1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/mm/compaction.c
4 *
5 * Memory compaction for the reduction of external fragmentation. Note that
6 * this heavily depends upon page migration to do all the real heavy
7 * lifting
8 *
9 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
10 */
11 #include <linux/cpu.h>
12 #include <linux/swap.h>
13 #include <linux/migrate.h>
14 #include <linux/compaction.h>
15 #include <linux/mm_inline.h>
16 #include <linux/sched/signal.h>
17 #include <linux/backing-dev.h>
18 #include <linux/sysctl.h>
19 #include <linux/sysfs.h>
20 #include <linux/page-isolation.h>
21 #include <linux/kasan.h>
22 #include <linux/kthread.h>
23 #include <linux/freezer.h>
24 #include <linux/page_owner.h>
25 #include <linux/psi.h>
26 #include <linux/cpuset.h>
27 #include "internal.h"
28
29 #ifdef CONFIG_COMPACTION
30 /*
31 * Fragmentation score check interval for proactive compaction purposes.
32 */
33 #define HPAGE_FRAG_CHECK_INTERVAL_MSEC (500)
34
count_compact_event(enum vm_event_item item)35 static inline void count_compact_event(enum vm_event_item item)
36 {
37 count_vm_event(item);
38 }
39
count_compact_events(enum vm_event_item item,long delta)40 static inline void count_compact_events(enum vm_event_item item, long delta)
41 {
42 count_vm_events(item, delta);
43 }
44
45 /*
46 * order == -1 is expected when compacting proactively via
47 * 1. /proc/sys/vm/compact_memory
48 * 2. /sys/devices/system/node/nodex/compact
49 * 3. /proc/sys/vm/compaction_proactiveness
50 */
is_via_compact_memory(int order)51 static inline bool is_via_compact_memory(int order)
52 {
53 return order == -1;
54 }
55
56 #else
57 #define count_compact_event(item) do { } while (0)
58 #define count_compact_events(item, delta) do { } while (0)
is_via_compact_memory(int order)59 static inline bool is_via_compact_memory(int order) { return false; }
60 #endif
61
62 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
63
64 #define CREATE_TRACE_POINTS
65 #include <trace/events/compaction.h>
66 #undef CREATE_TRACE_POINTS
67
68 #include <trace/hooks/vmscan.h>
69 #include <trace/hooks/compaction.h>
70 #include <trace/hooks/mm.h>
71
72 #undef CREATE_TRACE_POINTS
73 #ifndef __GENKSYMS__
74 #include <trace/hooks/mm.h>
75 #endif
76
77 #define block_start_pfn(pfn, order) round_down(pfn, 1UL << (order))
78 #define block_end_pfn(pfn, order) ALIGN((pfn) + 1, 1UL << (order))
79
80 /*
81 * Page order with-respect-to which proactive compaction
82 * calculates external fragmentation, which is used as
83 * the "fragmentation score" of a node/zone.
84 */
85 #if defined CONFIG_TRANSPARENT_HUGEPAGE
86 #define COMPACTION_HPAGE_ORDER HPAGE_PMD_ORDER
87 #elif defined CONFIG_HUGETLBFS
88 #define COMPACTION_HPAGE_ORDER HUGETLB_PAGE_ORDER
89 #else
90 #define COMPACTION_HPAGE_ORDER (PMD_SHIFT - PAGE_SHIFT)
91 #endif
92
mark_allocated_noprof(struct page * page,unsigned int order,gfp_t gfp_flags)93 static struct page *mark_allocated_noprof(struct page *page, unsigned int order, gfp_t gfp_flags)
94 {
95 post_alloc_hook(page, order, __GFP_MOVABLE);
96 return page;
97 }
98 #define mark_allocated(...) alloc_hooks(mark_allocated_noprof(__VA_ARGS__))
99
release_free_list(struct list_head * freepages)100 static unsigned long release_free_list(struct list_head *freepages)
101 {
102 int order;
103 unsigned long high_pfn = 0;
104
105 for (order = 0; order < NR_PAGE_ORDERS; order++) {
106 struct page *page, *next;
107
108 list_for_each_entry_safe(page, next, &freepages[order], lru) {
109 unsigned long pfn = page_to_pfn(page);
110
111 list_del(&page->lru);
112 /*
113 * Convert free pages into post allocation pages, so
114 * that we can free them via __free_page.
115 */
116 mark_allocated(page, order, __GFP_MOVABLE);
117 __free_pages(page, order);
118 if (pfn > high_pfn)
119 high_pfn = pfn;
120 }
121 }
122 return high_pfn;
123 }
124
125 #ifdef CONFIG_COMPACTION
PageMovable(struct page * page)126 bool PageMovable(struct page *page)
127 {
128 const struct movable_operations *mops;
129
130 VM_BUG_ON_PAGE(!PageLocked(page), page);
131 if (!__PageMovable(page))
132 return false;
133
134 mops = page_movable_ops(page);
135 if (mops)
136 return true;
137
138 return false;
139 }
140
__SetPageMovable(struct page * page,const struct movable_operations * mops)141 void __SetPageMovable(struct page *page, const struct movable_operations *mops)
142 {
143 VM_BUG_ON_PAGE(!PageLocked(page), page);
144 VM_BUG_ON_PAGE((unsigned long)mops & PAGE_MAPPING_MOVABLE, page);
145 page->mapping = (void *)((unsigned long)mops | PAGE_MAPPING_MOVABLE);
146 }
147 EXPORT_SYMBOL(__SetPageMovable);
148
__ClearPageMovable(struct page * page)149 void __ClearPageMovable(struct page *page)
150 {
151 VM_BUG_ON_PAGE(!PageMovable(page), page);
152 /*
153 * This page still has the type of a movable page, but it's
154 * actually not movable any more.
155 */
156 page->mapping = (void *)PAGE_MAPPING_MOVABLE;
157 }
158 EXPORT_SYMBOL(__ClearPageMovable);
159
160 /* Do not skip compaction more than 64 times */
161 #define COMPACT_MAX_DEFER_SHIFT 6
162
163 /*
164 * Compaction is deferred when compaction fails to result in a page
165 * allocation success. 1 << compact_defer_shift, compactions are skipped up
166 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
167 */
defer_compaction(struct zone * zone,int order)168 static void defer_compaction(struct zone *zone, int order)
169 {
170 zone->compact_considered = 0;
171 zone->compact_defer_shift++;
172
173 if (order < zone->compact_order_failed)
174 zone->compact_order_failed = order;
175
176 if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
177 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
178
179 trace_mm_compaction_defer_compaction(zone, order);
180 }
181
182 /* Returns true if compaction should be skipped this time */
compaction_deferred(struct zone * zone,int order)183 static bool compaction_deferred(struct zone *zone, int order)
184 {
185 unsigned long defer_limit = 1UL << zone->compact_defer_shift;
186
187 if (order < zone->compact_order_failed)
188 return false;
189
190 /* Avoid possible overflow */
191 if (++zone->compact_considered >= defer_limit) {
192 zone->compact_considered = defer_limit;
193 return false;
194 }
195
196 trace_mm_compaction_deferred(zone, order);
197
198 return true;
199 }
200
201 /*
202 * Update defer tracking counters after successful compaction of given order,
203 * which means an allocation either succeeded (alloc_success == true) or is
204 * expected to succeed.
205 */
compaction_defer_reset(struct zone * zone,int order,bool alloc_success)206 void compaction_defer_reset(struct zone *zone, int order,
207 bool alloc_success)
208 {
209 if (alloc_success) {
210 zone->compact_considered = 0;
211 zone->compact_defer_shift = 0;
212 }
213 if (order >= zone->compact_order_failed)
214 zone->compact_order_failed = order + 1;
215
216 trace_mm_compaction_defer_reset(zone, order);
217 }
218
219 /* Returns true if restarting compaction after many failures */
compaction_restarting(struct zone * zone,int order)220 static bool compaction_restarting(struct zone *zone, int order)
221 {
222 if (order < zone->compact_order_failed)
223 return false;
224
225 return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
226 zone->compact_considered >= 1UL << zone->compact_defer_shift;
227 }
228
229 /* Returns true if the pageblock should be scanned for pages to isolate. */
isolation_suitable(struct compact_control * cc,struct page * page)230 static inline bool isolation_suitable(struct compact_control *cc,
231 struct page *page)
232 {
233 if (cc->ignore_skip_hint)
234 return true;
235
236 return !get_pageblock_skip(page);
237 }
238
reset_cached_positions(struct zone * zone)239 static void reset_cached_positions(struct zone *zone)
240 {
241 zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
242 zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
243 zone->compact_cached_free_pfn =
244 pageblock_start_pfn(zone_end_pfn(zone) - 1);
245 }
246
247 #ifdef CONFIG_SPARSEMEM
248 /*
249 * If the PFN falls into an offline section, return the start PFN of the
250 * next online section. If the PFN falls into an online section or if
251 * there is no next online section, return 0.
252 */
skip_offline_sections(unsigned long start_pfn)253 static unsigned long skip_offline_sections(unsigned long start_pfn)
254 {
255 unsigned long start_nr = pfn_to_section_nr(start_pfn);
256
257 if (online_section_nr(start_nr))
258 return 0;
259
260 while (++start_nr <= __highest_present_section_nr) {
261 if (online_section_nr(start_nr))
262 return section_nr_to_pfn(start_nr);
263 }
264
265 return 0;
266 }
267
268 /*
269 * If the PFN falls into an offline section, return the end PFN of the
270 * next online section in reverse. If the PFN falls into an online section
271 * or if there is no next online section in reverse, return 0.
272 */
skip_offline_sections_reverse(unsigned long start_pfn)273 static unsigned long skip_offline_sections_reverse(unsigned long start_pfn)
274 {
275 unsigned long start_nr = pfn_to_section_nr(start_pfn);
276
277 if (!start_nr || online_section_nr(start_nr))
278 return 0;
279
280 while (start_nr-- > 0) {
281 if (online_section_nr(start_nr))
282 return section_nr_to_pfn(start_nr) + PAGES_PER_SECTION;
283 }
284
285 return 0;
286 }
287 #else
skip_offline_sections(unsigned long start_pfn)288 static unsigned long skip_offline_sections(unsigned long start_pfn)
289 {
290 return 0;
291 }
292
skip_offline_sections_reverse(unsigned long start_pfn)293 static unsigned long skip_offline_sections_reverse(unsigned long start_pfn)
294 {
295 return 0;
296 }
297 #endif
298
299 /*
300 * Compound pages of >= pageblock_order should consistently be skipped until
301 * released. It is always pointless to compact pages of such order (if they are
302 * migratable), and the pageblocks they occupy cannot contain any free pages.
303 */
pageblock_skip_persistent(struct page * page)304 static bool pageblock_skip_persistent(struct page *page)
305 {
306 if (!PageCompound(page))
307 return false;
308
309 page = compound_head(page);
310
311 if (compound_order(page) >= pageblock_order)
312 return true;
313
314 return false;
315 }
316
317 static bool
__reset_isolation_pfn(struct zone * zone,unsigned long pfn,bool check_source,bool check_target)318 __reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source,
319 bool check_target)
320 {
321 struct page *page = pfn_to_online_page(pfn);
322 struct page *block_page;
323 struct page *end_page;
324 unsigned long block_pfn;
325
326 if (!page)
327 return false;
328 if (zone != page_zone(page))
329 return false;
330 if (pageblock_skip_persistent(page))
331 return false;
332
333 /*
334 * If skip is already cleared do no further checking once the
335 * restart points have been set.
336 */
337 if (check_source && check_target && !get_pageblock_skip(page))
338 return true;
339
340 /*
341 * If clearing skip for the target scanner, do not select a
342 * non-movable pageblock as the starting point.
343 */
344 if (!check_source && check_target &&
345 get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
346 return false;
347
348 /* Ensure the start of the pageblock or zone is online and valid */
349 block_pfn = pageblock_start_pfn(pfn);
350 block_pfn = max(block_pfn, zone->zone_start_pfn);
351 block_page = pfn_to_online_page(block_pfn);
352 if (block_page) {
353 page = block_page;
354 pfn = block_pfn;
355 }
356
357 /* Ensure the end of the pageblock or zone is online and valid */
358 block_pfn = pageblock_end_pfn(pfn) - 1;
359 block_pfn = min(block_pfn, zone_end_pfn(zone) - 1);
360 end_page = pfn_to_online_page(block_pfn);
361 if (!end_page)
362 return false;
363
364 /*
365 * Only clear the hint if a sample indicates there is either a
366 * free page or an LRU page in the block. One or other condition
367 * is necessary for the block to be a migration source/target.
368 */
369 do {
370 if (check_source && PageLRU(page)) {
371 clear_pageblock_skip(page);
372 return true;
373 }
374
375 if (check_target && PageBuddy(page)) {
376 clear_pageblock_skip(page);
377 return true;
378 }
379
380 page += (1 << PAGE_ALLOC_COSTLY_ORDER);
381 } while (page <= end_page);
382
383 return false;
384 }
385
386 /*
387 * This function is called to clear all cached information on pageblocks that
388 * should be skipped for page isolation when the migrate and free page scanner
389 * meet.
390 */
__reset_isolation_suitable(struct zone * zone)391 static void __reset_isolation_suitable(struct zone *zone)
392 {
393 unsigned long migrate_pfn = zone->zone_start_pfn;
394 unsigned long free_pfn = zone_end_pfn(zone) - 1;
395 unsigned long reset_migrate = free_pfn;
396 unsigned long reset_free = migrate_pfn;
397 bool source_set = false;
398 bool free_set = false;
399
400 /* Only flush if a full compaction finished recently */
401 if (!zone->compact_blockskip_flush)
402 return;
403
404 zone->compact_blockskip_flush = false;
405
406 /*
407 * Walk the zone and update pageblock skip information. Source looks
408 * for PageLRU while target looks for PageBuddy. When the scanner
409 * is found, both PageBuddy and PageLRU are checked as the pageblock
410 * is suitable as both source and target.
411 */
412 for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages,
413 free_pfn -= pageblock_nr_pages) {
414 cond_resched();
415
416 /* Update the migrate PFN */
417 if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) &&
418 migrate_pfn < reset_migrate) {
419 source_set = true;
420 reset_migrate = migrate_pfn;
421 zone->compact_init_migrate_pfn = reset_migrate;
422 zone->compact_cached_migrate_pfn[0] = reset_migrate;
423 zone->compact_cached_migrate_pfn[1] = reset_migrate;
424 }
425
426 /* Update the free PFN */
427 if (__reset_isolation_pfn(zone, free_pfn, free_set, true) &&
428 free_pfn > reset_free) {
429 free_set = true;
430 reset_free = free_pfn;
431 zone->compact_init_free_pfn = reset_free;
432 zone->compact_cached_free_pfn = reset_free;
433 }
434 }
435
436 /* Leave no distance if no suitable block was reset */
437 if (reset_migrate >= reset_free) {
438 zone->compact_cached_migrate_pfn[0] = migrate_pfn;
439 zone->compact_cached_migrate_pfn[1] = migrate_pfn;
440 zone->compact_cached_free_pfn = free_pfn;
441 }
442 }
443
reset_isolation_suitable(pg_data_t * pgdat)444 void reset_isolation_suitable(pg_data_t *pgdat)
445 {
446 int zoneid;
447
448 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
449 struct zone *zone = &pgdat->node_zones[zoneid];
450 if (!populated_zone(zone))
451 continue;
452
453 __reset_isolation_suitable(zone);
454 }
455 }
456
457 /*
458 * Sets the pageblock skip bit if it was clear. Note that this is a hint as
459 * locks are not required for read/writers. Returns true if it was already set.
460 */
test_and_set_skip(struct compact_control * cc,struct page * page)461 static bool test_and_set_skip(struct compact_control *cc, struct page *page)
462 {
463 bool skip;
464
465 /* Do not update if skip hint is being ignored */
466 if (cc->ignore_skip_hint)
467 return false;
468
469 skip = get_pageblock_skip(page);
470 if (!skip && !cc->no_set_skip_hint)
471 set_pageblock_skip(page);
472
473 return skip;
474 }
475
update_cached_migrate(struct compact_control * cc,unsigned long pfn)476 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
477 {
478 struct zone *zone = cc->zone;
479
480 /* Set for isolation rather than compaction */
481 if (cc->no_set_skip_hint)
482 return;
483
484 pfn = pageblock_end_pfn(pfn);
485
486 /* Update where async and sync compaction should restart */
487 if (pfn > zone->compact_cached_migrate_pfn[0])
488 zone->compact_cached_migrate_pfn[0] = pfn;
489 if (cc->mode != MIGRATE_ASYNC &&
490 pfn > zone->compact_cached_migrate_pfn[1])
491 zone->compact_cached_migrate_pfn[1] = pfn;
492 }
493
494 /*
495 * If no pages were isolated then mark this pageblock to be skipped in the
496 * future. The information is later cleared by __reset_isolation_suitable().
497 */
update_pageblock_skip(struct compact_control * cc,struct page * page,unsigned long pfn)498 static void update_pageblock_skip(struct compact_control *cc,
499 struct page *page, unsigned long pfn)
500 {
501 struct zone *zone = cc->zone;
502
503 if (cc->no_set_skip_hint)
504 return;
505
506 set_pageblock_skip(page);
507
508 if (pfn < zone->compact_cached_free_pfn)
509 zone->compact_cached_free_pfn = pfn;
510 }
511 #else
isolation_suitable(struct compact_control * cc,struct page * page)512 static inline bool isolation_suitable(struct compact_control *cc,
513 struct page *page)
514 {
515 return true;
516 }
517
pageblock_skip_persistent(struct page * page)518 static inline bool pageblock_skip_persistent(struct page *page)
519 {
520 return false;
521 }
522
update_pageblock_skip(struct compact_control * cc,struct page * page,unsigned long pfn)523 static inline void update_pageblock_skip(struct compact_control *cc,
524 struct page *page, unsigned long pfn)
525 {
526 }
527
update_cached_migrate(struct compact_control * cc,unsigned long pfn)528 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
529 {
530 }
531
test_and_set_skip(struct compact_control * cc,struct page * page)532 static bool test_and_set_skip(struct compact_control *cc, struct page *page)
533 {
534 return false;
535 }
536 #endif /* CONFIG_COMPACTION */
537
538 /*
539 * Compaction requires the taking of some coarse locks that are potentially
540 * very heavily contended. For async compaction, trylock and record if the
541 * lock is contended. The lock will still be acquired but compaction will
542 * abort when the current block is finished regardless of success rate.
543 * Sync compaction acquires the lock.
544 *
545 * Always returns true which makes it easier to track lock state in callers.
546 */
compact_lock_irqsave(spinlock_t * lock,unsigned long * flags,struct compact_control * cc)547 static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags,
548 struct compact_control *cc)
549 __acquires(lock)
550 {
551 /* Track if the lock is contended in async mode */
552 if (cc->mode == MIGRATE_ASYNC && !cc->contended) {
553 if (spin_trylock_irqsave(lock, *flags))
554 return true;
555
556 cc->contended = true;
557 }
558
559 spin_lock_irqsave(lock, *flags);
560 return true;
561 }
562
563 /*
564 * Compaction requires the taking of some coarse locks that are potentially
565 * very heavily contended. The lock should be periodically unlocked to avoid
566 * having disabled IRQs for a long time, even when there is nobody waiting on
567 * the lock. It might also be that allowing the IRQs will result in
568 * need_resched() becoming true. If scheduling is needed, compaction schedules.
569 * Either compaction type will also abort if a fatal signal is pending.
570 * In either case if the lock was locked, it is dropped and not regained.
571 *
572 * Returns true if compaction should abort due to fatal signal pending.
573 * Returns false when compaction can continue.
574 */
compact_unlock_should_abort(spinlock_t * lock,unsigned long flags,bool * locked,struct compact_control * cc)575 static bool compact_unlock_should_abort(spinlock_t *lock,
576 unsigned long flags, bool *locked, struct compact_control *cc)
577 {
578 if (*locked) {
579 spin_unlock_irqrestore(lock, flags);
580 *locked = false;
581 }
582
583 if (fatal_signal_pending(current)) {
584 cc->contended = true;
585 return true;
586 }
587
588 cond_resched();
589
590 return false;
591 }
592
593 /*
594 * Isolate free pages onto a private freelist. If @strict is true, will abort
595 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
596 * (even though it may still end up isolating some pages).
597 */
isolate_freepages_block(struct compact_control * cc,unsigned long * start_pfn,unsigned long end_pfn,struct list_head * freelist,unsigned int stride,bool strict)598 static unsigned long isolate_freepages_block(struct compact_control *cc,
599 unsigned long *start_pfn,
600 unsigned long end_pfn,
601 struct list_head *freelist,
602 unsigned int stride,
603 bool strict)
604 {
605 int nr_scanned = 0, total_isolated = 0;
606 struct page *page;
607 unsigned long flags = 0;
608 bool locked = false;
609 unsigned long blockpfn = *start_pfn;
610 unsigned int order;
611
612 /* Strict mode is for isolation, speed is secondary */
613 if (strict)
614 stride = 1;
615
616 page = pfn_to_page(blockpfn);
617
618 /* Isolate free pages. */
619 for (; blockpfn < end_pfn; blockpfn += stride, page += stride) {
620 int isolated;
621
622 /*
623 * Periodically drop the lock (if held) regardless of its
624 * contention, to give chance to IRQs. Abort if fatal signal
625 * pending.
626 */
627 if (!(blockpfn % COMPACT_CLUSTER_MAX)
628 && compact_unlock_should_abort(&cc->zone->lock, flags,
629 &locked, cc))
630 break;
631
632 nr_scanned++;
633
634 /*
635 * For compound pages such as THP and hugetlbfs, we can save
636 * potentially a lot of iterations if we skip them at once.
637 * The check is racy, but we can consider only valid values
638 * and the only danger is skipping too much.
639 */
640 if (PageCompound(page)) {
641 const unsigned int order = compound_order(page);
642
643 if ((order <= MAX_PAGE_ORDER) &&
644 (blockpfn + (1UL << order) <= end_pfn)) {
645 blockpfn += (1UL << order) - 1;
646 page += (1UL << order) - 1;
647 nr_scanned += (1UL << order) - 1;
648 }
649
650 goto isolate_fail;
651 }
652
653 if (!PageBuddy(page))
654 goto isolate_fail;
655
656 /* If we already hold the lock, we can skip some rechecking. */
657 if (!locked) {
658 locked = compact_lock_irqsave(&cc->zone->lock,
659 &flags, cc);
660
661 /* Recheck this is a buddy page under lock */
662 if (!PageBuddy(page))
663 goto isolate_fail;
664 }
665
666 /* Found a free page, will break it into order-0 pages */
667 order = buddy_order(page);
668 isolated = __isolate_free_page(page, order);
669 if (!isolated)
670 break;
671 set_page_private(page, order);
672
673 nr_scanned += isolated - 1;
674 total_isolated += isolated;
675 cc->nr_freepages += isolated;
676 list_add_tail(&page->lru, &freelist[order]);
677
678 if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
679 blockpfn += isolated;
680 break;
681 }
682 /* Advance to the end of split page */
683 blockpfn += isolated - 1;
684 page += isolated - 1;
685 continue;
686
687 isolate_fail:
688 if (strict)
689 break;
690
691 }
692
693 if (locked)
694 spin_unlock_irqrestore(&cc->zone->lock, flags);
695
696 /*
697 * Be careful to not go outside of the pageblock.
698 */
699 if (unlikely(blockpfn > end_pfn))
700 blockpfn = end_pfn;
701
702 trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
703 nr_scanned, total_isolated);
704
705 /* Record how far we have got within the block */
706 *start_pfn = blockpfn;
707
708 /*
709 * If strict isolation is requested by CMA then check that all the
710 * pages requested were isolated. If there were any failures, 0 is
711 * returned and CMA will fail.
712 */
713 if (strict && blockpfn < end_pfn)
714 total_isolated = 0;
715
716 cc->total_free_scanned += nr_scanned;
717 if (total_isolated)
718 count_compact_events(COMPACTISOLATED, total_isolated);
719 return total_isolated;
720 }
721
722 /**
723 * isolate_freepages_range() - isolate free pages.
724 * @cc: Compaction control structure.
725 * @start_pfn: The first PFN to start isolating.
726 * @end_pfn: The one-past-last PFN.
727 *
728 * Non-free pages, invalid PFNs, or zone boundaries within the
729 * [start_pfn, end_pfn) range are considered errors, cause function to
730 * undo its actions and return zero. cc->freepages[] are empty.
731 *
732 * Otherwise, function returns one-past-the-last PFN of isolated page
733 * (which may be greater then end_pfn if end fell in a middle of
734 * a free page). cc->freepages[] contain free pages isolated.
735 */
736 unsigned long
isolate_freepages_range(struct compact_control * cc,unsigned long start_pfn,unsigned long end_pfn)737 isolate_freepages_range(struct compact_control *cc,
738 unsigned long start_pfn, unsigned long end_pfn)
739 {
740 unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
741 int order;
742
743 for (order = 0; order < NR_PAGE_ORDERS; order++)
744 INIT_LIST_HEAD(&cc->freepages[order]);
745
746 pfn = start_pfn;
747 block_start_pfn = pageblock_start_pfn(pfn);
748 if (block_start_pfn < cc->zone->zone_start_pfn)
749 block_start_pfn = cc->zone->zone_start_pfn;
750 block_end_pfn = pageblock_end_pfn(pfn);
751
752 for (; pfn < end_pfn; pfn += isolated,
753 block_start_pfn = block_end_pfn,
754 block_end_pfn += pageblock_nr_pages) {
755 /* Protect pfn from changing by isolate_freepages_block */
756 unsigned long isolate_start_pfn = pfn;
757
758 /*
759 * pfn could pass the block_end_pfn if isolated freepage
760 * is more than pageblock order. In this case, we adjust
761 * scanning range to right one.
762 */
763 if (pfn >= block_end_pfn) {
764 block_start_pfn = pageblock_start_pfn(pfn);
765 block_end_pfn = pageblock_end_pfn(pfn);
766 }
767
768 block_end_pfn = min(block_end_pfn, end_pfn);
769
770 if (!pageblock_pfn_to_page(block_start_pfn,
771 block_end_pfn, cc->zone))
772 break;
773
774 isolated = isolate_freepages_block(cc, &isolate_start_pfn,
775 block_end_pfn, cc->freepages, 0, true);
776
777 /*
778 * In strict mode, isolate_freepages_block() returns 0 if
779 * there are any holes in the block (ie. invalid PFNs or
780 * non-free pages).
781 */
782 if (!isolated)
783 break;
784
785 /*
786 * If we managed to isolate pages, it is always (1 << n) *
787 * pageblock_nr_pages for some non-negative n. (Max order
788 * page may span two pageblocks).
789 */
790 }
791
792 if (pfn < end_pfn) {
793 /* Loop terminated early, cleanup. */
794 release_free_list(cc->freepages);
795 return 0;
796 }
797
798 /* We don't use freelists for anything. */
799 return pfn;
800 }
801
802 /* Similar to reclaim, but different enough that they don't share logic */
too_many_isolated(struct compact_control * cc)803 static bool too_many_isolated(struct compact_control *cc)
804 {
805 pg_data_t *pgdat = cc->zone->zone_pgdat;
806 bool too_many;
807
808 unsigned long active, inactive, isolated;
809
810 inactive = node_page_state(pgdat, NR_INACTIVE_FILE) +
811 node_page_state(pgdat, NR_INACTIVE_ANON);
812 active = node_page_state(pgdat, NR_ACTIVE_FILE) +
813 node_page_state(pgdat, NR_ACTIVE_ANON);
814 isolated = node_page_state(pgdat, NR_ISOLATED_FILE) +
815 node_page_state(pgdat, NR_ISOLATED_ANON);
816
817 /*
818 * Allow GFP_NOFS to isolate past the limit set for regular
819 * compaction runs. This prevents an ABBA deadlock when other
820 * compactors have already isolated to the limit, but are
821 * blocked on filesystem locks held by the GFP_NOFS thread.
822 */
823 if (cc->gfp_mask & __GFP_FS) {
824 inactive >>= 3;
825 active >>= 3;
826 }
827
828 too_many = isolated > (inactive + active) / 2;
829 if (!too_many)
830 wake_throttle_isolated(pgdat);
831
832 return too_many;
833 }
834
835 /**
836 * skip_isolation_on_order() - determine when to skip folio isolation based on
837 * folio order and compaction target order
838 * @order: to-be-isolated folio order
839 * @target_order: compaction target order
840 *
841 * This avoids unnecessary folio isolations during compaction.
842 */
skip_isolation_on_order(int order,int target_order)843 static bool skip_isolation_on_order(int order, int target_order)
844 {
845 /*
846 * Unless we are performing global compaction (i.e.,
847 * is_via_compact_memory), skip any folios that are larger than the
848 * target order: we wouldn't be here if we'd have a free folio with
849 * the desired target_order, so migrating this folio would likely fail
850 * later.
851 */
852 if (!is_via_compact_memory(target_order) && order >= target_order)
853 return true;
854 /*
855 * We limit memory compaction to pageblocks and won't try
856 * creating free blocks of memory that are larger than that.
857 */
858 return order >= pageblock_order;
859 }
860
861 /**
862 * isolate_migratepages_block() - isolate all migrate-able pages within
863 * a single pageblock
864 * @cc: Compaction control structure.
865 * @low_pfn: The first PFN to isolate
866 * @end_pfn: The one-past-the-last PFN to isolate, within same pageblock
867 * @mode: Isolation mode to be used.
868 *
869 * Isolate all pages that can be migrated from the range specified by
870 * [low_pfn, end_pfn). The range is expected to be within same pageblock.
871 * Returns errno, like -EAGAIN or -EINTR in case e.g signal pending or congestion,
872 * -ENOMEM in case we could not allocate a page, or 0.
873 * cc->migrate_pfn will contain the next pfn to scan.
874 *
875 * The pages are isolated on cc->migratepages list (not required to be empty),
876 * and cc->nr_migratepages is updated accordingly.
877 */
878 static int
isolate_migratepages_block(struct compact_control * cc,unsigned long low_pfn,unsigned long end_pfn,isolate_mode_t mode)879 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
880 unsigned long end_pfn, isolate_mode_t mode)
881 {
882 pg_data_t *pgdat = cc->zone->zone_pgdat;
883 unsigned long nr_scanned = 0, nr_isolated = 0;
884 struct lruvec *lruvec;
885 unsigned long flags = 0;
886 struct lruvec *locked = NULL;
887 struct folio *folio = NULL;
888 struct page *page = NULL, *valid_page = NULL;
889 struct address_space *mapping;
890 unsigned long start_pfn = low_pfn;
891 bool skip_on_failure = false;
892 unsigned long next_skip_pfn = 0;
893 bool skip_updated = false;
894 int ret = 0;
895
896 cc->migrate_pfn = low_pfn;
897
898 /*
899 * Ensure that there are not too many pages isolated from the LRU
900 * list by either parallel reclaimers or compaction. If there are,
901 * delay for some time until fewer pages are isolated
902 */
903 while (unlikely(too_many_isolated(cc))) {
904 /* stop isolation if there are still pages not migrated */
905 if (cc->nr_migratepages)
906 return -EAGAIN;
907
908 /* async migration should just abort */
909 if (cc->mode == MIGRATE_ASYNC)
910 return -EAGAIN;
911
912 reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
913
914 if (fatal_signal_pending(current))
915 return -EINTR;
916 }
917
918 cond_resched();
919
920 if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
921 skip_on_failure = true;
922 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
923 }
924
925 /* Time to isolate some pages for migration */
926 for (; low_pfn < end_pfn; low_pfn++) {
927 bool is_dirty, is_unevictable;
928
929 if (skip_on_failure && low_pfn >= next_skip_pfn) {
930 /*
931 * We have isolated all migration candidates in the
932 * previous order-aligned block, and did not skip it due
933 * to failure. We should migrate the pages now and
934 * hopefully succeed compaction.
935 */
936 if (nr_isolated)
937 break;
938
939 /*
940 * We failed to isolate in the previous order-aligned
941 * block. Set the new boundary to the end of the
942 * current block. Note we can't simply increase
943 * next_skip_pfn by 1 << order, as low_pfn might have
944 * been incremented by a higher number due to skipping
945 * a compound or a high-order buddy page in the
946 * previous loop iteration.
947 */
948 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
949 }
950
951 /*
952 * Periodically drop the lock (if held) regardless of its
953 * contention, to give chance to IRQs. Abort completely if
954 * a fatal signal is pending.
955 */
956 if (!(low_pfn % COMPACT_CLUSTER_MAX)) {
957 if (locked) {
958 unlock_page_lruvec_irqrestore(locked, flags);
959 locked = NULL;
960 }
961
962 if (fatal_signal_pending(current)) {
963 cc->contended = true;
964 ret = -EINTR;
965
966 goto fatal_pending;
967 }
968
969 cond_resched();
970 }
971
972 nr_scanned++;
973
974 page = pfn_to_page(low_pfn);
975
976 /*
977 * Check if the pageblock has already been marked skipped.
978 * Only the first PFN is checked as the caller isolates
979 * COMPACT_CLUSTER_MAX at a time so the second call must
980 * not falsely conclude that the block should be skipped.
981 */
982 if (!valid_page && (pageblock_aligned(low_pfn) ||
983 low_pfn == cc->zone->zone_start_pfn)) {
984 if (!isolation_suitable(cc, page)) {
985 low_pfn = end_pfn;
986 folio = NULL;
987 goto isolate_abort;
988 }
989 valid_page = page;
990 }
991
992 if (PageHuge(page)) {
993 const unsigned int order = compound_order(page);
994 /*
995 * skip hugetlbfs if we are not compacting for pages
996 * bigger than its order. THPs and other compound pages
997 * are handled below.
998 */
999 if (!cc->alloc_contig) {
1000
1001 if (order <= MAX_PAGE_ORDER) {
1002 low_pfn += (1UL << order) - 1;
1003 nr_scanned += (1UL << order) - 1;
1004 }
1005 goto isolate_fail;
1006 }
1007 /* for alloc_contig case */
1008 if (locked) {
1009 unlock_page_lruvec_irqrestore(locked, flags);
1010 locked = NULL;
1011 }
1012
1013 ret = isolate_or_dissolve_huge_page(page, &cc->migratepages);
1014
1015 /*
1016 * Fail isolation in case isolate_or_dissolve_huge_page()
1017 * reports an error. In case of -ENOMEM, abort right away.
1018 */
1019 if (ret < 0) {
1020 /* Do not report -EBUSY down the chain */
1021 if (ret == -EBUSY)
1022 ret = 0;
1023 low_pfn += (1UL << order) - 1;
1024 nr_scanned += (1UL << order) - 1;
1025 goto isolate_fail;
1026 }
1027
1028 if (PageHuge(page)) {
1029 /*
1030 * Hugepage was successfully isolated and placed
1031 * on the cc->migratepages list.
1032 */
1033 folio = page_folio(page);
1034 low_pfn += folio_nr_pages(folio) - 1;
1035 goto isolate_success_no_list;
1036 }
1037
1038 /*
1039 * Ok, the hugepage was dissolved. Now these pages are
1040 * Buddy and cannot be re-allocated because they are
1041 * isolated. Fall-through as the check below handles
1042 * Buddy pages.
1043 */
1044 }
1045
1046 /*
1047 * Skip if free. We read page order here without zone lock
1048 * which is generally unsafe, but the race window is small and
1049 * the worst thing that can happen is that we skip some
1050 * potential isolation targets.
1051 */
1052 if (PageBuddy(page)) {
1053 unsigned long freepage_order = buddy_order_unsafe(page);
1054
1055 /*
1056 * Without lock, we cannot be sure that what we got is
1057 * a valid page order. Consider only values in the
1058 * valid order range to prevent low_pfn overflow.
1059 */
1060 if (freepage_order > 0 && freepage_order <= MAX_PAGE_ORDER) {
1061 low_pfn += (1UL << freepage_order) - 1;
1062 nr_scanned += (1UL << freepage_order) - 1;
1063 }
1064 continue;
1065 }
1066
1067 /*
1068 * Regardless of being on LRU, compound pages such as THP
1069 * (hugetlbfs is handled above) are not to be compacted unless
1070 * we are attempting an allocation larger than the compound
1071 * page size. We can potentially save a lot of iterations if we
1072 * skip them at once. The check is racy, but we can consider
1073 * only valid values and the only danger is skipping too much.
1074 */
1075 if (PageCompound(page) && !cc->alloc_contig) {
1076 const unsigned int order = compound_order(page);
1077
1078 /* Skip based on page order and compaction target order. */
1079 if (skip_isolation_on_order(order, cc->order)) {
1080 if (order <= MAX_PAGE_ORDER) {
1081 low_pfn += (1UL << order) - 1;
1082 nr_scanned += (1UL << order) - 1;
1083 }
1084 goto isolate_fail;
1085 }
1086 }
1087
1088 /*
1089 * Check may be lockless but that's ok as we recheck later.
1090 * It's possible to migrate LRU and non-lru movable pages.
1091 * Skip any other type of page
1092 */
1093 if (!PageLRU(page)) {
1094 /*
1095 * __PageMovable can return false positive so we need
1096 * to verify it under page_lock.
1097 */
1098 if (unlikely(__PageMovable(page)) &&
1099 !PageIsolated(page)) {
1100 if (locked) {
1101 unlock_page_lruvec_irqrestore(locked, flags);
1102 locked = NULL;
1103 }
1104
1105 if (isolate_movable_page(page, mode)) {
1106 folio = page_folio(page);
1107 goto isolate_success;
1108 }
1109 }
1110
1111 goto isolate_fail;
1112 }
1113
1114 /*
1115 * Be careful not to clear PageLRU until after we're
1116 * sure the page is not being freed elsewhere -- the
1117 * page release code relies on it.
1118 */
1119 folio = folio_get_nontail_page(page);
1120 if (unlikely(!folio))
1121 goto isolate_fail;
1122
1123 /*
1124 * Migration will fail if an anonymous page is pinned in memory,
1125 * so avoid taking lru_lock and isolating it unnecessarily in an
1126 * admittedly racy check.
1127 */
1128 mapping = folio_mapping(folio);
1129 if (!mapping && (folio_ref_count(folio) - 1) > folio_mapcount(folio))
1130 goto isolate_fail_put;
1131
1132 /*
1133 * Only allow to migrate anonymous pages in GFP_NOFS context
1134 * because those do not depend on fs locks.
1135 */
1136 if (!(cc->gfp_mask & __GFP_FS) && mapping)
1137 goto isolate_fail_put;
1138
1139 /* Only take pages on LRU: a check now makes later tests safe */
1140 if (!folio_test_lru(folio))
1141 goto isolate_fail_put;
1142
1143 is_unevictable = folio_test_unevictable(folio);
1144
1145 /* Compaction might skip unevictable pages but CMA takes them */
1146 if (!(mode & ISOLATE_UNEVICTABLE) && is_unevictable)
1147 goto isolate_fail_put;
1148
1149 /*
1150 * To minimise LRU disruption, the caller can indicate with
1151 * ISOLATE_ASYNC_MIGRATE that it only wants to isolate pages
1152 * it will be able to migrate without blocking - clean pages
1153 * for the most part. PageWriteback would require blocking.
1154 */
1155 if ((mode & ISOLATE_ASYNC_MIGRATE) && folio_test_writeback(folio))
1156 goto isolate_fail_put;
1157
1158 is_dirty = folio_test_dirty(folio);
1159
1160 if (((mode & ISOLATE_ASYNC_MIGRATE) && is_dirty) ||
1161 (mapping && is_unevictable)) {
1162 bool migrate_dirty = true;
1163 bool is_inaccessible;
1164
1165 /*
1166 * Only folios without mappings or that have
1167 * a ->migrate_folio callback are possible to migrate
1168 * without blocking.
1169 *
1170 * Folios from inaccessible mappings are not migratable.
1171 *
1172 * However, we can be racing with truncation, which can
1173 * free the mapping that we need to check. Truncation
1174 * holds the folio lock until after the folio is removed
1175 * from the page so holding it ourselves is sufficient.
1176 *
1177 * To avoid locking the folio just to check inaccessible,
1178 * assume every inaccessible folio is also unevictable,
1179 * which is a cheaper test. If our assumption goes
1180 * wrong, it's not a correctness bug, just potentially
1181 * wasted cycles.
1182 */
1183 if (!folio_trylock(folio))
1184 goto isolate_fail_put;
1185
1186 mapping = folio_mapping(folio);
1187 if ((mode & ISOLATE_ASYNC_MIGRATE) && is_dirty) {
1188 migrate_dirty = !mapping ||
1189 mapping->a_ops->migrate_folio;
1190 }
1191 is_inaccessible = mapping && mapping_inaccessible(mapping);
1192 folio_unlock(folio);
1193 if (!migrate_dirty || is_inaccessible)
1194 goto isolate_fail_put;
1195 }
1196
1197 /* Try isolate the folio */
1198 if (!folio_test_clear_lru(folio))
1199 goto isolate_fail_put;
1200
1201 lruvec = folio_lruvec(folio);
1202
1203 /* If we already hold the lock, we can skip some rechecking */
1204 if (lruvec != locked) {
1205 if (locked)
1206 unlock_page_lruvec_irqrestore(locked, flags);
1207
1208 compact_lock_irqsave(&lruvec->lru_lock, &flags, cc);
1209 locked = lruvec;
1210
1211 lruvec_memcg_debug(lruvec, folio);
1212
1213 /*
1214 * Try get exclusive access under lock. If marked for
1215 * skip, the scan is aborted unless the current context
1216 * is a rescan to reach the end of the pageblock.
1217 */
1218 if (!skip_updated && valid_page) {
1219 skip_updated = true;
1220 if (test_and_set_skip(cc, valid_page) &&
1221 !cc->finish_pageblock) {
1222 low_pfn = end_pfn;
1223 goto isolate_abort;
1224 }
1225 }
1226
1227 /*
1228 * Check LRU folio order under the lock
1229 */
1230 if (unlikely(skip_isolation_on_order(folio_order(folio),
1231 cc->order) &&
1232 !cc->alloc_contig)) {
1233 low_pfn += folio_nr_pages(folio) - 1;
1234 nr_scanned += folio_nr_pages(folio) - 1;
1235 folio_set_lru(folio);
1236 goto isolate_fail_put;
1237 }
1238 }
1239
1240 /* The folio is taken off the LRU */
1241 if (folio_test_large(folio))
1242 low_pfn += folio_nr_pages(folio) - 1;
1243
1244 /* Successfully isolated */
1245 lruvec_del_folio(lruvec, folio);
1246 node_stat_mod_folio(folio,
1247 NR_ISOLATED_ANON + folio_is_file_lru(folio),
1248 folio_nr_pages(folio));
1249
1250 isolate_success:
1251 list_add(&folio->lru, &cc->migratepages);
1252 isolate_success_no_list:
1253 cc->nr_migratepages += folio_nr_pages(folio);
1254 nr_isolated += folio_nr_pages(folio);
1255 nr_scanned += folio_nr_pages(folio) - 1;
1256
1257 /*
1258 * Avoid isolating too much unless this block is being
1259 * fully scanned (e.g. dirty/writeback pages, parallel allocation)
1260 * or a lock is contended. For contention, isolate quickly to
1261 * potentially remove one source of contention.
1262 */
1263 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX &&
1264 !cc->finish_pageblock && !cc->contended) {
1265 ++low_pfn;
1266 break;
1267 }
1268
1269 continue;
1270
1271 isolate_fail_put:
1272 /* Avoid potential deadlock in freeing page under lru_lock */
1273 if (locked) {
1274 unlock_page_lruvec_irqrestore(locked, flags);
1275 locked = NULL;
1276 }
1277 folio_put(folio);
1278
1279 isolate_fail:
1280 if (!skip_on_failure && ret != -ENOMEM)
1281 continue;
1282
1283 /*
1284 * We have isolated some pages, but then failed. Release them
1285 * instead of migrating, as we cannot form the cc->order buddy
1286 * page anyway.
1287 */
1288 if (nr_isolated) {
1289 if (locked) {
1290 unlock_page_lruvec_irqrestore(locked, flags);
1291 locked = NULL;
1292 }
1293 putback_movable_pages(&cc->migratepages);
1294 cc->nr_migratepages = 0;
1295 nr_isolated = 0;
1296 }
1297
1298 if (low_pfn < next_skip_pfn) {
1299 low_pfn = next_skip_pfn - 1;
1300 /*
1301 * The check near the loop beginning would have updated
1302 * next_skip_pfn too, but this is a bit simpler.
1303 */
1304 next_skip_pfn += 1UL << cc->order;
1305 }
1306
1307 if (ret == -ENOMEM)
1308 break;
1309 }
1310
1311 /*
1312 * The PageBuddy() check could have potentially brought us outside
1313 * the range to be scanned.
1314 */
1315 if (unlikely(low_pfn > end_pfn))
1316 low_pfn = end_pfn;
1317
1318 folio = NULL;
1319
1320 isolate_abort:
1321 if (locked)
1322 unlock_page_lruvec_irqrestore(locked, flags);
1323 if (folio) {
1324 folio_set_lru(folio);
1325 folio_put(folio);
1326 }
1327
1328 /*
1329 * Update the cached scanner pfn once the pageblock has been scanned.
1330 * Pages will either be migrated in which case there is no point
1331 * scanning in the near future or migration failed in which case the
1332 * failure reason may persist. The block is marked for skipping if
1333 * there were no pages isolated in the block or if the block is
1334 * rescanned twice in a row.
1335 */
1336 if (low_pfn == end_pfn && (!nr_isolated || cc->finish_pageblock)) {
1337 if (!cc->no_set_skip_hint && valid_page && !skip_updated)
1338 set_pageblock_skip(valid_page);
1339 update_cached_migrate(cc, low_pfn);
1340 }
1341
1342 trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
1343 nr_scanned, nr_isolated);
1344
1345 fatal_pending:
1346 cc->total_migrate_scanned += nr_scanned;
1347 if (nr_isolated)
1348 count_compact_events(COMPACTISOLATED, nr_isolated);
1349
1350 cc->migrate_pfn = low_pfn;
1351
1352 return ret;
1353 }
1354
1355 /**
1356 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
1357 * @cc: Compaction control structure.
1358 * @start_pfn: The first PFN to start isolating.
1359 * @end_pfn: The one-past-last PFN.
1360 *
1361 * Returns -EAGAIN when contented, -EINTR in case of a signal pending, -ENOMEM
1362 * in case we could not allocate a page, or 0.
1363 */
1364 int
isolate_migratepages_range(struct compact_control * cc,unsigned long start_pfn,unsigned long end_pfn)1365 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
1366 unsigned long end_pfn)
1367 {
1368 unsigned long pfn, block_start_pfn, block_end_pfn;
1369 int ret = 0;
1370
1371 /* Scan block by block. First and last block may be incomplete */
1372 pfn = start_pfn;
1373 block_start_pfn = pageblock_start_pfn(pfn);
1374 if (block_start_pfn < cc->zone->zone_start_pfn)
1375 block_start_pfn = cc->zone->zone_start_pfn;
1376 block_end_pfn = pageblock_end_pfn(pfn);
1377
1378 for (; pfn < end_pfn; pfn = block_end_pfn,
1379 block_start_pfn = block_end_pfn,
1380 block_end_pfn += pageblock_nr_pages) {
1381
1382 block_end_pfn = min(block_end_pfn, end_pfn);
1383
1384 if (!pageblock_pfn_to_page(block_start_pfn,
1385 block_end_pfn, cc->zone))
1386 continue;
1387
1388 ret = isolate_migratepages_block(cc, pfn, block_end_pfn,
1389 ISOLATE_UNEVICTABLE);
1390
1391 if (ret)
1392 break;
1393
1394 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX)
1395 break;
1396 }
1397
1398 return ret;
1399 }
1400
1401 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
1402 #include <trace/hooks/mm.h>
1403 #ifdef CONFIG_COMPACTION
1404
suitable_migration_source(struct compact_control * cc,struct page * page)1405 static bool suitable_migration_source(struct compact_control *cc,
1406 struct page *page)
1407 {
1408 int block_mt;
1409
1410 if (pageblock_skip_persistent(page))
1411 return false;
1412
1413 if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)
1414 return true;
1415
1416 block_mt = get_pageblock_migratetype(page);
1417
1418 if (cc->migratetype == MIGRATE_MOVABLE)
1419 return is_migrate_movable(block_mt);
1420 else
1421 return block_mt == cc->migratetype;
1422 }
1423
1424 /* Returns true if the page is within a block suitable for migration to */
suitable_migration_target(struct compact_control * cc,struct page * page)1425 static bool suitable_migration_target(struct compact_control *cc,
1426 struct page *page)
1427 {
1428 bool bypass = false;
1429
1430 /* If the page is a large free page, then disallow migration */
1431 if (PageBuddy(page)) {
1432 int order = cc->order > 0 ? cc->order : pageblock_order;
1433
1434 /*
1435 * We are checking page_order without zone->lock taken. But
1436 * the only small danger is that we skip a potentially suitable
1437 * pageblock, so it's not worth to check order for valid range.
1438 */
1439 if (buddy_order_unsafe(page) >= order)
1440 return false;
1441 }
1442
1443 trace_android_vh_migration_target_bypass(page, &bypass);
1444 if (bypass)
1445 return false;
1446
1447 if (cc->ignore_block_suitable)
1448 return true;
1449
1450 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
1451 if (is_migrate_movable(get_pageblock_migratetype(page)))
1452 return true;
1453
1454 /* Otherwise skip the block */
1455 return false;
1456 }
1457
1458 static inline unsigned int
freelist_scan_limit(struct compact_control * cc)1459 freelist_scan_limit(struct compact_control *cc)
1460 {
1461 unsigned short shift = BITS_PER_LONG - 1;
1462
1463 return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1;
1464 }
1465
1466 /*
1467 * Test whether the free scanner has reached the same or lower pageblock than
1468 * the migration scanner, and compaction should thus terminate.
1469 */
compact_scanners_met(struct compact_control * cc)1470 static inline bool compact_scanners_met(struct compact_control *cc)
1471 {
1472 return (cc->free_pfn >> pageblock_order)
1473 <= (cc->migrate_pfn >> pageblock_order);
1474 }
1475
1476 /*
1477 * Used when scanning for a suitable migration target which scans freelists
1478 * in reverse. Reorders the list such as the unscanned pages are scanned
1479 * first on the next iteration of the free scanner
1480 */
1481 static void
move_freelist_head(struct list_head * freelist,struct page * freepage)1482 move_freelist_head(struct list_head *freelist, struct page *freepage)
1483 {
1484 LIST_HEAD(sublist);
1485
1486 if (!list_is_first(&freepage->buddy_list, freelist)) {
1487 list_cut_before(&sublist, freelist, &freepage->buddy_list);
1488 list_splice_tail(&sublist, freelist);
1489 }
1490 }
1491
1492 /*
1493 * Similar to move_freelist_head except used by the migration scanner
1494 * when scanning forward. It's possible for these list operations to
1495 * move against each other if they search the free list exactly in
1496 * lockstep.
1497 */
1498 static void
move_freelist_tail(struct list_head * freelist,struct page * freepage)1499 move_freelist_tail(struct list_head *freelist, struct page *freepage)
1500 {
1501 LIST_HEAD(sublist);
1502
1503 if (!list_is_last(&freepage->buddy_list, freelist)) {
1504 list_cut_position(&sublist, freelist, &freepage->buddy_list);
1505 list_splice_tail(&sublist, freelist);
1506 }
1507 }
1508
1509 static void
fast_isolate_around(struct compact_control * cc,unsigned long pfn)1510 fast_isolate_around(struct compact_control *cc, unsigned long pfn)
1511 {
1512 unsigned long start_pfn, end_pfn;
1513 struct page *page;
1514 bool bypass = false;
1515
1516 /* Do not search around if there are enough pages already */
1517 if (cc->nr_freepages >= cc->nr_migratepages)
1518 return;
1519
1520 /* Minimise scanning during async compaction */
1521 if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC)
1522 return;
1523
1524 /* Pageblock boundaries */
1525 start_pfn = max(pageblock_start_pfn(pfn), cc->zone->zone_start_pfn);
1526 end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone));
1527
1528 page = pageblock_pfn_to_page(start_pfn, end_pfn, cc->zone);
1529 if (!page)
1530 return;
1531
1532 trace_android_vh_migration_target_bypass(page, &bypass);
1533 if (bypass)
1534 return;
1535
1536 isolate_freepages_block(cc, &start_pfn, end_pfn, cc->freepages, 1, false);
1537
1538 /* Skip this pageblock in the future as it's full or nearly full */
1539 if (start_pfn == end_pfn && !cc->no_set_skip_hint)
1540 set_pageblock_skip(page);
1541 }
1542
1543 /* Search orders in round-robin fashion */
next_search_order(struct compact_control * cc,int order)1544 static int next_search_order(struct compact_control *cc, int order)
1545 {
1546 order--;
1547 if (order < 0)
1548 order = cc->order - 1;
1549
1550 /* Search wrapped around? */
1551 if (order == cc->search_order) {
1552 cc->search_order--;
1553 if (cc->search_order < 0)
1554 cc->search_order = cc->order - 1;
1555 return -1;
1556 }
1557
1558 return order;
1559 }
1560
fast_isolate_freepages(struct compact_control * cc)1561 static void fast_isolate_freepages(struct compact_control *cc)
1562 {
1563 unsigned int limit = max(1U, freelist_scan_limit(cc) >> 1);
1564 unsigned int nr_scanned = 0, total_isolated = 0;
1565 unsigned long low_pfn, min_pfn, highest = 0;
1566 unsigned long nr_isolated = 0;
1567 unsigned long distance;
1568 struct page *page = NULL;
1569 bool scan_start = false;
1570 int order;
1571
1572 /* Full compaction passes in a negative order */
1573 if (cc->order <= 0)
1574 return;
1575
1576 /*
1577 * If starting the scan, use a deeper search and use the highest
1578 * PFN found if a suitable one is not found.
1579 */
1580 if (cc->free_pfn >= cc->zone->compact_init_free_pfn) {
1581 limit = pageblock_nr_pages >> 1;
1582 scan_start = true;
1583 }
1584
1585 /*
1586 * Preferred point is in the top quarter of the scan space but take
1587 * a pfn from the top half if the search is problematic.
1588 */
1589 distance = (cc->free_pfn - cc->migrate_pfn);
1590 low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2));
1591 min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1));
1592
1593 if (WARN_ON_ONCE(min_pfn > low_pfn))
1594 low_pfn = min_pfn;
1595
1596 /*
1597 * Search starts from the last successful isolation order or the next
1598 * order to search after a previous failure
1599 */
1600 cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order);
1601
1602 for (order = cc->search_order;
1603 !page && order >= 0;
1604 order = next_search_order(cc, order)) {
1605 struct free_area *area = &cc->zone->free_area[order];
1606 struct list_head *freelist;
1607 struct page *freepage;
1608 unsigned long flags;
1609 unsigned int order_scanned = 0;
1610 unsigned long high_pfn = 0;
1611
1612 if (!area->nr_free)
1613 continue;
1614
1615 spin_lock_irqsave(&cc->zone->lock, flags);
1616 freelist = &area->free_list[MIGRATE_MOVABLE];
1617 list_for_each_entry_reverse(freepage, freelist, buddy_list) {
1618 unsigned long pfn;
1619
1620 order_scanned++;
1621 nr_scanned++;
1622 pfn = page_to_pfn(freepage);
1623
1624 if (pfn >= highest)
1625 highest = max(pageblock_start_pfn(pfn),
1626 cc->zone->zone_start_pfn);
1627
1628 if (pfn >= low_pfn) {
1629 cc->fast_search_fail = 0;
1630 cc->search_order = order;
1631 page = freepage;
1632 break;
1633 }
1634
1635 if (pfn >= min_pfn && pfn > high_pfn) {
1636 high_pfn = pfn;
1637
1638 /* Shorten the scan if a candidate is found */
1639 limit >>= 1;
1640 }
1641
1642 if (order_scanned >= limit)
1643 break;
1644 }
1645
1646 /* Use a maximum candidate pfn if a preferred one was not found */
1647 if (!page && high_pfn) {
1648 page = pfn_to_page(high_pfn);
1649
1650 /* Update freepage for the list reorder below */
1651 freepage = page;
1652 }
1653
1654 /* Reorder to so a future search skips recent pages */
1655 move_freelist_head(freelist, freepage);
1656
1657 /* Isolate the page if available */
1658 if (page) {
1659 if (__isolate_free_page(page, order)) {
1660 set_page_private(page, order);
1661 nr_isolated = 1 << order;
1662 nr_scanned += nr_isolated - 1;
1663 total_isolated += nr_isolated;
1664 cc->nr_freepages += nr_isolated;
1665 list_add_tail(&page->lru, &cc->freepages[order]);
1666 count_compact_events(COMPACTISOLATED, nr_isolated);
1667 } else {
1668 /* If isolation fails, abort the search */
1669 order = cc->search_order + 1;
1670 page = NULL;
1671 }
1672 }
1673
1674 spin_unlock_irqrestore(&cc->zone->lock, flags);
1675
1676 /* Skip fast search if enough freepages isolated */
1677 if (cc->nr_freepages >= cc->nr_migratepages)
1678 break;
1679
1680 /*
1681 * Smaller scan on next order so the total scan is related
1682 * to freelist_scan_limit.
1683 */
1684 if (order_scanned >= limit)
1685 limit = max(1U, limit >> 1);
1686 }
1687
1688 trace_mm_compaction_fast_isolate_freepages(min_pfn, cc->free_pfn,
1689 nr_scanned, total_isolated);
1690
1691 if (!page) {
1692 cc->fast_search_fail++;
1693 if (scan_start) {
1694 /*
1695 * Use the highest PFN found above min. If one was
1696 * not found, be pessimistic for direct compaction
1697 * and use the min mark.
1698 */
1699 if (highest >= min_pfn) {
1700 page = pfn_to_page(highest);
1701 cc->free_pfn = highest;
1702 } else {
1703 if (cc->direct_compaction && pfn_valid(min_pfn)) {
1704 page = pageblock_pfn_to_page(min_pfn,
1705 min(pageblock_end_pfn(min_pfn),
1706 zone_end_pfn(cc->zone)),
1707 cc->zone);
1708 if (page && !suitable_migration_target(cc, page))
1709 page = NULL;
1710
1711 cc->free_pfn = min_pfn;
1712 }
1713 }
1714 }
1715 }
1716
1717 if (highest && highest >= cc->zone->compact_cached_free_pfn) {
1718 highest -= pageblock_nr_pages;
1719 cc->zone->compact_cached_free_pfn = highest;
1720 }
1721
1722 cc->total_free_scanned += nr_scanned;
1723 if (!page)
1724 return;
1725
1726 low_pfn = page_to_pfn(page);
1727 fast_isolate_around(cc, low_pfn);
1728 }
1729
1730 /*
1731 * Based on information in the current compact_control, find blocks
1732 * suitable for isolating free pages from and then isolate them.
1733 */
isolate_freepages(struct compact_control * cc)1734 static void isolate_freepages(struct compact_control *cc)
1735 {
1736 struct zone *zone = cc->zone;
1737 struct page *page;
1738 unsigned long block_start_pfn; /* start of current pageblock */
1739 unsigned long isolate_start_pfn; /* exact pfn we start at */
1740 unsigned long block_end_pfn; /* end of current pageblock */
1741 unsigned long low_pfn; /* lowest pfn scanner is able to scan */
1742 unsigned int stride;
1743 bool bypass = false;
1744
1745 /* Try a small search of the free lists for a candidate */
1746 fast_isolate_freepages(cc);
1747 if (cc->nr_freepages)
1748 return;
1749
1750 /*
1751 * Initialise the free scanner. The starting point is where we last
1752 * successfully isolated from, zone-cached value, or the end of the
1753 * zone when isolating for the first time. For looping we also need
1754 * this pfn aligned down to the pageblock boundary, because we do
1755 * block_start_pfn -= pageblock_nr_pages in the for loop.
1756 * For ending point, take care when isolating in last pageblock of a
1757 * zone which ends in the middle of a pageblock.
1758 * The low boundary is the end of the pageblock the migration scanner
1759 * is using.
1760 */
1761 isolate_start_pfn = cc->free_pfn;
1762 block_start_pfn = pageblock_start_pfn(isolate_start_pfn);
1763 block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1764 zone_end_pfn(zone));
1765 low_pfn = pageblock_end_pfn(cc->migrate_pfn);
1766 stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1;
1767
1768 /*
1769 * Isolate free pages until enough are available to migrate the
1770 * pages on cc->migratepages. We stop searching if the migrate
1771 * and free page scanners meet or enough free pages are isolated.
1772 */
1773 for (; block_start_pfn >= low_pfn;
1774 block_end_pfn = block_start_pfn,
1775 block_start_pfn -= pageblock_nr_pages,
1776 isolate_start_pfn = block_start_pfn) {
1777 unsigned long nr_isolated;
1778
1779 /*
1780 * This can iterate a massively long zone without finding any
1781 * suitable migration targets, so periodically check resched.
1782 */
1783 if (!(block_start_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages)))
1784 cond_resched();
1785
1786 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1787 zone);
1788 if (!page) {
1789 unsigned long next_pfn;
1790
1791 next_pfn = skip_offline_sections_reverse(block_start_pfn);
1792 if (next_pfn)
1793 block_start_pfn = max(next_pfn, low_pfn);
1794
1795 continue;
1796 }
1797
1798 /* Check the block is suitable for migration */
1799 if (!suitable_migration_target(cc, page))
1800 continue;
1801
1802 /* If isolation recently failed, do not retry */
1803 if (!isolation_suitable(cc, page))
1804 continue;
1805
1806 trace_android_vh_isolate_freepages(cc, page, &bypass);
1807 if (bypass)
1808 continue;
1809
1810 /* Found a block suitable for isolating free pages from. */
1811 nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn,
1812 block_end_pfn, cc->freepages, stride, false);
1813
1814 /* Update the skip hint if the full pageblock was scanned */
1815 if (isolate_start_pfn == block_end_pfn)
1816 update_pageblock_skip(cc, page, block_start_pfn -
1817 pageblock_nr_pages);
1818
1819 /* Are enough freepages isolated? */
1820 if (cc->nr_freepages >= cc->nr_migratepages) {
1821 if (isolate_start_pfn >= block_end_pfn) {
1822 /*
1823 * Restart at previous pageblock if more
1824 * freepages can be isolated next time.
1825 */
1826 isolate_start_pfn =
1827 block_start_pfn - pageblock_nr_pages;
1828 }
1829 break;
1830 } else if (isolate_start_pfn < block_end_pfn) {
1831 /*
1832 * If isolation failed early, do not continue
1833 * needlessly.
1834 */
1835 break;
1836 }
1837
1838 /* Adjust stride depending on isolation */
1839 if (nr_isolated) {
1840 stride = 1;
1841 continue;
1842 }
1843 stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1);
1844 }
1845
1846 /*
1847 * Record where the free scanner will restart next time. Either we
1848 * broke from the loop and set isolate_start_pfn based on the last
1849 * call to isolate_freepages_block(), or we met the migration scanner
1850 * and the loop terminated due to isolate_start_pfn < low_pfn
1851 */
1852 cc->free_pfn = isolate_start_pfn;
1853 }
1854
1855 /*
1856 * This is a migrate-callback that "allocates" freepages by taking pages
1857 * from the isolated freelists in the block we are migrating to.
1858 */
compaction_alloc_noprof(struct folio * src,unsigned long data)1859 static struct folio *compaction_alloc_noprof(struct folio *src, unsigned long data)
1860 {
1861 struct compact_control *cc = (struct compact_control *)data;
1862 struct folio *dst;
1863 int order = folio_order(src);
1864 bool has_isolated_pages = false;
1865 int start_order;
1866 struct page *freepage;
1867 unsigned long size;
1868
1869 again:
1870 for (start_order = order; start_order < NR_PAGE_ORDERS; start_order++)
1871 if (!list_empty(&cc->freepages[start_order]))
1872 break;
1873
1874 /* no free pages in the list */
1875 if (start_order == NR_PAGE_ORDERS) {
1876 if (has_isolated_pages)
1877 return NULL;
1878 isolate_freepages(cc);
1879 has_isolated_pages = true;
1880 goto again;
1881 }
1882
1883 freepage = list_first_entry(&cc->freepages[start_order], struct page,
1884 lru);
1885 size = 1 << start_order;
1886
1887 list_del(&freepage->lru);
1888
1889 while (start_order > order) {
1890 start_order--;
1891 size >>= 1;
1892
1893 list_add(&freepage[size].lru, &cc->freepages[start_order]);
1894 set_page_private(&freepage[size], start_order);
1895 }
1896 dst = (struct folio *)freepage;
1897
1898 post_alloc_hook(&dst->page, order, __GFP_MOVABLE);
1899 if (order)
1900 prep_compound_page(&dst->page, order);
1901 cc->nr_freepages -= 1 << order;
1902 cc->nr_migratepages -= 1 << order;
1903 return page_rmappable_folio(&dst->page);
1904 }
1905
compaction_alloc(struct folio * src,unsigned long data)1906 static struct folio *compaction_alloc(struct folio *src, unsigned long data)
1907 {
1908 return alloc_hooks(compaction_alloc_noprof(src, data));
1909 }
1910
1911 /*
1912 * This is a migrate-callback that "frees" freepages back to the isolated
1913 * freelist. All pages on the freelist are from the same zone, so there is no
1914 * special handling needed for NUMA.
1915 */
compaction_free(struct folio * dst,unsigned long data)1916 static void compaction_free(struct folio *dst, unsigned long data)
1917 {
1918 struct compact_control *cc = (struct compact_control *)data;
1919 int order = folio_order(dst);
1920 struct page *page = &dst->page;
1921
1922 if (folio_put_testzero(dst)) {
1923 free_pages_prepare(page, order);
1924 list_add(&dst->lru, &cc->freepages[order]);
1925 cc->nr_freepages += 1 << order;
1926 }
1927 cc->nr_migratepages += 1 << order;
1928 /*
1929 * someone else has referenced the page, we cannot take it back to our
1930 * free list.
1931 */
1932 }
1933
1934 /* possible outcome of isolate_migratepages */
1935 typedef enum {
1936 ISOLATE_ABORT, /* Abort compaction now */
1937 ISOLATE_NONE, /* No pages isolated, continue scanning */
1938 ISOLATE_SUCCESS, /* Pages isolated, migrate */
1939 } isolate_migrate_t;
1940
1941 /*
1942 * Allow userspace to control policy on scanning the unevictable LRU for
1943 * compactable pages.
1944 */
1945 static int sysctl_compact_unevictable_allowed __read_mostly = CONFIG_COMPACT_UNEVICTABLE_DEFAULT;
1946 /*
1947 * Tunable for proactive compaction. It determines how
1948 * aggressively the kernel should compact memory in the
1949 * background. It takes values in the range [0, 100].
1950 */
1951 static unsigned int __read_mostly sysctl_compaction_proactiveness = 20;
1952 static int sysctl_extfrag_threshold = 500;
1953 static int __read_mostly sysctl_compact_memory;
1954
1955 static inline void
update_fast_start_pfn(struct compact_control * cc,unsigned long pfn)1956 update_fast_start_pfn(struct compact_control *cc, unsigned long pfn)
1957 {
1958 if (cc->fast_start_pfn == ULONG_MAX)
1959 return;
1960
1961 if (!cc->fast_start_pfn)
1962 cc->fast_start_pfn = pfn;
1963
1964 cc->fast_start_pfn = min(cc->fast_start_pfn, pfn);
1965 }
1966
1967 static inline unsigned long
reinit_migrate_pfn(struct compact_control * cc)1968 reinit_migrate_pfn(struct compact_control *cc)
1969 {
1970 if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX)
1971 return cc->migrate_pfn;
1972
1973 cc->migrate_pfn = cc->fast_start_pfn;
1974 cc->fast_start_pfn = ULONG_MAX;
1975
1976 return cc->migrate_pfn;
1977 }
1978
1979 /*
1980 * Briefly search the free lists for a migration source that already has
1981 * some free pages to reduce the number of pages that need migration
1982 * before a pageblock is free.
1983 */
fast_find_migrateblock(struct compact_control * cc)1984 static unsigned long fast_find_migrateblock(struct compact_control *cc)
1985 {
1986 unsigned int limit = freelist_scan_limit(cc);
1987 unsigned int nr_scanned = 0;
1988 unsigned long distance;
1989 unsigned long pfn = cc->migrate_pfn;
1990 unsigned long high_pfn;
1991 int order;
1992 bool found_block = false;
1993
1994 /* Skip hints are relied on to avoid repeats on the fast search */
1995 if (cc->ignore_skip_hint)
1996 return pfn;
1997
1998 /*
1999 * If the pageblock should be finished then do not select a different
2000 * pageblock.
2001 */
2002 if (cc->finish_pageblock)
2003 return pfn;
2004
2005 /*
2006 * If the migrate_pfn is not at the start of a zone or the start
2007 * of a pageblock then assume this is a continuation of a previous
2008 * scan restarted due to COMPACT_CLUSTER_MAX.
2009 */
2010 if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn))
2011 return pfn;
2012
2013 /*
2014 * For smaller orders, just linearly scan as the number of pages
2015 * to migrate should be relatively small and does not necessarily
2016 * justify freeing up a large block for a small allocation.
2017 */
2018 if (cc->order <= PAGE_ALLOC_COSTLY_ORDER)
2019 return pfn;
2020
2021 /*
2022 * Only allow kcompactd and direct requests for movable pages to
2023 * quickly clear out a MOVABLE pageblock for allocation. This
2024 * reduces the risk that a large movable pageblock is freed for
2025 * an unmovable/reclaimable small allocation.
2026 */
2027 if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE)
2028 return pfn;
2029
2030 /*
2031 * When starting the migration scanner, pick any pageblock within the
2032 * first half of the search space. Otherwise try and pick a pageblock
2033 * within the first eighth to reduce the chances that a migration
2034 * target later becomes a source.
2035 */
2036 distance = (cc->free_pfn - cc->migrate_pfn) >> 1;
2037 if (cc->migrate_pfn != cc->zone->zone_start_pfn)
2038 distance >>= 2;
2039 high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance);
2040
2041 for (order = cc->order - 1;
2042 order >= PAGE_ALLOC_COSTLY_ORDER && !found_block && nr_scanned < limit;
2043 order--) {
2044 struct free_area *area = &cc->zone->free_area[order];
2045 struct list_head *freelist;
2046 unsigned long flags;
2047 struct page *freepage;
2048
2049 if (!area->nr_free)
2050 continue;
2051
2052 spin_lock_irqsave(&cc->zone->lock, flags);
2053 freelist = &area->free_list[MIGRATE_MOVABLE];
2054 list_for_each_entry(freepage, freelist, buddy_list) {
2055 unsigned long free_pfn;
2056
2057 if (nr_scanned++ >= limit) {
2058 move_freelist_tail(freelist, freepage);
2059 break;
2060 }
2061
2062 free_pfn = page_to_pfn(freepage);
2063 if (free_pfn < high_pfn) {
2064 /*
2065 * Avoid if skipped recently. Ideally it would
2066 * move to the tail but even safe iteration of
2067 * the list assumes an entry is deleted, not
2068 * reordered.
2069 */
2070 if (get_pageblock_skip(freepage))
2071 continue;
2072
2073 /* Reorder to so a future search skips recent pages */
2074 move_freelist_tail(freelist, freepage);
2075
2076 update_fast_start_pfn(cc, free_pfn);
2077 pfn = pageblock_start_pfn(free_pfn);
2078 if (pfn < cc->zone->zone_start_pfn)
2079 pfn = cc->zone->zone_start_pfn;
2080 cc->fast_search_fail = 0;
2081 found_block = true;
2082 break;
2083 }
2084 }
2085 spin_unlock_irqrestore(&cc->zone->lock, flags);
2086 }
2087
2088 cc->total_migrate_scanned += nr_scanned;
2089
2090 /*
2091 * If fast scanning failed then use a cached entry for a page block
2092 * that had free pages as the basis for starting a linear scan.
2093 */
2094 if (!found_block) {
2095 cc->fast_search_fail++;
2096 pfn = reinit_migrate_pfn(cc);
2097 }
2098 return pfn;
2099 }
2100
2101 /*
2102 * Isolate all pages that can be migrated from the first suitable block,
2103 * starting at the block pointed to by the migrate scanner pfn within
2104 * compact_control.
2105 */
isolate_migratepages(struct compact_control * cc)2106 static isolate_migrate_t isolate_migratepages(struct compact_control *cc)
2107 {
2108 unsigned long block_start_pfn;
2109 unsigned long block_end_pfn;
2110 unsigned long low_pfn;
2111 struct page *page;
2112 const isolate_mode_t isolate_mode =
2113 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
2114 (cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
2115 bool fast_find_block;
2116
2117 /*
2118 * Start at where we last stopped, or beginning of the zone as
2119 * initialized by compact_zone(). The first failure will use
2120 * the lowest PFN as the starting point for linear scanning.
2121 */
2122 low_pfn = fast_find_migrateblock(cc);
2123 block_start_pfn = pageblock_start_pfn(low_pfn);
2124 if (block_start_pfn < cc->zone->zone_start_pfn)
2125 block_start_pfn = cc->zone->zone_start_pfn;
2126
2127 /*
2128 * fast_find_migrateblock() has already ensured the pageblock is not
2129 * set with a skipped flag, so to avoid the isolation_suitable check
2130 * below again, check whether the fast search was successful.
2131 */
2132 fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail;
2133
2134 /* Only scan within a pageblock boundary */
2135 block_end_pfn = pageblock_end_pfn(low_pfn);
2136
2137 /*
2138 * Iterate over whole pageblocks until we find the first suitable.
2139 * Do not cross the free scanner.
2140 */
2141 for (; block_end_pfn <= cc->free_pfn;
2142 fast_find_block = false,
2143 cc->migrate_pfn = low_pfn = block_end_pfn,
2144 block_start_pfn = block_end_pfn,
2145 block_end_pfn += pageblock_nr_pages) {
2146
2147 /*
2148 * This can potentially iterate a massively long zone with
2149 * many pageblocks unsuitable, so periodically check if we
2150 * need to schedule.
2151 */
2152 if (!(low_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages)))
2153 cond_resched();
2154
2155 page = pageblock_pfn_to_page(block_start_pfn,
2156 block_end_pfn, cc->zone);
2157 if (!page) {
2158 unsigned long next_pfn;
2159
2160 next_pfn = skip_offline_sections(block_start_pfn);
2161 if (next_pfn)
2162 block_end_pfn = min(next_pfn, cc->free_pfn);
2163 continue;
2164 }
2165
2166 /*
2167 * If isolation recently failed, do not retry. Only check the
2168 * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock
2169 * to be visited multiple times. Assume skip was checked
2170 * before making it "skip" so other compaction instances do
2171 * not scan the same block.
2172 */
2173 if ((pageblock_aligned(low_pfn) ||
2174 low_pfn == cc->zone->zone_start_pfn) &&
2175 !fast_find_block && !isolation_suitable(cc, page))
2176 continue;
2177
2178 /*
2179 * For async direct compaction, only scan the pageblocks of the
2180 * same migratetype without huge pages. Async direct compaction
2181 * is optimistic to see if the minimum amount of work satisfies
2182 * the allocation. The cached PFN is updated as it's possible
2183 * that all remaining blocks between source and target are
2184 * unsuitable and the compaction scanners fail to meet.
2185 */
2186 if (!suitable_migration_source(cc, page)) {
2187 update_cached_migrate(cc, block_end_pfn);
2188 continue;
2189 }
2190
2191 /* Perform the isolation */
2192 if (isolate_migratepages_block(cc, low_pfn, block_end_pfn,
2193 isolate_mode))
2194 return ISOLATE_ABORT;
2195
2196 /*
2197 * Either we isolated something and proceed with migration. Or
2198 * we failed and compact_zone should decide if we should
2199 * continue or not.
2200 */
2201 break;
2202 }
2203
2204 return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
2205 }
2206
2207 /*
2208 * Determine whether kswapd is (or recently was!) running on this node.
2209 *
2210 * pgdat_kswapd_lock() pins pgdat->kswapd, so a concurrent kswapd_stop() can't
2211 * zero it.
2212 */
kswapd_is_running(pg_data_t * pgdat)2213 static bool kswapd_is_running(pg_data_t *pgdat)
2214 {
2215 bool running;
2216
2217 pgdat_kswapd_lock(pgdat);
2218 running = pgdat->kswapd && task_is_running(pgdat->kswapd);
2219 pgdat_kswapd_unlock(pgdat);
2220
2221 return running;
2222 }
2223
2224 /*
2225 * A zone's fragmentation score is the external fragmentation wrt to the
2226 * COMPACTION_HPAGE_ORDER. It returns a value in the range [0, 100].
2227 */
fragmentation_score_zone(struct zone * zone)2228 static unsigned int fragmentation_score_zone(struct zone *zone)
2229 {
2230 return extfrag_for_order(zone, COMPACTION_HPAGE_ORDER);
2231 }
2232
2233 /*
2234 * A weighted zone's fragmentation score is the external fragmentation
2235 * wrt to the COMPACTION_HPAGE_ORDER scaled by the zone's size. It
2236 * returns a value in the range [0, 100].
2237 *
2238 * The scaling factor ensures that proactive compaction focuses on larger
2239 * zones like ZONE_NORMAL, rather than smaller, specialized zones like
2240 * ZONE_DMA32. For smaller zones, the score value remains close to zero,
2241 * and thus never exceeds the high threshold for proactive compaction.
2242 */
fragmentation_score_zone_weighted(struct zone * zone)2243 static unsigned int fragmentation_score_zone_weighted(struct zone *zone)
2244 {
2245 unsigned long score;
2246
2247 score = zone->present_pages * fragmentation_score_zone(zone);
2248 return div64_ul(score, zone->zone_pgdat->node_present_pages + 1);
2249 }
2250
2251 /*
2252 * The per-node proactive (background) compaction process is started by its
2253 * corresponding kcompactd thread when the node's fragmentation score
2254 * exceeds the high threshold. The compaction process remains active till
2255 * the node's score falls below the low threshold, or one of the back-off
2256 * conditions is met.
2257 */
fragmentation_score_node(pg_data_t * pgdat)2258 static unsigned int fragmentation_score_node(pg_data_t *pgdat)
2259 {
2260 unsigned int score = 0;
2261 int zoneid;
2262
2263 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2264 struct zone *zone;
2265
2266 zone = &pgdat->node_zones[zoneid];
2267 if (!populated_zone(zone))
2268 continue;
2269 score += fragmentation_score_zone_weighted(zone);
2270 }
2271
2272 return score;
2273 }
2274
fragmentation_score_wmark(bool low)2275 static unsigned int fragmentation_score_wmark(bool low)
2276 {
2277 unsigned int wmark_low;
2278
2279 /*
2280 * Cap the low watermark to avoid excessive compaction
2281 * activity in case a user sets the proactiveness tunable
2282 * close to 100 (maximum).
2283 */
2284 wmark_low = max(100U - sysctl_compaction_proactiveness, 5U);
2285 return low ? wmark_low : min(wmark_low + 10, 100U);
2286 }
2287
should_proactive_compact_node(pg_data_t * pgdat)2288 static bool should_proactive_compact_node(pg_data_t *pgdat)
2289 {
2290 int wmark_high;
2291
2292 if (!sysctl_compaction_proactiveness || kswapd_is_running(pgdat))
2293 return false;
2294
2295 wmark_high = fragmentation_score_wmark(false);
2296 trace_android_vh_proactive_compact_wmark_high(&wmark_high);
2297 return fragmentation_score_node(pgdat) > wmark_high;
2298 }
2299
__compact_finished(struct compact_control * cc)2300 static enum compact_result __compact_finished(struct compact_control *cc)
2301 {
2302 unsigned int order;
2303 const int migratetype = cc->migratetype;
2304 int ret;
2305 bool abort_compact = false;
2306
2307 /* Compaction run completes if the migrate and free scanner meet */
2308 if (compact_scanners_met(cc)) {
2309 /* Let the next compaction start anew. */
2310 reset_cached_positions(cc->zone);
2311
2312 /*
2313 * Mark that the PG_migrate_skip information should be cleared
2314 * by kswapd when it goes to sleep. kcompactd does not set the
2315 * flag itself as the decision to be clear should be directly
2316 * based on an allocation request.
2317 */
2318 if (cc->direct_compaction)
2319 cc->zone->compact_blockskip_flush = true;
2320
2321 if (cc->whole_zone)
2322 return COMPACT_COMPLETE;
2323 else
2324 return COMPACT_PARTIAL_SKIPPED;
2325 }
2326
2327 if (cc->proactive_compaction) {
2328 int score, wmark_low;
2329 pg_data_t *pgdat;
2330
2331 pgdat = cc->zone->zone_pgdat;
2332 if (kswapd_is_running(pgdat))
2333 return COMPACT_PARTIAL_SKIPPED;
2334
2335 score = fragmentation_score_zone(cc->zone);
2336 wmark_low = fragmentation_score_wmark(true);
2337
2338 if (score > wmark_low)
2339 ret = COMPACT_CONTINUE;
2340 else
2341 ret = COMPACT_SUCCESS;
2342
2343 goto out;
2344 }
2345
2346 if (is_via_compact_memory(cc->order))
2347 return COMPACT_CONTINUE;
2348
2349 /*
2350 * Always finish scanning a pageblock to reduce the possibility of
2351 * fallbacks in the future. This is particularly important when
2352 * migration source is unmovable/reclaimable but it's not worth
2353 * special casing.
2354 */
2355 if (!pageblock_aligned(cc->migrate_pfn))
2356 return COMPACT_CONTINUE;
2357
2358 /* Direct compactor: Is a suitable page free? */
2359 ret = COMPACT_NO_SUITABLE_PAGE;
2360 for (order = cc->order; order < NR_PAGE_ORDERS; order++) {
2361 struct free_area *area = &cc->zone->free_area[order];
2362
2363 /* Job done if page is free of the right migratetype */
2364 if (!free_area_empty(area, migratetype))
2365 return COMPACT_SUCCESS;
2366
2367 #ifdef CONFIG_CMA
2368 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
2369 if (migratetype == MIGRATE_MOVABLE &&
2370 !free_area_empty(area, MIGRATE_CMA))
2371 return COMPACT_SUCCESS;
2372 #endif
2373 /*
2374 * Job done if allocation would steal freepages from
2375 * other migratetype buddy lists.
2376 */
2377 if (find_suitable_fallback(area, order, migratetype, true) >= 0)
2378 /*
2379 * Movable pages are OK in any pageblock. If we are
2380 * stealing for a non-movable allocation, make sure
2381 * we finish compacting the current pageblock first
2382 * (which is assured by the above migrate_pfn align
2383 * check) so it is as free as possible and we won't
2384 * have to steal another one soon.
2385 */
2386 return COMPACT_SUCCESS;
2387 }
2388
2389 out:
2390 trace_android_vh_compact_finished(&abort_compact);
2391 if (cc->contended || fatal_signal_pending(current) || abort_compact)
2392 ret = COMPACT_CONTENDED;
2393
2394 return ret;
2395 }
2396
compact_finished(struct compact_control * cc)2397 static enum compact_result compact_finished(struct compact_control *cc)
2398 {
2399 int ret;
2400
2401 ret = __compact_finished(cc);
2402 trace_mm_compaction_finished(cc->zone, cc->order, ret);
2403 if (ret == COMPACT_NO_SUITABLE_PAGE)
2404 ret = COMPACT_CONTINUE;
2405
2406 return ret;
2407 }
2408
__compaction_suitable(struct zone * zone,int order,int highest_zoneidx,unsigned long wmark_target)2409 static bool __compaction_suitable(struct zone *zone, int order,
2410 int highest_zoneidx,
2411 unsigned long wmark_target)
2412 {
2413 unsigned long watermark;
2414 /*
2415 * Watermarks for order-0 must be met for compaction to be able to
2416 * isolate free pages for migration targets. This means that the
2417 * watermark and alloc_flags have to match, or be more pessimistic than
2418 * the check in __isolate_free_page(). We don't use the direct
2419 * compactor's alloc_flags, as they are not relevant for freepage
2420 * isolation. We however do use the direct compactor's highest_zoneidx
2421 * to skip over zones where lowmem reserves would prevent allocation
2422 * even if compaction succeeds.
2423 * For costly orders, we require low watermark instead of min for
2424 * compaction to proceed to increase its chances.
2425 * ALLOC_CMA is used, as pages in CMA pageblocks are considered
2426 * suitable migration targets
2427 */
2428 watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
2429 low_wmark_pages(zone) : min_wmark_pages(zone);
2430 watermark += compact_gap(order);
2431 return __zone_watermark_ok(zone, 0, watermark, highest_zoneidx,
2432 ALLOC_CMA, wmark_target);
2433 }
2434
2435 /*
2436 * compaction_suitable: Is this suitable to run compaction on this zone now?
2437 */
compaction_suitable(struct zone * zone,int order,int highest_zoneidx)2438 bool compaction_suitable(struct zone *zone, int order, int highest_zoneidx)
2439 {
2440 enum compact_result compact_result;
2441 bool suitable;
2442
2443 suitable = __compaction_suitable(zone, order, highest_zoneidx,
2444 zone_page_state(zone, NR_FREE_PAGES));
2445 /*
2446 * fragmentation index determines if allocation failures are due to
2447 * low memory or external fragmentation
2448 *
2449 * index of -1000 would imply allocations might succeed depending on
2450 * watermarks, but we already failed the high-order watermark check
2451 * index towards 0 implies failure is due to lack of memory
2452 * index towards 1000 implies failure is due to fragmentation
2453 *
2454 * Only compact if a failure would be due to fragmentation. Also
2455 * ignore fragindex for non-costly orders where the alternative to
2456 * a successful reclaim/compaction is OOM. Fragindex and the
2457 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
2458 * excessive compaction for costly orders, but it should not be at the
2459 * expense of system stability.
2460 */
2461 if (suitable) {
2462 compact_result = COMPACT_CONTINUE;
2463 if (order > PAGE_ALLOC_COSTLY_ORDER) {
2464 int fragindex = fragmentation_index(zone, order);
2465
2466 if (fragindex >= 0 &&
2467 fragindex <= sysctl_extfrag_threshold) {
2468 suitable = false;
2469 compact_result = COMPACT_NOT_SUITABLE_ZONE;
2470 }
2471 }
2472 } else {
2473 compact_result = COMPACT_SKIPPED;
2474 }
2475
2476 trace_mm_compaction_suitable(zone, order, compact_result);
2477
2478 return suitable;
2479 }
2480
compaction_zonelist_suitable(struct alloc_context * ac,int order,int alloc_flags)2481 bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
2482 int alloc_flags)
2483 {
2484 struct zone *zone;
2485 struct zoneref *z;
2486
2487 /*
2488 * Make sure at least one zone would pass __compaction_suitable if we continue
2489 * retrying the reclaim.
2490 */
2491 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2492 ac->highest_zoneidx, ac->nodemask) {
2493 unsigned long available;
2494
2495 /*
2496 * Do not consider all the reclaimable memory because we do not
2497 * want to trash just for a single high order allocation which
2498 * is even not guaranteed to appear even if __compaction_suitable
2499 * is happy about the watermark check.
2500 */
2501 available = zone_reclaimable_pages(zone) / order;
2502 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
2503 if (__compaction_suitable(zone, order, ac->highest_zoneidx,
2504 available))
2505 return true;
2506 }
2507
2508 return false;
2509 }
2510
2511 /*
2512 * Should we do compaction for target allocation order.
2513 * Return COMPACT_SUCCESS if allocation for target order can be already
2514 * satisfied
2515 * Return COMPACT_SKIPPED if compaction for target order is likely to fail
2516 * Return COMPACT_CONTINUE if compaction for target order should be ran
2517 */
2518 static enum compact_result
compaction_suit_allocation_order(struct zone * zone,unsigned int order,int highest_zoneidx,unsigned int alloc_flags)2519 compaction_suit_allocation_order(struct zone *zone, unsigned int order,
2520 int highest_zoneidx, unsigned int alloc_flags)
2521 {
2522 unsigned long watermark;
2523
2524 watermark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
2525 if (zone_watermark_ok(zone, order, watermark, highest_zoneidx,
2526 alloc_flags))
2527 return COMPACT_SUCCESS;
2528
2529 if (!compaction_suitable(zone, order, highest_zoneidx))
2530 return COMPACT_SKIPPED;
2531
2532 return COMPACT_CONTINUE;
2533 }
2534
2535 static enum compact_result
compact_zone(struct compact_control * cc,struct capture_control * capc)2536 compact_zone(struct compact_control *cc, struct capture_control *capc)
2537 {
2538 enum compact_result ret;
2539 unsigned long start_pfn = cc->zone->zone_start_pfn;
2540 unsigned long end_pfn = zone_end_pfn(cc->zone);
2541 unsigned long last_migrated_pfn;
2542 const bool sync = cc->mode != MIGRATE_ASYNC;
2543 bool update_cached;
2544 unsigned int nr_succeeded = 0, nr_migratepages;
2545 int order;
2546 long vendor_ret;
2547
2548 /*
2549 * These counters track activities during zone compaction. Initialize
2550 * them before compacting a new zone.
2551 */
2552 cc->total_migrate_scanned = 0;
2553 cc->total_free_scanned = 0;
2554 cc->nr_migratepages = 0;
2555 cc->nr_freepages = 0;
2556 for (order = 0; order < NR_PAGE_ORDERS; order++)
2557 INIT_LIST_HEAD(&cc->freepages[order]);
2558 INIT_LIST_HEAD(&cc->migratepages);
2559
2560 cc->migratetype = gfp_migratetype(cc->gfp_mask);
2561
2562 if (!is_via_compact_memory(cc->order)) {
2563 ret = compaction_suit_allocation_order(cc->zone, cc->order,
2564 cc->highest_zoneidx,
2565 cc->alloc_flags);
2566 if (ret != COMPACT_CONTINUE)
2567 return ret;
2568 }
2569
2570 /*
2571 * Clear pageblock skip if there were failures recently and compaction
2572 * is about to be retried after being deferred.
2573 */
2574 if (compaction_restarting(cc->zone, cc->order))
2575 __reset_isolation_suitable(cc->zone);
2576
2577 /*
2578 * Setup to move all movable pages to the end of the zone. Used cached
2579 * information on where the scanners should start (unless we explicitly
2580 * want to compact the whole zone), but check that it is initialised
2581 * by ensuring the values are within zone boundaries.
2582 */
2583 cc->fast_start_pfn = 0;
2584 if (cc->whole_zone) {
2585 cc->migrate_pfn = start_pfn;
2586 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2587 } else {
2588 cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync];
2589 cc->free_pfn = cc->zone->compact_cached_free_pfn;
2590 if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
2591 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2592 cc->zone->compact_cached_free_pfn = cc->free_pfn;
2593 }
2594 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
2595 cc->migrate_pfn = start_pfn;
2596 cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
2597 cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
2598 }
2599
2600 if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn)
2601 cc->whole_zone = true;
2602 }
2603
2604 last_migrated_pfn = 0;
2605
2606 /*
2607 * Migrate has separate cached PFNs for ASYNC and SYNC* migration on
2608 * the basis that some migrations will fail in ASYNC mode. However,
2609 * if the cached PFNs match and pageblocks are skipped due to having
2610 * no isolation candidates, then the sync state does not matter.
2611 * Until a pageblock with isolation candidates is found, keep the
2612 * cached PFNs in sync to avoid revisiting the same blocks.
2613 */
2614 update_cached = !sync &&
2615 cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1];
2616
2617 trace_mm_compaction_begin(cc, start_pfn, end_pfn, sync);
2618 trace_android_vh_mm_compaction_begin(cc, &vendor_ret);
2619
2620 /* lru_add_drain_all could be expensive with involving other CPUs */
2621 lru_add_drain();
2622
2623 while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) {
2624 int err;
2625 unsigned long iteration_start_pfn = cc->migrate_pfn;
2626
2627 /*
2628 * Avoid multiple rescans of the same pageblock which can
2629 * happen if a page cannot be isolated (dirty/writeback in
2630 * async mode) or if the migrated pages are being allocated
2631 * before the pageblock is cleared. The first rescan will
2632 * capture the entire pageblock for migration. If it fails,
2633 * it'll be marked skip and scanning will proceed as normal.
2634 */
2635 cc->finish_pageblock = false;
2636 if (pageblock_start_pfn(last_migrated_pfn) ==
2637 pageblock_start_pfn(iteration_start_pfn)) {
2638 cc->finish_pageblock = true;
2639 }
2640
2641 rescan:
2642 switch (isolate_migratepages(cc)) {
2643 case ISOLATE_ABORT:
2644 ret = COMPACT_CONTENDED;
2645 putback_movable_pages(&cc->migratepages);
2646 cc->nr_migratepages = 0;
2647 goto out;
2648 case ISOLATE_NONE:
2649 if (update_cached) {
2650 cc->zone->compact_cached_migrate_pfn[1] =
2651 cc->zone->compact_cached_migrate_pfn[0];
2652 }
2653
2654 /*
2655 * We haven't isolated and migrated anything, but
2656 * there might still be unflushed migrations from
2657 * previous cc->order aligned block.
2658 */
2659 goto check_drain;
2660 case ISOLATE_SUCCESS:
2661 update_cached = false;
2662 last_migrated_pfn = max(cc->zone->zone_start_pfn,
2663 pageblock_start_pfn(cc->migrate_pfn - 1));
2664 }
2665
2666 /*
2667 * Record the number of pages to migrate since the
2668 * compaction_alloc/free() will update cc->nr_migratepages
2669 * properly.
2670 */
2671 nr_migratepages = cc->nr_migratepages;
2672 err = migrate_pages(&cc->migratepages, compaction_alloc,
2673 compaction_free, (unsigned long)cc, cc->mode,
2674 MR_COMPACTION, &nr_succeeded);
2675
2676 trace_mm_compaction_migratepages(nr_migratepages, nr_succeeded);
2677
2678 /* All pages were either migrated or will be released */
2679 cc->nr_migratepages = 0;
2680 if (err) {
2681 putback_movable_pages(&cc->migratepages);
2682 /*
2683 * migrate_pages() may return -ENOMEM when scanners meet
2684 * and we want compact_finished() to detect it
2685 */
2686 if (err == -ENOMEM && !compact_scanners_met(cc)) {
2687 ret = COMPACT_CONTENDED;
2688 goto out;
2689 }
2690 /*
2691 * If an ASYNC or SYNC_LIGHT fails to migrate a page
2692 * within the pageblock_order-aligned block and
2693 * fast_find_migrateblock may be used then scan the
2694 * remainder of the pageblock. This will mark the
2695 * pageblock "skip" to avoid rescanning in the near
2696 * future. This will isolate more pages than necessary
2697 * for the request but avoid loops due to
2698 * fast_find_migrateblock revisiting blocks that were
2699 * recently partially scanned.
2700 */
2701 if (!pageblock_aligned(cc->migrate_pfn) &&
2702 !cc->ignore_skip_hint && !cc->finish_pageblock &&
2703 (cc->mode < MIGRATE_SYNC)) {
2704 cc->finish_pageblock = true;
2705
2706 /*
2707 * Draining pcplists does not help THP if
2708 * any page failed to migrate. Even after
2709 * drain, the pageblock will not be free.
2710 */
2711 if (cc->order == COMPACTION_HPAGE_ORDER)
2712 last_migrated_pfn = 0;
2713
2714 goto rescan;
2715 }
2716 }
2717
2718 /* Stop if a page has been captured */
2719 if (capc && capc->page) {
2720 ret = COMPACT_SUCCESS;
2721 break;
2722 }
2723
2724 check_drain:
2725 /*
2726 * Has the migration scanner moved away from the previous
2727 * cc->order aligned block where we migrated from? If yes,
2728 * flush the pages that were freed, so that they can merge and
2729 * compact_finished() can detect immediately if allocation
2730 * would succeed.
2731 */
2732 if (cc->order > 0 && last_migrated_pfn) {
2733 unsigned long current_block_start =
2734 block_start_pfn(cc->migrate_pfn, cc->order);
2735
2736 if (last_migrated_pfn < current_block_start) {
2737 lru_add_drain_cpu_zone(cc->zone);
2738 /* No more flushing until we migrate again */
2739 last_migrated_pfn = 0;
2740 }
2741 }
2742 }
2743
2744 out:
2745 /*
2746 * Release free pages and update where the free scanner should restart,
2747 * so we don't leave any returned pages behind in the next attempt.
2748 */
2749 if (cc->nr_freepages > 0) {
2750 unsigned long free_pfn = release_free_list(cc->freepages);
2751
2752 cc->nr_freepages = 0;
2753 VM_BUG_ON(free_pfn == 0);
2754 /* The cached pfn is always the first in a pageblock */
2755 free_pfn = pageblock_start_pfn(free_pfn);
2756 /*
2757 * Only go back, not forward. The cached pfn might have been
2758 * already reset to zone end in compact_finished()
2759 */
2760 if (free_pfn > cc->zone->compact_cached_free_pfn)
2761 cc->zone->compact_cached_free_pfn = free_pfn;
2762 }
2763
2764 count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
2765 count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);
2766
2767 trace_android_vh_mm_compaction_end(cc, vendor_ret);
2768 trace_mm_compaction_end(cc, start_pfn, end_pfn, sync, ret);
2769
2770 VM_BUG_ON(!list_empty(&cc->migratepages));
2771
2772 return ret;
2773 }
2774
compact_zone_order(struct zone * zone,int order,gfp_t gfp_mask,enum compact_priority prio,unsigned int alloc_flags,int highest_zoneidx,struct page ** capture)2775 static enum compact_result compact_zone_order(struct zone *zone, int order,
2776 gfp_t gfp_mask, enum compact_priority prio,
2777 unsigned int alloc_flags, int highest_zoneidx,
2778 struct page **capture)
2779 {
2780 enum compact_result ret;
2781 struct compact_control cc = {
2782 .order = order,
2783 .search_order = order,
2784 .gfp_mask = gfp_mask,
2785 .zone = zone,
2786 .mode = (prio == COMPACT_PRIO_ASYNC) ?
2787 MIGRATE_ASYNC : MIGRATE_SYNC_LIGHT,
2788 .alloc_flags = alloc_flags,
2789 .highest_zoneidx = highest_zoneidx,
2790 .direct_compaction = true,
2791 .whole_zone = (prio == MIN_COMPACT_PRIORITY),
2792 .ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
2793 .ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
2794 };
2795 struct capture_control capc = {
2796 .cc = &cc,
2797 .page = NULL,
2798 };
2799
2800 /*
2801 * Make sure the structs are really initialized before we expose the
2802 * capture control, in case we are interrupted and the interrupt handler
2803 * frees a page.
2804 */
2805 barrier();
2806 WRITE_ONCE(current->capture_control, &capc);
2807
2808 ret = compact_zone(&cc, &capc);
2809
2810 /*
2811 * Make sure we hide capture control first before we read the captured
2812 * page pointer, otherwise an interrupt could free and capture a page
2813 * and we would leak it.
2814 */
2815 WRITE_ONCE(current->capture_control, NULL);
2816 *capture = READ_ONCE(capc.page);
2817 /*
2818 * Technically, it is also possible that compaction is skipped but
2819 * the page is still captured out of luck(IRQ came and freed the page).
2820 * Returning COMPACT_SUCCESS in such cases helps in properly accounting
2821 * the COMPACT[STALL|FAIL] when compaction is skipped.
2822 */
2823 if (*capture)
2824 ret = COMPACT_SUCCESS;
2825
2826 return ret;
2827 }
2828
2829 /**
2830 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
2831 * @gfp_mask: The GFP mask of the current allocation
2832 * @order: The order of the current allocation
2833 * @alloc_flags: The allocation flags of the current allocation
2834 * @ac: The context of current allocation
2835 * @prio: Determines how hard direct compaction should try to succeed
2836 * @capture: Pointer to free page created by compaction will be stored here
2837 *
2838 * This is the main entry point for direct page compaction.
2839 */
try_to_compact_pages(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac,enum compact_priority prio,struct page ** capture)2840 enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
2841 unsigned int alloc_flags, const struct alloc_context *ac,
2842 enum compact_priority prio, struct page **capture)
2843 {
2844 struct zoneref *z;
2845 struct zone *zone;
2846 enum compact_result rc = COMPACT_SKIPPED;
2847
2848 if (!gfp_compaction_allowed(gfp_mask))
2849 return COMPACT_SKIPPED;
2850
2851 trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
2852
2853 /* Compact each zone in the list */
2854 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2855 ac->highest_zoneidx, ac->nodemask) {
2856 enum compact_result status;
2857 bool can_compact = true;
2858
2859 trace_android_vh_mm_customize_zone_can_compact(zone, &can_compact);
2860 if (!can_compact)
2861 continue;
2862
2863 if (cpusets_enabled() &&
2864 (alloc_flags & ALLOC_CPUSET) &&
2865 !__cpuset_zone_allowed(zone, gfp_mask))
2866 continue;
2867
2868 if (prio > MIN_COMPACT_PRIORITY
2869 && compaction_deferred(zone, order)) {
2870 rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
2871 continue;
2872 }
2873
2874 status = compact_zone_order(zone, order, gfp_mask, prio,
2875 alloc_flags, ac->highest_zoneidx, capture);
2876 rc = max(status, rc);
2877
2878 /* The allocation should succeed, stop compacting */
2879 if (status == COMPACT_SUCCESS) {
2880 /*
2881 * We think the allocation will succeed in this zone,
2882 * but it is not certain, hence the false. The caller
2883 * will repeat this with true if allocation indeed
2884 * succeeds in this zone.
2885 */
2886 compaction_defer_reset(zone, order, false);
2887
2888 break;
2889 }
2890
2891 if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
2892 status == COMPACT_PARTIAL_SKIPPED))
2893 /*
2894 * We think that allocation won't succeed in this zone
2895 * so we defer compaction there. If it ends up
2896 * succeeding after all, it will be reset.
2897 */
2898 defer_compaction(zone, order);
2899
2900 /*
2901 * We might have stopped compacting due to need_resched() in
2902 * async compaction, or due to a fatal signal detected. In that
2903 * case do not try further zones
2904 */
2905 if ((prio == COMPACT_PRIO_ASYNC && need_resched())
2906 || fatal_signal_pending(current))
2907 break;
2908 }
2909 trace_android_vh_compaction_try_to_compact_exit(&rc);
2910 return rc;
2911 }
2912
2913 /* Compact all zones within a node with MIGRATE_ASYNC */
compact_node_async(int nid)2914 void compact_node_async(int nid)
2915 {
2916 pg_data_t *pgdat = NODE_DATA(nid);
2917 int zoneid;
2918 struct zone *zone;
2919 struct compact_control cc = {
2920 .order = -1,
2921 .mode = MIGRATE_ASYNC,
2922 .ignore_skip_hint = true,
2923 .whole_zone = true,
2924 .gfp_mask = GFP_KERNEL,
2925 .proactive_compaction = false,
2926 };
2927
2928 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2929 bool can_compact = true;
2930
2931 zone = &pgdat->node_zones[zoneid];
2932 if (!populated_zone(zone))
2933 continue;
2934
2935 trace_android_vh_mm_customize_zone_can_compact(zone, &can_compact);
2936 if (!can_compact)
2937 continue;
2938
2939 if (fatal_signal_pending(current))
2940 break;
2941
2942 cc.zone = zone;
2943
2944 compact_zone(&cc, NULL);
2945 }
2946 }
2947 EXPORT_SYMBOL_GPL(compact_node_async);
2948
2949 /*
2950 * compact_node() - compact all zones within a node
2951 * @pgdat: The node page data
2952 * @proactive: Whether the compaction is proactive
2953 *
2954 * For proactive compaction, compact till each zone's fragmentation score
2955 * reaches within proactive compaction thresholds (as determined by the
2956 * proactiveness tunable), it is possible that the function returns before
2957 * reaching score targets due to various back-off conditions, such as,
2958 * contention on per-node or per-zone locks.
2959 */
compact_node(pg_data_t * pgdat,bool proactive)2960 static int compact_node(pg_data_t *pgdat, bool proactive)
2961 {
2962 int zoneid;
2963 struct zone *zone;
2964 struct compact_control cc = {
2965 .order = -1,
2966 .mode = proactive ? MIGRATE_SYNC_LIGHT : MIGRATE_SYNC,
2967 .ignore_skip_hint = true,
2968 .whole_zone = true,
2969 .gfp_mask = GFP_KERNEL,
2970 .proactive_compaction = proactive,
2971 };
2972
2973 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2974 bool can_compact = true;
2975
2976 zone = &pgdat->node_zones[zoneid];
2977 if (!populated_zone(zone))
2978 continue;
2979
2980 trace_android_vh_mm_customize_zone_can_compact(zone, &can_compact);
2981 if (!can_compact)
2982 continue;
2983
2984 if (fatal_signal_pending(current))
2985 return -EINTR;
2986
2987 cc.zone = zone;
2988
2989 compact_zone(&cc, NULL);
2990
2991 if (proactive) {
2992 count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
2993 cc.total_migrate_scanned);
2994 count_compact_events(KCOMPACTD_FREE_SCANNED,
2995 cc.total_free_scanned);
2996 }
2997 }
2998
2999 return 0;
3000 }
3001
3002 /* Compact all zones of all nodes in the system */
compact_nodes(void)3003 static int compact_nodes(void)
3004 {
3005 int ret, nid;
3006
3007 /* Flush pending updates to the LRU lists */
3008 lru_add_drain_all();
3009
3010 for_each_online_node(nid) {
3011 ret = compact_node(NODE_DATA(nid), false);
3012 if (ret)
3013 return ret;
3014 }
3015
3016 return 0;
3017 }
3018
compaction_proactiveness_sysctl_handler(const struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)3019 static int compaction_proactiveness_sysctl_handler(const struct ctl_table *table, int write,
3020 void *buffer, size_t *length, loff_t *ppos)
3021 {
3022 int rc, nid;
3023
3024 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
3025 if (rc)
3026 return rc;
3027
3028 if (write && sysctl_compaction_proactiveness) {
3029 for_each_online_node(nid) {
3030 pg_data_t *pgdat = NODE_DATA(nid);
3031
3032 if (pgdat->proactive_compact_trigger)
3033 continue;
3034
3035 pgdat->proactive_compact_trigger = true;
3036 trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, -1,
3037 pgdat->nr_zones - 1);
3038 wake_up_interruptible(&pgdat->kcompactd_wait);
3039 }
3040 }
3041
3042 return 0;
3043 }
3044
3045 /*
3046 * This is the entry point for compacting all nodes via
3047 * /proc/sys/vm/compact_memory
3048 */
sysctl_compaction_handler(const struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)3049 static int sysctl_compaction_handler(const struct ctl_table *table, int write,
3050 void *buffer, size_t *length, loff_t *ppos)
3051 {
3052 int ret;
3053
3054 ret = proc_dointvec(table, write, buffer, length, ppos);
3055 if (ret)
3056 return ret;
3057
3058 if (sysctl_compact_memory != 1)
3059 return -EINVAL;
3060
3061 if (write)
3062 ret = compact_nodes();
3063
3064 return ret;
3065 }
3066
3067 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
compact_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)3068 static ssize_t compact_store(struct device *dev,
3069 struct device_attribute *attr,
3070 const char *buf, size_t count)
3071 {
3072 int nid = dev->id;
3073
3074 if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
3075 /* Flush pending updates to the LRU lists */
3076 lru_add_drain_all();
3077
3078 compact_node(NODE_DATA(nid), false);
3079 }
3080
3081 return count;
3082 }
3083 static DEVICE_ATTR_WO(compact);
3084
compaction_register_node(struct node * node)3085 int compaction_register_node(struct node *node)
3086 {
3087 return device_create_file(&node->dev, &dev_attr_compact);
3088 }
3089
compaction_unregister_node(struct node * node)3090 void compaction_unregister_node(struct node *node)
3091 {
3092 device_remove_file(&node->dev, &dev_attr_compact);
3093 }
3094 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
3095
kcompactd_work_requested(pg_data_t * pgdat)3096 static inline bool kcompactd_work_requested(pg_data_t *pgdat)
3097 {
3098 return pgdat->kcompactd_max_order > 0 || kthread_should_stop() ||
3099 pgdat->proactive_compact_trigger;
3100 }
3101
kcompactd_node_suitable(pg_data_t * pgdat)3102 static bool kcompactd_node_suitable(pg_data_t *pgdat)
3103 {
3104 int zoneid;
3105 struct zone *zone;
3106 enum zone_type highest_zoneidx = pgdat->kcompactd_highest_zoneidx;
3107 enum compact_result ret;
3108
3109 for (zoneid = 0; zoneid <= highest_zoneidx; zoneid++) {
3110 bool can_compact = true;
3111 zone = &pgdat->node_zones[zoneid];
3112
3113 if (!populated_zone(zone))
3114 continue;
3115
3116 trace_android_vh_mm_customize_zone_can_compact(zone, &can_compact);
3117 if (!can_compact)
3118 continue;
3119
3120 ret = compaction_suit_allocation_order(zone,
3121 pgdat->kcompactd_max_order,
3122 highest_zoneidx, ALLOC_WMARK_MIN);
3123 if (ret == COMPACT_CONTINUE)
3124 return true;
3125 }
3126
3127 return false;
3128 }
3129
kcompactd_do_work(pg_data_t * pgdat)3130 static void kcompactd_do_work(pg_data_t *pgdat)
3131 {
3132 /*
3133 * With no special task, compact all zones so that a page of requested
3134 * order is allocatable.
3135 */
3136 int zoneid;
3137 struct zone *zone;
3138 struct compact_control cc = {
3139 .order = pgdat->kcompactd_max_order,
3140 .search_order = pgdat->kcompactd_max_order,
3141 .highest_zoneidx = pgdat->kcompactd_highest_zoneidx,
3142 .mode = MIGRATE_SYNC_LIGHT,
3143 .ignore_skip_hint = false,
3144 .gfp_mask = GFP_KERNEL,
3145 };
3146 enum compact_result ret;
3147
3148 trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
3149 cc.highest_zoneidx);
3150 count_compact_event(KCOMPACTD_WAKE);
3151
3152 for (zoneid = 0; zoneid <= cc.highest_zoneidx; zoneid++) {
3153 int status;
3154 bool can_compact = true;
3155
3156 zone = &pgdat->node_zones[zoneid];
3157 if (!populated_zone(zone))
3158 continue;
3159
3160 trace_android_vh_mm_customize_zone_can_compact(zone, &can_compact);
3161 if (!can_compact)
3162 continue;
3163
3164 if (compaction_deferred(zone, cc.order))
3165 continue;
3166
3167 ret = compaction_suit_allocation_order(zone,
3168 cc.order, zoneid, ALLOC_WMARK_MIN);
3169 if (ret != COMPACT_CONTINUE)
3170 continue;
3171
3172 if (kthread_should_stop())
3173 return;
3174
3175 cc.zone = zone;
3176 status = compact_zone(&cc, NULL);
3177
3178 if (status == COMPACT_SUCCESS) {
3179 compaction_defer_reset(zone, cc.order, false);
3180 } else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
3181 /*
3182 * Buddy pages may become stranded on pcps that could
3183 * otherwise coalesce on the zone's free area for
3184 * order >= cc.order. This is ratelimited by the
3185 * upcoming deferral.
3186 */
3187 drain_all_pages(zone);
3188
3189 /*
3190 * We use sync migration mode here, so we defer like
3191 * sync direct compaction does.
3192 */
3193 defer_compaction(zone, cc.order);
3194 }
3195
3196 count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
3197 cc.total_migrate_scanned);
3198 count_compact_events(KCOMPACTD_FREE_SCANNED,
3199 cc.total_free_scanned);
3200 }
3201 trace_android_vh_compaction_exit(pgdat->node_id, cc.order, cc.highest_zoneidx);
3202
3203 /*
3204 * Regardless of success, we are done until woken up next. But remember
3205 * the requested order/highest_zoneidx in case it was higher/tighter
3206 * than our current ones
3207 */
3208 if (pgdat->kcompactd_max_order <= cc.order)
3209 pgdat->kcompactd_max_order = 0;
3210 if (pgdat->kcompactd_highest_zoneidx >= cc.highest_zoneidx)
3211 pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
3212 }
3213
wakeup_kcompactd(pg_data_t * pgdat,int order,int highest_zoneidx)3214 void wakeup_kcompactd(pg_data_t *pgdat, int order, int highest_zoneidx)
3215 {
3216 if (!order)
3217 return;
3218
3219 if (pgdat->kcompactd_max_order < order)
3220 pgdat->kcompactd_max_order = order;
3221
3222 if (pgdat->kcompactd_highest_zoneidx > highest_zoneidx)
3223 pgdat->kcompactd_highest_zoneidx = highest_zoneidx;
3224
3225 /*
3226 * Pairs with implicit barrier in wait_event_freezable()
3227 * such that wakeups are not missed.
3228 */
3229 if (!wq_has_sleeper(&pgdat->kcompactd_wait))
3230 return;
3231
3232 if (!kcompactd_node_suitable(pgdat))
3233 return;
3234
3235 trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
3236 highest_zoneidx);
3237 wake_up_interruptible(&pgdat->kcompactd_wait);
3238 }
3239
3240 /*
3241 * The background compaction daemon, started as a kernel thread
3242 * from the init process.
3243 */
kcompactd(void * p)3244 static int kcompactd(void *p)
3245 {
3246 pg_data_t *pgdat = (pg_data_t *)p;
3247 struct task_struct *tsk = current;
3248 long default_timeout = msecs_to_jiffies(HPAGE_FRAG_CHECK_INTERVAL_MSEC);
3249 long timeout = default_timeout;
3250 bool bypass = false;
3251
3252 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3253
3254 if (!cpumask_empty(cpumask))
3255 set_cpus_allowed_ptr(tsk, cpumask);
3256
3257 current->flags |= PF_KCOMPACTD;
3258 set_freezable();
3259
3260 pgdat->kcompactd_max_order = 0;
3261 pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
3262
3263 while (!kthread_should_stop()) {
3264 unsigned long pflags;
3265
3266 /*
3267 * Avoid the unnecessary wakeup for proactive compaction
3268 * when it is disabled.
3269 */
3270 if (!sysctl_compaction_proactiveness)
3271 timeout = MAX_SCHEDULE_TIMEOUT;
3272 trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
3273 if (wait_event_freezable_timeout(pgdat->kcompactd_wait,
3274 kcompactd_work_requested(pgdat), timeout) &&
3275 !pgdat->proactive_compact_trigger) {
3276
3277 trace_android_vh_async_psi_bypass(&bypass);
3278 if (!bypass)
3279 psi_memstall_enter(&pflags);
3280 kcompactd_do_work(pgdat);
3281 if (!bypass)
3282 psi_memstall_leave(&pflags);
3283 /*
3284 * Reset the timeout value. The defer timeout from
3285 * proactive compaction is lost here but that is fine
3286 * as the condition of the zone changing substantionally
3287 * then carrying on with the previous defer interval is
3288 * not useful.
3289 */
3290 timeout = default_timeout;
3291 continue;
3292 }
3293
3294 /*
3295 * Start the proactive work with default timeout. Based
3296 * on the fragmentation score, this timeout is updated.
3297 */
3298 timeout = default_timeout;
3299 if (should_proactive_compact_node(pgdat)) {
3300 unsigned int prev_score, score;
3301
3302 prev_score = fragmentation_score_node(pgdat);
3303 compact_node(pgdat, true);
3304 score = fragmentation_score_node(pgdat);
3305 /*
3306 * Defer proactive compaction if the fragmentation
3307 * score did not go down i.e. no progress made.
3308 */
3309 if (unlikely(score >= prev_score))
3310 timeout =
3311 default_timeout << COMPACT_MAX_DEFER_SHIFT;
3312 }
3313 if (unlikely(pgdat->proactive_compact_trigger))
3314 pgdat->proactive_compact_trigger = false;
3315 }
3316
3317 current->flags &= ~PF_KCOMPACTD;
3318
3319 return 0;
3320 }
3321
3322 /*
3323 * This kcompactd start function will be called by init and node-hot-add.
3324 * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
3325 */
kcompactd_run(int nid)3326 void __meminit kcompactd_run(int nid)
3327 {
3328 pg_data_t *pgdat = NODE_DATA(nid);
3329
3330 if (pgdat->kcompactd)
3331 return;
3332
3333 pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
3334 if (IS_ERR(pgdat->kcompactd)) {
3335 pr_err("Failed to start kcompactd on node %d\n", nid);
3336 pgdat->kcompactd = NULL;
3337 }
3338 }
3339
3340 /*
3341 * Called by memory hotplug when all memory in a node is offlined. Caller must
3342 * be holding mem_hotplug_begin/done().
3343 */
kcompactd_stop(int nid)3344 void __meminit kcompactd_stop(int nid)
3345 {
3346 struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
3347
3348 if (kcompactd) {
3349 kthread_stop(kcompactd);
3350 NODE_DATA(nid)->kcompactd = NULL;
3351 }
3352 }
3353
3354 /*
3355 * It's optimal to keep kcompactd on the same CPUs as their memory, but
3356 * not required for correctness. So if the last cpu in a node goes
3357 * away, we get changed to run anywhere: as the first one comes back,
3358 * restore their cpu bindings.
3359 */
kcompactd_cpu_online(unsigned int cpu)3360 static int kcompactd_cpu_online(unsigned int cpu)
3361 {
3362 int nid;
3363
3364 for_each_node_state(nid, N_MEMORY) {
3365 pg_data_t *pgdat = NODE_DATA(nid);
3366 const struct cpumask *mask;
3367
3368 mask = cpumask_of_node(pgdat->node_id);
3369
3370 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3371 /* One of our CPUs online: restore mask */
3372 if (pgdat->kcompactd)
3373 set_cpus_allowed_ptr(pgdat->kcompactd, mask);
3374 }
3375 trace_android_vh_mm_kcompactd_cpu_online(cpu);
3376 return 0;
3377 }
3378
proc_dointvec_minmax_warn_RT_change(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)3379 static int proc_dointvec_minmax_warn_RT_change(const struct ctl_table *table,
3380 int write, void *buffer, size_t *lenp, loff_t *ppos)
3381 {
3382 int ret, old;
3383
3384 if (!IS_ENABLED(CONFIG_PREEMPT_RT) || !write)
3385 return proc_dointvec_minmax(table, write, buffer, lenp, ppos);
3386
3387 old = *(int *)table->data;
3388 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
3389 if (ret)
3390 return ret;
3391 if (old != *(int *)table->data)
3392 pr_warn_once("sysctl attribute %s changed by %s[%d]\n",
3393 table->procname, current->comm,
3394 task_pid_nr(current));
3395 return ret;
3396 }
3397
3398 static struct ctl_table vm_compaction[] = {
3399 {
3400 .procname = "compact_memory",
3401 .data = &sysctl_compact_memory,
3402 .maxlen = sizeof(int),
3403 .mode = 0200,
3404 .proc_handler = sysctl_compaction_handler,
3405 },
3406 {
3407 .procname = "compaction_proactiveness",
3408 .data = &sysctl_compaction_proactiveness,
3409 .maxlen = sizeof(sysctl_compaction_proactiveness),
3410 .mode = 0644,
3411 .proc_handler = compaction_proactiveness_sysctl_handler,
3412 .extra1 = SYSCTL_ZERO,
3413 .extra2 = SYSCTL_ONE_HUNDRED,
3414 },
3415 {
3416 .procname = "extfrag_threshold",
3417 .data = &sysctl_extfrag_threshold,
3418 .maxlen = sizeof(int),
3419 .mode = 0644,
3420 .proc_handler = proc_dointvec_minmax,
3421 .extra1 = SYSCTL_ZERO,
3422 .extra2 = SYSCTL_ONE_THOUSAND,
3423 },
3424 {
3425 .procname = "compact_unevictable_allowed",
3426 .data = &sysctl_compact_unevictable_allowed,
3427 .maxlen = sizeof(int),
3428 .mode = 0644,
3429 .proc_handler = proc_dointvec_minmax_warn_RT_change,
3430 .extra1 = SYSCTL_ZERO,
3431 .extra2 = SYSCTL_ONE,
3432 },
3433 };
3434
kcompactd_init(void)3435 static int __init kcompactd_init(void)
3436 {
3437 int nid;
3438 int ret;
3439
3440 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3441 "mm/compaction:online",
3442 kcompactd_cpu_online, NULL);
3443 if (ret < 0) {
3444 pr_err("kcompactd: failed to register hotplug callbacks.\n");
3445 return ret;
3446 }
3447
3448 for_each_node_state(nid, N_MEMORY)
3449 kcompactd_run(nid);
3450 register_sysctl_init("vm", vm_compaction);
3451 return 0;
3452 }
3453 subsys_initcall(kcompactd_init)
3454
3455 #endif /* CONFIG_COMPACTION */
3456