1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * drivers/base/power/main.c - Where the driver meets power management.
4 *
5 * Copyright (c) 2003 Patrick Mochel
6 * Copyright (c) 2003 Open Source Development Lab
7 *
8 * The driver model core calls device_pm_add() when a device is registered.
9 * This will initialize the embedded device_pm_info object in the device
10 * and add it to the list of power-controlled devices. sysfs entries for
11 * controlling device power management will also be added.
12 *
13 * A separate list is used for keeping track of power info, because the power
14 * domain dependencies may differ from the ancestral dependencies that the
15 * subsystem list maintains.
16 */
17
18 #define pr_fmt(fmt) "PM: " fmt
19 #define dev_fmt pr_fmt
20
21 #include <linux/device.h>
22 #include <linux/export.h>
23 #include <linux/mutex.h>
24 #include <linux/pm.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/pm-trace.h>
27 #include <linux/pm_wakeirq.h>
28 #include <linux/interrupt.h>
29 #include <linux/sched.h>
30 #include <linux/sched/debug.h>
31 #include <linux/async.h>
32 #include <linux/suspend.h>
33 #include <trace/events/power.h>
34 #include <linux/cpufreq.h>
35 #include <linux/devfreq.h>
36 #include <linux/timer.h>
37 #include <linux/wakeup_reason.h>
38
39 #include <trace/hooks/dtask.h>
40
41 #include "../base.h"
42 #include "power.h"
43
44 typedef int (*pm_callback_t)(struct device *);
45
46 #define list_for_each_entry_rcu_locked(pos, head, member) \
47 list_for_each_entry_rcu(pos, head, member, \
48 device_links_read_lock_held())
49
50 /*
51 * The entries in the dpm_list list are in a depth first order, simply
52 * because children are guaranteed to be discovered after parents, and
53 * are inserted at the back of the list on discovery.
54 *
55 * Since device_pm_add() may be called with a device lock held,
56 * we must never try to acquire a device lock while holding
57 * dpm_list_mutex.
58 */
59
60 LIST_HEAD(dpm_list);
61 static LIST_HEAD(dpm_prepared_list);
62 static LIST_HEAD(dpm_suspended_list);
63 static LIST_HEAD(dpm_late_early_list);
64 static LIST_HEAD(dpm_noirq_list);
65
66 struct suspend_stats suspend_stats;
67 static DEFINE_MUTEX(dpm_list_mtx);
68 static pm_message_t pm_transition;
69
70 static int async_error;
71
pm_verb(int event)72 static const char *pm_verb(int event)
73 {
74 switch (event) {
75 case PM_EVENT_SUSPEND:
76 return "suspend";
77 case PM_EVENT_RESUME:
78 return "resume";
79 case PM_EVENT_FREEZE:
80 return "freeze";
81 case PM_EVENT_QUIESCE:
82 return "quiesce";
83 case PM_EVENT_HIBERNATE:
84 return "hibernate";
85 case PM_EVENT_THAW:
86 return "thaw";
87 case PM_EVENT_RESTORE:
88 return "restore";
89 case PM_EVENT_RECOVER:
90 return "recover";
91 default:
92 return "(unknown PM event)";
93 }
94 }
95
96 /**
97 * device_pm_sleep_init - Initialize system suspend-related device fields.
98 * @dev: Device object being initialized.
99 */
device_pm_sleep_init(struct device * dev)100 void device_pm_sleep_init(struct device *dev)
101 {
102 dev->power.is_prepared = false;
103 dev->power.is_suspended = false;
104 dev->power.is_noirq_suspended = false;
105 dev->power.is_late_suspended = false;
106 init_completion(&dev->power.completion);
107 complete_all(&dev->power.completion);
108 dev->power.wakeup = NULL;
109 INIT_LIST_HEAD(&dev->power.entry);
110 }
111
112 /**
113 * device_pm_lock - Lock the list of active devices used by the PM core.
114 */
device_pm_lock(void)115 void device_pm_lock(void)
116 {
117 mutex_lock(&dpm_list_mtx);
118 }
119
120 /**
121 * device_pm_unlock - Unlock the list of active devices used by the PM core.
122 */
device_pm_unlock(void)123 void device_pm_unlock(void)
124 {
125 mutex_unlock(&dpm_list_mtx);
126 }
127
128 /**
129 * device_pm_add - Add a device to the PM core's list of active devices.
130 * @dev: Device to add to the list.
131 */
device_pm_add(struct device * dev)132 void device_pm_add(struct device *dev)
133 {
134 /* Skip PM setup/initialization. */
135 if (device_pm_not_required(dev))
136 return;
137
138 pr_debug("Adding info for %s:%s\n",
139 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
140 device_pm_check_callbacks(dev);
141 mutex_lock(&dpm_list_mtx);
142 if (dev->parent && dev->parent->power.is_prepared)
143 dev_warn(dev, "parent %s should not be sleeping\n",
144 dev_name(dev->parent));
145 list_add_tail(&dev->power.entry, &dpm_list);
146 dev->power.in_dpm_list = true;
147 mutex_unlock(&dpm_list_mtx);
148 }
149
150 /**
151 * device_pm_remove - Remove a device from the PM core's list of active devices.
152 * @dev: Device to be removed from the list.
153 */
device_pm_remove(struct device * dev)154 void device_pm_remove(struct device *dev)
155 {
156 if (device_pm_not_required(dev))
157 return;
158
159 pr_debug("Removing info for %s:%s\n",
160 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
161 complete_all(&dev->power.completion);
162 mutex_lock(&dpm_list_mtx);
163 list_del_init(&dev->power.entry);
164 dev->power.in_dpm_list = false;
165 mutex_unlock(&dpm_list_mtx);
166 device_wakeup_disable(dev);
167 pm_runtime_remove(dev);
168 device_pm_check_callbacks(dev);
169 }
170
171 /**
172 * device_pm_move_before - Move device in the PM core's list of active devices.
173 * @deva: Device to move in dpm_list.
174 * @devb: Device @deva should come before.
175 */
device_pm_move_before(struct device * deva,struct device * devb)176 void device_pm_move_before(struct device *deva, struct device *devb)
177 {
178 pr_debug("Moving %s:%s before %s:%s\n",
179 deva->bus ? deva->bus->name : "No Bus", dev_name(deva),
180 devb->bus ? devb->bus->name : "No Bus", dev_name(devb));
181 /* Delete deva from dpm_list and reinsert before devb. */
182 list_move_tail(&deva->power.entry, &devb->power.entry);
183 }
184
185 /**
186 * device_pm_move_after - Move device in the PM core's list of active devices.
187 * @deva: Device to move in dpm_list.
188 * @devb: Device @deva should come after.
189 */
device_pm_move_after(struct device * deva,struct device * devb)190 void device_pm_move_after(struct device *deva, struct device *devb)
191 {
192 pr_debug("Moving %s:%s after %s:%s\n",
193 deva->bus ? deva->bus->name : "No Bus", dev_name(deva),
194 devb->bus ? devb->bus->name : "No Bus", dev_name(devb));
195 /* Delete deva from dpm_list and reinsert after devb. */
196 list_move(&deva->power.entry, &devb->power.entry);
197 }
198
199 /**
200 * device_pm_move_last - Move device to end of the PM core's list of devices.
201 * @dev: Device to move in dpm_list.
202 */
device_pm_move_last(struct device * dev)203 void device_pm_move_last(struct device *dev)
204 {
205 pr_debug("Moving %s:%s to end of list\n",
206 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
207 list_move_tail(&dev->power.entry, &dpm_list);
208 }
209
initcall_debug_start(struct device * dev,void * cb)210 static ktime_t initcall_debug_start(struct device *dev, void *cb)
211 {
212 if (!pm_print_times_enabled)
213 return 0;
214
215 dev_info(dev, "calling %ps @ %i, parent: %s\n", cb,
216 task_pid_nr(current),
217 dev->parent ? dev_name(dev->parent) : "none");
218 return ktime_get();
219 }
220
initcall_debug_report(struct device * dev,ktime_t calltime,void * cb,int error)221 static void initcall_debug_report(struct device *dev, ktime_t calltime,
222 void *cb, int error)
223 {
224 ktime_t rettime;
225
226 if (!pm_print_times_enabled)
227 return;
228
229 rettime = ktime_get();
230 dev_info(dev, "%ps returned %d after %Ld usecs\n", cb, error,
231 (unsigned long long)ktime_us_delta(rettime, calltime));
232 }
233
234 /**
235 * dpm_wait - Wait for a PM operation to complete.
236 * @dev: Device to wait for.
237 * @async: If unset, wait only if the device's power.async_suspend flag is set.
238 */
dpm_wait(struct device * dev,bool async)239 static void dpm_wait(struct device *dev, bool async)
240 {
241 if (!dev)
242 return;
243
244 if (async || (pm_async_enabled && dev->power.async_suspend)) {
245 trace_android_vh_dpm_wait_start(dev);
246 wait_for_completion(&dev->power.completion);
247 trace_android_vh_dpm_wait_finish(dev);
248 }
249 }
250
dpm_wait_fn(struct device * dev,void * async_ptr)251 static int dpm_wait_fn(struct device *dev, void *async_ptr)
252 {
253 dpm_wait(dev, *((bool *)async_ptr));
254 return 0;
255 }
256
dpm_wait_for_children(struct device * dev,bool async)257 static void dpm_wait_for_children(struct device *dev, bool async)
258 {
259 device_for_each_child(dev, &async, dpm_wait_fn);
260 }
261
dpm_wait_for_suppliers(struct device * dev,bool async)262 static void dpm_wait_for_suppliers(struct device *dev, bool async)
263 {
264 struct device_link *link;
265 int idx;
266
267 idx = device_links_read_lock();
268
269 /*
270 * If the supplier goes away right after we've checked the link to it,
271 * we'll wait for its completion to change the state, but that's fine,
272 * because the only things that will block as a result are the SRCU
273 * callbacks freeing the link objects for the links in the list we're
274 * walking.
275 */
276 list_for_each_entry_rcu_locked(link, &dev->links.suppliers, c_node)
277 if (READ_ONCE(link->status) != DL_STATE_DORMANT)
278 dpm_wait(link->supplier, async);
279
280 device_links_read_unlock(idx);
281 }
282
dpm_wait_for_superior(struct device * dev,bool async)283 static bool dpm_wait_for_superior(struct device *dev, bool async)
284 {
285 struct device *parent;
286
287 /*
288 * If the device is resumed asynchronously and the parent's callback
289 * deletes both the device and the parent itself, the parent object may
290 * be freed while this function is running, so avoid that by reference
291 * counting the parent once more unless the device has been deleted
292 * already (in which case return right away).
293 */
294 mutex_lock(&dpm_list_mtx);
295
296 if (!device_pm_initialized(dev)) {
297 mutex_unlock(&dpm_list_mtx);
298 return false;
299 }
300
301 parent = get_device(dev->parent);
302
303 mutex_unlock(&dpm_list_mtx);
304
305 dpm_wait(parent, async);
306 put_device(parent);
307
308 dpm_wait_for_suppliers(dev, async);
309
310 /*
311 * If the parent's callback has deleted the device, attempting to resume
312 * it would be invalid, so avoid doing that then.
313 */
314 return device_pm_initialized(dev);
315 }
316
dpm_wait_for_consumers(struct device * dev,bool async)317 static void dpm_wait_for_consumers(struct device *dev, bool async)
318 {
319 struct device_link *link;
320 int idx;
321
322 idx = device_links_read_lock();
323
324 /*
325 * The status of a device link can only be changed from "dormant" by a
326 * probe, but that cannot happen during system suspend/resume. In
327 * theory it can change to "dormant" at that time, but then it is
328 * reasonable to wait for the target device anyway (eg. if it goes
329 * away, it's better to wait for it to go away completely and then
330 * continue instead of trying to continue in parallel with its
331 * unregistration).
332 */
333 list_for_each_entry_rcu_locked(link, &dev->links.consumers, s_node)
334 if (READ_ONCE(link->status) != DL_STATE_DORMANT)
335 dpm_wait(link->consumer, async);
336
337 device_links_read_unlock(idx);
338 }
339
dpm_wait_for_subordinate(struct device * dev,bool async)340 static void dpm_wait_for_subordinate(struct device *dev, bool async)
341 {
342 dpm_wait_for_children(dev, async);
343 dpm_wait_for_consumers(dev, async);
344 }
345
346 /**
347 * pm_op - Return the PM operation appropriate for given PM event.
348 * @ops: PM operations to choose from.
349 * @state: PM transition of the system being carried out.
350 */
pm_op(const struct dev_pm_ops * ops,pm_message_t state)351 static pm_callback_t pm_op(const struct dev_pm_ops *ops, pm_message_t state)
352 {
353 switch (state.event) {
354 #ifdef CONFIG_SUSPEND
355 case PM_EVENT_SUSPEND:
356 return ops->suspend;
357 case PM_EVENT_RESUME:
358 return ops->resume;
359 #endif /* CONFIG_SUSPEND */
360 #ifdef CONFIG_HIBERNATE_CALLBACKS
361 case PM_EVENT_FREEZE:
362 case PM_EVENT_QUIESCE:
363 return ops->freeze;
364 case PM_EVENT_HIBERNATE:
365 return ops->poweroff;
366 case PM_EVENT_THAW:
367 case PM_EVENT_RECOVER:
368 return ops->thaw;
369 case PM_EVENT_RESTORE:
370 return ops->restore;
371 #endif /* CONFIG_HIBERNATE_CALLBACKS */
372 }
373
374 return NULL;
375 }
376
377 /**
378 * pm_late_early_op - Return the PM operation appropriate for given PM event.
379 * @ops: PM operations to choose from.
380 * @state: PM transition of the system being carried out.
381 *
382 * Runtime PM is disabled for @dev while this function is being executed.
383 */
pm_late_early_op(const struct dev_pm_ops * ops,pm_message_t state)384 static pm_callback_t pm_late_early_op(const struct dev_pm_ops *ops,
385 pm_message_t state)
386 {
387 switch (state.event) {
388 #ifdef CONFIG_SUSPEND
389 case PM_EVENT_SUSPEND:
390 return ops->suspend_late;
391 case PM_EVENT_RESUME:
392 return ops->resume_early;
393 #endif /* CONFIG_SUSPEND */
394 #ifdef CONFIG_HIBERNATE_CALLBACKS
395 case PM_EVENT_FREEZE:
396 case PM_EVENT_QUIESCE:
397 return ops->freeze_late;
398 case PM_EVENT_HIBERNATE:
399 return ops->poweroff_late;
400 case PM_EVENT_THAW:
401 case PM_EVENT_RECOVER:
402 return ops->thaw_early;
403 case PM_EVENT_RESTORE:
404 return ops->restore_early;
405 #endif /* CONFIG_HIBERNATE_CALLBACKS */
406 }
407
408 return NULL;
409 }
410
411 /**
412 * pm_noirq_op - Return the PM operation appropriate for given PM event.
413 * @ops: PM operations to choose from.
414 * @state: PM transition of the system being carried out.
415 *
416 * The driver of @dev will not receive interrupts while this function is being
417 * executed.
418 */
pm_noirq_op(const struct dev_pm_ops * ops,pm_message_t state)419 static pm_callback_t pm_noirq_op(const struct dev_pm_ops *ops, pm_message_t state)
420 {
421 switch (state.event) {
422 #ifdef CONFIG_SUSPEND
423 case PM_EVENT_SUSPEND:
424 return ops->suspend_noirq;
425 case PM_EVENT_RESUME:
426 return ops->resume_noirq;
427 #endif /* CONFIG_SUSPEND */
428 #ifdef CONFIG_HIBERNATE_CALLBACKS
429 case PM_EVENT_FREEZE:
430 case PM_EVENT_QUIESCE:
431 return ops->freeze_noirq;
432 case PM_EVENT_HIBERNATE:
433 return ops->poweroff_noirq;
434 case PM_EVENT_THAW:
435 case PM_EVENT_RECOVER:
436 return ops->thaw_noirq;
437 case PM_EVENT_RESTORE:
438 return ops->restore_noirq;
439 #endif /* CONFIG_HIBERNATE_CALLBACKS */
440 }
441
442 return NULL;
443 }
444
pm_dev_dbg(struct device * dev,pm_message_t state,const char * info)445 static void pm_dev_dbg(struct device *dev, pm_message_t state, const char *info)
446 {
447 dev_dbg(dev, "%s%s%s driver flags: %x\n", info, pm_verb(state.event),
448 ((state.event & PM_EVENT_SLEEP) && device_may_wakeup(dev)) ?
449 ", may wakeup" : "", dev->power.driver_flags);
450 }
451
pm_dev_err(struct device * dev,pm_message_t state,const char * info,int error)452 static void pm_dev_err(struct device *dev, pm_message_t state, const char *info,
453 int error)
454 {
455 dev_err(dev, "failed to %s%s: error %d\n", pm_verb(state.event), info,
456 error);
457 }
458
dpm_show_time(ktime_t starttime,pm_message_t state,int error,const char * info)459 static void dpm_show_time(ktime_t starttime, pm_message_t state, int error,
460 const char *info)
461 {
462 ktime_t calltime;
463 u64 usecs64;
464 int usecs;
465
466 calltime = ktime_get();
467 usecs64 = ktime_to_ns(ktime_sub(calltime, starttime));
468 do_div(usecs64, NSEC_PER_USEC);
469 usecs = usecs64;
470 if (usecs == 0)
471 usecs = 1;
472
473 pm_pr_dbg("%s%s%s of devices %s after %ld.%03ld msecs\n",
474 info ?: "", info ? " " : "", pm_verb(state.event),
475 error ? "aborted" : "complete",
476 usecs / USEC_PER_MSEC, usecs % USEC_PER_MSEC);
477 }
478
dpm_run_callback(pm_callback_t cb,struct device * dev,pm_message_t state,const char * info)479 static int dpm_run_callback(pm_callback_t cb, struct device *dev,
480 pm_message_t state, const char *info)
481 {
482 ktime_t calltime;
483 int error;
484
485 if (!cb)
486 return 0;
487
488 calltime = initcall_debug_start(dev, cb);
489
490 pm_dev_dbg(dev, state, info);
491 trace_device_pm_callback_start(dev, info, state.event);
492 error = cb(dev);
493 trace_device_pm_callback_end(dev, error);
494 suspend_report_result(dev, cb, error);
495
496 initcall_debug_report(dev, calltime, cb, error);
497
498 return error;
499 }
500
501 #ifdef CONFIG_DPM_WATCHDOG
502 struct dpm_watchdog {
503 struct device *dev;
504 struct task_struct *tsk;
505 struct timer_list timer;
506 };
507
508 #define DECLARE_DPM_WATCHDOG_ON_STACK(wd) \
509 struct dpm_watchdog wd
510
511 /**
512 * dpm_watchdog_handler - Driver suspend / resume watchdog handler.
513 * @t: The timer that PM watchdog depends on.
514 *
515 * Called when a driver has timed out suspending or resuming.
516 * There's not much we can do here to recover so panic() to
517 * capture a crash-dump in pstore.
518 */
dpm_watchdog_handler(struct timer_list * t)519 static void dpm_watchdog_handler(struct timer_list *t)
520 {
521 struct dpm_watchdog *wd = from_timer(wd, t, timer);
522
523 dev_emerg(wd->dev, "**** DPM device timeout ****\n");
524 show_stack(wd->tsk, NULL, KERN_EMERG);
525 panic("%s %s: unrecoverable failure\n",
526 dev_driver_string(wd->dev), dev_name(wd->dev));
527 }
528
529 /**
530 * dpm_watchdog_set - Enable pm watchdog for given device.
531 * @wd: Watchdog. Must be allocated on the stack.
532 * @dev: Device to handle.
533 */
dpm_watchdog_set(struct dpm_watchdog * wd,struct device * dev)534 static void dpm_watchdog_set(struct dpm_watchdog *wd, struct device *dev)
535 {
536 struct timer_list *timer = &wd->timer;
537
538 wd->dev = dev;
539 wd->tsk = current;
540
541 timer_setup_on_stack(timer, dpm_watchdog_handler, 0);
542 /* use same timeout value for both suspend and resume */
543 timer->expires = jiffies + HZ * CONFIG_DPM_WATCHDOG_TIMEOUT;
544 add_timer(timer);
545 }
546
547 /**
548 * dpm_watchdog_clear - Disable suspend/resume watchdog.
549 * @wd: Watchdog to disable.
550 */
dpm_watchdog_clear(struct dpm_watchdog * wd)551 static void dpm_watchdog_clear(struct dpm_watchdog *wd)
552 {
553 struct timer_list *timer = &wd->timer;
554
555 del_timer_sync(timer);
556 destroy_timer_on_stack(timer);
557 }
558 #else
559 #define DECLARE_DPM_WATCHDOG_ON_STACK(wd)
560 #define dpm_watchdog_set(x, y)
561 #define dpm_watchdog_clear(x)
562 #endif
563
564 /*------------------------- Resume routines -------------------------*/
565
566 /**
567 * dev_pm_skip_resume - System-wide device resume optimization check.
568 * @dev: Target device.
569 *
570 * Return:
571 * - %false if the transition under way is RESTORE.
572 * - Return value of dev_pm_skip_suspend() if the transition under way is THAW.
573 * - The logical negation of %power.must_resume otherwise (that is, when the
574 * transition under way is RESUME).
575 */
dev_pm_skip_resume(struct device * dev)576 bool dev_pm_skip_resume(struct device *dev)
577 {
578 if (pm_transition.event == PM_EVENT_RESTORE)
579 return false;
580
581 if (pm_transition.event == PM_EVENT_THAW)
582 return dev_pm_skip_suspend(dev);
583
584 return !dev->power.must_resume;
585 }
586
is_async(struct device * dev)587 static bool is_async(struct device *dev)
588 {
589 return dev->power.async_suspend && pm_async_enabled
590 && !pm_trace_is_enabled();
591 }
592
dpm_async_fn(struct device * dev,async_func_t func)593 static bool dpm_async_fn(struct device *dev, async_func_t func)
594 {
595 reinit_completion(&dev->power.completion);
596
597 if (is_async(dev)) {
598 dev->power.async_in_progress = true;
599
600 get_device(dev);
601
602 if (async_schedule_dev_nocall(func, dev))
603 return true;
604
605 put_device(dev);
606 }
607 /*
608 * Because async_schedule_dev_nocall() above has returned false or it
609 * has not been called at all, func() is not running and it is safe to
610 * update the async_in_progress flag without extra synchronization.
611 */
612 dev->power.async_in_progress = false;
613 return false;
614 }
615
616 /**
617 * device_resume_noirq - Execute a "noirq resume" callback for given device.
618 * @dev: Device to handle.
619 * @state: PM transition of the system being carried out.
620 * @async: If true, the device is being resumed asynchronously.
621 *
622 * The driver of @dev will not receive interrupts while this function is being
623 * executed.
624 */
device_resume_noirq(struct device * dev,pm_message_t state,bool async)625 static void device_resume_noirq(struct device *dev, pm_message_t state, bool async)
626 {
627 pm_callback_t callback = NULL;
628 const char *info = NULL;
629 bool skip_resume;
630 int error = 0;
631
632 TRACE_DEVICE(dev);
633 TRACE_RESUME(0);
634
635 if (dev->power.syscore || dev->power.direct_complete)
636 goto Out;
637
638 if (!dev->power.is_noirq_suspended)
639 goto Out;
640
641 if (!dpm_wait_for_superior(dev, async))
642 goto Out;
643
644 skip_resume = dev_pm_skip_resume(dev);
645 /*
646 * If the driver callback is skipped below or by the middle layer
647 * callback and device_resume_early() also skips the driver callback for
648 * this device later, it needs to appear as "suspended" to PM-runtime,
649 * so change its status accordingly.
650 *
651 * Otherwise, the device is going to be resumed, so set its PM-runtime
652 * status to "active", but do that only if DPM_FLAG_SMART_SUSPEND is set
653 * to avoid confusing drivers that don't use it.
654 */
655 if (skip_resume)
656 pm_runtime_set_suspended(dev);
657 else if (dev_pm_skip_suspend(dev))
658 pm_runtime_set_active(dev);
659
660 if (dev->pm_domain) {
661 info = "noirq power domain ";
662 callback = pm_noirq_op(&dev->pm_domain->ops, state);
663 } else if (dev->type && dev->type->pm) {
664 info = "noirq type ";
665 callback = pm_noirq_op(dev->type->pm, state);
666 } else if (dev->class && dev->class->pm) {
667 info = "noirq class ";
668 callback = pm_noirq_op(dev->class->pm, state);
669 } else if (dev->bus && dev->bus->pm) {
670 info = "noirq bus ";
671 callback = pm_noirq_op(dev->bus->pm, state);
672 }
673 if (callback)
674 goto Run;
675
676 if (skip_resume)
677 goto Skip;
678
679 if (dev->driver && dev->driver->pm) {
680 info = "noirq driver ";
681 callback = pm_noirq_op(dev->driver->pm, state);
682 }
683
684 Run:
685 error = dpm_run_callback(callback, dev, state, info);
686
687 Skip:
688 dev->power.is_noirq_suspended = false;
689
690 Out:
691 complete_all(&dev->power.completion);
692 TRACE_RESUME(error);
693
694 if (error) {
695 async_error = error;
696 dpm_save_failed_dev(dev_name(dev));
697 pm_dev_err(dev, state, async ? " async noirq" : " noirq", error);
698 }
699 }
700
async_resume_noirq(void * data,async_cookie_t cookie)701 static void async_resume_noirq(void *data, async_cookie_t cookie)
702 {
703 struct device *dev = data;
704
705 device_resume_noirq(dev, pm_transition, true);
706 put_device(dev);
707 }
708
dpm_noirq_resume_devices(pm_message_t state)709 static void dpm_noirq_resume_devices(pm_message_t state)
710 {
711 struct device *dev;
712 ktime_t starttime = ktime_get();
713
714 trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, true);
715
716 async_error = 0;
717 pm_transition = state;
718
719 mutex_lock(&dpm_list_mtx);
720
721 /*
722 * Trigger the resume of "async" devices upfront so they don't have to
723 * wait for the "non-async" ones they don't depend on.
724 */
725 list_for_each_entry(dev, &dpm_noirq_list, power.entry)
726 dpm_async_fn(dev, async_resume_noirq);
727
728 while (!list_empty(&dpm_noirq_list)) {
729 dev = to_device(dpm_noirq_list.next);
730 list_move_tail(&dev->power.entry, &dpm_late_early_list);
731
732 if (!dev->power.async_in_progress) {
733 get_device(dev);
734
735 mutex_unlock(&dpm_list_mtx);
736
737 device_resume_noirq(dev, state, false);
738
739 put_device(dev);
740
741 mutex_lock(&dpm_list_mtx);
742 }
743 }
744 mutex_unlock(&dpm_list_mtx);
745 async_synchronize_full();
746 dpm_show_time(starttime, state, 0, "noirq");
747 if (async_error)
748 dpm_save_failed_step(SUSPEND_RESUME_NOIRQ);
749
750 trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, false);
751 }
752
753 /**
754 * dpm_resume_noirq - Execute "noirq resume" callbacks for all devices.
755 * @state: PM transition of the system being carried out.
756 *
757 * Invoke the "noirq" resume callbacks for all devices in dpm_noirq_list and
758 * allow device drivers' interrupt handlers to be called.
759 */
dpm_resume_noirq(pm_message_t state)760 void dpm_resume_noirq(pm_message_t state)
761 {
762 dpm_noirq_resume_devices(state);
763
764 resume_device_irqs();
765 device_wakeup_disarm_wake_irqs();
766 }
767
768 /**
769 * device_resume_early - Execute an "early resume" callback for given device.
770 * @dev: Device to handle.
771 * @state: PM transition of the system being carried out.
772 * @async: If true, the device is being resumed asynchronously.
773 *
774 * Runtime PM is disabled for @dev while this function is being executed.
775 */
device_resume_early(struct device * dev,pm_message_t state,bool async)776 static void device_resume_early(struct device *dev, pm_message_t state, bool async)
777 {
778 pm_callback_t callback = NULL;
779 const char *info = NULL;
780 int error = 0;
781
782 TRACE_DEVICE(dev);
783 TRACE_RESUME(0);
784
785 if (dev->power.syscore || dev->power.direct_complete)
786 goto Out;
787
788 if (!dev->power.is_late_suspended)
789 goto Out;
790
791 if (!dpm_wait_for_superior(dev, async))
792 goto Out;
793
794 if (dev->pm_domain) {
795 info = "early power domain ";
796 callback = pm_late_early_op(&dev->pm_domain->ops, state);
797 } else if (dev->type && dev->type->pm) {
798 info = "early type ";
799 callback = pm_late_early_op(dev->type->pm, state);
800 } else if (dev->class && dev->class->pm) {
801 info = "early class ";
802 callback = pm_late_early_op(dev->class->pm, state);
803 } else if (dev->bus && dev->bus->pm) {
804 info = "early bus ";
805 callback = pm_late_early_op(dev->bus->pm, state);
806 }
807 if (callback)
808 goto Run;
809
810 if (dev_pm_skip_resume(dev))
811 goto Skip;
812
813 if (dev->driver && dev->driver->pm) {
814 info = "early driver ";
815 callback = pm_late_early_op(dev->driver->pm, state);
816 }
817
818 Run:
819 error = dpm_run_callback(callback, dev, state, info);
820
821 Skip:
822 dev->power.is_late_suspended = false;
823
824 Out:
825 TRACE_RESUME(error);
826
827 pm_runtime_enable(dev);
828 complete_all(&dev->power.completion);
829
830 if (error) {
831 async_error = error;
832 dpm_save_failed_dev(dev_name(dev));
833 pm_dev_err(dev, state, async ? " async early" : " early", error);
834 }
835 }
836
async_resume_early(void * data,async_cookie_t cookie)837 static void async_resume_early(void *data, async_cookie_t cookie)
838 {
839 struct device *dev = data;
840
841 device_resume_early(dev, pm_transition, true);
842 put_device(dev);
843 }
844
845 /**
846 * dpm_resume_early - Execute "early resume" callbacks for all devices.
847 * @state: PM transition of the system being carried out.
848 */
dpm_resume_early(pm_message_t state)849 void dpm_resume_early(pm_message_t state)
850 {
851 struct device *dev;
852 ktime_t starttime = ktime_get();
853
854 trace_suspend_resume(TPS("dpm_resume_early"), state.event, true);
855
856 async_error = 0;
857 pm_transition = state;
858
859 mutex_lock(&dpm_list_mtx);
860
861 /*
862 * Trigger the resume of "async" devices upfront so they don't have to
863 * wait for the "non-async" ones they don't depend on.
864 */
865 list_for_each_entry(dev, &dpm_late_early_list, power.entry)
866 dpm_async_fn(dev, async_resume_early);
867
868 while (!list_empty(&dpm_late_early_list)) {
869 dev = to_device(dpm_late_early_list.next);
870 list_move_tail(&dev->power.entry, &dpm_suspended_list);
871
872 if (!dev->power.async_in_progress) {
873 get_device(dev);
874
875 mutex_unlock(&dpm_list_mtx);
876
877 device_resume_early(dev, state, false);
878
879 put_device(dev);
880
881 mutex_lock(&dpm_list_mtx);
882 }
883 }
884 mutex_unlock(&dpm_list_mtx);
885 async_synchronize_full();
886 dpm_show_time(starttime, state, 0, "early");
887 if (async_error)
888 dpm_save_failed_step(SUSPEND_RESUME_EARLY);
889
890 trace_suspend_resume(TPS("dpm_resume_early"), state.event, false);
891 }
892
893 /**
894 * dpm_resume_start - Execute "noirq" and "early" device callbacks.
895 * @state: PM transition of the system being carried out.
896 */
dpm_resume_start(pm_message_t state)897 void dpm_resume_start(pm_message_t state)
898 {
899 dpm_resume_noirq(state);
900 dpm_resume_early(state);
901 }
902 EXPORT_SYMBOL_GPL(dpm_resume_start);
903
904 /**
905 * device_resume - Execute "resume" callbacks for given device.
906 * @dev: Device to handle.
907 * @state: PM transition of the system being carried out.
908 * @async: If true, the device is being resumed asynchronously.
909 */
device_resume(struct device * dev,pm_message_t state,bool async)910 static void device_resume(struct device *dev, pm_message_t state, bool async)
911 {
912 pm_callback_t callback = NULL;
913 const char *info = NULL;
914 int error = 0;
915 DECLARE_DPM_WATCHDOG_ON_STACK(wd);
916
917 TRACE_DEVICE(dev);
918 TRACE_RESUME(0);
919
920 if (dev->power.syscore)
921 goto Complete;
922
923 if (!dev->power.is_suspended)
924 goto Complete;
925
926 dev->power.is_suspended = false;
927
928 if (dev->power.direct_complete) {
929 /* Match the pm_runtime_disable() in __device_suspend(). */
930 pm_runtime_enable(dev);
931 goto Complete;
932 }
933
934 if (!dpm_wait_for_superior(dev, async))
935 goto Complete;
936
937 dpm_watchdog_set(&wd, dev);
938 device_lock(dev);
939
940 /*
941 * This is a fib. But we'll allow new children to be added below
942 * a resumed device, even if the device hasn't been completed yet.
943 */
944 dev->power.is_prepared = false;
945
946 if (dev->pm_domain) {
947 info = "power domain ";
948 callback = pm_op(&dev->pm_domain->ops, state);
949 goto Driver;
950 }
951
952 if (dev->type && dev->type->pm) {
953 info = "type ";
954 callback = pm_op(dev->type->pm, state);
955 goto Driver;
956 }
957
958 if (dev->class && dev->class->pm) {
959 info = "class ";
960 callback = pm_op(dev->class->pm, state);
961 goto Driver;
962 }
963
964 if (dev->bus) {
965 if (dev->bus->pm) {
966 info = "bus ";
967 callback = pm_op(dev->bus->pm, state);
968 } else if (dev->bus->resume) {
969 info = "legacy bus ";
970 callback = dev->bus->resume;
971 goto End;
972 }
973 }
974
975 Driver:
976 if (!callback && dev->driver && dev->driver->pm) {
977 info = "driver ";
978 callback = pm_op(dev->driver->pm, state);
979 }
980
981 End:
982 error = dpm_run_callback(callback, dev, state, info);
983
984 device_unlock(dev);
985 dpm_watchdog_clear(&wd);
986
987 Complete:
988 complete_all(&dev->power.completion);
989
990 TRACE_RESUME(error);
991
992 if (error) {
993 async_error = error;
994 dpm_save_failed_dev(dev_name(dev));
995 pm_dev_err(dev, state, async ? " async" : "", error);
996 }
997 }
998
async_resume(void * data,async_cookie_t cookie)999 static void async_resume(void *data, async_cookie_t cookie)
1000 {
1001 struct device *dev = data;
1002
1003 device_resume(dev, pm_transition, true);
1004 put_device(dev);
1005 }
1006
1007 /**
1008 * dpm_resume - Execute "resume" callbacks for non-sysdev devices.
1009 * @state: PM transition of the system being carried out.
1010 *
1011 * Execute the appropriate "resume" callback for all devices whose status
1012 * indicates that they are suspended.
1013 */
dpm_resume(pm_message_t state)1014 void dpm_resume(pm_message_t state)
1015 {
1016 struct device *dev;
1017 ktime_t starttime = ktime_get();
1018
1019 trace_suspend_resume(TPS("dpm_resume"), state.event, true);
1020 might_sleep();
1021
1022 pm_transition = state;
1023 async_error = 0;
1024
1025 mutex_lock(&dpm_list_mtx);
1026
1027 /*
1028 * Trigger the resume of "async" devices upfront so they don't have to
1029 * wait for the "non-async" ones they don't depend on.
1030 */
1031 list_for_each_entry(dev, &dpm_suspended_list, power.entry)
1032 dpm_async_fn(dev, async_resume);
1033
1034 while (!list_empty(&dpm_suspended_list)) {
1035 dev = to_device(dpm_suspended_list.next);
1036 list_move_tail(&dev->power.entry, &dpm_prepared_list);
1037
1038 if (!dev->power.async_in_progress) {
1039 get_device(dev);
1040
1041 mutex_unlock(&dpm_list_mtx);
1042
1043 device_resume(dev, state, false);
1044
1045 put_device(dev);
1046
1047 mutex_lock(&dpm_list_mtx);
1048 }
1049 }
1050 mutex_unlock(&dpm_list_mtx);
1051 async_synchronize_full();
1052 dpm_show_time(starttime, state, 0, NULL);
1053 if (async_error)
1054 dpm_save_failed_step(SUSPEND_RESUME);
1055
1056 cpufreq_resume();
1057 devfreq_resume();
1058 trace_suspend_resume(TPS("dpm_resume"), state.event, false);
1059 }
1060
1061 /**
1062 * device_complete - Complete a PM transition for given device.
1063 * @dev: Device to handle.
1064 * @state: PM transition of the system being carried out.
1065 */
device_complete(struct device * dev,pm_message_t state)1066 static void device_complete(struct device *dev, pm_message_t state)
1067 {
1068 void (*callback)(struct device *) = NULL;
1069 const char *info = NULL;
1070
1071 if (dev->power.syscore)
1072 goto out;
1073
1074 device_lock(dev);
1075
1076 if (dev->pm_domain) {
1077 info = "completing power domain ";
1078 callback = dev->pm_domain->ops.complete;
1079 } else if (dev->type && dev->type->pm) {
1080 info = "completing type ";
1081 callback = dev->type->pm->complete;
1082 } else if (dev->class && dev->class->pm) {
1083 info = "completing class ";
1084 callback = dev->class->pm->complete;
1085 } else if (dev->bus && dev->bus->pm) {
1086 info = "completing bus ";
1087 callback = dev->bus->pm->complete;
1088 }
1089
1090 if (!callback && dev->driver && dev->driver->pm) {
1091 info = "completing driver ";
1092 callback = dev->driver->pm->complete;
1093 }
1094
1095 if (callback) {
1096 pm_dev_dbg(dev, state, info);
1097 callback(dev);
1098 }
1099
1100 device_unlock(dev);
1101
1102 out:
1103 pm_runtime_put(dev);
1104 }
1105
1106 /**
1107 * dpm_complete - Complete a PM transition for all non-sysdev devices.
1108 * @state: PM transition of the system being carried out.
1109 *
1110 * Execute the ->complete() callbacks for all devices whose PM status is not
1111 * DPM_ON (this allows new devices to be registered).
1112 */
dpm_complete(pm_message_t state)1113 void dpm_complete(pm_message_t state)
1114 {
1115 struct list_head list;
1116
1117 trace_suspend_resume(TPS("dpm_complete"), state.event, true);
1118 might_sleep();
1119
1120 INIT_LIST_HEAD(&list);
1121 mutex_lock(&dpm_list_mtx);
1122 while (!list_empty(&dpm_prepared_list)) {
1123 struct device *dev = to_device(dpm_prepared_list.prev);
1124
1125 get_device(dev);
1126 dev->power.is_prepared = false;
1127 list_move(&dev->power.entry, &list);
1128
1129 mutex_unlock(&dpm_list_mtx);
1130
1131 trace_device_pm_callback_start(dev, "", state.event);
1132 device_complete(dev, state);
1133 trace_device_pm_callback_end(dev, 0);
1134
1135 put_device(dev);
1136
1137 mutex_lock(&dpm_list_mtx);
1138 }
1139 list_splice(&list, &dpm_list);
1140 mutex_unlock(&dpm_list_mtx);
1141
1142 /* Allow device probing and trigger re-probing of deferred devices */
1143 device_unblock_probing();
1144 trace_suspend_resume(TPS("dpm_complete"), state.event, false);
1145 }
1146
1147 /**
1148 * dpm_resume_end - Execute "resume" callbacks and complete system transition.
1149 * @state: PM transition of the system being carried out.
1150 *
1151 * Execute "resume" callbacks for all devices and complete the PM transition of
1152 * the system.
1153 */
dpm_resume_end(pm_message_t state)1154 void dpm_resume_end(pm_message_t state)
1155 {
1156 dpm_resume(state);
1157 dpm_complete(state);
1158 }
1159 EXPORT_SYMBOL_GPL(dpm_resume_end);
1160
1161
1162 /*------------------------- Suspend routines -------------------------*/
1163
1164 /**
1165 * resume_event - Return a "resume" message for given "suspend" sleep state.
1166 * @sleep_state: PM message representing a sleep state.
1167 *
1168 * Return a PM message representing the resume event corresponding to given
1169 * sleep state.
1170 */
resume_event(pm_message_t sleep_state)1171 static pm_message_t resume_event(pm_message_t sleep_state)
1172 {
1173 switch (sleep_state.event) {
1174 case PM_EVENT_SUSPEND:
1175 return PMSG_RESUME;
1176 case PM_EVENT_FREEZE:
1177 case PM_EVENT_QUIESCE:
1178 return PMSG_RECOVER;
1179 case PM_EVENT_HIBERNATE:
1180 return PMSG_RESTORE;
1181 }
1182 return PMSG_ON;
1183 }
1184
dpm_superior_set_must_resume(struct device * dev)1185 static void dpm_superior_set_must_resume(struct device *dev)
1186 {
1187 struct device_link *link;
1188 int idx;
1189
1190 if (dev->parent)
1191 dev->parent->power.must_resume = true;
1192
1193 idx = device_links_read_lock();
1194
1195 list_for_each_entry_rcu_locked(link, &dev->links.suppliers, c_node)
1196 link->supplier->power.must_resume = true;
1197
1198 device_links_read_unlock(idx);
1199 }
1200
1201 /**
1202 * device_suspend_noirq - Execute a "noirq suspend" callback for given device.
1203 * @dev: Device to handle.
1204 * @state: PM transition of the system being carried out.
1205 * @async: If true, the device is being suspended asynchronously.
1206 *
1207 * The driver of @dev will not receive interrupts while this function is being
1208 * executed.
1209 */
device_suspend_noirq(struct device * dev,pm_message_t state,bool async)1210 static int device_suspend_noirq(struct device *dev, pm_message_t state, bool async)
1211 {
1212 pm_callback_t callback = NULL;
1213 const char *info = NULL;
1214 int error = 0;
1215
1216 TRACE_DEVICE(dev);
1217 TRACE_SUSPEND(0);
1218
1219 dpm_wait_for_subordinate(dev, async);
1220
1221 if (async_error)
1222 goto Complete;
1223
1224 if (dev->power.syscore || dev->power.direct_complete)
1225 goto Complete;
1226
1227 if (dev->pm_domain) {
1228 info = "noirq power domain ";
1229 callback = pm_noirq_op(&dev->pm_domain->ops, state);
1230 } else if (dev->type && dev->type->pm) {
1231 info = "noirq type ";
1232 callback = pm_noirq_op(dev->type->pm, state);
1233 } else if (dev->class && dev->class->pm) {
1234 info = "noirq class ";
1235 callback = pm_noirq_op(dev->class->pm, state);
1236 } else if (dev->bus && dev->bus->pm) {
1237 info = "noirq bus ";
1238 callback = pm_noirq_op(dev->bus->pm, state);
1239 }
1240 if (callback)
1241 goto Run;
1242
1243 if (dev_pm_skip_suspend(dev))
1244 goto Skip;
1245
1246 if (dev->driver && dev->driver->pm) {
1247 info = "noirq driver ";
1248 callback = pm_noirq_op(dev->driver->pm, state);
1249 }
1250
1251 Run:
1252 error = dpm_run_callback(callback, dev, state, info);
1253 if (error) {
1254 async_error = error;
1255 log_suspend_abort_reason("Device %s failed to %s noirq: error %d",
1256 dev_name(dev), pm_verb(state.event), error);
1257 dpm_save_failed_dev(dev_name(dev));
1258 pm_dev_err(dev, state, async ? " async noirq" : " noirq", error);
1259 goto Complete;
1260 }
1261
1262 Skip:
1263 dev->power.is_noirq_suspended = true;
1264
1265 /*
1266 * Devices must be resumed unless they are explicitly allowed to be left
1267 * in suspend, but even in that case skipping the resume of devices that
1268 * were in use right before the system suspend (as indicated by their
1269 * runtime PM usage counters and child counters) would be suboptimal.
1270 */
1271 if (!(dev_pm_test_driver_flags(dev, DPM_FLAG_MAY_SKIP_RESUME) &&
1272 dev->power.may_skip_resume) || !pm_runtime_need_not_resume(dev))
1273 dev->power.must_resume = true;
1274
1275 if (dev->power.must_resume)
1276 dpm_superior_set_must_resume(dev);
1277
1278 Complete:
1279 complete_all(&dev->power.completion);
1280 TRACE_SUSPEND(error);
1281 return error;
1282 }
1283
async_suspend_noirq(void * data,async_cookie_t cookie)1284 static void async_suspend_noirq(void *data, async_cookie_t cookie)
1285 {
1286 struct device *dev = data;
1287
1288 device_suspend_noirq(dev, pm_transition, true);
1289 put_device(dev);
1290 }
1291
dpm_noirq_suspend_devices(pm_message_t state)1292 static int dpm_noirq_suspend_devices(pm_message_t state)
1293 {
1294 ktime_t starttime = ktime_get();
1295 int error = 0;
1296
1297 trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, true);
1298
1299 pm_transition = state;
1300 async_error = 0;
1301
1302 mutex_lock(&dpm_list_mtx);
1303
1304 while (!list_empty(&dpm_late_early_list)) {
1305 struct device *dev = to_device(dpm_late_early_list.prev);
1306
1307 list_move(&dev->power.entry, &dpm_noirq_list);
1308
1309 if (dpm_async_fn(dev, async_suspend_noirq))
1310 continue;
1311
1312 get_device(dev);
1313
1314 mutex_unlock(&dpm_list_mtx);
1315
1316 error = device_suspend_noirq(dev, state, false);
1317
1318 put_device(dev);
1319
1320 mutex_lock(&dpm_list_mtx);
1321
1322 if (error || async_error)
1323 break;
1324 }
1325
1326 mutex_unlock(&dpm_list_mtx);
1327
1328 async_synchronize_full();
1329 if (!error)
1330 error = async_error;
1331
1332 if (error)
1333 dpm_save_failed_step(SUSPEND_SUSPEND_NOIRQ);
1334
1335 dpm_show_time(starttime, state, error, "noirq");
1336 trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, false);
1337 return error;
1338 }
1339
1340 /**
1341 * dpm_suspend_noirq - Execute "noirq suspend" callbacks for all devices.
1342 * @state: PM transition of the system being carried out.
1343 *
1344 * Prevent device drivers' interrupt handlers from being called and invoke
1345 * "noirq" suspend callbacks for all non-sysdev devices.
1346 */
dpm_suspend_noirq(pm_message_t state)1347 int dpm_suspend_noirq(pm_message_t state)
1348 {
1349 int ret;
1350
1351 device_wakeup_arm_wake_irqs();
1352 suspend_device_irqs();
1353
1354 ret = dpm_noirq_suspend_devices(state);
1355 if (ret)
1356 dpm_resume_noirq(resume_event(state));
1357
1358 return ret;
1359 }
1360
dpm_propagate_wakeup_to_parent(struct device * dev)1361 static void dpm_propagate_wakeup_to_parent(struct device *dev)
1362 {
1363 struct device *parent = dev->parent;
1364
1365 if (!parent)
1366 return;
1367
1368 spin_lock_irq(&parent->power.lock);
1369
1370 if (device_wakeup_path(dev) && !parent->power.ignore_children)
1371 parent->power.wakeup_path = true;
1372
1373 spin_unlock_irq(&parent->power.lock);
1374 }
1375
1376 /**
1377 * device_suspend_late - Execute a "late suspend" callback for given device.
1378 * @dev: Device to handle.
1379 * @state: PM transition of the system being carried out.
1380 * @async: If true, the device is being suspended asynchronously.
1381 *
1382 * Runtime PM is disabled for @dev while this function is being executed.
1383 */
device_suspend_late(struct device * dev,pm_message_t state,bool async)1384 static int device_suspend_late(struct device *dev, pm_message_t state, bool async)
1385 {
1386 pm_callback_t callback = NULL;
1387 const char *info = NULL;
1388 int error = 0;
1389
1390 TRACE_DEVICE(dev);
1391 TRACE_SUSPEND(0);
1392
1393 __pm_runtime_disable(dev, false);
1394
1395 dpm_wait_for_subordinate(dev, async);
1396
1397 if (async_error)
1398 goto Complete;
1399
1400 if (pm_wakeup_pending()) {
1401 async_error = -EBUSY;
1402 goto Complete;
1403 }
1404
1405 if (dev->power.syscore || dev->power.direct_complete)
1406 goto Complete;
1407
1408 if (dev->pm_domain) {
1409 info = "late power domain ";
1410 callback = pm_late_early_op(&dev->pm_domain->ops, state);
1411 } else if (dev->type && dev->type->pm) {
1412 info = "late type ";
1413 callback = pm_late_early_op(dev->type->pm, state);
1414 } else if (dev->class && dev->class->pm) {
1415 info = "late class ";
1416 callback = pm_late_early_op(dev->class->pm, state);
1417 } else if (dev->bus && dev->bus->pm) {
1418 info = "late bus ";
1419 callback = pm_late_early_op(dev->bus->pm, state);
1420 }
1421 if (callback)
1422 goto Run;
1423
1424 if (dev_pm_skip_suspend(dev))
1425 goto Skip;
1426
1427 if (dev->driver && dev->driver->pm) {
1428 info = "late driver ";
1429 callback = pm_late_early_op(dev->driver->pm, state);
1430 }
1431
1432 Run:
1433 error = dpm_run_callback(callback, dev, state, info);
1434 if (error) {
1435 async_error = error;
1436 log_suspend_abort_reason("Device %s failed to %s late: error %d",
1437 dev_name(dev), pm_verb(state.event), error);
1438 dpm_save_failed_dev(dev_name(dev));
1439 pm_dev_err(dev, state, async ? " async late" : " late", error);
1440 goto Complete;
1441 }
1442 dpm_propagate_wakeup_to_parent(dev);
1443
1444 Skip:
1445 dev->power.is_late_suspended = true;
1446
1447 Complete:
1448 TRACE_SUSPEND(error);
1449 complete_all(&dev->power.completion);
1450 return error;
1451 }
1452
async_suspend_late(void * data,async_cookie_t cookie)1453 static void async_suspend_late(void *data, async_cookie_t cookie)
1454 {
1455 struct device *dev = data;
1456
1457 device_suspend_late(dev, pm_transition, true);
1458 put_device(dev);
1459 }
1460
1461 /**
1462 * dpm_suspend_late - Execute "late suspend" callbacks for all devices.
1463 * @state: PM transition of the system being carried out.
1464 */
dpm_suspend_late(pm_message_t state)1465 int dpm_suspend_late(pm_message_t state)
1466 {
1467 ktime_t starttime = ktime_get();
1468 int error = 0;
1469
1470 trace_suspend_resume(TPS("dpm_suspend_late"), state.event, true);
1471
1472 pm_transition = state;
1473 async_error = 0;
1474
1475 wake_up_all_idle_cpus();
1476
1477 mutex_lock(&dpm_list_mtx);
1478
1479 while (!list_empty(&dpm_suspended_list)) {
1480 struct device *dev = to_device(dpm_suspended_list.prev);
1481
1482 list_move(&dev->power.entry, &dpm_late_early_list);
1483
1484 if (dpm_async_fn(dev, async_suspend_late))
1485 continue;
1486
1487 get_device(dev);
1488
1489 mutex_unlock(&dpm_list_mtx);
1490
1491 error = device_suspend_late(dev, state, false);
1492
1493 put_device(dev);
1494
1495 mutex_lock(&dpm_list_mtx);
1496
1497 if (error || async_error)
1498 break;
1499 }
1500
1501 mutex_unlock(&dpm_list_mtx);
1502
1503 async_synchronize_full();
1504 if (!error)
1505 error = async_error;
1506
1507 if (error) {
1508 dpm_save_failed_step(SUSPEND_SUSPEND_LATE);
1509 dpm_resume_early(resume_event(state));
1510 }
1511 dpm_show_time(starttime, state, error, "late");
1512 trace_suspend_resume(TPS("dpm_suspend_late"), state.event, false);
1513 return error;
1514 }
1515
1516 /**
1517 * dpm_suspend_end - Execute "late" and "noirq" device suspend callbacks.
1518 * @state: PM transition of the system being carried out.
1519 */
dpm_suspend_end(pm_message_t state)1520 int dpm_suspend_end(pm_message_t state)
1521 {
1522 ktime_t starttime = ktime_get();
1523 int error;
1524
1525 error = dpm_suspend_late(state);
1526 if (error)
1527 goto out;
1528
1529 error = dpm_suspend_noirq(state);
1530 if (error)
1531 dpm_resume_early(resume_event(state));
1532
1533 out:
1534 dpm_show_time(starttime, state, error, "end");
1535 return error;
1536 }
1537 EXPORT_SYMBOL_GPL(dpm_suspend_end);
1538
1539 /**
1540 * legacy_suspend - Execute a legacy (bus or class) suspend callback for device.
1541 * @dev: Device to suspend.
1542 * @state: PM transition of the system being carried out.
1543 * @cb: Suspend callback to execute.
1544 * @info: string description of caller.
1545 */
legacy_suspend(struct device * dev,pm_message_t state,int (* cb)(struct device * dev,pm_message_t state),const char * info)1546 static int legacy_suspend(struct device *dev, pm_message_t state,
1547 int (*cb)(struct device *dev, pm_message_t state),
1548 const char *info)
1549 {
1550 int error;
1551 ktime_t calltime;
1552
1553 calltime = initcall_debug_start(dev, cb);
1554
1555 trace_device_pm_callback_start(dev, info, state.event);
1556 error = cb(dev, state);
1557 trace_device_pm_callback_end(dev, error);
1558 suspend_report_result(dev, cb, error);
1559
1560 initcall_debug_report(dev, calltime, cb, error);
1561
1562 return error;
1563 }
1564
dpm_clear_superiors_direct_complete(struct device * dev)1565 static void dpm_clear_superiors_direct_complete(struct device *dev)
1566 {
1567 struct device_link *link;
1568 int idx;
1569
1570 if (dev->parent) {
1571 spin_lock_irq(&dev->parent->power.lock);
1572 dev->parent->power.direct_complete = false;
1573 spin_unlock_irq(&dev->parent->power.lock);
1574 }
1575
1576 idx = device_links_read_lock();
1577
1578 list_for_each_entry_rcu_locked(link, &dev->links.suppliers, c_node) {
1579 spin_lock_irq(&link->supplier->power.lock);
1580 link->supplier->power.direct_complete = false;
1581 spin_unlock_irq(&link->supplier->power.lock);
1582 }
1583
1584 device_links_read_unlock(idx);
1585 }
1586
1587 /**
1588 * device_suspend - Execute "suspend" callbacks for given device.
1589 * @dev: Device to handle.
1590 * @state: PM transition of the system being carried out.
1591 * @async: If true, the device is being suspended asynchronously.
1592 */
device_suspend(struct device * dev,pm_message_t state,bool async)1593 static int device_suspend(struct device *dev, pm_message_t state, bool async)
1594 {
1595 pm_callback_t callback = NULL;
1596 const char *info = NULL;
1597 int error = 0;
1598 DECLARE_DPM_WATCHDOG_ON_STACK(wd);
1599
1600 TRACE_DEVICE(dev);
1601 TRACE_SUSPEND(0);
1602
1603 dpm_wait_for_subordinate(dev, async);
1604
1605 if (async_error) {
1606 dev->power.direct_complete = false;
1607 goto Complete;
1608 }
1609
1610 /*
1611 * Wait for possible runtime PM transitions of the device in progress
1612 * to complete and if there's a runtime resume request pending for it,
1613 * resume it before proceeding with invoking the system-wide suspend
1614 * callbacks for it.
1615 *
1616 * If the system-wide suspend callbacks below change the configuration
1617 * of the device, they must disable runtime PM for it or otherwise
1618 * ensure that its runtime-resume callbacks will not be confused by that
1619 * change in case they are invoked going forward.
1620 */
1621 pm_runtime_barrier(dev);
1622
1623 if (pm_wakeup_pending()) {
1624 dev->power.direct_complete = false;
1625 async_error = -EBUSY;
1626 goto Complete;
1627 }
1628
1629 if (dev->power.syscore)
1630 goto Complete;
1631
1632 /* Avoid direct_complete to let wakeup_path propagate. */
1633 if (device_may_wakeup(dev) || device_wakeup_path(dev))
1634 dev->power.direct_complete = false;
1635
1636 if (dev->power.direct_complete) {
1637 if (pm_runtime_status_suspended(dev)) {
1638 pm_runtime_disable(dev);
1639 if (pm_runtime_status_suspended(dev)) {
1640 pm_dev_dbg(dev, state, "direct-complete ");
1641 dev->power.is_suspended = true;
1642 goto Complete;
1643 }
1644
1645 pm_runtime_enable(dev);
1646 }
1647 dev->power.direct_complete = false;
1648 }
1649
1650 dev->power.may_skip_resume = true;
1651 dev->power.must_resume = !dev_pm_test_driver_flags(dev, DPM_FLAG_MAY_SKIP_RESUME);
1652
1653 dpm_watchdog_set(&wd, dev);
1654 device_lock(dev);
1655
1656 if (dev->pm_domain) {
1657 info = "power domain ";
1658 callback = pm_op(&dev->pm_domain->ops, state);
1659 goto Run;
1660 }
1661
1662 if (dev->type && dev->type->pm) {
1663 info = "type ";
1664 callback = pm_op(dev->type->pm, state);
1665 goto Run;
1666 }
1667
1668 if (dev->class && dev->class->pm) {
1669 info = "class ";
1670 callback = pm_op(dev->class->pm, state);
1671 goto Run;
1672 }
1673
1674 if (dev->bus) {
1675 if (dev->bus->pm) {
1676 info = "bus ";
1677 callback = pm_op(dev->bus->pm, state);
1678 } else if (dev->bus->suspend) {
1679 pm_dev_dbg(dev, state, "legacy bus ");
1680 error = legacy_suspend(dev, state, dev->bus->suspend,
1681 "legacy bus ");
1682 goto End;
1683 }
1684 }
1685
1686 Run:
1687 if (!callback && dev->driver && dev->driver->pm) {
1688 info = "driver ";
1689 callback = pm_op(dev->driver->pm, state);
1690 }
1691
1692 error = dpm_run_callback(callback, dev, state, info);
1693
1694 End:
1695 if (!error) {
1696 dev->power.is_suspended = true;
1697 if (device_may_wakeup(dev))
1698 dev->power.wakeup_path = true;
1699
1700 dpm_propagate_wakeup_to_parent(dev);
1701 dpm_clear_superiors_direct_complete(dev);
1702 } else {
1703 log_suspend_abort_reason("Device %s failed to %s: error %d",
1704 dev_name(dev), pm_verb(state.event), error);
1705 }
1706
1707 device_unlock(dev);
1708 dpm_watchdog_clear(&wd);
1709
1710 Complete:
1711 if (error) {
1712 async_error = error;
1713 dpm_save_failed_dev(dev_name(dev));
1714 pm_dev_err(dev, state, async ? " async" : "", error);
1715 }
1716
1717 complete_all(&dev->power.completion);
1718 TRACE_SUSPEND(error);
1719 return error;
1720 }
1721
async_suspend(void * data,async_cookie_t cookie)1722 static void async_suspend(void *data, async_cookie_t cookie)
1723 {
1724 struct device *dev = data;
1725
1726 device_suspend(dev, pm_transition, true);
1727 put_device(dev);
1728 }
1729
1730 /**
1731 * dpm_suspend - Execute "suspend" callbacks for all non-sysdev devices.
1732 * @state: PM transition of the system being carried out.
1733 */
dpm_suspend(pm_message_t state)1734 int dpm_suspend(pm_message_t state)
1735 {
1736 ktime_t starttime = ktime_get();
1737 int error = 0;
1738
1739 trace_suspend_resume(TPS("dpm_suspend"), state.event, true);
1740 might_sleep();
1741
1742 devfreq_suspend();
1743 cpufreq_suspend();
1744
1745 pm_transition = state;
1746 async_error = 0;
1747
1748 mutex_lock(&dpm_list_mtx);
1749
1750 while (!list_empty(&dpm_prepared_list)) {
1751 struct device *dev = to_device(dpm_prepared_list.prev);
1752
1753 list_move(&dev->power.entry, &dpm_suspended_list);
1754
1755 if (dpm_async_fn(dev, async_suspend))
1756 continue;
1757
1758 get_device(dev);
1759
1760 mutex_unlock(&dpm_list_mtx);
1761
1762 error = device_suspend(dev, state, false);
1763
1764 put_device(dev);
1765
1766 mutex_lock(&dpm_list_mtx);
1767
1768 if (error || async_error)
1769 break;
1770 }
1771
1772 mutex_unlock(&dpm_list_mtx);
1773
1774 async_synchronize_full();
1775 if (!error)
1776 error = async_error;
1777
1778 if (error)
1779 dpm_save_failed_step(SUSPEND_SUSPEND);
1780
1781 dpm_show_time(starttime, state, error, NULL);
1782 trace_suspend_resume(TPS("dpm_suspend"), state.event, false);
1783 return error;
1784 }
1785
1786 /**
1787 * device_prepare - Prepare a device for system power transition.
1788 * @dev: Device to handle.
1789 * @state: PM transition of the system being carried out.
1790 *
1791 * Execute the ->prepare() callback(s) for given device. No new children of the
1792 * device may be registered after this function has returned.
1793 */
device_prepare(struct device * dev,pm_message_t state)1794 static int device_prepare(struct device *dev, pm_message_t state)
1795 {
1796 int (*callback)(struct device *) = NULL;
1797 int ret = 0;
1798
1799 /*
1800 * If a device's parent goes into runtime suspend at the wrong time,
1801 * it won't be possible to resume the device. To prevent this we
1802 * block runtime suspend here, during the prepare phase, and allow
1803 * it again during the complete phase.
1804 */
1805 pm_runtime_get_noresume(dev);
1806
1807 if (dev->power.syscore)
1808 return 0;
1809
1810 device_lock(dev);
1811
1812 dev->power.wakeup_path = false;
1813
1814 if (dev->power.no_pm_callbacks)
1815 goto unlock;
1816
1817 if (dev->pm_domain)
1818 callback = dev->pm_domain->ops.prepare;
1819 else if (dev->type && dev->type->pm)
1820 callback = dev->type->pm->prepare;
1821 else if (dev->class && dev->class->pm)
1822 callback = dev->class->pm->prepare;
1823 else if (dev->bus && dev->bus->pm)
1824 callback = dev->bus->pm->prepare;
1825
1826 if (!callback && dev->driver && dev->driver->pm)
1827 callback = dev->driver->pm->prepare;
1828
1829 if (callback)
1830 ret = callback(dev);
1831
1832 unlock:
1833 device_unlock(dev);
1834
1835 if (ret < 0) {
1836 suspend_report_result(dev, callback, ret);
1837 pm_runtime_put(dev);
1838 return ret;
1839 }
1840 /*
1841 * A positive return value from ->prepare() means "this device appears
1842 * to be runtime-suspended and its state is fine, so if it really is
1843 * runtime-suspended, you can leave it in that state provided that you
1844 * will do the same thing with all of its descendants". This only
1845 * applies to suspend transitions, however.
1846 */
1847 spin_lock_irq(&dev->power.lock);
1848 dev->power.direct_complete = state.event == PM_EVENT_SUSPEND &&
1849 (ret > 0 || dev->power.no_pm_callbacks) &&
1850 !dev_pm_test_driver_flags(dev, DPM_FLAG_NO_DIRECT_COMPLETE);
1851 spin_unlock_irq(&dev->power.lock);
1852 return 0;
1853 }
1854
1855 /**
1856 * dpm_prepare - Prepare all non-sysdev devices for a system PM transition.
1857 * @state: PM transition of the system being carried out.
1858 *
1859 * Execute the ->prepare() callback(s) for all devices.
1860 */
dpm_prepare(pm_message_t state)1861 int dpm_prepare(pm_message_t state)
1862 {
1863 int error = 0;
1864
1865 trace_suspend_resume(TPS("dpm_prepare"), state.event, true);
1866 might_sleep();
1867
1868 /*
1869 * Give a chance for the known devices to complete their probes, before
1870 * disable probing of devices. This sync point is important at least
1871 * at boot time + hibernation restore.
1872 */
1873 trace_android_rvh_dpm_prepare(0);
1874 wait_for_device_probe();
1875 trace_android_rvh_dpm_prepare(1);
1876 /*
1877 * It is unsafe if probing of devices will happen during suspend or
1878 * hibernation and system behavior will be unpredictable in this case.
1879 * So, let's prohibit device's probing here and defer their probes
1880 * instead. The normal behavior will be restored in dpm_complete().
1881 */
1882 device_block_probing();
1883
1884 mutex_lock(&dpm_list_mtx);
1885 while (!list_empty(&dpm_list) && !error) {
1886 struct device *dev = to_device(dpm_list.next);
1887
1888 get_device(dev);
1889
1890 mutex_unlock(&dpm_list_mtx);
1891
1892 trace_device_pm_callback_start(dev, "", state.event);
1893 error = device_prepare(dev, state);
1894 trace_device_pm_callback_end(dev, error);
1895
1896 mutex_lock(&dpm_list_mtx);
1897
1898 if (!error) {
1899 dev->power.is_prepared = true;
1900 if (!list_empty(&dev->power.entry))
1901 list_move_tail(&dev->power.entry, &dpm_prepared_list);
1902 } else if (error == -EAGAIN) {
1903 error = 0;
1904 } else {
1905 dev_info(dev, "not prepared for power transition: code %d\n",
1906 error);
1907 log_suspend_abort_reason("Device %s not prepared for power transition: code %d",
1908 dev_name(dev), error);
1909 dpm_save_failed_dev(dev_name(dev));
1910 }
1911
1912 mutex_unlock(&dpm_list_mtx);
1913
1914 put_device(dev);
1915
1916 mutex_lock(&dpm_list_mtx);
1917 }
1918 mutex_unlock(&dpm_list_mtx);
1919 trace_suspend_resume(TPS("dpm_prepare"), state.event, false);
1920 return error;
1921 }
1922
1923 /**
1924 * dpm_suspend_start - Prepare devices for PM transition and suspend them.
1925 * @state: PM transition of the system being carried out.
1926 *
1927 * Prepare all non-sysdev devices for system PM transition and execute "suspend"
1928 * callbacks for them.
1929 */
dpm_suspend_start(pm_message_t state)1930 int dpm_suspend_start(pm_message_t state)
1931 {
1932 ktime_t starttime = ktime_get();
1933 int error;
1934
1935 error = dpm_prepare(state);
1936 if (error)
1937 dpm_save_failed_step(SUSPEND_PREPARE);
1938 else
1939 error = dpm_suspend(state);
1940
1941 dpm_show_time(starttime, state, error, "start");
1942 return error;
1943 }
1944 EXPORT_SYMBOL_GPL(dpm_suspend_start);
1945
__suspend_report_result(const char * function,struct device * dev,void * fn,int ret)1946 void __suspend_report_result(const char *function, struct device *dev, void *fn, int ret)
1947 {
1948 if (ret)
1949 dev_err(dev, "%s(): %ps returns %d\n", function, fn, ret);
1950 }
1951 EXPORT_SYMBOL_GPL(__suspend_report_result);
1952
1953 /**
1954 * device_pm_wait_for_dev - Wait for suspend/resume of a device to complete.
1955 * @subordinate: Device that needs to wait for @dev.
1956 * @dev: Device to wait for.
1957 */
device_pm_wait_for_dev(struct device * subordinate,struct device * dev)1958 int device_pm_wait_for_dev(struct device *subordinate, struct device *dev)
1959 {
1960 dpm_wait(dev, subordinate->power.async_suspend);
1961 return async_error;
1962 }
1963 EXPORT_SYMBOL_GPL(device_pm_wait_for_dev);
1964
1965 /**
1966 * dpm_for_each_dev - device iterator.
1967 * @data: data for the callback.
1968 * @fn: function to be called for each device.
1969 *
1970 * Iterate over devices in dpm_list, and call @fn for each device,
1971 * passing it @data.
1972 */
dpm_for_each_dev(void * data,void (* fn)(struct device *,void *))1973 void dpm_for_each_dev(void *data, void (*fn)(struct device *, void *))
1974 {
1975 struct device *dev;
1976
1977 if (!fn)
1978 return;
1979
1980 device_pm_lock();
1981 list_for_each_entry(dev, &dpm_list, power.entry)
1982 fn(dev, data);
1983 device_pm_unlock();
1984 }
1985 EXPORT_SYMBOL_GPL(dpm_for_each_dev);
1986
pm_ops_is_empty(const struct dev_pm_ops * ops)1987 static bool pm_ops_is_empty(const struct dev_pm_ops *ops)
1988 {
1989 if (!ops)
1990 return true;
1991
1992 return !ops->prepare &&
1993 !ops->suspend &&
1994 !ops->suspend_late &&
1995 !ops->suspend_noirq &&
1996 !ops->resume_noirq &&
1997 !ops->resume_early &&
1998 !ops->resume &&
1999 !ops->complete;
2000 }
2001
device_pm_check_callbacks(struct device * dev)2002 void device_pm_check_callbacks(struct device *dev)
2003 {
2004 unsigned long flags;
2005
2006 spin_lock_irqsave(&dev->power.lock, flags);
2007 dev->power.no_pm_callbacks =
2008 (!dev->bus || (pm_ops_is_empty(dev->bus->pm) &&
2009 !dev->bus->suspend && !dev->bus->resume)) &&
2010 (!dev->class || pm_ops_is_empty(dev->class->pm)) &&
2011 (!dev->type || pm_ops_is_empty(dev->type->pm)) &&
2012 (!dev->pm_domain || pm_ops_is_empty(&dev->pm_domain->ops)) &&
2013 (!dev->driver || (pm_ops_is_empty(dev->driver->pm) &&
2014 !dev->driver->suspend && !dev->driver->resume));
2015 spin_unlock_irqrestore(&dev->power.lock, flags);
2016 }
2017
dev_pm_skip_suspend(struct device * dev)2018 bool dev_pm_skip_suspend(struct device *dev)
2019 {
2020 return dev_pm_test_driver_flags(dev, DPM_FLAG_SMART_SUSPEND) &&
2021 pm_runtime_status_suspended(dev);
2022 }
2023