1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * fscrypt_private.h
4  *
5  * Copyright (C) 2015, Google, Inc.
6  *
7  * Originally written by Michael Halcrow, Ildar Muslukhov, and Uday Savagaonkar.
8  * Heavily modified since then.
9  */
10 
11 #ifndef _FSCRYPT_PRIVATE_H
12 #define _FSCRYPT_PRIVATE_H
13 
14 #include <linux/fscrypt.h>
15 #include <linux/siphash.h>
16 #include <crypto/hash.h>
17 #include <linux/blk-crypto.h>
18 
19 #define CONST_STRLEN(str)	(sizeof(str) - 1)
20 
21 #define FSCRYPT_FILE_NONCE_SIZE	16
22 
23 /*
24  * Minimum size of an fscrypt master key.  Note: a longer key will be required
25  * if ciphers with a 256-bit security strength are used.  This is just the
26  * absolute minimum, which applies when only 128-bit encryption is used.
27  */
28 #define FSCRYPT_MIN_KEY_SIZE	16
29 
30 /* Maximum size of a standard fscrypt master key */
31 #define FSCRYPT_MAX_STANDARD_KEY_SIZE	64
32 
33 /* Maximum size of a hardware-wrapped fscrypt master key */
34 #define FSCRYPT_MAX_HW_WRAPPED_KEY_SIZE	BLK_CRYPTO_MAX_HW_WRAPPED_KEY_SIZE
35 
36 /*
37  * Maximum size of an fscrypt master key across both key types.
38  * This should just use max(), but max() doesn't work in a struct definition.
39  */
40 #define FSCRYPT_MAX_ANY_KEY_SIZE \
41 	(FSCRYPT_MAX_HW_WRAPPED_KEY_SIZE > FSCRYPT_MAX_STANDARD_KEY_SIZE ? \
42 	 FSCRYPT_MAX_HW_WRAPPED_KEY_SIZE : FSCRYPT_MAX_STANDARD_KEY_SIZE)
43 
44 /*
45  * FSCRYPT_MAX_KEY_SIZE is defined in the UAPI header, but the addition of
46  * hardware-wrapped keys has made it misleading as it's only for standard keys.
47  * Don't use it in kernel code; use one of the above constants instead.
48  */
49 #undef FSCRYPT_MAX_KEY_SIZE
50 
51 /*
52  * This mask is passed as the third argument to the crypto_alloc_*() functions
53  * to prevent fscrypt from using the Crypto API drivers for non-inline crypto
54  * engines.  Those drivers have been problematic for fscrypt.  fscrypt users
55  * have reported hangs and even incorrect en/decryption with these drivers.
56  * Since going to the driver, off CPU, and back again is really slow, such
57  * drivers can be over 50 times slower than the CPU-based code for fscrypt's
58  * workload.  Even on platforms that lack AES instructions on the CPU, using the
59  * offloads has been shown to be slower, even staying with AES.  (Of course,
60  * Adiantum is faster still, and is the recommended option on such platforms...)
61  *
62  * Note that fscrypt also supports inline crypto engines.  Those don't use the
63  * Crypto API and work much better than the old-style (non-inline) engines.
64  */
65 #define FSCRYPT_CRYPTOAPI_MASK \
66 	(CRYPTO_ALG_ALLOCATES_MEMORY | CRYPTO_ALG_KERN_DRIVER_ONLY)
67 
68 #define FSCRYPT_CONTEXT_V1	1
69 #define FSCRYPT_CONTEXT_V2	2
70 
71 /* Keep this in sync with include/uapi/linux/fscrypt.h */
72 #define FSCRYPT_MODE_MAX	FSCRYPT_MODE_AES_256_HCTR2
73 
74 struct fscrypt_context_v1 {
75 	u8 version; /* FSCRYPT_CONTEXT_V1 */
76 	u8 contents_encryption_mode;
77 	u8 filenames_encryption_mode;
78 	u8 flags;
79 	u8 master_key_descriptor[FSCRYPT_KEY_DESCRIPTOR_SIZE];
80 	u8 nonce[FSCRYPT_FILE_NONCE_SIZE];
81 };
82 
83 struct fscrypt_context_v2 {
84 	u8 version; /* FSCRYPT_CONTEXT_V2 */
85 	u8 contents_encryption_mode;
86 	u8 filenames_encryption_mode;
87 	u8 flags;
88 	u8 log2_data_unit_size;
89 	u8 __reserved[3];
90 	u8 master_key_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE];
91 	u8 nonce[FSCRYPT_FILE_NONCE_SIZE];
92 };
93 
94 /*
95  * fscrypt_context - the encryption context of an inode
96  *
97  * This is the on-disk equivalent of an fscrypt_policy, stored alongside each
98  * encrypted file usually in a hidden extended attribute.  It contains the
99  * fields from the fscrypt_policy, in order to identify the encryption algorithm
100  * and key with which the file is encrypted.  It also contains a nonce that was
101  * randomly generated by fscrypt itself; this is used as KDF input or as a tweak
102  * to cause different files to be encrypted differently.
103  */
104 union fscrypt_context {
105 	u8 version;
106 	struct fscrypt_context_v1 v1;
107 	struct fscrypt_context_v2 v2;
108 };
109 
110 /*
111  * Return the size expected for the given fscrypt_context based on its version
112  * number, or 0 if the context version is unrecognized.
113  */
fscrypt_context_size(const union fscrypt_context * ctx)114 static inline int fscrypt_context_size(const union fscrypt_context *ctx)
115 {
116 	switch (ctx->version) {
117 	case FSCRYPT_CONTEXT_V1:
118 		BUILD_BUG_ON(sizeof(ctx->v1) != 28);
119 		return sizeof(ctx->v1);
120 	case FSCRYPT_CONTEXT_V2:
121 		BUILD_BUG_ON(sizeof(ctx->v2) != 40);
122 		return sizeof(ctx->v2);
123 	}
124 	return 0;
125 }
126 
127 /* Check whether an fscrypt_context has a recognized version number and size */
fscrypt_context_is_valid(const union fscrypt_context * ctx,int ctx_size)128 static inline bool fscrypt_context_is_valid(const union fscrypt_context *ctx,
129 					    int ctx_size)
130 {
131 	return ctx_size >= 1 && ctx_size == fscrypt_context_size(ctx);
132 }
133 
134 /* Retrieve the context's nonce, assuming the context was already validated */
fscrypt_context_nonce(const union fscrypt_context * ctx)135 static inline const u8 *fscrypt_context_nonce(const union fscrypt_context *ctx)
136 {
137 	switch (ctx->version) {
138 	case FSCRYPT_CONTEXT_V1:
139 		return ctx->v1.nonce;
140 	case FSCRYPT_CONTEXT_V2:
141 		return ctx->v2.nonce;
142 	}
143 	WARN_ON_ONCE(1);
144 	return NULL;
145 }
146 
147 union fscrypt_policy {
148 	u8 version;
149 	struct fscrypt_policy_v1 v1;
150 	struct fscrypt_policy_v2 v2;
151 };
152 
153 /*
154  * Return the size expected for the given fscrypt_policy based on its version
155  * number, or 0 if the policy version is unrecognized.
156  */
fscrypt_policy_size(const union fscrypt_policy * policy)157 static inline int fscrypt_policy_size(const union fscrypt_policy *policy)
158 {
159 	switch (policy->version) {
160 	case FSCRYPT_POLICY_V1:
161 		return sizeof(policy->v1);
162 	case FSCRYPT_POLICY_V2:
163 		return sizeof(policy->v2);
164 	}
165 	return 0;
166 }
167 
168 /* Return the contents encryption mode of a valid encryption policy */
169 static inline u8
fscrypt_policy_contents_mode(const union fscrypt_policy * policy)170 fscrypt_policy_contents_mode(const union fscrypt_policy *policy)
171 {
172 	switch (policy->version) {
173 	case FSCRYPT_POLICY_V1:
174 		return policy->v1.contents_encryption_mode;
175 	case FSCRYPT_POLICY_V2:
176 		return policy->v2.contents_encryption_mode;
177 	}
178 	BUG();
179 }
180 
181 /* Return the filenames encryption mode of a valid encryption policy */
182 static inline u8
fscrypt_policy_fnames_mode(const union fscrypt_policy * policy)183 fscrypt_policy_fnames_mode(const union fscrypt_policy *policy)
184 {
185 	switch (policy->version) {
186 	case FSCRYPT_POLICY_V1:
187 		return policy->v1.filenames_encryption_mode;
188 	case FSCRYPT_POLICY_V2:
189 		return policy->v2.filenames_encryption_mode;
190 	}
191 	BUG();
192 }
193 
194 /* Return the flags (FSCRYPT_POLICY_FLAG*) of a valid encryption policy */
195 static inline u8
fscrypt_policy_flags(const union fscrypt_policy * policy)196 fscrypt_policy_flags(const union fscrypt_policy *policy)
197 {
198 	switch (policy->version) {
199 	case FSCRYPT_POLICY_V1:
200 		return policy->v1.flags;
201 	case FSCRYPT_POLICY_V2:
202 		return policy->v2.flags;
203 	}
204 	BUG();
205 }
206 
207 static inline int
fscrypt_policy_v2_du_bits(const struct fscrypt_policy_v2 * policy,const struct inode * inode)208 fscrypt_policy_v2_du_bits(const struct fscrypt_policy_v2 *policy,
209 			  const struct inode *inode)
210 {
211 	return policy->log2_data_unit_size ?: inode->i_blkbits;
212 }
213 
214 static inline int
fscrypt_policy_du_bits(const union fscrypt_policy * policy,const struct inode * inode)215 fscrypt_policy_du_bits(const union fscrypt_policy *policy,
216 		       const struct inode *inode)
217 {
218 	switch (policy->version) {
219 	case FSCRYPT_POLICY_V1:
220 		return inode->i_blkbits;
221 	case FSCRYPT_POLICY_V2:
222 		return fscrypt_policy_v2_du_bits(&policy->v2, inode);
223 	}
224 	BUG();
225 }
226 
227 /*
228  * For encrypted symlinks, the ciphertext length is stored at the beginning
229  * of the string in little-endian format.
230  */
231 struct fscrypt_symlink_data {
232 	__le16 len;
233 	char encrypted_path[];
234 } __packed;
235 
236 /**
237  * struct fscrypt_prepared_key - a key prepared for actual encryption/decryption
238  * @tfm: crypto API transform object
239  * @blk_key: key for blk-crypto
240  *
241  * Normally only one of the fields will be non-NULL.
242  */
243 struct fscrypt_prepared_key {
244 	struct crypto_skcipher *tfm;
245 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
246 	struct blk_crypto_key *blk_key;
247 #endif
248 };
249 
250 /*
251  * fscrypt_inode_info - the "encryption key" for an inode
252  *
253  * When an encrypted file's key is made available, an instance of this struct is
254  * allocated and stored in ->i_crypt_info.  Once created, it remains until the
255  * inode is evicted.
256  */
257 struct fscrypt_inode_info {
258 
259 	/* The key in a form prepared for actual encryption/decryption */
260 	struct fscrypt_prepared_key ci_enc_key;
261 
262 	/* True if ci_enc_key should be freed when this struct is freed */
263 	u8 ci_owns_key : 1;
264 
265 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
266 	/*
267 	 * True if this inode will use inline encryption (blk-crypto) instead of
268 	 * the traditional filesystem-layer encryption.
269 	 */
270 	u8 ci_inlinecrypt : 1;
271 #endif
272 
273 	/* True if ci_dirhash_key is initialized */
274 	u8 ci_dirhash_key_initialized : 1;
275 
276 	/*
277 	 * log2 of the data unit size (granularity of contents encryption) of
278 	 * this file.  This is computable from ci_policy and ci_inode but is
279 	 * cached here for efficiency.  Only used for regular files.
280 	 */
281 	u8 ci_data_unit_bits;
282 
283 	/* Cached value: log2 of number of data units per FS block */
284 	u8 ci_data_units_per_block_bits;
285 
286 	/* Hashed inode number.  Only set for IV_INO_LBLK_32 */
287 	u32 ci_hashed_ino;
288 
289 	/*
290 	 * Encryption mode used for this inode.  It corresponds to either the
291 	 * contents or filenames encryption mode, depending on the inode type.
292 	 */
293 	struct fscrypt_mode *ci_mode;
294 
295 	/* Back-pointer to the inode */
296 	struct inode *ci_inode;
297 
298 	/*
299 	 * The master key with which this inode was unlocked (decrypted).  This
300 	 * will be NULL if the master key was found in a process-subscribed
301 	 * keyring rather than in the filesystem-level keyring.
302 	 */
303 	struct fscrypt_master_key *ci_master_key;
304 
305 	/*
306 	 * Link in list of inodes that were unlocked with the master key.
307 	 * Only used when ->ci_master_key is set.
308 	 */
309 	struct list_head ci_master_key_link;
310 
311 	/*
312 	 * If non-NULL, then encryption is done using the master key directly
313 	 * and ci_enc_key will equal ci_direct_key->dk_key.
314 	 */
315 	struct fscrypt_direct_key *ci_direct_key;
316 
317 	/*
318 	 * This inode's hash key for filenames.  This is a 128-bit SipHash-2-4
319 	 * key.  This is only set for directories that use a keyed dirhash over
320 	 * the plaintext filenames -- currently just casefolded directories.
321 	 */
322 	siphash_key_t ci_dirhash_key;
323 
324 	/* The encryption policy used by this inode */
325 	union fscrypt_policy ci_policy;
326 
327 	/* This inode's nonce, copied from the fscrypt_context */
328 	u8 ci_nonce[FSCRYPT_FILE_NONCE_SIZE];
329 };
330 
331 typedef enum {
332 	FS_DECRYPT = 0,
333 	FS_ENCRYPT,
334 } fscrypt_direction_t;
335 
336 /* crypto.c */
337 extern struct kmem_cache *fscrypt_inode_info_cachep;
338 int fscrypt_initialize(struct super_block *sb);
339 int fscrypt_crypt_data_unit(const struct fscrypt_inode_info *ci,
340 			    fscrypt_direction_t rw, u64 index,
341 			    struct page *src_page, struct page *dest_page,
342 			    unsigned int len, unsigned int offs,
343 			    gfp_t gfp_flags);
344 struct page *fscrypt_alloc_bounce_page(gfp_t gfp_flags);
345 
346 void __printf(3, 4) __cold
347 fscrypt_msg(const struct inode *inode, const char *level, const char *fmt, ...);
348 
349 #define fscrypt_warn(inode, fmt, ...)		\
350 	fscrypt_msg((inode), KERN_WARNING, fmt, ##__VA_ARGS__)
351 #define fscrypt_err(inode, fmt, ...)		\
352 	fscrypt_msg((inode), KERN_ERR, fmt, ##__VA_ARGS__)
353 
354 #define FSCRYPT_MAX_IV_SIZE	32
355 
356 union fscrypt_iv {
357 	struct {
358 		/* zero-based index of data unit within the file */
359 		__le64 index;
360 
361 		/* per-file nonce; only set in DIRECT_KEY mode */
362 		u8 nonce[FSCRYPT_FILE_NONCE_SIZE];
363 	};
364 	u8 raw[FSCRYPT_MAX_IV_SIZE];
365 	__le64 dun[FSCRYPT_MAX_IV_SIZE / sizeof(__le64)];
366 };
367 
368 void fscrypt_generate_iv(union fscrypt_iv *iv, u64 index,
369 			 const struct fscrypt_inode_info *ci);
370 
371 /*
372  * Return the number of bits used by the maximum file data unit index that is
373  * possible on the given filesystem, using the given log2 data unit size.
374  */
375 static inline int
fscrypt_max_file_dun_bits(const struct super_block * sb,int du_bits)376 fscrypt_max_file_dun_bits(const struct super_block *sb, int du_bits)
377 {
378 	return fls64(sb->s_maxbytes - 1) - du_bits;
379 }
380 
381 /* fname.c */
382 bool __fscrypt_fname_encrypted_size(const union fscrypt_policy *policy,
383 				    u32 orig_len, u32 max_len,
384 				    u32 *encrypted_len_ret);
385 
386 /* hkdf.c */
387 struct fscrypt_hkdf {
388 	struct crypto_shash *hmac_tfm;
389 };
390 
391 int fscrypt_init_hkdf(struct fscrypt_hkdf *hkdf, const u8 *master_key,
392 		      unsigned int master_key_size);
393 
394 /*
395  * The list of contexts in which fscrypt uses HKDF.  These values are used as
396  * the first byte of the HKDF application-specific info string to guarantee that
397  * info strings are never repeated between contexts.  This ensures that all HKDF
398  * outputs are unique and cryptographically isolated, i.e. knowledge of one
399  * output doesn't reveal another.
400  */
401 #define HKDF_CONTEXT_KEY_IDENTIFIER	1 /* info=<empty>		*/
402 #define HKDF_CONTEXT_PER_FILE_ENC_KEY	2 /* info=file_nonce		*/
403 #define HKDF_CONTEXT_DIRECT_KEY		3 /* info=mode_num		*/
404 #define HKDF_CONTEXT_IV_INO_LBLK_64_KEY	4 /* info=mode_num||fs_uuid	*/
405 #define HKDF_CONTEXT_DIRHASH_KEY	5 /* info=file_nonce		*/
406 #define HKDF_CONTEXT_IV_INO_LBLK_32_KEY	6 /* info=mode_num||fs_uuid	*/
407 #define HKDF_CONTEXT_INODE_HASH_KEY	7 /* info=<empty>		*/
408 
409 int fscrypt_hkdf_expand(const struct fscrypt_hkdf *hkdf, u8 context,
410 			const u8 *info, unsigned int infolen,
411 			u8 *okm, unsigned int okmlen);
412 
413 void fscrypt_destroy_hkdf(struct fscrypt_hkdf *hkdf);
414 
415 /* inline_crypt.c */
416 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
417 int fscrypt_select_encryption_impl(struct fscrypt_inode_info *ci,
418 				   bool is_hw_wrapped_key);
419 
420 static inline bool
fscrypt_using_inline_encryption(const struct fscrypt_inode_info * ci)421 fscrypt_using_inline_encryption(const struct fscrypt_inode_info *ci)
422 {
423 	return ci->ci_inlinecrypt;
424 }
425 
426 int fscrypt_prepare_inline_crypt_key(struct fscrypt_prepared_key *prep_key,
427 				     const u8 *raw_key, size_t raw_key_size,
428 				     bool is_hw_wrapped,
429 				     const struct fscrypt_inode_info *ci);
430 
431 void fscrypt_destroy_inline_crypt_key(struct super_block *sb,
432 				      struct fscrypt_prepared_key *prep_key);
433 
434 int fscrypt_derive_sw_secret(struct super_block *sb,
435 			     const u8 *wrapped_key, size_t wrapped_key_size,
436 			     u8 sw_secret[BLK_CRYPTO_SW_SECRET_SIZE]);
437 
438 /*
439  * Check whether the crypto transform or blk-crypto key has been allocated in
440  * @prep_key, depending on which encryption implementation the file will use.
441  */
442 static inline bool
fscrypt_is_key_prepared(struct fscrypt_prepared_key * prep_key,const struct fscrypt_inode_info * ci)443 fscrypt_is_key_prepared(struct fscrypt_prepared_key *prep_key,
444 			const struct fscrypt_inode_info *ci)
445 {
446 	/*
447 	 * The two smp_load_acquire()'s here pair with the smp_store_release()'s
448 	 * in fscrypt_prepare_inline_crypt_key() and fscrypt_prepare_key().
449 	 * I.e., in some cases (namely, if this prep_key is a per-mode
450 	 * encryption key) another task can publish blk_key or tfm concurrently,
451 	 * executing a RELEASE barrier.  We need to use smp_load_acquire() here
452 	 * to safely ACQUIRE the memory the other task published.
453 	 */
454 	if (fscrypt_using_inline_encryption(ci))
455 		return smp_load_acquire(&prep_key->blk_key) != NULL;
456 	return smp_load_acquire(&prep_key->tfm) != NULL;
457 }
458 
459 #else /* CONFIG_FS_ENCRYPTION_INLINE_CRYPT */
460 
fscrypt_select_encryption_impl(struct fscrypt_inode_info * ci,bool is_hw_wrapped_key)461 static inline int fscrypt_select_encryption_impl(struct fscrypt_inode_info *ci,
462 						 bool is_hw_wrapped_key)
463 {
464 	return 0;
465 }
466 
467 static inline bool
fscrypt_using_inline_encryption(const struct fscrypt_inode_info * ci)468 fscrypt_using_inline_encryption(const struct fscrypt_inode_info *ci)
469 {
470 	return false;
471 }
472 
473 static inline int
fscrypt_prepare_inline_crypt_key(struct fscrypt_prepared_key * prep_key,const u8 * raw_key,size_t raw_key_size,bool is_hw_wrapped,const struct fscrypt_inode_info * ci)474 fscrypt_prepare_inline_crypt_key(struct fscrypt_prepared_key *prep_key,
475 				 const u8 *raw_key, size_t raw_key_size,
476 				 bool is_hw_wrapped,
477 				 const struct fscrypt_inode_info *ci)
478 {
479 	WARN_ON_ONCE(1);
480 	return -EOPNOTSUPP;
481 }
482 
483 static inline void
fscrypt_destroy_inline_crypt_key(struct super_block * sb,struct fscrypt_prepared_key * prep_key)484 fscrypt_destroy_inline_crypt_key(struct super_block *sb,
485 				 struct fscrypt_prepared_key *prep_key)
486 {
487 }
488 
489 static inline int
fscrypt_derive_sw_secret(struct super_block * sb,const u8 * wrapped_key,size_t wrapped_key_size,u8 sw_secret[BLK_CRYPTO_SW_SECRET_SIZE])490 fscrypt_derive_sw_secret(struct super_block *sb,
491 			 const u8 *wrapped_key, size_t wrapped_key_size,
492 			 u8 sw_secret[BLK_CRYPTO_SW_SECRET_SIZE])
493 {
494 	fscrypt_warn(NULL, "kernel doesn't support hardware-wrapped keys");
495 	return -EOPNOTSUPP;
496 }
497 
498 static inline bool
fscrypt_is_key_prepared(struct fscrypt_prepared_key * prep_key,const struct fscrypt_inode_info * ci)499 fscrypt_is_key_prepared(struct fscrypt_prepared_key *prep_key,
500 			const struct fscrypt_inode_info *ci)
501 {
502 	return smp_load_acquire(&prep_key->tfm) != NULL;
503 }
504 #endif /* !CONFIG_FS_ENCRYPTION_INLINE_CRYPT */
505 
506 /* keyring.c */
507 
508 /*
509  * fscrypt_master_key_secret - secret key material of an in-use master key
510  */
511 struct fscrypt_master_key_secret {
512 
513 	/*
514 	 * The KDF with which subkeys of this key can be derived.
515 	 *
516 	 * For v1 policy keys, this isn't applicable and won't be set.
517 	 * Otherwise, this KDF will be keyed by this master key if
518 	 * ->is_hw_wrapped=false, or by the "software secret" that hardware
519 	 * derived from this master key if ->is_hw_wrapped=true.
520 	 */
521 	struct fscrypt_hkdf	hkdf;
522 
523 	/*
524 	 * True if this key is a hardware-wrapped key; false if this key is a
525 	 * standard key (i.e. a "software key").  For v1 policy keys this will
526 	 * always be false, as v1 policy support is a legacy feature which
527 	 * doesn't support newer functionality such as hardware-wrapped keys.
528 	 */
529 	bool			is_hw_wrapped;
530 
531 	/*
532 	 * Size of the raw key in bytes.  This remains set even if ->raw was
533 	 * zeroized due to no longer being needed.  I.e. we still remember the
534 	 * size of the key even if we don't need to remember the key itself.
535 	 */
536 	u32			size;
537 
538 	/*
539 	 * The raw key which userspace provided, when still needed.  This can be
540 	 * either a standard key or a hardware-wrapped key, as indicated by
541 	 * ->is_hw_wrapped.  In the case of a standard, v2 policy key, there is
542 	 * no need to remember the raw key separately from ->hkdf so this field
543 	 * will be zeroized as soon as ->hkdf is initialized.
544 	 */
545 	u8			raw[FSCRYPT_MAX_ANY_KEY_SIZE];
546 
547 } __randomize_layout;
548 
549 /*
550  * fscrypt_master_key - an in-use master key
551  *
552  * This represents a master encryption key which has been added to the
553  * filesystem.  There are three high-level states that a key can be in:
554  *
555  * FSCRYPT_KEY_STATUS_PRESENT
556  *	Key is fully usable; it can be used to unlock inodes that are encrypted
557  *	with it (this includes being able to create new inodes).  ->mk_present
558  *	indicates whether the key is in this state.  ->mk_secret exists, the key
559  *	is in the keyring, and ->mk_active_refs > 0 due to ->mk_present.
560  *
561  * FSCRYPT_KEY_STATUS_INCOMPLETELY_REMOVED
562  *	Removal of this key has been initiated, but some inodes that were
563  *	unlocked with it are still in-use.  Like ABSENT, ->mk_secret is wiped,
564  *	and the key can no longer be used to unlock inodes.  Unlike ABSENT, the
565  *	key is still in the keyring; ->mk_decrypted_inodes is nonempty; and
566  *	->mk_active_refs > 0, being equal to the size of ->mk_decrypted_inodes.
567  *
568  *	This state transitions to ABSENT if ->mk_decrypted_inodes becomes empty,
569  *	or to PRESENT if FS_IOC_ADD_ENCRYPTION_KEY is called again for this key.
570  *
571  * FSCRYPT_KEY_STATUS_ABSENT
572  *	Key is fully removed.  The key is no longer in the keyring,
573  *	->mk_decrypted_inodes is empty, ->mk_active_refs == 0, ->mk_secret is
574  *	wiped, and the key can no longer be used to unlock inodes.
575  */
576 struct fscrypt_master_key {
577 
578 	/*
579 	 * Link in ->s_master_keys->key_hashtable.
580 	 * Only valid if ->mk_active_refs > 0.
581 	 */
582 	struct hlist_node			mk_node;
583 
584 	/* Semaphore that protects ->mk_secret, ->mk_users, and ->mk_present */
585 	struct rw_semaphore			mk_sem;
586 
587 	/*
588 	 * Active and structural reference counts.  An active ref guarantees
589 	 * that the struct continues to exist, continues to be in the keyring
590 	 * ->s_master_keys, and that any embedded subkeys (e.g.
591 	 * ->mk_direct_keys) that have been prepared continue to exist.
592 	 * A structural ref only guarantees that the struct continues to exist.
593 	 *
594 	 * There is one active ref associated with ->mk_present being true, and
595 	 * one active ref for each inode in ->mk_decrypted_inodes.
596 	 *
597 	 * There is one structural ref associated with the active refcount being
598 	 * nonzero.  Finding a key in the keyring also takes a structural ref,
599 	 * which is then held temporarily while the key is operated on.
600 	 */
601 	refcount_t				mk_active_refs;
602 	refcount_t				mk_struct_refs;
603 
604 	struct rcu_head				mk_rcu_head;
605 
606 	/*
607 	 * The secret key material.  Wiped as soon as it is no longer needed;
608 	 * for details, see the fscrypt_master_key struct comment.
609 	 *
610 	 * Locking: protected by ->mk_sem.
611 	 */
612 	struct fscrypt_master_key_secret	mk_secret;
613 
614 	/*
615 	 * For v1 policy keys: an arbitrary key descriptor which was assigned by
616 	 * userspace (->descriptor).
617 	 *
618 	 * For v2 policy keys: a cryptographic hash of this key (->identifier).
619 	 */
620 	struct fscrypt_key_specifier		mk_spec;
621 
622 	/*
623 	 * Keyring which contains a key of type 'key_type_fscrypt_user' for each
624 	 * user who has added this key.  Normally each key will be added by just
625 	 * one user, but it's possible that multiple users share a key, and in
626 	 * that case we need to keep track of those users so that one user can't
627 	 * remove the key before the others want it removed too.
628 	 *
629 	 * This is NULL for v1 policy keys; those can only be added by root.
630 	 *
631 	 * Locking: protected by ->mk_sem.  (We don't just rely on the keyrings
632 	 * subsystem semaphore ->mk_users->sem, as we need support for atomic
633 	 * search+insert along with proper synchronization with other fields.)
634 	 */
635 	struct key		*mk_users;
636 
637 	/*
638 	 * List of inodes that were unlocked using this key.  This allows the
639 	 * inodes to be evicted efficiently if the key is removed.
640 	 */
641 	struct list_head	mk_decrypted_inodes;
642 	spinlock_t		mk_decrypted_inodes_lock;
643 
644 	/*
645 	 * Per-mode encryption keys for the various types of encryption policies
646 	 * that use them.  Allocated and derived on-demand.
647 	 */
648 	struct fscrypt_prepared_key mk_direct_keys[FSCRYPT_MODE_MAX + 1];
649 	struct fscrypt_prepared_key mk_iv_ino_lblk_64_keys[FSCRYPT_MODE_MAX + 1];
650 	struct fscrypt_prepared_key mk_iv_ino_lblk_32_keys[FSCRYPT_MODE_MAX + 1];
651 
652 	/* Hash key for inode numbers.  Initialized only when needed. */
653 	siphash_key_t		mk_ino_hash_key;
654 	bool			mk_ino_hash_key_initialized;
655 
656 	/*
657 	 * Whether this key is in the "present" state, i.e. fully usable.  For
658 	 * details, see the fscrypt_master_key struct comment.
659 	 *
660 	 * Locking: protected by ->mk_sem, but can be read locklessly using
661 	 * READ_ONCE().  Writers must use WRITE_ONCE() when concurrent readers
662 	 * are possible.
663 	 */
664 	bool			mk_present;
665 
666 } __randomize_layout;
667 
master_key_spec_type(const struct fscrypt_key_specifier * spec)668 static inline const char *master_key_spec_type(
669 				const struct fscrypt_key_specifier *spec)
670 {
671 	switch (spec->type) {
672 	case FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR:
673 		return "descriptor";
674 	case FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER:
675 		return "identifier";
676 	}
677 	return "[unknown]";
678 }
679 
master_key_spec_len(const struct fscrypt_key_specifier * spec)680 static inline int master_key_spec_len(const struct fscrypt_key_specifier *spec)
681 {
682 	switch (spec->type) {
683 	case FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR:
684 		return FSCRYPT_KEY_DESCRIPTOR_SIZE;
685 	case FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER:
686 		return FSCRYPT_KEY_IDENTIFIER_SIZE;
687 	}
688 	return 0;
689 }
690 
691 void fscrypt_put_master_key(struct fscrypt_master_key *mk);
692 
693 void fscrypt_put_master_key_activeref(struct super_block *sb,
694 				      struct fscrypt_master_key *mk);
695 
696 struct fscrypt_master_key *
697 fscrypt_find_master_key(struct super_block *sb,
698 			const struct fscrypt_key_specifier *mk_spec);
699 
700 int fscrypt_get_test_dummy_key_identifier(
701 			  u8 key_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE]);
702 
703 int fscrypt_add_test_dummy_key(struct super_block *sb,
704 			       struct fscrypt_key_specifier *key_spec);
705 
706 int fscrypt_verify_key_added(struct super_block *sb,
707 			     const u8 identifier[FSCRYPT_KEY_IDENTIFIER_SIZE]);
708 
709 int __init fscrypt_init_keyring(void);
710 
711 /* keysetup.c */
712 
713 struct fscrypt_mode {
714 	const char *friendly_name;
715 	const char *cipher_str;
716 	int keysize;		/* key size in bytes */
717 	int security_strength;	/* security strength in bytes */
718 	int ivsize;		/* IV size in bytes */
719 	int logged_cryptoapi_impl;
720 	int logged_blk_crypto_native;
721 	int logged_blk_crypto_fallback;
722 	enum blk_crypto_mode_num blk_crypto_mode;
723 };
724 
725 extern struct fscrypt_mode fscrypt_modes[];
726 
727 int fscrypt_prepare_key(struct fscrypt_prepared_key *prep_key,
728 			const u8 *raw_key, const struct fscrypt_inode_info *ci);
729 
730 void fscrypt_destroy_prepared_key(struct super_block *sb,
731 				  struct fscrypt_prepared_key *prep_key);
732 
733 int fscrypt_set_per_file_enc_key(struct fscrypt_inode_info *ci,
734 				 const u8 *raw_key);
735 
736 int fscrypt_derive_dirhash_key(struct fscrypt_inode_info *ci,
737 			       const struct fscrypt_master_key *mk);
738 
739 void fscrypt_hash_inode_number(struct fscrypt_inode_info *ci,
740 			       const struct fscrypt_master_key *mk);
741 
742 int fscrypt_get_encryption_info(struct inode *inode, bool allow_unsupported);
743 
744 /**
745  * fscrypt_require_key() - require an inode's encryption key
746  * @inode: the inode we need the key for
747  *
748  * If the inode is encrypted, set up its encryption key if not already done.
749  * Then require that the key be present and return -ENOKEY otherwise.
750  *
751  * No locks are needed, and the key will live as long as the struct inode --- so
752  * it won't go away from under you.
753  *
754  * Return: 0 on success, -ENOKEY if the key is missing, or another -errno code
755  * if a problem occurred while setting up the encryption key.
756  */
fscrypt_require_key(struct inode * inode)757 static inline int fscrypt_require_key(struct inode *inode)
758 {
759 	if (IS_ENCRYPTED(inode)) {
760 		int err = fscrypt_get_encryption_info(inode, false);
761 
762 		if (err)
763 			return err;
764 		if (!fscrypt_has_encryption_key(inode))
765 			return -ENOKEY;
766 	}
767 	return 0;
768 }
769 
770 /* keysetup_v1.c */
771 
772 void fscrypt_put_direct_key(struct fscrypt_direct_key *dk);
773 
774 int fscrypt_setup_v1_file_key(struct fscrypt_inode_info *ci,
775 			      const u8 *raw_master_key);
776 
777 int fscrypt_setup_v1_file_key_via_subscribed_keyrings(
778 				struct fscrypt_inode_info *ci);
779 
780 /* policy.c */
781 
782 bool fscrypt_policies_equal(const union fscrypt_policy *policy1,
783 			    const union fscrypt_policy *policy2);
784 int fscrypt_policy_to_key_spec(const union fscrypt_policy *policy,
785 			       struct fscrypt_key_specifier *key_spec);
786 const union fscrypt_policy *fscrypt_get_dummy_policy(struct super_block *sb);
787 bool fscrypt_supported_policy(const union fscrypt_policy *policy_u,
788 			      const struct inode *inode);
789 int fscrypt_policy_from_context(union fscrypt_policy *policy_u,
790 				const union fscrypt_context *ctx_u,
791 				int ctx_size);
792 const union fscrypt_policy *fscrypt_policy_to_inherit(struct inode *dir);
793 
794 #endif /* _FSCRYPT_PRIVATE_H */
795