• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012,2013 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  *
6  * Derived from arch/arm/kvm/guest.c:
7  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
8  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
9  */
10 
11 #include <linux/bits.h>
12 #include <linux/errno.h>
13 #include <linux/err.h>
14 #include <linux/nospec.h>
15 #include <linux/kvm_host.h>
16 #include <linux/module.h>
17 #include <linux/stddef.h>
18 #include <linux/string.h>
19 #include <linux/vmalloc.h>
20 #include <linux/fs.h>
21 #include <kvm/arm_hypercalls.h>
22 #include <asm/cputype.h>
23 #include <linux/uaccess.h>
24 #include <asm/fpsimd.h>
25 #include <asm/kvm.h>
26 #include <asm/kvm_emulate.h>
27 #include <asm/kvm_nested.h>
28 #include <asm/sigcontext.h>
29 
30 #include "trace.h"
31 
32 const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
33 	KVM_GENERIC_VM_STATS(),
34 	STATS_DESC_ICOUNTER(VM, protected_hyp_mem),
35 	STATS_DESC_ICOUNTER(VM, protected_shared_mem),
36 };
37 
38 const struct kvm_stats_header kvm_vm_stats_header = {
39 	.name_size = KVM_STATS_NAME_SIZE,
40 	.num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
41 	.id_offset =  sizeof(struct kvm_stats_header),
42 	.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
43 	.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
44 		       sizeof(kvm_vm_stats_desc),
45 };
46 
47 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
48 	KVM_GENERIC_VCPU_STATS(),
49 	STATS_DESC_COUNTER(VCPU, hvc_exit_stat),
50 	STATS_DESC_COUNTER(VCPU, wfe_exit_stat),
51 	STATS_DESC_COUNTER(VCPU, wfi_exit_stat),
52 	STATS_DESC_COUNTER(VCPU, mmio_exit_user),
53 	STATS_DESC_COUNTER(VCPU, mmio_exit_kernel),
54 	STATS_DESC_COUNTER(VCPU, signal_exits),
55 	STATS_DESC_COUNTER(VCPU, exits)
56 };
57 
58 const struct kvm_stats_header kvm_vcpu_stats_header = {
59 	.name_size = KVM_STATS_NAME_SIZE,
60 	.num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
61 	.id_offset = sizeof(struct kvm_stats_header),
62 	.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
63 	.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
64 		       sizeof(kvm_vcpu_stats_desc),
65 };
66 
core_reg_offset_is_vreg(u64 off)67 static bool core_reg_offset_is_vreg(u64 off)
68 {
69 	return off >= KVM_REG_ARM_CORE_REG(fp_regs.vregs) &&
70 		off < KVM_REG_ARM_CORE_REG(fp_regs.fpsr);
71 }
72 
core_reg_offset_from_id(u64 id)73 static u64 core_reg_offset_from_id(u64 id)
74 {
75 	return id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK | KVM_REG_ARM_CORE);
76 }
77 
core_reg_size_from_offset(const struct kvm_vcpu * vcpu,u64 off)78 static int core_reg_size_from_offset(const struct kvm_vcpu *vcpu, u64 off)
79 {
80 	int size;
81 
82 	switch (off) {
83 	case KVM_REG_ARM_CORE_REG(regs.regs[0]) ...
84 	     KVM_REG_ARM_CORE_REG(regs.regs[30]):
85 	case KVM_REG_ARM_CORE_REG(regs.sp):
86 	case KVM_REG_ARM_CORE_REG(regs.pc):
87 	case KVM_REG_ARM_CORE_REG(regs.pstate):
88 	case KVM_REG_ARM_CORE_REG(sp_el1):
89 	case KVM_REG_ARM_CORE_REG(elr_el1):
90 	case KVM_REG_ARM_CORE_REG(spsr[0]) ...
91 	     KVM_REG_ARM_CORE_REG(spsr[KVM_NR_SPSR - 1]):
92 		size = sizeof(__u64);
93 		break;
94 
95 	case KVM_REG_ARM_CORE_REG(fp_regs.vregs[0]) ...
96 	     KVM_REG_ARM_CORE_REG(fp_regs.vregs[31]):
97 		size = sizeof(__uint128_t);
98 		break;
99 
100 	case KVM_REG_ARM_CORE_REG(fp_regs.fpsr):
101 	case KVM_REG_ARM_CORE_REG(fp_regs.fpcr):
102 		size = sizeof(__u32);
103 		break;
104 
105 	default:
106 		return -EINVAL;
107 	}
108 
109 	if (!IS_ALIGNED(off, size / sizeof(__u32)))
110 		return -EINVAL;
111 
112 	/*
113 	 * The KVM_REG_ARM64_SVE regs must be used instead of
114 	 * KVM_REG_ARM_CORE for accessing the FPSIMD V-registers on
115 	 * SVE-enabled vcpus:
116 	 */
117 	if (vcpu_has_sve(vcpu) && core_reg_offset_is_vreg(off))
118 		return -EINVAL;
119 
120 	return size;
121 }
122 
core_reg_addr(struct kvm_vcpu * vcpu,const struct kvm_one_reg * reg)123 static void *core_reg_addr(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
124 {
125 	u64 off = core_reg_offset_from_id(reg->id);
126 	int size = core_reg_size_from_offset(vcpu, off);
127 
128 	if (size < 0)
129 		return NULL;
130 
131 	if (KVM_REG_SIZE(reg->id) != size)
132 		return NULL;
133 
134 	switch (off) {
135 	case KVM_REG_ARM_CORE_REG(regs.regs[0]) ...
136 	     KVM_REG_ARM_CORE_REG(regs.regs[30]):
137 		off -= KVM_REG_ARM_CORE_REG(regs.regs[0]);
138 		off /= 2;
139 		return &vcpu->arch.ctxt.regs.regs[off];
140 
141 	case KVM_REG_ARM_CORE_REG(regs.sp):
142 		return &vcpu->arch.ctxt.regs.sp;
143 
144 	case KVM_REG_ARM_CORE_REG(regs.pc):
145 		return &vcpu->arch.ctxt.regs.pc;
146 
147 	case KVM_REG_ARM_CORE_REG(regs.pstate):
148 		return &vcpu->arch.ctxt.regs.pstate;
149 
150 	case KVM_REG_ARM_CORE_REG(sp_el1):
151 		return __ctxt_sys_reg(&vcpu->arch.ctxt, SP_EL1);
152 
153 	case KVM_REG_ARM_CORE_REG(elr_el1):
154 		return __ctxt_sys_reg(&vcpu->arch.ctxt, ELR_EL1);
155 
156 	case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_EL1]):
157 		return __ctxt_sys_reg(&vcpu->arch.ctxt, SPSR_EL1);
158 
159 	case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_ABT]):
160 		return &vcpu->arch.ctxt.spsr_abt;
161 
162 	case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_UND]):
163 		return &vcpu->arch.ctxt.spsr_und;
164 
165 	case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_IRQ]):
166 		return &vcpu->arch.ctxt.spsr_irq;
167 
168 	case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_FIQ]):
169 		return &vcpu->arch.ctxt.spsr_fiq;
170 
171 	case KVM_REG_ARM_CORE_REG(fp_regs.vregs[0]) ...
172 	     KVM_REG_ARM_CORE_REG(fp_regs.vregs[31]):
173 		off -= KVM_REG_ARM_CORE_REG(fp_regs.vregs[0]);
174 		off /= 4;
175 		return &vcpu->arch.ctxt.fp_regs.vregs[off];
176 
177 	case KVM_REG_ARM_CORE_REG(fp_regs.fpsr):
178 		return &vcpu->arch.ctxt.fp_regs.fpsr;
179 
180 	case KVM_REG_ARM_CORE_REG(fp_regs.fpcr):
181 		return &vcpu->arch.ctxt.fp_regs.fpcr;
182 
183 	default:
184 		return NULL;
185 	}
186 }
187 
get_core_reg(struct kvm_vcpu * vcpu,const struct kvm_one_reg * reg)188 static int get_core_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
189 {
190 	/*
191 	 * Because the kvm_regs structure is a mix of 32, 64 and
192 	 * 128bit fields, we index it as if it was a 32bit
193 	 * array. Hence below, nr_regs is the number of entries, and
194 	 * off the index in the "array".
195 	 */
196 	__u32 __user *uaddr = (__u32 __user *)(unsigned long)reg->addr;
197 	int nr_regs = sizeof(struct kvm_regs) / sizeof(__u32);
198 	void *addr;
199 	u32 off;
200 
201 	/* Our ID is an index into the kvm_regs struct. */
202 	off = core_reg_offset_from_id(reg->id);
203 	if (off >= nr_regs ||
204 	    (off + (KVM_REG_SIZE(reg->id) / sizeof(__u32))) >= nr_regs)
205 		return -ENOENT;
206 
207 	addr = core_reg_addr(vcpu, reg);
208 	if (!addr)
209 		return -EINVAL;
210 
211 	if (copy_to_user(uaddr, addr, KVM_REG_SIZE(reg->id)))
212 		return -EFAULT;
213 
214 	return 0;
215 }
216 
set_core_reg(struct kvm_vcpu * vcpu,const struct kvm_one_reg * reg)217 static int set_core_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
218 {
219 	__u32 __user *uaddr = (__u32 __user *)(unsigned long)reg->addr;
220 	int nr_regs = sizeof(struct kvm_regs) / sizeof(__u32);
221 	__uint128_t tmp;
222 	void *valp = &tmp, *addr;
223 	u64 off;
224 	int err = 0;
225 
226 	/* Our ID is an index into the kvm_regs struct. */
227 	off = core_reg_offset_from_id(reg->id);
228 	if (off >= nr_regs ||
229 	    (off + (KVM_REG_SIZE(reg->id) / sizeof(__u32))) >= nr_regs)
230 		return -ENOENT;
231 
232 	addr = core_reg_addr(vcpu, reg);
233 	if (!addr)
234 		return -EINVAL;
235 
236 	if (KVM_REG_SIZE(reg->id) > sizeof(tmp))
237 		return -EINVAL;
238 
239 	if (copy_from_user(valp, uaddr, KVM_REG_SIZE(reg->id))) {
240 		err = -EFAULT;
241 		goto out;
242 	}
243 
244 	if (off == KVM_REG_ARM_CORE_REG(regs.pstate)) {
245 		u64 mode = (*(u64 *)valp) & PSR_AA32_MODE_MASK;
246 		switch (mode) {
247 		case PSR_AA32_MODE_USR:
248 			if (!kvm_supports_32bit_el0())
249 				return -EINVAL;
250 			break;
251 		case PSR_AA32_MODE_FIQ:
252 		case PSR_AA32_MODE_IRQ:
253 		case PSR_AA32_MODE_SVC:
254 		case PSR_AA32_MODE_ABT:
255 		case PSR_AA32_MODE_UND:
256 		case PSR_AA32_MODE_SYS:
257 			if (!vcpu_el1_is_32bit(vcpu))
258 				return -EINVAL;
259 			break;
260 		case PSR_MODE_EL2h:
261 		case PSR_MODE_EL2t:
262 			if (!vcpu_has_nv(vcpu))
263 				return -EINVAL;
264 			fallthrough;
265 		case PSR_MODE_EL0t:
266 		case PSR_MODE_EL1t:
267 		case PSR_MODE_EL1h:
268 			if (vcpu_el1_is_32bit(vcpu))
269 				return -EINVAL;
270 			break;
271 		default:
272 			err = -EINVAL;
273 			goto out;
274 		}
275 	}
276 
277 	memcpy(addr, valp, KVM_REG_SIZE(reg->id));
278 
279 	if (*vcpu_cpsr(vcpu) & PSR_MODE32_BIT) {
280 		int i, nr_reg;
281 
282 		switch (*vcpu_cpsr(vcpu) & PSR_AA32_MODE_MASK) {
283 		/*
284 		 * Either we are dealing with user mode, and only the
285 		 * first 15 registers (+ PC) must be narrowed to 32bit.
286 		 * AArch32 r0-r14 conveniently map to AArch64 x0-x14.
287 		 */
288 		case PSR_AA32_MODE_USR:
289 		case PSR_AA32_MODE_SYS:
290 			nr_reg = 15;
291 			break;
292 
293 		/*
294 		 * Otherwise, this is a privileged mode, and *all* the
295 		 * registers must be narrowed to 32bit.
296 		 */
297 		default:
298 			nr_reg = 31;
299 			break;
300 		}
301 
302 		for (i = 0; i < nr_reg; i++)
303 			vcpu_set_reg(vcpu, i, (u32)vcpu_get_reg(vcpu, i));
304 
305 		*vcpu_pc(vcpu) = (u32)*vcpu_pc(vcpu);
306 	}
307 out:
308 	return err;
309 }
310 
311 #define vq_word(vq) (((vq) - SVE_VQ_MIN) / 64)
312 #define vq_mask(vq) ((u64)1 << ((vq) - SVE_VQ_MIN) % 64)
313 #define vq_present(vqs, vq) (!!((vqs)[vq_word(vq)] & vq_mask(vq)))
314 
get_sve_vls(struct kvm_vcpu * vcpu,const struct kvm_one_reg * reg)315 static int get_sve_vls(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
316 {
317 	unsigned int max_vq, vq;
318 	u64 vqs[KVM_ARM64_SVE_VLS_WORDS];
319 
320 	if (!vcpu_has_sve(vcpu))
321 		return -ENOENT;
322 
323 	if (WARN_ON(!sve_vl_valid(vcpu->arch.sve_max_vl)))
324 		return -EINVAL;
325 
326 	memset(vqs, 0, sizeof(vqs));
327 
328 	max_vq = vcpu_sve_max_vq(vcpu);
329 	for (vq = SVE_VQ_MIN; vq <= max_vq; ++vq)
330 		if (sve_vq_available(vq))
331 			vqs[vq_word(vq)] |= vq_mask(vq);
332 
333 	if (copy_to_user((void __user *)reg->addr, vqs, sizeof(vqs)))
334 		return -EFAULT;
335 
336 	return 0;
337 }
338 
set_sve_vls(struct kvm_vcpu * vcpu,const struct kvm_one_reg * reg)339 static int set_sve_vls(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
340 {
341 	unsigned int max_vq, vq;
342 	u64 vqs[KVM_ARM64_SVE_VLS_WORDS];
343 
344 	if (!vcpu_has_sve(vcpu))
345 		return -ENOENT;
346 
347 	if (kvm_arm_vcpu_sve_finalized(vcpu))
348 		return -EPERM; /* too late! */
349 
350 	if (WARN_ON(vcpu->arch.sve_state))
351 		return -EINVAL;
352 
353 	if (copy_from_user(vqs, (const void __user *)reg->addr, sizeof(vqs)))
354 		return -EFAULT;
355 
356 	max_vq = 0;
357 	for (vq = SVE_VQ_MIN; vq <= SVE_VQ_MAX; ++vq)
358 		if (vq_present(vqs, vq))
359 			max_vq = vq;
360 
361 	if (max_vq > sve_vq_from_vl(kvm_sve_max_vl))
362 		return -EINVAL;
363 
364 	/*
365 	 * Vector lengths supported by the host can't currently be
366 	 * hidden from the guest individually: instead we can only set a
367 	 * maximum via ZCR_EL2.LEN.  So, make sure the available vector
368 	 * lengths match the set requested exactly up to the requested
369 	 * maximum:
370 	 */
371 	for (vq = SVE_VQ_MIN; vq <= max_vq; ++vq)
372 		if (vq_present(vqs, vq) != sve_vq_available(vq))
373 			return -EINVAL;
374 
375 	/* Can't run with no vector lengths at all: */
376 	if (max_vq < SVE_VQ_MIN)
377 		return -EINVAL;
378 
379 	/* vcpu->arch.sve_state will be alloc'd by kvm_vcpu_finalize_sve() */
380 	vcpu->arch.sve_max_vl = sve_vl_from_vq(max_vq);
381 
382 	return 0;
383 }
384 
385 #define SVE_REG_SLICE_SHIFT	0
386 #define SVE_REG_SLICE_BITS	5
387 #define SVE_REG_ID_SHIFT	(SVE_REG_SLICE_SHIFT + SVE_REG_SLICE_BITS)
388 #define SVE_REG_ID_BITS		5
389 
390 #define SVE_REG_SLICE_MASK					\
391 	GENMASK(SVE_REG_SLICE_SHIFT + SVE_REG_SLICE_BITS - 1,	\
392 		SVE_REG_SLICE_SHIFT)
393 #define SVE_REG_ID_MASK							\
394 	GENMASK(SVE_REG_ID_SHIFT + SVE_REG_ID_BITS - 1, SVE_REG_ID_SHIFT)
395 
396 #define SVE_NUM_SLICES (1 << SVE_REG_SLICE_BITS)
397 
398 #define KVM_SVE_ZREG_SIZE KVM_REG_SIZE(KVM_REG_ARM64_SVE_ZREG(0, 0))
399 #define KVM_SVE_PREG_SIZE KVM_REG_SIZE(KVM_REG_ARM64_SVE_PREG(0, 0))
400 
401 /*
402  * Number of register slices required to cover each whole SVE register.
403  * NOTE: Only the first slice every exists, for now.
404  * If you are tempted to modify this, you must also rework sve_reg_to_region()
405  * to match:
406  */
407 #define vcpu_sve_slices(vcpu) 1
408 
409 /* Bounds of a single SVE register slice within vcpu->arch.sve_state */
410 struct sve_state_reg_region {
411 	unsigned int koffset;	/* offset into sve_state in kernel memory */
412 	unsigned int klen;	/* length in kernel memory */
413 	unsigned int upad;	/* extra trailing padding in user memory */
414 };
415 
416 /*
417  * Validate SVE register ID and get sanitised bounds for user/kernel SVE
418  * register copy
419  */
sve_reg_to_region(struct sve_state_reg_region * region,struct kvm_vcpu * vcpu,const struct kvm_one_reg * reg)420 static int sve_reg_to_region(struct sve_state_reg_region *region,
421 			     struct kvm_vcpu *vcpu,
422 			     const struct kvm_one_reg *reg)
423 {
424 	/* reg ID ranges for Z- registers */
425 	const u64 zreg_id_min = KVM_REG_ARM64_SVE_ZREG(0, 0);
426 	const u64 zreg_id_max = KVM_REG_ARM64_SVE_ZREG(SVE_NUM_ZREGS - 1,
427 						       SVE_NUM_SLICES - 1);
428 
429 	/* reg ID ranges for P- registers and FFR (which are contiguous) */
430 	const u64 preg_id_min = KVM_REG_ARM64_SVE_PREG(0, 0);
431 	const u64 preg_id_max = KVM_REG_ARM64_SVE_FFR(SVE_NUM_SLICES - 1);
432 
433 	unsigned int vq;
434 	unsigned int reg_num;
435 
436 	unsigned int reqoffset, reqlen; /* User-requested offset and length */
437 	unsigned int maxlen; /* Maximum permitted length */
438 
439 	size_t sve_state_size;
440 
441 	const u64 last_preg_id = KVM_REG_ARM64_SVE_PREG(SVE_NUM_PREGS - 1,
442 							SVE_NUM_SLICES - 1);
443 
444 	/* Verify that the P-regs and FFR really do have contiguous IDs: */
445 	BUILD_BUG_ON(KVM_REG_ARM64_SVE_FFR(0) != last_preg_id + 1);
446 
447 	/* Verify that we match the UAPI header: */
448 	BUILD_BUG_ON(SVE_NUM_SLICES != KVM_ARM64_SVE_MAX_SLICES);
449 
450 	reg_num = (reg->id & SVE_REG_ID_MASK) >> SVE_REG_ID_SHIFT;
451 
452 	if (reg->id >= zreg_id_min && reg->id <= zreg_id_max) {
453 		if (!vcpu_has_sve(vcpu) || (reg->id & SVE_REG_SLICE_MASK) > 0)
454 			return -ENOENT;
455 
456 		vq = vcpu_sve_max_vq(vcpu);
457 
458 		reqoffset = SVE_SIG_ZREG_OFFSET(vq, reg_num) -
459 				SVE_SIG_REGS_OFFSET;
460 		reqlen = KVM_SVE_ZREG_SIZE;
461 		maxlen = SVE_SIG_ZREG_SIZE(vq);
462 	} else if (reg->id >= preg_id_min && reg->id <= preg_id_max) {
463 		if (!vcpu_has_sve(vcpu) || (reg->id & SVE_REG_SLICE_MASK) > 0)
464 			return -ENOENT;
465 
466 		vq = vcpu_sve_max_vq(vcpu);
467 
468 		reqoffset = SVE_SIG_PREG_OFFSET(vq, reg_num) -
469 				SVE_SIG_REGS_OFFSET;
470 		reqlen = KVM_SVE_PREG_SIZE;
471 		maxlen = SVE_SIG_PREG_SIZE(vq);
472 	} else {
473 		return -EINVAL;
474 	}
475 
476 	sve_state_size = vcpu_sve_state_size(vcpu);
477 	if (WARN_ON(!sve_state_size))
478 		return -EINVAL;
479 
480 	region->koffset = array_index_nospec(reqoffset, sve_state_size);
481 	region->klen = min(maxlen, reqlen);
482 	region->upad = reqlen - region->klen;
483 
484 	return 0;
485 }
486 
get_sve_reg(struct kvm_vcpu * vcpu,const struct kvm_one_reg * reg)487 static int get_sve_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
488 {
489 	int ret;
490 	struct sve_state_reg_region region;
491 	char __user *uptr = (char __user *)reg->addr;
492 
493 	/* Handle the KVM_REG_ARM64_SVE_VLS pseudo-reg as a special case: */
494 	if (reg->id == KVM_REG_ARM64_SVE_VLS)
495 		return get_sve_vls(vcpu, reg);
496 
497 	/* Try to interpret reg ID as an architectural SVE register... */
498 	ret = sve_reg_to_region(&region, vcpu, reg);
499 	if (ret)
500 		return ret;
501 
502 	if (!kvm_arm_vcpu_sve_finalized(vcpu))
503 		return -EPERM;
504 
505 	if (copy_to_user(uptr, vcpu->arch.sve_state + region.koffset,
506 			 region.klen) ||
507 	    clear_user(uptr + region.klen, region.upad))
508 		return -EFAULT;
509 
510 	return 0;
511 }
512 
set_sve_reg(struct kvm_vcpu * vcpu,const struct kvm_one_reg * reg)513 static int set_sve_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
514 {
515 	int ret;
516 	struct sve_state_reg_region region;
517 	const char __user *uptr = (const char __user *)reg->addr;
518 
519 	/* Handle the KVM_REG_ARM64_SVE_VLS pseudo-reg as a special case: */
520 	if (reg->id == KVM_REG_ARM64_SVE_VLS)
521 		return set_sve_vls(vcpu, reg);
522 
523 	/* Try to interpret reg ID as an architectural SVE register... */
524 	ret = sve_reg_to_region(&region, vcpu, reg);
525 	if (ret)
526 		return ret;
527 
528 	if (!kvm_arm_vcpu_sve_finalized(vcpu))
529 		return -EPERM;
530 
531 	if (copy_from_user(vcpu->arch.sve_state + region.koffset, uptr,
532 			   region.klen))
533 		return -EFAULT;
534 
535 	return 0;
536 }
537 
kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)538 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
539 {
540 	return -EINVAL;
541 }
542 
kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)543 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
544 {
545 	return -EINVAL;
546 }
547 
copy_core_reg_indices(const struct kvm_vcpu * vcpu,u64 __user * uindices)548 static int copy_core_reg_indices(const struct kvm_vcpu *vcpu,
549 				 u64 __user *uindices)
550 {
551 	unsigned int i;
552 	int n = 0;
553 
554 	for (i = 0; i < sizeof(struct kvm_regs) / sizeof(__u32); i++) {
555 		u64 reg = KVM_REG_ARM64 | KVM_REG_ARM_CORE | i;
556 		int size = core_reg_size_from_offset(vcpu, i);
557 
558 		if (size < 0)
559 			continue;
560 
561 		switch (size) {
562 		case sizeof(__u32):
563 			reg |= KVM_REG_SIZE_U32;
564 			break;
565 
566 		case sizeof(__u64):
567 			reg |= KVM_REG_SIZE_U64;
568 			break;
569 
570 		case sizeof(__uint128_t):
571 			reg |= KVM_REG_SIZE_U128;
572 			break;
573 
574 		default:
575 			WARN_ON(1);
576 			continue;
577 		}
578 
579 		if (uindices) {
580 			if (put_user(reg, uindices))
581 				return -EFAULT;
582 			uindices++;
583 		}
584 
585 		n++;
586 	}
587 
588 	return n;
589 }
590 
num_core_regs(const struct kvm_vcpu * vcpu)591 static unsigned long num_core_regs(const struct kvm_vcpu *vcpu)
592 {
593 	return copy_core_reg_indices(vcpu, NULL);
594 }
595 
596 static const u64 timer_reg_list[] = {
597 	KVM_REG_ARM_TIMER_CTL,
598 	KVM_REG_ARM_TIMER_CNT,
599 	KVM_REG_ARM_TIMER_CVAL,
600 	KVM_REG_ARM_PTIMER_CTL,
601 	KVM_REG_ARM_PTIMER_CNT,
602 	KVM_REG_ARM_PTIMER_CVAL,
603 };
604 
605 #define NUM_TIMER_REGS ARRAY_SIZE(timer_reg_list)
606 
is_timer_reg(u64 index)607 static bool is_timer_reg(u64 index)
608 {
609 	switch (index) {
610 	case KVM_REG_ARM_TIMER_CTL:
611 	case KVM_REG_ARM_TIMER_CNT:
612 	case KVM_REG_ARM_TIMER_CVAL:
613 	case KVM_REG_ARM_PTIMER_CTL:
614 	case KVM_REG_ARM_PTIMER_CNT:
615 	case KVM_REG_ARM_PTIMER_CVAL:
616 		return true;
617 	}
618 	return false;
619 }
620 
copy_timer_indices(struct kvm_vcpu * vcpu,u64 __user * uindices)621 static int copy_timer_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
622 {
623 	for (int i = 0; i < NUM_TIMER_REGS; i++) {
624 		if (put_user(timer_reg_list[i], uindices))
625 			return -EFAULT;
626 		uindices++;
627 	}
628 
629 	return 0;
630 }
631 
set_timer_reg(struct kvm_vcpu * vcpu,const struct kvm_one_reg * reg)632 static int set_timer_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
633 {
634 	void __user *uaddr = (void __user *)(long)reg->addr;
635 	u64 val;
636 	int ret;
637 
638 	ret = copy_from_user(&val, uaddr, KVM_REG_SIZE(reg->id));
639 	if (ret != 0)
640 		return -EFAULT;
641 
642 	return kvm_arm_timer_set_reg(vcpu, reg->id, val);
643 }
644 
get_timer_reg(struct kvm_vcpu * vcpu,const struct kvm_one_reg * reg)645 static int get_timer_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
646 {
647 	void __user *uaddr = (void __user *)(long)reg->addr;
648 	u64 val;
649 
650 	val = kvm_arm_timer_get_reg(vcpu, reg->id);
651 	return copy_to_user(uaddr, &val, KVM_REG_SIZE(reg->id)) ? -EFAULT : 0;
652 }
653 
num_sve_regs(const struct kvm_vcpu * vcpu)654 static unsigned long num_sve_regs(const struct kvm_vcpu *vcpu)
655 {
656 	const unsigned int slices = vcpu_sve_slices(vcpu);
657 
658 	if (!vcpu_has_sve(vcpu))
659 		return 0;
660 
661 	/* Policed by KVM_GET_REG_LIST: */
662 	WARN_ON(!kvm_arm_vcpu_sve_finalized(vcpu));
663 
664 	return slices * (SVE_NUM_PREGS + SVE_NUM_ZREGS + 1 /* FFR */)
665 		+ 1; /* KVM_REG_ARM64_SVE_VLS */
666 }
667 
copy_sve_reg_indices(const struct kvm_vcpu * vcpu,u64 __user * uindices)668 static int copy_sve_reg_indices(const struct kvm_vcpu *vcpu,
669 				u64 __user *uindices)
670 {
671 	const unsigned int slices = vcpu_sve_slices(vcpu);
672 	u64 reg;
673 	unsigned int i, n;
674 	int num_regs = 0;
675 
676 	if (!vcpu_has_sve(vcpu))
677 		return 0;
678 
679 	/* Policed by KVM_GET_REG_LIST: */
680 	WARN_ON(!kvm_arm_vcpu_sve_finalized(vcpu));
681 
682 	/*
683 	 * Enumerate this first, so that userspace can save/restore in
684 	 * the order reported by KVM_GET_REG_LIST:
685 	 */
686 	reg = KVM_REG_ARM64_SVE_VLS;
687 	if (put_user(reg, uindices++))
688 		return -EFAULT;
689 	++num_regs;
690 
691 	for (i = 0; i < slices; i++) {
692 		for (n = 0; n < SVE_NUM_ZREGS; n++) {
693 			reg = KVM_REG_ARM64_SVE_ZREG(n, i);
694 			if (put_user(reg, uindices++))
695 				return -EFAULT;
696 			num_regs++;
697 		}
698 
699 		for (n = 0; n < SVE_NUM_PREGS; n++) {
700 			reg = KVM_REG_ARM64_SVE_PREG(n, i);
701 			if (put_user(reg, uindices++))
702 				return -EFAULT;
703 			num_regs++;
704 		}
705 
706 		reg = KVM_REG_ARM64_SVE_FFR(i);
707 		if (put_user(reg, uindices++))
708 			return -EFAULT;
709 		num_regs++;
710 	}
711 
712 	return num_regs;
713 }
714 
715 /**
716  * kvm_arm_num_regs - how many registers do we present via KVM_GET_ONE_REG
717  * @vcpu: the vCPU pointer
718  *
719  * This is for all registers.
720  */
kvm_arm_num_regs(struct kvm_vcpu * vcpu)721 unsigned long kvm_arm_num_regs(struct kvm_vcpu *vcpu)
722 {
723 	unsigned long res = 0;
724 
725 	res += num_core_regs(vcpu);
726 	res += num_sve_regs(vcpu);
727 	res += kvm_arm_num_sys_reg_descs(vcpu);
728 	res += kvm_arm_get_fw_num_regs(vcpu);
729 	res += NUM_TIMER_REGS;
730 
731 	return res;
732 }
733 
734 /**
735  * kvm_arm_copy_reg_indices - get indices of all registers.
736  * @vcpu: the vCPU pointer
737  * @uindices: register list to copy
738  *
739  * We do core registers right here, then we append system regs.
740  */
kvm_arm_copy_reg_indices(struct kvm_vcpu * vcpu,u64 __user * uindices)741 int kvm_arm_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
742 {
743 	int ret;
744 
745 	ret = copy_core_reg_indices(vcpu, uindices);
746 	if (ret < 0)
747 		return ret;
748 	uindices += ret;
749 
750 	ret = copy_sve_reg_indices(vcpu, uindices);
751 	if (ret < 0)
752 		return ret;
753 	uindices += ret;
754 
755 	ret = kvm_arm_copy_fw_reg_indices(vcpu, uindices);
756 	if (ret < 0)
757 		return ret;
758 	uindices += kvm_arm_get_fw_num_regs(vcpu);
759 
760 	ret = copy_timer_indices(vcpu, uindices);
761 	if (ret < 0)
762 		return ret;
763 	uindices += NUM_TIMER_REGS;
764 
765 	return kvm_arm_copy_sys_reg_indices(vcpu, uindices);
766 }
767 
kvm_arm_get_reg(struct kvm_vcpu * vcpu,const struct kvm_one_reg * reg)768 int kvm_arm_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
769 {
770 	/* We currently use nothing arch-specific in upper 32 bits */
771 	if ((reg->id & ~KVM_REG_SIZE_MASK) >> 32 != KVM_REG_ARM64 >> 32)
772 		return -EINVAL;
773 
774 	switch (reg->id & KVM_REG_ARM_COPROC_MASK) {
775 	case KVM_REG_ARM_CORE:	return get_core_reg(vcpu, reg);
776 	case KVM_REG_ARM_FW:
777 	case KVM_REG_ARM_FW_FEAT_BMAP:
778 		return kvm_arm_get_fw_reg(vcpu, reg);
779 	case KVM_REG_ARM64_SVE:	return get_sve_reg(vcpu, reg);
780 	}
781 
782 	if (is_timer_reg(reg->id))
783 		return get_timer_reg(vcpu, reg);
784 
785 	return kvm_arm_sys_reg_get_reg(vcpu, reg);
786 }
787 
kvm_arm_set_reg(struct kvm_vcpu * vcpu,const struct kvm_one_reg * reg)788 int kvm_arm_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
789 {
790 	/* We currently use nothing arch-specific in upper 32 bits */
791 	if ((reg->id & ~KVM_REG_SIZE_MASK) >> 32 != KVM_REG_ARM64 >> 32)
792 		return -EINVAL;
793 
794 	switch (reg->id & KVM_REG_ARM_COPROC_MASK) {
795 	case KVM_REG_ARM_CORE:	return set_core_reg(vcpu, reg);
796 	case KVM_REG_ARM_FW:
797 	case KVM_REG_ARM_FW_FEAT_BMAP:
798 		return kvm_arm_set_fw_reg(vcpu, reg);
799 	case KVM_REG_ARM64_SVE:	return set_sve_reg(vcpu, reg);
800 	}
801 
802 	if (is_timer_reg(reg->id))
803 		return set_timer_reg(vcpu, reg);
804 
805 	return kvm_arm_sys_reg_set_reg(vcpu, reg);
806 }
807 
kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)808 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
809 				  struct kvm_sregs *sregs)
810 {
811 	return -EINVAL;
812 }
813 
kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)814 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
815 				  struct kvm_sregs *sregs)
816 {
817 	return -EINVAL;
818 }
819 
__kvm_arm_vcpu_get_events(struct kvm_vcpu * vcpu,struct kvm_vcpu_events * events)820 int __kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
821 			      struct kvm_vcpu_events *events)
822 {
823 	events->exception.serror_pending = !!(vcpu->arch.hcr_el2 & HCR_VSE);
824 	events->exception.serror_has_esr = cpus_have_final_cap(ARM64_HAS_RAS_EXTN);
825 
826 	if (events->exception.serror_pending && events->exception.serror_has_esr)
827 		events->exception.serror_esr = vcpu_get_vsesr(vcpu);
828 
829 	/*
830 	 * We never return a pending ext_dabt here because we deliver it to
831 	 * the virtual CPU directly when setting the event and it's no longer
832 	 * 'pending' at this point.
833 	 */
834 
835 	return 0;
836 }
837 
__kvm_arm_vcpu_set_events(struct kvm_vcpu * vcpu,struct kvm_vcpu_events * events)838 int __kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
839 			      struct kvm_vcpu_events *events)
840 {
841 	bool serror_pending = events->exception.serror_pending;
842 	bool has_esr = events->exception.serror_has_esr;
843 	bool ext_dabt_pending = events->exception.ext_dabt_pending;
844 
845 	if (serror_pending && has_esr) {
846 		if (!cpus_have_final_cap(ARM64_HAS_RAS_EXTN))
847 			return -EINVAL;
848 
849 		if (!((events->exception.serror_esr) & ~ESR_ELx_ISS_MASK))
850 			kvm_set_sei_esr(vcpu, events->exception.serror_esr);
851 		else
852 			return -EINVAL;
853 	} else if (serror_pending) {
854 		kvm_inject_vabt(vcpu);
855 	}
856 
857 	if (ext_dabt_pending)
858 		kvm_inject_dabt(vcpu, kvm_vcpu_get_hfar(vcpu));
859 
860 	return 0;
861 }
862 
kvm_target_cpu(void)863 u32 __attribute_const__ kvm_target_cpu(void)
864 {
865 	unsigned long implementor = read_cpuid_implementor();
866 	unsigned long part_number = read_cpuid_part_number();
867 
868 	switch (implementor) {
869 	case ARM_CPU_IMP_ARM:
870 		switch (part_number) {
871 		case ARM_CPU_PART_AEM_V8:
872 			return KVM_ARM_TARGET_AEM_V8;
873 		case ARM_CPU_PART_FOUNDATION:
874 			return KVM_ARM_TARGET_FOUNDATION_V8;
875 		case ARM_CPU_PART_CORTEX_A53:
876 			return KVM_ARM_TARGET_CORTEX_A53;
877 		case ARM_CPU_PART_CORTEX_A57:
878 			return KVM_ARM_TARGET_CORTEX_A57;
879 		}
880 		break;
881 	case ARM_CPU_IMP_APM:
882 		switch (part_number) {
883 		case APM_CPU_PART_XGENE:
884 			return KVM_ARM_TARGET_XGENE_POTENZA;
885 		}
886 		break;
887 	}
888 
889 	/* Return a default generic target */
890 	return KVM_ARM_TARGET_GENERIC_V8;
891 }
892 
kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu * vcpu,struct kvm_fpu * fpu)893 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
894 {
895 	return -EINVAL;
896 }
897 
kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu * vcpu,struct kvm_fpu * fpu)898 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
899 {
900 	return -EINVAL;
901 }
902 
kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu * vcpu,struct kvm_translation * tr)903 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
904 				  struct kvm_translation *tr)
905 {
906 	return -EINVAL;
907 }
908 
909 /**
910  * kvm_arch_vcpu_ioctl_set_guest_debug - set up guest debugging
911  * @vcpu: the vCPU pointer
912  * @dbg: the ioctl data buffer
913  *
914  * This sets up and enables the VM for guest debugging. Userspace
915  * passes in a control flag to enable different debug types and
916  * potentially other architecture specific information in the rest of
917  * the structure.
918  */
kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu * vcpu,struct kvm_guest_debug * dbg)919 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
920 					struct kvm_guest_debug *dbg)
921 {
922 	int ret = 0;
923 
924 	trace_kvm_set_guest_debug(vcpu, dbg->control);
925 
926 	if (dbg->control & ~KVM_GUESTDBG_VALID_MASK) {
927 		ret = -EINVAL;
928 		goto out;
929 	}
930 
931 	if (dbg->control & KVM_GUESTDBG_ENABLE) {
932 		vcpu->guest_debug = dbg->control;
933 
934 		/* Hardware assisted Break and Watch points */
935 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW) {
936 			vcpu->arch.external_debug_state = dbg->arch;
937 		}
938 
939 	} else {
940 		/* If not enabled clear all flags */
941 		vcpu->guest_debug = 0;
942 		vcpu_clear_flag(vcpu, DBG_SS_ACTIVE_PENDING);
943 	}
944 
945 out:
946 	return ret;
947 }
948 
kvm_arm_vcpu_arch_set_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)949 int kvm_arm_vcpu_arch_set_attr(struct kvm_vcpu *vcpu,
950 			       struct kvm_device_attr *attr)
951 {
952 	int ret;
953 
954 	switch (attr->group) {
955 	case KVM_ARM_VCPU_PMU_V3_CTRL:
956 		mutex_lock(&vcpu->kvm->arch.config_lock);
957 		ret = kvm_arm_pmu_v3_set_attr(vcpu, attr);
958 		mutex_unlock(&vcpu->kvm->arch.config_lock);
959 		break;
960 	case KVM_ARM_VCPU_TIMER_CTRL:
961 		ret = kvm_arm_timer_set_attr(vcpu, attr);
962 		break;
963 	case KVM_ARM_VCPU_PVTIME_CTRL:
964 		ret = kvm_arm_pvtime_set_attr(vcpu, attr);
965 		break;
966 	default:
967 		ret = -ENXIO;
968 		break;
969 	}
970 
971 	return ret;
972 }
973 
kvm_arm_vcpu_arch_get_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)974 int kvm_arm_vcpu_arch_get_attr(struct kvm_vcpu *vcpu,
975 			       struct kvm_device_attr *attr)
976 {
977 	int ret;
978 
979 	switch (attr->group) {
980 	case KVM_ARM_VCPU_PMU_V3_CTRL:
981 		ret = kvm_arm_pmu_v3_get_attr(vcpu, attr);
982 		break;
983 	case KVM_ARM_VCPU_TIMER_CTRL:
984 		ret = kvm_arm_timer_get_attr(vcpu, attr);
985 		break;
986 	case KVM_ARM_VCPU_PVTIME_CTRL:
987 		ret = kvm_arm_pvtime_get_attr(vcpu, attr);
988 		break;
989 	default:
990 		ret = -ENXIO;
991 		break;
992 	}
993 
994 	return ret;
995 }
996 
kvm_arm_vcpu_arch_has_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)997 int kvm_arm_vcpu_arch_has_attr(struct kvm_vcpu *vcpu,
998 			       struct kvm_device_attr *attr)
999 {
1000 	int ret;
1001 
1002 	switch (attr->group) {
1003 	case KVM_ARM_VCPU_PMU_V3_CTRL:
1004 		ret = kvm_arm_pmu_v3_has_attr(vcpu, attr);
1005 		break;
1006 	case KVM_ARM_VCPU_TIMER_CTRL:
1007 		ret = kvm_arm_timer_has_attr(vcpu, attr);
1008 		break;
1009 	case KVM_ARM_VCPU_PVTIME_CTRL:
1010 		ret = kvm_arm_pvtime_has_attr(vcpu, attr);
1011 		break;
1012 	default:
1013 		ret = -ENXIO;
1014 		break;
1015 	}
1016 
1017 	return ret;
1018 }
1019 
kvm_vm_ioctl_mte_copy_tags(struct kvm * kvm,struct kvm_arm_copy_mte_tags * copy_tags)1020 int kvm_vm_ioctl_mte_copy_tags(struct kvm *kvm,
1021 			       struct kvm_arm_copy_mte_tags *copy_tags)
1022 {
1023 	gpa_t guest_ipa = copy_tags->guest_ipa;
1024 	size_t length = copy_tags->length;
1025 	void __user *tags = copy_tags->addr;
1026 	gpa_t gfn;
1027 	bool write = !(copy_tags->flags & KVM_ARM_TAGS_FROM_GUEST);
1028 	int ret = 0;
1029 
1030 	if (!kvm_has_mte(kvm))
1031 		return -EINVAL;
1032 
1033 	if (copy_tags->reserved[0] || copy_tags->reserved[1])
1034 		return -EINVAL;
1035 
1036 	if (copy_tags->flags & ~KVM_ARM_TAGS_FROM_GUEST)
1037 		return -EINVAL;
1038 
1039 	if (length & ~PAGE_MASK || guest_ipa & ~PAGE_MASK)
1040 		return -EINVAL;
1041 
1042 	/* Lengths above INT_MAX cannot be represented in the return value */
1043 	if (length > INT_MAX)
1044 		return -EINVAL;
1045 
1046 	gfn = gpa_to_gfn(guest_ipa);
1047 
1048 	mutex_lock(&kvm->slots_lock);
1049 
1050 	if (write && atomic_read(&kvm->nr_memslots_dirty_logging)) {
1051 		ret = -EBUSY;
1052 		goto out;
1053 	}
1054 
1055 	while (length > 0) {
1056 		kvm_pfn_t pfn = gfn_to_pfn_prot(kvm, gfn, write, NULL);
1057 		void *maddr;
1058 		unsigned long num_tags;
1059 		struct page *page;
1060 
1061 		if (is_error_noslot_pfn(pfn)) {
1062 			ret = -EFAULT;
1063 			goto out;
1064 		}
1065 
1066 		page = pfn_to_online_page(pfn);
1067 		if (!page) {
1068 			/* Reject ZONE_DEVICE memory */
1069 			kvm_release_pfn_clean(pfn);
1070 			ret = -EFAULT;
1071 			goto out;
1072 		}
1073 		maddr = page_address(page);
1074 
1075 		if (!write) {
1076 			if (page_mte_tagged(page))
1077 				num_tags = mte_copy_tags_to_user(tags, maddr,
1078 							MTE_GRANULES_PER_PAGE);
1079 			else
1080 				/* No tags in memory, so write zeros */
1081 				num_tags = MTE_GRANULES_PER_PAGE -
1082 					clear_user(tags, MTE_GRANULES_PER_PAGE);
1083 			kvm_release_pfn_clean(pfn);
1084 		} else {
1085 			/*
1086 			 * Only locking to serialise with a concurrent
1087 			 * __set_ptes() in the VMM but still overriding the
1088 			 * tags, hence ignoring the return value.
1089 			 */
1090 			try_page_mte_tagging(page);
1091 			num_tags = mte_copy_tags_from_user(maddr, tags,
1092 							MTE_GRANULES_PER_PAGE);
1093 
1094 			/* uaccess failed, don't leave stale tags */
1095 			if (num_tags != MTE_GRANULES_PER_PAGE)
1096 				mte_clear_page_tags(maddr);
1097 			set_page_mte_tagged(page);
1098 
1099 			kvm_release_pfn_dirty(pfn);
1100 		}
1101 
1102 		if (num_tags != MTE_GRANULES_PER_PAGE) {
1103 			ret = -EFAULT;
1104 			goto out;
1105 		}
1106 
1107 		gfn++;
1108 		tags += num_tags;
1109 		length -= PAGE_SIZE;
1110 	}
1111 
1112 out:
1113 	mutex_unlock(&kvm->slots_lock);
1114 	/* If some data has been copied report the number of bytes copied */
1115 	if (length != copy_tags->length)
1116 		return copy_tags->length - length;
1117 	return ret;
1118 }
1119