  * 32MB:	724k
6650  * 64MB:	1024k
6651  * 128MB:	1448k
6652  * 256MB:	2048k
6653  * 512MB:	2896k
6654  * 1024MB:	4096k
6655  * 2048MB:	5792k
6656  * 4096MB:	8192k
6657  * 8192MB:	11584k
6658  * 16384MB:	16384k
6659  */
calculate_min_free_kbytes(void)6660 void calculate_min_free_kbytes(void)
6661 {
6662 	unsigned long lowmem_kbytes;
6663 	int new_min_free_kbytes;
6664 
6665 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
6666 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6667 
6668 	if (new_min_free_kbytes > user_min_free_kbytes)
6669 		min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144);
6670 	else
6671 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6672 				new_min_free_kbytes, user_min_free_kbytes);
6673 
6674 }
6675 
init_per_zone_wmark_min(void)6676 int __meminit init_per_zone_wmark_min(void)
6677 {
6678 	calculate_min_free_kbytes();
6679 	setup_per_zone_wmarks();
6680 	refresh_zone_stat_thresholds();
6681 	setup_per_zone_lowmem_reserve();
6682 
6683 #ifdef CONFIG_NUMA
6684 	setup_min_unmapped_ratio();
6685 	setup_min_slab_ratio();
6686 #endif
6687 
6688 	khugepaged_min_free_kbytes_update();
6689 
6690 	return 0;
6691 }
postcore_initcall(init_per_zone_wmark_min)6692 postcore_initcall(init_per_zone_wmark_min)
6693 
6694 /*
6695  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
6696  *	that we can call two helper functions whenever min_free_kbytes
6697  *	changes.
6698  */
6699 static int min_free_kbytes_sysctl_handler(const struct ctl_table *table, int write,
6700 		void *buffer, size_t *length, loff_t *ppos)
6701 {
6702 	int rc;
6703 
6704 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6705 	if (rc)
6706 		return rc;
6707 
6708 	if (write) {
6709 		user_min_free_kbytes = min_free_kbytes;
6710 		setup_per_zone_wmarks();
6711 	}
6712 	return 0;
6713 }
6714 
watermark_scale_factor_sysctl_handler(const struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)6715 static int watermark_scale_factor_sysctl_handler(const struct ctl_table *table, int write,
6716 		void *buffer, size_t *length, loff_t *ppos)
6717 {
6718 	int rc;
6719 
6720 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6721 	if (rc)
6722 		return rc;
6723 
6724 	if (write)
6725 		setup_per_zone_wmarks();
6726 
6727 	return 0;
6728 }
6729 
6730 #ifdef CONFIG_NUMA
setup_min_unmapped_ratio(void)6731 static void setup_min_unmapped_ratio(void)
6732 {
6733 	pg_data_t *pgdat;
6734 	struct zone *zone;
6735 
6736 	for_each_online_pgdat(pgdat)
6737 		pgdat->min_unmapped_pages = 0;
6738 
6739 	for_each_zone(zone)
6740 		zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
6741 						         sysctl_min_unmapped_ratio) / 100;
6742 }
6743 
6744 
sysctl_min_unmapped_ratio_sysctl_handler(const struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)6745 static int sysctl_min_unmapped_ratio_sysctl_handler(const struct ctl_table *table, int write,
6746 		void *buffer, size_t *length, loff_t *ppos)
6747 {
6748 	int rc;
6749 
6750 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6751 	if (rc)
6752 		return rc;
6753 
6754 	setup_min_unmapped_ratio();
6755 
6756 	return 0;
6757 }
6758 
setup_min_slab_ratio(void)6759 static void setup_min_slab_ratio(void)
6760 {
6761 	pg_data_t *pgdat;
6762 	struct zone *zone;
6763 
6764 	for_each_online_pgdat(pgdat)
6765 		pgdat->min_slab_pages = 0;
6766 
6767 	for_each_zone(zone)
6768 		zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
6769 						     sysctl_min_slab_ratio) / 100;
6770 }
6771 
sysctl_min_slab_ratio_sysctl_handler(const struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)6772 static int sysctl_min_slab_ratio_sysctl_handler(const struct ctl_table *table, int write,
6773 		void *buffer, size_t *length, loff_t *ppos)
6774 {
6775 	int rc;
6776 
6777 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6778 	if (rc)
6779 		return rc;
6780 
6781 	setup_min_slab_ratio();
6782 
6783 	return 0;
6784 }
6785 #endif
6786 
6787 /*
6788  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6789  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6790  *	whenever sysctl_lowmem_reserve_ratio changes.
6791  *
6792  * The reserve ratio obviously has absolutely no relation with the
6793  * minimum watermarks. The lowmem reserve ratio can only make sense
6794  * if in function of the boot time zone sizes.
6795  */
lowmem_reserve_ratio_sysctl_handler(const struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)6796 static int lowmem_reserve_ratio_sysctl_handler(const struct ctl_table *table,
6797 		int write, void *buffer, size_t *length, loff_t *ppos)
6798 {
6799 	int i;
6800 
6801 	proc_dointvec_minmax(table, write, buffer, length, ppos);
6802 
6803 	for (i = 0; i < MAX_NR_ZONES; i++) {
6804 		if (sysctl_lowmem_reserve_ratio[i] < 1)
6805 			sysctl_lowmem_reserve_ratio[i] = 0;
6806 	}
6807 
6808 	setup_per_zone_lowmem_reserve();
6809 	return 0;
6810 }
6811 
6812 /*
6813  * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
6814  * cpu. It is the fraction of total pages in each zone that a hot per cpu
6815  * pagelist can have before it gets flushed back to buddy allocator.
6816  */
percpu_pagelist_high_fraction_sysctl_handler(const struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)6817 static int percpu_pagelist_high_fraction_sysctl_handler(const struct ctl_table *table,
6818 		int write, void *buffer, size_t *length, loff_t *ppos)
6819 {
6820 	struct zone *zone;
6821 	int old_percpu_pagelist_high_fraction;
6822 	int ret;
6823 
6824 	mutex_lock(&pcp_batch_high_lock);
6825 	old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
6826 
6827 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
6828 	if (!write || ret < 0)
6829 		goto out;
6830 
6831 	/* Sanity checking to avoid pcp imbalance */
6832 	if (percpu_pagelist_high_fraction &&
6833 	    percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
6834 		percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
6835 		ret = -EINVAL;
6836 		goto out;
6837 	}
6838 
6839 	/* No change? */
6840 	if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
6841 		goto out;
6842 
6843 	for_each_populated_zone(zone)
6844 		zone_set_pageset_high_and_batch(zone, 0);
6845 out:
6846 	mutex_unlock(&pcp_batch_high_lock);
6847 	return ret;
6848 }
6849 
6850 static struct ctl_table page_alloc_sysctl_table[] = {
6851 	{
6852 		.procname	= "min_free_kbytes",
6853 		.data		= &min_free_kbytes,
6854 		.maxlen		= sizeof(min_free_kbytes),
6855 		.mode		= 0644,
6856 		.proc_handler	= min_free_kbytes_sysctl_handler,
6857 		.extra1		= SYSCTL_ZERO,
6858 	},
6859 	{
6860 		.procname	= "watermark_boost_factor",
6861 		.data		= &watermark_boost_factor,
6862 		.maxlen		= sizeof(watermark_boost_factor),
6863 		.mode		= 0644,
6864 		.proc_handler	= proc_dointvec_minmax,
6865 		.extra1		= SYSCTL_ZERO,
6866 	},
6867 	{
6868 		.procname	= "watermark_scale_factor",
6869 		.data		= &watermark_scale_factor,
6870 		.maxlen		= sizeof(watermark_scale_factor),
6871 		.mode		= 0644,
6872 		.proc_handler	= watermark_scale_factor_sysctl_handler,
6873 		.extra1		= SYSCTL_ONE,
6874 		.extra2		= SYSCTL_THREE_THOUSAND,
6875 	},
6876 	{
6877 		.procname	= "percpu_pagelist_high_fraction",
6878 		.data		= &percpu_pagelist_high_fraction,
6879 		.maxlen		= sizeof(percpu_pagelist_high_fraction),
6880 		.mode		= 0644,
6881 		.proc_handler	= percpu_pagelist_high_fraction_sysctl_handler,
6882 		.extra1		= SYSCTL_ZERO,
6883 	},
6884 	{
6885 		.procname	= "lowmem_reserve_ratio",
6886 		.data		= &sysctl_lowmem_reserve_ratio,
6887 		.maxlen		= sizeof(sysctl_lowmem_reserve_ratio),
6888 		.mode		= 0644,
6889 		.proc_handler	= lowmem_reserve_ratio_sysctl_handler,
6890 	},
6891 #ifdef CONFIG_NUMA
6892 	{
6893 		.procname	= "numa_zonelist_order",
6894 		.data		= &numa_zonelist_order,
6895 		.maxlen		= NUMA_ZONELIST_ORDER_LEN,
6896 		.mode		= 0644,
6897 		.proc_handler	= numa_zonelist_order_handler,
6898 	},
6899 	{
6900 		.procname	= "min_unmapped_ratio",
6901 		.data		= &sysctl_min_unmapped_ratio,
6902 		.maxlen		= sizeof(sysctl_min_unmapped_ratio),
6903 		.mode		= 0644,
6904 		.proc_handler	= sysctl_min_unmapped_ratio_sysctl_handler,
6905 		.extra1		= SYSCTL_ZERO,
6906 		.extra2		= SYSCTL_ONE_HUNDRED,
6907 	},
6908 	{
6909 		.procname	= "min_slab_ratio",
6910 		.data		= &sysctl_min_slab_ratio,
6911 		.maxlen		= sizeof(sysctl_min_slab_ratio),
6912 		.mode		= 0644,
6913 		.proc_handler	= sysctl_min_slab_ratio_sysctl_handler,
6914 		.extra1		= SYSCTL_ZERO,
6915 		.extra2		= SYSCTL_ONE_HUNDRED,
6916 	},
6917 #endif
6918 };
6919 
page_alloc_sysctl_init(void)6920 void __init page_alloc_sysctl_init(void)
6921 {
6922 	register_sysctl_init("vm", page_alloc_sysctl_table);
6923 }
6924 
6925 #ifdef CONFIG_CONTIG_ALLOC
6926 /* Usage: See admin-guide/dynamic-debug-howto.rst */
alloc_contig_dump_pages(struct list_head * page_list)6927 static void alloc_contig_dump_pages(struct list_head *page_list)
6928 {
6929 	DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
6930 
6931 	if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
6932 		struct page *page;
6933 
6934 		dump_stack();
6935 		list_for_each_entry(page, page_list, lru)
6936 			dump_page(page, "migration failure");
6937 	}
6938 }
6939 
6940 /*
6941  * [start, end) must belong to a single zone.
6942  * @migratetype: using migratetype to filter the type of migration in
6943  *		trace_mm_alloc_contig_migrate_range_info.
6944  */
__alloc_contig_migrate_range(struct compact_control * cc,unsigned long start,unsigned long end,int migratetype)6945 int __alloc_contig_migrate_range(struct compact_control *cc,
6946 					unsigned long start, unsigned long end,
6947 					int migratetype)
6948 {
6949 	/* This function is based on compact_zone() from compaction.c. */
6950 	unsigned int nr_reclaimed;
6951 	unsigned long pfn = start;
6952 	unsigned int tries = 0;
6953 	unsigned int max_tries = 5;
6954 	int ret = 0;
6955 	struct migration_target_control mtc = {
6956 		.nid = zone_to_nid(cc->zone),
6957 		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
6958 		.reason = MR_CONTIG_RANGE,
6959 	};
6960 	struct page *page;
6961 	unsigned long total_mapped = 0;
6962 	unsigned long total_migrated = 0;
6963 	unsigned long total_reclaimed = 0;
6964 
6965 	if (cc->gfp_mask & __GFP_NORETRY)
6966 		max_tries = 1;
6967 
6968 	lru_cache_disable();
6969 
6970 	while (pfn < end || !list_empty(&cc->migratepages)) {
6971 		if (fatal_signal_pending(current)) {
6972 			ret = -EINTR;
6973 			break;
6974 		}
6975 
6976 		if (list_empty(&cc->migratepages)) {
6977 			cc->nr_migratepages = 0;
6978 			ret = isolate_migratepages_range(cc, pfn, end);
6979 			if (ret && ret != -EAGAIN)
6980 				break;
6981 			pfn = cc->migrate_pfn;
6982 			tries = 0;
6983 		} else if (++tries == max_tries) {
6984 			ret = -EBUSY;
6985 			break;
6986 		}
6987 
6988 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6989 							&cc->migratepages);
6990 		cc->nr_migratepages -= nr_reclaimed;
6991 
6992 		if (trace_mm_alloc_contig_migrate_range_info_enabled()) {
6993 			total_reclaimed += nr_reclaimed;
6994 			list_for_each_entry(page, &cc->migratepages, lru) {
6995 				struct folio *folio = page_folio(page);
6996 
6997 				total_mapped += folio_mapped(folio) *
6998 						folio_nr_pages(folio);
6999 			}
7000 		}
7001 
7002 		ret = migrate_pages(&cc->migratepages, alloc_migration_target,
7003 			NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL);
7004 
7005 		if (trace_mm_alloc_contig_migrate_range_info_enabled() && !ret)
7006 			total_migrated += cc->nr_migratepages;
7007 
7008 		/*
7009 		 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
7010 		 * to retry again over this error, so do the same here.
7011 		 */
7012 		if (ret == -ENOMEM)
7013 			break;
7014 	}
7015 
7016 	lru_cache_enable();
7017 	if (ret < 0) {
7018 		if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY) {
7019 			struct page *page;
7020 
7021 			alloc_contig_dump_pages(&cc->migratepages);
7022 			list_for_each_entry(page, &cc->migratepages, lru) {
7023 				/* The page will be freed by putback_movable_pages soon */
7024 				if (page_count(page) == 1)
7025 					continue;
7026 				page_pinner_failure_detect(page);
7027 			}
7028 		}
7029 		putback_movable_pages(&cc->migratepages);
7030 	}
7031 
7032 	trace_mm_alloc_contig_migrate_range_info(start, end, migratetype,
7033 						 total_migrated,
7034 						 total_reclaimed,
7035 						 total_mapped);
7036 	return (ret < 0) ? ret : 0;
7037 }
7038 
split_free_pages(struct list_head * list)7039 static void split_free_pages(struct list_head *list)
7040 {
7041 	int order;
7042 
7043 	for (order = 0; order < NR_PAGE_ORDERS; order++) {
7044 		struct page *page, *next;
7045 		int nr_pages = 1 << order;
7046 
7047 		list_for_each_entry_safe(page, next, &list[order], lru) {
7048 			int i;
7049 
7050 			post_alloc_hook(page, order, __GFP_MOVABLE);
7051 			if (!order)
7052 				continue;
7053 
7054 			split_page(page, order);
7055 
7056 			/* Add all subpages to the order-0 head, in sequence. */
7057 			list_del(&page->lru);
7058 			for (i = 0; i < nr_pages; i++)
7059 				list_add_tail(&page[i].lru, &list[0]);
7060 		}
7061 	}
7062 }
7063 
7064 #ifdef CONFIG_COMPACTION
isolate_and_split_free_page(struct page * page,struct list_head * list)7065 unsigned long isolate_and_split_free_page(struct page *page,
7066 		struct list_head *list)
7067 {
7068 	unsigned long isolated;
7069 	unsigned int order;
7070 
7071 	if (!PageBuddy(page))
7072 		return 0;
7073 
7074 	order = buddy_order(page);
7075 	isolated = __isolate_free_page(page, order);
7076 	if (!isolated)
7077 		return 0;
7078 
7079 	set_page_private(page, order);
7080 	list_add(&page->lru, &list[order]);
7081 
7082 	split_free_pages(list);
7083 
7084 	return isolated;
7085 }
7086 EXPORT_SYMBOL_GPL(isolate_and_split_free_page);
7087 #endif
7088 
7089 /**
7090  * alloc_contig_range() -- tries to allocate given range of pages
7091  * @start:	start PFN to allocate
7092  * @end:	one-past-the-last PFN to allocate
7093  * @migratetype:	migratetype of the underlying pageblocks (either
7094  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
7095  *			in range must have the same migratetype and it must
7096  *			be either of the two.
7097  * @gfp_mask:	GFP mask to use during compaction
7098  *
7099  * The PFN range does not have to be pageblock aligned. The PFN range must
7100  * belong to a single zone.
7101  *
7102  * The first thing this routine does is attempt to MIGRATE_ISOLATE all
7103  * pageblocks in the range.  Once isolated, the pageblocks should not
7104  * be modified by others.
7105  *
7106  * Return: zero on success or negative error code.  On success all
7107  * pages which PFN is in [start, end) are allocated for the caller and
7108  * need to be freed with free_contig_range().
7109  */
alloc_contig_range_noprof(unsigned long start,unsigned long end,unsigned migratetype,gfp_t gfp_mask)7110 int alloc_contig_range_noprof(unsigned long start, unsigned long end,
7111 		       unsigned migratetype, gfp_t gfp_mask)
7112 {
7113 	unsigned long outer_start, outer_end;
7114 	int ret = 0;
7115 
7116 	struct compact_control cc = {
7117 		.nr_migratepages = 0,
7118 		.order = -1,
7119 		.zone = page_zone(pfn_to_page(start)),
7120 		/*
7121 		 * Use MIGRATE_ASYNC for __GFP_NORETRY requests as it never
7122 		 * blocks.
7123 		 */
7124 		.mode = gfp_mask & __GFP_NORETRY ? MIGRATE_ASYNC : MIGRATE_SYNC,
7125 		.ignore_skip_hint = true,
7126 		.no_set_skip_hint = true,
7127 		.gfp_mask = current_gfp_context(gfp_mask),
7128 		.alloc_contig = true,
7129 	};
7130 	INIT_LIST_HEAD(&cc.migratepages);
7131 
7132 	/*
7133 	 * What we do here is we mark all pageblocks in range as
7134 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
7135 	 * have different sizes, and due to the way page allocator
7136 	 * work, start_isolate_page_range() has special handlings for this.
7137 	 *
7138 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7139 	 * migrate the pages from an unaligned range (ie. pages that
7140 	 * we are interested in). This will put all the pages in
7141 	 * range back to page allocator as MIGRATE_ISOLATE.
7142 	 *
7143 	 * When this is done, we take the pages in range from page
7144 	 * allocator removing them from the buddy system.  This way
7145 	 * page allocator will never consider using them.
7146 	 *
7147 	 * This lets us mark the pageblocks back as
7148 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7149 	 * aligned range but not in the unaligned, original range are
7150 	 * put back to page allocator so that buddy can use them.
7151 	 */
7152 
7153 	ret = start_isolate_page_range(start, end, migratetype, 0, gfp_mask);
7154 	if (ret)
7155 		goto done;
7156 
7157 	drain_all_pages(cc.zone);
7158 
7159 	/*
7160 	 * In case of -EBUSY, we'd like to know which page causes problem.
7161 	 * So, just fall through. test_pages_isolated() has a tracepoint
7162 	 * which will report the busy page.
7163 	 *
7164 	 * It is possible that busy pages could become available before
7165 	 * the call to test_pages_isolated, and the range will actually be
7166 	 * allocated.  So, if we fall through be sure to clear ret so that
7167 	 * -EBUSY is not accidentally used or returned to caller.
7168 	 */
7169 	ret = __alloc_contig_migrate_range(&cc, start, end, migratetype);
7170 	if (ret && (ret != -EBUSY || (gfp_mask & __GFP_NORETRY)))
7171 		goto done;
7172 	ret = 0;
7173 
7174 	/*
7175 	 * Pages from [start, end) are within a pageblock_nr_pages
7176 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
7177 	 * more, all pages in [start, end) are free in page allocator.
7178 	 * What we are going to do is to allocate all pages from
7179 	 * [start, end) (that is remove them from page allocator).
7180 	 *
7181 	 * The only problem is that pages at the beginning and at the
7182 	 * end of interesting range may be not aligned with pages that
7183 	 * page allocator holds, ie. they can be part of higher order
7184 	 * pages.  Because of this, we reserve the bigger range and
7185 	 * once this is done free the pages we are not interested in.
7186 	 *
7187 	 * We don't have to hold zone->lock here because the pages are
7188 	 * isolated thus they won't get removed from buddy.
7189 	 */
7190 	outer_start = find_large_buddy(start);
7191 
7192 	/* Make sure the range is really isolated. */
7193 	if (test_pages_isolated(outer_start, end, 0)) {
7194 		trace_android_vh_alloc_contig_range_not_isolated(outer_start,
7195 								end);
7196 		ret = -EBUSY;
7197 		goto done;
7198 	}
7199 
7200 	/* Grab isolated pages from freelists. */
7201 	outer_end = isolate_freepages_range(&cc, outer_start, end);
7202 	if (!outer_end) {
7203 		ret = -EBUSY;
7204 		goto done;
7205 	}
7206 
7207 	if (!(gfp_mask & __GFP_COMP)) {
7208 		split_free_pages(cc.freepages);
7209 
7210 		/* Free head and tail (if any) */
7211 		if (start != outer_start)
7212 			free_contig_range(outer_start, start - outer_start);
7213 		if (end != outer_end)
7214 			free_contig_range(end, outer_end - end);
7215 	} else if (start == outer_start && end == outer_end && is_power_of_2(end - start)) {
7216 		struct page *head = pfn_to_page(start);
7217 		int order = ilog2(end - start);
7218 
7219 		check_new_pages(head, order);
7220 		prep_new_page(head, order, gfp_mask, 0);
7221 	} else {
7222 		ret = -EINVAL;
7223 		WARN(true, "PFN range: requested [%lu, %lu), allocated [%lu, %lu)\n",
7224 		     start, end, outer_start, outer_end);
7225 	}
7226 done:
7227 	undo_isolate_page_range(start, end, migratetype);
7228 	return ret;
7229 }
7230 EXPORT_SYMBOL(alloc_contig_range_noprof);
7231 
__alloc_contig_pages(unsigned long start_pfn,unsigned long nr_pages,gfp_t gfp_mask)7232 static int __alloc_contig_pages(unsigned long start_pfn,
7233 				unsigned long nr_pages, gfp_t gfp_mask)
7234 {
7235 	unsigned long end_pfn = start_pfn + nr_pages;
7236 
7237 	return alloc_contig_range_noprof(start_pfn, end_pfn, MIGRATE_MOVABLE,
7238 				   gfp_mask);
7239 }
7240 
pfn_range_valid_contig(struct zone * z,unsigned long start_pfn,unsigned long nr_pages)7241 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
7242 				   unsigned long nr_pages)
7243 {
7244 	unsigned long i, end_pfn = start_pfn + nr_pages;
7245 	struct page *page;
7246 
7247 	for (i = start_pfn; i < end_pfn; i++) {
7248 		page = pfn_to_online_page(i);
7249 		if (!page)
7250 			return false;
7251 
7252 		if (page_zone(page) != z)
7253 			return false;
7254 
7255 		if (PageReserved(page))
7256 			return false;
7257 
7258 		if (PageHuge(page))
7259 			return false;
7260 	}
7261 	return true;
7262 }
7263 
zone_spans_last_pfn(const struct zone * zone,unsigned long start_pfn,unsigned long nr_pages)7264 static bool zone_spans_last_pfn(const struct zone *zone,
7265 				unsigned long start_pfn, unsigned long nr_pages)
7266 {
7267 	unsigned long last_pfn = start_pfn + nr_pages - 1;
7268 
7269 	return zone_spans_pfn(zone, last_pfn);
7270 }
7271 
7272 /**
7273  * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
7274  * @nr_pages:	Number of contiguous pages to allocate
7275  * @gfp_mask:	GFP mask to limit search and used during compaction
7276  * @nid:	Target node
7277  * @nodemask:	Mask for other possible nodes
7278  *
7279  * This routine is a wrapper around alloc_contig_range(). It scans over zones
7280  * on an applicable zonelist to find a contiguous pfn range which can then be
7281  * tried for allocation with alloc_contig_range(). This routine is intended
7282  * for allocation requests which can not be fulfilled with the buddy allocator.
7283  *
7284  * The allocated memory is always aligned to a page boundary. If nr_pages is a
7285  * power of two, then allocated range is also guaranteed to be aligned to same
7286  * nr_pages (e.g. 1GB request would be aligned to 1GB).
7287  *
7288  * Allocated pages can be freed with free_contig_range() or by manually calling
7289  * __free_page() on each allocated page.
7290  *
7291  * Return: pointer to contiguous pages on success, or NULL if not successful.
7292  */
alloc_contig_pages_noprof(unsigned long nr_pages,gfp_t gfp_mask,int nid,nodemask_t * nodemask)7293 struct page *alloc_contig_pages_noprof(unsigned long nr_pages, gfp_t gfp_mask,
7294 				 int nid, nodemask_t *nodemask)
7295 {
7296 	unsigned long ret, pfn, flags;
7297 	struct zonelist *zonelist;
7298 	struct zone *zone;
7299 	struct zoneref *z;
7300 
7301 	zonelist = node_zonelist(nid, gfp_mask);
7302 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
7303 					gfp_zone(gfp_mask), nodemask) {
7304 		spin_lock_irqsave(&zone->lock, flags);
7305 
7306 		pfn = ALIGN(zone->zone_start_pfn, nr_pages);
7307 		while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
7308 			if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
7309 				/*
7310 				 * We release the zone lock here because
7311 				 * alloc_contig_range() will also lock the zone
7312 				 * at some point. If there's an allocation
7313 				 * spinning on this lock, it may win the race
7314 				 * and cause alloc_contig_range() to fail...
7315 				 */
7316 				spin_unlock_irqrestore(&zone->lock, flags);
7317 				ret = __alloc_contig_pages(pfn, nr_pages,
7318 							gfp_mask);
7319 				if (!ret)
7320 					return pfn_to_page(pfn);
7321 				spin_lock_irqsave(&zone->lock, flags);
7322 			}
7323 			pfn += nr_pages;
7324 		}
7325 		spin_unlock_irqrestore(&zone->lock, flags);
7326 	}
7327 	return NULL;
7328 }
7329 #endif /* CONFIG_CONTIG_ALLOC */
7330 
free_contig_range(unsigned long pfn,unsigned long nr_pages)7331 void free_contig_range(unsigned long pfn, unsigned long nr_pages)
7332 {
7333 	unsigned long count = 0;
7334 	struct folio *folio = pfn_folio(pfn);
7335 
7336 	if (folio_test_large(folio)) {
7337 		int expected = folio_nr_pages(folio);
7338 
7339 		if (nr_pages == expected)
7340 			folio_put(folio);
7341 		else
7342 			WARN(true, "PFN %lu: nr_pages %lu != expected %d\n",
7343 			     pfn, nr_pages, expected);
7344 		return;
7345 	}
7346 
7347 	for (; nr_pages--; pfn++) {
7348 		struct page *page = pfn_to_page(pfn);
7349 
7350 		count += page_count(page) != 1;
7351 		__free_page(page);
7352 	}
7353 	WARN(count != 0, "%lu pages are still in use!\n", count);
7354 }
7355 EXPORT_SYMBOL(free_contig_range);
7356 
7357 /*
7358  * Effectively disable pcplists for the zone by setting the high limit to 0
7359  * and draining all cpus. A concurrent page freeing on another CPU that's about
7360  * to put the page on pcplist will either finish before the drain and the page
7361  * will be drained, or observe the new high limit and skip the pcplist.
7362  *
7363  * Must be paired with a call to zone_pcp_enable().
7364  */
zone_pcp_disable(struct zone * zone)7365 void zone_pcp_disable(struct zone *zone)
7366 {
7367 	mutex_lock(&pcp_batch_high_lock);
7368 	__zone_set_pageset_high_and_batch(zone, 0, 0, 1);
7369 	__drain_all_pages(zone, true);
7370 }
7371 
zone_pcp_enable(struct zone * zone)7372 void zone_pcp_enable(struct zone *zone)
7373 {
7374 	__zone_set_pageset_high_and_batch(zone, zone->pageset_high_min,
7375 		zone->pageset_high_max, zone->pageset_batch);
7376 	mutex_unlock(&pcp_batch_high_lock);
7377 }
7378 
zone_pcp_reset(struct zone * zone)7379 void zone_pcp_reset(struct zone *zone)
7380 {
7381 	int cpu;
7382 	struct per_cpu_zonestat *pzstats;
7383 
7384 	if (zone->per_cpu_pageset != &boot_pageset) {
7385 		for_each_online_cpu(cpu) {
7386 			pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
7387 			drain_zonestat(zone, pzstats);
7388 		}
7389 		free_percpu(zone->per_cpu_pageset);
7390 		zone->per_cpu_pageset = &boot_pageset;
7391 		if (zone->per_cpu_zonestats != &boot_zonestats) {
7392 			free_percpu(zone->per_cpu_zonestats);
7393 			zone->per_cpu_zonestats = &boot_zonestats;
7394 		}
7395 	}
7396 }
7397 
7398 #ifdef CONFIG_MEMORY_HOTREMOVE
7399 /*
7400  * All pages in the range must be in a single zone, must not contain holes,
7401  * must span full sections, and must be isolated before calling this function.
7402  *
7403  * Returns the number of managed (non-PageOffline()) pages in the range: the
7404  * number of pages for which memory offlining code must adjust managed page
7405  * counters using adjust_managed_page_count().
7406  */
__offline_isolated_pages(unsigned long start_pfn,unsigned long end_pfn)7407 unsigned long __offline_isolated_pages(unsigned long start_pfn,
7408 		unsigned long end_pfn)
7409 {
7410 	unsigned long already_offline = 0, flags;
7411 	unsigned long pfn = start_pfn;
7412 	struct page *page;
7413 	struct zone *zone;
7414 	unsigned int order;
7415 
7416 	offline_mem_sections(pfn, end_pfn);
7417 	zone = page_zone(pfn_to_page(pfn));
7418 	spin_lock_irqsave(&zone->lock, flags);
7419 	while (pfn < end_pfn) {
7420 		page = pfn_to_page(pfn);
7421 		/*
7422 		 * The HWPoisoned page may be not in buddy system, and
7423 		 * page_count() is not 0.
7424 		 */
7425 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7426 			pfn++;
7427 			continue;
7428 		}
7429 		/*
7430 		 * At this point all remaining PageOffline() pages have a
7431 		 * reference count of 0 and can simply be skipped.
7432 		 */
7433 		if (PageOffline(page)) {
7434 			BUG_ON(page_count(page));
7435 			BUG_ON(PageBuddy(page));
7436 			already_offline++;
7437 			pfn++;
7438 			continue;
7439 		}
7440 
7441 		BUG_ON(page_count(page));
7442 		BUG_ON(!PageBuddy(page));
7443 		VM_WARN_ON(get_pageblock_migratetype(page) != MIGRATE_ISOLATE);
7444 		order = buddy_order(page);
7445 		del_page_from_free_list(page, zone, order, MIGRATE_ISOLATE);
7446 		pfn += (1 << order);
7447 	}
7448 	spin_unlock_irqrestore(&zone->lock, flags);
7449 
7450 	return end_pfn - start_pfn - already_offline;
7451 }
7452 #endif
7453 
7454 /*
7455  * This function returns a stable result only if called under zone lock.
7456  */
is_free_buddy_page(const struct page * page)7457 bool is_free_buddy_page(const struct page *page)
7458 {
7459 	unsigned long pfn = page_to_pfn(page);
7460 	unsigned int order;
7461 
7462 	for (order = 0; order < NR_PAGE_ORDERS; order++) {
7463 		const struct page *head = page - (pfn & ((1 << order) - 1));
7464 
7465 		if (PageBuddy(head) &&
7466 		    buddy_order_unsafe(head) >= order)
7467 			break;
7468 	}
7469 
7470 	return order <= MAX_PAGE_ORDER;
7471 }
7472 EXPORT_SYMBOL(is_free_buddy_page);
7473 
7474 #ifdef CONFIG_MEMORY_FAILURE
add_to_free_list(struct page * page,struct zone * zone,unsigned int order,int migratetype,bool tail)7475 static inline void add_to_free_list(struct page *page, struct zone *zone,
7476 				    unsigned int order, int migratetype,
7477 				    bool tail)
7478 {
7479 	__add_to_free_list(page, zone, order, migratetype, tail);
7480 	account_freepages(zone, 1 << order, migratetype);
7481 }
7482 
7483 /*
7484  * Break down a higher-order page in sub-pages, and keep our target out of
7485  * buddy allocator.
7486  */
break_down_buddy_pages(struct zone * zone,struct page * page,struct page * target,int low,int high,int migratetype)7487 static void break_down_buddy_pages(struct zone *zone, struct page *page,
7488 				   struct page *target, int low, int high,
7489 				   int migratetype)
7490 {
7491 	unsigned long size = 1 << high;
7492 	struct page *current_buddy;
7493 
7494 	while (high > low) {
7495 		high--;
7496 		size >>= 1;
7497 
7498 		if (target >= &page[size]) {
7499 			current_buddy = page;
7500 			page = page + size;
7501 		} else {
7502 			current_buddy = page + size;
7503 		}
7504 
7505 		if (set_page_guard(zone, current_buddy, high))
7506 			continue;
7507 
7508 		add_to_free_list(current_buddy, zone, high, migratetype, false);
7509 		set_buddy_order(current_buddy, high);
7510 	}
7511 }
7512 
7513 /*
7514  * Take a page that will be marked as poisoned off the buddy allocator.
7515  */
take_page_off_buddy(struct page * page)7516 bool take_page_off_buddy(struct page *page)
7517 {
7518 	struct zone *zone = page_zone(page);
7519 	unsigned long pfn = page_to_pfn(page);
7520 	unsigned long flags;
7521 	unsigned int order;
7522 	bool ret = false;
7523 
7524 	spin_lock_irqsave(&zone->lock, flags);
7525 	for (order = 0; order < NR_PAGE_ORDERS; order++) {
7526 		struct page *page_head = page - (pfn & ((1 << order) - 1));
7527 		int page_order = buddy_order(page_head);
7528 
7529 		if (PageBuddy(page_head) && page_order >= order) {
7530 			unsigned long pfn_head = page_to_pfn(page_head);
7531 			int migratetype = get_pfnblock_migratetype(page_head,
7532 								   pfn_head);
7533 
7534 			del_page_from_free_list(page_head, zone, page_order,
7535 						migratetype);
7536 			break_down_buddy_pages(zone, page_head, page, 0,
7537 						page_order, migratetype);
7538 			SetPageHWPoisonTakenOff(page);
7539 			ret = true;
7540 			break;
7541 		}
7542 		if (page_count(page_head) > 0)
7543 			break;
7544 	}
7545 	spin_unlock_irqrestore(&zone->lock, flags);
7546 	return ret;
7547 }
7548 
7549 /*
7550  * Cancel takeoff done by take_page_off_buddy().
7551  */
put_page_back_buddy(struct page * page)7552 bool put_page_back_buddy(struct page *page)
7553 {
7554 	struct zone *zone = page_zone(page);
7555 	unsigned long flags;
7556 	bool ret = false;
7557 
7558 	spin_lock_irqsave(&zone->lock, flags);
7559 	if (put_page_testzero(page)) {
7560 		unsigned long pfn = page_to_pfn(page);
7561 		int migratetype = get_pfnblock_migratetype(page, pfn);
7562 
7563 		ClearPageHWPoisonTakenOff(page);
7564 		__free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE);
7565 		if (TestClearPageHWPoison(page)) {
7566 			ret = true;
7567 		}
7568 	}
7569 	spin_unlock_irqrestore(&zone->lock, flags);
7570 
7571 	return ret;
7572 }
7573 #endif
7574 
7575 #ifdef CONFIG_ZONE_DMA
has_managed_dma(void)7576 bool has_managed_dma(void)
7577 {
7578 	struct pglist_data *pgdat;
7579 
7580 	for_each_online_pgdat(pgdat) {
7581 		struct zone *zone = &pgdat->node_zones[ZONE_DMA];
7582 
7583 		if (managed_zone(zone))
7584 			return true;
7585 	}
7586 	return false;
7587 }
7588 #endif /* CONFIG_ZONE_DMA */
7589 
7590 #ifdef CONFIG_UNACCEPTED_MEMORY
7591 
7592 static bool lazy_accept = true;
7593 
accept_memory_parse(char * p)7594 static int __init accept_memory_parse(char *p)
7595 {
7596 	if (!strcmp(p, "lazy")) {
7597 		lazy_accept = true;
7598 		return 0;
7599 	} else if (!strcmp(p, "eager")) {
7600 		lazy_accept = false;
7601 		return 0;
7602 	} else {
7603 		return -EINVAL;
7604 	}
7605 }
7606 early_param("accept_memory", accept_memory_parse);
7607 
page_contains_unaccepted(struct page * page,unsigned int order)7608 static bool page_contains_unaccepted(struct page *page, unsigned int order)
7609 {
7610 	phys_addr_t start = page_to_phys(page);
7611 
7612 	return range_contains_unaccepted_memory(start, PAGE_SIZE << order);
7613 }
7614 
__accept_page(struct zone * zone,unsigned long * flags,struct page * page)7615 static void __accept_page(struct zone *zone, unsigned long *flags,
7616 			  struct page *page)
7617 {
7618 	list_del(&page->lru);
7619 	account_freepages(zone, -MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE);
7620 	__mod_zone_page_state(zone, NR_UNACCEPTED, -MAX_ORDER_NR_PAGES);
7621 	__ClearPageUnaccepted(page);
7622 	spin_unlock_irqrestore(&zone->lock, *flags);
7623 
7624 	accept_memory(page_to_phys(page), PAGE_SIZE << MAX_PAGE_ORDER);
7625 
7626 	__free_pages_ok(page, MAX_PAGE_ORDER, FPI_TO_TAIL);
7627 }
7628 
accept_page(struct page * page)7629 void accept_page(struct page *page)
7630 {
7631 	struct zone *zone = page_zone(page);
7632 	unsigned long flags;
7633 
7634 	spin_lock_irqsave(&zone->lock, flags);
7635 	if (!PageUnaccepted(page)) {
7636 		spin_unlock_irqrestore(&zone->lock, flags);
7637 		return;
7638 	}
7639 
7640 	/* Unlocks zone->lock */
7641 	__accept_page(zone, &flags, page);
7642 }
7643 
try_to_accept_memory_one(struct zone * zone)7644 static bool try_to_accept_memory_one(struct zone *zone)
7645 {
7646 	unsigned long flags;
7647 	struct page *page;
7648 
7649 	spin_lock_irqsave(&zone->lock, flags);
7650 	page = list_first_entry_or_null(&zone->unaccepted_pages,
7651 					struct page, lru);
7652 	if (!page) {
7653 		spin_unlock_irqrestore(&zone->lock, flags);
7654 		return false;
7655 	}
7656 
7657 	/* Unlocks zone->lock */
7658 	__accept_page(zone, &flags, page);
7659 
7660 	return true;
7661 }
7662 
cond_accept_memory(struct zone * zone,unsigned int order)7663 static bool cond_accept_memory(struct zone *zone, unsigned int order)
7664 {
7665 	long to_accept, wmark;
7666 	bool ret = false;
7667 
7668 	if (list_empty(&zone->unaccepted_pages))
7669 		return false;
7670 
7671 	wmark = promo_wmark_pages(zone);
7672 
7673 	/*
7674 	 * Watermarks have not been initialized yet.
7675 	 *
7676 	 * Accepting one MAX_ORDER page to ensure progress.
7677 	 */
7678 	if (!wmark)
7679 		return try_to_accept_memory_one(zone);
7680 
7681 	/* How much to accept to get to promo watermark? */
7682 	to_accept = wmark -
7683 		    (zone_page_state(zone, NR_FREE_PAGES) -
7684 		    __zone_watermark_unusable_free(zone, order, 0) -
7685 		    zone_page_state(zone, NR_UNACCEPTED));
7686 
7687 	while (to_accept > 0) {
7688 		if (!try_to_accept_memory_one(zone))
7689 			break;
7690 		ret = true;
7691 		to_accept -= MAX_ORDER_NR_PAGES;
7692 	}
7693 
7694 	return ret;
7695 }
7696 
__free_unaccepted(struct page * page)7697 static bool __free_unaccepted(struct page *page)
7698 {
7699 	struct zone *zone = page_zone(page);
7700 	unsigned long flags;
7701 
7702 	if (!lazy_accept)
7703 		return false;
7704 
7705 	spin_lock_irqsave(&zone->lock, flags);
7706 	list_add_tail(&page->lru, &zone->unaccepted_pages);
7707 	account_freepages(zone, MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE);
7708 	__mod_zone_page_state(zone, NR_UNACCEPTED, MAX_ORDER_NR_PAGES);
7709 	__SetPageUnaccepted(page);
7710 	spin_unlock_irqrestore(&zone->lock, flags);
7711 
7712 	return true;
7713 }
7714 
7715 #else
7716 
page_contains_unaccepted(struct page * page,unsigned int order)7717 static bool page_contains_unaccepted(struct page *page, unsigned int order)
7718 {
7719 	return false;
7720 }
7721 
cond_accept_memory(struct zone * zone,unsigned int order)7722 static bool cond_accept_memory(struct zone *zone, unsigned int order)
7723 {
7724 	return false;
7725 }
7726 
__free_unaccepted(struct page * page)7727 static bool __free_unaccepted(struct page *page)
7728 {
7729 	BUILD_BUG();
7730 	return false;
7731 }
7732 
7733 #endif /* CONFIG_UNACCEPTED_MEMORY */
7734