1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 *
4 * Copyright (C) 2019-2021 Paragon Software GmbH, All rights reserved.
5 *
6 */
7
8 #include <linux/fiemap.h>
9 #include <linux/fs.h>
10 #include <linux/minmax.h>
11 #include <linux/vmalloc.h>
12
13 #include "debug.h"
14 #include "ntfs.h"
15 #include "ntfs_fs.h"
16 #ifdef CONFIG_NTFS3_LZX_XPRESS
17 #include "lib/lib.h"
18 #endif
19
ni_ins_mi(struct ntfs_inode * ni,struct rb_root * tree,CLST ino,struct rb_node * ins)20 static struct mft_inode *ni_ins_mi(struct ntfs_inode *ni, struct rb_root *tree,
21 CLST ino, struct rb_node *ins)
22 {
23 struct rb_node **p = &tree->rb_node;
24 struct rb_node *pr = NULL;
25
26 while (*p) {
27 struct mft_inode *mi;
28
29 pr = *p;
30 mi = rb_entry(pr, struct mft_inode, node);
31 if (mi->rno > ino)
32 p = &pr->rb_left;
33 else if (mi->rno < ino)
34 p = &pr->rb_right;
35 else
36 return mi;
37 }
38
39 if (!ins)
40 return NULL;
41
42 rb_link_node(ins, pr, p);
43 rb_insert_color(ins, tree);
44 return rb_entry(ins, struct mft_inode, node);
45 }
46
47 /*
48 * ni_find_mi - Find mft_inode by record number.
49 */
ni_find_mi(struct ntfs_inode * ni,CLST rno)50 static struct mft_inode *ni_find_mi(struct ntfs_inode *ni, CLST rno)
51 {
52 return ni_ins_mi(ni, &ni->mi_tree, rno, NULL);
53 }
54
55 /*
56 * ni_add_mi - Add new mft_inode into ntfs_inode.
57 */
ni_add_mi(struct ntfs_inode * ni,struct mft_inode * mi)58 static void ni_add_mi(struct ntfs_inode *ni, struct mft_inode *mi)
59 {
60 ni_ins_mi(ni, &ni->mi_tree, mi->rno, &mi->node);
61 }
62
63 /*
64 * ni_remove_mi - Remove mft_inode from ntfs_inode.
65 */
ni_remove_mi(struct ntfs_inode * ni,struct mft_inode * mi)66 void ni_remove_mi(struct ntfs_inode *ni, struct mft_inode *mi)
67 {
68 rb_erase(&mi->node, &ni->mi_tree);
69 }
70
71 /*
72 * ni_std - Return: Pointer into std_info from primary record.
73 */
ni_std(struct ntfs_inode * ni)74 struct ATTR_STD_INFO *ni_std(struct ntfs_inode *ni)
75 {
76 const struct ATTRIB *attr;
77
78 attr = mi_find_attr(&ni->mi, NULL, ATTR_STD, NULL, 0, NULL);
79 return attr ? resident_data_ex(attr, sizeof(struct ATTR_STD_INFO)) :
80 NULL;
81 }
82
83 /*
84 * ni_std5
85 *
86 * Return: Pointer into std_info from primary record.
87 */
ni_std5(struct ntfs_inode * ni)88 struct ATTR_STD_INFO5 *ni_std5(struct ntfs_inode *ni)
89 {
90 const struct ATTRIB *attr;
91
92 attr = mi_find_attr(&ni->mi, NULL, ATTR_STD, NULL, 0, NULL);
93
94 return attr ? resident_data_ex(attr, sizeof(struct ATTR_STD_INFO5)) :
95 NULL;
96 }
97
98 /*
99 * ni_clear - Clear resources allocated by ntfs_inode.
100 */
ni_clear(struct ntfs_inode * ni)101 void ni_clear(struct ntfs_inode *ni)
102 {
103 struct rb_node *node;
104
105 if (!ni->vfs_inode.i_nlink && ni->mi.mrec &&
106 is_rec_inuse(ni->mi.mrec) &&
107 !(ni->mi.sbi->flags & NTFS_FLAGS_LOG_REPLAYING))
108 ni_delete_all(ni);
109
110 al_destroy(ni);
111
112 for (node = rb_first(&ni->mi_tree); node;) {
113 struct rb_node *next = rb_next(node);
114 struct mft_inode *mi = rb_entry(node, struct mft_inode, node);
115
116 rb_erase(node, &ni->mi_tree);
117 mi_put(mi);
118 node = next;
119 }
120
121 /* Bad inode always has mode == S_IFREG. */
122 if (ni->ni_flags & NI_FLAG_DIR)
123 indx_clear(&ni->dir);
124 else {
125 run_close(&ni->file.run);
126 #ifdef CONFIG_NTFS3_LZX_XPRESS
127 if (ni->file.offs_folio) {
128 /* On-demand allocated page for offsets. */
129 folio_put(ni->file.offs_folio);
130 ni->file.offs_folio = NULL;
131 }
132 #endif
133 }
134
135 mi_clear(&ni->mi);
136 }
137
138 /*
139 * ni_load_mi_ex - Find mft_inode by record number.
140 */
ni_load_mi_ex(struct ntfs_inode * ni,CLST rno,struct mft_inode ** mi)141 int ni_load_mi_ex(struct ntfs_inode *ni, CLST rno, struct mft_inode **mi)
142 {
143 int err;
144 struct mft_inode *r;
145
146 r = ni_find_mi(ni, rno);
147 if (r)
148 goto out;
149
150 err = mi_get(ni->mi.sbi, rno, &r);
151 if (err) {
152 _ntfs_bad_inode(&ni->vfs_inode);
153 return err;
154 }
155
156 ni_add_mi(ni, r);
157
158 out:
159 if (mi)
160 *mi = r;
161 return 0;
162 }
163
164 /*
165 * ni_load_mi - Load mft_inode corresponded list_entry.
166 */
ni_load_mi(struct ntfs_inode * ni,const struct ATTR_LIST_ENTRY * le,struct mft_inode ** mi)167 int ni_load_mi(struct ntfs_inode *ni, const struct ATTR_LIST_ENTRY *le,
168 struct mft_inode **mi)
169 {
170 CLST rno;
171
172 if (!le) {
173 *mi = &ni->mi;
174 return 0;
175 }
176
177 rno = ino_get(&le->ref);
178 if (rno == ni->mi.rno) {
179 *mi = &ni->mi;
180 return 0;
181 }
182 return ni_load_mi_ex(ni, rno, mi);
183 }
184
185 /*
186 * ni_find_attr
187 *
188 * Return: Attribute and record this attribute belongs to.
189 */
ni_find_attr(struct ntfs_inode * ni,struct ATTRIB * attr,struct ATTR_LIST_ENTRY ** le_o,enum ATTR_TYPE type,const __le16 * name,u8 name_len,const CLST * vcn,struct mft_inode ** mi)190 struct ATTRIB *ni_find_attr(struct ntfs_inode *ni, struct ATTRIB *attr,
191 struct ATTR_LIST_ENTRY **le_o, enum ATTR_TYPE type,
192 const __le16 *name, u8 name_len, const CLST *vcn,
193 struct mft_inode **mi)
194 {
195 struct ATTR_LIST_ENTRY *le;
196 struct mft_inode *m;
197
198 if (!ni->attr_list.size ||
199 (!name_len && (type == ATTR_LIST || type == ATTR_STD))) {
200 if (le_o)
201 *le_o = NULL;
202 if (mi)
203 *mi = &ni->mi;
204
205 /* Look for required attribute in primary record. */
206 return mi_find_attr(&ni->mi, attr, type, name, name_len, NULL);
207 }
208
209 /* First look for list entry of required type. */
210 le = al_find_ex(ni, le_o ? *le_o : NULL, type, name, name_len, vcn);
211 if (!le)
212 return NULL;
213
214 if (le_o)
215 *le_o = le;
216
217 /* Load record that contains this attribute. */
218 if (ni_load_mi(ni, le, &m))
219 return NULL;
220
221 /* Look for required attribute. */
222 attr = mi_find_attr(m, NULL, type, name, name_len, &le->id);
223
224 if (!attr)
225 goto out;
226
227 if (!attr->non_res) {
228 if (vcn && *vcn)
229 goto out;
230 } else if (!vcn) {
231 if (attr->nres.svcn)
232 goto out;
233 } else if (le64_to_cpu(attr->nres.svcn) > *vcn ||
234 *vcn > le64_to_cpu(attr->nres.evcn)) {
235 goto out;
236 }
237
238 if (mi)
239 *mi = m;
240 return attr;
241
242 out:
243 _ntfs_bad_inode(&ni->vfs_inode);
244 return NULL;
245 }
246
247 /*
248 * ni_enum_attr_ex - Enumerates attributes in ntfs_inode.
249 */
ni_enum_attr_ex(struct ntfs_inode * ni,struct ATTRIB * attr,struct ATTR_LIST_ENTRY ** le,struct mft_inode ** mi)250 struct ATTRIB *ni_enum_attr_ex(struct ntfs_inode *ni, struct ATTRIB *attr,
251 struct ATTR_LIST_ENTRY **le,
252 struct mft_inode **mi)
253 {
254 struct mft_inode *mi2;
255 struct ATTR_LIST_ENTRY *le2;
256
257 /* Do we have an attribute list? */
258 if (!ni->attr_list.size) {
259 *le = NULL;
260 if (mi)
261 *mi = &ni->mi;
262 /* Enum attributes in primary record. */
263 return mi_enum_attr(&ni->mi, attr);
264 }
265
266 /* Get next list entry. */
267 le2 = *le = al_enumerate(ni, attr ? *le : NULL);
268 if (!le2)
269 return NULL;
270
271 /* Load record that contains the required attribute. */
272 if (ni_load_mi(ni, le2, &mi2))
273 return NULL;
274
275 if (mi)
276 *mi = mi2;
277
278 /* Find attribute in loaded record. */
279 return rec_find_attr_le(mi2, le2);
280 }
281
282 /*
283 * ni_load_attr - Load attribute that contains given VCN.
284 */
ni_load_attr(struct ntfs_inode * ni,enum ATTR_TYPE type,const __le16 * name,u8 name_len,CLST vcn,struct mft_inode ** pmi)285 struct ATTRIB *ni_load_attr(struct ntfs_inode *ni, enum ATTR_TYPE type,
286 const __le16 *name, u8 name_len, CLST vcn,
287 struct mft_inode **pmi)
288 {
289 struct ATTR_LIST_ENTRY *le;
290 struct ATTRIB *attr;
291 struct mft_inode *mi;
292 struct ATTR_LIST_ENTRY *next;
293
294 if (!ni->attr_list.size) {
295 if (pmi)
296 *pmi = &ni->mi;
297 return mi_find_attr(&ni->mi, NULL, type, name, name_len, NULL);
298 }
299
300 le = al_find_ex(ni, NULL, type, name, name_len, NULL);
301 if (!le)
302 return NULL;
303
304 /*
305 * Unfortunately ATTR_LIST_ENTRY contains only start VCN.
306 * So to find the ATTRIB segment that contains 'vcn' we should
307 * enumerate some entries.
308 */
309 if (vcn) {
310 for (;; le = next) {
311 next = al_find_ex(ni, le, type, name, name_len, NULL);
312 if (!next || le64_to_cpu(next->vcn) > vcn)
313 break;
314 }
315 }
316
317 if (ni_load_mi(ni, le, &mi))
318 return NULL;
319
320 if (pmi)
321 *pmi = mi;
322
323 attr = mi_find_attr(mi, NULL, type, name, name_len, &le->id);
324 if (!attr)
325 return NULL;
326
327 if (!attr->non_res)
328 return attr;
329
330 if (le64_to_cpu(attr->nres.svcn) <= vcn &&
331 vcn <= le64_to_cpu(attr->nres.evcn))
332 return attr;
333
334 _ntfs_bad_inode(&ni->vfs_inode);
335 return NULL;
336 }
337
338 /*
339 * ni_load_all_mi - Load all subrecords.
340 */
ni_load_all_mi(struct ntfs_inode * ni)341 int ni_load_all_mi(struct ntfs_inode *ni)
342 {
343 int err;
344 struct ATTR_LIST_ENTRY *le;
345
346 if (!ni->attr_list.size)
347 return 0;
348
349 le = NULL;
350
351 while ((le = al_enumerate(ni, le))) {
352 CLST rno = ino_get(&le->ref);
353
354 if (rno == ni->mi.rno)
355 continue;
356
357 err = ni_load_mi_ex(ni, rno, NULL);
358 if (err)
359 return err;
360 }
361
362 return 0;
363 }
364
365 /*
366 * ni_add_subrecord - Allocate + format + attach a new subrecord.
367 */
ni_add_subrecord(struct ntfs_inode * ni,CLST rno,struct mft_inode ** mi)368 bool ni_add_subrecord(struct ntfs_inode *ni, CLST rno, struct mft_inode **mi)
369 {
370 struct mft_inode *m;
371
372 m = kzalloc(sizeof(struct mft_inode), GFP_NOFS);
373 if (!m)
374 return false;
375
376 if (mi_format_new(m, ni->mi.sbi, rno, 0, ni->mi.rno == MFT_REC_MFT)) {
377 mi_put(m);
378 return false;
379 }
380
381 mi_get_ref(&ni->mi, &m->mrec->parent_ref);
382
383 ni_add_mi(ni, m);
384 *mi = m;
385 return true;
386 }
387
388 /*
389 * ni_remove_attr - Remove all attributes for the given type/name/id.
390 */
ni_remove_attr(struct ntfs_inode * ni,enum ATTR_TYPE type,const __le16 * name,u8 name_len,bool base_only,const __le16 * id)391 int ni_remove_attr(struct ntfs_inode *ni, enum ATTR_TYPE type,
392 const __le16 *name, u8 name_len, bool base_only,
393 const __le16 *id)
394 {
395 int err;
396 struct ATTRIB *attr;
397 struct ATTR_LIST_ENTRY *le;
398 struct mft_inode *mi;
399 u32 type_in;
400 int diff;
401
402 if (base_only || type == ATTR_LIST || !ni->attr_list.size) {
403 attr = mi_find_attr(&ni->mi, NULL, type, name, name_len, id);
404 if (!attr)
405 return -ENOENT;
406
407 mi_remove_attr(ni, &ni->mi, attr);
408 return 0;
409 }
410
411 type_in = le32_to_cpu(type);
412 le = NULL;
413
414 for (;;) {
415 le = al_enumerate(ni, le);
416 if (!le)
417 return 0;
418
419 next_le2:
420 diff = le32_to_cpu(le->type) - type_in;
421 if (diff < 0)
422 continue;
423
424 if (diff > 0)
425 return 0;
426
427 if (le->name_len != name_len)
428 continue;
429
430 if (name_len &&
431 memcmp(le_name(le), name, name_len * sizeof(short)))
432 continue;
433
434 if (id && le->id != *id)
435 continue;
436 err = ni_load_mi(ni, le, &mi);
437 if (err)
438 return err;
439
440 al_remove_le(ni, le);
441
442 attr = mi_find_attr(mi, NULL, type, name, name_len, id);
443 if (!attr)
444 return -ENOENT;
445
446 mi_remove_attr(ni, mi, attr);
447
448 if (PtrOffset(ni->attr_list.le, le) >= ni->attr_list.size)
449 return 0;
450 goto next_le2;
451 }
452 }
453
454 /*
455 * ni_ins_new_attr - Insert the attribute into record.
456 *
457 * Return: Not full constructed attribute or NULL if not possible to create.
458 */
459 static struct ATTRIB *
ni_ins_new_attr(struct ntfs_inode * ni,struct mft_inode * mi,struct ATTR_LIST_ENTRY * le,enum ATTR_TYPE type,const __le16 * name,u8 name_len,u32 asize,u16 name_off,CLST svcn,struct ATTR_LIST_ENTRY ** ins_le)460 ni_ins_new_attr(struct ntfs_inode *ni, struct mft_inode *mi,
461 struct ATTR_LIST_ENTRY *le, enum ATTR_TYPE type,
462 const __le16 *name, u8 name_len, u32 asize, u16 name_off,
463 CLST svcn, struct ATTR_LIST_ENTRY **ins_le)
464 {
465 int err;
466 struct ATTRIB *attr;
467 bool le_added = false;
468 struct MFT_REF ref;
469
470 mi_get_ref(mi, &ref);
471
472 if (type != ATTR_LIST && !le && ni->attr_list.size) {
473 err = al_add_le(ni, type, name, name_len, svcn, cpu_to_le16(-1),
474 &ref, &le);
475 if (err) {
476 /* No memory or no space. */
477 return ERR_PTR(err);
478 }
479 le_added = true;
480
481 /*
482 * al_add_le -> attr_set_size (list) -> ni_expand_list
483 * which moves some attributes out of primary record
484 * this means that name may point into moved memory
485 * reinit 'name' from le.
486 */
487 name = le->name;
488 }
489
490 attr = mi_insert_attr(mi, type, name, name_len, asize, name_off);
491 if (!attr) {
492 if (le_added)
493 al_remove_le(ni, le);
494 return NULL;
495 }
496
497 if (type == ATTR_LIST) {
498 /* Attr list is not in list entry array. */
499 goto out;
500 }
501
502 if (!le)
503 goto out;
504
505 /* Update ATTRIB Id and record reference. */
506 le->id = attr->id;
507 ni->attr_list.dirty = true;
508 le->ref = ref;
509
510 out:
511 if (ins_le)
512 *ins_le = le;
513 return attr;
514 }
515
516 /*
517 * ni_repack
518 *
519 * Random write access to sparsed or compressed file may result to
520 * not optimized packed runs.
521 * Here is the place to optimize it.
522 */
ni_repack(struct ntfs_inode * ni)523 static int ni_repack(struct ntfs_inode *ni)
524 {
525 #if 1
526 return 0;
527 #else
528 int err = 0;
529 struct ntfs_sb_info *sbi = ni->mi.sbi;
530 struct mft_inode *mi, *mi_p = NULL;
531 struct ATTRIB *attr = NULL, *attr_p;
532 struct ATTR_LIST_ENTRY *le = NULL, *le_p;
533 CLST alloc = 0;
534 u8 cluster_bits = sbi->cluster_bits;
535 CLST svcn, evcn = 0, svcn_p, evcn_p, next_svcn;
536 u32 roff, rs = sbi->record_size;
537 struct runs_tree run;
538
539 run_init(&run);
540
541 while ((attr = ni_enum_attr_ex(ni, attr, &le, &mi))) {
542 if (!attr->non_res)
543 continue;
544
545 svcn = le64_to_cpu(attr->nres.svcn);
546 if (svcn != le64_to_cpu(le->vcn)) {
547 err = -EINVAL;
548 break;
549 }
550
551 if (!svcn) {
552 alloc = le64_to_cpu(attr->nres.alloc_size) >>
553 cluster_bits;
554 mi_p = NULL;
555 } else if (svcn != evcn + 1) {
556 err = -EINVAL;
557 break;
558 }
559
560 evcn = le64_to_cpu(attr->nres.evcn);
561
562 if (svcn > evcn + 1) {
563 err = -EINVAL;
564 break;
565 }
566
567 if (!mi_p) {
568 /* Do not try if not enough free space. */
569 if (le32_to_cpu(mi->mrec->used) + 8 >= rs)
570 continue;
571
572 /* Do not try if last attribute segment. */
573 if (evcn + 1 == alloc)
574 continue;
575 run_close(&run);
576 }
577
578 roff = le16_to_cpu(attr->nres.run_off);
579
580 if (roff > le32_to_cpu(attr->size)) {
581 err = -EINVAL;
582 break;
583 }
584
585 err = run_unpack(&run, sbi, ni->mi.rno, svcn, evcn, svcn,
586 Add2Ptr(attr, roff),
587 le32_to_cpu(attr->size) - roff);
588 if (err < 0)
589 break;
590
591 if (!mi_p) {
592 mi_p = mi;
593 attr_p = attr;
594 svcn_p = svcn;
595 evcn_p = evcn;
596 le_p = le;
597 err = 0;
598 continue;
599 }
600
601 /*
602 * Run contains data from two records: mi_p and mi
603 * Try to pack in one.
604 */
605 err = mi_pack_runs(mi_p, attr_p, &run, evcn + 1 - svcn_p);
606 if (err)
607 break;
608
609 next_svcn = le64_to_cpu(attr_p->nres.evcn) + 1;
610
611 if (next_svcn >= evcn + 1) {
612 /* We can remove this attribute segment. */
613 al_remove_le(ni, le);
614 mi_remove_attr(NULL, mi, attr);
615 le = le_p;
616 continue;
617 }
618
619 attr->nres.svcn = le->vcn = cpu_to_le64(next_svcn);
620 mi->dirty = true;
621 ni->attr_list.dirty = true;
622
623 if (evcn + 1 == alloc) {
624 err = mi_pack_runs(mi, attr, &run,
625 evcn + 1 - next_svcn);
626 if (err)
627 break;
628 mi_p = NULL;
629 } else {
630 mi_p = mi;
631 attr_p = attr;
632 svcn_p = next_svcn;
633 evcn_p = evcn;
634 le_p = le;
635 run_truncate_head(&run, next_svcn);
636 }
637 }
638
639 if (err) {
640 ntfs_inode_warn(&ni->vfs_inode, "repack problem");
641 ntfs_set_state(sbi, NTFS_DIRTY_ERROR);
642
643 /* Pack loaded but not packed runs. */
644 if (mi_p)
645 mi_pack_runs(mi_p, attr_p, &run, evcn_p + 1 - svcn_p);
646 }
647
648 run_close(&run);
649 return err;
650 #endif
651 }
652
653 /*
654 * ni_try_remove_attr_list
655 *
656 * Can we remove attribute list?
657 * Check the case when primary record contains enough space for all attributes.
658 */
ni_try_remove_attr_list(struct ntfs_inode * ni)659 static int ni_try_remove_attr_list(struct ntfs_inode *ni)
660 {
661 int err = 0;
662 struct ntfs_sb_info *sbi = ni->mi.sbi;
663 struct ATTRIB *attr, *attr_list, *attr_ins;
664 struct ATTR_LIST_ENTRY *le;
665 struct mft_inode *mi;
666 u32 asize, free;
667 struct MFT_REF ref;
668 struct MFT_REC *mrec;
669 __le16 id;
670
671 if (!ni->attr_list.dirty)
672 return 0;
673
674 err = ni_repack(ni);
675 if (err)
676 return err;
677
678 attr_list = mi_find_attr(&ni->mi, NULL, ATTR_LIST, NULL, 0, NULL);
679 if (!attr_list)
680 return 0;
681
682 asize = le32_to_cpu(attr_list->size);
683
684 /* Free space in primary record without attribute list. */
685 free = sbi->record_size - le32_to_cpu(ni->mi.mrec->used) + asize;
686 mi_get_ref(&ni->mi, &ref);
687
688 le = NULL;
689 while ((le = al_enumerate(ni, le))) {
690 if (!memcmp(&le->ref, &ref, sizeof(ref)))
691 continue;
692
693 if (le->vcn)
694 return 0;
695
696 mi = ni_find_mi(ni, ino_get(&le->ref));
697 if (!mi)
698 return 0;
699
700 attr = mi_find_attr(mi, NULL, le->type, le_name(le),
701 le->name_len, &le->id);
702 if (!attr)
703 return 0;
704
705 asize = le32_to_cpu(attr->size);
706 if (asize > free)
707 return 0;
708
709 free -= asize;
710 }
711
712 /* Make a copy of primary record to restore if error. */
713 mrec = kmemdup(ni->mi.mrec, sbi->record_size, GFP_NOFS);
714 if (!mrec)
715 return 0; /* Not critical. */
716
717 /* It seems that attribute list can be removed from primary record. */
718 mi_remove_attr(NULL, &ni->mi, attr_list);
719
720 /*
721 * Repeat the cycle above and copy all attributes to primary record.
722 * Do not remove original attributes from subrecords!
723 * It should be success!
724 */
725 le = NULL;
726 while ((le = al_enumerate(ni, le))) {
727 if (!memcmp(&le->ref, &ref, sizeof(ref)))
728 continue;
729
730 mi = ni_find_mi(ni, ino_get(&le->ref));
731 if (!mi) {
732 /* Should never happened, 'cause already checked. */
733 goto out;
734 }
735
736 attr = mi_find_attr(mi, NULL, le->type, le_name(le),
737 le->name_len, &le->id);
738 if (!attr) {
739 /* Should never happened, 'cause already checked. */
740 goto out;
741 }
742 asize = le32_to_cpu(attr->size);
743
744 /* Insert into primary record. */
745 attr_ins = mi_insert_attr(&ni->mi, le->type, le_name(le),
746 le->name_len, asize,
747 le16_to_cpu(attr->name_off));
748 if (!attr_ins) {
749 /*
750 * No space in primary record (already checked).
751 */
752 goto out;
753 }
754
755 /* Copy all except id. */
756 id = attr_ins->id;
757 memcpy(attr_ins, attr, asize);
758 attr_ins->id = id;
759 }
760
761 /*
762 * Repeat the cycle above and remove all attributes from subrecords.
763 */
764 le = NULL;
765 while ((le = al_enumerate(ni, le))) {
766 if (!memcmp(&le->ref, &ref, sizeof(ref)))
767 continue;
768
769 mi = ni_find_mi(ni, ino_get(&le->ref));
770 if (!mi)
771 continue;
772
773 attr = mi_find_attr(mi, NULL, le->type, le_name(le),
774 le->name_len, &le->id);
775 if (!attr)
776 continue;
777
778 /* Remove from original record. */
779 mi_remove_attr(NULL, mi, attr);
780 }
781
782 run_deallocate(sbi, &ni->attr_list.run, true);
783 run_close(&ni->attr_list.run);
784 ni->attr_list.size = 0;
785 kvfree(ni->attr_list.le);
786 ni->attr_list.le = NULL;
787 ni->attr_list.dirty = false;
788
789 kfree(mrec);
790 return 0;
791 out:
792 /* Restore primary record. */
793 swap(mrec, ni->mi.mrec);
794 kfree(mrec);
795 return 0;
796 }
797
798 /*
799 * ni_create_attr_list - Generates an attribute list for this primary record.
800 */
ni_create_attr_list(struct ntfs_inode * ni)801 int ni_create_attr_list(struct ntfs_inode *ni)
802 {
803 struct ntfs_sb_info *sbi = ni->mi.sbi;
804 int err;
805 u32 lsize;
806 struct ATTRIB *attr;
807 struct ATTRIB *arr_move[7];
808 struct ATTR_LIST_ENTRY *le, *le_b[7];
809 struct MFT_REC *rec;
810 bool is_mft;
811 CLST rno = 0;
812 struct mft_inode *mi;
813 u32 free_b, nb, to_free, rs;
814 u16 sz;
815
816 is_mft = ni->mi.rno == MFT_REC_MFT;
817 rec = ni->mi.mrec;
818 rs = sbi->record_size;
819
820 /*
821 * Skip estimating exact memory requirement.
822 * Looks like one record_size is always enough.
823 */
824 le = kmalloc(al_aligned(rs), GFP_NOFS);
825 if (!le)
826 return -ENOMEM;
827
828 mi_get_ref(&ni->mi, &le->ref);
829 ni->attr_list.le = le;
830
831 attr = NULL;
832 nb = 0;
833 free_b = 0;
834 attr = NULL;
835
836 for (; (attr = mi_enum_attr(&ni->mi, attr)); le = Add2Ptr(le, sz)) {
837 sz = le_size(attr->name_len);
838 le->type = attr->type;
839 le->size = cpu_to_le16(sz);
840 le->name_len = attr->name_len;
841 le->name_off = offsetof(struct ATTR_LIST_ENTRY, name);
842 le->vcn = 0;
843 if (le != ni->attr_list.le)
844 le->ref = ni->attr_list.le->ref;
845 le->id = attr->id;
846
847 if (attr->name_len)
848 memcpy(le->name, attr_name(attr),
849 sizeof(short) * attr->name_len);
850 else if (attr->type == ATTR_STD)
851 continue;
852 else if (attr->type == ATTR_LIST)
853 continue;
854 else if (is_mft && attr->type == ATTR_DATA)
855 continue;
856
857 if (!nb || nb < ARRAY_SIZE(arr_move)) {
858 le_b[nb] = le;
859 arr_move[nb++] = attr;
860 free_b += le32_to_cpu(attr->size);
861 }
862 }
863
864 lsize = PtrOffset(ni->attr_list.le, le);
865 ni->attr_list.size = lsize;
866
867 to_free = le32_to_cpu(rec->used) + lsize + SIZEOF_RESIDENT;
868 if (to_free <= rs) {
869 to_free = 0;
870 } else {
871 to_free -= rs;
872
873 if (to_free > free_b) {
874 err = -EINVAL;
875 goto out;
876 }
877 }
878
879 /* Allocate child MFT. */
880 err = ntfs_look_free_mft(sbi, &rno, is_mft, ni, &mi);
881 if (err)
882 goto out;
883
884 err = -EINVAL;
885 /* Call mi_remove_attr() in reverse order to keep pointers 'arr_move' valid. */
886 while (to_free > 0) {
887 struct ATTRIB *b = arr_move[--nb];
888 u32 asize = le32_to_cpu(b->size);
889 u16 name_off = le16_to_cpu(b->name_off);
890
891 attr = mi_insert_attr(mi, b->type, Add2Ptr(b, name_off),
892 b->name_len, asize, name_off);
893 if (!attr)
894 goto out;
895
896 mi_get_ref(mi, &le_b[nb]->ref);
897 le_b[nb]->id = attr->id;
898
899 /* Copy all except id. */
900 memcpy(attr, b, asize);
901 attr->id = le_b[nb]->id;
902
903 /* Remove from primary record. */
904 if (!mi_remove_attr(NULL, &ni->mi, b))
905 goto out;
906
907 if (to_free <= asize)
908 break;
909 to_free -= asize;
910 if (!nb)
911 goto out;
912 }
913
914 attr = mi_insert_attr(&ni->mi, ATTR_LIST, NULL, 0,
915 lsize + SIZEOF_RESIDENT, SIZEOF_RESIDENT);
916 if (!attr)
917 goto out;
918
919 attr->non_res = 0;
920 attr->flags = 0;
921 attr->res.data_size = cpu_to_le32(lsize);
922 attr->res.data_off = SIZEOF_RESIDENT_LE;
923 attr->res.flags = 0;
924 attr->res.res = 0;
925
926 memcpy(resident_data_ex(attr, lsize), ni->attr_list.le, lsize);
927
928 ni->attr_list.dirty = false;
929
930 mark_inode_dirty(&ni->vfs_inode);
931 return 0;
932
933 out:
934 kvfree(ni->attr_list.le);
935 ni->attr_list.le = NULL;
936 ni->attr_list.size = 0;
937 return err;
938 }
939
940 /*
941 * ni_ins_attr_ext - Add an external attribute to the ntfs_inode.
942 */
ni_ins_attr_ext(struct ntfs_inode * ni,struct ATTR_LIST_ENTRY * le,enum ATTR_TYPE type,const __le16 * name,u8 name_len,u32 asize,CLST svcn,u16 name_off,bool force_ext,struct ATTRIB ** ins_attr,struct mft_inode ** ins_mi,struct ATTR_LIST_ENTRY ** ins_le)943 static int ni_ins_attr_ext(struct ntfs_inode *ni, struct ATTR_LIST_ENTRY *le,
944 enum ATTR_TYPE type, const __le16 *name, u8 name_len,
945 u32 asize, CLST svcn, u16 name_off, bool force_ext,
946 struct ATTRIB **ins_attr, struct mft_inode **ins_mi,
947 struct ATTR_LIST_ENTRY **ins_le)
948 {
949 struct ATTRIB *attr;
950 struct mft_inode *mi;
951 CLST rno;
952 u64 vbo;
953 struct rb_node *node;
954 int err;
955 bool is_mft, is_mft_data;
956 struct ntfs_sb_info *sbi = ni->mi.sbi;
957
958 is_mft = ni->mi.rno == MFT_REC_MFT;
959 is_mft_data = is_mft && type == ATTR_DATA && !name_len;
960
961 if (asize > sbi->max_bytes_per_attr) {
962 err = -EINVAL;
963 goto out;
964 }
965
966 /*
967 * Standard information and attr_list cannot be made external.
968 * The Log File cannot have any external attributes.
969 */
970 if (type == ATTR_STD || type == ATTR_LIST ||
971 ni->mi.rno == MFT_REC_LOG) {
972 err = -EINVAL;
973 goto out;
974 }
975
976 /* Create attribute list if it is not already existed. */
977 if (!ni->attr_list.size) {
978 err = ni_create_attr_list(ni);
979 if (err)
980 goto out;
981 }
982
983 vbo = is_mft_data ? ((u64)svcn << sbi->cluster_bits) : 0;
984
985 if (force_ext)
986 goto insert_ext;
987
988 /* Load all subrecords into memory. */
989 err = ni_load_all_mi(ni);
990 if (err)
991 goto out;
992
993 /* Check each of loaded subrecord. */
994 for (node = rb_first(&ni->mi_tree); node; node = rb_next(node)) {
995 mi = rb_entry(node, struct mft_inode, node);
996
997 if (is_mft_data &&
998 (mi_enum_attr(mi, NULL) ||
999 vbo <= ((u64)mi->rno << sbi->record_bits))) {
1000 /* We can't accept this record 'cause MFT's bootstrapping. */
1001 continue;
1002 }
1003 if (is_mft &&
1004 mi_find_attr(mi, NULL, ATTR_DATA, NULL, 0, NULL)) {
1005 /*
1006 * This child record already has a ATTR_DATA.
1007 * So it can't accept any other records.
1008 */
1009 continue;
1010 }
1011
1012 if ((type != ATTR_NAME || name_len) &&
1013 mi_find_attr(mi, NULL, type, name, name_len, NULL)) {
1014 /* Only indexed attributes can share same record. */
1015 continue;
1016 }
1017
1018 /*
1019 * Do not try to insert this attribute
1020 * if there is no room in record.
1021 */
1022 if (le32_to_cpu(mi->mrec->used) + asize > sbi->record_size)
1023 continue;
1024
1025 /* Try to insert attribute into this subrecord. */
1026 attr = ni_ins_new_attr(ni, mi, le, type, name, name_len, asize,
1027 name_off, svcn, ins_le);
1028 if (!attr)
1029 continue;
1030 if (IS_ERR(attr))
1031 return PTR_ERR(attr);
1032
1033 if (ins_attr)
1034 *ins_attr = attr;
1035 if (ins_mi)
1036 *ins_mi = mi;
1037 return 0;
1038 }
1039
1040 insert_ext:
1041 /* We have to allocate a new child subrecord. */
1042 err = ntfs_look_free_mft(sbi, &rno, is_mft_data, ni, &mi);
1043 if (err)
1044 goto out;
1045
1046 if (is_mft_data && vbo <= ((u64)rno << sbi->record_bits)) {
1047 err = -EINVAL;
1048 goto out1;
1049 }
1050
1051 attr = ni_ins_new_attr(ni, mi, le, type, name, name_len, asize,
1052 name_off, svcn, ins_le);
1053 if (!attr) {
1054 err = -EINVAL;
1055 goto out2;
1056 }
1057
1058 if (IS_ERR(attr)) {
1059 err = PTR_ERR(attr);
1060 goto out2;
1061 }
1062
1063 if (ins_attr)
1064 *ins_attr = attr;
1065 if (ins_mi)
1066 *ins_mi = mi;
1067
1068 return 0;
1069
1070 out2:
1071 ni_remove_mi(ni, mi);
1072 mi_put(mi);
1073
1074 out1:
1075 ntfs_mark_rec_free(sbi, rno, is_mft);
1076
1077 out:
1078 return err;
1079 }
1080
1081 /*
1082 * ni_insert_attr - Insert an attribute into the file.
1083 *
1084 * If the primary record has room, it will just insert the attribute.
1085 * If not, it may make the attribute external.
1086 * For $MFT::Data it may make room for the attribute by
1087 * making other attributes external.
1088 *
1089 * NOTE:
1090 * The ATTR_LIST and ATTR_STD cannot be made external.
1091 * This function does not fill new attribute full.
1092 * It only fills 'size'/'type'/'id'/'name_len' fields.
1093 */
ni_insert_attr(struct ntfs_inode * ni,enum ATTR_TYPE type,const __le16 * name,u8 name_len,u32 asize,u16 name_off,CLST svcn,struct ATTRIB ** ins_attr,struct mft_inode ** ins_mi,struct ATTR_LIST_ENTRY ** ins_le)1094 static int ni_insert_attr(struct ntfs_inode *ni, enum ATTR_TYPE type,
1095 const __le16 *name, u8 name_len, u32 asize,
1096 u16 name_off, CLST svcn, struct ATTRIB **ins_attr,
1097 struct mft_inode **ins_mi,
1098 struct ATTR_LIST_ENTRY **ins_le)
1099 {
1100 struct ntfs_sb_info *sbi = ni->mi.sbi;
1101 int err;
1102 struct ATTRIB *attr, *eattr;
1103 struct MFT_REC *rec;
1104 bool is_mft;
1105 struct ATTR_LIST_ENTRY *le;
1106 u32 list_reserve, max_free, free, used, t32;
1107 __le16 id;
1108 u16 t16;
1109
1110 is_mft = ni->mi.rno == MFT_REC_MFT;
1111 rec = ni->mi.mrec;
1112
1113 list_reserve = SIZEOF_NONRESIDENT + 3 * (1 + 2 * sizeof(u32));
1114 used = le32_to_cpu(rec->used);
1115 free = sbi->record_size - used;
1116
1117 if (is_mft && type != ATTR_LIST) {
1118 /* Reserve space for the ATTRIB list. */
1119 if (free < list_reserve)
1120 free = 0;
1121 else
1122 free -= list_reserve;
1123 }
1124
1125 if (asize <= free) {
1126 attr = ni_ins_new_attr(ni, &ni->mi, NULL, type, name, name_len,
1127 asize, name_off, svcn, ins_le);
1128 if (IS_ERR(attr)) {
1129 err = PTR_ERR(attr);
1130 goto out;
1131 }
1132
1133 if (attr) {
1134 if (ins_attr)
1135 *ins_attr = attr;
1136 if (ins_mi)
1137 *ins_mi = &ni->mi;
1138 err = 0;
1139 goto out;
1140 }
1141 }
1142
1143 if (!is_mft || type != ATTR_DATA || svcn) {
1144 /* This ATTRIB will be external. */
1145 err = ni_ins_attr_ext(ni, NULL, type, name, name_len, asize,
1146 svcn, name_off, false, ins_attr, ins_mi,
1147 ins_le);
1148 goto out;
1149 }
1150
1151 /*
1152 * Here we have: "is_mft && type == ATTR_DATA && !svcn"
1153 *
1154 * The first chunk of the $MFT::Data ATTRIB must be the base record.
1155 * Evict as many other attributes as possible.
1156 */
1157 max_free = free;
1158
1159 /* Estimate the result of moving all possible attributes away. */
1160 attr = NULL;
1161
1162 while ((attr = mi_enum_attr(&ni->mi, attr))) {
1163 if (attr->type == ATTR_STD)
1164 continue;
1165 if (attr->type == ATTR_LIST)
1166 continue;
1167 max_free += le32_to_cpu(attr->size);
1168 }
1169
1170 if (max_free < asize + list_reserve) {
1171 /* Impossible to insert this attribute into primary record. */
1172 err = -EINVAL;
1173 goto out;
1174 }
1175
1176 /* Start real attribute moving. */
1177 attr = NULL;
1178
1179 for (;;) {
1180 attr = mi_enum_attr(&ni->mi, attr);
1181 if (!attr) {
1182 /* We should never be here 'cause we have already check this case. */
1183 err = -EINVAL;
1184 goto out;
1185 }
1186
1187 /* Skip attributes that MUST be primary record. */
1188 if (attr->type == ATTR_STD || attr->type == ATTR_LIST)
1189 continue;
1190
1191 le = NULL;
1192 if (ni->attr_list.size) {
1193 le = al_find_le(ni, NULL, attr);
1194 if (!le) {
1195 /* Really this is a serious bug. */
1196 err = -EINVAL;
1197 goto out;
1198 }
1199 }
1200
1201 t32 = le32_to_cpu(attr->size);
1202 t16 = le16_to_cpu(attr->name_off);
1203 err = ni_ins_attr_ext(ni, le, attr->type, Add2Ptr(attr, t16),
1204 attr->name_len, t32, attr_svcn(attr), t16,
1205 false, &eattr, NULL, NULL);
1206 if (err)
1207 return err;
1208
1209 id = eattr->id;
1210 memcpy(eattr, attr, t32);
1211 eattr->id = id;
1212
1213 /* Remove from primary record. */
1214 mi_remove_attr(NULL, &ni->mi, attr);
1215
1216 /* attr now points to next attribute. */
1217 if (attr->type == ATTR_END)
1218 goto out;
1219 }
1220 while (asize + list_reserve > sbi->record_size - le32_to_cpu(rec->used))
1221 ;
1222
1223 attr = ni_ins_new_attr(ni, &ni->mi, NULL, type, name, name_len, asize,
1224 name_off, svcn, ins_le);
1225 if (!attr) {
1226 err = -EINVAL;
1227 goto out;
1228 }
1229
1230 if (IS_ERR(attr)) {
1231 err = PTR_ERR(attr);
1232 goto out;
1233 }
1234
1235 if (ins_attr)
1236 *ins_attr = attr;
1237 if (ins_mi)
1238 *ins_mi = &ni->mi;
1239
1240 out:
1241 return err;
1242 }
1243
1244 /* ni_expand_mft_list - Split ATTR_DATA of $MFT. */
ni_expand_mft_list(struct ntfs_inode * ni)1245 static int ni_expand_mft_list(struct ntfs_inode *ni)
1246 {
1247 int err = 0;
1248 struct runs_tree *run = &ni->file.run;
1249 u32 asize, run_size, done = 0;
1250 struct ATTRIB *attr;
1251 struct rb_node *node;
1252 CLST mft_min, mft_new, svcn, evcn, plen;
1253 struct mft_inode *mi, *mi_min, *mi_new;
1254 struct ntfs_sb_info *sbi = ni->mi.sbi;
1255
1256 /* Find the nearest MFT. */
1257 mft_min = 0;
1258 mft_new = 0;
1259 mi_min = NULL;
1260
1261 for (node = rb_first(&ni->mi_tree); node; node = rb_next(node)) {
1262 mi = rb_entry(node, struct mft_inode, node);
1263
1264 attr = mi_enum_attr(mi, NULL);
1265
1266 if (!attr) {
1267 mft_min = mi->rno;
1268 mi_min = mi;
1269 break;
1270 }
1271 }
1272
1273 if (ntfs_look_free_mft(sbi, &mft_new, true, ni, &mi_new)) {
1274 mft_new = 0;
1275 /* Really this is not critical. */
1276 } else if (mft_min > mft_new) {
1277 mft_min = mft_new;
1278 mi_min = mi_new;
1279 } else {
1280 ntfs_mark_rec_free(sbi, mft_new, true);
1281 mft_new = 0;
1282 ni_remove_mi(ni, mi_new);
1283 }
1284
1285 attr = mi_find_attr(&ni->mi, NULL, ATTR_DATA, NULL, 0, NULL);
1286 if (!attr) {
1287 err = -EINVAL;
1288 goto out;
1289 }
1290
1291 asize = le32_to_cpu(attr->size);
1292
1293 evcn = le64_to_cpu(attr->nres.evcn);
1294 svcn = bytes_to_cluster(sbi, (u64)(mft_min + 1) << sbi->record_bits);
1295 if (evcn + 1 >= svcn) {
1296 err = -EINVAL;
1297 goto out;
1298 }
1299
1300 /*
1301 * Split primary attribute [0 evcn] in two parts [0 svcn) + [svcn evcn].
1302 *
1303 * Update first part of ATTR_DATA in 'primary MFT.
1304 */
1305 err = run_pack(run, 0, svcn, Add2Ptr(attr, SIZEOF_NONRESIDENT),
1306 asize - SIZEOF_NONRESIDENT, &plen);
1307 if (err < 0)
1308 goto out;
1309
1310 run_size = ALIGN(err, 8);
1311 err = 0;
1312
1313 if (plen < svcn) {
1314 err = -EINVAL;
1315 goto out;
1316 }
1317
1318 attr->nres.evcn = cpu_to_le64(svcn - 1);
1319 attr->size = cpu_to_le32(run_size + SIZEOF_NONRESIDENT);
1320 /* 'done' - How many bytes of primary MFT becomes free. */
1321 done = asize - run_size - SIZEOF_NONRESIDENT;
1322 le32_sub_cpu(&ni->mi.mrec->used, done);
1323
1324 /* Estimate packed size (run_buf=NULL). */
1325 err = run_pack(run, svcn, evcn + 1 - svcn, NULL, sbi->record_size,
1326 &plen);
1327 if (err < 0)
1328 goto out;
1329
1330 run_size = ALIGN(err, 8);
1331 err = 0;
1332
1333 if (plen < evcn + 1 - svcn) {
1334 err = -EINVAL;
1335 goto out;
1336 }
1337
1338 /*
1339 * This function may implicitly call expand attr_list.
1340 * Insert second part of ATTR_DATA in 'mi_min'.
1341 */
1342 attr = ni_ins_new_attr(ni, mi_min, NULL, ATTR_DATA, NULL, 0,
1343 SIZEOF_NONRESIDENT + run_size,
1344 SIZEOF_NONRESIDENT, svcn, NULL);
1345 if (!attr) {
1346 err = -EINVAL;
1347 goto out;
1348 }
1349
1350 if (IS_ERR(attr)) {
1351 err = PTR_ERR(attr);
1352 goto out;
1353 }
1354
1355 attr->non_res = 1;
1356 attr->name_off = SIZEOF_NONRESIDENT_LE;
1357 attr->flags = 0;
1358
1359 /* This function can't fail - cause already checked above. */
1360 run_pack(run, svcn, evcn + 1 - svcn, Add2Ptr(attr, SIZEOF_NONRESIDENT),
1361 run_size, &plen);
1362
1363 attr->nres.svcn = cpu_to_le64(svcn);
1364 attr->nres.evcn = cpu_to_le64(evcn);
1365 attr->nres.run_off = cpu_to_le16(SIZEOF_NONRESIDENT);
1366
1367 out:
1368 if (mft_new) {
1369 ntfs_mark_rec_free(sbi, mft_new, true);
1370 ni_remove_mi(ni, mi_new);
1371 }
1372
1373 return !err && !done ? -EOPNOTSUPP : err;
1374 }
1375
1376 /*
1377 * ni_expand_list - Move all possible attributes out of primary record.
1378 */
ni_expand_list(struct ntfs_inode * ni)1379 int ni_expand_list(struct ntfs_inode *ni)
1380 {
1381 int err = 0;
1382 u32 asize, done = 0;
1383 struct ATTRIB *attr, *ins_attr;
1384 struct ATTR_LIST_ENTRY *le;
1385 bool is_mft = ni->mi.rno == MFT_REC_MFT;
1386 struct MFT_REF ref;
1387
1388 mi_get_ref(&ni->mi, &ref);
1389 le = NULL;
1390
1391 while ((le = al_enumerate(ni, le))) {
1392 if (le->type == ATTR_STD)
1393 continue;
1394
1395 if (memcmp(&ref, &le->ref, sizeof(struct MFT_REF)))
1396 continue;
1397
1398 if (is_mft && le->type == ATTR_DATA)
1399 continue;
1400
1401 /* Find attribute in primary record. */
1402 attr = rec_find_attr_le(&ni->mi, le);
1403 if (!attr) {
1404 err = -EINVAL;
1405 goto out;
1406 }
1407
1408 asize = le32_to_cpu(attr->size);
1409
1410 /* Always insert into new record to avoid collisions (deep recursive). */
1411 err = ni_ins_attr_ext(ni, le, attr->type, attr_name(attr),
1412 attr->name_len, asize, attr_svcn(attr),
1413 le16_to_cpu(attr->name_off), true,
1414 &ins_attr, NULL, NULL);
1415
1416 if (err)
1417 goto out;
1418
1419 memcpy(ins_attr, attr, asize);
1420 ins_attr->id = le->id;
1421 /* Remove from primary record. */
1422 mi_remove_attr(NULL, &ni->mi, attr);
1423
1424 done += asize;
1425 goto out;
1426 }
1427
1428 if (!is_mft) {
1429 err = -EFBIG; /* Attr list is too big(?) */
1430 goto out;
1431 }
1432
1433 /* Split MFT data as much as possible. */
1434 err = ni_expand_mft_list(ni);
1435
1436 out:
1437 return !err && !done ? -EOPNOTSUPP : err;
1438 }
1439
1440 /*
1441 * ni_insert_nonresident - Insert new nonresident attribute.
1442 */
ni_insert_nonresident(struct ntfs_inode * ni,enum ATTR_TYPE type,const __le16 * name,u8 name_len,const struct runs_tree * run,CLST svcn,CLST len,__le16 flags,struct ATTRIB ** new_attr,struct mft_inode ** mi,struct ATTR_LIST_ENTRY ** le)1443 int ni_insert_nonresident(struct ntfs_inode *ni, enum ATTR_TYPE type,
1444 const __le16 *name, u8 name_len,
1445 const struct runs_tree *run, CLST svcn, CLST len,
1446 __le16 flags, struct ATTRIB **new_attr,
1447 struct mft_inode **mi, struct ATTR_LIST_ENTRY **le)
1448 {
1449 int err;
1450 CLST plen;
1451 struct ATTRIB *attr;
1452 bool is_ext = (flags & (ATTR_FLAG_SPARSED | ATTR_FLAG_COMPRESSED)) &&
1453 !svcn;
1454 u32 name_size = ALIGN(name_len * sizeof(short), 8);
1455 u32 name_off = is_ext ? SIZEOF_NONRESIDENT_EX : SIZEOF_NONRESIDENT;
1456 u32 run_off = name_off + name_size;
1457 u32 run_size, asize;
1458 struct ntfs_sb_info *sbi = ni->mi.sbi;
1459
1460 /* Estimate packed size (run_buf=NULL). */
1461 err = run_pack(run, svcn, len, NULL, sbi->max_bytes_per_attr - run_off,
1462 &plen);
1463 if (err < 0)
1464 goto out;
1465
1466 run_size = ALIGN(err, 8);
1467
1468 if (plen < len) {
1469 err = -EINVAL;
1470 goto out;
1471 }
1472
1473 asize = run_off + run_size;
1474
1475 if (asize > sbi->max_bytes_per_attr) {
1476 err = -EINVAL;
1477 goto out;
1478 }
1479
1480 err = ni_insert_attr(ni, type, name, name_len, asize, name_off, svcn,
1481 &attr, mi, le);
1482
1483 if (err)
1484 goto out;
1485
1486 attr->non_res = 1;
1487 attr->name_off = cpu_to_le16(name_off);
1488 attr->flags = flags;
1489
1490 /* This function can't fail - cause already checked above. */
1491 run_pack(run, svcn, len, Add2Ptr(attr, run_off), run_size, &plen);
1492
1493 attr->nres.svcn = cpu_to_le64(svcn);
1494 attr->nres.evcn = cpu_to_le64((u64)svcn + len - 1);
1495
1496 if (new_attr)
1497 *new_attr = attr;
1498
1499 *(__le64 *)&attr->nres.run_off = cpu_to_le64(run_off);
1500
1501 attr->nres.alloc_size =
1502 svcn ? 0 : cpu_to_le64((u64)len << ni->mi.sbi->cluster_bits);
1503 attr->nres.data_size = attr->nres.alloc_size;
1504 attr->nres.valid_size = attr->nres.alloc_size;
1505
1506 if (is_ext) {
1507 if (flags & ATTR_FLAG_COMPRESSED)
1508 attr->nres.c_unit = NTFS_LZNT_CUNIT;
1509 attr->nres.total_size = attr->nres.alloc_size;
1510 }
1511
1512 out:
1513 return err;
1514 }
1515
1516 /*
1517 * ni_insert_resident - Inserts new resident attribute.
1518 */
ni_insert_resident(struct ntfs_inode * ni,u32 data_size,enum ATTR_TYPE type,const __le16 * name,u8 name_len,struct ATTRIB ** new_attr,struct mft_inode ** mi,struct ATTR_LIST_ENTRY ** le)1519 int ni_insert_resident(struct ntfs_inode *ni, u32 data_size,
1520 enum ATTR_TYPE type, const __le16 *name, u8 name_len,
1521 struct ATTRIB **new_attr, struct mft_inode **mi,
1522 struct ATTR_LIST_ENTRY **le)
1523 {
1524 int err;
1525 u32 name_size = ALIGN(name_len * sizeof(short), 8);
1526 u32 asize = SIZEOF_RESIDENT + name_size + ALIGN(data_size, 8);
1527 struct ATTRIB *attr;
1528
1529 err = ni_insert_attr(ni, type, name, name_len, asize, SIZEOF_RESIDENT,
1530 0, &attr, mi, le);
1531 if (err)
1532 return err;
1533
1534 attr->non_res = 0;
1535 attr->flags = 0;
1536
1537 attr->res.data_size = cpu_to_le32(data_size);
1538 attr->res.data_off = cpu_to_le16(SIZEOF_RESIDENT + name_size);
1539 if (type == ATTR_NAME) {
1540 attr->res.flags = RESIDENT_FLAG_INDEXED;
1541
1542 /* is_attr_indexed(attr)) == true */
1543 le16_add_cpu(&ni->mi.mrec->hard_links, 1);
1544 ni->mi.dirty = true;
1545 }
1546 attr->res.res = 0;
1547
1548 if (new_attr)
1549 *new_attr = attr;
1550
1551 return 0;
1552 }
1553
1554 /*
1555 * ni_remove_attr_le - Remove attribute from record.
1556 */
ni_remove_attr_le(struct ntfs_inode * ni,struct ATTRIB * attr,struct mft_inode * mi,struct ATTR_LIST_ENTRY * le)1557 void ni_remove_attr_le(struct ntfs_inode *ni, struct ATTRIB *attr,
1558 struct mft_inode *mi, struct ATTR_LIST_ENTRY *le)
1559 {
1560 mi_remove_attr(ni, mi, attr);
1561
1562 if (le)
1563 al_remove_le(ni, le);
1564 }
1565
1566 /*
1567 * ni_delete_all - Remove all attributes and frees allocates space.
1568 *
1569 * ntfs_evict_inode->ntfs_clear_inode->ni_delete_all (if no links).
1570 */
ni_delete_all(struct ntfs_inode * ni)1571 int ni_delete_all(struct ntfs_inode *ni)
1572 {
1573 int err;
1574 struct ATTR_LIST_ENTRY *le = NULL;
1575 struct ATTRIB *attr = NULL;
1576 struct rb_node *node;
1577 u16 roff;
1578 u32 asize;
1579 CLST svcn, evcn;
1580 struct ntfs_sb_info *sbi = ni->mi.sbi;
1581 bool nt3 = is_ntfs3(sbi);
1582 struct MFT_REF ref;
1583
1584 while ((attr = ni_enum_attr_ex(ni, attr, &le, NULL))) {
1585 if (!nt3 || attr->name_len) {
1586 ;
1587 } else if (attr->type == ATTR_REPARSE) {
1588 mi_get_ref(&ni->mi, &ref);
1589 ntfs_remove_reparse(sbi, 0, &ref);
1590 } else if (attr->type == ATTR_ID && !attr->non_res &&
1591 le32_to_cpu(attr->res.data_size) >=
1592 sizeof(struct GUID)) {
1593 ntfs_objid_remove(sbi, resident_data(attr));
1594 }
1595
1596 if (!attr->non_res)
1597 continue;
1598
1599 svcn = le64_to_cpu(attr->nres.svcn);
1600 evcn = le64_to_cpu(attr->nres.evcn);
1601
1602 if (evcn + 1 <= svcn)
1603 continue;
1604
1605 asize = le32_to_cpu(attr->size);
1606 roff = le16_to_cpu(attr->nres.run_off);
1607
1608 if (roff > asize) {
1609 /* ni_enum_attr_ex checks this case. */
1610 continue;
1611 }
1612
1613 /* run==1 means unpack and deallocate. */
1614 run_unpack_ex(RUN_DEALLOCATE, sbi, ni->mi.rno, svcn, evcn, svcn,
1615 Add2Ptr(attr, roff), asize - roff);
1616 }
1617
1618 if (ni->attr_list.size) {
1619 run_deallocate(ni->mi.sbi, &ni->attr_list.run, true);
1620 al_destroy(ni);
1621 }
1622
1623 /* Free all subrecords. */
1624 for (node = rb_first(&ni->mi_tree); node;) {
1625 struct rb_node *next = rb_next(node);
1626 struct mft_inode *mi = rb_entry(node, struct mft_inode, node);
1627
1628 clear_rec_inuse(mi->mrec);
1629 mi->dirty = true;
1630 mi_write(mi, 0);
1631
1632 ntfs_mark_rec_free(sbi, mi->rno, false);
1633 ni_remove_mi(ni, mi);
1634 mi_put(mi);
1635 node = next;
1636 }
1637
1638 /* Free base record. */
1639 clear_rec_inuse(ni->mi.mrec);
1640 ni->mi.dirty = true;
1641 err = mi_write(&ni->mi, 0);
1642
1643 ntfs_mark_rec_free(sbi, ni->mi.rno, false);
1644
1645 return err;
1646 }
1647
1648 /* ni_fname_name
1649 *
1650 * Return: File name attribute by its value.
1651 */
ni_fname_name(struct ntfs_inode * ni,const struct le_str * uni,const struct MFT_REF * home_dir,struct mft_inode ** mi,struct ATTR_LIST_ENTRY ** le)1652 struct ATTR_FILE_NAME *ni_fname_name(struct ntfs_inode *ni,
1653 const struct le_str *uni,
1654 const struct MFT_REF *home_dir,
1655 struct mft_inode **mi,
1656 struct ATTR_LIST_ENTRY **le)
1657 {
1658 struct ATTRIB *attr = NULL;
1659 struct ATTR_FILE_NAME *fname;
1660
1661 if (le)
1662 *le = NULL;
1663
1664 /* Enumerate all names. */
1665 next:
1666 attr = ni_find_attr(ni, attr, le, ATTR_NAME, NULL, 0, NULL, mi);
1667 if (!attr)
1668 return NULL;
1669
1670 fname = resident_data_ex(attr, SIZEOF_ATTRIBUTE_FILENAME);
1671 if (!fname)
1672 goto next;
1673
1674 if (home_dir && memcmp(home_dir, &fname->home, sizeof(*home_dir)))
1675 goto next;
1676
1677 if (!uni)
1678 return fname;
1679
1680 if (uni->len != fname->name_len)
1681 goto next;
1682
1683 if (ntfs_cmp_names(uni->name, uni->len, fname->name, uni->len, NULL,
1684 false))
1685 goto next;
1686 return fname;
1687 }
1688
1689 /*
1690 * ni_fname_type
1691 *
1692 * Return: File name attribute with given type.
1693 */
ni_fname_type(struct ntfs_inode * ni,u8 name_type,struct mft_inode ** mi,struct ATTR_LIST_ENTRY ** le)1694 struct ATTR_FILE_NAME *ni_fname_type(struct ntfs_inode *ni, u8 name_type,
1695 struct mft_inode **mi,
1696 struct ATTR_LIST_ENTRY **le)
1697 {
1698 struct ATTRIB *attr = NULL;
1699 struct ATTR_FILE_NAME *fname;
1700
1701 *le = NULL;
1702
1703 if (name_type == FILE_NAME_POSIX)
1704 return NULL;
1705
1706 /* Enumerate all names. */
1707 for (;;) {
1708 attr = ni_find_attr(ni, attr, le, ATTR_NAME, NULL, 0, NULL, mi);
1709 if (!attr)
1710 return NULL;
1711
1712 fname = resident_data_ex(attr, SIZEOF_ATTRIBUTE_FILENAME);
1713 if (fname && name_type == fname->type)
1714 return fname;
1715 }
1716 }
1717
1718 /*
1719 * ni_new_attr_flags
1720 *
1721 * Process compressed/sparsed in special way.
1722 * NOTE: You need to set ni->std_fa = new_fa
1723 * after this function to keep internal structures in consistency.
1724 */
ni_new_attr_flags(struct ntfs_inode * ni,enum FILE_ATTRIBUTE new_fa)1725 int ni_new_attr_flags(struct ntfs_inode *ni, enum FILE_ATTRIBUTE new_fa)
1726 {
1727 struct ATTRIB *attr;
1728 struct mft_inode *mi;
1729 __le16 new_aflags;
1730 u32 new_asize;
1731
1732 attr = ni_find_attr(ni, NULL, NULL, ATTR_DATA, NULL, 0, NULL, &mi);
1733 if (!attr)
1734 return -EINVAL;
1735
1736 new_aflags = attr->flags;
1737
1738 if (new_fa & FILE_ATTRIBUTE_SPARSE_FILE)
1739 new_aflags |= ATTR_FLAG_SPARSED;
1740 else
1741 new_aflags &= ~ATTR_FLAG_SPARSED;
1742
1743 if (new_fa & FILE_ATTRIBUTE_COMPRESSED)
1744 new_aflags |= ATTR_FLAG_COMPRESSED;
1745 else
1746 new_aflags &= ~ATTR_FLAG_COMPRESSED;
1747
1748 if (new_aflags == attr->flags)
1749 return 0;
1750
1751 if ((new_aflags & (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED)) ==
1752 (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED)) {
1753 ntfs_inode_warn(&ni->vfs_inode,
1754 "file can't be sparsed and compressed");
1755 return -EOPNOTSUPP;
1756 }
1757
1758 if (!attr->non_res)
1759 goto out;
1760
1761 if (attr->nres.data_size) {
1762 ntfs_inode_warn(
1763 &ni->vfs_inode,
1764 "one can change sparsed/compressed only for empty files");
1765 return -EOPNOTSUPP;
1766 }
1767
1768 /* Resize nonresident empty attribute in-place only. */
1769 new_asize = (new_aflags & (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED)) ?
1770 (SIZEOF_NONRESIDENT_EX + 8) :
1771 (SIZEOF_NONRESIDENT + 8);
1772
1773 if (!mi_resize_attr(mi, attr, new_asize - le32_to_cpu(attr->size)))
1774 return -EOPNOTSUPP;
1775
1776 if (new_aflags & ATTR_FLAG_SPARSED) {
1777 attr->name_off = SIZEOF_NONRESIDENT_EX_LE;
1778 /* Windows uses 16 clusters per frame but supports one cluster per frame too. */
1779 attr->nres.c_unit = 0;
1780 ni->vfs_inode.i_mapping->a_ops = &ntfs_aops;
1781 } else if (new_aflags & ATTR_FLAG_COMPRESSED) {
1782 attr->name_off = SIZEOF_NONRESIDENT_EX_LE;
1783 /* The only allowed: 16 clusters per frame. */
1784 attr->nres.c_unit = NTFS_LZNT_CUNIT;
1785 ni->vfs_inode.i_mapping->a_ops = &ntfs_aops_cmpr;
1786 } else {
1787 attr->name_off = SIZEOF_NONRESIDENT_LE;
1788 /* Normal files. */
1789 attr->nres.c_unit = 0;
1790 ni->vfs_inode.i_mapping->a_ops = &ntfs_aops;
1791 }
1792 attr->nres.run_off = attr->name_off;
1793 out:
1794 attr->flags = new_aflags;
1795 mi->dirty = true;
1796
1797 return 0;
1798 }
1799
1800 /*
1801 * ni_parse_reparse
1802 *
1803 * buffer - memory for reparse buffer header
1804 */
ni_parse_reparse(struct ntfs_inode * ni,struct ATTRIB * attr,struct REPARSE_DATA_BUFFER * buffer)1805 enum REPARSE_SIGN ni_parse_reparse(struct ntfs_inode *ni, struct ATTRIB *attr,
1806 struct REPARSE_DATA_BUFFER *buffer)
1807 {
1808 const struct REPARSE_DATA_BUFFER *rp = NULL;
1809 u8 bits;
1810 u16 len;
1811 typeof(rp->CompressReparseBuffer) *cmpr;
1812
1813 /* Try to estimate reparse point. */
1814 if (!attr->non_res) {
1815 rp = resident_data_ex(attr, sizeof(struct REPARSE_DATA_BUFFER));
1816 } else if (le64_to_cpu(attr->nres.data_size) >=
1817 sizeof(struct REPARSE_DATA_BUFFER)) {
1818 struct runs_tree run;
1819
1820 run_init(&run);
1821
1822 if (!attr_load_runs_vcn(ni, ATTR_REPARSE, NULL, 0, &run, 0) &&
1823 !ntfs_read_run_nb(ni->mi.sbi, &run, 0, buffer,
1824 sizeof(struct REPARSE_DATA_BUFFER),
1825 NULL)) {
1826 rp = buffer;
1827 }
1828
1829 run_close(&run);
1830 }
1831
1832 if (!rp)
1833 return REPARSE_NONE;
1834
1835 len = le16_to_cpu(rp->ReparseDataLength);
1836 switch (rp->ReparseTag) {
1837 case (IO_REPARSE_TAG_MICROSOFT | IO_REPARSE_TAG_SYMBOLIC_LINK):
1838 break; /* Symbolic link. */
1839 case IO_REPARSE_TAG_MOUNT_POINT:
1840 break; /* Mount points and junctions. */
1841 case IO_REPARSE_TAG_SYMLINK:
1842 break;
1843 case IO_REPARSE_TAG_COMPRESS:
1844 /*
1845 * WOF - Windows Overlay Filter - Used to compress files with
1846 * LZX/Xpress.
1847 *
1848 * Unlike native NTFS file compression, the Windows
1849 * Overlay Filter supports only read operations. This means
1850 * that it doesn't need to sector-align each compressed chunk,
1851 * so the compressed data can be packed more tightly together.
1852 * If you open the file for writing, the WOF just decompresses
1853 * the entire file, turning it back into a plain file.
1854 *
1855 * Ntfs3 driver decompresses the entire file only on write or
1856 * change size requests.
1857 */
1858
1859 cmpr = &rp->CompressReparseBuffer;
1860 if (len < sizeof(*cmpr) ||
1861 cmpr->WofVersion != WOF_CURRENT_VERSION ||
1862 cmpr->WofProvider != WOF_PROVIDER_SYSTEM ||
1863 cmpr->ProviderVer != WOF_PROVIDER_CURRENT_VERSION) {
1864 return REPARSE_NONE;
1865 }
1866
1867 switch (cmpr->CompressionFormat) {
1868 case WOF_COMPRESSION_XPRESS4K:
1869 bits = 0xc; // 4k
1870 break;
1871 case WOF_COMPRESSION_XPRESS8K:
1872 bits = 0xd; // 8k
1873 break;
1874 case WOF_COMPRESSION_XPRESS16K:
1875 bits = 0xe; // 16k
1876 break;
1877 case WOF_COMPRESSION_LZX32K:
1878 bits = 0xf; // 32k
1879 break;
1880 default:
1881 bits = 0x10; // 64k
1882 break;
1883 }
1884 ni_set_ext_compress_bits(ni, bits);
1885 return REPARSE_COMPRESSED;
1886
1887 case IO_REPARSE_TAG_DEDUP:
1888 ni->ni_flags |= NI_FLAG_DEDUPLICATED;
1889 return REPARSE_DEDUPLICATED;
1890
1891 default:
1892 if (rp->ReparseTag & IO_REPARSE_TAG_NAME_SURROGATE)
1893 break;
1894
1895 return REPARSE_NONE;
1896 }
1897
1898 if (buffer != rp)
1899 memcpy(buffer, rp, sizeof(struct REPARSE_DATA_BUFFER));
1900
1901 /* Looks like normal symlink. */
1902 return REPARSE_LINK;
1903 }
1904
1905 /*
1906 * ni_fiemap - Helper for file_fiemap().
1907 *
1908 * Assumed ni_lock.
1909 * TODO: Less aggressive locks.
1910 */
ni_fiemap(struct ntfs_inode * ni,struct fiemap_extent_info * fieinfo,__u64 vbo,__u64 len)1911 int ni_fiemap(struct ntfs_inode *ni, struct fiemap_extent_info *fieinfo,
1912 __u64 vbo, __u64 len)
1913 {
1914 int err = 0;
1915 struct ntfs_sb_info *sbi = ni->mi.sbi;
1916 u8 cluster_bits = sbi->cluster_bits;
1917 struct runs_tree run;
1918 struct ATTRIB *attr;
1919 CLST vcn = vbo >> cluster_bits;
1920 CLST lcn, clen;
1921 u64 valid = ni->i_valid;
1922 u64 lbo, bytes;
1923 u64 end, alloc_size;
1924 size_t idx = -1;
1925 u32 flags;
1926 bool ok;
1927
1928 run_init(&run);
1929 if (S_ISDIR(ni->vfs_inode.i_mode)) {
1930 attr = ni_find_attr(ni, NULL, NULL, ATTR_ALLOC, I30_NAME,
1931 ARRAY_SIZE(I30_NAME), NULL, NULL);
1932 } else {
1933 attr = ni_find_attr(ni, NULL, NULL, ATTR_DATA, NULL, 0, NULL,
1934 NULL);
1935 if (!attr) {
1936 err = -EINVAL;
1937 goto out;
1938 }
1939 if (is_attr_compressed(attr)) {
1940 /* Unfortunately cp -r incorrectly treats compressed clusters. */
1941 err = -EOPNOTSUPP;
1942 ntfs_inode_warn(
1943 &ni->vfs_inode,
1944 "fiemap is not supported for compressed file (cp -r)");
1945 goto out;
1946 }
1947 }
1948
1949 if (!attr || !attr->non_res) {
1950 err = fiemap_fill_next_extent(
1951 fieinfo, 0, 0,
1952 attr ? le32_to_cpu(attr->res.data_size) : 0,
1953 FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_LAST |
1954 FIEMAP_EXTENT_MERGED);
1955 goto out;
1956 }
1957
1958 end = vbo + len;
1959 alloc_size = le64_to_cpu(attr->nres.alloc_size);
1960 if (end > alloc_size)
1961 end = alloc_size;
1962
1963
1964 while (vbo < end) {
1965 if (idx == -1) {
1966 ok = run_lookup_entry(&run, vcn, &lcn, &clen, &idx);
1967 } else {
1968 CLST vcn_next = vcn;
1969
1970 ok = run_get_entry(&run, ++idx, &vcn, &lcn, &clen) &&
1971 vcn == vcn_next;
1972 if (!ok)
1973 vcn = vcn_next;
1974 }
1975
1976 if (!ok) {
1977 err = attr_load_runs_vcn(ni, attr->type,
1978 attr_name(attr),
1979 attr->name_len, &run, vcn);
1980
1981 if (err)
1982 break;
1983
1984 ok = run_lookup_entry(&run, vcn, &lcn, &clen, &idx);
1985
1986 if (!ok) {
1987 err = -EINVAL;
1988 break;
1989 }
1990 }
1991
1992 if (!clen) {
1993 err = -EINVAL; // ?
1994 break;
1995 }
1996
1997 if (lcn == SPARSE_LCN) {
1998 vcn += clen;
1999 vbo = (u64)vcn << cluster_bits;
2000 continue;
2001 }
2002
2003 flags = FIEMAP_EXTENT_MERGED;
2004 if (S_ISDIR(ni->vfs_inode.i_mode)) {
2005 ;
2006 } else if (is_attr_compressed(attr)) {
2007 CLST clst_data;
2008
2009 err = attr_is_frame_compressed(ni, attr,
2010 vcn >> attr->nres.c_unit,
2011 &clst_data, &run);
2012 if (err)
2013 break;
2014 if (clst_data < NTFS_LZNT_CLUSTERS)
2015 flags |= FIEMAP_EXTENT_ENCODED;
2016 } else if (is_attr_encrypted(attr)) {
2017 flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
2018 }
2019
2020 vbo = (u64)vcn << cluster_bits;
2021 bytes = (u64)clen << cluster_bits;
2022 lbo = (u64)lcn << cluster_bits;
2023
2024 vcn += clen;
2025
2026 if (vbo + bytes >= end)
2027 bytes = end - vbo;
2028
2029 if (vbo + bytes <= valid) {
2030 ;
2031 } else if (vbo >= valid) {
2032 flags |= FIEMAP_EXTENT_UNWRITTEN;
2033 } else {
2034 /* vbo < valid && valid < vbo + bytes */
2035 u64 dlen = valid - vbo;
2036
2037 if (vbo + dlen >= end)
2038 flags |= FIEMAP_EXTENT_LAST;
2039
2040 err = fiemap_fill_next_extent(fieinfo, vbo, lbo, dlen,
2041 flags);
2042
2043 if (err < 0)
2044 break;
2045 if (err == 1) {
2046 err = 0;
2047 break;
2048 }
2049
2050 vbo = valid;
2051 bytes -= dlen;
2052 if (!bytes)
2053 continue;
2054
2055 lbo += dlen;
2056 flags |= FIEMAP_EXTENT_UNWRITTEN;
2057 }
2058
2059 if (vbo + bytes >= end)
2060 flags |= FIEMAP_EXTENT_LAST;
2061
2062 err = fiemap_fill_next_extent(fieinfo, vbo, lbo, bytes, flags);
2063 if (err < 0)
2064 break;
2065 if (err == 1) {
2066 err = 0;
2067 break;
2068 }
2069
2070 vbo += bytes;
2071 }
2072
2073 out:
2074 run_close(&run);
2075 return err;
2076 }
2077
2078 /*
2079 * ni_readpage_cmpr
2080 *
2081 * When decompressing, we typically obtain more than one page per reference.
2082 * We inject the additional pages into the page cache.
2083 */
ni_readpage_cmpr(struct ntfs_inode * ni,struct folio * folio)2084 int ni_readpage_cmpr(struct ntfs_inode *ni, struct folio *folio)
2085 {
2086 int err;
2087 struct ntfs_sb_info *sbi = ni->mi.sbi;
2088 struct address_space *mapping = folio->mapping;
2089 pgoff_t index = folio->index;
2090 u64 frame_vbo, vbo = (u64)index << PAGE_SHIFT;
2091 struct page **pages = NULL; /* Array of at most 16 pages. stack? */
2092 u8 frame_bits;
2093 CLST frame;
2094 u32 i, idx, frame_size, pages_per_frame;
2095 gfp_t gfp_mask;
2096 struct page *pg;
2097
2098 if (vbo >= i_size_read(&ni->vfs_inode)) {
2099 folio_zero_range(folio, 0, folio_size(folio));
2100 folio_mark_uptodate(folio);
2101 err = 0;
2102 goto out;
2103 }
2104
2105 if (ni->ni_flags & NI_FLAG_COMPRESSED_MASK) {
2106 /* Xpress or LZX. */
2107 frame_bits = ni_ext_compress_bits(ni);
2108 } else {
2109 /* LZNT compression. */
2110 frame_bits = NTFS_LZNT_CUNIT + sbi->cluster_bits;
2111 }
2112 frame_size = 1u << frame_bits;
2113 frame = vbo >> frame_bits;
2114 frame_vbo = (u64)frame << frame_bits;
2115 idx = (vbo - frame_vbo) >> PAGE_SHIFT;
2116
2117 pages_per_frame = frame_size >> PAGE_SHIFT;
2118 pages = kcalloc(pages_per_frame, sizeof(struct page *), GFP_NOFS);
2119 if (!pages) {
2120 err = -ENOMEM;
2121 goto out;
2122 }
2123
2124 pages[idx] = &folio->page;
2125 index = frame_vbo >> PAGE_SHIFT;
2126 gfp_mask = mapping_gfp_mask(mapping);
2127
2128 for (i = 0; i < pages_per_frame; i++, index++) {
2129 if (i == idx)
2130 continue;
2131
2132 pg = find_or_create_page(mapping, index, gfp_mask);
2133 if (!pg) {
2134 err = -ENOMEM;
2135 goto out1;
2136 }
2137 pages[i] = pg;
2138 }
2139
2140 err = ni_read_frame(ni, frame_vbo, pages, pages_per_frame);
2141
2142 out1:
2143 for (i = 0; i < pages_per_frame; i++) {
2144 pg = pages[i];
2145 if (i == idx || !pg)
2146 continue;
2147 unlock_page(pg);
2148 put_page(pg);
2149 }
2150
2151 out:
2152 /* At this point, err contains 0 or -EIO depending on the "critical" page. */
2153 kfree(pages);
2154 folio_unlock(folio);
2155
2156 return err;
2157 }
2158
2159 #ifdef CONFIG_NTFS3_LZX_XPRESS
2160 /*
2161 * ni_decompress_file - Decompress LZX/Xpress compressed file.
2162 *
2163 * Remove ATTR_DATA::WofCompressedData.
2164 * Remove ATTR_REPARSE.
2165 */
ni_decompress_file(struct ntfs_inode * ni)2166 int ni_decompress_file(struct ntfs_inode *ni)
2167 {
2168 struct ntfs_sb_info *sbi = ni->mi.sbi;
2169 struct inode *inode = &ni->vfs_inode;
2170 loff_t i_size = i_size_read(inode);
2171 struct address_space *mapping = inode->i_mapping;
2172 gfp_t gfp_mask = mapping_gfp_mask(mapping);
2173 struct page **pages = NULL;
2174 struct ATTR_LIST_ENTRY *le;
2175 struct ATTRIB *attr;
2176 CLST vcn, cend, lcn, clen, end;
2177 pgoff_t index;
2178 u64 vbo;
2179 u8 frame_bits;
2180 u32 i, frame_size, pages_per_frame, bytes;
2181 struct mft_inode *mi;
2182 int err;
2183
2184 /* Clusters for decompressed data. */
2185 cend = bytes_to_cluster(sbi, i_size);
2186
2187 if (!i_size)
2188 goto remove_wof;
2189
2190 /* Check in advance. */
2191 if (cend > wnd_zeroes(&sbi->used.bitmap)) {
2192 err = -ENOSPC;
2193 goto out;
2194 }
2195
2196 frame_bits = ni_ext_compress_bits(ni);
2197 frame_size = 1u << frame_bits;
2198 pages_per_frame = frame_size >> PAGE_SHIFT;
2199 pages = kcalloc(pages_per_frame, sizeof(struct page *), GFP_NOFS);
2200 if (!pages) {
2201 err = -ENOMEM;
2202 goto out;
2203 }
2204
2205 /*
2206 * Step 1: Decompress data and copy to new allocated clusters.
2207 */
2208 index = 0;
2209 for (vbo = 0; vbo < i_size; vbo += bytes) {
2210 u32 nr_pages;
2211 bool new;
2212
2213 if (vbo + frame_size > i_size) {
2214 bytes = i_size - vbo;
2215 nr_pages = (bytes + PAGE_SIZE - 1) >> PAGE_SHIFT;
2216 } else {
2217 nr_pages = pages_per_frame;
2218 bytes = frame_size;
2219 }
2220
2221 end = bytes_to_cluster(sbi, vbo + bytes);
2222
2223 for (vcn = vbo >> sbi->cluster_bits; vcn < end; vcn += clen) {
2224 err = attr_data_get_block(ni, vcn, cend - vcn, &lcn,
2225 &clen, &new, false);
2226 if (err)
2227 goto out;
2228 }
2229
2230 for (i = 0; i < pages_per_frame; i++, index++) {
2231 struct page *pg;
2232
2233 pg = find_or_create_page(mapping, index, gfp_mask);
2234 if (!pg) {
2235 while (i--) {
2236 unlock_page(pages[i]);
2237 put_page(pages[i]);
2238 }
2239 err = -ENOMEM;
2240 goto out;
2241 }
2242 pages[i] = pg;
2243 }
2244
2245 err = ni_read_frame(ni, vbo, pages, pages_per_frame);
2246
2247 if (!err) {
2248 down_read(&ni->file.run_lock);
2249 err = ntfs_bio_pages(sbi, &ni->file.run, pages,
2250 nr_pages, vbo, bytes,
2251 REQ_OP_WRITE);
2252 up_read(&ni->file.run_lock);
2253 }
2254
2255 for (i = 0; i < pages_per_frame; i++) {
2256 unlock_page(pages[i]);
2257 put_page(pages[i]);
2258 }
2259
2260 if (err)
2261 goto out;
2262
2263 cond_resched();
2264 }
2265
2266 remove_wof:
2267 /*
2268 * Step 2: Deallocate attributes ATTR_DATA::WofCompressedData
2269 * and ATTR_REPARSE.
2270 */
2271 attr = NULL;
2272 le = NULL;
2273 while ((attr = ni_enum_attr_ex(ni, attr, &le, NULL))) {
2274 CLST svcn, evcn;
2275 u32 asize, roff;
2276
2277 if (attr->type == ATTR_REPARSE) {
2278 struct MFT_REF ref;
2279
2280 mi_get_ref(&ni->mi, &ref);
2281 ntfs_remove_reparse(sbi, 0, &ref);
2282 }
2283
2284 if (!attr->non_res)
2285 continue;
2286
2287 if (attr->type != ATTR_REPARSE &&
2288 (attr->type != ATTR_DATA ||
2289 attr->name_len != ARRAY_SIZE(WOF_NAME) ||
2290 memcmp(attr_name(attr), WOF_NAME, sizeof(WOF_NAME))))
2291 continue;
2292
2293 svcn = le64_to_cpu(attr->nres.svcn);
2294 evcn = le64_to_cpu(attr->nres.evcn);
2295
2296 if (evcn + 1 <= svcn)
2297 continue;
2298
2299 asize = le32_to_cpu(attr->size);
2300 roff = le16_to_cpu(attr->nres.run_off);
2301
2302 if (roff > asize) {
2303 err = -EINVAL;
2304 goto out;
2305 }
2306
2307 /*run==1 Means unpack and deallocate. */
2308 run_unpack_ex(RUN_DEALLOCATE, sbi, ni->mi.rno, svcn, evcn, svcn,
2309 Add2Ptr(attr, roff), asize - roff);
2310 }
2311
2312 /*
2313 * Step 3: Remove attribute ATTR_DATA::WofCompressedData.
2314 */
2315 err = ni_remove_attr(ni, ATTR_DATA, WOF_NAME, ARRAY_SIZE(WOF_NAME),
2316 false, NULL);
2317 if (err)
2318 goto out;
2319
2320 /*
2321 * Step 4: Remove ATTR_REPARSE.
2322 */
2323 err = ni_remove_attr(ni, ATTR_REPARSE, NULL, 0, false, NULL);
2324 if (err)
2325 goto out;
2326
2327 /*
2328 * Step 5: Remove sparse flag from data attribute.
2329 */
2330 attr = ni_find_attr(ni, NULL, NULL, ATTR_DATA, NULL, 0, NULL, &mi);
2331 if (!attr) {
2332 err = -EINVAL;
2333 goto out;
2334 }
2335
2336 if (attr->non_res && is_attr_sparsed(attr)) {
2337 /* Sparsed attribute header is 8 bytes bigger than normal. */
2338 struct MFT_REC *rec = mi->mrec;
2339 u32 used = le32_to_cpu(rec->used);
2340 u32 asize = le32_to_cpu(attr->size);
2341 u16 roff = le16_to_cpu(attr->nres.run_off);
2342 char *rbuf = Add2Ptr(attr, roff);
2343
2344 memmove(rbuf - 8, rbuf, used - PtrOffset(rec, rbuf));
2345 attr->size = cpu_to_le32(asize - 8);
2346 attr->flags &= ~ATTR_FLAG_SPARSED;
2347 attr->nres.run_off = cpu_to_le16(roff - 8);
2348 attr->nres.c_unit = 0;
2349 rec->used = cpu_to_le32(used - 8);
2350 mi->dirty = true;
2351 ni->std_fa &= ~(FILE_ATTRIBUTE_SPARSE_FILE |
2352 FILE_ATTRIBUTE_REPARSE_POINT);
2353
2354 mark_inode_dirty(inode);
2355 }
2356
2357 /* Clear cached flag. */
2358 ni->ni_flags &= ~NI_FLAG_COMPRESSED_MASK;
2359 if (ni->file.offs_folio) {
2360 folio_put(ni->file.offs_folio);
2361 ni->file.offs_folio = NULL;
2362 }
2363 mapping->a_ops = &ntfs_aops;
2364
2365 out:
2366 kfree(pages);
2367 if (err)
2368 _ntfs_bad_inode(inode);
2369
2370 return err;
2371 }
2372
2373 /*
2374 * decompress_lzx_xpress - External compression LZX/Xpress.
2375 */
decompress_lzx_xpress(struct ntfs_sb_info * sbi,const char * cmpr,size_t cmpr_size,void * unc,size_t unc_size,u32 frame_size)2376 static int decompress_lzx_xpress(struct ntfs_sb_info *sbi, const char *cmpr,
2377 size_t cmpr_size, void *unc, size_t unc_size,
2378 u32 frame_size)
2379 {
2380 int err;
2381 void *ctx;
2382
2383 if (cmpr_size == unc_size) {
2384 /* Frame not compressed. */
2385 memcpy(unc, cmpr, unc_size);
2386 return 0;
2387 }
2388
2389 err = 0;
2390 if (frame_size == 0x8000) {
2391 mutex_lock(&sbi->compress.mtx_lzx);
2392 /* LZX: Frame compressed. */
2393 ctx = sbi->compress.lzx;
2394 if (!ctx) {
2395 /* Lazy initialize LZX decompress context. */
2396 ctx = lzx_allocate_decompressor();
2397 if (!ctx) {
2398 err = -ENOMEM;
2399 goto out1;
2400 }
2401
2402 sbi->compress.lzx = ctx;
2403 }
2404
2405 if (lzx_decompress(ctx, cmpr, cmpr_size, unc, unc_size)) {
2406 /* Treat all errors as "invalid argument". */
2407 err = -EINVAL;
2408 }
2409 out1:
2410 mutex_unlock(&sbi->compress.mtx_lzx);
2411 } else {
2412 /* XPRESS: Frame compressed. */
2413 mutex_lock(&sbi->compress.mtx_xpress);
2414 ctx = sbi->compress.xpress;
2415 if (!ctx) {
2416 /* Lazy initialize Xpress decompress context. */
2417 ctx = xpress_allocate_decompressor();
2418 if (!ctx) {
2419 err = -ENOMEM;
2420 goto out2;
2421 }
2422
2423 sbi->compress.xpress = ctx;
2424 }
2425
2426 if (xpress_decompress(ctx, cmpr, cmpr_size, unc, unc_size)) {
2427 /* Treat all errors as "invalid argument". */
2428 err = -EINVAL;
2429 }
2430 out2:
2431 mutex_unlock(&sbi->compress.mtx_xpress);
2432 }
2433 return err;
2434 }
2435 #endif
2436
2437 /*
2438 * ni_read_frame
2439 *
2440 * Pages - Array of locked pages.
2441 */
ni_read_frame(struct ntfs_inode * ni,u64 frame_vbo,struct page ** pages,u32 pages_per_frame)2442 int ni_read_frame(struct ntfs_inode *ni, u64 frame_vbo, struct page **pages,
2443 u32 pages_per_frame)
2444 {
2445 int err;
2446 struct ntfs_sb_info *sbi = ni->mi.sbi;
2447 u8 cluster_bits = sbi->cluster_bits;
2448 char *frame_ondisk = NULL;
2449 char *frame_mem = NULL;
2450 struct page **pages_disk = NULL;
2451 struct ATTR_LIST_ENTRY *le = NULL;
2452 struct runs_tree *run = &ni->file.run;
2453 u64 valid_size = ni->i_valid;
2454 u64 vbo_disk;
2455 size_t unc_size;
2456 u32 frame_size, i, npages_disk, ondisk_size;
2457 struct page *pg;
2458 struct ATTRIB *attr;
2459 CLST frame, clst_data;
2460
2461 /*
2462 * To simplify decompress algorithm do vmap for source
2463 * and target pages.
2464 */
2465 for (i = 0; i < pages_per_frame; i++)
2466 kmap(pages[i]);
2467
2468 frame_size = pages_per_frame << PAGE_SHIFT;
2469 frame_mem = vmap(pages, pages_per_frame, VM_MAP, PAGE_KERNEL);
2470 if (!frame_mem) {
2471 err = -ENOMEM;
2472 goto out;
2473 }
2474
2475 attr = ni_find_attr(ni, NULL, &le, ATTR_DATA, NULL, 0, NULL, NULL);
2476 if (!attr) {
2477 err = -ENOENT;
2478 goto out1;
2479 }
2480
2481 if (!attr->non_res) {
2482 u32 data_size = le32_to_cpu(attr->res.data_size);
2483
2484 memset(frame_mem, 0, frame_size);
2485 if (frame_vbo < data_size) {
2486 ondisk_size = data_size - frame_vbo;
2487 memcpy(frame_mem, resident_data(attr) + frame_vbo,
2488 min(ondisk_size, frame_size));
2489 }
2490 err = 0;
2491 goto out1;
2492 }
2493
2494 if (frame_vbo >= valid_size) {
2495 memset(frame_mem, 0, frame_size);
2496 err = 0;
2497 goto out1;
2498 }
2499
2500 if (ni->ni_flags & NI_FLAG_COMPRESSED_MASK) {
2501 #ifndef CONFIG_NTFS3_LZX_XPRESS
2502 err = -EOPNOTSUPP;
2503 goto out1;
2504 #else
2505 loff_t i_size = i_size_read(&ni->vfs_inode);
2506 u32 frame_bits = ni_ext_compress_bits(ni);
2507 u64 frame64 = frame_vbo >> frame_bits;
2508 u64 frames, vbo_data;
2509
2510 if (frame_size != (1u << frame_bits)) {
2511 err = -EINVAL;
2512 goto out1;
2513 }
2514 switch (frame_size) {
2515 case 0x1000:
2516 case 0x2000:
2517 case 0x4000:
2518 case 0x8000:
2519 break;
2520 default:
2521 /* Unknown compression. */
2522 err = -EOPNOTSUPP;
2523 goto out1;
2524 }
2525
2526 attr = ni_find_attr(ni, attr, &le, ATTR_DATA, WOF_NAME,
2527 ARRAY_SIZE(WOF_NAME), NULL, NULL);
2528 if (!attr) {
2529 ntfs_inode_err(
2530 &ni->vfs_inode,
2531 "external compressed file should contains data attribute \"WofCompressedData\"");
2532 err = -EINVAL;
2533 goto out1;
2534 }
2535
2536 if (!attr->non_res) {
2537 run = NULL;
2538 } else {
2539 run = run_alloc();
2540 if (!run) {
2541 err = -ENOMEM;
2542 goto out1;
2543 }
2544 }
2545
2546 frames = (i_size - 1) >> frame_bits;
2547
2548 err = attr_wof_frame_info(ni, attr, run, frame64, frames,
2549 frame_bits, &ondisk_size, &vbo_data);
2550 if (err)
2551 goto out2;
2552
2553 if (frame64 == frames) {
2554 unc_size = 1 + ((i_size - 1) & (frame_size - 1));
2555 ondisk_size = attr_size(attr) - vbo_data;
2556 } else {
2557 unc_size = frame_size;
2558 }
2559
2560 if (ondisk_size > frame_size) {
2561 err = -EINVAL;
2562 goto out2;
2563 }
2564
2565 if (!attr->non_res) {
2566 if (vbo_data + ondisk_size >
2567 le32_to_cpu(attr->res.data_size)) {
2568 err = -EINVAL;
2569 goto out1;
2570 }
2571
2572 err = decompress_lzx_xpress(
2573 sbi, Add2Ptr(resident_data(attr), vbo_data),
2574 ondisk_size, frame_mem, unc_size, frame_size);
2575 goto out1;
2576 }
2577 vbo_disk = vbo_data;
2578 /* Load all runs to read [vbo_disk-vbo_to). */
2579 err = attr_load_runs_range(ni, ATTR_DATA, WOF_NAME,
2580 ARRAY_SIZE(WOF_NAME), run, vbo_disk,
2581 vbo_data + ondisk_size);
2582 if (err)
2583 goto out2;
2584 npages_disk = (ondisk_size + (vbo_disk & (PAGE_SIZE - 1)) +
2585 PAGE_SIZE - 1) >>
2586 PAGE_SHIFT;
2587 #endif
2588 } else if (is_attr_compressed(attr)) {
2589 /* LZNT compression. */
2590 if (sbi->cluster_size > NTFS_LZNT_MAX_CLUSTER) {
2591 err = -EOPNOTSUPP;
2592 goto out1;
2593 }
2594
2595 if (attr->nres.c_unit != NTFS_LZNT_CUNIT) {
2596 err = -EOPNOTSUPP;
2597 goto out1;
2598 }
2599
2600 down_write(&ni->file.run_lock);
2601 run_truncate_around(run, le64_to_cpu(attr->nres.svcn));
2602 frame = frame_vbo >> (cluster_bits + NTFS_LZNT_CUNIT);
2603 err = attr_is_frame_compressed(ni, attr, frame, &clst_data,
2604 run);
2605 up_write(&ni->file.run_lock);
2606 if (err)
2607 goto out1;
2608
2609 if (!clst_data) {
2610 memset(frame_mem, 0, frame_size);
2611 goto out1;
2612 }
2613
2614 frame_size = sbi->cluster_size << NTFS_LZNT_CUNIT;
2615 ondisk_size = clst_data << cluster_bits;
2616
2617 if (clst_data >= NTFS_LZNT_CLUSTERS) {
2618 /* Frame is not compressed. */
2619 down_read(&ni->file.run_lock);
2620 err = ntfs_bio_pages(sbi, run, pages, pages_per_frame,
2621 frame_vbo, ondisk_size,
2622 REQ_OP_READ);
2623 up_read(&ni->file.run_lock);
2624 goto out1;
2625 }
2626 vbo_disk = frame_vbo;
2627 npages_disk = (ondisk_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2628 } else {
2629 __builtin_unreachable();
2630 err = -EINVAL;
2631 goto out1;
2632 }
2633
2634 pages_disk = kcalloc(npages_disk, sizeof(*pages_disk), GFP_NOFS);
2635 if (!pages_disk) {
2636 err = -ENOMEM;
2637 goto out2;
2638 }
2639
2640 for (i = 0; i < npages_disk; i++) {
2641 pg = alloc_page(GFP_KERNEL);
2642 if (!pg) {
2643 err = -ENOMEM;
2644 goto out3;
2645 }
2646 pages_disk[i] = pg;
2647 lock_page(pg);
2648 kmap(pg);
2649 }
2650
2651 /* Read 'ondisk_size' bytes from disk. */
2652 down_read(&ni->file.run_lock);
2653 err = ntfs_bio_pages(sbi, run, pages_disk, npages_disk, vbo_disk,
2654 ondisk_size, REQ_OP_READ);
2655 up_read(&ni->file.run_lock);
2656 if (err)
2657 goto out3;
2658
2659 /*
2660 * To simplify decompress algorithm do vmap for source and target pages.
2661 */
2662 frame_ondisk = vmap(pages_disk, npages_disk, VM_MAP, PAGE_KERNEL_RO);
2663 if (!frame_ondisk) {
2664 err = -ENOMEM;
2665 goto out3;
2666 }
2667
2668 /* Decompress: Frame_ondisk -> frame_mem. */
2669 #ifdef CONFIG_NTFS3_LZX_XPRESS
2670 if (run != &ni->file.run) {
2671 /* LZX or XPRESS */
2672 err = decompress_lzx_xpress(
2673 sbi, frame_ondisk + (vbo_disk & (PAGE_SIZE - 1)),
2674 ondisk_size, frame_mem, unc_size, frame_size);
2675 } else
2676 #endif
2677 {
2678 /* LZNT - Native NTFS compression. */
2679 unc_size = decompress_lznt(frame_ondisk, ondisk_size, frame_mem,
2680 frame_size);
2681 if ((ssize_t)unc_size < 0)
2682 err = unc_size;
2683 else if (!unc_size || unc_size > frame_size)
2684 err = -EINVAL;
2685 }
2686 if (!err && valid_size < frame_vbo + frame_size) {
2687 size_t ok = valid_size - frame_vbo;
2688
2689 memset(frame_mem + ok, 0, frame_size - ok);
2690 }
2691
2692 vunmap(frame_ondisk);
2693
2694 out3:
2695 for (i = 0; i < npages_disk; i++) {
2696 pg = pages_disk[i];
2697 if (pg) {
2698 kunmap(pg);
2699 unlock_page(pg);
2700 put_page(pg);
2701 }
2702 }
2703 kfree(pages_disk);
2704
2705 out2:
2706 #ifdef CONFIG_NTFS3_LZX_XPRESS
2707 if (run != &ni->file.run)
2708 run_free(run);
2709 #endif
2710 out1:
2711 vunmap(frame_mem);
2712 out:
2713 for (i = 0; i < pages_per_frame; i++) {
2714 pg = pages[i];
2715 kunmap(pg);
2716 SetPageUptodate(pg);
2717 }
2718
2719 return err;
2720 }
2721
2722 /*
2723 * ni_write_frame
2724 *
2725 * Pages - Array of locked pages.
2726 */
ni_write_frame(struct ntfs_inode * ni,struct page ** pages,u32 pages_per_frame)2727 int ni_write_frame(struct ntfs_inode *ni, struct page **pages,
2728 u32 pages_per_frame)
2729 {
2730 int err;
2731 struct ntfs_sb_info *sbi = ni->mi.sbi;
2732 u8 frame_bits = NTFS_LZNT_CUNIT + sbi->cluster_bits;
2733 u32 frame_size = sbi->cluster_size << NTFS_LZNT_CUNIT;
2734 u64 frame_vbo = (u64)pages[0]->index << PAGE_SHIFT;
2735 CLST frame = frame_vbo >> frame_bits;
2736 char *frame_ondisk = NULL;
2737 struct page **pages_disk = NULL;
2738 struct ATTR_LIST_ENTRY *le = NULL;
2739 char *frame_mem;
2740 struct ATTRIB *attr;
2741 struct mft_inode *mi;
2742 u32 i;
2743 struct page *pg;
2744 size_t compr_size, ondisk_size;
2745 struct lznt *lznt;
2746
2747 attr = ni_find_attr(ni, NULL, &le, ATTR_DATA, NULL, 0, NULL, &mi);
2748 if (!attr) {
2749 err = -ENOENT;
2750 goto out;
2751 }
2752
2753 if (WARN_ON(!is_attr_compressed(attr))) {
2754 err = -EINVAL;
2755 goto out;
2756 }
2757
2758 if (sbi->cluster_size > NTFS_LZNT_MAX_CLUSTER) {
2759 err = -EOPNOTSUPP;
2760 goto out;
2761 }
2762
2763 if (!attr->non_res) {
2764 down_write(&ni->file.run_lock);
2765 err = attr_make_nonresident(ni, attr, le, mi,
2766 le32_to_cpu(attr->res.data_size),
2767 &ni->file.run, &attr, pages[0]);
2768 up_write(&ni->file.run_lock);
2769 if (err)
2770 goto out;
2771 }
2772
2773 if (attr->nres.c_unit != NTFS_LZNT_CUNIT) {
2774 err = -EOPNOTSUPP;
2775 goto out;
2776 }
2777
2778 pages_disk = kcalloc(pages_per_frame, sizeof(struct page *), GFP_NOFS);
2779 if (!pages_disk) {
2780 err = -ENOMEM;
2781 goto out;
2782 }
2783
2784 for (i = 0; i < pages_per_frame; i++) {
2785 pg = alloc_page(GFP_KERNEL);
2786 if (!pg) {
2787 err = -ENOMEM;
2788 goto out1;
2789 }
2790 pages_disk[i] = pg;
2791 lock_page(pg);
2792 kmap(pg);
2793 }
2794
2795 /* To simplify compress algorithm do vmap for source and target pages. */
2796 frame_ondisk = vmap(pages_disk, pages_per_frame, VM_MAP, PAGE_KERNEL);
2797 if (!frame_ondisk) {
2798 err = -ENOMEM;
2799 goto out1;
2800 }
2801
2802 for (i = 0; i < pages_per_frame; i++)
2803 kmap(pages[i]);
2804
2805 /* Map in-memory frame for read-only. */
2806 frame_mem = vmap(pages, pages_per_frame, VM_MAP, PAGE_KERNEL_RO);
2807 if (!frame_mem) {
2808 err = -ENOMEM;
2809 goto out2;
2810 }
2811
2812 mutex_lock(&sbi->compress.mtx_lznt);
2813 lznt = NULL;
2814 if (!sbi->compress.lznt) {
2815 /*
2816 * LZNT implements two levels of compression:
2817 * 0 - Standard compression
2818 * 1 - Best compression, requires a lot of cpu
2819 * use mount option?
2820 */
2821 lznt = get_lznt_ctx(0);
2822 if (!lznt) {
2823 mutex_unlock(&sbi->compress.mtx_lznt);
2824 err = -ENOMEM;
2825 goto out3;
2826 }
2827
2828 sbi->compress.lznt = lznt;
2829 lznt = NULL;
2830 }
2831
2832 /* Compress: frame_mem -> frame_ondisk */
2833 compr_size = compress_lznt(frame_mem, frame_size, frame_ondisk,
2834 frame_size, sbi->compress.lznt);
2835 mutex_unlock(&sbi->compress.mtx_lznt);
2836 kfree(lznt);
2837
2838 if (compr_size + sbi->cluster_size > frame_size) {
2839 /* Frame is not compressed. */
2840 compr_size = frame_size;
2841 ondisk_size = frame_size;
2842 } else if (compr_size) {
2843 /* Frame is compressed. */
2844 ondisk_size = ntfs_up_cluster(sbi, compr_size);
2845 memset(frame_ondisk + compr_size, 0, ondisk_size - compr_size);
2846 } else {
2847 /* Frame is sparsed. */
2848 ondisk_size = 0;
2849 }
2850
2851 down_write(&ni->file.run_lock);
2852 run_truncate_around(&ni->file.run, le64_to_cpu(attr->nres.svcn));
2853 err = attr_allocate_frame(ni, frame, compr_size, ni->i_valid);
2854 up_write(&ni->file.run_lock);
2855 if (err)
2856 goto out2;
2857
2858 if (!ondisk_size)
2859 goto out2;
2860
2861 down_read(&ni->file.run_lock);
2862 err = ntfs_bio_pages(sbi, &ni->file.run,
2863 ondisk_size < frame_size ? pages_disk : pages,
2864 pages_per_frame, frame_vbo, ondisk_size,
2865 REQ_OP_WRITE);
2866 up_read(&ni->file.run_lock);
2867
2868 out3:
2869 vunmap(frame_mem);
2870
2871 out2:
2872 for (i = 0; i < pages_per_frame; i++)
2873 kunmap(pages[i]);
2874
2875 vunmap(frame_ondisk);
2876 out1:
2877 for (i = 0; i < pages_per_frame; i++) {
2878 pg = pages_disk[i];
2879 if (pg) {
2880 kunmap(pg);
2881 unlock_page(pg);
2882 put_page(pg);
2883 }
2884 }
2885 kfree(pages_disk);
2886 out:
2887 return err;
2888 }
2889
2890 /*
2891 * ni_remove_name - Removes name 'de' from MFT and from directory.
2892 * 'de2' and 'undo_step' are used to restore MFT/dir, if error occurs.
2893 */
ni_remove_name(struct ntfs_inode * dir_ni,struct ntfs_inode * ni,struct NTFS_DE * de,struct NTFS_DE ** de2,int * undo_step)2894 int ni_remove_name(struct ntfs_inode *dir_ni, struct ntfs_inode *ni,
2895 struct NTFS_DE *de, struct NTFS_DE **de2, int *undo_step)
2896 {
2897 int err;
2898 struct ntfs_sb_info *sbi = ni->mi.sbi;
2899 struct ATTR_FILE_NAME *de_name = (struct ATTR_FILE_NAME *)(de + 1);
2900 struct ATTR_FILE_NAME *fname;
2901 struct ATTR_LIST_ENTRY *le;
2902 struct mft_inode *mi;
2903 u16 de_key_size = le16_to_cpu(de->key_size);
2904 u8 name_type;
2905
2906 *undo_step = 0;
2907
2908 /* Find name in record. */
2909 mi_get_ref(&dir_ni->mi, &de_name->home);
2910
2911 fname = ni_fname_name(ni, (struct le_str *)&de_name->name_len,
2912 &de_name->home, &mi, &le);
2913 if (!fname)
2914 return -ENOENT;
2915
2916 memcpy(&de_name->dup, &fname->dup, sizeof(struct NTFS_DUP_INFO));
2917 name_type = paired_name(fname->type);
2918
2919 /* Mark ntfs as dirty. It will be cleared at umount. */
2920 ntfs_set_state(sbi, NTFS_DIRTY_DIRTY);
2921
2922 /* Step 1: Remove name from directory. */
2923 err = indx_delete_entry(&dir_ni->dir, dir_ni, fname, de_key_size, sbi);
2924 if (err)
2925 return err;
2926
2927 /* Step 2: Remove name from MFT. */
2928 ni_remove_attr_le(ni, attr_from_name(fname), mi, le);
2929
2930 *undo_step = 2;
2931
2932 /* Get paired name. */
2933 fname = ni_fname_type(ni, name_type, &mi, &le);
2934 if (fname) {
2935 u16 de2_key_size = fname_full_size(fname);
2936
2937 *de2 = Add2Ptr(de, 1024);
2938 (*de2)->key_size = cpu_to_le16(de2_key_size);
2939
2940 memcpy(*de2 + 1, fname, de2_key_size);
2941
2942 /* Step 3: Remove paired name from directory. */
2943 err = indx_delete_entry(&dir_ni->dir, dir_ni, fname,
2944 de2_key_size, sbi);
2945 if (err)
2946 return err;
2947
2948 /* Step 4: Remove paired name from MFT. */
2949 ni_remove_attr_le(ni, attr_from_name(fname), mi, le);
2950
2951 *undo_step = 4;
2952 }
2953 return 0;
2954 }
2955
2956 /*
2957 * ni_remove_name_undo - Paired function for ni_remove_name.
2958 *
2959 * Return: True if ok
2960 */
ni_remove_name_undo(struct ntfs_inode * dir_ni,struct ntfs_inode * ni,struct NTFS_DE * de,struct NTFS_DE * de2,int undo_step)2961 bool ni_remove_name_undo(struct ntfs_inode *dir_ni, struct ntfs_inode *ni,
2962 struct NTFS_DE *de, struct NTFS_DE *de2, int undo_step)
2963 {
2964 struct ntfs_sb_info *sbi = ni->mi.sbi;
2965 struct ATTRIB *attr;
2966 u16 de_key_size;
2967
2968 switch (undo_step) {
2969 case 4:
2970 de_key_size = le16_to_cpu(de2->key_size);
2971 if (ni_insert_resident(ni, de_key_size, ATTR_NAME, NULL, 0,
2972 &attr, NULL, NULL))
2973 return false;
2974 memcpy(Add2Ptr(attr, SIZEOF_RESIDENT), de2 + 1, de_key_size);
2975
2976 mi_get_ref(&ni->mi, &de2->ref);
2977 de2->size = cpu_to_le16(ALIGN(de_key_size, 8) +
2978 sizeof(struct NTFS_DE));
2979 de2->flags = 0;
2980 de2->res = 0;
2981
2982 if (indx_insert_entry(&dir_ni->dir, dir_ni, de2, sbi, NULL, 1))
2983 return false;
2984 fallthrough;
2985
2986 case 2:
2987 de_key_size = le16_to_cpu(de->key_size);
2988
2989 if (ni_insert_resident(ni, de_key_size, ATTR_NAME, NULL, 0,
2990 &attr, NULL, NULL))
2991 return false;
2992
2993 memcpy(Add2Ptr(attr, SIZEOF_RESIDENT), de + 1, de_key_size);
2994 mi_get_ref(&ni->mi, &de->ref);
2995
2996 if (indx_insert_entry(&dir_ni->dir, dir_ni, de, sbi, NULL, 1))
2997 return false;
2998 }
2999
3000 return true;
3001 }
3002
3003 /*
3004 * ni_add_name - Add new name into MFT and into directory.
3005 */
ni_add_name(struct ntfs_inode * dir_ni,struct ntfs_inode * ni,struct NTFS_DE * de)3006 int ni_add_name(struct ntfs_inode *dir_ni, struct ntfs_inode *ni,
3007 struct NTFS_DE *de)
3008 {
3009 int err;
3010 struct ntfs_sb_info *sbi = ni->mi.sbi;
3011 struct ATTRIB *attr;
3012 struct ATTR_LIST_ENTRY *le;
3013 struct mft_inode *mi;
3014 struct ATTR_FILE_NAME *fname;
3015 struct ATTR_FILE_NAME *de_name = (struct ATTR_FILE_NAME *)(de + 1);
3016 u16 de_key_size = le16_to_cpu(de->key_size);
3017
3018 if (sbi->options->windows_names &&
3019 !valid_windows_name(sbi, (struct le_str *)&de_name->name_len))
3020 return -EINVAL;
3021
3022 /* If option "hide_dot_files" then set hidden attribute for dot files. */
3023 if (ni->mi.sbi->options->hide_dot_files) {
3024 if (de_name->name_len > 0 &&
3025 le16_to_cpu(de_name->name[0]) == '.')
3026 ni->std_fa |= FILE_ATTRIBUTE_HIDDEN;
3027 else
3028 ni->std_fa &= ~FILE_ATTRIBUTE_HIDDEN;
3029 }
3030
3031 mi_get_ref(&ni->mi, &de->ref);
3032 mi_get_ref(&dir_ni->mi, &de_name->home);
3033
3034 /* Fill duplicate from any ATTR_NAME. */
3035 fname = ni_fname_name(ni, NULL, NULL, NULL, NULL);
3036 if (fname)
3037 memcpy(&de_name->dup, &fname->dup, sizeof(fname->dup));
3038 de_name->dup.fa = ni->std_fa;
3039
3040 /* Insert new name into MFT. */
3041 err = ni_insert_resident(ni, de_key_size, ATTR_NAME, NULL, 0, &attr,
3042 &mi, &le);
3043 if (err)
3044 return err;
3045
3046 memcpy(Add2Ptr(attr, SIZEOF_RESIDENT), de_name, de_key_size);
3047
3048 /* Insert new name into directory. */
3049 err = indx_insert_entry(&dir_ni->dir, dir_ni, de, sbi, NULL, 0);
3050 if (err)
3051 ni_remove_attr_le(ni, attr, mi, le);
3052
3053 return err;
3054 }
3055
3056 /*
3057 * ni_rename - Remove one name and insert new name.
3058 */
ni_rename(struct ntfs_inode * dir_ni,struct ntfs_inode * new_dir_ni,struct ntfs_inode * ni,struct NTFS_DE * de,struct NTFS_DE * new_de)3059 int ni_rename(struct ntfs_inode *dir_ni, struct ntfs_inode *new_dir_ni,
3060 struct ntfs_inode *ni, struct NTFS_DE *de, struct NTFS_DE *new_de)
3061 {
3062 int err;
3063 struct NTFS_DE *de2 = NULL;
3064 int undo = 0;
3065
3066 /*
3067 * There are two possible ways to rename:
3068 * 1) Add new name and remove old name.
3069 * 2) Remove old name and add new name.
3070 *
3071 * In most cases (not all!) adding new name into MFT and into directory can
3072 * allocate additional cluster(s).
3073 * Second way may result to bad inode if we can't add new name
3074 * and then can't restore (add) old name.
3075 */
3076
3077 /*
3078 * Way 1 - Add new + remove old.
3079 */
3080 err = ni_add_name(new_dir_ni, ni, new_de);
3081 if (!err) {
3082 err = ni_remove_name(dir_ni, ni, de, &de2, &undo);
3083 WARN_ON(err && ni_remove_name(new_dir_ni, ni, new_de, &de2,
3084 &undo));
3085 }
3086
3087 /*
3088 * Way 2 - Remove old + add new.
3089 */
3090 /*
3091 * err = ni_remove_name(dir_ni, ni, de, &de2, &undo);
3092 * if (!err) {
3093 * err = ni_add_name(new_dir_ni, ni, new_de);
3094 * if (err && !ni_remove_name_undo(dir_ni, ni, de, de2, undo))
3095 * *is_bad = true;
3096 * }
3097 */
3098
3099 return err;
3100 }
3101
3102 /*
3103 * ni_is_dirty - Return: True if 'ni' requires ni_write_inode.
3104 */
ni_is_dirty(struct inode * inode)3105 bool ni_is_dirty(struct inode *inode)
3106 {
3107 struct ntfs_inode *ni = ntfs_i(inode);
3108 struct rb_node *node;
3109
3110 if (ni->mi.dirty || ni->attr_list.dirty ||
3111 (ni->ni_flags & NI_FLAG_UPDATE_PARENT))
3112 return true;
3113
3114 for (node = rb_first(&ni->mi_tree); node; node = rb_next(node)) {
3115 if (rb_entry(node, struct mft_inode, node)->dirty)
3116 return true;
3117 }
3118
3119 return false;
3120 }
3121
3122 /*
3123 * ni_update_parent
3124 *
3125 * Update duplicate info of ATTR_FILE_NAME in MFT and in parent directories.
3126 */
ni_update_parent(struct ntfs_inode * ni,struct NTFS_DUP_INFO * dup,int sync)3127 static bool ni_update_parent(struct ntfs_inode *ni, struct NTFS_DUP_INFO *dup,
3128 int sync)
3129 {
3130 struct ATTRIB *attr;
3131 struct mft_inode *mi;
3132 struct ATTR_LIST_ENTRY *le = NULL;
3133 struct ntfs_sb_info *sbi = ni->mi.sbi;
3134 struct super_block *sb = sbi->sb;
3135 bool re_dirty = false;
3136
3137 if (ni->mi.mrec->flags & RECORD_FLAG_DIR) {
3138 dup->fa |= FILE_ATTRIBUTE_DIRECTORY;
3139 attr = NULL;
3140 dup->alloc_size = 0;
3141 dup->data_size = 0;
3142 } else {
3143 dup->fa &= ~FILE_ATTRIBUTE_DIRECTORY;
3144
3145 attr = ni_find_attr(ni, NULL, &le, ATTR_DATA, NULL, 0, NULL,
3146 &mi);
3147 if (!attr) {
3148 dup->alloc_size = dup->data_size = 0;
3149 } else if (!attr->non_res) {
3150 u32 data_size = le32_to_cpu(attr->res.data_size);
3151
3152 dup->alloc_size = cpu_to_le64(ALIGN(data_size, 8));
3153 dup->data_size = cpu_to_le64(data_size);
3154 } else {
3155 u64 new_valid = ni->i_valid;
3156 u64 data_size = le64_to_cpu(attr->nres.data_size);
3157 __le64 valid_le;
3158
3159 dup->alloc_size = is_attr_ext(attr) ?
3160 attr->nres.total_size :
3161 attr->nres.alloc_size;
3162 dup->data_size = attr->nres.data_size;
3163
3164 if (new_valid > data_size)
3165 new_valid = data_size;
3166
3167 valid_le = cpu_to_le64(new_valid);
3168 if (valid_le != attr->nres.valid_size) {
3169 attr->nres.valid_size = valid_le;
3170 mi->dirty = true;
3171 }
3172 }
3173 }
3174
3175 /* TODO: Fill reparse info. */
3176 dup->reparse = 0;
3177 dup->ea_size = 0;
3178
3179 if (ni->ni_flags & NI_FLAG_EA) {
3180 attr = ni_find_attr(ni, attr, &le, ATTR_EA_INFO, NULL, 0, NULL,
3181 NULL);
3182 if (attr) {
3183 const struct EA_INFO *info;
3184
3185 info = resident_data_ex(attr, sizeof(struct EA_INFO));
3186 /* If ATTR_EA_INFO exists 'info' can't be NULL. */
3187 if (info)
3188 dup->ea_size = info->size_pack;
3189 }
3190 }
3191
3192 attr = NULL;
3193 le = NULL;
3194
3195 while ((attr = ni_find_attr(ni, attr, &le, ATTR_NAME, NULL, 0, NULL,
3196 &mi))) {
3197 struct inode *dir;
3198 struct ATTR_FILE_NAME *fname;
3199
3200 fname = resident_data_ex(attr, SIZEOF_ATTRIBUTE_FILENAME);
3201 if (!fname || !memcmp(&fname->dup, dup, sizeof(fname->dup)))
3202 continue;
3203
3204 /* Check simple case when parent inode equals current inode. */
3205 if (ino_get(&fname->home) == ni->vfs_inode.i_ino) {
3206 ntfs_set_state(sbi, NTFS_DIRTY_ERROR);
3207 continue;
3208 }
3209
3210 /* ntfs_iget5 may sleep. */
3211 dir = ntfs_iget5(sb, &fname->home, NULL);
3212 if (IS_ERR(dir)) {
3213 ntfs_inode_warn(
3214 &ni->vfs_inode,
3215 "failed to open parent directory r=%lx to update",
3216 (long)ino_get(&fname->home));
3217 continue;
3218 }
3219
3220 if (!is_bad_inode(dir)) {
3221 struct ntfs_inode *dir_ni = ntfs_i(dir);
3222
3223 if (!ni_trylock(dir_ni)) {
3224 re_dirty = true;
3225 } else {
3226 indx_update_dup(dir_ni, sbi, fname, dup, sync);
3227 ni_unlock(dir_ni);
3228 memcpy(&fname->dup, dup, sizeof(fname->dup));
3229 mi->dirty = true;
3230 }
3231 }
3232 iput(dir);
3233 }
3234
3235 return re_dirty;
3236 }
3237
3238 /*
3239 * ni_write_inode - Write MFT base record and all subrecords to disk.
3240 */
ni_write_inode(struct inode * inode,int sync,const char * hint)3241 int ni_write_inode(struct inode *inode, int sync, const char *hint)
3242 {
3243 int err = 0, err2;
3244 struct ntfs_inode *ni = ntfs_i(inode);
3245 struct super_block *sb = inode->i_sb;
3246 struct ntfs_sb_info *sbi = sb->s_fs_info;
3247 bool re_dirty = false;
3248 struct ATTR_STD_INFO *std;
3249 struct rb_node *node, *next;
3250 struct NTFS_DUP_INFO dup;
3251
3252 if (is_bad_inode(inode) || sb_rdonly(sb))
3253 return 0;
3254
3255 if (unlikely(ntfs3_forced_shutdown(sb)))
3256 return -EIO;
3257
3258 if (!ni_trylock(ni)) {
3259 /* 'ni' is under modification, skip for now. */
3260 mark_inode_dirty_sync(inode);
3261 return 0;
3262 }
3263
3264 if (!ni->mi.mrec)
3265 goto out;
3266
3267 if (is_rec_inuse(ni->mi.mrec) &&
3268 !(sbi->flags & NTFS_FLAGS_LOG_REPLAYING) && inode->i_nlink) {
3269 bool modified = false;
3270 struct timespec64 ts;
3271
3272 /* Update times in standard attribute. */
3273 std = ni_std(ni);
3274 if (!std) {
3275 err = -EINVAL;
3276 goto out;
3277 }
3278
3279 /* Update the access times if they have changed. */
3280 ts = inode_get_mtime(inode);
3281 dup.m_time = kernel2nt(&ts);
3282 if (std->m_time != dup.m_time) {
3283 std->m_time = dup.m_time;
3284 modified = true;
3285 }
3286
3287 ts = inode_get_ctime(inode);
3288 dup.c_time = kernel2nt(&ts);
3289 if (std->c_time != dup.c_time) {
3290 std->c_time = dup.c_time;
3291 modified = true;
3292 }
3293
3294 ts = inode_get_atime(inode);
3295 dup.a_time = kernel2nt(&ts);
3296 if (std->a_time != dup.a_time) {
3297 std->a_time = dup.a_time;
3298 modified = true;
3299 }
3300
3301 dup.fa = ni->std_fa;
3302 if (std->fa != dup.fa) {
3303 std->fa = dup.fa;
3304 modified = true;
3305 }
3306
3307 /* std attribute is always in primary MFT record. */
3308 if (modified)
3309 ni->mi.dirty = true;
3310
3311 if (!ntfs_is_meta_file(sbi, inode->i_ino) &&
3312 (modified || (ni->ni_flags & NI_FLAG_UPDATE_PARENT))
3313 /* Avoid __wait_on_freeing_inode(inode). */
3314 && (sb->s_flags & SB_ACTIVE)) {
3315 dup.cr_time = std->cr_time;
3316 /* Not critical if this function fail. */
3317 re_dirty = ni_update_parent(ni, &dup, sync);
3318
3319 if (re_dirty)
3320 ni->ni_flags |= NI_FLAG_UPDATE_PARENT;
3321 else
3322 ni->ni_flags &= ~NI_FLAG_UPDATE_PARENT;
3323 }
3324
3325 /* Update attribute list. */
3326 if (ni->attr_list.size && ni->attr_list.dirty) {
3327 if (inode->i_ino != MFT_REC_MFT || sync) {
3328 err = ni_try_remove_attr_list(ni);
3329 if (err)
3330 goto out;
3331 }
3332
3333 err = al_update(ni, sync);
3334 if (err)
3335 goto out;
3336 }
3337 }
3338
3339 for (node = rb_first(&ni->mi_tree); node; node = next) {
3340 struct mft_inode *mi = rb_entry(node, struct mft_inode, node);
3341 bool is_empty;
3342
3343 next = rb_next(node);
3344
3345 if (!mi->dirty)
3346 continue;
3347
3348 is_empty = !mi_enum_attr(mi, NULL);
3349
3350 if (is_empty)
3351 clear_rec_inuse(mi->mrec);
3352
3353 err2 = mi_write(mi, sync);
3354 if (!err && err2)
3355 err = err2;
3356
3357 if (is_empty) {
3358 ntfs_mark_rec_free(sbi, mi->rno, false);
3359 rb_erase(node, &ni->mi_tree);
3360 mi_put(mi);
3361 }
3362 }
3363
3364 if (ni->mi.dirty) {
3365 err2 = mi_write(&ni->mi, sync);
3366 if (!err && err2)
3367 err = err2;
3368 }
3369 out:
3370 ni_unlock(ni);
3371
3372 if (err) {
3373 ntfs_inode_err(inode, "%s failed, %d.", hint, err);
3374 ntfs_set_state(sbi, NTFS_DIRTY_ERROR);
3375 return err;
3376 }
3377
3378 if (re_dirty)
3379 mark_inode_dirty_sync(inode);
3380
3381 return 0;
3382 }
3383
3384 /*
3385 * ni_set_compress
3386 *
3387 * Helper for 'ntfs_fileattr_set'.
3388 * Changes compression for empty files and directories only.
3389 */
ni_set_compress(struct inode * inode,bool compr)3390 int ni_set_compress(struct inode *inode, bool compr)
3391 {
3392 int err;
3393 struct ntfs_inode *ni = ntfs_i(inode);
3394 struct ATTR_STD_INFO *std;
3395 const char *bad_inode;
3396
3397 if (is_compressed(ni) == !!compr)
3398 return 0;
3399
3400 if (is_sparsed(ni)) {
3401 /* sparse and compress not compatible. */
3402 return -EOPNOTSUPP;
3403 }
3404
3405 if (!S_ISREG(inode->i_mode) && !S_ISDIR(inode->i_mode)) {
3406 /*Skip other inodes. (symlink,fifo,...) */
3407 return -EOPNOTSUPP;
3408 }
3409
3410 bad_inode = NULL;
3411
3412 ni_lock(ni);
3413
3414 std = ni_std(ni);
3415 if (!std) {
3416 bad_inode = "no std";
3417 goto out;
3418 }
3419
3420 if (S_ISREG(inode->i_mode)) {
3421 err = attr_set_compress(ni, compr);
3422 if (err) {
3423 if (err == -ENOENT) {
3424 /* Fix on the fly? */
3425 /* Each file must contain data attribute. */
3426 bad_inode = "no data attribute";
3427 }
3428 goto out;
3429 }
3430 }
3431
3432 ni->std_fa = std->fa;
3433 if (compr) {
3434 std->fa &= ~FILE_ATTRIBUTE_SPARSE_FILE;
3435 std->fa |= FILE_ATTRIBUTE_COMPRESSED;
3436 } else {
3437 std->fa &= ~FILE_ATTRIBUTE_COMPRESSED;
3438 }
3439
3440 if (ni->std_fa != std->fa) {
3441 ni->std_fa = std->fa;
3442 ni->mi.dirty = true;
3443 }
3444 /* update duplicate information and directory entries in ni_write_inode.*/
3445 ni->ni_flags |= NI_FLAG_UPDATE_PARENT;
3446 err = 0;
3447
3448 out:
3449 ni_unlock(ni);
3450 if (bad_inode) {
3451 ntfs_bad_inode(inode, bad_inode);
3452 err = -EINVAL;
3453 }
3454
3455 return err;
3456 }
3457