1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_bit.h"
13 #include "xfs_mount.h"
14 #include "xfs_inode.h"
15 #include "xfs_btree.h"
16 #include "xfs_ialloc.h"
17 #include "xfs_ialloc_btree.h"
18 #include "xfs_alloc.h"
19 #include "xfs_errortag.h"
20 #include "xfs_error.h"
21 #include "xfs_bmap.h"
22 #include "xfs_trans.h"
23 #include "xfs_buf_item.h"
24 #include "xfs_icreate_item.h"
25 #include "xfs_icache.h"
26 #include "xfs_trace.h"
27 #include "xfs_log.h"
28 #include "xfs_rmap.h"
29 #include "xfs_ag.h"
30 #include "xfs_health.h"
31 
32 /*
33  * Lookup a record by ino in the btree given by cur.
34  */
35 int					/* error */
xfs_inobt_lookup(struct xfs_btree_cur * cur,xfs_agino_t ino,xfs_lookup_t dir,int * stat)36 xfs_inobt_lookup(
37 	struct xfs_btree_cur	*cur,	/* btree cursor */
38 	xfs_agino_t		ino,	/* starting inode of chunk */
39 	xfs_lookup_t		dir,	/* <=, >=, == */
40 	int			*stat)	/* success/failure */
41 {
42 	cur->bc_rec.i.ir_startino = ino;
43 	cur->bc_rec.i.ir_holemask = 0;
44 	cur->bc_rec.i.ir_count = 0;
45 	cur->bc_rec.i.ir_freecount = 0;
46 	cur->bc_rec.i.ir_free = 0;
47 	return xfs_btree_lookup(cur, dir, stat);
48 }
49 
50 /*
51  * Update the record referred to by cur to the value given.
52  * This either works (return 0) or gets an EFSCORRUPTED error.
53  */
54 STATIC int				/* error */
xfs_inobt_update(struct xfs_btree_cur * cur,xfs_inobt_rec_incore_t * irec)55 xfs_inobt_update(
56 	struct xfs_btree_cur	*cur,	/* btree cursor */
57 	xfs_inobt_rec_incore_t	*irec)	/* btree record */
58 {
59 	union xfs_btree_rec	rec;
60 
61 	rec.inobt.ir_startino = cpu_to_be32(irec->ir_startino);
62 	if (xfs_has_sparseinodes(cur->bc_mp)) {
63 		rec.inobt.ir_u.sp.ir_holemask = cpu_to_be16(irec->ir_holemask);
64 		rec.inobt.ir_u.sp.ir_count = irec->ir_count;
65 		rec.inobt.ir_u.sp.ir_freecount = irec->ir_freecount;
66 	} else {
67 		/* ir_holemask/ir_count not supported on-disk */
68 		rec.inobt.ir_u.f.ir_freecount = cpu_to_be32(irec->ir_freecount);
69 	}
70 	rec.inobt.ir_free = cpu_to_be64(irec->ir_free);
71 	return xfs_btree_update(cur, &rec);
72 }
73 
74 /* Convert on-disk btree record to incore inobt record. */
75 void
xfs_inobt_btrec_to_irec(struct xfs_mount * mp,const union xfs_btree_rec * rec,struct xfs_inobt_rec_incore * irec)76 xfs_inobt_btrec_to_irec(
77 	struct xfs_mount		*mp,
78 	const union xfs_btree_rec	*rec,
79 	struct xfs_inobt_rec_incore	*irec)
80 {
81 	irec->ir_startino = be32_to_cpu(rec->inobt.ir_startino);
82 	if (xfs_has_sparseinodes(mp)) {
83 		irec->ir_holemask = be16_to_cpu(rec->inobt.ir_u.sp.ir_holemask);
84 		irec->ir_count = rec->inobt.ir_u.sp.ir_count;
85 		irec->ir_freecount = rec->inobt.ir_u.sp.ir_freecount;
86 	} else {
87 		/*
88 		 * ir_holemask/ir_count not supported on-disk. Fill in hardcoded
89 		 * values for full inode chunks.
90 		 */
91 		irec->ir_holemask = XFS_INOBT_HOLEMASK_FULL;
92 		irec->ir_count = XFS_INODES_PER_CHUNK;
93 		irec->ir_freecount =
94 				be32_to_cpu(rec->inobt.ir_u.f.ir_freecount);
95 	}
96 	irec->ir_free = be64_to_cpu(rec->inobt.ir_free);
97 }
98 
99 /* Compute the freecount of an incore inode record. */
100 uint8_t
xfs_inobt_rec_freecount(const struct xfs_inobt_rec_incore * irec)101 xfs_inobt_rec_freecount(
102 	const struct xfs_inobt_rec_incore	*irec)
103 {
104 	uint64_t				realfree = irec->ir_free;
105 
106 	if (xfs_inobt_issparse(irec->ir_holemask))
107 		realfree &= xfs_inobt_irec_to_allocmask(irec);
108 	return hweight64(realfree);
109 }
110 
111 /* Simple checks for inode records. */
112 xfs_failaddr_t
xfs_inobt_check_irec(struct xfs_perag * pag,const struct xfs_inobt_rec_incore * irec)113 xfs_inobt_check_irec(
114 	struct xfs_perag			*pag,
115 	const struct xfs_inobt_rec_incore	*irec)
116 {
117 	/* Record has to be properly aligned within the AG. */
118 	if (!xfs_verify_agino(pag, irec->ir_startino))
119 		return __this_address;
120 	if (!xfs_verify_agino(pag,
121 				irec->ir_startino + XFS_INODES_PER_CHUNK - 1))
122 		return __this_address;
123 	if (irec->ir_count < XFS_INODES_PER_HOLEMASK_BIT ||
124 	    irec->ir_count > XFS_INODES_PER_CHUNK)
125 		return __this_address;
126 	if (irec->ir_freecount > XFS_INODES_PER_CHUNK)
127 		return __this_address;
128 
129 	if (xfs_inobt_rec_freecount(irec) != irec->ir_freecount)
130 		return __this_address;
131 
132 	return NULL;
133 }
134 
135 static inline int
xfs_inobt_complain_bad_rec(struct xfs_btree_cur * cur,xfs_failaddr_t fa,const struct xfs_inobt_rec_incore * irec)136 xfs_inobt_complain_bad_rec(
137 	struct xfs_btree_cur		*cur,
138 	xfs_failaddr_t			fa,
139 	const struct xfs_inobt_rec_incore *irec)
140 {
141 	struct xfs_mount		*mp = cur->bc_mp;
142 
143 	xfs_warn(mp,
144 		"%sbt record corruption in AG %d detected at %pS!",
145 		cur->bc_ops->name, cur->bc_ag.pag->pag_agno, fa);
146 	xfs_warn(mp,
147 "start inode 0x%x, count 0x%x, free 0x%x freemask 0x%llx, holemask 0x%x",
148 		irec->ir_startino, irec->ir_count, irec->ir_freecount,
149 		irec->ir_free, irec->ir_holemask);
150 	xfs_btree_mark_sick(cur);
151 	return -EFSCORRUPTED;
152 }
153 
154 /*
155  * Get the data from the pointed-to record.
156  */
157 int
xfs_inobt_get_rec(struct xfs_btree_cur * cur,struct xfs_inobt_rec_incore * irec,int * stat)158 xfs_inobt_get_rec(
159 	struct xfs_btree_cur		*cur,
160 	struct xfs_inobt_rec_incore	*irec,
161 	int				*stat)
162 {
163 	struct xfs_mount		*mp = cur->bc_mp;
164 	union xfs_btree_rec		*rec;
165 	xfs_failaddr_t			fa;
166 	int				error;
167 
168 	error = xfs_btree_get_rec(cur, &rec, stat);
169 	if (error || *stat == 0)
170 		return error;
171 
172 	xfs_inobt_btrec_to_irec(mp, rec, irec);
173 	fa = xfs_inobt_check_irec(cur->bc_ag.pag, irec);
174 	if (fa)
175 		return xfs_inobt_complain_bad_rec(cur, fa, irec);
176 
177 	return 0;
178 }
179 
180 /*
181  * Insert a single inobt record. Cursor must already point to desired location.
182  */
183 int
xfs_inobt_insert_rec(struct xfs_btree_cur * cur,uint16_t holemask,uint8_t count,int32_t freecount,xfs_inofree_t free,int * stat)184 xfs_inobt_insert_rec(
185 	struct xfs_btree_cur	*cur,
186 	uint16_t		holemask,
187 	uint8_t			count,
188 	int32_t			freecount,
189 	xfs_inofree_t		free,
190 	int			*stat)
191 {
192 	cur->bc_rec.i.ir_holemask = holemask;
193 	cur->bc_rec.i.ir_count = count;
194 	cur->bc_rec.i.ir_freecount = freecount;
195 	cur->bc_rec.i.ir_free = free;
196 	return xfs_btree_insert(cur, stat);
197 }
198 
199 /*
200  * Insert records describing a newly allocated inode chunk into the inobt.
201  */
202 STATIC int
xfs_inobt_insert(struct xfs_perag * pag,struct xfs_trans * tp,struct xfs_buf * agbp,xfs_agino_t newino,xfs_agino_t newlen,bool is_finobt)203 xfs_inobt_insert(
204 	struct xfs_perag	*pag,
205 	struct xfs_trans	*tp,
206 	struct xfs_buf		*agbp,
207 	xfs_agino_t		newino,
208 	xfs_agino_t		newlen,
209 	bool			is_finobt)
210 {
211 	struct xfs_btree_cur	*cur;
212 	xfs_agino_t		thisino;
213 	int			i;
214 	int			error;
215 
216 	if (is_finobt)
217 		cur = xfs_finobt_init_cursor(pag, tp, agbp);
218 	else
219 		cur = xfs_inobt_init_cursor(pag, tp, agbp);
220 
221 	for (thisino = newino;
222 	     thisino < newino + newlen;
223 	     thisino += XFS_INODES_PER_CHUNK) {
224 		error = xfs_inobt_lookup(cur, thisino, XFS_LOOKUP_EQ, &i);
225 		if (error) {
226 			xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
227 			return error;
228 		}
229 		ASSERT(i == 0);
230 
231 		error = xfs_inobt_insert_rec(cur, XFS_INOBT_HOLEMASK_FULL,
232 					     XFS_INODES_PER_CHUNK,
233 					     XFS_INODES_PER_CHUNK,
234 					     XFS_INOBT_ALL_FREE, &i);
235 		if (error) {
236 			xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
237 			return error;
238 		}
239 		ASSERT(i == 1);
240 	}
241 
242 	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
243 
244 	return 0;
245 }
246 
247 /*
248  * Verify that the number of free inodes in the AGI is correct.
249  */
250 #ifdef DEBUG
251 static int
xfs_check_agi_freecount(struct xfs_btree_cur * cur)252 xfs_check_agi_freecount(
253 	struct xfs_btree_cur	*cur)
254 {
255 	if (cur->bc_nlevels == 1) {
256 		xfs_inobt_rec_incore_t rec;
257 		int		freecount = 0;
258 		int		error;
259 		int		i;
260 
261 		error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
262 		if (error)
263 			return error;
264 
265 		do {
266 			error = xfs_inobt_get_rec(cur, &rec, &i);
267 			if (error)
268 				return error;
269 
270 			if (i) {
271 				freecount += rec.ir_freecount;
272 				error = xfs_btree_increment(cur, 0, &i);
273 				if (error)
274 					return error;
275 			}
276 		} while (i == 1);
277 
278 		if (!xfs_is_shutdown(cur->bc_mp))
279 			ASSERT(freecount == cur->bc_ag.pag->pagi_freecount);
280 	}
281 	return 0;
282 }
283 #else
284 #define xfs_check_agi_freecount(cur)	0
285 #endif
286 
287 /*
288  * Initialise a new set of inodes. When called without a transaction context
289  * (e.g. from recovery) we initiate a delayed write of the inode buffers rather
290  * than logging them (which in a transaction context puts them into the AIL
291  * for writeback rather than the xfsbufd queue).
292  */
293 int
xfs_ialloc_inode_init(struct xfs_mount * mp,struct xfs_trans * tp,struct list_head * buffer_list,int icount,xfs_agnumber_t agno,xfs_agblock_t agbno,xfs_agblock_t length,unsigned int gen)294 xfs_ialloc_inode_init(
295 	struct xfs_mount	*mp,
296 	struct xfs_trans	*tp,
297 	struct list_head	*buffer_list,
298 	int			icount,
299 	xfs_agnumber_t		agno,
300 	xfs_agblock_t		agbno,
301 	xfs_agblock_t		length,
302 	unsigned int		gen)
303 {
304 	struct xfs_buf		*fbuf;
305 	struct xfs_dinode	*free;
306 	int			nbufs;
307 	int			version;
308 	int			i, j;
309 	xfs_daddr_t		d;
310 	xfs_ino_t		ino = 0;
311 	int			error;
312 
313 	/*
314 	 * Loop over the new block(s), filling in the inodes.  For small block
315 	 * sizes, manipulate the inodes in buffers  which are multiples of the
316 	 * blocks size.
317 	 */
318 	nbufs = length / M_IGEO(mp)->blocks_per_cluster;
319 
320 	/*
321 	 * Figure out what version number to use in the inodes we create.  If
322 	 * the superblock version has caught up to the one that supports the new
323 	 * inode format, then use the new inode version.  Otherwise use the old
324 	 * version so that old kernels will continue to be able to use the file
325 	 * system.
326 	 *
327 	 * For v3 inodes, we also need to write the inode number into the inode,
328 	 * so calculate the first inode number of the chunk here as
329 	 * XFS_AGB_TO_AGINO() only works within a filesystem block, not
330 	 * across multiple filesystem blocks (such as a cluster) and so cannot
331 	 * be used in the cluster buffer loop below.
332 	 *
333 	 * Further, because we are writing the inode directly into the buffer
334 	 * and calculating a CRC on the entire inode, we have ot log the entire
335 	 * inode so that the entire range the CRC covers is present in the log.
336 	 * That means for v3 inode we log the entire buffer rather than just the
337 	 * inode cores.
338 	 */
339 	if (xfs_has_v3inodes(mp)) {
340 		version = 3;
341 		ino = XFS_AGINO_TO_INO(mp, agno, XFS_AGB_TO_AGINO(mp, agbno));
342 
343 		/*
344 		 * log the initialisation that is about to take place as an
345 		 * logical operation. This means the transaction does not
346 		 * need to log the physical changes to the inode buffers as log
347 		 * recovery will know what initialisation is actually needed.
348 		 * Hence we only need to log the buffers as "ordered" buffers so
349 		 * they track in the AIL as if they were physically logged.
350 		 */
351 		if (tp)
352 			xfs_icreate_log(tp, agno, agbno, icount,
353 					mp->m_sb.sb_inodesize, length, gen);
354 	} else
355 		version = 2;
356 
357 	for (j = 0; j < nbufs; j++) {
358 		/*
359 		 * Get the block.
360 		 */
361 		d = XFS_AGB_TO_DADDR(mp, agno, agbno +
362 				(j * M_IGEO(mp)->blocks_per_cluster));
363 		error = xfs_trans_get_buf(tp, mp->m_ddev_targp, d,
364 				mp->m_bsize * M_IGEO(mp)->blocks_per_cluster,
365 				XBF_UNMAPPED, &fbuf);
366 		if (error)
367 			return error;
368 
369 		/* Initialize the inode buffers and log them appropriately. */
370 		fbuf->b_ops = &xfs_inode_buf_ops;
371 		xfs_buf_zero(fbuf, 0, BBTOB(fbuf->b_length));
372 		for (i = 0; i < M_IGEO(mp)->inodes_per_cluster; i++) {
373 			int	ioffset = i << mp->m_sb.sb_inodelog;
374 
375 			free = xfs_make_iptr(mp, fbuf, i);
376 			free->di_magic = cpu_to_be16(XFS_DINODE_MAGIC);
377 			free->di_version = version;
378 			free->di_gen = cpu_to_be32(gen);
379 			free->di_next_unlinked = cpu_to_be32(NULLAGINO);
380 
381 			if (version == 3) {
382 				free->di_ino = cpu_to_be64(ino);
383 				ino++;
384 				uuid_copy(&free->di_uuid,
385 					  &mp->m_sb.sb_meta_uuid);
386 				xfs_dinode_calc_crc(mp, free);
387 			} else if (tp) {
388 				/* just log the inode core */
389 				xfs_trans_log_buf(tp, fbuf, ioffset,
390 					  ioffset + XFS_DINODE_SIZE(mp) - 1);
391 			}
392 		}
393 
394 		if (tp) {
395 			/*
396 			 * Mark the buffer as an inode allocation buffer so it
397 			 * sticks in AIL at the point of this allocation
398 			 * transaction. This ensures the they are on disk before
399 			 * the tail of the log can be moved past this
400 			 * transaction (i.e. by preventing relogging from moving
401 			 * it forward in the log).
402 			 */
403 			xfs_trans_inode_alloc_buf(tp, fbuf);
404 			if (version == 3) {
405 				/*
406 				 * Mark the buffer as ordered so that they are
407 				 * not physically logged in the transaction but
408 				 * still tracked in the AIL as part of the
409 				 * transaction and pin the log appropriately.
410 				 */
411 				xfs_trans_ordered_buf(tp, fbuf);
412 			}
413 		} else {
414 			fbuf->b_flags |= XBF_DONE;
415 			xfs_buf_delwri_queue(fbuf, buffer_list);
416 			xfs_buf_relse(fbuf);
417 		}
418 	}
419 	return 0;
420 }
421 
422 /*
423  * Align startino and allocmask for a recently allocated sparse chunk such that
424  * they are fit for insertion (or merge) into the on-disk inode btrees.
425  *
426  * Background:
427  *
428  * When enabled, sparse inode support increases the inode alignment from cluster
429  * size to inode chunk size. This means that the minimum range between two
430  * non-adjacent inode records in the inobt is large enough for a full inode
431  * record. This allows for cluster sized, cluster aligned block allocation
432  * without need to worry about whether the resulting inode record overlaps with
433  * another record in the tree. Without this basic rule, we would have to deal
434  * with the consequences of overlap by potentially undoing recent allocations in
435  * the inode allocation codepath.
436  *
437  * Because of this alignment rule (which is enforced on mount), there are two
438  * inobt possibilities for newly allocated sparse chunks. One is that the
439  * aligned inode record for the chunk covers a range of inodes not already
440  * covered in the inobt (i.e., it is safe to insert a new sparse record). The
441  * other is that a record already exists at the aligned startino that considers
442  * the newly allocated range as sparse. In the latter case, record content is
443  * merged in hope that sparse inode chunks fill to full chunks over time.
444  */
445 STATIC void
xfs_align_sparse_ino(struct xfs_mount * mp,xfs_agino_t * startino,uint16_t * allocmask)446 xfs_align_sparse_ino(
447 	struct xfs_mount		*mp,
448 	xfs_agino_t			*startino,
449 	uint16_t			*allocmask)
450 {
451 	xfs_agblock_t			agbno;
452 	xfs_agblock_t			mod;
453 	int				offset;
454 
455 	agbno = XFS_AGINO_TO_AGBNO(mp, *startino);
456 	mod = agbno % mp->m_sb.sb_inoalignmt;
457 	if (!mod)
458 		return;
459 
460 	/* calculate the inode offset and align startino */
461 	offset = XFS_AGB_TO_AGINO(mp, mod);
462 	*startino -= offset;
463 
464 	/*
465 	 * Since startino has been aligned down, left shift allocmask such that
466 	 * it continues to represent the same physical inodes relative to the
467 	 * new startino.
468 	 */
469 	*allocmask <<= offset / XFS_INODES_PER_HOLEMASK_BIT;
470 }
471 
472 /*
473  * Determine whether the source inode record can merge into the target. Both
474  * records must be sparse, the inode ranges must match and there must be no
475  * allocation overlap between the records.
476  */
477 STATIC bool
__xfs_inobt_can_merge(struct xfs_inobt_rec_incore * trec,struct xfs_inobt_rec_incore * srec)478 __xfs_inobt_can_merge(
479 	struct xfs_inobt_rec_incore	*trec,	/* tgt record */
480 	struct xfs_inobt_rec_incore	*srec)	/* src record */
481 {
482 	uint64_t			talloc;
483 	uint64_t			salloc;
484 
485 	/* records must cover the same inode range */
486 	if (trec->ir_startino != srec->ir_startino)
487 		return false;
488 
489 	/* both records must be sparse */
490 	if (!xfs_inobt_issparse(trec->ir_holemask) ||
491 	    !xfs_inobt_issparse(srec->ir_holemask))
492 		return false;
493 
494 	/* both records must track some inodes */
495 	if (!trec->ir_count || !srec->ir_count)
496 		return false;
497 
498 	/* can't exceed capacity of a full record */
499 	if (trec->ir_count + srec->ir_count > XFS_INODES_PER_CHUNK)
500 		return false;
501 
502 	/* verify there is no allocation overlap */
503 	talloc = xfs_inobt_irec_to_allocmask(trec);
504 	salloc = xfs_inobt_irec_to_allocmask(srec);
505 	if (talloc & salloc)
506 		return false;
507 
508 	return true;
509 }
510 
511 /*
512  * Merge the source inode record into the target. The caller must call
513  * __xfs_inobt_can_merge() to ensure the merge is valid.
514  */
515 STATIC void
__xfs_inobt_rec_merge(struct xfs_inobt_rec_incore * trec,struct xfs_inobt_rec_incore * srec)516 __xfs_inobt_rec_merge(
517 	struct xfs_inobt_rec_incore	*trec,	/* target */
518 	struct xfs_inobt_rec_incore	*srec)	/* src */
519 {
520 	ASSERT(trec->ir_startino == srec->ir_startino);
521 
522 	/* combine the counts */
523 	trec->ir_count += srec->ir_count;
524 	trec->ir_freecount += srec->ir_freecount;
525 
526 	/*
527 	 * Merge the holemask and free mask. For both fields, 0 bits refer to
528 	 * allocated inodes. We combine the allocated ranges with bitwise AND.
529 	 */
530 	trec->ir_holemask &= srec->ir_holemask;
531 	trec->ir_free &= srec->ir_free;
532 }
533 
534 /*
535  * Insert a new sparse inode chunk into the associated inode allocation btree.
536  * The inode record for the sparse chunk is pre-aligned to a startino that
537  * should match any pre-existing sparse inode record in the tree. This allows
538  * sparse chunks to fill over time.
539  *
540  * If no preexisting record exists, the provided record is inserted.
541  * If there is a preexisting record, the provided record is merged with the
542  * existing record and updated in place. The merged record is returned in nrec.
543  *
544  * It is considered corruption if a merge is requested and not possible. Given
545  * the sparse inode alignment constraints, this should never happen.
546  */
547 STATIC int
xfs_inobt_insert_sprec(struct xfs_perag * pag,struct xfs_trans * tp,struct xfs_buf * agbp,struct xfs_inobt_rec_incore * nrec)548 xfs_inobt_insert_sprec(
549 	struct xfs_perag		*pag,
550 	struct xfs_trans		*tp,
551 	struct xfs_buf			*agbp,
552 	struct xfs_inobt_rec_incore	*nrec)	/* in/out: new/merged rec. */
553 {
554 	struct xfs_mount		*mp = pag->pag_mount;
555 	struct xfs_btree_cur		*cur;
556 	int				error;
557 	int				i;
558 	struct xfs_inobt_rec_incore	rec;
559 
560 	cur = xfs_inobt_init_cursor(pag, tp, agbp);
561 
562 	/* the new record is pre-aligned so we know where to look */
563 	error = xfs_inobt_lookup(cur, nrec->ir_startino, XFS_LOOKUP_EQ, &i);
564 	if (error)
565 		goto error;
566 	/* if nothing there, insert a new record and return */
567 	if (i == 0) {
568 		error = xfs_inobt_insert_rec(cur, nrec->ir_holemask,
569 					     nrec->ir_count, nrec->ir_freecount,
570 					     nrec->ir_free, &i);
571 		if (error)
572 			goto error;
573 		if (XFS_IS_CORRUPT(mp, i != 1)) {
574 			xfs_btree_mark_sick(cur);
575 			error = -EFSCORRUPTED;
576 			goto error;
577 		}
578 
579 		goto out;
580 	}
581 
582 	/*
583 	 * A record exists at this startino.  Merge the records.
584 	 */
585 	error = xfs_inobt_get_rec(cur, &rec, &i);
586 	if (error)
587 		goto error;
588 	if (XFS_IS_CORRUPT(mp, i != 1)) {
589 		xfs_btree_mark_sick(cur);
590 		error = -EFSCORRUPTED;
591 		goto error;
592 	}
593 	if (XFS_IS_CORRUPT(mp, rec.ir_startino != nrec->ir_startino)) {
594 		xfs_btree_mark_sick(cur);
595 		error = -EFSCORRUPTED;
596 		goto error;
597 	}
598 
599 	/*
600 	 * This should never fail. If we have coexisting records that
601 	 * cannot merge, something is seriously wrong.
602 	 */
603 	if (XFS_IS_CORRUPT(mp, !__xfs_inobt_can_merge(nrec, &rec))) {
604 		xfs_btree_mark_sick(cur);
605 		error = -EFSCORRUPTED;
606 		goto error;
607 	}
608 
609 	trace_xfs_irec_merge_pre(mp, pag->pag_agno, rec.ir_startino,
610 				 rec.ir_holemask, nrec->ir_startino,
611 				 nrec->ir_holemask);
612 
613 	/* merge to nrec to output the updated record */
614 	__xfs_inobt_rec_merge(nrec, &rec);
615 
616 	trace_xfs_irec_merge_post(mp, pag->pag_agno, nrec->ir_startino,
617 				  nrec->ir_holemask);
618 
619 	error = xfs_inobt_rec_check_count(mp, nrec);
620 	if (error)
621 		goto error;
622 
623 	error = xfs_inobt_update(cur, nrec);
624 	if (error)
625 		goto error;
626 
627 out:
628 	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
629 	return 0;
630 error:
631 	xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
632 	return error;
633 }
634 
635 /*
636  * Insert a new sparse inode chunk into the free inode btree. The inode
637  * record for the sparse chunk is pre-aligned to a startino that should match
638  * any pre-existing sparse inode record in the tree. This allows sparse chunks
639  * to fill over time.
640  *
641  * The new record is always inserted, overwriting a pre-existing record if
642  * there is one.
643  */
644 STATIC int
xfs_finobt_insert_sprec(struct xfs_perag * pag,struct xfs_trans * tp,struct xfs_buf * agbp,struct xfs_inobt_rec_incore * nrec)645 xfs_finobt_insert_sprec(
646 	struct xfs_perag		*pag,
647 	struct xfs_trans		*tp,
648 	struct xfs_buf			*agbp,
649 	struct xfs_inobt_rec_incore	*nrec)	/* in/out: new rec. */
650 {
651 	struct xfs_mount		*mp = pag->pag_mount;
652 	struct xfs_btree_cur		*cur;
653 	int				error;
654 	int				i;
655 
656 	cur = xfs_finobt_init_cursor(pag, tp, agbp);
657 
658 	/* the new record is pre-aligned so we know where to look */
659 	error = xfs_inobt_lookup(cur, nrec->ir_startino, XFS_LOOKUP_EQ, &i);
660 	if (error)
661 		goto error;
662 	/* if nothing there, insert a new record and return */
663 	if (i == 0) {
664 		error = xfs_inobt_insert_rec(cur, nrec->ir_holemask,
665 					     nrec->ir_count, nrec->ir_freecount,
666 					     nrec->ir_free, &i);
667 		if (error)
668 			goto error;
669 		if (XFS_IS_CORRUPT(mp, i != 1)) {
670 			xfs_btree_mark_sick(cur);
671 			error = -EFSCORRUPTED;
672 			goto error;
673 		}
674 	} else {
675 		error = xfs_inobt_update(cur, nrec);
676 		if (error)
677 			goto error;
678 	}
679 
680 	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
681 	return 0;
682 error:
683 	xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
684 	return error;
685 }
686 
687 
688 /*
689  * Allocate new inodes in the allocation group specified by agbp.  Returns 0 if
690  * inodes were allocated in this AG; -EAGAIN if there was no space in this AG so
691  * the caller knows it can try another AG, a hard -ENOSPC when over the maximum
692  * inode count threshold, or the usual negative error code for other errors.
693  */
694 STATIC int
xfs_ialloc_ag_alloc(struct xfs_perag * pag,struct xfs_trans * tp,struct xfs_buf * agbp)695 xfs_ialloc_ag_alloc(
696 	struct xfs_perag	*pag,
697 	struct xfs_trans	*tp,
698 	struct xfs_buf		*agbp)
699 {
700 	struct xfs_agi		*agi;
701 	struct xfs_alloc_arg	args;
702 	int			error;
703 	xfs_agino_t		newino;		/* new first inode's number */
704 	xfs_agino_t		newlen;		/* new number of inodes */
705 	int			isaligned = 0;	/* inode allocation at stripe */
706 						/* unit boundary */
707 	/* init. to full chunk */
708 	struct xfs_inobt_rec_incore rec;
709 	struct xfs_ino_geometry	*igeo = M_IGEO(tp->t_mountp);
710 	uint16_t		allocmask = (uint16_t) -1;
711 	int			do_sparse = 0;
712 
713 	memset(&args, 0, sizeof(args));
714 	args.tp = tp;
715 	args.mp = tp->t_mountp;
716 	args.fsbno = NULLFSBLOCK;
717 	args.oinfo = XFS_RMAP_OINFO_INODES;
718 	args.pag = pag;
719 
720 #ifdef DEBUG
721 	/* randomly do sparse inode allocations */
722 	if (xfs_has_sparseinodes(tp->t_mountp) &&
723 	    igeo->ialloc_min_blks < igeo->ialloc_blks)
724 		do_sparse = get_random_u32_below(2);
725 #endif
726 
727 	/*
728 	 * Locking will ensure that we don't have two callers in here
729 	 * at one time.
730 	 */
731 	newlen = igeo->ialloc_inos;
732 	if (igeo->maxicount &&
733 	    percpu_counter_read_positive(&args.mp->m_icount) + newlen >
734 							igeo->maxicount)
735 		return -ENOSPC;
736 	args.minlen = args.maxlen = igeo->ialloc_blks;
737 	/*
738 	 * First try to allocate inodes contiguous with the last-allocated
739 	 * chunk of inodes.  If the filesystem is striped, this will fill
740 	 * an entire stripe unit with inodes.
741 	 */
742 	agi = agbp->b_addr;
743 	newino = be32_to_cpu(agi->agi_newino);
744 	args.agbno = XFS_AGINO_TO_AGBNO(args.mp, newino) +
745 		     igeo->ialloc_blks;
746 	if (do_sparse)
747 		goto sparse_alloc;
748 	if (likely(newino != NULLAGINO &&
749 		  (args.agbno < be32_to_cpu(agi->agi_length)))) {
750 		args.prod = 1;
751 
752 		/*
753 		 * We need to take into account alignment here to ensure that
754 		 * we don't modify the free list if we fail to have an exact
755 		 * block. If we don't have an exact match, and every oher
756 		 * attempt allocation attempt fails, we'll end up cancelling
757 		 * a dirty transaction and shutting down.
758 		 *
759 		 * For an exact allocation, alignment must be 1,
760 		 * however we need to take cluster alignment into account when
761 		 * fixing up the freelist. Use the minalignslop field to
762 		 * indicate that extra blocks might be required for alignment,
763 		 * but not to use them in the actual exact allocation.
764 		 */
765 		args.alignment = 1;
766 		args.minalignslop = igeo->cluster_align - 1;
767 
768 		/* Allow space for the inode btree to split. */
769 		args.minleft = igeo->inobt_maxlevels;
770 		error = xfs_alloc_vextent_exact_bno(&args,
771 				XFS_AGB_TO_FSB(args.mp, pag->pag_agno,
772 						args.agbno));
773 		if (error)
774 			return error;
775 
776 		/*
777 		 * This request might have dirtied the transaction if the AG can
778 		 * satisfy the request, but the exact block was not available.
779 		 * If the allocation did fail, subsequent requests will relax
780 		 * the exact agbno requirement and increase the alignment
781 		 * instead. It is critical that the total size of the request
782 		 * (len + alignment + slop) does not increase from this point
783 		 * on, so reset minalignslop to ensure it is not included in
784 		 * subsequent requests.
785 		 */
786 		args.minalignslop = 0;
787 	}
788 
789 	if (unlikely(args.fsbno == NULLFSBLOCK)) {
790 		/*
791 		 * Set the alignment for the allocation.
792 		 * If stripe alignment is turned on then align at stripe unit
793 		 * boundary.
794 		 * If the cluster size is smaller than a filesystem block
795 		 * then we're doing I/O for inodes in filesystem block size
796 		 * pieces, so don't need alignment anyway.
797 		 */
798 		isaligned = 0;
799 		if (igeo->ialloc_align) {
800 			ASSERT(!xfs_has_noalign(args.mp));
801 			args.alignment = args.mp->m_dalign;
802 			isaligned = 1;
803 		} else
804 			args.alignment = igeo->cluster_align;
805 		/*
806 		 * Allocate a fixed-size extent of inodes.
807 		 */
808 		args.prod = 1;
809 		/*
810 		 * Allow space for the inode btree to split.
811 		 */
812 		args.minleft = igeo->inobt_maxlevels;
813 		error = xfs_alloc_vextent_near_bno(&args,
814 				XFS_AGB_TO_FSB(args.mp, pag->pag_agno,
815 						be32_to_cpu(agi->agi_root)));
816 		if (error)
817 			return error;
818 	}
819 
820 	/*
821 	 * If stripe alignment is turned on, then try again with cluster
822 	 * alignment.
823 	 */
824 	if (isaligned && args.fsbno == NULLFSBLOCK) {
825 		args.alignment = igeo->cluster_align;
826 		error = xfs_alloc_vextent_near_bno(&args,
827 				XFS_AGB_TO_FSB(args.mp, pag->pag_agno,
828 						be32_to_cpu(agi->agi_root)));
829 		if (error)
830 			return error;
831 	}
832 
833 	/*
834 	 * Finally, try a sparse allocation if the filesystem supports it and
835 	 * the sparse allocation length is smaller than a full chunk.
836 	 */
837 	if (xfs_has_sparseinodes(args.mp) &&
838 	    igeo->ialloc_min_blks < igeo->ialloc_blks &&
839 	    args.fsbno == NULLFSBLOCK) {
840 sparse_alloc:
841 		args.alignment = args.mp->m_sb.sb_spino_align;
842 		args.prod = 1;
843 
844 		args.minlen = igeo->ialloc_min_blks;
845 		args.maxlen = args.minlen;
846 
847 		/*
848 		 * The inode record will be aligned to full chunk size. We must
849 		 * prevent sparse allocation from AG boundaries that result in
850 		 * invalid inode records, such as records that start at agbno 0
851 		 * or extend beyond the AG.
852 		 *
853 		 * Set min agbno to the first aligned, non-zero agbno and max to
854 		 * the last aligned agbno that is at least one full chunk from
855 		 * the end of the AG.
856 		 */
857 		args.min_agbno = args.mp->m_sb.sb_inoalignmt;
858 		args.max_agbno = round_down(xfs_ag_block_count(args.mp,
859 							pag->pag_agno),
860 					    args.mp->m_sb.sb_inoalignmt) -
861 				 igeo->ialloc_blks;
862 
863 		error = xfs_alloc_vextent_near_bno(&args,
864 				XFS_AGB_TO_FSB(args.mp, pag->pag_agno,
865 						be32_to_cpu(agi->agi_root)));
866 		if (error)
867 			return error;
868 
869 		newlen = XFS_AGB_TO_AGINO(args.mp, args.len);
870 		ASSERT(newlen <= XFS_INODES_PER_CHUNK);
871 		allocmask = (1 << (newlen / XFS_INODES_PER_HOLEMASK_BIT)) - 1;
872 	}
873 
874 	if (args.fsbno == NULLFSBLOCK)
875 		return -EAGAIN;
876 
877 	ASSERT(args.len == args.minlen);
878 
879 	/*
880 	 * Stamp and write the inode buffers.
881 	 *
882 	 * Seed the new inode cluster with a random generation number. This
883 	 * prevents short-term reuse of generation numbers if a chunk is
884 	 * freed and then immediately reallocated. We use random numbers
885 	 * rather than a linear progression to prevent the next generation
886 	 * number from being easily guessable.
887 	 */
888 	error = xfs_ialloc_inode_init(args.mp, tp, NULL, newlen, pag->pag_agno,
889 			args.agbno, args.len, get_random_u32());
890 
891 	if (error)
892 		return error;
893 	/*
894 	 * Convert the results.
895 	 */
896 	newino = XFS_AGB_TO_AGINO(args.mp, args.agbno);
897 
898 	if (xfs_inobt_issparse(~allocmask)) {
899 		/*
900 		 * We've allocated a sparse chunk. Align the startino and mask.
901 		 */
902 		xfs_align_sparse_ino(args.mp, &newino, &allocmask);
903 
904 		rec.ir_startino = newino;
905 		rec.ir_holemask = ~allocmask;
906 		rec.ir_count = newlen;
907 		rec.ir_freecount = newlen;
908 		rec.ir_free = XFS_INOBT_ALL_FREE;
909 
910 		/*
911 		 * Insert the sparse record into the inobt and allow for a merge
912 		 * if necessary. If a merge does occur, rec is updated to the
913 		 * merged record.
914 		 */
915 		error = xfs_inobt_insert_sprec(pag, tp, agbp, &rec);
916 		if (error == -EFSCORRUPTED) {
917 			xfs_alert(args.mp,
918 	"invalid sparse inode record: ino 0x%llx holemask 0x%x count %u",
919 				  XFS_AGINO_TO_INO(args.mp, pag->pag_agno,
920 						   rec.ir_startino),
921 				  rec.ir_holemask, rec.ir_count);
922 			xfs_force_shutdown(args.mp, SHUTDOWN_CORRUPT_INCORE);
923 		}
924 		if (error)
925 			return error;
926 
927 		/*
928 		 * We can't merge the part we've just allocated as for the inobt
929 		 * due to finobt semantics. The original record may or may not
930 		 * exist independent of whether physical inodes exist in this
931 		 * sparse chunk.
932 		 *
933 		 * We must update the finobt record based on the inobt record.
934 		 * rec contains the fully merged and up to date inobt record
935 		 * from the previous call. Set merge false to replace any
936 		 * existing record with this one.
937 		 */
938 		if (xfs_has_finobt(args.mp)) {
939 			error = xfs_finobt_insert_sprec(pag, tp, agbp, &rec);
940 			if (error)
941 				return error;
942 		}
943 	} else {
944 		/* full chunk - insert new records to both btrees */
945 		error = xfs_inobt_insert(pag, tp, agbp, newino, newlen, false);
946 		if (error)
947 			return error;
948 
949 		if (xfs_has_finobt(args.mp)) {
950 			error = xfs_inobt_insert(pag, tp, agbp, newino,
951 						 newlen, true);
952 			if (error)
953 				return error;
954 		}
955 	}
956 
957 	/*
958 	 * Update AGI counts and newino.
959 	 */
960 	be32_add_cpu(&agi->agi_count, newlen);
961 	be32_add_cpu(&agi->agi_freecount, newlen);
962 	pag->pagi_freecount += newlen;
963 	pag->pagi_count += newlen;
964 	agi->agi_newino = cpu_to_be32(newino);
965 
966 	/*
967 	 * Log allocation group header fields
968 	 */
969 	xfs_ialloc_log_agi(tp, agbp,
970 		XFS_AGI_COUNT | XFS_AGI_FREECOUNT | XFS_AGI_NEWINO);
971 	/*
972 	 * Modify/log superblock values for inode count and inode free count.
973 	 */
974 	xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, (long)newlen);
975 	xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, (long)newlen);
976 	return 0;
977 }
978 
979 /*
980  * Try to retrieve the next record to the left/right from the current one.
981  */
982 STATIC int
xfs_ialloc_next_rec(struct xfs_btree_cur * cur,xfs_inobt_rec_incore_t * rec,int * done,int left)983 xfs_ialloc_next_rec(
984 	struct xfs_btree_cur	*cur,
985 	xfs_inobt_rec_incore_t	*rec,
986 	int			*done,
987 	int			left)
988 {
989 	int                     error;
990 	int			i;
991 
992 	if (left)
993 		error = xfs_btree_decrement(cur, 0, &i);
994 	else
995 		error = xfs_btree_increment(cur, 0, &i);
996 
997 	if (error)
998 		return error;
999 	*done = !i;
1000 	if (i) {
1001 		error = xfs_inobt_get_rec(cur, rec, &i);
1002 		if (error)
1003 			return error;
1004 		if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
1005 			xfs_btree_mark_sick(cur);
1006 			return -EFSCORRUPTED;
1007 		}
1008 	}
1009 
1010 	return 0;
1011 }
1012 
1013 STATIC int
xfs_ialloc_get_rec(struct xfs_btree_cur * cur,xfs_agino_t agino,xfs_inobt_rec_incore_t * rec,int * done)1014 xfs_ialloc_get_rec(
1015 	struct xfs_btree_cur	*cur,
1016 	xfs_agino_t		agino,
1017 	xfs_inobt_rec_incore_t	*rec,
1018 	int			*done)
1019 {
1020 	int                     error;
1021 	int			i;
1022 
1023 	error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_EQ, &i);
1024 	if (error)
1025 		return error;
1026 	*done = !i;
1027 	if (i) {
1028 		error = xfs_inobt_get_rec(cur, rec, &i);
1029 		if (error)
1030 			return error;
1031 		if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
1032 			xfs_btree_mark_sick(cur);
1033 			return -EFSCORRUPTED;
1034 		}
1035 	}
1036 
1037 	return 0;
1038 }
1039 
1040 /*
1041  * Return the offset of the first free inode in the record. If the inode chunk
1042  * is sparsely allocated, we convert the record holemask to inode granularity
1043  * and mask off the unallocated regions from the inode free mask.
1044  */
1045 STATIC int
xfs_inobt_first_free_inode(struct xfs_inobt_rec_incore * rec)1046 xfs_inobt_first_free_inode(
1047 	struct xfs_inobt_rec_incore	*rec)
1048 {
1049 	xfs_inofree_t			realfree;
1050 
1051 	/* if there are no holes, return the first available offset */
1052 	if (!xfs_inobt_issparse(rec->ir_holemask))
1053 		return xfs_lowbit64(rec->ir_free);
1054 
1055 	realfree = xfs_inobt_irec_to_allocmask(rec);
1056 	realfree &= rec->ir_free;
1057 
1058 	return xfs_lowbit64(realfree);
1059 }
1060 
1061 /*
1062  * If this AG has corrupt inodes, check if allocating this inode would fail
1063  * with corruption errors.  Returns 0 if we're clear, or EAGAIN to try again
1064  * somewhere else.
1065  */
1066 static int
xfs_dialloc_check_ino(struct xfs_perag * pag,struct xfs_trans * tp,xfs_ino_t ino)1067 xfs_dialloc_check_ino(
1068 	struct xfs_perag	*pag,
1069 	struct xfs_trans	*tp,
1070 	xfs_ino_t		ino)
1071 {
1072 	struct xfs_imap		imap;
1073 	struct xfs_buf		*bp;
1074 	int			error;
1075 
1076 	error = xfs_imap(pag, tp, ino, &imap, 0);
1077 	if (error)
1078 		return -EAGAIN;
1079 
1080 	error = xfs_imap_to_bp(pag->pag_mount, tp, &imap, &bp);
1081 	if (error)
1082 		return -EAGAIN;
1083 
1084 	xfs_trans_brelse(tp, bp);
1085 	return 0;
1086 }
1087 
1088 /*
1089  * Allocate an inode using the inobt-only algorithm.
1090  */
1091 STATIC int
xfs_dialloc_ag_inobt(struct xfs_perag * pag,struct xfs_trans * tp,struct xfs_buf * agbp,xfs_ino_t parent,xfs_ino_t * inop)1092 xfs_dialloc_ag_inobt(
1093 	struct xfs_perag	*pag,
1094 	struct xfs_trans	*tp,
1095 	struct xfs_buf		*agbp,
1096 	xfs_ino_t		parent,
1097 	xfs_ino_t		*inop)
1098 {
1099 	struct xfs_mount	*mp = tp->t_mountp;
1100 	struct xfs_agi		*agi = agbp->b_addr;
1101 	xfs_agnumber_t		pagno = XFS_INO_TO_AGNO(mp, parent);
1102 	xfs_agino_t		pagino = XFS_INO_TO_AGINO(mp, parent);
1103 	struct xfs_btree_cur	*cur, *tcur;
1104 	struct xfs_inobt_rec_incore rec, trec;
1105 	xfs_ino_t		ino;
1106 	int			error;
1107 	int			offset;
1108 	int			i, j;
1109 	int			searchdistance = 10;
1110 
1111 	ASSERT(xfs_perag_initialised_agi(pag));
1112 	ASSERT(xfs_perag_allows_inodes(pag));
1113 	ASSERT(pag->pagi_freecount > 0);
1114 
1115  restart_pagno:
1116 	cur = xfs_inobt_init_cursor(pag, tp, agbp);
1117 	/*
1118 	 * If pagino is 0 (this is the root inode allocation) use newino.
1119 	 * This must work because we've just allocated some.
1120 	 */
1121 	if (!pagino)
1122 		pagino = be32_to_cpu(agi->agi_newino);
1123 
1124 	error = xfs_check_agi_freecount(cur);
1125 	if (error)
1126 		goto error0;
1127 
1128 	/*
1129 	 * If in the same AG as the parent, try to get near the parent.
1130 	 */
1131 	if (pagno == pag->pag_agno) {
1132 		int		doneleft;	/* done, to the left */
1133 		int		doneright;	/* done, to the right */
1134 
1135 		error = xfs_inobt_lookup(cur, pagino, XFS_LOOKUP_LE, &i);
1136 		if (error)
1137 			goto error0;
1138 		if (XFS_IS_CORRUPT(mp, i != 1)) {
1139 			xfs_btree_mark_sick(cur);
1140 			error = -EFSCORRUPTED;
1141 			goto error0;
1142 		}
1143 
1144 		error = xfs_inobt_get_rec(cur, &rec, &j);
1145 		if (error)
1146 			goto error0;
1147 		if (XFS_IS_CORRUPT(mp, j != 1)) {
1148 			xfs_btree_mark_sick(cur);
1149 			error = -EFSCORRUPTED;
1150 			goto error0;
1151 		}
1152 
1153 		if (rec.ir_freecount > 0) {
1154 			/*
1155 			 * Found a free inode in the same chunk
1156 			 * as the parent, done.
1157 			 */
1158 			goto alloc_inode;
1159 		}
1160 
1161 
1162 		/*
1163 		 * In the same AG as parent, but parent's chunk is full.
1164 		 */
1165 
1166 		/* duplicate the cursor, search left & right simultaneously */
1167 		error = xfs_btree_dup_cursor(cur, &tcur);
1168 		if (error)
1169 			goto error0;
1170 
1171 		/*
1172 		 * Skip to last blocks looked up if same parent inode.
1173 		 */
1174 		if (pagino != NULLAGINO &&
1175 		    pag->pagl_pagino == pagino &&
1176 		    pag->pagl_leftrec != NULLAGINO &&
1177 		    pag->pagl_rightrec != NULLAGINO) {
1178 			error = xfs_ialloc_get_rec(tcur, pag->pagl_leftrec,
1179 						   &trec, &doneleft);
1180 			if (error)
1181 				goto error1;
1182 
1183 			error = xfs_ialloc_get_rec(cur, pag->pagl_rightrec,
1184 						   &rec, &doneright);
1185 			if (error)
1186 				goto error1;
1187 		} else {
1188 			/* search left with tcur, back up 1 record */
1189 			error = xfs_ialloc_next_rec(tcur, &trec, &doneleft, 1);
1190 			if (error)
1191 				goto error1;
1192 
1193 			/* search right with cur, go forward 1 record. */
1194 			error = xfs_ialloc_next_rec(cur, &rec, &doneright, 0);
1195 			if (error)
1196 				goto error1;
1197 		}
1198 
1199 		/*
1200 		 * Loop until we find an inode chunk with a free inode.
1201 		 */
1202 		while (--searchdistance > 0 && (!doneleft || !doneright)) {
1203 			int	useleft;  /* using left inode chunk this time */
1204 
1205 			/* figure out the closer block if both are valid. */
1206 			if (!doneleft && !doneright) {
1207 				useleft = pagino -
1208 				 (trec.ir_startino + XFS_INODES_PER_CHUNK - 1) <
1209 				  rec.ir_startino - pagino;
1210 			} else {
1211 				useleft = !doneleft;
1212 			}
1213 
1214 			/* free inodes to the left? */
1215 			if (useleft && trec.ir_freecount) {
1216 				xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1217 				cur = tcur;
1218 
1219 				pag->pagl_leftrec = trec.ir_startino;
1220 				pag->pagl_rightrec = rec.ir_startino;
1221 				pag->pagl_pagino = pagino;
1222 				rec = trec;
1223 				goto alloc_inode;
1224 			}
1225 
1226 			/* free inodes to the right? */
1227 			if (!useleft && rec.ir_freecount) {
1228 				xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1229 
1230 				pag->pagl_leftrec = trec.ir_startino;
1231 				pag->pagl_rightrec = rec.ir_startino;
1232 				pag->pagl_pagino = pagino;
1233 				goto alloc_inode;
1234 			}
1235 
1236 			/* get next record to check */
1237 			if (useleft) {
1238 				error = xfs_ialloc_next_rec(tcur, &trec,
1239 								 &doneleft, 1);
1240 			} else {
1241 				error = xfs_ialloc_next_rec(cur, &rec,
1242 								 &doneright, 0);
1243 			}
1244 			if (error)
1245 				goto error1;
1246 		}
1247 
1248 		if (searchdistance <= 0) {
1249 			/*
1250 			 * Not in range - save last search
1251 			 * location and allocate a new inode
1252 			 */
1253 			xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1254 			pag->pagl_leftrec = trec.ir_startino;
1255 			pag->pagl_rightrec = rec.ir_startino;
1256 			pag->pagl_pagino = pagino;
1257 
1258 		} else {
1259 			/*
1260 			 * We've reached the end of the btree. because
1261 			 * we are only searching a small chunk of the
1262 			 * btree each search, there is obviously free
1263 			 * inodes closer to the parent inode than we
1264 			 * are now. restart the search again.
1265 			 */
1266 			pag->pagl_pagino = NULLAGINO;
1267 			pag->pagl_leftrec = NULLAGINO;
1268 			pag->pagl_rightrec = NULLAGINO;
1269 			xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1270 			xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1271 			goto restart_pagno;
1272 		}
1273 	}
1274 
1275 	/*
1276 	 * In a different AG from the parent.
1277 	 * See if the most recently allocated block has any free.
1278 	 */
1279 	if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
1280 		error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
1281 					 XFS_LOOKUP_EQ, &i);
1282 		if (error)
1283 			goto error0;
1284 
1285 		if (i == 1) {
1286 			error = xfs_inobt_get_rec(cur, &rec, &j);
1287 			if (error)
1288 				goto error0;
1289 
1290 			if (j == 1 && rec.ir_freecount > 0) {
1291 				/*
1292 				 * The last chunk allocated in the group
1293 				 * still has a free inode.
1294 				 */
1295 				goto alloc_inode;
1296 			}
1297 		}
1298 	}
1299 
1300 	/*
1301 	 * None left in the last group, search the whole AG
1302 	 */
1303 	error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
1304 	if (error)
1305 		goto error0;
1306 	if (XFS_IS_CORRUPT(mp, i != 1)) {
1307 		xfs_btree_mark_sick(cur);
1308 		error = -EFSCORRUPTED;
1309 		goto error0;
1310 	}
1311 
1312 	for (;;) {
1313 		error = xfs_inobt_get_rec(cur, &rec, &i);
1314 		if (error)
1315 			goto error0;
1316 		if (XFS_IS_CORRUPT(mp, i != 1)) {
1317 			xfs_btree_mark_sick(cur);
1318 			error = -EFSCORRUPTED;
1319 			goto error0;
1320 		}
1321 		if (rec.ir_freecount > 0)
1322 			break;
1323 		error = xfs_btree_increment(cur, 0, &i);
1324 		if (error)
1325 			goto error0;
1326 		if (XFS_IS_CORRUPT(mp, i != 1)) {
1327 			xfs_btree_mark_sick(cur);
1328 			error = -EFSCORRUPTED;
1329 			goto error0;
1330 		}
1331 	}
1332 
1333 alloc_inode:
1334 	offset = xfs_inobt_first_free_inode(&rec);
1335 	ASSERT(offset >= 0);
1336 	ASSERT(offset < XFS_INODES_PER_CHUNK);
1337 	ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
1338 				   XFS_INODES_PER_CHUNK) == 0);
1339 	ino = XFS_AGINO_TO_INO(mp, pag->pag_agno, rec.ir_startino + offset);
1340 
1341 	if (xfs_ag_has_sickness(pag, XFS_SICK_AG_INODES)) {
1342 		error = xfs_dialloc_check_ino(pag, tp, ino);
1343 		if (error)
1344 			goto error0;
1345 	}
1346 
1347 	rec.ir_free &= ~XFS_INOBT_MASK(offset);
1348 	rec.ir_freecount--;
1349 	error = xfs_inobt_update(cur, &rec);
1350 	if (error)
1351 		goto error0;
1352 	be32_add_cpu(&agi->agi_freecount, -1);
1353 	xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1354 	pag->pagi_freecount--;
1355 
1356 	error = xfs_check_agi_freecount(cur);
1357 	if (error)
1358 		goto error0;
1359 
1360 	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1361 	xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
1362 	*inop = ino;
1363 	return 0;
1364 error1:
1365 	xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
1366 error0:
1367 	xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
1368 	return error;
1369 }
1370 
1371 /*
1372  * Use the free inode btree to allocate an inode based on distance from the
1373  * parent. Note that the provided cursor may be deleted and replaced.
1374  */
1375 STATIC int
xfs_dialloc_ag_finobt_near(xfs_agino_t pagino,struct xfs_btree_cur ** ocur,struct xfs_inobt_rec_incore * rec)1376 xfs_dialloc_ag_finobt_near(
1377 	xfs_agino_t			pagino,
1378 	struct xfs_btree_cur		**ocur,
1379 	struct xfs_inobt_rec_incore	*rec)
1380 {
1381 	struct xfs_btree_cur		*lcur = *ocur;	/* left search cursor */
1382 	struct xfs_btree_cur		*rcur;	/* right search cursor */
1383 	struct xfs_inobt_rec_incore	rrec;
1384 	int				error;
1385 	int				i, j;
1386 
1387 	error = xfs_inobt_lookup(lcur, pagino, XFS_LOOKUP_LE, &i);
1388 	if (error)
1389 		return error;
1390 
1391 	if (i == 1) {
1392 		error = xfs_inobt_get_rec(lcur, rec, &i);
1393 		if (error)
1394 			return error;
1395 		if (XFS_IS_CORRUPT(lcur->bc_mp, i != 1)) {
1396 			xfs_btree_mark_sick(lcur);
1397 			return -EFSCORRUPTED;
1398 		}
1399 
1400 		/*
1401 		 * See if we've landed in the parent inode record. The finobt
1402 		 * only tracks chunks with at least one free inode, so record
1403 		 * existence is enough.
1404 		 */
1405 		if (pagino >= rec->ir_startino &&
1406 		    pagino < (rec->ir_startino + XFS_INODES_PER_CHUNK))
1407 			return 0;
1408 	}
1409 
1410 	error = xfs_btree_dup_cursor(lcur, &rcur);
1411 	if (error)
1412 		return error;
1413 
1414 	error = xfs_inobt_lookup(rcur, pagino, XFS_LOOKUP_GE, &j);
1415 	if (error)
1416 		goto error_rcur;
1417 	if (j == 1) {
1418 		error = xfs_inobt_get_rec(rcur, &rrec, &j);
1419 		if (error)
1420 			goto error_rcur;
1421 		if (XFS_IS_CORRUPT(lcur->bc_mp, j != 1)) {
1422 			xfs_btree_mark_sick(lcur);
1423 			error = -EFSCORRUPTED;
1424 			goto error_rcur;
1425 		}
1426 	}
1427 
1428 	if (XFS_IS_CORRUPT(lcur->bc_mp, i != 1 && j != 1)) {
1429 		xfs_btree_mark_sick(lcur);
1430 		error = -EFSCORRUPTED;
1431 		goto error_rcur;
1432 	}
1433 	if (i == 1 && j == 1) {
1434 		/*
1435 		 * Both the left and right records are valid. Choose the closer
1436 		 * inode chunk to the target.
1437 		 */
1438 		if ((pagino - rec->ir_startino + XFS_INODES_PER_CHUNK - 1) >
1439 		    (rrec.ir_startino - pagino)) {
1440 			*rec = rrec;
1441 			xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
1442 			*ocur = rcur;
1443 		} else {
1444 			xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
1445 		}
1446 	} else if (j == 1) {
1447 		/* only the right record is valid */
1448 		*rec = rrec;
1449 		xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
1450 		*ocur = rcur;
1451 	} else if (i == 1) {
1452 		/* only the left record is valid */
1453 		xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
1454 	}
1455 
1456 	return 0;
1457 
1458 error_rcur:
1459 	xfs_btree_del_cursor(rcur, XFS_BTREE_ERROR);
1460 	return error;
1461 }
1462 
1463 /*
1464  * Use the free inode btree to find a free inode based on a newino hint. If
1465  * the hint is NULL, find the first free inode in the AG.
1466  */
1467 STATIC int
xfs_dialloc_ag_finobt_newino(struct xfs_agi * agi,struct xfs_btree_cur * cur,struct xfs_inobt_rec_incore * rec)1468 xfs_dialloc_ag_finobt_newino(
1469 	struct xfs_agi			*agi,
1470 	struct xfs_btree_cur		*cur,
1471 	struct xfs_inobt_rec_incore	*rec)
1472 {
1473 	int error;
1474 	int i;
1475 
1476 	if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
1477 		error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
1478 					 XFS_LOOKUP_EQ, &i);
1479 		if (error)
1480 			return error;
1481 		if (i == 1) {
1482 			error = xfs_inobt_get_rec(cur, rec, &i);
1483 			if (error)
1484 				return error;
1485 			if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
1486 				xfs_btree_mark_sick(cur);
1487 				return -EFSCORRUPTED;
1488 			}
1489 			return 0;
1490 		}
1491 	}
1492 
1493 	/*
1494 	 * Find the first inode available in the AG.
1495 	 */
1496 	error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
1497 	if (error)
1498 		return error;
1499 	if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
1500 		xfs_btree_mark_sick(cur);
1501 		return -EFSCORRUPTED;
1502 	}
1503 
1504 	error = xfs_inobt_get_rec(cur, rec, &i);
1505 	if (error)
1506 		return error;
1507 	if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
1508 		xfs_btree_mark_sick(cur);
1509 		return -EFSCORRUPTED;
1510 	}
1511 
1512 	return 0;
1513 }
1514 
1515 /*
1516  * Update the inobt based on a modification made to the finobt. Also ensure that
1517  * the records from both trees are equivalent post-modification.
1518  */
1519 STATIC int
xfs_dialloc_ag_update_inobt(struct xfs_btree_cur * cur,struct xfs_inobt_rec_incore * frec,int offset)1520 xfs_dialloc_ag_update_inobt(
1521 	struct xfs_btree_cur		*cur,	/* inobt cursor */
1522 	struct xfs_inobt_rec_incore	*frec,	/* finobt record */
1523 	int				offset) /* inode offset */
1524 {
1525 	struct xfs_inobt_rec_incore	rec;
1526 	int				error;
1527 	int				i;
1528 
1529 	error = xfs_inobt_lookup(cur, frec->ir_startino, XFS_LOOKUP_EQ, &i);
1530 	if (error)
1531 		return error;
1532 	if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
1533 		xfs_btree_mark_sick(cur);
1534 		return -EFSCORRUPTED;
1535 	}
1536 
1537 	error = xfs_inobt_get_rec(cur, &rec, &i);
1538 	if (error)
1539 		return error;
1540 	if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
1541 		xfs_btree_mark_sick(cur);
1542 		return -EFSCORRUPTED;
1543 	}
1544 	ASSERT((XFS_AGINO_TO_OFFSET(cur->bc_mp, rec.ir_startino) %
1545 				   XFS_INODES_PER_CHUNK) == 0);
1546 
1547 	rec.ir_free &= ~XFS_INOBT_MASK(offset);
1548 	rec.ir_freecount--;
1549 
1550 	if (XFS_IS_CORRUPT(cur->bc_mp,
1551 			   rec.ir_free != frec->ir_free ||
1552 			   rec.ir_freecount != frec->ir_freecount)) {
1553 		xfs_btree_mark_sick(cur);
1554 		return -EFSCORRUPTED;
1555 	}
1556 
1557 	return xfs_inobt_update(cur, &rec);
1558 }
1559 
1560 /*
1561  * Allocate an inode using the free inode btree, if available. Otherwise, fall
1562  * back to the inobt search algorithm.
1563  *
1564  * The caller selected an AG for us, and made sure that free inodes are
1565  * available.
1566  */
1567 static int
xfs_dialloc_ag(struct xfs_perag * pag,struct xfs_trans * tp,struct xfs_buf * agbp,xfs_ino_t parent,xfs_ino_t * inop)1568 xfs_dialloc_ag(
1569 	struct xfs_perag	*pag,
1570 	struct xfs_trans	*tp,
1571 	struct xfs_buf		*agbp,
1572 	xfs_ino_t		parent,
1573 	xfs_ino_t		*inop)
1574 {
1575 	struct xfs_mount		*mp = tp->t_mountp;
1576 	struct xfs_agi			*agi = agbp->b_addr;
1577 	xfs_agnumber_t			pagno = XFS_INO_TO_AGNO(mp, parent);
1578 	xfs_agino_t			pagino = XFS_INO_TO_AGINO(mp, parent);
1579 	struct xfs_btree_cur		*cur;	/* finobt cursor */
1580 	struct xfs_btree_cur		*icur;	/* inobt cursor */
1581 	struct xfs_inobt_rec_incore	rec;
1582 	xfs_ino_t			ino;
1583 	int				error;
1584 	int				offset;
1585 	int				i;
1586 
1587 	if (!xfs_has_finobt(mp))
1588 		return xfs_dialloc_ag_inobt(pag, tp, agbp, parent, inop);
1589 
1590 	/*
1591 	 * If pagino is 0 (this is the root inode allocation) use newino.
1592 	 * This must work because we've just allocated some.
1593 	 */
1594 	if (!pagino)
1595 		pagino = be32_to_cpu(agi->agi_newino);
1596 
1597 	cur = xfs_finobt_init_cursor(pag, tp, agbp);
1598 
1599 	error = xfs_check_agi_freecount(cur);
1600 	if (error)
1601 		goto error_cur;
1602 
1603 	/*
1604 	 * The search algorithm depends on whether we're in the same AG as the
1605 	 * parent. If so, find the closest available inode to the parent. If
1606 	 * not, consider the agi hint or find the first free inode in the AG.
1607 	 */
1608 	if (pag->pag_agno == pagno)
1609 		error = xfs_dialloc_ag_finobt_near(pagino, &cur, &rec);
1610 	else
1611 		error = xfs_dialloc_ag_finobt_newino(agi, cur, &rec);
1612 	if (error)
1613 		goto error_cur;
1614 
1615 	offset = xfs_inobt_first_free_inode(&rec);
1616 	ASSERT(offset >= 0);
1617 	ASSERT(offset < XFS_INODES_PER_CHUNK);
1618 	ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
1619 				   XFS_INODES_PER_CHUNK) == 0);
1620 	ino = XFS_AGINO_TO_INO(mp, pag->pag_agno, rec.ir_startino + offset);
1621 
1622 	if (xfs_ag_has_sickness(pag, XFS_SICK_AG_INODES)) {
1623 		error = xfs_dialloc_check_ino(pag, tp, ino);
1624 		if (error)
1625 			goto error_cur;
1626 	}
1627 
1628 	/*
1629 	 * Modify or remove the finobt record.
1630 	 */
1631 	rec.ir_free &= ~XFS_INOBT_MASK(offset);
1632 	rec.ir_freecount--;
1633 	if (rec.ir_freecount)
1634 		error = xfs_inobt_update(cur, &rec);
1635 	else
1636 		error = xfs_btree_delete(cur, &i);
1637 	if (error)
1638 		goto error_cur;
1639 
1640 	/*
1641 	 * The finobt has now been updated appropriately. We haven't updated the
1642 	 * agi and superblock yet, so we can create an inobt cursor and validate
1643 	 * the original freecount. If all is well, make the equivalent update to
1644 	 * the inobt using the finobt record and offset information.
1645 	 */
1646 	icur = xfs_inobt_init_cursor(pag, tp, agbp);
1647 
1648 	error = xfs_check_agi_freecount(icur);
1649 	if (error)
1650 		goto error_icur;
1651 
1652 	error = xfs_dialloc_ag_update_inobt(icur, &rec, offset);
1653 	if (error)
1654 		goto error_icur;
1655 
1656 	/*
1657 	 * Both trees have now been updated. We must update the perag and
1658 	 * superblock before we can check the freecount for each btree.
1659 	 */
1660 	be32_add_cpu(&agi->agi_freecount, -1);
1661 	xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1662 	pag->pagi_freecount--;
1663 
1664 	xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
1665 
1666 	error = xfs_check_agi_freecount(icur);
1667 	if (error)
1668 		goto error_icur;
1669 	error = xfs_check_agi_freecount(cur);
1670 	if (error)
1671 		goto error_icur;
1672 
1673 	xfs_btree_del_cursor(icur, XFS_BTREE_NOERROR);
1674 	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1675 	*inop = ino;
1676 	return 0;
1677 
1678 error_icur:
1679 	xfs_btree_del_cursor(icur, XFS_BTREE_ERROR);
1680 error_cur:
1681 	xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
1682 	return error;
1683 }
1684 
1685 static int
xfs_dialloc_roll(struct xfs_trans ** tpp,struct xfs_buf * agibp)1686 xfs_dialloc_roll(
1687 	struct xfs_trans	**tpp,
1688 	struct xfs_buf		*agibp)
1689 {
1690 	struct xfs_trans	*tp = *tpp;
1691 	struct xfs_dquot_acct	*dqinfo;
1692 	int			error;
1693 
1694 	/*
1695 	 * Hold to on to the agibp across the commit so no other allocation can
1696 	 * come in and take the free inodes we just allocated for our caller.
1697 	 */
1698 	xfs_trans_bhold(tp, agibp);
1699 
1700 	/*
1701 	 * We want the quota changes to be associated with the next transaction,
1702 	 * NOT this one. So, detach the dqinfo from this and attach it to the
1703 	 * next transaction.
1704 	 */
1705 	dqinfo = tp->t_dqinfo;
1706 	tp->t_dqinfo = NULL;
1707 
1708 	error = xfs_trans_roll(&tp);
1709 
1710 	/* Re-attach the quota info that we detached from prev trx. */
1711 	tp->t_dqinfo = dqinfo;
1712 
1713 	/*
1714 	 * Join the buffer even on commit error so that the buffer is released
1715 	 * when the caller cancels the transaction and doesn't have to handle
1716 	 * this error case specially.
1717 	 */
1718 	xfs_trans_bjoin(tp, agibp);
1719 	*tpp = tp;
1720 	return error;
1721 }
1722 
1723 static bool
xfs_dialloc_good_ag(struct xfs_perag * pag,struct xfs_trans * tp,umode_t mode,int flags,bool ok_alloc)1724 xfs_dialloc_good_ag(
1725 	struct xfs_perag	*pag,
1726 	struct xfs_trans	*tp,
1727 	umode_t			mode,
1728 	int			flags,
1729 	bool			ok_alloc)
1730 {
1731 	struct xfs_mount	*mp = tp->t_mountp;
1732 	xfs_extlen_t		ineed;
1733 	xfs_extlen_t		longest = 0;
1734 	int			needspace;
1735 	int			error;
1736 
1737 	if (!pag)
1738 		return false;
1739 	if (!xfs_perag_allows_inodes(pag))
1740 		return false;
1741 
1742 	if (!xfs_perag_initialised_agi(pag)) {
1743 		error = xfs_ialloc_read_agi(pag, tp, 0, NULL);
1744 		if (error)
1745 			return false;
1746 	}
1747 
1748 	if (pag->pagi_freecount)
1749 		return true;
1750 	if (!ok_alloc)
1751 		return false;
1752 
1753 	if (!xfs_perag_initialised_agf(pag)) {
1754 		error = xfs_alloc_read_agf(pag, tp, flags, NULL);
1755 		if (error)
1756 			return false;
1757 	}
1758 
1759 	/*
1760 	 * Check that there is enough free space for the file plus a chunk of
1761 	 * inodes if we need to allocate some. If this is the first pass across
1762 	 * the AGs, take into account the potential space needed for alignment
1763 	 * of inode chunks when checking the longest contiguous free space in
1764 	 * the AG - this prevents us from getting ENOSPC because we have free
1765 	 * space larger than ialloc_blks but alignment constraints prevent us
1766 	 * from using it.
1767 	 *
1768 	 * If we can't find an AG with space for full alignment slack to be
1769 	 * taken into account, we must be near ENOSPC in all AGs.  Hence we
1770 	 * don't include alignment for the second pass and so if we fail
1771 	 * allocation due to alignment issues then it is most likely a real
1772 	 * ENOSPC condition.
1773 	 *
1774 	 * XXX(dgc): this calculation is now bogus thanks to the per-ag
1775 	 * reservations that xfs_alloc_fix_freelist() now does via
1776 	 * xfs_alloc_space_available(). When the AG fills up, pagf_freeblks will
1777 	 * be more than large enough for the check below to succeed, but
1778 	 * xfs_alloc_space_available() will fail because of the non-zero
1779 	 * metadata reservation and hence we won't actually be able to allocate
1780 	 * more inodes in this AG. We do soooo much unnecessary work near ENOSPC
1781 	 * because of this.
1782 	 */
1783 	ineed = M_IGEO(mp)->ialloc_min_blks;
1784 	if (flags && ineed > 1)
1785 		ineed += M_IGEO(mp)->cluster_align;
1786 	longest = pag->pagf_longest;
1787 	if (!longest)
1788 		longest = pag->pagf_flcount > 0;
1789 	needspace = S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode);
1790 
1791 	if (pag->pagf_freeblks < needspace + ineed || longest < ineed)
1792 		return false;
1793 	return true;
1794 }
1795 
1796 static int
xfs_dialloc_try_ag(struct xfs_perag * pag,struct xfs_trans ** tpp,xfs_ino_t parent,xfs_ino_t * new_ino,bool ok_alloc)1797 xfs_dialloc_try_ag(
1798 	struct xfs_perag	*pag,
1799 	struct xfs_trans	**tpp,
1800 	xfs_ino_t		parent,
1801 	xfs_ino_t		*new_ino,
1802 	bool			ok_alloc)
1803 {
1804 	struct xfs_buf		*agbp;
1805 	xfs_ino_t		ino;
1806 	int			error;
1807 
1808 	/*
1809 	 * Then read in the AGI buffer and recheck with the AGI buffer
1810 	 * lock held.
1811 	 */
1812 	error = xfs_ialloc_read_agi(pag, *tpp, 0, &agbp);
1813 	if (error)
1814 		return error;
1815 
1816 	if (!pag->pagi_freecount) {
1817 		if (!ok_alloc) {
1818 			error = -EAGAIN;
1819 			goto out_release;
1820 		}
1821 
1822 		error = xfs_ialloc_ag_alloc(pag, *tpp, agbp);
1823 		if (error < 0)
1824 			goto out_release;
1825 
1826 		/*
1827 		 * We successfully allocated space for an inode cluster in this
1828 		 * AG.  Roll the transaction so that we can allocate one of the
1829 		 * new inodes.
1830 		 */
1831 		ASSERT(pag->pagi_freecount > 0);
1832 		error = xfs_dialloc_roll(tpp, agbp);
1833 		if (error)
1834 			goto out_release;
1835 	}
1836 
1837 	/* Allocate an inode in the found AG */
1838 	error = xfs_dialloc_ag(pag, *tpp, agbp, parent, &ino);
1839 	if (!error)
1840 		*new_ino = ino;
1841 	return error;
1842 
1843 out_release:
1844 	xfs_trans_brelse(*tpp, agbp);
1845 	return error;
1846 }
1847 
1848 /*
1849  * Allocate an on-disk inode.
1850  *
1851  * Mode is used to tell whether the new inode is a directory and hence where to
1852  * locate it. The on-disk inode that is allocated will be returned in @new_ino
1853  * on success, otherwise an error will be set to indicate the failure (e.g.
1854  * -ENOSPC).
1855  */
1856 int
xfs_dialloc(struct xfs_trans ** tpp,const struct xfs_icreate_args * args,xfs_ino_t * new_ino)1857 xfs_dialloc(
1858 	struct xfs_trans	**tpp,
1859 	const struct xfs_icreate_args *args,
1860 	xfs_ino_t		*new_ino)
1861 {
1862 	struct xfs_mount	*mp = (*tpp)->t_mountp;
1863 	xfs_ino_t		parent = args->pip ? args->pip->i_ino : 0;
1864 	umode_t			mode = args->mode & S_IFMT;
1865 	xfs_agnumber_t		agno;
1866 	int			error = 0;
1867 	xfs_agnumber_t		start_agno;
1868 	struct xfs_perag	*pag;
1869 	struct xfs_ino_geometry	*igeo = M_IGEO(mp);
1870 	bool			ok_alloc = true;
1871 	bool			low_space = false;
1872 	int			flags;
1873 	xfs_ino_t		ino = NULLFSINO;
1874 
1875 	/*
1876 	 * Directories, symlinks, and regular files frequently allocate at least
1877 	 * one block, so factor that potential expansion when we examine whether
1878 	 * an AG has enough space for file creation.
1879 	 */
1880 	if (S_ISDIR(mode))
1881 		start_agno = (atomic_inc_return(&mp->m_agirotor) - 1) %
1882 				mp->m_maxagi;
1883 	else {
1884 		start_agno = XFS_INO_TO_AGNO(mp, parent);
1885 		if (start_agno >= mp->m_maxagi)
1886 			start_agno = 0;
1887 	}
1888 
1889 	/*
1890 	 * If we have already hit the ceiling of inode blocks then clear
1891 	 * ok_alloc so we scan all available agi structures for a free
1892 	 * inode.
1893 	 *
1894 	 * Read rough value of mp->m_icount by percpu_counter_read_positive,
1895 	 * which will sacrifice the preciseness but improve the performance.
1896 	 */
1897 	if (igeo->maxicount &&
1898 	    percpu_counter_read_positive(&mp->m_icount) + igeo->ialloc_inos
1899 							> igeo->maxicount) {
1900 		ok_alloc = false;
1901 	}
1902 
1903 	/*
1904 	 * If we are near to ENOSPC, we want to prefer allocation from AGs that
1905 	 * have free inodes in them rather than use up free space allocating new
1906 	 * inode chunks. Hence we turn off allocation for the first non-blocking
1907 	 * pass through the AGs if we are near ENOSPC to consume free inodes
1908 	 * that we can immediately allocate, but then we allow allocation on the
1909 	 * second pass if we fail to find an AG with free inodes in it.
1910 	 */
1911 	if (percpu_counter_read_positive(&mp->m_fdblocks) <
1912 			mp->m_low_space[XFS_LOWSP_1_PCNT]) {
1913 		ok_alloc = false;
1914 		low_space = true;
1915 	}
1916 
1917 	/*
1918 	 * Loop until we find an allocation group that either has free inodes
1919 	 * or in which we can allocate some inodes.  Iterate through the
1920 	 * allocation groups upward, wrapping at the end.
1921 	 */
1922 	flags = XFS_ALLOC_FLAG_TRYLOCK;
1923 retry:
1924 	for_each_perag_wrap_at(mp, start_agno, mp->m_maxagi, agno, pag) {
1925 		if (xfs_dialloc_good_ag(pag, *tpp, mode, flags, ok_alloc)) {
1926 			error = xfs_dialloc_try_ag(pag, tpp, parent,
1927 					&ino, ok_alloc);
1928 			if (error != -EAGAIN)
1929 				break;
1930 			error = 0;
1931 		}
1932 
1933 		if (xfs_is_shutdown(mp)) {
1934 			error = -EFSCORRUPTED;
1935 			break;
1936 		}
1937 	}
1938 	if (pag)
1939 		xfs_perag_rele(pag);
1940 	if (error)
1941 		return error;
1942 	if (ino == NULLFSINO) {
1943 		if (flags) {
1944 			flags = 0;
1945 			if (low_space)
1946 				ok_alloc = true;
1947 			goto retry;
1948 		}
1949 		return -ENOSPC;
1950 	}
1951 
1952 	/*
1953 	 * Protect against obviously corrupt allocation btree records. Later
1954 	 * xfs_iget checks will catch re-allocation of other active in-memory
1955 	 * and on-disk inodes. If we don't catch reallocating the parent inode
1956 	 * here we will deadlock in xfs_iget() so we have to do these checks
1957 	 * first.
1958 	 */
1959 	if (ino == parent || !xfs_verify_dir_ino(mp, ino)) {
1960 		xfs_alert(mp, "Allocated a known in-use inode 0x%llx!", ino);
1961 		xfs_agno_mark_sick(mp, XFS_INO_TO_AGNO(mp, ino),
1962 				XFS_SICK_AG_INOBT);
1963 		return -EFSCORRUPTED;
1964 	}
1965 
1966 	*new_ino = ino;
1967 	return 0;
1968 }
1969 
1970 /*
1971  * Free the blocks of an inode chunk. We must consider that the inode chunk
1972  * might be sparse and only free the regions that are allocated as part of the
1973  * chunk.
1974  */
1975 static int
xfs_difree_inode_chunk(struct xfs_trans * tp,xfs_agnumber_t agno,struct xfs_inobt_rec_incore * rec)1976 xfs_difree_inode_chunk(
1977 	struct xfs_trans		*tp,
1978 	xfs_agnumber_t			agno,
1979 	struct xfs_inobt_rec_incore	*rec)
1980 {
1981 	struct xfs_mount		*mp = tp->t_mountp;
1982 	xfs_agblock_t			sagbno = XFS_AGINO_TO_AGBNO(mp,
1983 							rec->ir_startino);
1984 	int				startidx, endidx;
1985 	int				nextbit;
1986 	xfs_agblock_t			agbno;
1987 	int				contigblk;
1988 	DECLARE_BITMAP(holemask, XFS_INOBT_HOLEMASK_BITS);
1989 
1990 	if (!xfs_inobt_issparse(rec->ir_holemask)) {
1991 		/* not sparse, calculate extent info directly */
1992 		return xfs_free_extent_later(tp,
1993 				XFS_AGB_TO_FSB(mp, agno, sagbno),
1994 				M_IGEO(mp)->ialloc_blks, &XFS_RMAP_OINFO_INODES,
1995 				XFS_AG_RESV_NONE, 0);
1996 	}
1997 
1998 	/* holemask is only 16-bits (fits in an unsigned long) */
1999 	ASSERT(sizeof(rec->ir_holemask) <= sizeof(holemask[0]));
2000 	holemask[0] = rec->ir_holemask;
2001 
2002 	/*
2003 	 * Find contiguous ranges of zeroes (i.e., allocated regions) in the
2004 	 * holemask and convert the start/end index of each range to an extent.
2005 	 * We start with the start and end index both pointing at the first 0 in
2006 	 * the mask.
2007 	 */
2008 	startidx = endidx = find_first_zero_bit(holemask,
2009 						XFS_INOBT_HOLEMASK_BITS);
2010 	nextbit = startidx + 1;
2011 	while (startidx < XFS_INOBT_HOLEMASK_BITS) {
2012 		int error;
2013 
2014 		nextbit = find_next_zero_bit(holemask, XFS_INOBT_HOLEMASK_BITS,
2015 					     nextbit);
2016 		/*
2017 		 * If the next zero bit is contiguous, update the end index of
2018 		 * the current range and continue.
2019 		 */
2020 		if (nextbit != XFS_INOBT_HOLEMASK_BITS &&
2021 		    nextbit == endidx + 1) {
2022 			endidx = nextbit;
2023 			goto next;
2024 		}
2025 
2026 		/*
2027 		 * nextbit is not contiguous with the current end index. Convert
2028 		 * the current start/end to an extent and add it to the free
2029 		 * list.
2030 		 */
2031 		agbno = sagbno + (startidx * XFS_INODES_PER_HOLEMASK_BIT) /
2032 				  mp->m_sb.sb_inopblock;
2033 		contigblk = ((endidx - startidx + 1) *
2034 			     XFS_INODES_PER_HOLEMASK_BIT) /
2035 			    mp->m_sb.sb_inopblock;
2036 
2037 		ASSERT(agbno % mp->m_sb.sb_spino_align == 0);
2038 		ASSERT(contigblk % mp->m_sb.sb_spino_align == 0);
2039 		error = xfs_free_extent_later(tp,
2040 				XFS_AGB_TO_FSB(mp, agno, agbno), contigblk,
2041 				&XFS_RMAP_OINFO_INODES, XFS_AG_RESV_NONE, 0);
2042 		if (error)
2043 			return error;
2044 
2045 		/* reset range to current bit and carry on... */
2046 		startidx = endidx = nextbit;
2047 
2048 next:
2049 		nextbit++;
2050 	}
2051 	return 0;
2052 }
2053 
2054 STATIC int
xfs_difree_inobt(struct xfs_perag * pag,struct xfs_trans * tp,struct xfs_buf * agbp,xfs_agino_t agino,struct xfs_icluster * xic,struct xfs_inobt_rec_incore * orec)2055 xfs_difree_inobt(
2056 	struct xfs_perag		*pag,
2057 	struct xfs_trans		*tp,
2058 	struct xfs_buf			*agbp,
2059 	xfs_agino_t			agino,
2060 	struct xfs_icluster		*xic,
2061 	struct xfs_inobt_rec_incore	*orec)
2062 {
2063 	struct xfs_mount		*mp = pag->pag_mount;
2064 	struct xfs_agi			*agi = agbp->b_addr;
2065 	struct xfs_btree_cur		*cur;
2066 	struct xfs_inobt_rec_incore	rec;
2067 	int				ilen;
2068 	int				error;
2069 	int				i;
2070 	int				off;
2071 
2072 	ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
2073 	ASSERT(XFS_AGINO_TO_AGBNO(mp, agino) < be32_to_cpu(agi->agi_length));
2074 
2075 	/*
2076 	 * Initialize the cursor.
2077 	 */
2078 	cur = xfs_inobt_init_cursor(pag, tp, agbp);
2079 
2080 	error = xfs_check_agi_freecount(cur);
2081 	if (error)
2082 		goto error0;
2083 
2084 	/*
2085 	 * Look for the entry describing this inode.
2086 	 */
2087 	if ((error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i))) {
2088 		xfs_warn(mp, "%s: xfs_inobt_lookup() returned error %d.",
2089 			__func__, error);
2090 		goto error0;
2091 	}
2092 	if (XFS_IS_CORRUPT(mp, i != 1)) {
2093 		xfs_btree_mark_sick(cur);
2094 		error = -EFSCORRUPTED;
2095 		goto error0;
2096 	}
2097 	error = xfs_inobt_get_rec(cur, &rec, &i);
2098 	if (error) {
2099 		xfs_warn(mp, "%s: xfs_inobt_get_rec() returned error %d.",
2100 			__func__, error);
2101 		goto error0;
2102 	}
2103 	if (XFS_IS_CORRUPT(mp, i != 1)) {
2104 		xfs_btree_mark_sick(cur);
2105 		error = -EFSCORRUPTED;
2106 		goto error0;
2107 	}
2108 	/*
2109 	 * Get the offset in the inode chunk.
2110 	 */
2111 	off = agino - rec.ir_startino;
2112 	ASSERT(off >= 0 && off < XFS_INODES_PER_CHUNK);
2113 	ASSERT(!(rec.ir_free & XFS_INOBT_MASK(off)));
2114 	/*
2115 	 * Mark the inode free & increment the count.
2116 	 */
2117 	rec.ir_free |= XFS_INOBT_MASK(off);
2118 	rec.ir_freecount++;
2119 
2120 	/*
2121 	 * When an inode chunk is free, it becomes eligible for removal. Don't
2122 	 * remove the chunk if the block size is large enough for multiple inode
2123 	 * chunks (that might not be free).
2124 	 */
2125 	if (!xfs_has_ikeep(mp) && rec.ir_free == XFS_INOBT_ALL_FREE &&
2126 	    mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK) {
2127 		xic->deleted = true;
2128 		xic->first_ino = XFS_AGINO_TO_INO(mp, pag->pag_agno,
2129 				rec.ir_startino);
2130 		xic->alloc = xfs_inobt_irec_to_allocmask(&rec);
2131 
2132 		/*
2133 		 * Remove the inode cluster from the AGI B+Tree, adjust the
2134 		 * AGI and Superblock inode counts, and mark the disk space
2135 		 * to be freed when the transaction is committed.
2136 		 */
2137 		ilen = rec.ir_freecount;
2138 		be32_add_cpu(&agi->agi_count, -ilen);
2139 		be32_add_cpu(&agi->agi_freecount, -(ilen - 1));
2140 		xfs_ialloc_log_agi(tp, agbp, XFS_AGI_COUNT | XFS_AGI_FREECOUNT);
2141 		pag->pagi_freecount -= ilen - 1;
2142 		pag->pagi_count -= ilen;
2143 		xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, -ilen);
2144 		xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -(ilen - 1));
2145 
2146 		if ((error = xfs_btree_delete(cur, &i))) {
2147 			xfs_warn(mp, "%s: xfs_btree_delete returned error %d.",
2148 				__func__, error);
2149 			goto error0;
2150 		}
2151 
2152 		error = xfs_difree_inode_chunk(tp, pag->pag_agno, &rec);
2153 		if (error)
2154 			goto error0;
2155 	} else {
2156 		xic->deleted = false;
2157 
2158 		error = xfs_inobt_update(cur, &rec);
2159 		if (error) {
2160 			xfs_warn(mp, "%s: xfs_inobt_update returned error %d.",
2161 				__func__, error);
2162 			goto error0;
2163 		}
2164 
2165 		/*
2166 		 * Change the inode free counts and log the ag/sb changes.
2167 		 */
2168 		be32_add_cpu(&agi->agi_freecount, 1);
2169 		xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
2170 		pag->pagi_freecount++;
2171 		xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, 1);
2172 	}
2173 
2174 	error = xfs_check_agi_freecount(cur);
2175 	if (error)
2176 		goto error0;
2177 
2178 	*orec = rec;
2179 	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
2180 	return 0;
2181 
2182 error0:
2183 	xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
2184 	return error;
2185 }
2186 
2187 /*
2188  * Free an inode in the free inode btree.
2189  */
2190 STATIC int
xfs_difree_finobt(struct xfs_perag * pag,struct xfs_trans * tp,struct xfs_buf * agbp,xfs_agino_t agino,struct xfs_inobt_rec_incore * ibtrec)2191 xfs_difree_finobt(
2192 	struct xfs_perag		*pag,
2193 	struct xfs_trans		*tp,
2194 	struct xfs_buf			*agbp,
2195 	xfs_agino_t			agino,
2196 	struct xfs_inobt_rec_incore	*ibtrec) /* inobt record */
2197 {
2198 	struct xfs_mount		*mp = pag->pag_mount;
2199 	struct xfs_btree_cur		*cur;
2200 	struct xfs_inobt_rec_incore	rec;
2201 	int				offset = agino - ibtrec->ir_startino;
2202 	int				error;
2203 	int				i;
2204 
2205 	cur = xfs_finobt_init_cursor(pag, tp, agbp);
2206 
2207 	error = xfs_inobt_lookup(cur, ibtrec->ir_startino, XFS_LOOKUP_EQ, &i);
2208 	if (error)
2209 		goto error;
2210 	if (i == 0) {
2211 		/*
2212 		 * If the record does not exist in the finobt, we must have just
2213 		 * freed an inode in a previously fully allocated chunk. If not,
2214 		 * something is out of sync.
2215 		 */
2216 		if (XFS_IS_CORRUPT(mp, ibtrec->ir_freecount != 1)) {
2217 			xfs_btree_mark_sick(cur);
2218 			error = -EFSCORRUPTED;
2219 			goto error;
2220 		}
2221 
2222 		error = xfs_inobt_insert_rec(cur, ibtrec->ir_holemask,
2223 					     ibtrec->ir_count,
2224 					     ibtrec->ir_freecount,
2225 					     ibtrec->ir_free, &i);
2226 		if (error)
2227 			goto error;
2228 		ASSERT(i == 1);
2229 
2230 		goto out;
2231 	}
2232 
2233 	/*
2234 	 * Read and update the existing record. We could just copy the ibtrec
2235 	 * across here, but that would defeat the purpose of having redundant
2236 	 * metadata. By making the modifications independently, we can catch
2237 	 * corruptions that we wouldn't see if we just copied from one record
2238 	 * to another.
2239 	 */
2240 	error = xfs_inobt_get_rec(cur, &rec, &i);
2241 	if (error)
2242 		goto error;
2243 	if (XFS_IS_CORRUPT(mp, i != 1)) {
2244 		xfs_btree_mark_sick(cur);
2245 		error = -EFSCORRUPTED;
2246 		goto error;
2247 	}
2248 
2249 	rec.ir_free |= XFS_INOBT_MASK(offset);
2250 	rec.ir_freecount++;
2251 
2252 	if (XFS_IS_CORRUPT(mp,
2253 			   rec.ir_free != ibtrec->ir_free ||
2254 			   rec.ir_freecount != ibtrec->ir_freecount)) {
2255 		xfs_btree_mark_sick(cur);
2256 		error = -EFSCORRUPTED;
2257 		goto error;
2258 	}
2259 
2260 	/*
2261 	 * The content of inobt records should always match between the inobt
2262 	 * and finobt. The lifecycle of records in the finobt is different from
2263 	 * the inobt in that the finobt only tracks records with at least one
2264 	 * free inode. Hence, if all of the inodes are free and we aren't
2265 	 * keeping inode chunks permanently on disk, remove the record.
2266 	 * Otherwise, update the record with the new information.
2267 	 *
2268 	 * Note that we currently can't free chunks when the block size is large
2269 	 * enough for multiple chunks. Leave the finobt record to remain in sync
2270 	 * with the inobt.
2271 	 */
2272 	if (!xfs_has_ikeep(mp) && rec.ir_free == XFS_INOBT_ALL_FREE &&
2273 	    mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK) {
2274 		error = xfs_btree_delete(cur, &i);
2275 		if (error)
2276 			goto error;
2277 		ASSERT(i == 1);
2278 	} else {
2279 		error = xfs_inobt_update(cur, &rec);
2280 		if (error)
2281 			goto error;
2282 	}
2283 
2284 out:
2285 	error = xfs_check_agi_freecount(cur);
2286 	if (error)
2287 		goto error;
2288 
2289 	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
2290 	return 0;
2291 
2292 error:
2293 	xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
2294 	return error;
2295 }
2296 
2297 /*
2298  * Free disk inode.  Carefully avoids touching the incore inode, all
2299  * manipulations incore are the caller's responsibility.
2300  * The on-disk inode is not changed by this operation, only the
2301  * btree (free inode mask) is changed.
2302  */
2303 int
xfs_difree(struct xfs_trans * tp,struct xfs_perag * pag,xfs_ino_t inode,struct xfs_icluster * xic)2304 xfs_difree(
2305 	struct xfs_trans	*tp,
2306 	struct xfs_perag	*pag,
2307 	xfs_ino_t		inode,
2308 	struct xfs_icluster	*xic)
2309 {
2310 	/* REFERENCED */
2311 	xfs_agblock_t		agbno;	/* block number containing inode */
2312 	struct xfs_buf		*agbp;	/* buffer for allocation group header */
2313 	xfs_agino_t		agino;	/* allocation group inode number */
2314 	int			error;	/* error return value */
2315 	struct xfs_mount	*mp = tp->t_mountp;
2316 	struct xfs_inobt_rec_incore rec;/* btree record */
2317 
2318 	/*
2319 	 * Break up inode number into its components.
2320 	 */
2321 	if (pag->pag_agno != XFS_INO_TO_AGNO(mp, inode)) {
2322 		xfs_warn(mp, "%s: agno != pag->pag_agno (%d != %d).",
2323 			__func__, XFS_INO_TO_AGNO(mp, inode), pag->pag_agno);
2324 		ASSERT(0);
2325 		return -EINVAL;
2326 	}
2327 	agino = XFS_INO_TO_AGINO(mp, inode);
2328 	if (inode != XFS_AGINO_TO_INO(mp, pag->pag_agno, agino))  {
2329 		xfs_warn(mp, "%s: inode != XFS_AGINO_TO_INO() (%llu != %llu).",
2330 			__func__, (unsigned long long)inode,
2331 			(unsigned long long)XFS_AGINO_TO_INO(mp, pag->pag_agno, agino));
2332 		ASSERT(0);
2333 		return -EINVAL;
2334 	}
2335 	agbno = XFS_AGINO_TO_AGBNO(mp, agino);
2336 	if (agbno >= xfs_ag_block_count(mp, pag->pag_agno)) {
2337 		xfs_warn(mp, "%s: agbno >= xfs_ag_block_count (%d >= %d).",
2338 			__func__, agbno, xfs_ag_block_count(mp, pag->pag_agno));
2339 		ASSERT(0);
2340 		return -EINVAL;
2341 	}
2342 	/*
2343 	 * Get the allocation group header.
2344 	 */
2345 	error = xfs_ialloc_read_agi(pag, tp, 0, &agbp);
2346 	if (error) {
2347 		xfs_warn(mp, "%s: xfs_ialloc_read_agi() returned error %d.",
2348 			__func__, error);
2349 		return error;
2350 	}
2351 
2352 	/*
2353 	 * Fix up the inode allocation btree.
2354 	 */
2355 	error = xfs_difree_inobt(pag, tp, agbp, agino, xic, &rec);
2356 	if (error)
2357 		goto error0;
2358 
2359 	/*
2360 	 * Fix up the free inode btree.
2361 	 */
2362 	if (xfs_has_finobt(mp)) {
2363 		error = xfs_difree_finobt(pag, tp, agbp, agino, &rec);
2364 		if (error)
2365 			goto error0;
2366 	}
2367 
2368 	return 0;
2369 
2370 error0:
2371 	return error;
2372 }
2373 
2374 STATIC int
xfs_imap_lookup(struct xfs_perag * pag,struct xfs_trans * tp,xfs_agino_t agino,xfs_agblock_t agbno,xfs_agblock_t * chunk_agbno,xfs_agblock_t * offset_agbno,int flags)2375 xfs_imap_lookup(
2376 	struct xfs_perag	*pag,
2377 	struct xfs_trans	*tp,
2378 	xfs_agino_t		agino,
2379 	xfs_agblock_t		agbno,
2380 	xfs_agblock_t		*chunk_agbno,
2381 	xfs_agblock_t		*offset_agbno,
2382 	int			flags)
2383 {
2384 	struct xfs_mount	*mp = pag->pag_mount;
2385 	struct xfs_inobt_rec_incore rec;
2386 	struct xfs_btree_cur	*cur;
2387 	struct xfs_buf		*agbp;
2388 	int			error;
2389 	int			i;
2390 
2391 	error = xfs_ialloc_read_agi(pag, tp, 0, &agbp);
2392 	if (error) {
2393 		xfs_alert(mp,
2394 			"%s: xfs_ialloc_read_agi() returned error %d, agno %d",
2395 			__func__, error, pag->pag_agno);
2396 		return error;
2397 	}
2398 
2399 	/*
2400 	 * Lookup the inode record for the given agino. If the record cannot be
2401 	 * found, then it's an invalid inode number and we should abort. Once
2402 	 * we have a record, we need to ensure it contains the inode number
2403 	 * we are looking up.
2404 	 */
2405 	cur = xfs_inobt_init_cursor(pag, tp, agbp);
2406 	error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i);
2407 	if (!error) {
2408 		if (i)
2409 			error = xfs_inobt_get_rec(cur, &rec, &i);
2410 		if (!error && i == 0)
2411 			error = -EINVAL;
2412 	}
2413 
2414 	xfs_trans_brelse(tp, agbp);
2415 	xfs_btree_del_cursor(cur, error);
2416 	if (error)
2417 		return error;
2418 
2419 	/* check that the returned record contains the required inode */
2420 	if (rec.ir_startino > agino ||
2421 	    rec.ir_startino + M_IGEO(mp)->ialloc_inos <= agino)
2422 		return -EINVAL;
2423 
2424 	/* for untrusted inodes check it is allocated first */
2425 	if ((flags & XFS_IGET_UNTRUSTED) &&
2426 	    (rec.ir_free & XFS_INOBT_MASK(agino - rec.ir_startino)))
2427 		return -EINVAL;
2428 
2429 	*chunk_agbno = XFS_AGINO_TO_AGBNO(mp, rec.ir_startino);
2430 	*offset_agbno = agbno - *chunk_agbno;
2431 	return 0;
2432 }
2433 
2434 /*
2435  * Return the location of the inode in imap, for mapping it into a buffer.
2436  */
2437 int
xfs_imap(struct xfs_perag * pag,struct xfs_trans * tp,xfs_ino_t ino,struct xfs_imap * imap,uint flags)2438 xfs_imap(
2439 	struct xfs_perag	*pag,
2440 	struct xfs_trans	*tp,
2441 	xfs_ino_t		ino,	/* inode to locate */
2442 	struct xfs_imap		*imap,	/* location map structure */
2443 	uint			flags)	/* flags for inode btree lookup */
2444 {
2445 	struct xfs_mount	*mp = pag->pag_mount;
2446 	xfs_agblock_t		agbno;	/* block number of inode in the alloc group */
2447 	xfs_agino_t		agino;	/* inode number within alloc group */
2448 	xfs_agblock_t		chunk_agbno;	/* first block in inode chunk */
2449 	xfs_agblock_t		cluster_agbno;	/* first block in inode cluster */
2450 	int			error;	/* error code */
2451 	int			offset;	/* index of inode in its buffer */
2452 	xfs_agblock_t		offset_agbno;	/* blks from chunk start to inode */
2453 
2454 	ASSERT(ino != NULLFSINO);
2455 
2456 	/*
2457 	 * Split up the inode number into its parts.
2458 	 */
2459 	agino = XFS_INO_TO_AGINO(mp, ino);
2460 	agbno = XFS_AGINO_TO_AGBNO(mp, agino);
2461 	if (agbno >= xfs_ag_block_count(mp, pag->pag_agno) ||
2462 	    ino != XFS_AGINO_TO_INO(mp, pag->pag_agno, agino)) {
2463 		error = -EINVAL;
2464 #ifdef DEBUG
2465 		/*
2466 		 * Don't output diagnostic information for untrusted inodes
2467 		 * as they can be invalid without implying corruption.
2468 		 */
2469 		if (flags & XFS_IGET_UNTRUSTED)
2470 			return error;
2471 		if (agbno >= xfs_ag_block_count(mp, pag->pag_agno)) {
2472 			xfs_alert(mp,
2473 		"%s: agbno (0x%llx) >= mp->m_sb.sb_agblocks (0x%lx)",
2474 				__func__, (unsigned long long)agbno,
2475 				(unsigned long)xfs_ag_block_count(mp,
2476 							pag->pag_agno));
2477 		}
2478 		if (ino != XFS_AGINO_TO_INO(mp, pag->pag_agno, agino)) {
2479 			xfs_alert(mp,
2480 		"%s: ino (0x%llx) != XFS_AGINO_TO_INO() (0x%llx)",
2481 				__func__, ino,
2482 				XFS_AGINO_TO_INO(mp, pag->pag_agno, agino));
2483 		}
2484 		xfs_stack_trace();
2485 #endif /* DEBUG */
2486 		return error;
2487 	}
2488 
2489 	/*
2490 	 * For bulkstat and handle lookups, we have an untrusted inode number
2491 	 * that we have to verify is valid. We cannot do this just by reading
2492 	 * the inode buffer as it may have been unlinked and removed leaving
2493 	 * inodes in stale state on disk. Hence we have to do a btree lookup
2494 	 * in all cases where an untrusted inode number is passed.
2495 	 */
2496 	if (flags & XFS_IGET_UNTRUSTED) {
2497 		error = xfs_imap_lookup(pag, tp, agino, agbno,
2498 					&chunk_agbno, &offset_agbno, flags);
2499 		if (error)
2500 			return error;
2501 		goto out_map;
2502 	}
2503 
2504 	/*
2505 	 * If the inode cluster size is the same as the blocksize or
2506 	 * smaller we get to the buffer by simple arithmetics.
2507 	 */
2508 	if (M_IGEO(mp)->blocks_per_cluster == 1) {
2509 		offset = XFS_INO_TO_OFFSET(mp, ino);
2510 		ASSERT(offset < mp->m_sb.sb_inopblock);
2511 
2512 		imap->im_blkno = XFS_AGB_TO_DADDR(mp, pag->pag_agno, agbno);
2513 		imap->im_len = XFS_FSB_TO_BB(mp, 1);
2514 		imap->im_boffset = (unsigned short)(offset <<
2515 							mp->m_sb.sb_inodelog);
2516 		return 0;
2517 	}
2518 
2519 	/*
2520 	 * If the inode chunks are aligned then use simple maths to
2521 	 * find the location. Otherwise we have to do a btree
2522 	 * lookup to find the location.
2523 	 */
2524 	if (M_IGEO(mp)->inoalign_mask) {
2525 		offset_agbno = agbno & M_IGEO(mp)->inoalign_mask;
2526 		chunk_agbno = agbno - offset_agbno;
2527 	} else {
2528 		error = xfs_imap_lookup(pag, tp, agino, agbno,
2529 					&chunk_agbno, &offset_agbno, flags);
2530 		if (error)
2531 			return error;
2532 	}
2533 
2534 out_map:
2535 	ASSERT(agbno >= chunk_agbno);
2536 	cluster_agbno = chunk_agbno +
2537 		((offset_agbno / M_IGEO(mp)->blocks_per_cluster) *
2538 		 M_IGEO(mp)->blocks_per_cluster);
2539 	offset = ((agbno - cluster_agbno) * mp->m_sb.sb_inopblock) +
2540 		XFS_INO_TO_OFFSET(mp, ino);
2541 
2542 	imap->im_blkno = XFS_AGB_TO_DADDR(mp, pag->pag_agno, cluster_agbno);
2543 	imap->im_len = XFS_FSB_TO_BB(mp, M_IGEO(mp)->blocks_per_cluster);
2544 	imap->im_boffset = (unsigned short)(offset << mp->m_sb.sb_inodelog);
2545 
2546 	/*
2547 	 * If the inode number maps to a block outside the bounds
2548 	 * of the file system then return NULL rather than calling
2549 	 * read_buf and panicing when we get an error from the
2550 	 * driver.
2551 	 */
2552 	if ((imap->im_blkno + imap->im_len) >
2553 	    XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
2554 		xfs_alert(mp,
2555 	"%s: (im_blkno (0x%llx) + im_len (0x%llx)) > sb_dblocks (0x%llx)",
2556 			__func__, (unsigned long long) imap->im_blkno,
2557 			(unsigned long long) imap->im_len,
2558 			XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
2559 		return -EINVAL;
2560 	}
2561 	return 0;
2562 }
2563 
2564 /*
2565  * Log specified fields for the ag hdr (inode section). The growth of the agi
2566  * structure over time requires that we interpret the buffer as two logical
2567  * regions delineated by the end of the unlinked list. This is due to the size
2568  * of the hash table and its location in the middle of the agi.
2569  *
2570  * For example, a request to log a field before agi_unlinked and a field after
2571  * agi_unlinked could cause us to log the entire hash table and use an excessive
2572  * amount of log space. To avoid this behavior, log the region up through
2573  * agi_unlinked in one call and the region after agi_unlinked through the end of
2574  * the structure in another.
2575  */
2576 void
xfs_ialloc_log_agi(struct xfs_trans * tp,struct xfs_buf * bp,uint32_t fields)2577 xfs_ialloc_log_agi(
2578 	struct xfs_trans	*tp,
2579 	struct xfs_buf		*bp,
2580 	uint32_t		fields)
2581 {
2582 	int			first;		/* first byte number */
2583 	int			last;		/* last byte number */
2584 	static const short	offsets[] = {	/* field starting offsets */
2585 					/* keep in sync with bit definitions */
2586 		offsetof(xfs_agi_t, agi_magicnum),
2587 		offsetof(xfs_agi_t, agi_versionnum),
2588 		offsetof(xfs_agi_t, agi_seqno),
2589 		offsetof(xfs_agi_t, agi_length),
2590 		offsetof(xfs_agi_t, agi_count),
2591 		offsetof(xfs_agi_t, agi_root),
2592 		offsetof(xfs_agi_t, agi_level),
2593 		offsetof(xfs_agi_t, agi_freecount),
2594 		offsetof(xfs_agi_t, agi_newino),
2595 		offsetof(xfs_agi_t, agi_dirino),
2596 		offsetof(xfs_agi_t, agi_unlinked),
2597 		offsetof(xfs_agi_t, agi_free_root),
2598 		offsetof(xfs_agi_t, agi_free_level),
2599 		offsetof(xfs_agi_t, agi_iblocks),
2600 		sizeof(xfs_agi_t)
2601 	};
2602 #ifdef DEBUG
2603 	struct xfs_agi		*agi = bp->b_addr;
2604 
2605 	ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
2606 #endif
2607 
2608 	/*
2609 	 * Compute byte offsets for the first and last fields in the first
2610 	 * region and log the agi buffer. This only logs up through
2611 	 * agi_unlinked.
2612 	 */
2613 	if (fields & XFS_AGI_ALL_BITS_R1) {
2614 		xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R1,
2615 				  &first, &last);
2616 		xfs_trans_log_buf(tp, bp, first, last);
2617 	}
2618 
2619 	/*
2620 	 * Mask off the bits in the first region and calculate the first and
2621 	 * last field offsets for any bits in the second region.
2622 	 */
2623 	fields &= ~XFS_AGI_ALL_BITS_R1;
2624 	if (fields) {
2625 		xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R2,
2626 				  &first, &last);
2627 		xfs_trans_log_buf(tp, bp, first, last);
2628 	}
2629 }
2630 
2631 static xfs_failaddr_t
xfs_agi_verify(struct xfs_buf * bp)2632 xfs_agi_verify(
2633 	struct xfs_buf		*bp)
2634 {
2635 	struct xfs_mount	*mp = bp->b_mount;
2636 	struct xfs_agi		*agi = bp->b_addr;
2637 	xfs_failaddr_t		fa;
2638 	uint32_t		agi_seqno = be32_to_cpu(agi->agi_seqno);
2639 	uint32_t		agi_length = be32_to_cpu(agi->agi_length);
2640 	int			i;
2641 
2642 	if (xfs_has_crc(mp)) {
2643 		if (!uuid_equal(&agi->agi_uuid, &mp->m_sb.sb_meta_uuid))
2644 			return __this_address;
2645 		if (!xfs_log_check_lsn(mp, be64_to_cpu(agi->agi_lsn)))
2646 			return __this_address;
2647 	}
2648 
2649 	/*
2650 	 * Validate the magic number of the agi block.
2651 	 */
2652 	if (!xfs_verify_magic(bp, agi->agi_magicnum))
2653 		return __this_address;
2654 	if (!XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum)))
2655 		return __this_address;
2656 
2657 	fa = xfs_validate_ag_length(bp, agi_seqno, agi_length);
2658 	if (fa)
2659 		return fa;
2660 
2661 	if (be32_to_cpu(agi->agi_level) < 1 ||
2662 	    be32_to_cpu(agi->agi_level) > M_IGEO(mp)->inobt_maxlevels)
2663 		return __this_address;
2664 
2665 	if (xfs_has_finobt(mp) &&
2666 	    (be32_to_cpu(agi->agi_free_level) < 1 ||
2667 	     be32_to_cpu(agi->agi_free_level) > M_IGEO(mp)->inobt_maxlevels))
2668 		return __this_address;
2669 
2670 	for (i = 0; i < XFS_AGI_UNLINKED_BUCKETS; i++) {
2671 		if (agi->agi_unlinked[i] == cpu_to_be32(NULLAGINO))
2672 			continue;
2673 		if (!xfs_verify_ino(mp, be32_to_cpu(agi->agi_unlinked[i])))
2674 			return __this_address;
2675 	}
2676 
2677 	return NULL;
2678 }
2679 
2680 static void
xfs_agi_read_verify(struct xfs_buf * bp)2681 xfs_agi_read_verify(
2682 	struct xfs_buf	*bp)
2683 {
2684 	struct xfs_mount *mp = bp->b_mount;
2685 	xfs_failaddr_t	fa;
2686 
2687 	if (xfs_has_crc(mp) &&
2688 	    !xfs_buf_verify_cksum(bp, XFS_AGI_CRC_OFF))
2689 		xfs_verifier_error(bp, -EFSBADCRC, __this_address);
2690 	else {
2691 		fa = xfs_agi_verify(bp);
2692 		if (XFS_TEST_ERROR(fa, mp, XFS_ERRTAG_IALLOC_READ_AGI))
2693 			xfs_verifier_error(bp, -EFSCORRUPTED, fa);
2694 	}
2695 }
2696 
2697 static void
xfs_agi_write_verify(struct xfs_buf * bp)2698 xfs_agi_write_verify(
2699 	struct xfs_buf	*bp)
2700 {
2701 	struct xfs_mount	*mp = bp->b_mount;
2702 	struct xfs_buf_log_item	*bip = bp->b_log_item;
2703 	struct xfs_agi		*agi = bp->b_addr;
2704 	xfs_failaddr_t		fa;
2705 
2706 	fa = xfs_agi_verify(bp);
2707 	if (fa) {
2708 		xfs_verifier_error(bp, -EFSCORRUPTED, fa);
2709 		return;
2710 	}
2711 
2712 	if (!xfs_has_crc(mp))
2713 		return;
2714 
2715 	if (bip)
2716 		agi->agi_lsn = cpu_to_be64(bip->bli_item.li_lsn);
2717 	xfs_buf_update_cksum(bp, XFS_AGI_CRC_OFF);
2718 }
2719 
2720 const struct xfs_buf_ops xfs_agi_buf_ops = {
2721 	.name = "xfs_agi",
2722 	.magic = { cpu_to_be32(XFS_AGI_MAGIC), cpu_to_be32(XFS_AGI_MAGIC) },
2723 	.verify_read = xfs_agi_read_verify,
2724 	.verify_write = xfs_agi_write_verify,
2725 	.verify_struct = xfs_agi_verify,
2726 };
2727 
2728 /*
2729  * Read in the allocation group header (inode allocation section)
2730  */
2731 int
xfs_read_agi(struct xfs_perag * pag,struct xfs_trans * tp,xfs_buf_flags_t flags,struct xfs_buf ** agibpp)2732 xfs_read_agi(
2733 	struct xfs_perag	*pag,
2734 	struct xfs_trans	*tp,
2735 	xfs_buf_flags_t		flags,
2736 	struct xfs_buf		**agibpp)
2737 {
2738 	struct xfs_mount	*mp = pag->pag_mount;
2739 	int			error;
2740 
2741 	trace_xfs_read_agi(pag->pag_mount, pag->pag_agno);
2742 
2743 	error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
2744 			XFS_AG_DADDR(mp, pag->pag_agno, XFS_AGI_DADDR(mp)),
2745 			XFS_FSS_TO_BB(mp, 1), flags, agibpp, &xfs_agi_buf_ops);
2746 	if (xfs_metadata_is_sick(error))
2747 		xfs_ag_mark_sick(pag, XFS_SICK_AG_AGI);
2748 	if (error)
2749 		return error;
2750 	if (tp)
2751 		xfs_trans_buf_set_type(tp, *agibpp, XFS_BLFT_AGI_BUF);
2752 
2753 	xfs_buf_set_ref(*agibpp, XFS_AGI_REF);
2754 	return 0;
2755 }
2756 
2757 /*
2758  * Read in the agi and initialise the per-ag data. If the caller supplies a
2759  * @agibpp, return the locked AGI buffer to them, otherwise release it.
2760  */
2761 int
xfs_ialloc_read_agi(struct xfs_perag * pag,struct xfs_trans * tp,int flags,struct xfs_buf ** agibpp)2762 xfs_ialloc_read_agi(
2763 	struct xfs_perag	*pag,
2764 	struct xfs_trans	*tp,
2765 	int			flags,
2766 	struct xfs_buf		**agibpp)
2767 {
2768 	struct xfs_buf		*agibp;
2769 	struct xfs_agi		*agi;
2770 	int			error;
2771 
2772 	trace_xfs_ialloc_read_agi(pag->pag_mount, pag->pag_agno);
2773 
2774 	error = xfs_read_agi(pag, tp,
2775 			(flags & XFS_IALLOC_FLAG_TRYLOCK) ? XBF_TRYLOCK : 0,
2776 			&agibp);
2777 	if (error)
2778 		return error;
2779 
2780 	agi = agibp->b_addr;
2781 	if (!xfs_perag_initialised_agi(pag)) {
2782 		pag->pagi_freecount = be32_to_cpu(agi->agi_freecount);
2783 		pag->pagi_count = be32_to_cpu(agi->agi_count);
2784 		set_bit(XFS_AGSTATE_AGI_INIT, &pag->pag_opstate);
2785 	}
2786 
2787 	/*
2788 	 * It's possible for these to be out of sync if
2789 	 * we are in the middle of a forced shutdown.
2790 	 */
2791 	ASSERT(pag->pagi_freecount == be32_to_cpu(agi->agi_freecount) ||
2792 		xfs_is_shutdown(pag->pag_mount));
2793 	if (agibpp)
2794 		*agibpp = agibp;
2795 	else
2796 		xfs_trans_brelse(tp, agibp);
2797 	return 0;
2798 }
2799 
2800 /* How many inodes are backed by inode clusters ondisk? */
2801 STATIC int
xfs_ialloc_count_ondisk(struct xfs_btree_cur * cur,xfs_agino_t low,xfs_agino_t high,unsigned int * allocated)2802 xfs_ialloc_count_ondisk(
2803 	struct xfs_btree_cur		*cur,
2804 	xfs_agino_t			low,
2805 	xfs_agino_t			high,
2806 	unsigned int			*allocated)
2807 {
2808 	struct xfs_inobt_rec_incore	irec;
2809 	unsigned int			ret = 0;
2810 	int				has_record;
2811 	int				error;
2812 
2813 	error = xfs_inobt_lookup(cur, low, XFS_LOOKUP_LE, &has_record);
2814 	if (error)
2815 		return error;
2816 
2817 	while (has_record) {
2818 		unsigned int		i, hole_idx;
2819 
2820 		error = xfs_inobt_get_rec(cur, &irec, &has_record);
2821 		if (error)
2822 			return error;
2823 		if (irec.ir_startino > high)
2824 			break;
2825 
2826 		for (i = 0; i < XFS_INODES_PER_CHUNK; i++) {
2827 			if (irec.ir_startino + i < low)
2828 				continue;
2829 			if (irec.ir_startino + i > high)
2830 				break;
2831 
2832 			hole_idx = i / XFS_INODES_PER_HOLEMASK_BIT;
2833 			if (!(irec.ir_holemask & (1U << hole_idx)))
2834 				ret++;
2835 		}
2836 
2837 		error = xfs_btree_increment(cur, 0, &has_record);
2838 		if (error)
2839 			return error;
2840 	}
2841 
2842 	*allocated = ret;
2843 	return 0;
2844 }
2845 
2846 /* Is there an inode record covering a given extent? */
2847 int
xfs_ialloc_has_inodes_at_extent(struct xfs_btree_cur * cur,xfs_agblock_t bno,xfs_extlen_t len,enum xbtree_recpacking * outcome)2848 xfs_ialloc_has_inodes_at_extent(
2849 	struct xfs_btree_cur	*cur,
2850 	xfs_agblock_t		bno,
2851 	xfs_extlen_t		len,
2852 	enum xbtree_recpacking	*outcome)
2853 {
2854 	xfs_agino_t		agino;
2855 	xfs_agino_t		last_agino;
2856 	unsigned int		allocated;
2857 	int			error;
2858 
2859 	agino = XFS_AGB_TO_AGINO(cur->bc_mp, bno);
2860 	last_agino = XFS_AGB_TO_AGINO(cur->bc_mp, bno + len) - 1;
2861 
2862 	error = xfs_ialloc_count_ondisk(cur, agino, last_agino, &allocated);
2863 	if (error)
2864 		return error;
2865 
2866 	if (allocated == 0)
2867 		*outcome = XBTREE_RECPACKING_EMPTY;
2868 	else if (allocated == last_agino - agino + 1)
2869 		*outcome = XBTREE_RECPACKING_FULL;
2870 	else
2871 		*outcome = XBTREE_RECPACKING_SPARSE;
2872 	return 0;
2873 }
2874 
2875 struct xfs_ialloc_count_inodes {
2876 	xfs_agino_t			count;
2877 	xfs_agino_t			freecount;
2878 };
2879 
2880 /* Record inode counts across all inobt records. */
2881 STATIC int
xfs_ialloc_count_inodes_rec(struct xfs_btree_cur * cur,const union xfs_btree_rec * rec,void * priv)2882 xfs_ialloc_count_inodes_rec(
2883 	struct xfs_btree_cur		*cur,
2884 	const union xfs_btree_rec	*rec,
2885 	void				*priv)
2886 {
2887 	struct xfs_inobt_rec_incore	irec;
2888 	struct xfs_ialloc_count_inodes	*ci = priv;
2889 	xfs_failaddr_t			fa;
2890 
2891 	xfs_inobt_btrec_to_irec(cur->bc_mp, rec, &irec);
2892 	fa = xfs_inobt_check_irec(cur->bc_ag.pag, &irec);
2893 	if (fa)
2894 		return xfs_inobt_complain_bad_rec(cur, fa, &irec);
2895 
2896 	ci->count += irec.ir_count;
2897 	ci->freecount += irec.ir_freecount;
2898 
2899 	return 0;
2900 }
2901 
2902 /* Count allocated and free inodes under an inobt. */
2903 int
xfs_ialloc_count_inodes(struct xfs_btree_cur * cur,xfs_agino_t * count,xfs_agino_t * freecount)2904 xfs_ialloc_count_inodes(
2905 	struct xfs_btree_cur		*cur,
2906 	xfs_agino_t			*count,
2907 	xfs_agino_t			*freecount)
2908 {
2909 	struct xfs_ialloc_count_inodes	ci = {0};
2910 	int				error;
2911 
2912 	ASSERT(xfs_btree_is_ino(cur->bc_ops));
2913 	error = xfs_btree_query_all(cur, xfs_ialloc_count_inodes_rec, &ci);
2914 	if (error)
2915 		return error;
2916 
2917 	*count = ci.count;
2918 	*freecount = ci.freecount;
2919 	return 0;
2920 }
2921 
2922 /*
2923  * Initialize inode-related geometry information.
2924  *
2925  * Compute the inode btree min and max levels and set maxicount.
2926  *
2927  * Set the inode cluster size.  This may still be overridden by the file
2928  * system block size if it is larger than the chosen cluster size.
2929  *
2930  * For v5 filesystems, scale the cluster size with the inode size to keep a
2931  * constant ratio of inode per cluster buffer, but only if mkfs has set the
2932  * inode alignment value appropriately for larger cluster sizes.
2933  *
2934  * Then compute the inode cluster alignment information.
2935  */
2936 void
xfs_ialloc_setup_geometry(struct xfs_mount * mp)2937 xfs_ialloc_setup_geometry(
2938 	struct xfs_mount	*mp)
2939 {
2940 	struct xfs_sb		*sbp = &mp->m_sb;
2941 	struct xfs_ino_geometry	*igeo = M_IGEO(mp);
2942 	uint64_t		icount;
2943 	uint			inodes;
2944 
2945 	igeo->new_diflags2 = 0;
2946 	if (xfs_has_bigtime(mp))
2947 		igeo->new_diflags2 |= XFS_DIFLAG2_BIGTIME;
2948 	if (xfs_has_large_extent_counts(mp))
2949 		igeo->new_diflags2 |= XFS_DIFLAG2_NREXT64;
2950 
2951 	/* Compute inode btree geometry. */
2952 	igeo->agino_log = sbp->sb_inopblog + sbp->sb_agblklog;
2953 	igeo->inobt_mxr[0] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, true);
2954 	igeo->inobt_mxr[1] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, false);
2955 	igeo->inobt_mnr[0] = igeo->inobt_mxr[0] / 2;
2956 	igeo->inobt_mnr[1] = igeo->inobt_mxr[1] / 2;
2957 
2958 	igeo->ialloc_inos = max_t(uint16_t, XFS_INODES_PER_CHUNK,
2959 			sbp->sb_inopblock);
2960 	igeo->ialloc_blks = igeo->ialloc_inos >> sbp->sb_inopblog;
2961 
2962 	if (sbp->sb_spino_align)
2963 		igeo->ialloc_min_blks = sbp->sb_spino_align;
2964 	else
2965 		igeo->ialloc_min_blks = igeo->ialloc_blks;
2966 
2967 	/* Compute and fill in value of m_ino_geo.inobt_maxlevels. */
2968 	inodes = (1LL << XFS_INO_AGINO_BITS(mp)) >> XFS_INODES_PER_CHUNK_LOG;
2969 	igeo->inobt_maxlevels = xfs_btree_compute_maxlevels(igeo->inobt_mnr,
2970 			inodes);
2971 	ASSERT(igeo->inobt_maxlevels <= xfs_iallocbt_maxlevels_ondisk());
2972 
2973 	/*
2974 	 * Set the maximum inode count for this filesystem, being careful not
2975 	 * to use obviously garbage sb_inopblog/sb_inopblock values.  Regular
2976 	 * users should never get here due to failing sb verification, but
2977 	 * certain users (xfs_db) need to be usable even with corrupt metadata.
2978 	 */
2979 	if (sbp->sb_imax_pct && igeo->ialloc_blks) {
2980 		/*
2981 		 * Make sure the maximum inode count is a multiple
2982 		 * of the units we allocate inodes in.
2983 		 */
2984 		icount = sbp->sb_dblocks * sbp->sb_imax_pct;
2985 		do_div(icount, 100);
2986 		do_div(icount, igeo->ialloc_blks);
2987 		igeo->maxicount = XFS_FSB_TO_INO(mp,
2988 				icount * igeo->ialloc_blks);
2989 	} else {
2990 		igeo->maxicount = 0;
2991 	}
2992 
2993 	/*
2994 	 * Compute the desired size of an inode cluster buffer size, which
2995 	 * starts at 8K and (on v5 filesystems) scales up with larger inode
2996 	 * sizes.
2997 	 *
2998 	 * Preserve the desired inode cluster size because the sparse inodes
2999 	 * feature uses that desired size (not the actual size) to compute the
3000 	 * sparse inode alignment.  The mount code validates this value, so we
3001 	 * cannot change the behavior.
3002 	 */
3003 	igeo->inode_cluster_size_raw = XFS_INODE_BIG_CLUSTER_SIZE;
3004 	if (xfs_has_v3inodes(mp)) {
3005 		int	new_size = igeo->inode_cluster_size_raw;
3006 
3007 		new_size *= mp->m_sb.sb_inodesize / XFS_DINODE_MIN_SIZE;
3008 		if (mp->m_sb.sb_inoalignmt >= XFS_B_TO_FSBT(mp, new_size))
3009 			igeo->inode_cluster_size_raw = new_size;
3010 	}
3011 
3012 	/* Calculate inode cluster ratios. */
3013 	if (igeo->inode_cluster_size_raw > mp->m_sb.sb_blocksize)
3014 		igeo->blocks_per_cluster = XFS_B_TO_FSBT(mp,
3015 				igeo->inode_cluster_size_raw);
3016 	else
3017 		igeo->blocks_per_cluster = 1;
3018 	igeo->inode_cluster_size = XFS_FSB_TO_B(mp, igeo->blocks_per_cluster);
3019 	igeo->inodes_per_cluster = XFS_FSB_TO_INO(mp, igeo->blocks_per_cluster);
3020 
3021 	/* Calculate inode cluster alignment. */
3022 	if (xfs_has_align(mp) &&
3023 	    mp->m_sb.sb_inoalignmt >= igeo->blocks_per_cluster)
3024 		igeo->cluster_align = mp->m_sb.sb_inoalignmt;
3025 	else
3026 		igeo->cluster_align = 1;
3027 	igeo->inoalign_mask = igeo->cluster_align - 1;
3028 	igeo->cluster_align_inodes = XFS_FSB_TO_INO(mp, igeo->cluster_align);
3029 
3030 	/*
3031 	 * If we are using stripe alignment, check whether
3032 	 * the stripe unit is a multiple of the inode alignment
3033 	 */
3034 	if (mp->m_dalign && igeo->inoalign_mask &&
3035 	    !(mp->m_dalign & igeo->inoalign_mask))
3036 		igeo->ialloc_align = mp->m_dalign;
3037 	else
3038 		igeo->ialloc_align = 0;
3039 
3040 	if (mp->m_sb.sb_blocksize > PAGE_SIZE)
3041 		igeo->min_folio_order = mp->m_sb.sb_blocklog - PAGE_SHIFT;
3042 	else
3043 		igeo->min_folio_order = 0;
3044 }
3045 
3046 /* Compute the location of the root directory inode that is laid out by mkfs. */
3047 xfs_ino_t
xfs_ialloc_calc_rootino(struct xfs_mount * mp,int sunit)3048 xfs_ialloc_calc_rootino(
3049 	struct xfs_mount	*mp,
3050 	int			sunit)
3051 {
3052 	struct xfs_ino_geometry	*igeo = M_IGEO(mp);
3053 	xfs_agblock_t		first_bno;
3054 
3055 	/*
3056 	 * Pre-calculate the geometry of AG 0.  We know what it looks like
3057 	 * because libxfs knows how to create allocation groups now.
3058 	 *
3059 	 * first_bno is the first block in which mkfs could possibly have
3060 	 * allocated the root directory inode, once we factor in the metadata
3061 	 * that mkfs formats before it.  Namely, the four AG headers...
3062 	 */
3063 	first_bno = howmany(4 * mp->m_sb.sb_sectsize, mp->m_sb.sb_blocksize);
3064 
3065 	/* ...the two free space btree roots... */
3066 	first_bno += 2;
3067 
3068 	/* ...the inode btree root... */
3069 	first_bno += 1;
3070 
3071 	/* ...the initial AGFL... */
3072 	first_bno += xfs_alloc_min_freelist(mp, NULL);
3073 
3074 	/* ...the free inode btree root... */
3075 	if (xfs_has_finobt(mp))
3076 		first_bno++;
3077 
3078 	/* ...the reverse mapping btree root... */
3079 	if (xfs_has_rmapbt(mp))
3080 		first_bno++;
3081 
3082 	/* ...the reference count btree... */
3083 	if (xfs_has_reflink(mp))
3084 		first_bno++;
3085 
3086 	/*
3087 	 * ...and the log, if it is allocated in the first allocation group.
3088 	 *
3089 	 * This can happen with filesystems that only have a single
3090 	 * allocation group, or very odd geometries created by old mkfs
3091 	 * versions on very small filesystems.
3092 	 */
3093 	if (xfs_ag_contains_log(mp, 0))
3094 		 first_bno += mp->m_sb.sb_logblocks;
3095 
3096 	/*
3097 	 * Now round first_bno up to whatever allocation alignment is given
3098 	 * by the filesystem or was passed in.
3099 	 */
3100 	if (xfs_has_dalign(mp) && igeo->ialloc_align > 0)
3101 		first_bno = roundup(first_bno, sunit);
3102 	else if (xfs_has_align(mp) &&
3103 			mp->m_sb.sb_inoalignmt > 1)
3104 		first_bno = roundup(first_bno, mp->m_sb.sb_inoalignmt);
3105 
3106 	return XFS_AGINO_TO_INO(mp, 0, XFS_AGB_TO_AGINO(mp, first_bno));
3107 }
3108 
3109 /*
3110  * Ensure there are not sparse inode clusters that cross the new EOAG.
3111  *
3112  * This is a no-op for non-spinode filesystems since clusters are always fully
3113  * allocated and checking the bnobt suffices.  However, a spinode filesystem
3114  * could have a record where the upper inodes are free blocks.  If those blocks
3115  * were removed from the filesystem, the inode record would extend beyond EOAG,
3116  * which will be flagged as corruption.
3117  */
3118 int
xfs_ialloc_check_shrink(struct xfs_perag * pag,struct xfs_trans * tp,struct xfs_buf * agibp,xfs_agblock_t new_length)3119 xfs_ialloc_check_shrink(
3120 	struct xfs_perag	*pag,
3121 	struct xfs_trans	*tp,
3122 	struct xfs_buf		*agibp,
3123 	xfs_agblock_t		new_length)
3124 {
3125 	struct xfs_inobt_rec_incore rec;
3126 	struct xfs_btree_cur	*cur;
3127 	xfs_agino_t		agino;
3128 	int			has;
3129 	int			error;
3130 
3131 	if (!xfs_has_sparseinodes(pag->pag_mount))
3132 		return 0;
3133 
3134 	cur = xfs_inobt_init_cursor(pag, tp, agibp);
3135 
3136 	/* Look up the inobt record that would correspond to the new EOFS. */
3137 	agino = XFS_AGB_TO_AGINO(pag->pag_mount, new_length);
3138 	error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &has);
3139 	if (error || !has)
3140 		goto out;
3141 
3142 	error = xfs_inobt_get_rec(cur, &rec, &has);
3143 	if (error)
3144 		goto out;
3145 
3146 	if (!has) {
3147 		xfs_ag_mark_sick(pag, XFS_SICK_AG_INOBT);
3148 		error = -EFSCORRUPTED;
3149 		goto out;
3150 	}
3151 
3152 	/* If the record covers inodes that would be beyond EOFS, bail out. */
3153 	if (rec.ir_startino + XFS_INODES_PER_CHUNK > agino) {
3154 		error = -ENOSPC;
3155 		goto out;
3156 	}
3157 out:
3158 	xfs_btree_del_cursor(cur, error);
3159 	return error;
3160 }
3161