• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * xHCI host controller driver
4  *
5  * Copyright (C) 2008 Intel Corp.
6  *
7  * Author: Sarah Sharp
8  * Some code borrowed from the Linux EHCI driver.
9  */
10 
11 #include <linux/usb.h>
12 #include <linux/overflow.h>
13 #include <linux/pci.h>
14 #include <linux/slab.h>
15 #include <linux/dmapool.h>
16 #include <linux/dma-mapping.h>
17 
18 #include "xhci.h"
19 #include "xhci-trace.h"
20 #include "xhci-debugfs.h"
21 
22 /*
23  * Allocates a generic ring segment from the ring pool, sets the dma address,
24  * initializes the segment to zero, and sets the private next pointer to NULL.
25  *
26  * Section 4.11.1.1:
27  * "All components of all Command and Transfer TRBs shall be initialized to '0'"
28  */
xhci_segment_alloc(struct xhci_hcd * xhci,unsigned int max_packet,unsigned int num,gfp_t flags)29 static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci,
30 					       unsigned int max_packet,
31 					       unsigned int num,
32 					       gfp_t flags)
33 {
34 	struct xhci_segment *seg;
35 	dma_addr_t	dma;
36 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
37 
38 	seg = kzalloc_node(sizeof(*seg), flags, dev_to_node(dev));
39 	if (!seg)
40 		return NULL;
41 
42 	seg->trbs = dma_pool_zalloc(xhci->segment_pool, flags, &dma);
43 	if (!seg->trbs) {
44 		kfree(seg);
45 		return NULL;
46 	}
47 
48 	if (max_packet) {
49 		seg->bounce_buf = kzalloc_node(max_packet, flags,
50 					dev_to_node(dev));
51 		if (!seg->bounce_buf) {
52 			dma_pool_free(xhci->segment_pool, seg->trbs, dma);
53 			kfree(seg);
54 			return NULL;
55 		}
56 	}
57 	seg->num = num;
58 	seg->dma = dma;
59 	seg->next = NULL;
60 
61 	return seg;
62 }
63 
xhci_segment_free(struct xhci_hcd * xhci,struct xhci_segment * seg)64 static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
65 {
66 	if (seg->trbs) {
67 		dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
68 		seg->trbs = NULL;
69 	}
70 	kfree(seg->bounce_buf);
71 	kfree(seg);
72 }
73 
xhci_free_segments_for_ring(struct xhci_hcd * xhci,struct xhci_segment * first)74 static void xhci_free_segments_for_ring(struct xhci_hcd *xhci,
75 				struct xhci_segment *first)
76 {
77 	struct xhci_segment *seg;
78 
79 	seg = first->next;
80 	while (seg && seg != first) {
81 		struct xhci_segment *next = seg->next;
82 		xhci_segment_free(xhci, seg);
83 		seg = next;
84 	}
85 	xhci_segment_free(xhci, first);
86 }
87 
88 /*
89  * Make the prev segment point to the next segment.
90  *
91  * Change the last TRB in the prev segment to be a Link TRB which points to the
92  * DMA address of the next segment.  The caller needs to set any Link TRB
93  * related flags, such as End TRB, Toggle Cycle, and no snoop.
94  */
xhci_link_segments(struct xhci_segment * prev,struct xhci_segment * next,enum xhci_ring_type type,bool chain_links)95 static void xhci_link_segments(struct xhci_segment *prev,
96 			       struct xhci_segment *next,
97 			       enum xhci_ring_type type, bool chain_links)
98 {
99 	u32 val;
100 
101 	if (!prev || !next)
102 		return;
103 	prev->next = next;
104 	if (type != TYPE_EVENT) {
105 		prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr =
106 			cpu_to_le64(next->dma);
107 
108 		/* Set the last TRB in the segment to have a TRB type ID of Link TRB */
109 		val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
110 		val &= ~TRB_TYPE_BITMASK;
111 		val |= TRB_TYPE(TRB_LINK);
112 		if (chain_links)
113 			val |= TRB_CHAIN;
114 		prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
115 	}
116 }
117 
118 /*
119  * Link the ring to the new segments.
120  * Set Toggle Cycle for the new ring if needed.
121  */
xhci_link_rings(struct xhci_hcd * xhci,struct xhci_ring * ring,struct xhci_segment * first,struct xhci_segment * last,unsigned int num_segs)122 static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *ring,
123 		struct xhci_segment *first, struct xhci_segment *last,
124 		unsigned int num_segs)
125 {
126 	struct xhci_segment *next, *seg;
127 	bool chain_links;
128 
129 	if (!ring || !first || !last)
130 		return;
131 
132 	chain_links = xhci_link_chain_quirk(xhci, ring->type);
133 
134 	/* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */
135 	if (ring->cycle_state == 0) {
136 		xhci_for_each_ring_seg(ring->first_seg, seg) {
137 			for (int i = 0; i < TRBS_PER_SEGMENT; i++)
138 				seg->trbs[i].link.control |= cpu_to_le32(TRB_CYCLE);
139 		}
140 	}
141 
142 	next = ring->enq_seg->next;
143 	xhci_link_segments(ring->enq_seg, first, ring->type, chain_links);
144 	xhci_link_segments(last, next, ring->type, chain_links);
145 	ring->num_segs += num_segs;
146 
147 	if (ring->enq_seg == ring->last_seg) {
148 		if (ring->type != TYPE_EVENT) {
149 			ring->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control
150 				&= ~cpu_to_le32(LINK_TOGGLE);
151 			last->trbs[TRBS_PER_SEGMENT-1].link.control
152 				|= cpu_to_le32(LINK_TOGGLE);
153 		}
154 		ring->last_seg = last;
155 	}
156 
157 	for (seg = ring->enq_seg; seg != ring->last_seg; seg = seg->next)
158 		seg->next->num = seg->num + 1;
159 }
160 
161 /*
162  * We need a radix tree for mapping physical addresses of TRBs to which stream
163  * ID they belong to.  We need to do this because the host controller won't tell
164  * us which stream ring the TRB came from.  We could store the stream ID in an
165  * event data TRB, but that doesn't help us for the cancellation case, since the
166  * endpoint may stop before it reaches that event data TRB.
167  *
168  * The radix tree maps the upper portion of the TRB DMA address to a ring
169  * segment that has the same upper portion of DMA addresses.  For example, say I
170  * have segments of size 1KB, that are always 1KB aligned.  A segment may
171  * start at 0x10c91000 and end at 0x10c913f0.  If I use the upper 10 bits, the
172  * key to the stream ID is 0x43244.  I can use the DMA address of the TRB to
173  * pass the radix tree a key to get the right stream ID:
174  *
175  *	0x10c90fff >> 10 = 0x43243
176  *	0x10c912c0 >> 10 = 0x43244
177  *	0x10c91400 >> 10 = 0x43245
178  *
179  * Obviously, only those TRBs with DMA addresses that are within the segment
180  * will make the radix tree return the stream ID for that ring.
181  *
182  * Caveats for the radix tree:
183  *
184  * The radix tree uses an unsigned long as a key pair.  On 32-bit systems, an
185  * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
186  * 64-bits.  Since we only request 32-bit DMA addresses, we can use that as the
187  * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
188  * PCI DMA addresses on a 64-bit system).  There might be a problem on 32-bit
189  * extended systems (where the DMA address can be bigger than 32-bits),
190  * if we allow the PCI dma mask to be bigger than 32-bits.  So don't do that.
191  */
xhci_insert_segment_mapping(struct radix_tree_root * trb_address_map,struct xhci_ring * ring,struct xhci_segment * seg,gfp_t mem_flags)192 static int xhci_insert_segment_mapping(struct radix_tree_root *trb_address_map,
193 		struct xhci_ring *ring,
194 		struct xhci_segment *seg,
195 		gfp_t mem_flags)
196 {
197 	unsigned long key;
198 	int ret;
199 
200 	key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
201 	/* Skip any segments that were already added. */
202 	if (radix_tree_lookup(trb_address_map, key))
203 		return 0;
204 
205 	ret = radix_tree_maybe_preload(mem_flags);
206 	if (ret)
207 		return ret;
208 	ret = radix_tree_insert(trb_address_map,
209 			key, ring);
210 	radix_tree_preload_end();
211 	return ret;
212 }
213 
xhci_remove_segment_mapping(struct radix_tree_root * trb_address_map,struct xhci_segment * seg)214 static void xhci_remove_segment_mapping(struct radix_tree_root *trb_address_map,
215 		struct xhci_segment *seg)
216 {
217 	unsigned long key;
218 
219 	key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
220 	if (radix_tree_lookup(trb_address_map, key))
221 		radix_tree_delete(trb_address_map, key);
222 }
223 
xhci_update_stream_segment_mapping(struct radix_tree_root * trb_address_map,struct xhci_ring * ring,struct xhci_segment * first_seg,gfp_t mem_flags)224 static int xhci_update_stream_segment_mapping(
225 		struct radix_tree_root *trb_address_map,
226 		struct xhci_ring *ring,
227 		struct xhci_segment *first_seg,
228 		gfp_t mem_flags)
229 {
230 	struct xhci_segment *seg;
231 	struct xhci_segment *failed_seg;
232 	int ret;
233 
234 	if (WARN_ON_ONCE(trb_address_map == NULL))
235 		return 0;
236 
237 	xhci_for_each_ring_seg(first_seg, seg) {
238 		ret = xhci_insert_segment_mapping(trb_address_map,
239 				ring, seg, mem_flags);
240 		if (ret)
241 			goto remove_streams;
242 	}
243 
244 	return 0;
245 
246 remove_streams:
247 	failed_seg = seg;
248 	xhci_for_each_ring_seg(first_seg, seg) {
249 		xhci_remove_segment_mapping(trb_address_map, seg);
250 		if (seg == failed_seg)
251 			return ret;
252 	}
253 
254 	return ret;
255 }
256 
xhci_remove_stream_mapping(struct xhci_ring * ring)257 static void xhci_remove_stream_mapping(struct xhci_ring *ring)
258 {
259 	struct xhci_segment *seg;
260 
261 	if (WARN_ON_ONCE(ring->trb_address_map == NULL))
262 		return;
263 
264 	xhci_for_each_ring_seg(ring->first_seg, seg)
265 		xhci_remove_segment_mapping(ring->trb_address_map, seg);
266 }
267 
xhci_update_stream_mapping(struct xhci_ring * ring,gfp_t mem_flags)268 static int xhci_update_stream_mapping(struct xhci_ring *ring, gfp_t mem_flags)
269 {
270 	return xhci_update_stream_segment_mapping(ring->trb_address_map, ring,
271 			ring->first_seg, mem_flags);
272 }
273 
274 /* XXX: Do we need the hcd structure in all these functions? */
xhci_ring_free(struct xhci_hcd * xhci,struct xhci_ring * ring)275 void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
276 {
277 	if (!ring)
278 		return;
279 
280 	trace_xhci_ring_free(ring);
281 
282 	if (ring->first_seg) {
283 		if (ring->type == TYPE_STREAM)
284 			xhci_remove_stream_mapping(ring);
285 		xhci_free_segments_for_ring(xhci, ring->first_seg);
286 	}
287 
288 	kfree(ring);
289 }
290 
xhci_initialize_ring_info(struct xhci_ring * ring)291 void xhci_initialize_ring_info(struct xhci_ring *ring)
292 {
293 	/* The ring is empty, so the enqueue pointer == dequeue pointer */
294 	ring->enqueue = ring->first_seg->trbs;
295 	ring->enq_seg = ring->first_seg;
296 	ring->dequeue = ring->enqueue;
297 	ring->deq_seg = ring->first_seg;
298 	/* The ring is initialized to 0. The producer must write 1 to the cycle
299 	 * bit to handover ownership of the TRB, so PCS = 1.  The consumer must
300 	 * compare CCS to the cycle bit to check ownership, so CCS = 1.
301 	 *
302 	 * New rings are initialized with cycle state equal to 1; if we are
303 	 * handling ring expansion, set the cycle state equal to the old ring.
304 	 */
305 	ring->cycle_state = 1;
306 
307 	/*
308 	 * Each segment has a link TRB, and leave an extra TRB for SW
309 	 * accounting purpose
310 	 */
311 	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
312 }
313 EXPORT_SYMBOL_GPL(xhci_initialize_ring_info);
314 
315 /* Allocate segments and link them for a ring */
xhci_alloc_segments_for_ring(struct xhci_hcd * xhci,struct xhci_segment ** first,struct xhci_segment ** last,unsigned int num_segs,enum xhci_ring_type type,unsigned int max_packet,gfp_t flags)316 static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci,
317 					struct xhci_segment **first,
318 					struct xhci_segment **last,
319 					unsigned int num_segs,
320 					enum xhci_ring_type type,
321 					unsigned int max_packet,
322 					gfp_t flags)
323 {
324 	struct xhci_segment *prev;
325 	unsigned int num = 0;
326 	bool chain_links;
327 
328 	chain_links = xhci_link_chain_quirk(xhci, type);
329 
330 	prev = xhci_segment_alloc(xhci, max_packet, num, flags);
331 	if (!prev)
332 		return -ENOMEM;
333 	num++;
334 
335 	*first = prev;
336 	while (num < num_segs) {
337 		struct xhci_segment	*next;
338 
339 		next = xhci_segment_alloc(xhci, max_packet, num, flags);
340 		if (!next)
341 			goto free_segments;
342 
343 		xhci_link_segments(prev, next, type, chain_links);
344 		prev = next;
345 		num++;
346 	}
347 	xhci_link_segments(prev, *first, type, chain_links);
348 	*last = prev;
349 
350 	return 0;
351 
352 free_segments:
353 	xhci_free_segments_for_ring(xhci, *first);
354 	return -ENOMEM;
355 }
356 
357 /*
358  * Create a new ring with zero or more segments.
359  *
360  * Link each segment together into a ring.
361  * Set the end flag and the cycle toggle bit on the last segment.
362  * See section 4.9.1 and figures 15 and 16.
363  */
xhci_ring_alloc(struct xhci_hcd * xhci,unsigned int num_segs,enum xhci_ring_type type,unsigned int max_packet,gfp_t flags)364 struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci, unsigned int num_segs,
365 				  enum xhci_ring_type type, unsigned int max_packet, gfp_t flags)
366 {
367 	struct xhci_ring	*ring;
368 	int ret;
369 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
370 
371 	ring = kzalloc_node(sizeof(*ring), flags, dev_to_node(dev));
372 	if (!ring)
373 		return NULL;
374 
375 	ring->num_segs = num_segs;
376 	ring->bounce_buf_len = max_packet;
377 	INIT_LIST_HEAD(&ring->td_list);
378 	ring->type = type;
379 	if (num_segs == 0)
380 		return ring;
381 
382 	ret = xhci_alloc_segments_for_ring(xhci, &ring->first_seg, &ring->last_seg, num_segs,
383 					   type, max_packet, flags);
384 	if (ret)
385 		goto fail;
386 
387 	/* Only event ring does not use link TRB */
388 	if (type != TYPE_EVENT) {
389 		/* See section 4.9.2.1 and 6.4.4.1 */
390 		ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |=
391 			cpu_to_le32(LINK_TOGGLE);
392 	}
393 	xhci_initialize_ring_info(ring);
394 	trace_xhci_ring_alloc(ring);
395 	return ring;
396 
397 fail:
398 	kfree(ring);
399 	return NULL;
400 }
401 
xhci_free_endpoint_ring(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,unsigned int ep_index)402 void xhci_free_endpoint_ring(struct xhci_hcd *xhci,
403 		struct xhci_virt_device *virt_dev,
404 		unsigned int ep_index)
405 {
406 	xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
407 	virt_dev->eps[ep_index].ring = NULL;
408 }
409 
410 /*
411  * Expand an existing ring.
412  * Allocate a new ring which has same segment numbers and link the two rings.
413  */
xhci_ring_expansion(struct xhci_hcd * xhci,struct xhci_ring * ring,unsigned int num_new_segs,gfp_t flags)414 int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring,
415 				unsigned int num_new_segs, gfp_t flags)
416 {
417 	struct xhci_segment	*first;
418 	struct xhci_segment	*last;
419 	int			ret;
420 
421 	ret = xhci_alloc_segments_for_ring(xhci, &first, &last, num_new_segs, ring->type,
422 					   ring->bounce_buf_len, flags);
423 	if (ret)
424 		return -ENOMEM;
425 
426 	if (ring->type == TYPE_STREAM) {
427 		ret = xhci_update_stream_segment_mapping(ring->trb_address_map,
428 						ring, first, flags);
429 		if (ret)
430 			goto free_segments;
431 	}
432 
433 	xhci_link_rings(xhci, ring, first, last, num_new_segs);
434 	trace_xhci_ring_expansion(ring);
435 	xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion,
436 			"ring expansion succeed, now has %d segments",
437 			ring->num_segs);
438 
439 	return 0;
440 
441 free_segments:
442 	xhci_free_segments_for_ring(xhci, first);
443 	return ret;
444 }
445 
xhci_alloc_container_ctx(struct xhci_hcd * xhci,int type,gfp_t flags)446 struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
447 						    int type, gfp_t flags)
448 {
449 	struct xhci_container_ctx *ctx;
450 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
451 
452 	if ((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT))
453 		return NULL;
454 
455 	ctx = kzalloc_node(sizeof(*ctx), flags, dev_to_node(dev));
456 	if (!ctx)
457 		return NULL;
458 
459 	ctx->type = type;
460 	ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
461 	if (type == XHCI_CTX_TYPE_INPUT)
462 		ctx->size += CTX_SIZE(xhci->hcc_params);
463 
464 	ctx->bytes = dma_pool_zalloc(xhci->device_pool, flags, &ctx->dma);
465 	if (!ctx->bytes) {
466 		kfree(ctx);
467 		return NULL;
468 	}
469 	return ctx;
470 }
471 
xhci_free_container_ctx(struct xhci_hcd * xhci,struct xhci_container_ctx * ctx)472 void xhci_free_container_ctx(struct xhci_hcd *xhci,
473 			     struct xhci_container_ctx *ctx)
474 {
475 	if (!ctx)
476 		return;
477 	dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
478 	kfree(ctx);
479 }
480 
xhci_get_input_control_ctx(struct xhci_container_ctx * ctx)481 struct xhci_input_control_ctx *xhci_get_input_control_ctx(
482 					      struct xhci_container_ctx *ctx)
483 {
484 	if (ctx->type != XHCI_CTX_TYPE_INPUT)
485 		return NULL;
486 
487 	return (struct xhci_input_control_ctx *)ctx->bytes;
488 }
489 
xhci_get_slot_ctx(struct xhci_hcd * xhci,struct xhci_container_ctx * ctx)490 struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
491 					struct xhci_container_ctx *ctx)
492 {
493 	if (ctx->type == XHCI_CTX_TYPE_DEVICE)
494 		return (struct xhci_slot_ctx *)ctx->bytes;
495 
496 	return (struct xhci_slot_ctx *)
497 		(ctx->bytes + CTX_SIZE(xhci->hcc_params));
498 }
499 
xhci_get_ep_ctx(struct xhci_hcd * xhci,struct xhci_container_ctx * ctx,unsigned int ep_index)500 struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
501 				    struct xhci_container_ctx *ctx,
502 				    unsigned int ep_index)
503 {
504 	/* increment ep index by offset of start of ep ctx array */
505 	ep_index++;
506 	if (ctx->type == XHCI_CTX_TYPE_INPUT)
507 		ep_index++;
508 
509 	return (struct xhci_ep_ctx *)
510 		(ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
511 }
512 EXPORT_SYMBOL_GPL(xhci_get_ep_ctx);
513 
514 /***************** Streams structures manipulation *************************/
515 
xhci_free_stream_ctx(struct xhci_hcd * xhci,unsigned int num_stream_ctxs,struct xhci_stream_ctx * stream_ctx,dma_addr_t dma)516 static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
517 		unsigned int num_stream_ctxs,
518 		struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
519 {
520 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
521 	size_t size = array_size(sizeof(struct xhci_stream_ctx), num_stream_ctxs);
522 
523 	if (size > MEDIUM_STREAM_ARRAY_SIZE)
524 		dma_free_coherent(dev, size, stream_ctx, dma);
525 	else if (size > SMALL_STREAM_ARRAY_SIZE)
526 		dma_pool_free(xhci->medium_streams_pool, stream_ctx, dma);
527 	else
528 		dma_pool_free(xhci->small_streams_pool, stream_ctx, dma);
529 }
530 
531 /*
532  * The stream context array for each endpoint with bulk streams enabled can
533  * vary in size, based on:
534  *  - how many streams the endpoint supports,
535  *  - the maximum primary stream array size the host controller supports,
536  *  - and how many streams the device driver asks for.
537  *
538  * The stream context array must be a power of 2, and can be as small as
539  * 64 bytes or as large as 1MB.
540  */
xhci_alloc_stream_ctx(struct xhci_hcd * xhci,unsigned int num_stream_ctxs,dma_addr_t * dma,gfp_t mem_flags)541 static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
542 		unsigned int num_stream_ctxs, dma_addr_t *dma,
543 		gfp_t mem_flags)
544 {
545 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
546 	size_t size = array_size(sizeof(struct xhci_stream_ctx), num_stream_ctxs);
547 
548 	if (size > MEDIUM_STREAM_ARRAY_SIZE)
549 		return dma_alloc_coherent(dev, size, dma, mem_flags);
550 	if (size > SMALL_STREAM_ARRAY_SIZE)
551 		return dma_pool_zalloc(xhci->medium_streams_pool, mem_flags, dma);
552 	else
553 		return dma_pool_zalloc(xhci->small_streams_pool, mem_flags, dma);
554 }
555 
xhci_dma_to_transfer_ring(struct xhci_virt_ep * ep,u64 address)556 struct xhci_ring *xhci_dma_to_transfer_ring(
557 		struct xhci_virt_ep *ep,
558 		u64 address)
559 {
560 	if (ep->ep_state & EP_HAS_STREAMS)
561 		return radix_tree_lookup(&ep->stream_info->trb_address_map,
562 				address >> TRB_SEGMENT_SHIFT);
563 	return ep->ring;
564 }
565 
566 /*
567  * Change an endpoint's internal structure so it supports stream IDs.  The
568  * number of requested streams includes stream 0, which cannot be used by device
569  * drivers.
570  *
571  * The number of stream contexts in the stream context array may be bigger than
572  * the number of streams the driver wants to use.  This is because the number of
573  * stream context array entries must be a power of two.
574  */
xhci_alloc_stream_info(struct xhci_hcd * xhci,unsigned int num_stream_ctxs,unsigned int num_streams,unsigned int max_packet,gfp_t mem_flags)575 struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
576 		unsigned int num_stream_ctxs,
577 		unsigned int num_streams,
578 		unsigned int max_packet, gfp_t mem_flags)
579 {
580 	struct xhci_stream_info *stream_info;
581 	u32 cur_stream;
582 	struct xhci_ring *cur_ring;
583 	u64 addr;
584 	int ret;
585 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
586 
587 	xhci_dbg(xhci, "Allocating %u streams and %u stream context array entries.\n",
588 			num_streams, num_stream_ctxs);
589 	if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
590 		xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
591 		return NULL;
592 	}
593 	xhci->cmd_ring_reserved_trbs++;
594 
595 	stream_info = kzalloc_node(sizeof(*stream_info), mem_flags,
596 			dev_to_node(dev));
597 	if (!stream_info)
598 		goto cleanup_trbs;
599 
600 	stream_info->num_streams = num_streams;
601 	stream_info->num_stream_ctxs = num_stream_ctxs;
602 
603 	/* Initialize the array of virtual pointers to stream rings. */
604 	stream_info->stream_rings = kcalloc_node(
605 			num_streams, sizeof(struct xhci_ring *), mem_flags,
606 			dev_to_node(dev));
607 	if (!stream_info->stream_rings)
608 		goto cleanup_info;
609 
610 	/* Initialize the array of DMA addresses for stream rings for the HW. */
611 	stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
612 			num_stream_ctxs, &stream_info->ctx_array_dma,
613 			mem_flags);
614 	if (!stream_info->stream_ctx_array)
615 		goto cleanup_ring_array;
616 
617 	/* Allocate everything needed to free the stream rings later */
618 	stream_info->free_streams_command =
619 		xhci_alloc_command_with_ctx(xhci, true, mem_flags);
620 	if (!stream_info->free_streams_command)
621 		goto cleanup_ctx;
622 
623 	INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
624 
625 	/* Allocate rings for all the streams that the driver will use,
626 	 * and add their segment DMA addresses to the radix tree.
627 	 * Stream 0 is reserved.
628 	 */
629 
630 	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
631 		stream_info->stream_rings[cur_stream] =
632 			xhci_ring_alloc(xhci, 2, TYPE_STREAM, max_packet, mem_flags);
633 		cur_ring = stream_info->stream_rings[cur_stream];
634 		if (!cur_ring)
635 			goto cleanup_rings;
636 		cur_ring->stream_id = cur_stream;
637 		cur_ring->trb_address_map = &stream_info->trb_address_map;
638 		/* Set deq ptr, cycle bit, and stream context type */
639 		addr = cur_ring->first_seg->dma |
640 			SCT_FOR_CTX(SCT_PRI_TR) |
641 			cur_ring->cycle_state;
642 		stream_info->stream_ctx_array[cur_stream].stream_ring =
643 			cpu_to_le64(addr);
644 		xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n", cur_stream, addr);
645 
646 		ret = xhci_update_stream_mapping(cur_ring, mem_flags);
647 		if (ret) {
648 			xhci_ring_free(xhci, cur_ring);
649 			stream_info->stream_rings[cur_stream] = NULL;
650 			goto cleanup_rings;
651 		}
652 	}
653 	/* Leave the other unused stream ring pointers in the stream context
654 	 * array initialized to zero.  This will cause the xHC to give us an
655 	 * error if the device asks for a stream ID we don't have setup (if it
656 	 * was any other way, the host controller would assume the ring is
657 	 * "empty" and wait forever for data to be queued to that stream ID).
658 	 */
659 
660 	return stream_info;
661 
662 cleanup_rings:
663 	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
664 		cur_ring = stream_info->stream_rings[cur_stream];
665 		if (cur_ring) {
666 			xhci_ring_free(xhci, cur_ring);
667 			stream_info->stream_rings[cur_stream] = NULL;
668 		}
669 	}
670 	xhci_free_command(xhci, stream_info->free_streams_command);
671 cleanup_ctx:
672 	xhci_free_stream_ctx(xhci,
673 		stream_info->num_stream_ctxs,
674 		stream_info->stream_ctx_array,
675 		stream_info->ctx_array_dma);
676 cleanup_ring_array:
677 	kfree(stream_info->stream_rings);
678 cleanup_info:
679 	kfree(stream_info);
680 cleanup_trbs:
681 	xhci->cmd_ring_reserved_trbs--;
682 	return NULL;
683 }
684 /*
685  * Sets the MaxPStreams field and the Linear Stream Array field.
686  * Sets the dequeue pointer to the stream context array.
687  */
xhci_setup_streams_ep_input_ctx(struct xhci_hcd * xhci,struct xhci_ep_ctx * ep_ctx,struct xhci_stream_info * stream_info)688 void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
689 		struct xhci_ep_ctx *ep_ctx,
690 		struct xhci_stream_info *stream_info)
691 {
692 	u32 max_primary_streams;
693 	/* MaxPStreams is the number of stream context array entries, not the
694 	 * number we're actually using.  Must be in 2^(MaxPstreams + 1) format.
695 	 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
696 	 */
697 	max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
698 	xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
699 			"Setting number of stream ctx array entries to %u",
700 			1 << (max_primary_streams + 1));
701 	ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
702 	ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
703 				       | EP_HAS_LSA);
704 	ep_ctx->deq  = cpu_to_le64(stream_info->ctx_array_dma);
705 }
706 
707 /*
708  * Sets the MaxPStreams field and the Linear Stream Array field to 0.
709  * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
710  * not at the beginning of the ring).
711  */
xhci_setup_no_streams_ep_input_ctx(struct xhci_ep_ctx * ep_ctx,struct xhci_virt_ep * ep)712 void xhci_setup_no_streams_ep_input_ctx(struct xhci_ep_ctx *ep_ctx,
713 		struct xhci_virt_ep *ep)
714 {
715 	dma_addr_t addr;
716 	ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
717 	addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
718 	ep_ctx->deq  = cpu_to_le64(addr | ep->ring->cycle_state);
719 }
720 
721 /* Frees all stream contexts associated with the endpoint,
722  *
723  * Caller should fix the endpoint context streams fields.
724  */
xhci_free_stream_info(struct xhci_hcd * xhci,struct xhci_stream_info * stream_info)725 void xhci_free_stream_info(struct xhci_hcd *xhci,
726 		struct xhci_stream_info *stream_info)
727 {
728 	int cur_stream;
729 	struct xhci_ring *cur_ring;
730 
731 	if (!stream_info)
732 		return;
733 
734 	for (cur_stream = 1; cur_stream < stream_info->num_streams;
735 			cur_stream++) {
736 		cur_ring = stream_info->stream_rings[cur_stream];
737 		if (cur_ring) {
738 			xhci_ring_free(xhci, cur_ring);
739 			stream_info->stream_rings[cur_stream] = NULL;
740 		}
741 	}
742 	xhci_free_command(xhci, stream_info->free_streams_command);
743 	xhci->cmd_ring_reserved_trbs--;
744 	if (stream_info->stream_ctx_array)
745 		xhci_free_stream_ctx(xhci,
746 				stream_info->num_stream_ctxs,
747 				stream_info->stream_ctx_array,
748 				stream_info->ctx_array_dma);
749 
750 	kfree(stream_info->stream_rings);
751 	kfree(stream_info);
752 }
753 
754 
755 /***************** Device context manipulation *************************/
756 
xhci_free_tt_info(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,int slot_id)757 static void xhci_free_tt_info(struct xhci_hcd *xhci,
758 		struct xhci_virt_device *virt_dev,
759 		int slot_id)
760 {
761 	struct list_head *tt_list_head;
762 	struct xhci_tt_bw_info *tt_info, *next;
763 	bool slot_found = false;
764 
765 	/* If the device never made it past the Set Address stage,
766 	 * it may not have the root hub port pointer set correctly.
767 	 */
768 	if (!virt_dev->rhub_port) {
769 		xhci_dbg(xhci, "Bad rhub port.\n");
770 		return;
771 	}
772 
773 	tt_list_head = &(xhci->rh_bw[virt_dev->rhub_port->hw_portnum].tts);
774 	list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
775 		/* Multi-TT hubs will have more than one entry */
776 		if (tt_info->slot_id == slot_id) {
777 			slot_found = true;
778 			list_del(&tt_info->tt_list);
779 			kfree(tt_info);
780 		} else if (slot_found) {
781 			break;
782 		}
783 	}
784 }
785 
xhci_alloc_tt_info(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,struct usb_device * hdev,struct usb_tt * tt,gfp_t mem_flags)786 int xhci_alloc_tt_info(struct xhci_hcd *xhci,
787 		struct xhci_virt_device *virt_dev,
788 		struct usb_device *hdev,
789 		struct usb_tt *tt, gfp_t mem_flags)
790 {
791 	struct xhci_tt_bw_info		*tt_info;
792 	unsigned int			num_ports;
793 	int				i, j;
794 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
795 
796 	if (!tt->multi)
797 		num_ports = 1;
798 	else
799 		num_ports = hdev->maxchild;
800 
801 	for (i = 0; i < num_ports; i++, tt_info++) {
802 		struct xhci_interval_bw_table *bw_table;
803 
804 		tt_info = kzalloc_node(sizeof(*tt_info), mem_flags,
805 				dev_to_node(dev));
806 		if (!tt_info)
807 			goto free_tts;
808 		INIT_LIST_HEAD(&tt_info->tt_list);
809 		list_add(&tt_info->tt_list,
810 				&xhci->rh_bw[virt_dev->rhub_port->hw_portnum].tts);
811 		tt_info->slot_id = virt_dev->udev->slot_id;
812 		if (tt->multi)
813 			tt_info->ttport = i+1;
814 		bw_table = &tt_info->bw_table;
815 		for (j = 0; j < XHCI_MAX_INTERVAL; j++)
816 			INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
817 	}
818 	return 0;
819 
820 free_tts:
821 	xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id);
822 	return -ENOMEM;
823 }
824 
825 
826 /* All the xhci_tds in the ring's TD list should be freed at this point.
827  * Should be called with xhci->lock held if there is any chance the TT lists
828  * will be manipulated by the configure endpoint, allocate device, or update
829  * hub functions while this function is removing the TT entries from the list.
830  */
xhci_free_virt_device(struct xhci_hcd * xhci,struct xhci_virt_device * dev,int slot_id)831 void xhci_free_virt_device(struct xhci_hcd *xhci, struct xhci_virt_device *dev,
832 		int slot_id)
833 {
834 	int i;
835 	int old_active_eps = 0;
836 
837 	/* Slot ID 0 is reserved */
838 	if (slot_id == 0 || !dev)
839 		return;
840 
841 	/* If device ctx array still points to _this_ device, clear it */
842 	if (dev->out_ctx &&
843 	    xhci->dcbaa->dev_context_ptrs[slot_id] == cpu_to_le64(dev->out_ctx->dma))
844 		xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
845 
846 	trace_xhci_free_virt_device(dev);
847 
848 	if (dev->tt_info)
849 		old_active_eps = dev->tt_info->active_eps;
850 
851 	for (i = 0; i < 31; i++) {
852 		if (dev->eps[i].ring)
853 			xhci_ring_free(xhci, dev->eps[i].ring);
854 		if (dev->eps[i].stream_info)
855 			xhci_free_stream_info(xhci,
856 					dev->eps[i].stream_info);
857 		/*
858 		 * Endpoints are normally deleted from the bandwidth list when
859 		 * endpoints are dropped, before device is freed.
860 		 * If host is dying or being removed then endpoints aren't
861 		 * dropped cleanly, so delete the endpoint from list here.
862 		 * Only applicable for hosts with software bandwidth checking.
863 		 */
864 
865 		if (!list_empty(&dev->eps[i].bw_endpoint_list)) {
866 			list_del_init(&dev->eps[i].bw_endpoint_list);
867 			xhci_dbg(xhci, "Slot %u endpoint %u not removed from BW list!\n",
868 				 slot_id, i);
869 		}
870 	}
871 	/* If this is a hub, free the TT(s) from the TT list */
872 	xhci_free_tt_info(xhci, dev, slot_id);
873 	/* If necessary, update the number of active TTs on this root port */
874 	xhci_update_tt_active_eps(xhci, dev, old_active_eps);
875 
876 	if (dev->in_ctx)
877 		xhci_free_container_ctx(xhci, dev->in_ctx);
878 	if (dev->out_ctx)
879 		xhci_free_container_ctx(xhci, dev->out_ctx);
880 
881 	if (dev->udev && dev->udev->slot_id)
882 		dev->udev->slot_id = 0;
883 	if (dev->rhub_port && dev->rhub_port->slot_id == slot_id)
884 		dev->rhub_port->slot_id = 0;
885 	if (xhci->devs[slot_id] == dev)
886 		xhci->devs[slot_id] = NULL;
887 	kfree(dev);
888 }
889 
890 /*
891  * Free a virt_device structure.
892  * If the virt_device added a tt_info (a hub) and has children pointing to
893  * that tt_info, then free the child first. Recursive.
894  * We can't rely on udev at this point to find child-parent relationships.
895  */
xhci_free_virt_devices_depth_first(struct xhci_hcd * xhci,int slot_id)896 static void xhci_free_virt_devices_depth_first(struct xhci_hcd *xhci, int slot_id)
897 {
898 	struct xhci_virt_device *vdev;
899 	struct list_head *tt_list_head;
900 	struct xhci_tt_bw_info *tt_info, *next;
901 	int i;
902 
903 	vdev = xhci->devs[slot_id];
904 	if (!vdev)
905 		return;
906 
907 	if (!vdev->rhub_port) {
908 		xhci_dbg(xhci, "Bad rhub port.\n");
909 		goto out;
910 	}
911 
912 	tt_list_head = &(xhci->rh_bw[vdev->rhub_port->hw_portnum].tts);
913 	list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
914 		/* is this a hub device that added a tt_info to the tts list */
915 		if (tt_info->slot_id == slot_id) {
916 			/* are any devices using this tt_info? */
917 			for (i = 1; i < HCS_MAX_SLOTS(xhci->hcs_params1); i++) {
918 				vdev = xhci->devs[i];
919 				if (vdev && (vdev->tt_info == tt_info))
920 					xhci_free_virt_devices_depth_first(
921 						xhci, i);
922 			}
923 		}
924 	}
925 out:
926 	/* we are now at a leaf device */
927 	xhci_debugfs_remove_slot(xhci, slot_id);
928 	xhci_free_virt_device(xhci, xhci->devs[slot_id], slot_id);
929 }
930 
xhci_alloc_virt_device(struct xhci_hcd * xhci,int slot_id,struct usb_device * udev,gfp_t flags)931 int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
932 		struct usb_device *udev, gfp_t flags)
933 {
934 	struct xhci_virt_device *dev;
935 	int i;
936 
937 	/* Slot ID 0 is reserved */
938 	if (slot_id == 0 || xhci->devs[slot_id]) {
939 		xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
940 		return 0;
941 	}
942 
943 	dev = kzalloc(sizeof(*dev), flags);
944 	if (!dev)
945 		return 0;
946 
947 	dev->slot_id = slot_id;
948 
949 	/* Allocate the (output) device context that will be used in the HC. */
950 	dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
951 	if (!dev->out_ctx)
952 		goto fail;
953 
954 	xhci_dbg(xhci, "Slot %d output ctx = 0x%pad (dma)\n", slot_id, &dev->out_ctx->dma);
955 
956 	/* Allocate the (input) device context for address device command */
957 	dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
958 	if (!dev->in_ctx)
959 		goto fail;
960 
961 	xhci_dbg(xhci, "Slot %d input ctx = 0x%pad (dma)\n", slot_id, &dev->in_ctx->dma);
962 
963 	/* Initialize the cancellation and bandwidth list for each ep */
964 	for (i = 0; i < 31; i++) {
965 		dev->eps[i].ep_index = i;
966 		dev->eps[i].vdev = dev;
967 		dev->eps[i].xhci = xhci;
968 		INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
969 		INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list);
970 	}
971 
972 	/* Allocate endpoint 0 ring */
973 	dev->eps[0].ring = xhci_ring_alloc(xhci, 2, TYPE_CTRL, 0, flags);
974 	if (!dev->eps[0].ring)
975 		goto fail;
976 
977 	dev->udev = udev;
978 
979 	/* Point to output device context in dcbaa. */
980 	xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
981 	xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
982 		 slot_id,
983 		 &xhci->dcbaa->dev_context_ptrs[slot_id],
984 		 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
985 
986 	trace_xhci_alloc_virt_device(dev);
987 
988 	xhci->devs[slot_id] = dev;
989 
990 	return 1;
991 fail:
992 
993 	if (dev->in_ctx)
994 		xhci_free_container_ctx(xhci, dev->in_ctx);
995 	if (dev->out_ctx)
996 		xhci_free_container_ctx(xhci, dev->out_ctx);
997 	kfree(dev);
998 
999 	return 0;
1000 }
1001 
xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd * xhci,struct usb_device * udev)1002 void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
1003 		struct usb_device *udev)
1004 {
1005 	struct xhci_virt_device *virt_dev;
1006 	struct xhci_ep_ctx	*ep0_ctx;
1007 	struct xhci_ring	*ep_ring;
1008 
1009 	virt_dev = xhci->devs[udev->slot_id];
1010 	ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
1011 	ep_ring = virt_dev->eps[0].ring;
1012 	/*
1013 	 * FIXME we don't keep track of the dequeue pointer very well after a
1014 	 * Set TR dequeue pointer, so we're setting the dequeue pointer of the
1015 	 * host to our enqueue pointer.  This should only be called after a
1016 	 * configured device has reset, so all control transfers should have
1017 	 * been completed or cancelled before the reset.
1018 	 */
1019 	ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
1020 							ep_ring->enqueue)
1021 				   | ep_ring->cycle_state);
1022 }
1023 
1024 /*
1025  * The xHCI roothub may have ports of differing speeds in any order in the port
1026  * status registers.
1027  *
1028  * The xHCI hardware wants to know the roothub port that the USB device
1029  * is attached to (or the roothub port its ancestor hub is attached to).  All we
1030  * know is the index of that port under either the USB 2.0 or the USB 3.0
1031  * roothub, but that doesn't give us the real index into the HW port status
1032  * registers.
1033  */
xhci_find_rhub_port(struct xhci_hcd * xhci,struct usb_device * udev)1034 static struct xhci_port *xhci_find_rhub_port(struct xhci_hcd *xhci, struct usb_device *udev)
1035 {
1036 	struct usb_device *top_dev;
1037 	struct xhci_hub *rhub;
1038 	struct usb_hcd *hcd;
1039 
1040 	if (udev->speed >= USB_SPEED_SUPER)
1041 		hcd = xhci_get_usb3_hcd(xhci);
1042 	else
1043 		hcd = xhci->main_hcd;
1044 
1045 	for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1046 			top_dev = top_dev->parent)
1047 		/* Found device below root hub */;
1048 
1049 	rhub = xhci_get_rhub(hcd);
1050 	return rhub->ports[top_dev->portnum - 1];
1051 }
1052 
1053 /* Setup an xHCI virtual device for a Set Address command */
xhci_setup_addressable_virt_dev(struct xhci_hcd * xhci,struct usb_device * udev)1054 int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
1055 {
1056 	struct xhci_virt_device *dev;
1057 	struct xhci_ep_ctx	*ep0_ctx;
1058 	struct xhci_slot_ctx    *slot_ctx;
1059 	u32			max_packets;
1060 
1061 	dev = xhci->devs[udev->slot_id];
1062 	/* Slot ID 0 is reserved */
1063 	if (udev->slot_id == 0 || !dev) {
1064 		xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
1065 				udev->slot_id);
1066 		return -EINVAL;
1067 	}
1068 	ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
1069 	slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
1070 
1071 	/* 3) Only the control endpoint is valid - one endpoint context */
1072 	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route);
1073 	switch (udev->speed) {
1074 	case USB_SPEED_SUPER_PLUS:
1075 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SSP);
1076 		max_packets = MAX_PACKET(512);
1077 		break;
1078 	case USB_SPEED_SUPER:
1079 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
1080 		max_packets = MAX_PACKET(512);
1081 		break;
1082 	case USB_SPEED_HIGH:
1083 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
1084 		max_packets = MAX_PACKET(64);
1085 		break;
1086 	/* USB core guesses at a 64-byte max packet first for FS devices */
1087 	case USB_SPEED_FULL:
1088 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
1089 		max_packets = MAX_PACKET(64);
1090 		break;
1091 	case USB_SPEED_LOW:
1092 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
1093 		max_packets = MAX_PACKET(8);
1094 		break;
1095 	default:
1096 		/* Speed was set earlier, this shouldn't happen. */
1097 		return -EINVAL;
1098 	}
1099 	/* Find the root hub port this device is under */
1100 	dev->rhub_port = xhci_find_rhub_port(xhci, udev);
1101 	if (!dev->rhub_port)
1102 		return -EINVAL;
1103 	/* Slot ID is set to the device directly below the root hub */
1104 	if (!udev->parent->parent)
1105 		dev->rhub_port->slot_id = udev->slot_id;
1106 	slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(dev->rhub_port->hw_portnum + 1));
1107 	xhci_dbg(xhci, "Slot ID %d: HW portnum %d, hcd portnum %d\n",
1108 		 udev->slot_id, dev->rhub_port->hw_portnum, dev->rhub_port->hcd_portnum);
1109 
1110 	/* Find the right bandwidth table that this device will be a part of.
1111 	 * If this is a full speed device attached directly to a root port (or a
1112 	 * decendent of one), it counts as a primary bandwidth domain, not a
1113 	 * secondary bandwidth domain under a TT.  An xhci_tt_info structure
1114 	 * will never be created for the HS root hub.
1115 	 */
1116 	if (!udev->tt || !udev->tt->hub->parent) {
1117 		dev->bw_table = &xhci->rh_bw[dev->rhub_port->hw_portnum].bw_table;
1118 	} else {
1119 		struct xhci_root_port_bw_info *rh_bw;
1120 		struct xhci_tt_bw_info *tt_bw;
1121 
1122 		rh_bw = &xhci->rh_bw[dev->rhub_port->hw_portnum];
1123 		/* Find the right TT. */
1124 		list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) {
1125 			if (tt_bw->slot_id != udev->tt->hub->slot_id)
1126 				continue;
1127 
1128 			if (!dev->udev->tt->multi ||
1129 					(udev->tt->multi &&
1130 					 tt_bw->ttport == dev->udev->ttport)) {
1131 				dev->bw_table = &tt_bw->bw_table;
1132 				dev->tt_info = tt_bw;
1133 				break;
1134 			}
1135 		}
1136 		if (!dev->tt_info)
1137 			xhci_warn(xhci, "WARN: Didn't find a matching TT\n");
1138 	}
1139 
1140 	/* Is this a LS/FS device under an external HS hub? */
1141 	if (udev->tt && udev->tt->hub->parent) {
1142 		slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
1143 						(udev->ttport << 8));
1144 		if (udev->tt->multi)
1145 			slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
1146 	}
1147 	xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
1148 	xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
1149 
1150 	/* Step 4 - ring already allocated */
1151 	/* Step 5 */
1152 	ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
1153 
1154 	/* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
1155 	ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) |
1156 					 max_packets);
1157 
1158 	ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
1159 				   dev->eps[0].ring->cycle_state);
1160 
1161 	ep0_ctx->tx_info = cpu_to_le32(EP_AVG_TRB_LENGTH(8));
1162 
1163 	trace_xhci_setup_addressable_virt_device(dev);
1164 
1165 	/* Steps 7 and 8 were done in xhci_alloc_virt_device() */
1166 
1167 	return 0;
1168 }
1169 
1170 /*
1171  * Convert interval expressed as 2^(bInterval - 1) == interval into
1172  * straight exponent value 2^n == interval.
1173  *
1174  */
xhci_parse_exponent_interval(struct usb_device * udev,struct usb_host_endpoint * ep)1175 static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
1176 		struct usb_host_endpoint *ep)
1177 {
1178 	unsigned int interval;
1179 
1180 	interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
1181 	if (interval != ep->desc.bInterval - 1)
1182 		dev_warn(&udev->dev,
1183 			 "ep %#x - rounding interval to %d %sframes\n",
1184 			 ep->desc.bEndpointAddress,
1185 			 1 << interval,
1186 			 udev->speed == USB_SPEED_FULL ? "" : "micro");
1187 
1188 	if (udev->speed == USB_SPEED_FULL) {
1189 		/*
1190 		 * Full speed isoc endpoints specify interval in frames,
1191 		 * not microframes. We are using microframes everywhere,
1192 		 * so adjust accordingly.
1193 		 */
1194 		interval += 3;	/* 1 frame = 2^3 uframes */
1195 	}
1196 
1197 	return interval;
1198 }
1199 
1200 /*
1201  * Convert bInterval expressed in microframes (in 1-255 range) to exponent of
1202  * microframes, rounded down to nearest power of 2.
1203  */
xhci_microframes_to_exponent(struct usb_device * udev,struct usb_host_endpoint * ep,unsigned int desc_interval,unsigned int min_exponent,unsigned int max_exponent)1204 static unsigned int xhci_microframes_to_exponent(struct usb_device *udev,
1205 		struct usb_host_endpoint *ep, unsigned int desc_interval,
1206 		unsigned int min_exponent, unsigned int max_exponent)
1207 {
1208 	unsigned int interval;
1209 
1210 	interval = fls(desc_interval) - 1;
1211 	interval = clamp_val(interval, min_exponent, max_exponent);
1212 	if ((1 << interval) != desc_interval)
1213 		dev_dbg(&udev->dev,
1214 			 "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
1215 			 ep->desc.bEndpointAddress,
1216 			 1 << interval,
1217 			 desc_interval);
1218 
1219 	return interval;
1220 }
1221 
xhci_parse_microframe_interval(struct usb_device * udev,struct usb_host_endpoint * ep)1222 static unsigned int xhci_parse_microframe_interval(struct usb_device *udev,
1223 		struct usb_host_endpoint *ep)
1224 {
1225 	if (ep->desc.bInterval == 0)
1226 		return 0;
1227 	return xhci_microframes_to_exponent(udev, ep,
1228 			ep->desc.bInterval, 0, 15);
1229 }
1230 
1231 
xhci_parse_frame_interval(struct usb_device * udev,struct usb_host_endpoint * ep)1232 static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
1233 		struct usb_host_endpoint *ep)
1234 {
1235 	return xhci_microframes_to_exponent(udev, ep,
1236 			ep->desc.bInterval * 8, 3, 10);
1237 }
1238 
1239 /* Return the polling or NAK interval.
1240  *
1241  * The polling interval is expressed in "microframes".  If xHCI's Interval field
1242  * is set to N, it will service the endpoint every 2^(Interval)*125us.
1243  *
1244  * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
1245  * is set to 0.
1246  */
xhci_get_endpoint_interval(struct usb_device * udev,struct usb_host_endpoint * ep)1247 static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
1248 		struct usb_host_endpoint *ep)
1249 {
1250 	unsigned int interval = 0;
1251 
1252 	switch (udev->speed) {
1253 	case USB_SPEED_HIGH:
1254 		/* Max NAK rate */
1255 		if (usb_endpoint_xfer_control(&ep->desc) ||
1256 		    usb_endpoint_xfer_bulk(&ep->desc)) {
1257 			interval = xhci_parse_microframe_interval(udev, ep);
1258 			break;
1259 		}
1260 		fallthrough;	/* SS and HS isoc/int have same decoding */
1261 
1262 	case USB_SPEED_SUPER_PLUS:
1263 	case USB_SPEED_SUPER:
1264 		if (usb_endpoint_xfer_int(&ep->desc) ||
1265 		    usb_endpoint_xfer_isoc(&ep->desc)) {
1266 			interval = xhci_parse_exponent_interval(udev, ep);
1267 		}
1268 		break;
1269 
1270 	case USB_SPEED_FULL:
1271 		if (usb_endpoint_xfer_isoc(&ep->desc)) {
1272 			interval = xhci_parse_exponent_interval(udev, ep);
1273 			break;
1274 		}
1275 		/*
1276 		 * Fall through for interrupt endpoint interval decoding
1277 		 * since it uses the same rules as low speed interrupt
1278 		 * endpoints.
1279 		 */
1280 		fallthrough;
1281 
1282 	case USB_SPEED_LOW:
1283 		if (usb_endpoint_xfer_int(&ep->desc) ||
1284 		    usb_endpoint_xfer_isoc(&ep->desc)) {
1285 
1286 			interval = xhci_parse_frame_interval(udev, ep);
1287 		}
1288 		break;
1289 
1290 	default:
1291 		BUG();
1292 	}
1293 	return interval;
1294 }
1295 
1296 /* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1297  * High speed endpoint descriptors can define "the number of additional
1298  * transaction opportunities per microframe", but that goes in the Max Burst
1299  * endpoint context field.
1300  */
xhci_get_endpoint_mult(struct usb_device * udev,struct usb_host_endpoint * ep)1301 static u32 xhci_get_endpoint_mult(struct usb_device *udev,
1302 		struct usb_host_endpoint *ep)
1303 {
1304 	if (udev->speed < USB_SPEED_SUPER ||
1305 			!usb_endpoint_xfer_isoc(&ep->desc))
1306 		return 0;
1307 	return ep->ss_ep_comp.bmAttributes;
1308 }
1309 
xhci_get_endpoint_max_burst(struct usb_device * udev,struct usb_host_endpoint * ep)1310 static u32 xhci_get_endpoint_max_burst(struct usb_device *udev,
1311 				       struct usb_host_endpoint *ep)
1312 {
1313 	/* Super speed and Plus have max burst in ep companion desc */
1314 	if (udev->speed >= USB_SPEED_SUPER)
1315 		return ep->ss_ep_comp.bMaxBurst;
1316 
1317 	if (udev->speed == USB_SPEED_HIGH &&
1318 	    (usb_endpoint_xfer_isoc(&ep->desc) ||
1319 	     usb_endpoint_xfer_int(&ep->desc)))
1320 		return usb_endpoint_maxp_mult(&ep->desc) - 1;
1321 
1322 	return 0;
1323 }
1324 
xhci_get_endpoint_type(struct usb_host_endpoint * ep)1325 static u32 xhci_get_endpoint_type(struct usb_host_endpoint *ep)
1326 {
1327 	int in;
1328 
1329 	in = usb_endpoint_dir_in(&ep->desc);
1330 
1331 	switch (usb_endpoint_type(&ep->desc)) {
1332 	case USB_ENDPOINT_XFER_CONTROL:
1333 		return CTRL_EP;
1334 	case USB_ENDPOINT_XFER_BULK:
1335 		return in ? BULK_IN_EP : BULK_OUT_EP;
1336 	case USB_ENDPOINT_XFER_ISOC:
1337 		return in ? ISOC_IN_EP : ISOC_OUT_EP;
1338 	case USB_ENDPOINT_XFER_INT:
1339 		return in ? INT_IN_EP : INT_OUT_EP;
1340 	}
1341 	return 0;
1342 }
1343 
1344 /* Return the maximum endpoint service interval time (ESIT) payload.
1345  * Basically, this is the maxpacket size, multiplied by the burst size
1346  * and mult size.
1347  */
xhci_get_max_esit_payload(struct usb_device * udev,struct usb_host_endpoint * ep)1348 static u32 xhci_get_max_esit_payload(struct usb_device *udev,
1349 		struct usb_host_endpoint *ep)
1350 {
1351 	int max_burst;
1352 	int max_packet;
1353 
1354 	/* Only applies for interrupt or isochronous endpoints */
1355 	if (usb_endpoint_xfer_control(&ep->desc) ||
1356 			usb_endpoint_xfer_bulk(&ep->desc))
1357 		return 0;
1358 
1359 	/* SuperSpeedPlus Isoc ep sending over 48k per esit */
1360 	if ((udev->speed >= USB_SPEED_SUPER_PLUS) &&
1361 	    USB_SS_SSP_ISOC_COMP(ep->ss_ep_comp.bmAttributes))
1362 		return le32_to_cpu(ep->ssp_isoc_ep_comp.dwBytesPerInterval);
1363 
1364 	/* SuperSpeed or SuperSpeedPlus Isoc ep with less than 48k per esit */
1365 	if (udev->speed >= USB_SPEED_SUPER)
1366 		return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
1367 
1368 	max_packet = usb_endpoint_maxp(&ep->desc);
1369 	max_burst = usb_endpoint_maxp_mult(&ep->desc);
1370 	/* A 0 in max burst means 1 transfer per ESIT */
1371 	return max_packet * max_burst;
1372 }
1373 
1374 /* Set up an endpoint with one ring segment.  Do not allocate stream rings.
1375  * Drivers will have to call usb_alloc_streams() to do that.
1376  */
xhci_endpoint_init(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,struct usb_device * udev,struct usb_host_endpoint * ep,gfp_t mem_flags)1377 int xhci_endpoint_init(struct xhci_hcd *xhci,
1378 		struct xhci_virt_device *virt_dev,
1379 		struct usb_device *udev,
1380 		struct usb_host_endpoint *ep,
1381 		gfp_t mem_flags)
1382 {
1383 	unsigned int ep_index;
1384 	struct xhci_ep_ctx *ep_ctx;
1385 	struct xhci_ring *ep_ring;
1386 	unsigned int max_packet;
1387 	enum xhci_ring_type ring_type;
1388 	u32 max_esit_payload;
1389 	u32 endpoint_type;
1390 	unsigned int max_burst;
1391 	unsigned int interval;
1392 	unsigned int mult;
1393 	unsigned int avg_trb_len;
1394 	unsigned int err_count = 0;
1395 
1396 	ep_index = xhci_get_endpoint_index(&ep->desc);
1397 	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1398 
1399 	endpoint_type = xhci_get_endpoint_type(ep);
1400 	if (!endpoint_type)
1401 		return -EINVAL;
1402 
1403 	ring_type = usb_endpoint_type(&ep->desc);
1404 
1405 	/*
1406 	 * Get values to fill the endpoint context, mostly from ep descriptor.
1407 	 * The average TRB buffer lengt for bulk endpoints is unclear as we
1408 	 * have no clue on scatter gather list entry size. For Isoc and Int,
1409 	 * set it to max available. See xHCI 1.1 spec 4.14.1.1 for details.
1410 	 */
1411 	max_esit_payload = xhci_get_max_esit_payload(udev, ep);
1412 	interval = xhci_get_endpoint_interval(udev, ep);
1413 
1414 	/* Periodic endpoint bInterval limit quirk */
1415 	if (usb_endpoint_xfer_int(&ep->desc) ||
1416 	    usb_endpoint_xfer_isoc(&ep->desc)) {
1417 		if ((xhci->quirks & XHCI_LIMIT_ENDPOINT_INTERVAL_9) &&
1418 		    interval >= 9) {
1419 			interval = 8;
1420 		}
1421 		if ((xhci->quirks & XHCI_LIMIT_ENDPOINT_INTERVAL_7) &&
1422 		    udev->speed >= USB_SPEED_HIGH &&
1423 		    interval >= 7) {
1424 			interval = 6;
1425 		}
1426 	}
1427 
1428 	mult = xhci_get_endpoint_mult(udev, ep);
1429 	max_packet = usb_endpoint_maxp(&ep->desc);
1430 	max_burst = xhci_get_endpoint_max_burst(udev, ep);
1431 	avg_trb_len = max_esit_payload;
1432 
1433 	/* FIXME dig Mult and streams info out of ep companion desc */
1434 
1435 	/* Allow 3 retries for everything but isoc, set CErr = 3 */
1436 	if (!usb_endpoint_xfer_isoc(&ep->desc))
1437 		err_count = 3;
1438 	/* HS bulk max packet should be 512, FS bulk supports 8, 16, 32 or 64 */
1439 	if (usb_endpoint_xfer_bulk(&ep->desc)) {
1440 		if (udev->speed == USB_SPEED_HIGH)
1441 			max_packet = 512;
1442 		if (udev->speed == USB_SPEED_FULL) {
1443 			max_packet = rounddown_pow_of_two(max_packet);
1444 			max_packet = clamp_val(max_packet, 8, 64);
1445 		}
1446 	}
1447 	/* xHCI 1.0 and 1.1 indicates that ctrl ep avg TRB Length should be 8 */
1448 	if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version >= 0x100)
1449 		avg_trb_len = 8;
1450 	/* xhci 1.1 with LEC support doesn't use mult field, use RsvdZ */
1451 	if ((xhci->hci_version > 0x100) && HCC2_LEC(xhci->hcc_params2))
1452 		mult = 0;
1453 
1454 	/* Set up the endpoint ring */
1455 	virt_dev->eps[ep_index].new_ring =
1456 		xhci_ring_alloc(xhci, 2, ring_type, max_packet, mem_flags);
1457 	if (!virt_dev->eps[ep_index].new_ring)
1458 		return -ENOMEM;
1459 
1460 	virt_dev->eps[ep_index].skip = false;
1461 	ep_ring = virt_dev->eps[ep_index].new_ring;
1462 
1463 	/* Fill the endpoint context */
1464 	ep_ctx->ep_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_HI(max_esit_payload) |
1465 				      EP_INTERVAL(interval) |
1466 				      EP_MULT(mult));
1467 	ep_ctx->ep_info2 = cpu_to_le32(EP_TYPE(endpoint_type) |
1468 				       MAX_PACKET(max_packet) |
1469 				       MAX_BURST(max_burst) |
1470 				       ERROR_COUNT(err_count));
1471 	ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma |
1472 				  ep_ring->cycle_state);
1473 
1474 	ep_ctx->tx_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_LO(max_esit_payload) |
1475 				      EP_AVG_TRB_LENGTH(avg_trb_len));
1476 
1477 	return 0;
1478 }
1479 
xhci_endpoint_zero(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,struct usb_host_endpoint * ep)1480 void xhci_endpoint_zero(struct xhci_hcd *xhci,
1481 		struct xhci_virt_device *virt_dev,
1482 		struct usb_host_endpoint *ep)
1483 {
1484 	unsigned int ep_index;
1485 	struct xhci_ep_ctx *ep_ctx;
1486 
1487 	ep_index = xhci_get_endpoint_index(&ep->desc);
1488 	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1489 
1490 	ep_ctx->ep_info = 0;
1491 	ep_ctx->ep_info2 = 0;
1492 	ep_ctx->deq = 0;
1493 	ep_ctx->tx_info = 0;
1494 	/* Don't free the endpoint ring until the set interface or configuration
1495 	 * request succeeds.
1496 	 */
1497 }
1498 
xhci_clear_endpoint_bw_info(struct xhci_bw_info * bw_info)1499 void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info)
1500 {
1501 	bw_info->ep_interval = 0;
1502 	bw_info->mult = 0;
1503 	bw_info->num_packets = 0;
1504 	bw_info->max_packet_size = 0;
1505 	bw_info->type = 0;
1506 	bw_info->max_esit_payload = 0;
1507 }
1508 
xhci_update_bw_info(struct xhci_hcd * xhci,struct xhci_container_ctx * in_ctx,struct xhci_input_control_ctx * ctrl_ctx,struct xhci_virt_device * virt_dev)1509 void xhci_update_bw_info(struct xhci_hcd *xhci,
1510 		struct xhci_container_ctx *in_ctx,
1511 		struct xhci_input_control_ctx *ctrl_ctx,
1512 		struct xhci_virt_device *virt_dev)
1513 {
1514 	struct xhci_bw_info *bw_info;
1515 	struct xhci_ep_ctx *ep_ctx;
1516 	unsigned int ep_type;
1517 	int i;
1518 
1519 	for (i = 1; i < 31; i++) {
1520 		bw_info = &virt_dev->eps[i].bw_info;
1521 
1522 		/* We can't tell what endpoint type is being dropped, but
1523 		 * unconditionally clearing the bandwidth info for non-periodic
1524 		 * endpoints should be harmless because the info will never be
1525 		 * set in the first place.
1526 		 */
1527 		if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) {
1528 			/* Dropped endpoint */
1529 			xhci_clear_endpoint_bw_info(bw_info);
1530 			continue;
1531 		}
1532 
1533 		if (EP_IS_ADDED(ctrl_ctx, i)) {
1534 			ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i);
1535 			ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2));
1536 
1537 			/* Ignore non-periodic endpoints */
1538 			if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
1539 					ep_type != ISOC_IN_EP &&
1540 					ep_type != INT_IN_EP)
1541 				continue;
1542 
1543 			/* Added or changed endpoint */
1544 			bw_info->ep_interval = CTX_TO_EP_INTERVAL(
1545 					le32_to_cpu(ep_ctx->ep_info));
1546 			/* Number of packets and mult are zero-based in the
1547 			 * input context, but we want one-based for the
1548 			 * interval table.
1549 			 */
1550 			bw_info->mult = CTX_TO_EP_MULT(
1551 					le32_to_cpu(ep_ctx->ep_info)) + 1;
1552 			bw_info->num_packets = CTX_TO_MAX_BURST(
1553 					le32_to_cpu(ep_ctx->ep_info2)) + 1;
1554 			bw_info->max_packet_size = MAX_PACKET_DECODED(
1555 					le32_to_cpu(ep_ctx->ep_info2));
1556 			bw_info->type = ep_type;
1557 			bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD(
1558 					le32_to_cpu(ep_ctx->tx_info));
1559 		}
1560 	}
1561 }
1562 
1563 /* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1564  * Useful when you want to change one particular aspect of the endpoint and then
1565  * issue a configure endpoint command.
1566  */
xhci_endpoint_copy(struct xhci_hcd * xhci,struct xhci_container_ctx * in_ctx,struct xhci_container_ctx * out_ctx,unsigned int ep_index)1567 void xhci_endpoint_copy(struct xhci_hcd *xhci,
1568 		struct xhci_container_ctx *in_ctx,
1569 		struct xhci_container_ctx *out_ctx,
1570 		unsigned int ep_index)
1571 {
1572 	struct xhci_ep_ctx *out_ep_ctx;
1573 	struct xhci_ep_ctx *in_ep_ctx;
1574 
1575 	out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1576 	in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1577 
1578 	in_ep_ctx->ep_info = out_ep_ctx->ep_info;
1579 	in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
1580 	in_ep_ctx->deq = out_ep_ctx->deq;
1581 	in_ep_ctx->tx_info = out_ep_ctx->tx_info;
1582 	if (xhci->quirks & XHCI_MTK_HOST) {
1583 		in_ep_ctx->reserved[0] = out_ep_ctx->reserved[0];
1584 		in_ep_ctx->reserved[1] = out_ep_ctx->reserved[1];
1585 	}
1586 }
1587 
1588 /* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1589  * Useful when you want to change one particular aspect of the endpoint and then
1590  * issue a configure endpoint command.  Only the context entries field matters,
1591  * but we'll copy the whole thing anyway.
1592  */
xhci_slot_copy(struct xhci_hcd * xhci,struct xhci_container_ctx * in_ctx,struct xhci_container_ctx * out_ctx)1593 void xhci_slot_copy(struct xhci_hcd *xhci,
1594 		struct xhci_container_ctx *in_ctx,
1595 		struct xhci_container_ctx *out_ctx)
1596 {
1597 	struct xhci_slot_ctx *in_slot_ctx;
1598 	struct xhci_slot_ctx *out_slot_ctx;
1599 
1600 	in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1601 	out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
1602 
1603 	in_slot_ctx->dev_info = out_slot_ctx->dev_info;
1604 	in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
1605 	in_slot_ctx->tt_info = out_slot_ctx->tt_info;
1606 	in_slot_ctx->dev_state = out_slot_ctx->dev_state;
1607 }
1608 
1609 /* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
scratchpad_alloc(struct xhci_hcd * xhci,gfp_t flags)1610 static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
1611 {
1612 	int i;
1613 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1614 	int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1615 
1616 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1617 			"Allocating %d scratchpad buffers", num_sp);
1618 
1619 	if (!num_sp)
1620 		return 0;
1621 
1622 	xhci->scratchpad = kzalloc_node(sizeof(*xhci->scratchpad), flags,
1623 				dev_to_node(dev));
1624 	if (!xhci->scratchpad)
1625 		goto fail_sp;
1626 
1627 	xhci->scratchpad->sp_array = dma_alloc_coherent(dev,
1628 				     array_size(sizeof(u64), num_sp),
1629 				     &xhci->scratchpad->sp_dma, flags);
1630 	if (!xhci->scratchpad->sp_array)
1631 		goto fail_sp2;
1632 
1633 	xhci->scratchpad->sp_buffers = kcalloc_node(num_sp, sizeof(void *),
1634 					flags, dev_to_node(dev));
1635 	if (!xhci->scratchpad->sp_buffers)
1636 		goto fail_sp3;
1637 
1638 	xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
1639 	for (i = 0; i < num_sp; i++) {
1640 		dma_addr_t dma;
1641 		void *buf = dma_alloc_coherent(dev, xhci->page_size, &dma,
1642 					       flags);
1643 		if (!buf)
1644 			goto fail_sp4;
1645 
1646 		xhci->scratchpad->sp_array[i] = dma;
1647 		xhci->scratchpad->sp_buffers[i] = buf;
1648 	}
1649 
1650 	return 0;
1651 
1652  fail_sp4:
1653 	while (i--)
1654 		dma_free_coherent(dev, xhci->page_size,
1655 				    xhci->scratchpad->sp_buffers[i],
1656 				    xhci->scratchpad->sp_array[i]);
1657 
1658 	kfree(xhci->scratchpad->sp_buffers);
1659 
1660  fail_sp3:
1661 	dma_free_coherent(dev, array_size(sizeof(u64), num_sp),
1662 			    xhci->scratchpad->sp_array,
1663 			    xhci->scratchpad->sp_dma);
1664 
1665  fail_sp2:
1666 	kfree(xhci->scratchpad);
1667 	xhci->scratchpad = NULL;
1668 
1669  fail_sp:
1670 	return -ENOMEM;
1671 }
1672 
scratchpad_free(struct xhci_hcd * xhci)1673 static void scratchpad_free(struct xhci_hcd *xhci)
1674 {
1675 	int num_sp;
1676 	int i;
1677 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1678 
1679 	if (!xhci->scratchpad)
1680 		return;
1681 
1682 	num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1683 
1684 	for (i = 0; i < num_sp; i++) {
1685 		dma_free_coherent(dev, xhci->page_size,
1686 				    xhci->scratchpad->sp_buffers[i],
1687 				    xhci->scratchpad->sp_array[i]);
1688 	}
1689 	kfree(xhci->scratchpad->sp_buffers);
1690 	dma_free_coherent(dev, array_size(sizeof(u64), num_sp),
1691 			    xhci->scratchpad->sp_array,
1692 			    xhci->scratchpad->sp_dma);
1693 	kfree(xhci->scratchpad);
1694 	xhci->scratchpad = NULL;
1695 }
1696 
xhci_alloc_command(struct xhci_hcd * xhci,bool allocate_completion,gfp_t mem_flags)1697 struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
1698 		bool allocate_completion, gfp_t mem_flags)
1699 {
1700 	struct xhci_command *command;
1701 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1702 
1703 	command = kzalloc_node(sizeof(*command), mem_flags, dev_to_node(dev));
1704 	if (!command)
1705 		return NULL;
1706 
1707 	if (allocate_completion) {
1708 		command->completion =
1709 			kzalloc_node(sizeof(struct completion), mem_flags,
1710 				dev_to_node(dev));
1711 		if (!command->completion) {
1712 			kfree(command);
1713 			return NULL;
1714 		}
1715 		init_completion(command->completion);
1716 	}
1717 
1718 	command->status = 0;
1719 	/* set default timeout to 5000 ms */
1720 	command->timeout_ms = XHCI_CMD_DEFAULT_TIMEOUT;
1721 	INIT_LIST_HEAD(&command->cmd_list);
1722 	return command;
1723 }
1724 
xhci_alloc_command_with_ctx(struct xhci_hcd * xhci,bool allocate_completion,gfp_t mem_flags)1725 struct xhci_command *xhci_alloc_command_with_ctx(struct xhci_hcd *xhci,
1726 		bool allocate_completion, gfp_t mem_flags)
1727 {
1728 	struct xhci_command *command;
1729 
1730 	command = xhci_alloc_command(xhci, allocate_completion, mem_flags);
1731 	if (!command)
1732 		return NULL;
1733 
1734 	command->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
1735 						   mem_flags);
1736 	if (!command->in_ctx) {
1737 		kfree(command->completion);
1738 		kfree(command);
1739 		return NULL;
1740 	}
1741 	return command;
1742 }
1743 
xhci_urb_free_priv(struct urb_priv * urb_priv)1744 void xhci_urb_free_priv(struct urb_priv *urb_priv)
1745 {
1746 	kfree(urb_priv);
1747 }
1748 
xhci_free_command(struct xhci_hcd * xhci,struct xhci_command * command)1749 void xhci_free_command(struct xhci_hcd *xhci,
1750 		struct xhci_command *command)
1751 {
1752 	xhci_free_container_ctx(xhci,
1753 			command->in_ctx);
1754 	kfree(command->completion);
1755 	kfree(command);
1756 }
1757 
xhci_alloc_erst(struct xhci_hcd * xhci,struct xhci_ring * evt_ring,struct xhci_erst * erst,gfp_t flags)1758 static int xhci_alloc_erst(struct xhci_hcd *xhci,
1759 		    struct xhci_ring *evt_ring,
1760 		    struct xhci_erst *erst,
1761 		    gfp_t flags)
1762 {
1763 	size_t size;
1764 	unsigned int val;
1765 	struct xhci_segment *seg;
1766 	struct xhci_erst_entry *entry;
1767 
1768 	size = array_size(sizeof(struct xhci_erst_entry), evt_ring->num_segs);
1769 	erst->entries = dma_alloc_coherent(xhci_to_hcd(xhci)->self.sysdev,
1770 					   size, &erst->erst_dma_addr, flags);
1771 	if (!erst->entries)
1772 		return -ENOMEM;
1773 
1774 	erst->num_entries = evt_ring->num_segs;
1775 
1776 	seg = evt_ring->first_seg;
1777 	for (val = 0; val < evt_ring->num_segs; val++) {
1778 		entry = &erst->entries[val];
1779 		entry->seg_addr = cpu_to_le64(seg->dma);
1780 		entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
1781 		entry->rsvd = 0;
1782 		seg = seg->next;
1783 	}
1784 
1785 	return 0;
1786 }
1787 
1788 static void
xhci_remove_interrupter(struct xhci_hcd * xhci,struct xhci_interrupter * ir)1789 xhci_remove_interrupter(struct xhci_hcd *xhci, struct xhci_interrupter *ir)
1790 {
1791 	u32 tmp;
1792 
1793 	if (!ir)
1794 		return;
1795 
1796 	/*
1797 	 * Clean out interrupter registers except ERSTBA. Clearing either the
1798 	 * low or high 32 bits of ERSTBA immediately causes the controller to
1799 	 * dereference the partially cleared 64 bit address, causing IOMMU error.
1800 	 */
1801 	if (ir->ir_set) {
1802 		tmp = readl(&ir->ir_set->erst_size);
1803 		tmp &= ERST_SIZE_MASK;
1804 		writel(tmp, &ir->ir_set->erst_size);
1805 
1806 		xhci_update_erst_dequeue(xhci, ir, true);
1807 	}
1808 }
1809 
1810 static void
xhci_free_interrupter(struct xhci_hcd * xhci,struct xhci_interrupter * ir)1811 xhci_free_interrupter(struct xhci_hcd *xhci, struct xhci_interrupter *ir)
1812 {
1813 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1814 	size_t erst_size;
1815 
1816 	if (!ir)
1817 		return;
1818 
1819 	erst_size = array_size(sizeof(struct xhci_erst_entry), ir->erst.num_entries);
1820 	if (ir->erst.entries)
1821 		dma_free_coherent(dev, erst_size,
1822 				  ir->erst.entries,
1823 				  ir->erst.erst_dma_addr);
1824 	ir->erst.entries = NULL;
1825 
1826 	/* free interrupter event ring */
1827 	if (ir->event_ring)
1828 		xhci_ring_free(xhci, ir->event_ring);
1829 
1830 	ir->event_ring = NULL;
1831 
1832 	kfree(ir);
1833 }
1834 
xhci_remove_secondary_interrupter(struct usb_hcd * hcd,struct xhci_interrupter * ir)1835 void xhci_remove_secondary_interrupter(struct usb_hcd *hcd, struct xhci_interrupter *ir)
1836 {
1837 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1838 	unsigned int intr_num;
1839 
1840 	spin_lock_irq(&xhci->lock);
1841 
1842 	/* interrupter 0 is primary interrupter, don't touch it */
1843 	if (!ir || !ir->intr_num || ir->intr_num >= xhci->max_interrupters) {
1844 		xhci_dbg(xhci, "Invalid secondary interrupter, can't remove\n");
1845 		spin_unlock_irq(&xhci->lock);
1846 		return;
1847 	}
1848 
1849 	/*
1850 	 * Cleanup secondary interrupter to ensure there are no pending events.
1851 	 * This also updates event ring dequeue pointer back to the start.
1852 	 */
1853 	xhci_skip_sec_intr_events(xhci, ir->event_ring, ir);
1854 	intr_num = ir->intr_num;
1855 
1856 	xhci_remove_interrupter(xhci, ir);
1857 	xhci->interrupters[intr_num] = NULL;
1858 
1859 	spin_unlock_irq(&xhci->lock);
1860 
1861 	xhci_free_interrupter(xhci, ir);
1862 }
1863 EXPORT_SYMBOL_GPL(xhci_remove_secondary_interrupter);
1864 
xhci_mem_cleanup(struct xhci_hcd * xhci)1865 void xhci_mem_cleanup(struct xhci_hcd *xhci)
1866 {
1867 	struct device	*dev = xhci_to_hcd(xhci)->self.sysdev;
1868 	int i, j, num_ports;
1869 
1870 	cancel_delayed_work_sync(&xhci->cmd_timer);
1871 
1872 	for (i = 0; xhci->interrupters && i < xhci->max_interrupters; i++) {
1873 		if (xhci->interrupters[i]) {
1874 			xhci_remove_interrupter(xhci, xhci->interrupters[i]);
1875 			xhci_free_interrupter(xhci, xhci->interrupters[i]);
1876 			xhci->interrupters[i] = NULL;
1877 		}
1878 	}
1879 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed interrupters");
1880 
1881 	if (xhci->cmd_ring)
1882 		xhci_ring_free(xhci, xhci->cmd_ring);
1883 	xhci->cmd_ring = NULL;
1884 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed command ring");
1885 	xhci_cleanup_command_queue(xhci);
1886 
1887 	num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1888 	for (i = 0; i < num_ports && xhci->rh_bw; i++) {
1889 		struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table;
1890 		for (j = 0; j < XHCI_MAX_INTERVAL; j++) {
1891 			struct list_head *ep = &bwt->interval_bw[j].endpoints;
1892 			while (!list_empty(ep))
1893 				list_del_init(ep->next);
1894 		}
1895 	}
1896 
1897 	for (i = HCS_MAX_SLOTS(xhci->hcs_params1); i > 0; i--)
1898 		xhci_free_virt_devices_depth_first(xhci, i);
1899 
1900 	dma_pool_destroy(xhci->segment_pool);
1901 	xhci->segment_pool = NULL;
1902 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed segment pool");
1903 
1904 	dma_pool_destroy(xhci->device_pool);
1905 	xhci->device_pool = NULL;
1906 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed device context pool");
1907 
1908 	dma_pool_destroy(xhci->small_streams_pool);
1909 	xhci->small_streams_pool = NULL;
1910 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1911 			"Freed small stream array pool");
1912 
1913 	dma_pool_destroy(xhci->medium_streams_pool);
1914 	xhci->medium_streams_pool = NULL;
1915 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1916 			"Freed medium stream array pool");
1917 
1918 	if (xhci->dcbaa)
1919 		dma_free_coherent(dev, sizeof(*xhci->dcbaa),
1920 				xhci->dcbaa, xhci->dcbaa->dma);
1921 	xhci->dcbaa = NULL;
1922 
1923 	scratchpad_free(xhci);
1924 
1925 	if (!xhci->rh_bw)
1926 		goto no_bw;
1927 
1928 	for (i = 0; i < num_ports; i++) {
1929 		struct xhci_tt_bw_info *tt, *n;
1930 		list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) {
1931 			list_del(&tt->tt_list);
1932 			kfree(tt);
1933 		}
1934 	}
1935 
1936 no_bw:
1937 	xhci->cmd_ring_reserved_trbs = 0;
1938 	xhci->usb2_rhub.num_ports = 0;
1939 	xhci->usb3_rhub.num_ports = 0;
1940 	xhci->num_active_eps = 0;
1941 	kfree(xhci->usb2_rhub.ports);
1942 	kfree(xhci->usb3_rhub.ports);
1943 	kfree(xhci->hw_ports);
1944 	kfree(xhci->rh_bw);
1945 	for (i = 0; i < xhci->num_port_caps; i++)
1946 		kfree(xhci->port_caps[i].psi);
1947 	kfree(xhci->port_caps);
1948 	kfree(xhci->interrupters);
1949 	xhci->num_port_caps = 0;
1950 
1951 	xhci->usb2_rhub.ports = NULL;
1952 	xhci->usb3_rhub.ports = NULL;
1953 	xhci->hw_ports = NULL;
1954 	xhci->rh_bw = NULL;
1955 	xhci->port_caps = NULL;
1956 	xhci->interrupters = NULL;
1957 
1958 	xhci->page_size = 0;
1959 	xhci->page_shift = 0;
1960 	xhci->usb2_rhub.bus_state.bus_suspended = 0;
1961 	xhci->usb3_rhub.bus_state.bus_suspended = 0;
1962 }
1963 
xhci_set_hc_event_deq(struct xhci_hcd * xhci,struct xhci_interrupter * ir)1964 static void xhci_set_hc_event_deq(struct xhci_hcd *xhci, struct xhci_interrupter *ir)
1965 {
1966 	dma_addr_t deq;
1967 
1968 	deq = xhci_trb_virt_to_dma(ir->event_ring->deq_seg,
1969 			ir->event_ring->dequeue);
1970 	if (!deq)
1971 		xhci_warn(xhci, "WARN something wrong with SW event ring dequeue ptr.\n");
1972 	/* Update HC event ring dequeue pointer */
1973 	/* Don't clear the EHB bit (which is RW1C) because
1974 	 * there might be more events to service.
1975 	 */
1976 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1977 		       "// Write event ring dequeue pointer, preserving EHB bit");
1978 	xhci_write_64(xhci, deq & ERST_PTR_MASK, &ir->ir_set->erst_dequeue);
1979 }
1980 
xhci_add_in_port(struct xhci_hcd * xhci,unsigned int num_ports,__le32 __iomem * addr,int max_caps)1981 static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
1982 		__le32 __iomem *addr, int max_caps)
1983 {
1984 	u32 temp, port_offset, port_count;
1985 	int i;
1986 	u8 major_revision, minor_revision, tmp_minor_revision;
1987 	struct xhci_hub *rhub;
1988 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1989 	struct xhci_port_cap *port_cap;
1990 
1991 	temp = readl(addr);
1992 	major_revision = XHCI_EXT_PORT_MAJOR(temp);
1993 	minor_revision = XHCI_EXT_PORT_MINOR(temp);
1994 
1995 	if (major_revision == 0x03) {
1996 		rhub = &xhci->usb3_rhub;
1997 		/*
1998 		 * Some hosts incorrectly use sub-minor version for minor
1999 		 * version (i.e. 0x02 instead of 0x20 for bcdUSB 0x320 and 0x01
2000 		 * for bcdUSB 0x310). Since there is no USB release with sub
2001 		 * minor version 0x301 to 0x309, we can assume that they are
2002 		 * incorrect and fix it here.
2003 		 */
2004 		if (minor_revision > 0x00 && minor_revision < 0x10)
2005 			minor_revision <<= 4;
2006 		/*
2007 		 * Some zhaoxin's xHCI controller that follow usb3.1 spec
2008 		 * but only support Gen1.
2009 		 */
2010 		if (xhci->quirks & XHCI_ZHAOXIN_HOST) {
2011 			tmp_minor_revision = minor_revision;
2012 			minor_revision = 0;
2013 		}
2014 
2015 	} else if (major_revision <= 0x02) {
2016 		rhub = &xhci->usb2_rhub;
2017 	} else {
2018 		xhci_warn(xhci, "Ignoring unknown port speed, Ext Cap %p, revision = 0x%x\n",
2019 				addr, major_revision);
2020 		/* Ignoring port protocol we can't understand. FIXME */
2021 		return;
2022 	}
2023 
2024 	/* Port offset and count in the third dword, see section 7.2 */
2025 	temp = readl(addr + 2);
2026 	port_offset = XHCI_EXT_PORT_OFF(temp);
2027 	port_count = XHCI_EXT_PORT_COUNT(temp);
2028 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2029 		       "Ext Cap %p, port offset = %u, count = %u, revision = 0x%x",
2030 		       addr, port_offset, port_count, major_revision);
2031 	/* Port count includes the current port offset */
2032 	if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
2033 		/* WTF? "Valid values are ‘1’ to MaxPorts" */
2034 		return;
2035 
2036 	port_cap = &xhci->port_caps[xhci->num_port_caps++];
2037 	if (xhci->num_port_caps > max_caps)
2038 		return;
2039 
2040 	port_cap->psi_count = XHCI_EXT_PORT_PSIC(temp);
2041 
2042 	if (port_cap->psi_count) {
2043 		port_cap->psi = kcalloc_node(port_cap->psi_count,
2044 					     sizeof(*port_cap->psi),
2045 					     GFP_KERNEL, dev_to_node(dev));
2046 		if (!port_cap->psi)
2047 			port_cap->psi_count = 0;
2048 
2049 		port_cap->psi_uid_count++;
2050 		for (i = 0; i < port_cap->psi_count; i++) {
2051 			port_cap->psi[i] = readl(addr + 4 + i);
2052 
2053 			/* count unique ID values, two consecutive entries can
2054 			 * have the same ID if link is assymetric
2055 			 */
2056 			if (i && (XHCI_EXT_PORT_PSIV(port_cap->psi[i]) !=
2057 				  XHCI_EXT_PORT_PSIV(port_cap->psi[i - 1])))
2058 				port_cap->psi_uid_count++;
2059 
2060 			if (xhci->quirks & XHCI_ZHAOXIN_HOST &&
2061 			    major_revision == 0x03 &&
2062 			    XHCI_EXT_PORT_PSIV(port_cap->psi[i]) >= 5)
2063 				minor_revision = tmp_minor_revision;
2064 
2065 			xhci_dbg(xhci, "PSIV:%d PSIE:%d PLT:%d PFD:%d LP:%d PSIM:%d\n",
2066 				  XHCI_EXT_PORT_PSIV(port_cap->psi[i]),
2067 				  XHCI_EXT_PORT_PSIE(port_cap->psi[i]),
2068 				  XHCI_EXT_PORT_PLT(port_cap->psi[i]),
2069 				  XHCI_EXT_PORT_PFD(port_cap->psi[i]),
2070 				  XHCI_EXT_PORT_LP(port_cap->psi[i]),
2071 				  XHCI_EXT_PORT_PSIM(port_cap->psi[i]));
2072 		}
2073 	}
2074 
2075 	rhub->maj_rev = major_revision;
2076 
2077 	if (rhub->min_rev < minor_revision)
2078 		rhub->min_rev = minor_revision;
2079 
2080 	port_cap->maj_rev = major_revision;
2081 	port_cap->min_rev = minor_revision;
2082 	port_cap->protocol_caps = temp;
2083 
2084 	if ((xhci->hci_version >= 0x100) && (major_revision != 0x03) &&
2085 		 (temp & XHCI_HLC)) {
2086 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2087 			       "xHCI 1.0: support USB2 hardware lpm");
2088 		xhci->hw_lpm_support = 1;
2089 	}
2090 
2091 	port_offset--;
2092 	for (i = port_offset; i < (port_offset + port_count); i++) {
2093 		struct xhci_port *hw_port = &xhci->hw_ports[i];
2094 		/* Duplicate entry.  Ignore the port if the revisions differ. */
2095 		if (hw_port->rhub) {
2096 			xhci_warn(xhci, "Duplicate port entry, Ext Cap %p, port %u\n", addr, i);
2097 			xhci_warn(xhci, "Port was marked as USB %u, duplicated as USB %u\n",
2098 					hw_port->rhub->maj_rev, major_revision);
2099 			/* Only adjust the roothub port counts if we haven't
2100 			 * found a similar duplicate.
2101 			 */
2102 			if (hw_port->rhub != rhub &&
2103 				 hw_port->hcd_portnum != DUPLICATE_ENTRY) {
2104 				hw_port->rhub->num_ports--;
2105 				hw_port->hcd_portnum = DUPLICATE_ENTRY;
2106 			}
2107 			continue;
2108 		}
2109 		hw_port->rhub = rhub;
2110 		hw_port->port_cap = port_cap;
2111 		rhub->num_ports++;
2112 	}
2113 	/* FIXME: Should we disable ports not in the Extended Capabilities? */
2114 }
2115 
xhci_create_rhub_port_array(struct xhci_hcd * xhci,struct xhci_hub * rhub,gfp_t flags)2116 static void xhci_create_rhub_port_array(struct xhci_hcd *xhci,
2117 					struct xhci_hub *rhub, gfp_t flags)
2118 {
2119 	int port_index = 0;
2120 	int i;
2121 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2122 
2123 	if (!rhub->num_ports)
2124 		return;
2125 	rhub->ports = kcalloc_node(rhub->num_ports, sizeof(*rhub->ports),
2126 			flags, dev_to_node(dev));
2127 	if (!rhub->ports)
2128 		return;
2129 
2130 	for (i = 0; i < HCS_MAX_PORTS(xhci->hcs_params1); i++) {
2131 		if (xhci->hw_ports[i].rhub != rhub ||
2132 		    xhci->hw_ports[i].hcd_portnum == DUPLICATE_ENTRY)
2133 			continue;
2134 		xhci->hw_ports[i].hcd_portnum = port_index;
2135 		rhub->ports[port_index] = &xhci->hw_ports[i];
2136 		port_index++;
2137 		if (port_index == rhub->num_ports)
2138 			break;
2139 	}
2140 }
2141 
2142 /*
2143  * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
2144  * specify what speeds each port is supposed to be.  We can't count on the port
2145  * speed bits in the PORTSC register being correct until a device is connected,
2146  * but we need to set up the two fake roothubs with the correct number of USB
2147  * 3.0 and USB 2.0 ports at host controller initialization time.
2148  */
xhci_setup_port_arrays(struct xhci_hcd * xhci,gfp_t flags)2149 static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
2150 {
2151 	void __iomem *base;
2152 	u32 offset;
2153 	unsigned int num_ports;
2154 	int i, j;
2155 	int cap_count = 0;
2156 	u32 cap_start;
2157 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2158 
2159 	num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
2160 	xhci->hw_ports = kcalloc_node(num_ports, sizeof(*xhci->hw_ports),
2161 				flags, dev_to_node(dev));
2162 	if (!xhci->hw_ports)
2163 		return -ENOMEM;
2164 
2165 	for (i = 0; i < num_ports; i++) {
2166 		xhci->hw_ports[i].addr = &xhci->op_regs->port_status_base +
2167 			NUM_PORT_REGS * i;
2168 		xhci->hw_ports[i].hw_portnum = i;
2169 
2170 		init_completion(&xhci->hw_ports[i].rexit_done);
2171 		init_completion(&xhci->hw_ports[i].u3exit_done);
2172 	}
2173 
2174 	xhci->rh_bw = kcalloc_node(num_ports, sizeof(*xhci->rh_bw), flags,
2175 				   dev_to_node(dev));
2176 	if (!xhci->rh_bw)
2177 		return -ENOMEM;
2178 	for (i = 0; i < num_ports; i++) {
2179 		struct xhci_interval_bw_table *bw_table;
2180 
2181 		INIT_LIST_HEAD(&xhci->rh_bw[i].tts);
2182 		bw_table = &xhci->rh_bw[i].bw_table;
2183 		for (j = 0; j < XHCI_MAX_INTERVAL; j++)
2184 			INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
2185 	}
2186 	base = &xhci->cap_regs->hc_capbase;
2187 
2188 	cap_start = xhci_find_next_ext_cap(base, 0, XHCI_EXT_CAPS_PROTOCOL);
2189 	if (!cap_start) {
2190 		xhci_err(xhci, "No Extended Capability registers, unable to set up roothub\n");
2191 		return -ENODEV;
2192 	}
2193 
2194 	offset = cap_start;
2195 	/* count extended protocol capability entries for later caching */
2196 	while (offset) {
2197 		cap_count++;
2198 		offset = xhci_find_next_ext_cap(base, offset,
2199 						      XHCI_EXT_CAPS_PROTOCOL);
2200 	}
2201 
2202 	xhci->port_caps = kcalloc_node(cap_count, sizeof(*xhci->port_caps),
2203 				flags, dev_to_node(dev));
2204 	if (!xhci->port_caps)
2205 		return -ENOMEM;
2206 
2207 	offset = cap_start;
2208 
2209 	while (offset) {
2210 		xhci_add_in_port(xhci, num_ports, base + offset, cap_count);
2211 		if (xhci->usb2_rhub.num_ports + xhci->usb3_rhub.num_ports ==
2212 		    num_ports)
2213 			break;
2214 		offset = xhci_find_next_ext_cap(base, offset,
2215 						XHCI_EXT_CAPS_PROTOCOL);
2216 	}
2217 	if (xhci->usb2_rhub.num_ports == 0 && xhci->usb3_rhub.num_ports == 0) {
2218 		xhci_warn(xhci, "No ports on the roothubs?\n");
2219 		return -ENODEV;
2220 	}
2221 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2222 		       "Found %u USB 2.0 ports and %u USB 3.0 ports.",
2223 		       xhci->usb2_rhub.num_ports, xhci->usb3_rhub.num_ports);
2224 
2225 	/* Place limits on the number of roothub ports so that the hub
2226 	 * descriptors aren't longer than the USB core will allocate.
2227 	 */
2228 	if (xhci->usb3_rhub.num_ports > USB_SS_MAXPORTS) {
2229 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2230 				"Limiting USB 3.0 roothub ports to %u.",
2231 				USB_SS_MAXPORTS);
2232 		xhci->usb3_rhub.num_ports = USB_SS_MAXPORTS;
2233 	}
2234 	if (xhci->usb2_rhub.num_ports > USB_MAXCHILDREN) {
2235 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2236 				"Limiting USB 2.0 roothub ports to %u.",
2237 				USB_MAXCHILDREN);
2238 		xhci->usb2_rhub.num_ports = USB_MAXCHILDREN;
2239 	}
2240 
2241 	if (!xhci->usb2_rhub.num_ports)
2242 		xhci_info(xhci, "USB2 root hub has no ports\n");
2243 
2244 	if (!xhci->usb3_rhub.num_ports)
2245 		xhci_info(xhci, "USB3 root hub has no ports\n");
2246 
2247 	xhci_create_rhub_port_array(xhci, &xhci->usb2_rhub, flags);
2248 	xhci_create_rhub_port_array(xhci, &xhci->usb3_rhub, flags);
2249 
2250 	return 0;
2251 }
2252 
2253 static struct xhci_interrupter *
xhci_alloc_interrupter(struct xhci_hcd * xhci,unsigned int segs,gfp_t flags)2254 xhci_alloc_interrupter(struct xhci_hcd *xhci, unsigned int segs, gfp_t flags)
2255 {
2256 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2257 	struct xhci_interrupter *ir;
2258 	unsigned int max_segs;
2259 	int ret;
2260 
2261 	if (!segs)
2262 		segs = ERST_DEFAULT_SEGS;
2263 
2264 	max_segs = BIT(HCS_ERST_MAX(xhci->hcs_params2));
2265 	segs = min(segs, max_segs);
2266 
2267 	ir = kzalloc_node(sizeof(*ir), flags, dev_to_node(dev));
2268 	if (!ir)
2269 		return NULL;
2270 
2271 	ir->event_ring = xhci_ring_alloc(xhci, segs, TYPE_EVENT, 0, flags);
2272 	if (!ir->event_ring) {
2273 		xhci_warn(xhci, "Failed to allocate interrupter event ring\n");
2274 		kfree(ir);
2275 		return NULL;
2276 	}
2277 
2278 	ret = xhci_alloc_erst(xhci, ir->event_ring, &ir->erst, flags);
2279 	if (ret) {
2280 		xhci_warn(xhci, "Failed to allocate interrupter erst\n");
2281 		xhci_ring_free(xhci, ir->event_ring);
2282 		kfree(ir);
2283 		return NULL;
2284 	}
2285 
2286 	return ir;
2287 }
2288 
2289 static int
xhci_add_interrupter(struct xhci_hcd * xhci,struct xhci_interrupter * ir,unsigned int intr_num)2290 xhci_add_interrupter(struct xhci_hcd *xhci, struct xhci_interrupter *ir,
2291 		     unsigned int intr_num)
2292 {
2293 	u64 erst_base;
2294 	u32 erst_size;
2295 
2296 	if (intr_num >= xhci->max_interrupters) {
2297 		xhci_warn(xhci, "Can't add interrupter %d, max interrupters %d\n",
2298 			  intr_num, xhci->max_interrupters);
2299 		return -EINVAL;
2300 	}
2301 
2302 	if (xhci->interrupters[intr_num]) {
2303 		xhci_warn(xhci, "Interrupter %d\n already set up", intr_num);
2304 		return -EINVAL;
2305 	}
2306 
2307 	xhci->interrupters[intr_num] = ir;
2308 	ir->intr_num = intr_num;
2309 	ir->ir_set = &xhci->run_regs->ir_set[intr_num];
2310 
2311 	/* set ERST count with the number of entries in the segment table */
2312 	erst_size = readl(&ir->ir_set->erst_size);
2313 	erst_size &= ERST_SIZE_MASK;
2314 	erst_size |= ir->event_ring->num_segs;
2315 	writel(erst_size, &ir->ir_set->erst_size);
2316 
2317 	erst_base = xhci_read_64(xhci, &ir->ir_set->erst_base);
2318 	erst_base &= ERST_BASE_RSVDP;
2319 	erst_base |= ir->erst.erst_dma_addr & ~ERST_BASE_RSVDP;
2320 	if (xhci->quirks & XHCI_WRITE_64_HI_LO)
2321 		hi_lo_writeq(erst_base, &ir->ir_set->erst_base);
2322 	else
2323 		xhci_write_64(xhci, erst_base, &ir->ir_set->erst_base);
2324 
2325 	/* Set the event ring dequeue address of this interrupter */
2326 	xhci_set_hc_event_deq(xhci, ir);
2327 
2328 	return 0;
2329 }
2330 
2331 struct xhci_interrupter *
xhci_create_secondary_interrupter(struct usb_hcd * hcd,unsigned int segs,u32 imod_interval,unsigned int intr_num)2332 xhci_create_secondary_interrupter(struct usb_hcd *hcd, unsigned int segs,
2333 				  u32 imod_interval, unsigned int intr_num)
2334 {
2335 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
2336 	struct xhci_interrupter *ir;
2337 	unsigned int i;
2338 	int err = -ENOSPC;
2339 
2340 	if (!xhci->interrupters || xhci->max_interrupters <= 1 ||
2341 	    intr_num >= xhci->max_interrupters)
2342 		return NULL;
2343 
2344 	ir = xhci_alloc_interrupter(xhci, segs, GFP_KERNEL);
2345 	if (!ir)
2346 		return NULL;
2347 
2348 	spin_lock_irq(&xhci->lock);
2349 	if (!intr_num) {
2350 		/* Find available secondary interrupter, interrupter 0 is reserved for primary */
2351 		for (i = 1; i < xhci->max_interrupters; i++) {
2352 			if (!xhci->interrupters[i]) {
2353 				err = xhci_add_interrupter(xhci, ir, i);
2354 				break;
2355 			}
2356 		}
2357 	} else {
2358 		if (!xhci->interrupters[intr_num])
2359 			err = xhci_add_interrupter(xhci, ir, intr_num);
2360 	}
2361 	spin_unlock_irq(&xhci->lock);
2362 
2363 	if (err) {
2364 		xhci_warn(xhci, "Failed to add secondary interrupter, max interrupters %d\n",
2365 			  xhci->max_interrupters);
2366 		xhci_free_interrupter(xhci, ir);
2367 		return NULL;
2368 	}
2369 
2370 	err = xhci_set_interrupter_moderation(ir, imod_interval);
2371 	if (err)
2372 		xhci_warn(xhci, "Failed to set interrupter %d moderation to %uns\n",
2373 			  i, imod_interval);
2374 
2375 	xhci_dbg(xhci, "Add secondary interrupter %d, max interrupters %d\n",
2376 		 ir->intr_num, xhci->max_interrupters);
2377 
2378 	return ir;
2379 }
2380 EXPORT_SYMBOL_GPL(xhci_create_secondary_interrupter);
2381 
xhci_mem_init(struct xhci_hcd * xhci,gfp_t flags)2382 int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
2383 {
2384 	struct xhci_interrupter *ir;
2385 	struct device	*dev = xhci_to_hcd(xhci)->self.sysdev;
2386 	dma_addr_t	dma;
2387 	unsigned int	val, val2;
2388 	u64		val_64;
2389 	u32		page_size, temp;
2390 	int		i;
2391 
2392 	INIT_LIST_HEAD(&xhci->cmd_list);
2393 
2394 	/* init command timeout work */
2395 	INIT_DELAYED_WORK(&xhci->cmd_timer, xhci_handle_command_timeout);
2396 	init_completion(&xhci->cmd_ring_stop_completion);
2397 
2398 	page_size = readl(&xhci->op_regs->page_size);
2399 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2400 			"Supported page size register = 0x%x", page_size);
2401 	val = ffs(page_size) - 1;
2402 	if (val < 16)
2403 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2404 			"Supported page size of %iK", (1 << (val + 12)) / 1024);
2405 	else
2406 		xhci_warn(xhci, "WARN: no supported page size\n");
2407 	/* Use 4K pages, since that's common and the minimum the HC supports */
2408 	xhci->page_shift = 12;
2409 	xhci->page_size = 1 << xhci->page_shift;
2410 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2411 			"HCD page size set to %iK", xhci->page_size / 1024);
2412 
2413 	/*
2414 	 * Program the Number of Device Slots Enabled field in the CONFIG
2415 	 * register with the max value of slots the HC can handle.
2416 	 */
2417 	val = HCS_MAX_SLOTS(readl(&xhci->cap_regs->hcs_params1));
2418 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2419 			"// xHC can handle at most %d device slots.", val);
2420 	val2 = readl(&xhci->op_regs->config_reg);
2421 	val |= (val2 & ~HCS_SLOTS_MASK);
2422 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2423 			"// Setting Max device slots reg = 0x%x.", val);
2424 	writel(val, &xhci->op_regs->config_reg);
2425 
2426 	/*
2427 	 * xHCI section 5.4.6 - Device Context array must be
2428 	 * "physically contiguous and 64-byte (cache line) aligned".
2429 	 */
2430 	xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma,
2431 			flags);
2432 	if (!xhci->dcbaa)
2433 		goto fail;
2434 	xhci->dcbaa->dma = dma;
2435 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2436 			"// Device context base array address = 0x%pad (DMA), %p (virt)",
2437 			&xhci->dcbaa->dma, xhci->dcbaa);
2438 	xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
2439 
2440 	/*
2441 	 * Initialize the ring segment pool.  The ring must be a contiguous
2442 	 * structure comprised of TRBs.  The TRBs must be 16 byte aligned,
2443 	 * however, the command ring segment needs 64-byte aligned segments
2444 	 * and our use of dma addresses in the trb_address_map radix tree needs
2445 	 * TRB_SEGMENT_SIZE alignment, so we pick the greater alignment need.
2446 	 */
2447 	if (xhci->quirks & XHCI_TRB_OVERFETCH)
2448 		/* Buggy HC prefetches beyond segment bounds - allocate dummy space at the end */
2449 		xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2450 				TRB_SEGMENT_SIZE * 2, TRB_SEGMENT_SIZE * 2, xhci->page_size * 2);
2451 	else
2452 		xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2453 				TRB_SEGMENT_SIZE, TRB_SEGMENT_SIZE, xhci->page_size);
2454 
2455 	/* See Table 46 and Note on Figure 55 */
2456 	xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
2457 			2112, 64, xhci->page_size);
2458 	if (!xhci->segment_pool || !xhci->device_pool)
2459 		goto fail;
2460 
2461 	/* Linear stream context arrays don't have any boundary restrictions,
2462 	 * and only need to be 16-byte aligned.
2463 	 */
2464 	xhci->small_streams_pool =
2465 		dma_pool_create("xHCI 256 byte stream ctx arrays",
2466 			dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
2467 	xhci->medium_streams_pool =
2468 		dma_pool_create("xHCI 1KB stream ctx arrays",
2469 			dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
2470 	/* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
2471 	 * will be allocated with dma_alloc_coherent()
2472 	 */
2473 
2474 	if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
2475 		goto fail;
2476 
2477 	/* Set up the command ring to have one segments for now. */
2478 	xhci->cmd_ring = xhci_ring_alloc(xhci, 1, TYPE_COMMAND, 0, flags);
2479 	if (!xhci->cmd_ring)
2480 		goto fail;
2481 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2482 			"Allocated command ring at %p", xhci->cmd_ring);
2483 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "First segment DMA is 0x%pad",
2484 			&xhci->cmd_ring->first_seg->dma);
2485 
2486 	/* Set the address in the Command Ring Control register */
2487 	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
2488 	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
2489 		(xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
2490 		xhci->cmd_ring->cycle_state;
2491 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2492 			"// Setting command ring address to 0x%016llx", val_64);
2493 	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
2494 
2495 	/* Reserve one command ring TRB for disabling LPM.
2496 	 * Since the USB core grabs the shared usb_bus bandwidth mutex before
2497 	 * disabling LPM, we only need to reserve one TRB for all devices.
2498 	 */
2499 	xhci->cmd_ring_reserved_trbs++;
2500 
2501 	val = readl(&xhci->cap_regs->db_off);
2502 	val &= DBOFF_MASK;
2503 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2504 		       "// Doorbell array is located at offset 0x%x from cap regs base addr",
2505 		       val);
2506 	xhci->dba = (void __iomem *) xhci->cap_regs + val;
2507 
2508 	/* Allocate and set up primary interrupter 0 with an event ring. */
2509 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2510 		       "Allocating primary event ring");
2511 	xhci->interrupters = kcalloc_node(xhci->max_interrupters, sizeof(*xhci->interrupters),
2512 					  flags, dev_to_node(dev));
2513 
2514 	ir = xhci_alloc_interrupter(xhci, 0, flags);
2515 	if (!ir)
2516 		goto fail;
2517 
2518 	if (xhci_add_interrupter(xhci, ir, 0))
2519 		goto fail;
2520 
2521 	ir->isoc_bei_interval = AVOID_BEI_INTERVAL_MAX;
2522 
2523 	/*
2524 	 * XXX: Might need to set the Interrupter Moderation Register to
2525 	 * something other than the default (~1ms minimum between interrupts).
2526 	 * See section 5.5.1.2.
2527 	 */
2528 	for (i = 0; i < MAX_HC_SLOTS; i++)
2529 		xhci->devs[i] = NULL;
2530 
2531 	if (scratchpad_alloc(xhci, flags))
2532 		goto fail;
2533 	if (xhci_setup_port_arrays(xhci, flags))
2534 		goto fail;
2535 
2536 	/* Enable USB 3.0 device notifications for function remote wake, which
2537 	 * is necessary for allowing USB 3.0 devices to do remote wakeup from
2538 	 * U3 (device suspend).
2539 	 */
2540 	temp = readl(&xhci->op_regs->dev_notification);
2541 	temp &= ~DEV_NOTE_MASK;
2542 	temp |= DEV_NOTE_FWAKE;
2543 	writel(temp, &xhci->op_regs->dev_notification);
2544 
2545 	return 0;
2546 
2547 fail:
2548 	xhci_halt(xhci);
2549 	xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
2550 	xhci_mem_cleanup(xhci);
2551 	return -ENOMEM;
2552 }
2553