1 // SPDX-License-Identifier: MIT
2 /*
3 * Copyright © 2021 Intel Corporation
4 */
5
6 #include "xe_device.h"
7
8 #include <linux/delay.h>
9 #include <linux/units.h>
10
11 #include <drm/drm_aperture.h>
12 #include <drm/drm_atomic_helper.h>
13 #include <drm/drm_client.h>
14 #include <drm/drm_gem_ttm_helper.h>
15 #include <drm/drm_ioctl.h>
16 #include <drm/drm_managed.h>
17 #include <drm/drm_print.h>
18 #include <uapi/drm/xe_drm.h>
19
20 #include "display/xe_display.h"
21 #include "instructions/xe_gpu_commands.h"
22 #include "regs/xe_gt_regs.h"
23 #include "regs/xe_regs.h"
24 #include "xe_bo.h"
25 #include "xe_debugfs.h"
26 #include "xe_devcoredump.h"
27 #include "xe_dma_buf.h"
28 #include "xe_drm_client.h"
29 #include "xe_drv.h"
30 #include "xe_exec.h"
31 #include "xe_exec_queue.h"
32 #include "xe_force_wake.h"
33 #include "xe_ggtt.h"
34 #include "xe_gsc_proxy.h"
35 #include "xe_gt.h"
36 #include "xe_gt_mcr.h"
37 #include "xe_gt_printk.h"
38 #include "xe_gt_sriov_vf.h"
39 #include "xe_guc.h"
40 #include "xe_guc_pc.h"
41 #include "xe_hw_engine_group.h"
42 #include "xe_hwmon.h"
43 #include "xe_irq.h"
44 #include "xe_memirq.h"
45 #include "xe_mmio.h"
46 #include "xe_module.h"
47 #include "xe_observation.h"
48 #include "xe_pat.h"
49 #include "xe_pcode.h"
50 #include "xe_pm.h"
51 #include "xe_query.h"
52 #include "xe_sriov.h"
53 #include "xe_tile.h"
54 #include "xe_ttm_stolen_mgr.h"
55 #include "xe_ttm_sys_mgr.h"
56 #include "xe_vm.h"
57 #include "xe_vram.h"
58 #include "xe_wait_user_fence.h"
59 #include "xe_wa.h"
60
61 #include <generated/xe_wa_oob.h>
62
xe_file_open(struct drm_device * dev,struct drm_file * file)63 static int xe_file_open(struct drm_device *dev, struct drm_file *file)
64 {
65 struct xe_device *xe = to_xe_device(dev);
66 struct xe_drm_client *client;
67 struct xe_file *xef;
68 int ret = -ENOMEM;
69 struct task_struct *task = NULL;
70
71 xef = kzalloc(sizeof(*xef), GFP_KERNEL);
72 if (!xef)
73 return ret;
74
75 client = xe_drm_client_alloc();
76 if (!client) {
77 kfree(xef);
78 return ret;
79 }
80
81 xef->drm = file;
82 xef->client = client;
83 xef->xe = xe;
84
85 mutex_init(&xef->vm.lock);
86 xa_init_flags(&xef->vm.xa, XA_FLAGS_ALLOC1);
87
88 mutex_init(&xef->exec_queue.lock);
89 xa_init_flags(&xef->exec_queue.xa, XA_FLAGS_ALLOC1);
90
91 file->driver_priv = xef;
92 kref_init(&xef->refcount);
93
94 task = get_pid_task(rcu_access_pointer(file->pid), PIDTYPE_PID);
95 if (task) {
96 xef->process_name = kstrdup(task->comm, GFP_KERNEL);
97 xef->pid = task->pid;
98 put_task_struct(task);
99 }
100
101 return 0;
102 }
103
xe_file_destroy(struct kref * ref)104 static void xe_file_destroy(struct kref *ref)
105 {
106 struct xe_file *xef = container_of(ref, struct xe_file, refcount);
107
108 xa_destroy(&xef->exec_queue.xa);
109 mutex_destroy(&xef->exec_queue.lock);
110 xa_destroy(&xef->vm.xa);
111 mutex_destroy(&xef->vm.lock);
112
113 xe_drm_client_put(xef->client);
114 kfree(xef->process_name);
115 kfree(xef);
116 }
117
118 /**
119 * xe_file_get() - Take a reference to the xe file object
120 * @xef: Pointer to the xe file
121 *
122 * Anyone with a pointer to xef must take a reference to the xe file
123 * object using this call.
124 *
125 * Return: xe file pointer
126 */
xe_file_get(struct xe_file * xef)127 struct xe_file *xe_file_get(struct xe_file *xef)
128 {
129 kref_get(&xef->refcount);
130 return xef;
131 }
132
133 /**
134 * xe_file_put() - Drop a reference to the xe file object
135 * @xef: Pointer to the xe file
136 *
137 * Used to drop reference to the xef object
138 */
xe_file_put(struct xe_file * xef)139 void xe_file_put(struct xe_file *xef)
140 {
141 kref_put(&xef->refcount, xe_file_destroy);
142 }
143
xe_file_close(struct drm_device * dev,struct drm_file * file)144 static void xe_file_close(struct drm_device *dev, struct drm_file *file)
145 {
146 struct xe_device *xe = to_xe_device(dev);
147 struct xe_file *xef = file->driver_priv;
148 struct xe_vm *vm;
149 struct xe_exec_queue *q;
150 unsigned long idx;
151
152 xe_pm_runtime_get(xe);
153
154 /*
155 * No need for exec_queue.lock here as there is no contention for it
156 * when FD is closing as IOCTLs presumably can't be modifying the
157 * xarray. Taking exec_queue.lock here causes undue dependency on
158 * vm->lock taken during xe_exec_queue_kill().
159 */
160 xa_for_each(&xef->exec_queue.xa, idx, q) {
161 if (q->vm && q->hwe->hw_engine_group)
162 xe_hw_engine_group_del_exec_queue(q->hwe->hw_engine_group, q);
163 xe_exec_queue_kill(q);
164 xe_exec_queue_put(q);
165 }
166 xa_for_each(&xef->vm.xa, idx, vm)
167 xe_vm_close_and_put(vm);
168
169 xe_file_put(xef);
170
171 xe_pm_runtime_put(xe);
172 }
173
174 static const struct drm_ioctl_desc xe_ioctls[] = {
175 DRM_IOCTL_DEF_DRV(XE_DEVICE_QUERY, xe_query_ioctl, DRM_RENDER_ALLOW),
176 DRM_IOCTL_DEF_DRV(XE_GEM_CREATE, xe_gem_create_ioctl, DRM_RENDER_ALLOW),
177 DRM_IOCTL_DEF_DRV(XE_GEM_MMAP_OFFSET, xe_gem_mmap_offset_ioctl,
178 DRM_RENDER_ALLOW),
179 DRM_IOCTL_DEF_DRV(XE_VM_CREATE, xe_vm_create_ioctl, DRM_RENDER_ALLOW),
180 DRM_IOCTL_DEF_DRV(XE_VM_DESTROY, xe_vm_destroy_ioctl, DRM_RENDER_ALLOW),
181 DRM_IOCTL_DEF_DRV(XE_VM_BIND, xe_vm_bind_ioctl, DRM_RENDER_ALLOW),
182 DRM_IOCTL_DEF_DRV(XE_EXEC, xe_exec_ioctl, DRM_RENDER_ALLOW),
183 DRM_IOCTL_DEF_DRV(XE_EXEC_QUEUE_CREATE, xe_exec_queue_create_ioctl,
184 DRM_RENDER_ALLOW),
185 DRM_IOCTL_DEF_DRV(XE_EXEC_QUEUE_DESTROY, xe_exec_queue_destroy_ioctl,
186 DRM_RENDER_ALLOW),
187 DRM_IOCTL_DEF_DRV(XE_EXEC_QUEUE_GET_PROPERTY, xe_exec_queue_get_property_ioctl,
188 DRM_RENDER_ALLOW),
189 DRM_IOCTL_DEF_DRV(XE_WAIT_USER_FENCE, xe_wait_user_fence_ioctl,
190 DRM_RENDER_ALLOW),
191 DRM_IOCTL_DEF_DRV(XE_OBSERVATION, xe_observation_ioctl, DRM_RENDER_ALLOW),
192 };
193
xe_drm_ioctl(struct file * file,unsigned int cmd,unsigned long arg)194 static long xe_drm_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
195 {
196 struct drm_file *file_priv = file->private_data;
197 struct xe_device *xe = to_xe_device(file_priv->minor->dev);
198 long ret;
199
200 if (xe_device_wedged(xe))
201 return -ECANCELED;
202
203 ret = xe_pm_runtime_get_ioctl(xe);
204 if (ret >= 0)
205 ret = drm_ioctl(file, cmd, arg);
206 xe_pm_runtime_put(xe);
207
208 return ret;
209 }
210
211 #ifdef CONFIG_COMPAT
xe_drm_compat_ioctl(struct file * file,unsigned int cmd,unsigned long arg)212 static long xe_drm_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
213 {
214 struct drm_file *file_priv = file->private_data;
215 struct xe_device *xe = to_xe_device(file_priv->minor->dev);
216 long ret;
217
218 if (xe_device_wedged(xe))
219 return -ECANCELED;
220
221 ret = xe_pm_runtime_get_ioctl(xe);
222 if (ret >= 0)
223 ret = drm_compat_ioctl(file, cmd, arg);
224 xe_pm_runtime_put(xe);
225
226 return ret;
227 }
228 #else
229 /* similarly to drm_compat_ioctl, let's it be assigned to .compat_ioct unconditionally */
230 #define xe_drm_compat_ioctl NULL
231 #endif
232
233 static const struct file_operations xe_driver_fops = {
234 .owner = THIS_MODULE,
235 .open = drm_open,
236 .release = drm_release_noglobal,
237 .unlocked_ioctl = xe_drm_ioctl,
238 .mmap = drm_gem_mmap,
239 .poll = drm_poll,
240 .read = drm_read,
241 .compat_ioctl = xe_drm_compat_ioctl,
242 .llseek = noop_llseek,
243 #ifdef CONFIG_PROC_FS
244 .show_fdinfo = drm_show_fdinfo,
245 #endif
246 .fop_flags = FOP_UNSIGNED_OFFSET,
247 };
248
249 static struct drm_driver driver = {
250 /* Don't use MTRRs here; the Xserver or userspace app should
251 * deal with them for Intel hardware.
252 */
253 .driver_features =
254 DRIVER_GEM |
255 DRIVER_RENDER | DRIVER_SYNCOBJ |
256 DRIVER_SYNCOBJ_TIMELINE | DRIVER_GEM_GPUVA,
257 .open = xe_file_open,
258 .postclose = xe_file_close,
259
260 .gem_prime_import = xe_gem_prime_import,
261
262 .dumb_create = xe_bo_dumb_create,
263 .dumb_map_offset = drm_gem_ttm_dumb_map_offset,
264 #ifdef CONFIG_PROC_FS
265 .show_fdinfo = xe_drm_client_fdinfo,
266 #endif
267 .ioctls = xe_ioctls,
268 .num_ioctls = ARRAY_SIZE(xe_ioctls),
269 .fops = &xe_driver_fops,
270 .name = DRIVER_NAME,
271 .desc = DRIVER_DESC,
272 .date = DRIVER_DATE,
273 .major = DRIVER_MAJOR,
274 .minor = DRIVER_MINOR,
275 .patchlevel = DRIVER_PATCHLEVEL,
276 };
277
xe_device_destroy(struct drm_device * dev,void * dummy)278 static void xe_device_destroy(struct drm_device *dev, void *dummy)
279 {
280 struct xe_device *xe = to_xe_device(dev);
281
282 if (xe->preempt_fence_wq)
283 destroy_workqueue(xe->preempt_fence_wq);
284
285 if (xe->ordered_wq)
286 destroy_workqueue(xe->ordered_wq);
287
288 if (xe->unordered_wq)
289 destroy_workqueue(xe->unordered_wq);
290
291 if (xe->destroy_wq)
292 destroy_workqueue(xe->destroy_wq);
293
294 ttm_device_fini(&xe->ttm);
295 }
296
xe_device_create(struct pci_dev * pdev,const struct pci_device_id * ent)297 struct xe_device *xe_device_create(struct pci_dev *pdev,
298 const struct pci_device_id *ent)
299 {
300 struct xe_device *xe;
301 int err;
302
303 xe_display_driver_set_hooks(&driver);
304
305 err = drm_aperture_remove_conflicting_pci_framebuffers(pdev, &driver);
306 if (err)
307 return ERR_PTR(err);
308
309 xe = devm_drm_dev_alloc(&pdev->dev, &driver, struct xe_device, drm);
310 if (IS_ERR(xe))
311 return xe;
312
313 err = ttm_device_init(&xe->ttm, &xe_ttm_funcs, xe->drm.dev,
314 xe->drm.anon_inode->i_mapping,
315 xe->drm.vma_offset_manager, false, false);
316 if (WARN_ON(err))
317 goto err;
318
319 err = drmm_add_action_or_reset(&xe->drm, xe_device_destroy, NULL);
320 if (err)
321 goto err;
322
323 xe->info.devid = pdev->device;
324 xe->info.revid = pdev->revision;
325 xe->info.force_execlist = xe_modparam.force_execlist;
326
327 spin_lock_init(&xe->irq.lock);
328
329 init_waitqueue_head(&xe->ufence_wq);
330
331 init_rwsem(&xe->usm.lock);
332
333 xa_init_flags(&xe->usm.asid_to_vm, XA_FLAGS_ALLOC);
334
335 if (IS_ENABLED(CONFIG_DRM_XE_DEBUG)) {
336 /* Trigger a large asid and an early asid wrap. */
337 u32 asid;
338
339 BUILD_BUG_ON(XE_MAX_ASID < 2);
340 err = xa_alloc_cyclic(&xe->usm.asid_to_vm, &asid, NULL,
341 XA_LIMIT(XE_MAX_ASID - 2, XE_MAX_ASID - 1),
342 &xe->usm.next_asid, GFP_KERNEL);
343 drm_WARN_ON(&xe->drm, err);
344 if (err >= 0)
345 xa_erase(&xe->usm.asid_to_vm, asid);
346 }
347
348 spin_lock_init(&xe->pinned.lock);
349 INIT_LIST_HEAD(&xe->pinned.kernel_bo_present);
350 INIT_LIST_HEAD(&xe->pinned.external_vram);
351 INIT_LIST_HEAD(&xe->pinned.evicted);
352
353 xe->preempt_fence_wq = alloc_ordered_workqueue("xe-preempt-fence-wq", 0);
354 xe->ordered_wq = alloc_ordered_workqueue("xe-ordered-wq", 0);
355 xe->unordered_wq = alloc_workqueue("xe-unordered-wq", 0, 0);
356 xe->destroy_wq = alloc_workqueue("xe-destroy-wq", 0, 0);
357 if (!xe->ordered_wq || !xe->unordered_wq ||
358 !xe->preempt_fence_wq || !xe->destroy_wq) {
359 /*
360 * Cleanup done in xe_device_destroy via
361 * drmm_add_action_or_reset register above
362 */
363 drm_err(&xe->drm, "Failed to allocate xe workqueues\n");
364 err = -ENOMEM;
365 goto err;
366 }
367
368 err = xe_display_create(xe);
369 if (WARN_ON(err))
370 goto err;
371
372 return xe;
373
374 err:
375 return ERR_PTR(err);
376 }
377
xe_driver_flr_disabled(struct xe_device * xe)378 static bool xe_driver_flr_disabled(struct xe_device *xe)
379 {
380 return xe_mmio_read32(xe_root_mmio_gt(xe), GU_CNTL_PROTECTED) & DRIVERINT_FLR_DIS;
381 }
382
383 /*
384 * The driver-initiated FLR is the highest level of reset that we can trigger
385 * from within the driver. It is different from the PCI FLR in that it doesn't
386 * fully reset the SGUnit and doesn't modify the PCI config space and therefore
387 * it doesn't require a re-enumeration of the PCI BARs. However, the
388 * driver-initiated FLR does still cause a reset of both GT and display and a
389 * memory wipe of local and stolen memory, so recovery would require a full HW
390 * re-init and saving/restoring (or re-populating) the wiped memory. Since we
391 * perform the FLR as the very last action before releasing access to the HW
392 * during the driver release flow, we don't attempt recovery at all, because
393 * if/when a new instance of i915 is bound to the device it will do a full
394 * re-init anyway.
395 */
__xe_driver_flr(struct xe_device * xe)396 static void __xe_driver_flr(struct xe_device *xe)
397 {
398 const unsigned int flr_timeout = 3 * MICRO; /* specs recommend a 3s wait */
399 struct xe_gt *gt = xe_root_mmio_gt(xe);
400 int ret;
401
402 drm_dbg(&xe->drm, "Triggering Driver-FLR\n");
403
404 /*
405 * Make sure any pending FLR requests have cleared by waiting for the
406 * FLR trigger bit to go to zero. Also clear GU_DEBUG's DRIVERFLR_STATUS
407 * to make sure it's not still set from a prior attempt (it's a write to
408 * clear bit).
409 * Note that we should never be in a situation where a previous attempt
410 * is still pending (unless the HW is totally dead), but better to be
411 * safe in case something unexpected happens
412 */
413 ret = xe_mmio_wait32(gt, GU_CNTL, DRIVERFLR, 0, flr_timeout, NULL, false);
414 if (ret) {
415 drm_err(&xe->drm, "Driver-FLR-prepare wait for ready failed! %d\n", ret);
416 return;
417 }
418 xe_mmio_write32(gt, GU_DEBUG, DRIVERFLR_STATUS);
419
420 /* Trigger the actual Driver-FLR */
421 xe_mmio_rmw32(gt, GU_CNTL, 0, DRIVERFLR);
422
423 /* Wait for hardware teardown to complete */
424 ret = xe_mmio_wait32(gt, GU_CNTL, DRIVERFLR, 0, flr_timeout, NULL, false);
425 if (ret) {
426 drm_err(&xe->drm, "Driver-FLR-teardown wait completion failed! %d\n", ret);
427 return;
428 }
429
430 /* Wait for hardware/firmware re-init to complete */
431 ret = xe_mmio_wait32(gt, GU_DEBUG, DRIVERFLR_STATUS, DRIVERFLR_STATUS,
432 flr_timeout, NULL, false);
433 if (ret) {
434 drm_err(&xe->drm, "Driver-FLR-reinit wait completion failed! %d\n", ret);
435 return;
436 }
437
438 /* Clear sticky completion status */
439 xe_mmio_write32(gt, GU_DEBUG, DRIVERFLR_STATUS);
440 }
441
xe_driver_flr(struct xe_device * xe)442 static void xe_driver_flr(struct xe_device *xe)
443 {
444 if (xe_driver_flr_disabled(xe)) {
445 drm_info_once(&xe->drm, "BIOS Disabled Driver-FLR\n");
446 return;
447 }
448
449 __xe_driver_flr(xe);
450 }
451
xe_driver_flr_fini(void * arg)452 static void xe_driver_flr_fini(void *arg)
453 {
454 struct xe_device *xe = arg;
455
456 if (xe->needs_flr_on_fini)
457 xe_driver_flr(xe);
458 }
459
xe_device_sanitize(void * arg)460 static void xe_device_sanitize(void *arg)
461 {
462 struct xe_device *xe = arg;
463 struct xe_gt *gt;
464 u8 id;
465
466 for_each_gt(gt, xe, id)
467 xe_gt_sanitize(gt);
468 }
469
xe_set_dma_info(struct xe_device * xe)470 static int xe_set_dma_info(struct xe_device *xe)
471 {
472 unsigned int mask_size = xe->info.dma_mask_size;
473 int err;
474
475 dma_set_max_seg_size(xe->drm.dev, xe_sg_segment_size(xe->drm.dev));
476
477 err = dma_set_mask(xe->drm.dev, DMA_BIT_MASK(mask_size));
478 if (err)
479 goto mask_err;
480
481 err = dma_set_coherent_mask(xe->drm.dev, DMA_BIT_MASK(mask_size));
482 if (err)
483 goto mask_err;
484
485 return 0;
486
487 mask_err:
488 drm_err(&xe->drm, "Can't set DMA mask/consistent mask (%d)\n", err);
489 return err;
490 }
491
verify_lmem_ready(struct xe_gt * gt)492 static bool verify_lmem_ready(struct xe_gt *gt)
493 {
494 u32 val = xe_mmio_read32(gt, GU_CNTL) & LMEM_INIT;
495
496 return !!val;
497 }
498
wait_for_lmem_ready(struct xe_device * xe)499 static int wait_for_lmem_ready(struct xe_device *xe)
500 {
501 struct xe_gt *gt = xe_root_mmio_gt(xe);
502 unsigned long timeout, start;
503
504 if (!IS_DGFX(xe))
505 return 0;
506
507 if (IS_SRIOV_VF(xe))
508 return 0;
509
510 if (verify_lmem_ready(gt))
511 return 0;
512
513 drm_dbg(&xe->drm, "Waiting for lmem initialization\n");
514
515 start = jiffies;
516 timeout = start + msecs_to_jiffies(60 * 1000); /* 60 sec! */
517
518 do {
519 if (signal_pending(current))
520 return -EINTR;
521
522 /*
523 * The boot firmware initializes local memory and
524 * assesses its health. If memory training fails,
525 * the punit will have been instructed to keep the GT powered
526 * down.we won't be able to communicate with it
527 *
528 * If the status check is done before punit updates the register,
529 * it can lead to the system being unusable.
530 * use a timeout and defer the probe to prevent this.
531 */
532 if (time_after(jiffies, timeout)) {
533 drm_dbg(&xe->drm, "lmem not initialized by firmware\n");
534 return -EPROBE_DEFER;
535 }
536
537 msleep(20);
538
539 } while (!verify_lmem_ready(gt));
540
541 drm_dbg(&xe->drm, "lmem ready after %ums",
542 jiffies_to_msecs(jiffies - start));
543
544 return 0;
545 }
546
update_device_info(struct xe_device * xe)547 static void update_device_info(struct xe_device *xe)
548 {
549 /* disable features that are not available/applicable to VFs */
550 if (IS_SRIOV_VF(xe)) {
551 xe->info.probe_display = 0;
552 xe->info.has_heci_cscfi = 0;
553 xe->info.has_heci_gscfi = 0;
554 xe->info.skip_guc_pc = 1;
555 xe->info.skip_pcode = 1;
556 }
557 }
558
559 /**
560 * xe_device_probe_early: Device early probe
561 * @xe: xe device instance
562 *
563 * Initialize MMIO resources that don't require any
564 * knowledge about tile count. Also initialize pcode and
565 * check vram initialization on root tile.
566 *
567 * Return: 0 on success, error code on failure
568 */
xe_device_probe_early(struct xe_device * xe)569 int xe_device_probe_early(struct xe_device *xe)
570 {
571 int err;
572
573 err = xe_mmio_init(xe);
574 if (err)
575 return err;
576
577 xe_sriov_probe_early(xe);
578
579 update_device_info(xe);
580
581 err = xe_pcode_probe_early(xe);
582 if (err)
583 return err;
584
585 err = wait_for_lmem_ready(xe);
586 if (err)
587 return err;
588
589 xe->wedged.mode = xe_modparam.wedged_mode;
590
591 return 0;
592 }
593
xe_device_set_has_flat_ccs(struct xe_device * xe)594 static int xe_device_set_has_flat_ccs(struct xe_device *xe)
595 {
596 u32 reg;
597 int err;
598
599 if (GRAPHICS_VER(xe) < 20 || !xe->info.has_flat_ccs)
600 return 0;
601
602 struct xe_gt *gt = xe_root_mmio_gt(xe);
603
604 err = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT);
605 if (err)
606 return err;
607
608 reg = xe_gt_mcr_unicast_read_any(gt, XE2_FLAT_CCS_BASE_RANGE_LOWER);
609 xe->info.has_flat_ccs = (reg & XE2_FLAT_CCS_ENABLE);
610
611 if (!xe->info.has_flat_ccs)
612 drm_dbg(&xe->drm,
613 "Flat CCS has been disabled in bios, May lead to performance impact");
614
615 return xe_force_wake_put(gt_to_fw(gt), XE_FW_GT);
616 }
617
xe_device_probe(struct xe_device * xe)618 int xe_device_probe(struct xe_device *xe)
619 {
620 struct xe_tile *tile;
621 struct xe_gt *gt;
622 int err;
623 u8 last_gt;
624 u8 id;
625
626 xe_pat_init_early(xe);
627
628 err = xe_sriov_init(xe);
629 if (err)
630 return err;
631
632 xe->info.mem_region_mask = 1;
633 err = xe_display_init_nommio(xe);
634 if (err)
635 return err;
636
637 err = xe_set_dma_info(xe);
638 if (err)
639 return err;
640
641 err = xe_mmio_probe_tiles(xe);
642 if (err)
643 return err;
644
645 xe_ttm_sys_mgr_init(xe);
646
647 for_each_gt(gt, xe, id) {
648 err = xe_gt_init_early(gt);
649 if (err)
650 return err;
651 }
652
653 for_each_tile(tile, xe, id) {
654 if (IS_SRIOV_VF(xe)) {
655 xe_guc_comm_init_early(&tile->primary_gt->uc.guc);
656 err = xe_gt_sriov_vf_bootstrap(tile->primary_gt);
657 if (err)
658 return err;
659 err = xe_gt_sriov_vf_query_config(tile->primary_gt);
660 if (err)
661 return err;
662 }
663 err = xe_ggtt_init_early(tile->mem.ggtt);
664 if (err)
665 return err;
666 if (IS_SRIOV_VF(xe)) {
667 err = xe_memirq_init(&tile->sriov.vf.memirq);
668 if (err)
669 return err;
670 }
671 }
672
673 for_each_gt(gt, xe, id) {
674 err = xe_gt_init_hwconfig(gt);
675 if (err)
676 return err;
677 }
678
679 err = xe_devcoredump_init(xe);
680 if (err)
681 return err;
682 err = devm_add_action_or_reset(xe->drm.dev, xe_driver_flr_fini, xe);
683 if (err)
684 return err;
685
686 err = xe_display_init_noirq(xe);
687 if (err)
688 return err;
689
690 err = xe_irq_install(xe);
691 if (err)
692 goto err;
693
694 err = xe_device_set_has_flat_ccs(xe);
695 if (err)
696 goto err;
697
698 err = xe_vram_probe(xe);
699 if (err)
700 goto err;
701
702 for_each_tile(tile, xe, id) {
703 err = xe_tile_init_noalloc(tile);
704 if (err)
705 goto err;
706 }
707
708 /* Allocate and map stolen after potential VRAM resize */
709 err = xe_ttm_stolen_mgr_init(xe);
710 if (err)
711 return err;
712
713 /*
714 * Now that GT is initialized (TTM in particular),
715 * we can try to init display, and inherit the initial fb.
716 * This is the reason the first allocation needs to be done
717 * inside display.
718 */
719 err = xe_display_init_noaccel(xe);
720 if (err)
721 goto err;
722
723 for_each_tile(tile, xe, id) {
724 err = xe_tile_init(tile);
725 if (err)
726 goto err;
727 }
728
729 for_each_gt(gt, xe, id) {
730 last_gt = id;
731
732 err = xe_gt_init(gt);
733 if (err)
734 goto err_fini_gt;
735 }
736
737 xe_heci_gsc_init(xe);
738
739 err = xe_oa_init(xe);
740 if (err)
741 goto err_fini_gt;
742
743 err = xe_display_init(xe);
744 if (err)
745 goto err_fini_oa;
746
747 err = drm_dev_register(&xe->drm, 0);
748 if (err)
749 goto err_fini_display;
750
751 xe_display_register(xe);
752
753 xe_oa_register(xe);
754
755 xe_debugfs_register(xe);
756
757 xe_hwmon_register(xe);
758
759 for_each_gt(gt, xe, id)
760 xe_gt_sanitize_freq(gt);
761
762 return devm_add_action_or_reset(xe->drm.dev, xe_device_sanitize, xe);
763
764 err_fini_display:
765 xe_display_driver_remove(xe);
766
767 err_fini_oa:
768 xe_oa_fini(xe);
769
770 err_fini_gt:
771 for_each_gt(gt, xe, id) {
772 if (id < last_gt)
773 xe_gt_remove(gt);
774 else
775 break;
776 }
777
778 err:
779 xe_display_fini(xe);
780 return err;
781 }
782
xe_device_remove_display(struct xe_device * xe)783 static void xe_device_remove_display(struct xe_device *xe)
784 {
785 xe_display_unregister(xe);
786
787 drm_dev_unplug(&xe->drm);
788 xe_display_driver_remove(xe);
789 }
790
xe_device_remove(struct xe_device * xe)791 void xe_device_remove(struct xe_device *xe)
792 {
793 struct xe_gt *gt;
794 u8 id;
795
796 xe_oa_unregister(xe);
797
798 xe_device_remove_display(xe);
799
800 xe_display_fini(xe);
801
802 xe_oa_fini(xe);
803
804 xe_heci_gsc_fini(xe);
805
806 for_each_gt(gt, xe, id)
807 xe_gt_remove(gt);
808 }
809
xe_device_shutdown(struct xe_device * xe)810 void xe_device_shutdown(struct xe_device *xe)
811 {
812 struct xe_gt *gt;
813 u8 id;
814
815 drm_dbg(&xe->drm, "Shutting down device\n");
816
817 if (xe_driver_flr_disabled(xe)) {
818 xe_display_pm_shutdown(xe);
819
820 xe_irq_suspend(xe);
821
822 for_each_gt(gt, xe, id)
823 xe_gt_shutdown(gt);
824
825 xe_display_pm_shutdown_late(xe);
826 } else {
827 /* BOOM! */
828 __xe_driver_flr(xe);
829 }
830 }
831
832 /**
833 * xe_device_wmb() - Device specific write memory barrier
834 * @xe: the &xe_device
835 *
836 * While wmb() is sufficient for a barrier if we use system memory, on discrete
837 * platforms with device memory we additionally need to issue a register write.
838 * Since it doesn't matter which register we write to, use the read-only VF_CAP
839 * register that is also marked as accessible by the VFs.
840 */
xe_device_wmb(struct xe_device * xe)841 void xe_device_wmb(struct xe_device *xe)
842 {
843 struct xe_gt *gt = xe_root_mmio_gt(xe);
844
845 wmb();
846 if (IS_DGFX(xe))
847 xe_mmio_write32(gt, VF_CAP_REG, 0);
848 }
849
850 /**
851 * xe_device_td_flush() - Flush transient L3 cache entries
852 * @xe: The device
853 *
854 * Display engine has direct access to memory and is never coherent with L3/L4
855 * caches (or CPU caches), however KMD is responsible for specifically flushing
856 * transient L3 GPU cache entries prior to the flip sequence to ensure scanout
857 * can happen from such a surface without seeing corruption.
858 *
859 * Display surfaces can be tagged as transient by mapping it using one of the
860 * various L3:XD PAT index modes on Xe2.
861 *
862 * Note: On non-discrete xe2 platforms, like LNL, the entire L3 cache is flushed
863 * at the end of each submission via PIPE_CONTROL for compute/render, since SA
864 * Media is not coherent with L3 and we want to support render-vs-media
865 * usescases. For other engines like copy/blt the HW internally forces uncached
866 * behaviour, hence why we can skip the TDF on such platforms.
867 */
xe_device_td_flush(struct xe_device * xe)868 void xe_device_td_flush(struct xe_device *xe)
869 {
870 struct xe_gt *gt;
871 u8 id;
872
873 if (!IS_DGFX(xe) || GRAPHICS_VER(xe) < 20)
874 return;
875
876 gt = xe_root_mmio_gt(xe);
877 if (XE_WA(gt, 16023588340)) {
878 /* A transient flush is not sufficient: flush the L2 */
879 xe_device_l2_flush(xe);
880 } else {
881 xe_guc_pc_apply_flush_freq_limit(>->uc.guc.pc);
882
883 /* Execute TDF flush on all graphics GTs */
884 for_each_gt(gt, xe, id) {
885 if (xe_gt_is_media_type(gt))
886 continue;
887
888 if (xe_force_wake_get(gt_to_fw(gt), XE_FW_GT))
889 return;
890
891 xe_mmio_write32(gt, XE2_TDF_CTRL, TRANSIENT_FLUSH_REQUEST);
892 /*
893 * FIXME: We can likely do better here with our choice of
894 * timeout. Currently we just assume the worst case, i.e. 150us,
895 * which is believed to be sufficient to cover the worst case
896 * scenario on current platforms if all cache entries are
897 * transient and need to be flushed..
898 */
899 if (xe_mmio_wait32(gt, XE2_TDF_CTRL, TRANSIENT_FLUSH_REQUEST, 0,
900 150, NULL, false))
901 xe_gt_err_once(gt, "TD flush timeout\n");
902
903 xe_force_wake_put(gt_to_fw(gt), XE_FW_GT);
904 }
905
906 xe_guc_pc_remove_flush_freq_limit(&xe_root_mmio_gt(xe)->uc.guc.pc);
907 }
908 }
909
xe_device_l2_flush(struct xe_device * xe)910 void xe_device_l2_flush(struct xe_device *xe)
911 {
912 struct xe_gt *gt;
913 int err;
914
915 gt = xe_root_mmio_gt(xe);
916
917 if (!XE_WA(gt, 16023588340))
918 return;
919
920 err = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT);
921 if (err)
922 return;
923
924 spin_lock(>->global_invl_lock);
925 xe_mmio_write32(gt, XE2_GLOBAL_INVAL, 0x1);
926
927 if (xe_mmio_wait32(gt, XE2_GLOBAL_INVAL, 0x1, 0x0, 500, NULL, true))
928 xe_gt_err_once(gt, "Global invalidation timeout\n");
929 spin_unlock(>->global_invl_lock);
930
931 xe_force_wake_put(gt_to_fw(gt), XE_FW_GT);
932 }
933
xe_device_ccs_bytes(struct xe_device * xe,u64 size)934 u32 xe_device_ccs_bytes(struct xe_device *xe, u64 size)
935 {
936 return xe_device_has_flat_ccs(xe) ?
937 DIV_ROUND_UP_ULL(size, NUM_BYTES_PER_CCS_BYTE(xe)) : 0;
938 }
939
940 /**
941 * xe_device_assert_mem_access - Inspect the current runtime_pm state.
942 * @xe: xe device instance
943 *
944 * To be used before any kind of memory access. It will splat a debug warning
945 * if the device is currently sleeping. But it doesn't guarantee in any way
946 * that the device is going to remain awake. Xe PM runtime get and put
947 * functions might be added to the outer bound of the memory access, while
948 * this check is intended for inner usage to splat some warning if the worst
949 * case has just happened.
950 */
xe_device_assert_mem_access(struct xe_device * xe)951 void xe_device_assert_mem_access(struct xe_device *xe)
952 {
953 xe_assert(xe, !xe_pm_runtime_suspended(xe));
954 }
955
xe_device_snapshot_print(struct xe_device * xe,struct drm_printer * p)956 void xe_device_snapshot_print(struct xe_device *xe, struct drm_printer *p)
957 {
958 struct xe_gt *gt;
959 u8 id;
960
961 drm_printf(p, "PCI ID: 0x%04x\n", xe->info.devid);
962 drm_printf(p, "PCI revision: 0x%02x\n", xe->info.revid);
963
964 for_each_gt(gt, xe, id) {
965 drm_printf(p, "GT id: %u\n", id);
966 drm_printf(p, "\tTile: %u\n", gt->tile->id);
967 drm_printf(p, "\tType: %s\n",
968 gt->info.type == XE_GT_TYPE_MAIN ? "main" : "media");
969 drm_printf(p, "\tIP ver: %u.%u.%u\n",
970 REG_FIELD_GET(GMD_ID_ARCH_MASK, gt->info.gmdid),
971 REG_FIELD_GET(GMD_ID_RELEASE_MASK, gt->info.gmdid),
972 REG_FIELD_GET(GMD_ID_REVID, gt->info.gmdid));
973 drm_printf(p, "\tCS reference clock: %u\n", gt->info.reference_clock);
974 }
975 }
976
xe_device_canonicalize_addr(struct xe_device * xe,u64 address)977 u64 xe_device_canonicalize_addr(struct xe_device *xe, u64 address)
978 {
979 return sign_extend64(address, xe->info.va_bits - 1);
980 }
981
xe_device_uncanonicalize_addr(struct xe_device * xe,u64 address)982 u64 xe_device_uncanonicalize_addr(struct xe_device *xe, u64 address)
983 {
984 return address & GENMASK_ULL(xe->info.va_bits - 1, 0);
985 }
986
xe_device_wedged_fini(struct drm_device * drm,void * arg)987 static void xe_device_wedged_fini(struct drm_device *drm, void *arg)
988 {
989 struct xe_device *xe = arg;
990
991 xe_pm_runtime_put(xe);
992 }
993
994 /**
995 * xe_device_declare_wedged - Declare device wedged
996 * @xe: xe device instance
997 *
998 * This is a final state that can only be cleared with a mudule
999 * re-probe (unbind + bind).
1000 * In this state every IOCTL will be blocked so the GT cannot be used.
1001 * In general it will be called upon any critical error such as gt reset
1002 * failure or guc loading failure.
1003 * If xe.wedged module parameter is set to 2, this function will be called
1004 * on every single execution timeout (a.k.a. GPU hang) right after devcoredump
1005 * snapshot capture. In this mode, GT reset won't be attempted so the state of
1006 * the issue is preserved for further debugging.
1007 */
xe_device_declare_wedged(struct xe_device * xe)1008 void xe_device_declare_wedged(struct xe_device *xe)
1009 {
1010 struct xe_gt *gt;
1011 u8 id;
1012
1013 if (xe->wedged.mode == 0) {
1014 drm_dbg(&xe->drm, "Wedged mode is forcibly disabled\n");
1015 return;
1016 }
1017
1018 xe_pm_runtime_get_noresume(xe);
1019
1020 if (drmm_add_action_or_reset(&xe->drm, xe_device_wedged_fini, xe)) {
1021 drm_err(&xe->drm, "Failed to register xe_device_wedged_fini clean-up. Although device is wedged.\n");
1022 return;
1023 }
1024
1025 if (!atomic_xchg(&xe->wedged.flag, 1)) {
1026 xe->needs_flr_on_fini = true;
1027 drm_err(&xe->drm,
1028 "CRITICAL: Xe has declared device %s as wedged.\n"
1029 "IOCTLs and executions are blocked. Only a rebind may clear the failure\n"
1030 "Please file a _new_ bug report at https://gitlab.freedesktop.org/drm/xe/kernel/issues/new\n",
1031 dev_name(xe->drm.dev));
1032 }
1033
1034 for_each_gt(gt, xe, id)
1035 xe_gt_declare_wedged(gt);
1036 }
1037