• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/kernel.h>
3 #include <linux/errno.h>
4 #include <linux/err.h>
5 #include <linux/spinlock.h>
6 
7 #include <linux/mm.h>
8 #include <linux/memfd.h>
9 #include <linux/memremap.h>
10 #include <linux/pagemap.h>
11 #include <linux/rmap.h>
12 #include <linux/swap.h>
13 #include <linux/swapops.h>
14 #include <linux/secretmem.h>
15 
16 #include <linux/sched/signal.h>
17 #include <linux/rwsem.h>
18 #include <linux/hugetlb.h>
19 #include <linux/migrate.h>
20 #include <linux/mm_inline.h>
21 #include <linux/pagevec.h>
22 #include <linux/sched/mm.h>
23 #include <linux/shmem_fs.h>
24 
25 #include <asm/mmu_context.h>
26 #include <asm/tlbflush.h>
27 
28 #include "internal.h"
29 
30 struct follow_page_context {
31 	struct dev_pagemap *pgmap;
32 	unsigned int page_mask;
33 };
34 
sanity_check_pinned_pages(struct page ** pages,unsigned long npages)35 static inline void sanity_check_pinned_pages(struct page **pages,
36 					     unsigned long npages)
37 {
38 	if (!IS_ENABLED(CONFIG_DEBUG_VM))
39 		return;
40 
41 	/*
42 	 * We only pin anonymous pages if they are exclusive. Once pinned, we
43 	 * can no longer turn them possibly shared and PageAnonExclusive() will
44 	 * stick around until the page is freed.
45 	 *
46 	 * We'd like to verify that our pinned anonymous pages are still mapped
47 	 * exclusively. The issue with anon THP is that we don't know how
48 	 * they are/were mapped when pinning them. However, for anon
49 	 * THP we can assume that either the given page (PTE-mapped THP) or
50 	 * the head page (PMD-mapped THP) should be PageAnonExclusive(). If
51 	 * neither is the case, there is certainly something wrong.
52 	 */
53 	for (; npages; npages--, pages++) {
54 		struct page *page = *pages;
55 		struct folio *folio;
56 
57 		if (!page)
58 			continue;
59 
60 		folio = page_folio(page);
61 
62 		if (is_zero_page(page) ||
63 		    !folio_test_anon(folio))
64 			continue;
65 		if (!folio_test_large(folio) || folio_test_hugetlb(folio))
66 			VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page), page);
67 		else
68 			/* Either a PTE-mapped or a PMD-mapped THP. */
69 			VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page) &&
70 				       !PageAnonExclusive(page), page);
71 	}
72 }
73 
74 /*
75  * Return the folio with ref appropriately incremented,
76  * or NULL if that failed.
77  */
try_get_folio(struct page * page,int refs)78 static inline struct folio *try_get_folio(struct page *page, int refs)
79 {
80 	struct folio *folio;
81 
82 retry:
83 	folio = page_folio(page);
84 	if (WARN_ON_ONCE(folio_ref_count(folio) < 0))
85 		return NULL;
86 	if (unlikely(!folio_ref_try_add(folio, refs)))
87 		return NULL;
88 
89 	/*
90 	 * At this point we have a stable reference to the folio; but it
91 	 * could be that between calling page_folio() and the refcount
92 	 * increment, the folio was split, in which case we'd end up
93 	 * holding a reference on a folio that has nothing to do with the page
94 	 * we were given anymore.
95 	 * So now that the folio is stable, recheck that the page still
96 	 * belongs to this folio.
97 	 */
98 	if (unlikely(page_folio(page) != folio)) {
99 		if (!put_devmap_managed_folio_refs(folio, refs))
100 			folio_put_refs(folio, refs);
101 		goto retry;
102 	}
103 
104 	return folio;
105 }
106 
gup_put_folio(struct folio * folio,int refs,unsigned int flags)107 static void gup_put_folio(struct folio *folio, int refs, unsigned int flags)
108 {
109 	if (flags & FOLL_PIN) {
110 		if (is_zero_folio(folio))
111 			return;
112 		node_stat_mod_folio(folio, NR_FOLL_PIN_RELEASED, refs);
113 		if (folio_test_large(folio))
114 			atomic_sub(refs, &folio->_pincount);
115 		else
116 			refs *= GUP_PIN_COUNTING_BIAS;
117 	}
118 
119 	if (!put_devmap_managed_folio_refs(folio, refs))
120 		folio_put_refs(folio, refs);
121 }
122 
123 /**
124  * try_grab_folio() - add a folio's refcount by a flag-dependent amount
125  * @folio:    pointer to folio to be grabbed
126  * @refs:     the value to (effectively) add to the folio's refcount
127  * @flags:    gup flags: these are the FOLL_* flag values
128  *
129  * This might not do anything at all, depending on the flags argument.
130  *
131  * "grab" names in this file mean, "look at flags to decide whether to use
132  * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount.
133  *
134  * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
135  * time.
136  *
137  * Return: 0 for success, or if no action was required (if neither FOLL_PIN
138  * nor FOLL_GET was set, nothing is done). A negative error code for failure:
139  *
140  *   -ENOMEM		FOLL_GET or FOLL_PIN was set, but the folio could not
141  *			be grabbed.
142  *
143  * It is called when we have a stable reference for the folio, typically in
144  * GUP slow path.
145  */
try_grab_folio(struct folio * folio,int refs,unsigned int flags)146 int __must_check try_grab_folio(struct folio *folio, int refs,
147 				unsigned int flags)
148 {
149 	if (WARN_ON_ONCE(folio_ref_count(folio) <= 0))
150 		return -ENOMEM;
151 
152 	if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(&folio->page)))
153 		return -EREMOTEIO;
154 
155 	if (flags & FOLL_GET)
156 		folio_ref_add(folio, refs);
157 	else if (flags & FOLL_PIN) {
158 		/*
159 		 * Don't take a pin on the zero page - it's not going anywhere
160 		 * and it is used in a *lot* of places.
161 		 */
162 		if (is_zero_folio(folio))
163 			return 0;
164 
165 		/*
166 		 * Increment the normal page refcount field at least once,
167 		 * so that the page really is pinned.
168 		 */
169 		if (folio_test_large(folio)) {
170 			folio_ref_add(folio, refs);
171 			atomic_add(refs, &folio->_pincount);
172 		} else {
173 			folio_ref_add(folio, refs * GUP_PIN_COUNTING_BIAS);
174 		}
175 
176 		node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs);
177 	}
178 
179 	return 0;
180 }
181 
182 /**
183  * unpin_user_page() - release a dma-pinned page
184  * @page:            pointer to page to be released
185  *
186  * Pages that were pinned via pin_user_pages*() must be released via either
187  * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
188  * that such pages can be separately tracked and uniquely handled. In
189  * particular, interactions with RDMA and filesystems need special handling.
190  */
unpin_user_page(struct page * page)191 void unpin_user_page(struct page *page)
192 {
193 	sanity_check_pinned_pages(&page, 1);
194 	gup_put_folio(page_folio(page), 1, FOLL_PIN);
195 }
196 EXPORT_SYMBOL(unpin_user_page);
197 
198 /**
199  * unpin_folio() - release a dma-pinned folio
200  * @folio:         pointer to folio to be released
201  *
202  * Folios that were pinned via memfd_pin_folios() or other similar routines
203  * must be released either using unpin_folio() or unpin_folios().
204  */
unpin_folio(struct folio * folio)205 void unpin_folio(struct folio *folio)
206 {
207 	gup_put_folio(folio, 1, FOLL_PIN);
208 }
209 EXPORT_SYMBOL_GPL(unpin_folio);
210 
211 /**
212  * folio_add_pin - Try to get an additional pin on a pinned folio
213  * @folio: The folio to be pinned
214  *
215  * Get an additional pin on a folio we already have a pin on.  Makes no change
216  * if the folio is a zero_page.
217  */
folio_add_pin(struct folio * folio)218 void folio_add_pin(struct folio *folio)
219 {
220 	if (is_zero_folio(folio))
221 		return;
222 
223 	/*
224 	 * Similar to try_grab_folio(): be sure to *also* increment the normal
225 	 * page refcount field at least once, so that the page really is
226 	 * pinned.
227 	 */
228 	if (folio_test_large(folio)) {
229 		WARN_ON_ONCE(atomic_read(&folio->_pincount) < 1);
230 		folio_ref_inc(folio);
231 		atomic_inc(&folio->_pincount);
232 	} else {
233 		WARN_ON_ONCE(folio_ref_count(folio) < GUP_PIN_COUNTING_BIAS);
234 		folio_ref_add(folio, GUP_PIN_COUNTING_BIAS);
235 	}
236 }
237 
gup_folio_range_next(struct page * start,unsigned long npages,unsigned long i,unsigned int * ntails)238 static inline struct folio *gup_folio_range_next(struct page *start,
239 		unsigned long npages, unsigned long i, unsigned int *ntails)
240 {
241 	struct page *next = nth_page(start, i);
242 	struct folio *folio = page_folio(next);
243 	unsigned int nr = 1;
244 
245 	if (folio_test_large(folio))
246 		nr = min_t(unsigned int, npages - i,
247 			   folio_nr_pages(folio) - folio_page_idx(folio, next));
248 
249 	*ntails = nr;
250 	return folio;
251 }
252 
gup_folio_next(struct page ** list,unsigned long npages,unsigned long i,unsigned int * ntails)253 static inline struct folio *gup_folio_next(struct page **list,
254 		unsigned long npages, unsigned long i, unsigned int *ntails)
255 {
256 	struct folio *folio = page_folio(list[i]);
257 	unsigned int nr;
258 
259 	for (nr = i + 1; nr < npages; nr++) {
260 		if (page_folio(list[nr]) != folio)
261 			break;
262 	}
263 
264 	*ntails = nr - i;
265 	return folio;
266 }
267 
268 /**
269  * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
270  * @pages:  array of pages to be maybe marked dirty, and definitely released.
271  * @npages: number of pages in the @pages array.
272  * @make_dirty: whether to mark the pages dirty
273  *
274  * "gup-pinned page" refers to a page that has had one of the get_user_pages()
275  * variants called on that page.
276  *
277  * For each page in the @pages array, make that page (or its head page, if a
278  * compound page) dirty, if @make_dirty is true, and if the page was previously
279  * listed as clean. In any case, releases all pages using unpin_user_page(),
280  * possibly via unpin_user_pages(), for the non-dirty case.
281  *
282  * Please see the unpin_user_page() documentation for details.
283  *
284  * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
285  * required, then the caller should a) verify that this is really correct,
286  * because _lock() is usually required, and b) hand code it:
287  * set_page_dirty_lock(), unpin_user_page().
288  *
289  */
unpin_user_pages_dirty_lock(struct page ** pages,unsigned long npages,bool make_dirty)290 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
291 				 bool make_dirty)
292 {
293 	unsigned long i;
294 	struct folio *folio;
295 	unsigned int nr;
296 
297 	if (!make_dirty) {
298 		unpin_user_pages(pages, npages);
299 		return;
300 	}
301 
302 	sanity_check_pinned_pages(pages, npages);
303 	for (i = 0; i < npages; i += nr) {
304 		folio = gup_folio_next(pages, npages, i, &nr);
305 		/*
306 		 * Checking PageDirty at this point may race with
307 		 * clear_page_dirty_for_io(), but that's OK. Two key
308 		 * cases:
309 		 *
310 		 * 1) This code sees the page as already dirty, so it
311 		 * skips the call to set_page_dirty(). That could happen
312 		 * because clear_page_dirty_for_io() called
313 		 * folio_mkclean(), followed by set_page_dirty().
314 		 * However, now the page is going to get written back,
315 		 * which meets the original intention of setting it
316 		 * dirty, so all is well: clear_page_dirty_for_io() goes
317 		 * on to call TestClearPageDirty(), and write the page
318 		 * back.
319 		 *
320 		 * 2) This code sees the page as clean, so it calls
321 		 * set_page_dirty(). The page stays dirty, despite being
322 		 * written back, so it gets written back again in the
323 		 * next writeback cycle. This is harmless.
324 		 */
325 		if (!folio_test_dirty(folio)) {
326 			folio_lock(folio);
327 			folio_mark_dirty(folio);
328 			folio_unlock(folio);
329 		}
330 		gup_put_folio(folio, nr, FOLL_PIN);
331 	}
332 }
333 EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
334 
335 /**
336  * unpin_user_page_range_dirty_lock() - release and optionally dirty
337  * gup-pinned page range
338  *
339  * @page:  the starting page of a range maybe marked dirty, and definitely released.
340  * @npages: number of consecutive pages to release.
341  * @make_dirty: whether to mark the pages dirty
342  *
343  * "gup-pinned page range" refers to a range of pages that has had one of the
344  * pin_user_pages() variants called on that page.
345  *
346  * For the page ranges defined by [page .. page+npages], make that range (or
347  * its head pages, if a compound page) dirty, if @make_dirty is true, and if the
348  * page range was previously listed as clean.
349  *
350  * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
351  * required, then the caller should a) verify that this is really correct,
352  * because _lock() is usually required, and b) hand code it:
353  * set_page_dirty_lock(), unpin_user_page().
354  *
355  */
unpin_user_page_range_dirty_lock(struct page * page,unsigned long npages,bool make_dirty)356 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
357 				      bool make_dirty)
358 {
359 	unsigned long i;
360 	struct folio *folio;
361 	unsigned int nr;
362 
363 	for (i = 0; i < npages; i += nr) {
364 		folio = gup_folio_range_next(page, npages, i, &nr);
365 		if (make_dirty && !folio_test_dirty(folio)) {
366 			folio_lock(folio);
367 			folio_mark_dirty(folio);
368 			folio_unlock(folio);
369 		}
370 		gup_put_folio(folio, nr, FOLL_PIN);
371 	}
372 }
373 EXPORT_SYMBOL(unpin_user_page_range_dirty_lock);
374 
gup_fast_unpin_user_pages(struct page ** pages,unsigned long npages)375 static void gup_fast_unpin_user_pages(struct page **pages, unsigned long npages)
376 {
377 	unsigned long i;
378 	struct folio *folio;
379 	unsigned int nr;
380 
381 	/*
382 	 * Don't perform any sanity checks because we might have raced with
383 	 * fork() and some anonymous pages might now actually be shared --
384 	 * which is why we're unpinning after all.
385 	 */
386 	for (i = 0; i < npages; i += nr) {
387 		folio = gup_folio_next(pages, npages, i, &nr);
388 		gup_put_folio(folio, nr, FOLL_PIN);
389 	}
390 }
391 
392 /**
393  * unpin_user_pages() - release an array of gup-pinned pages.
394  * @pages:  array of pages to be marked dirty and released.
395  * @npages: number of pages in the @pages array.
396  *
397  * For each page in the @pages array, release the page using unpin_user_page().
398  *
399  * Please see the unpin_user_page() documentation for details.
400  */
unpin_user_pages(struct page ** pages,unsigned long npages)401 void unpin_user_pages(struct page **pages, unsigned long npages)
402 {
403 	unsigned long i;
404 	struct folio *folio;
405 	unsigned int nr;
406 
407 	/*
408 	 * If this WARN_ON() fires, then the system *might* be leaking pages (by
409 	 * leaving them pinned), but probably not. More likely, gup/pup returned
410 	 * a hard -ERRNO error to the caller, who erroneously passed it here.
411 	 */
412 	if (WARN_ON(IS_ERR_VALUE(npages)))
413 		return;
414 
415 	sanity_check_pinned_pages(pages, npages);
416 	for (i = 0; i < npages; i += nr) {
417 		if (!pages[i]) {
418 			nr = 1;
419 			continue;
420 		}
421 		folio = gup_folio_next(pages, npages, i, &nr);
422 		gup_put_folio(folio, nr, FOLL_PIN);
423 	}
424 }
425 EXPORT_SYMBOL(unpin_user_pages);
426 
427 /**
428  * unpin_user_folio() - release pages of a folio
429  * @folio:  pointer to folio to be released
430  * @npages: number of pages of same folio
431  *
432  * Release npages of the folio
433  */
unpin_user_folio(struct folio * folio,unsigned long npages)434 void unpin_user_folio(struct folio *folio, unsigned long npages)
435 {
436 	gup_put_folio(folio, npages, FOLL_PIN);
437 }
438 EXPORT_SYMBOL(unpin_user_folio);
439 
440 /**
441  * unpin_folios() - release an array of gup-pinned folios.
442  * @folios:  array of folios to be marked dirty and released.
443  * @nfolios: number of folios in the @folios array.
444  *
445  * For each folio in the @folios array, release the folio using gup_put_folio.
446  *
447  * Please see the unpin_folio() documentation for details.
448  */
unpin_folios(struct folio ** folios,unsigned long nfolios)449 void unpin_folios(struct folio **folios, unsigned long nfolios)
450 {
451 	unsigned long i = 0, j;
452 
453 	/*
454 	 * If this WARN_ON() fires, then the system *might* be leaking folios
455 	 * (by leaving them pinned), but probably not. More likely, gup/pup
456 	 * returned a hard -ERRNO error to the caller, who erroneously passed
457 	 * it here.
458 	 */
459 	if (WARN_ON(IS_ERR_VALUE(nfolios)))
460 		return;
461 
462 	while (i < nfolios) {
463 		for (j = i + 1; j < nfolios; j++)
464 			if (folios[i] != folios[j])
465 				break;
466 
467 		if (folios[i])
468 			gup_put_folio(folios[i], j - i, FOLL_PIN);
469 		i = j;
470 	}
471 }
472 EXPORT_SYMBOL_GPL(unpin_folios);
473 
474 /*
475  * trace_android_vh_mm_customize_longterm_pinnable is called in include/linux/mm.h
476  * by including include/trace/hooks/mm.h, which will result to build-err.
477  * So we create func: _trace_android_vh_mm_customize_longterm_pinnable.
478  */
_trace_android_vh_mm_customize_longterm_pinnable(struct folio * folio,bool * is_longterm_pinnable)479 void _trace_android_vh_mm_customize_longterm_pinnable(struct folio *folio,
480 		bool *is_longterm_pinnable)
481 {
482 	trace_android_vh_mm_customize_longterm_pinnable(folio, is_longterm_pinnable);
483 }
484 
485 /*
486  * Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's
487  * lifecycle.  Avoid setting the bit unless necessary, or it might cause write
488  * cache bouncing on large SMP machines for concurrent pinned gups.
489  */
mm_set_has_pinned_flag(unsigned long * mm_flags)490 static inline void mm_set_has_pinned_flag(unsigned long *mm_flags)
491 {
492 	if (!test_bit(MMF_HAS_PINNED, mm_flags))
493 		set_bit(MMF_HAS_PINNED, mm_flags);
494 }
495 
496 #ifdef CONFIG_MMU
497 
498 #ifdef CONFIG_HAVE_GUP_FAST
record_subpages(struct page * page,unsigned long sz,unsigned long addr,unsigned long end,struct page ** pages)499 static int record_subpages(struct page *page, unsigned long sz,
500 			   unsigned long addr, unsigned long end,
501 			   struct page **pages)
502 {
503 	struct page *start_page;
504 	int nr;
505 
506 	start_page = nth_page(page, (addr & (sz - 1)) >> PAGE_SHIFT);
507 	for (nr = 0; addr != end; nr++, addr += PAGE_SIZE)
508 		pages[nr] = nth_page(start_page, nr);
509 
510 	return nr;
511 }
512 
513 /**
514  * try_grab_folio_fast() - Attempt to get or pin a folio in fast path.
515  * @page:  pointer to page to be grabbed
516  * @refs:  the value to (effectively) add to the folio's refcount
517  * @flags: gup flags: these are the FOLL_* flag values.
518  *
519  * "grab" names in this file mean, "look at flags to decide whether to use
520  * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount.
521  *
522  * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
523  * same time. (That's true throughout the get_user_pages*() and
524  * pin_user_pages*() APIs.) Cases:
525  *
526  *    FOLL_GET: folio's refcount will be incremented by @refs.
527  *
528  *    FOLL_PIN on large folios: folio's refcount will be incremented by
529  *    @refs, and its pincount will be incremented by @refs.
530  *
531  *    FOLL_PIN on single-page folios: folio's refcount will be incremented by
532  *    @refs * GUP_PIN_COUNTING_BIAS.
533  *
534  * Return: The folio containing @page (with refcount appropriately
535  * incremented) for success, or NULL upon failure. If neither FOLL_GET
536  * nor FOLL_PIN was set, that's considered failure, and furthermore,
537  * a likely bug in the caller, so a warning is also emitted.
538  *
539  * It uses add ref unless zero to elevate the folio refcount and must be called
540  * in fast path only.
541  */
try_grab_folio_fast(struct page * page,int refs,unsigned int flags)542 static struct folio *try_grab_folio_fast(struct page *page, int refs,
543 					 unsigned int flags)
544 {
545 	struct folio *folio;
546 
547 	/* Raise warn if it is not called in fast GUP */
548 	VM_WARN_ON_ONCE(!irqs_disabled());
549 
550 	if (WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == 0))
551 		return NULL;
552 
553 	if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)))
554 		return NULL;
555 
556 	if (flags & FOLL_GET)
557 		return try_get_folio(page, refs);
558 
559 	/* FOLL_PIN is set */
560 
561 	/*
562 	 * Don't take a pin on the zero page - it's not going anywhere
563 	 * and it is used in a *lot* of places.
564 	 */
565 	if (is_zero_page(page))
566 		return page_folio(page);
567 
568 	folio = try_get_folio(page, refs);
569 	if (!folio)
570 		return NULL;
571 
572 	/*
573 	 * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a
574 	 * right zone, so fail and let the caller fall back to the slow
575 	 * path.
576 	 */
577 	if (unlikely((flags & FOLL_LONGTERM) &&
578 		     !folio_is_longterm_pinnable(folio))) {
579 		if (!put_devmap_managed_folio_refs(folio, refs))
580 			folio_put_refs(folio, refs);
581 		return NULL;
582 	}
583 
584 	/*
585 	 * When pinning a large folio, use an exact count to track it.
586 	 *
587 	 * However, be sure to *also* increment the normal folio
588 	 * refcount field at least once, so that the folio really
589 	 * is pinned.  That's why the refcount from the earlier
590 	 * try_get_folio() is left intact.
591 	 */
592 	if (folio_test_large(folio))
593 		atomic_add(refs, &folio->_pincount);
594 	else
595 		folio_ref_add(folio,
596 				refs * (GUP_PIN_COUNTING_BIAS - 1));
597 	/*
598 	 * Adjust the pincount before re-checking the PTE for changes.
599 	 * This is essentially a smp_mb() and is paired with a memory
600 	 * barrier in folio_try_share_anon_rmap_*().
601 	 */
602 	smp_mb__after_atomic();
603 
604 	node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs);
605 
606 	return folio;
607 }
608 #endif	/* CONFIG_HAVE_GUP_FAST */
609 
no_page_table(struct vm_area_struct * vma,unsigned int flags,unsigned long address)610 static struct page *no_page_table(struct vm_area_struct *vma,
611 				  unsigned int flags, unsigned long address)
612 {
613 	if (!(flags & FOLL_DUMP))
614 		return NULL;
615 
616 	/*
617 	 * When core dumping, we don't want to allocate unnecessary pages or
618 	 * page tables.  Return error instead of NULL to skip handle_mm_fault,
619 	 * then get_dump_page() will return NULL to leave a hole in the dump.
620 	 * But we can only make this optimization where a hole would surely
621 	 * be zero-filled if handle_mm_fault() actually did handle it.
622 	 */
623 	if (is_vm_hugetlb_page(vma)) {
624 		struct hstate *h = hstate_vma(vma);
625 
626 		if (!hugetlbfs_pagecache_present(h, vma, address))
627 			return ERR_PTR(-EFAULT);
628 	} else if ((vma_is_anonymous(vma) || !vma->vm_ops->fault)) {
629 		return ERR_PTR(-EFAULT);
630 	}
631 
632 	return NULL;
633 }
634 
635 #ifdef CONFIG_PGTABLE_HAS_HUGE_LEAVES
follow_huge_pud(struct vm_area_struct * vma,unsigned long addr,pud_t * pudp,int flags,struct follow_page_context * ctx)636 static struct page *follow_huge_pud(struct vm_area_struct *vma,
637 				    unsigned long addr, pud_t *pudp,
638 				    int flags, struct follow_page_context *ctx)
639 {
640 	struct mm_struct *mm = vma->vm_mm;
641 	struct page *page;
642 	pud_t pud = *pudp;
643 	unsigned long pfn = pud_pfn(pud);
644 	int ret;
645 
646 	assert_spin_locked(pud_lockptr(mm, pudp));
647 
648 	if ((flags & FOLL_WRITE) && !pud_write(pud))
649 		return NULL;
650 
651 	if (!pud_present(pud))
652 		return NULL;
653 
654 	pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
655 
656 	if (IS_ENABLED(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) &&
657 	    pud_devmap(pud)) {
658 		/*
659 		 * device mapped pages can only be returned if the caller
660 		 * will manage the page reference count.
661 		 *
662 		 * At least one of FOLL_GET | FOLL_PIN must be set, so
663 		 * assert that here:
664 		 */
665 		if (!(flags & (FOLL_GET | FOLL_PIN)))
666 			return ERR_PTR(-EEXIST);
667 
668 		if (flags & FOLL_TOUCH)
669 			touch_pud(vma, addr, pudp, flags & FOLL_WRITE);
670 
671 		ctx->pgmap = get_dev_pagemap(pfn, ctx->pgmap);
672 		if (!ctx->pgmap)
673 			return ERR_PTR(-EFAULT);
674 	}
675 
676 	page = pfn_to_page(pfn);
677 
678 	if (!pud_devmap(pud) && !pud_write(pud) &&
679 	    gup_must_unshare(vma, flags, page))
680 		return ERR_PTR(-EMLINK);
681 
682 	ret = try_grab_folio(page_folio(page), 1, flags);
683 	if (ret)
684 		page = ERR_PTR(ret);
685 	else
686 		ctx->page_mask = HPAGE_PUD_NR - 1;
687 
688 	return page;
689 }
690 
691 /* FOLL_FORCE can write to even unwritable PMDs in COW mappings. */
can_follow_write_pmd(pmd_t pmd,struct page * page,struct vm_area_struct * vma,unsigned int flags)692 static inline bool can_follow_write_pmd(pmd_t pmd, struct page *page,
693 					struct vm_area_struct *vma,
694 					unsigned int flags)
695 {
696 	/* If the pmd is writable, we can write to the page. */
697 	if (pmd_write(pmd))
698 		return true;
699 
700 	/* Maybe FOLL_FORCE is set to override it? */
701 	if (!(flags & FOLL_FORCE))
702 		return false;
703 
704 	/* But FOLL_FORCE has no effect on shared mappings */
705 	if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED))
706 		return false;
707 
708 	/* ... or read-only private ones */
709 	if (!(vma->vm_flags & VM_MAYWRITE))
710 		return false;
711 
712 	/* ... or already writable ones that just need to take a write fault */
713 	if (vma->vm_flags & VM_WRITE)
714 		return false;
715 
716 	/*
717 	 * See can_change_pte_writable(): we broke COW and could map the page
718 	 * writable if we have an exclusive anonymous page ...
719 	 */
720 	if (!page || !PageAnon(page) || !PageAnonExclusive(page))
721 		return false;
722 
723 	/* ... and a write-fault isn't required for other reasons. */
724 	if (pmd_needs_soft_dirty_wp(vma, pmd))
725 		return false;
726 	return !userfaultfd_huge_pmd_wp(vma, pmd);
727 }
728 
follow_huge_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmd,unsigned int flags,struct follow_page_context * ctx)729 static struct page *follow_huge_pmd(struct vm_area_struct *vma,
730 				    unsigned long addr, pmd_t *pmd,
731 				    unsigned int flags,
732 				    struct follow_page_context *ctx)
733 {
734 	struct mm_struct *mm = vma->vm_mm;
735 	pmd_t pmdval = *pmd;
736 	struct page *page;
737 	int ret;
738 
739 	assert_spin_locked(pmd_lockptr(mm, pmd));
740 
741 	page = pmd_page(pmdval);
742 	if ((flags & FOLL_WRITE) &&
743 	    !can_follow_write_pmd(pmdval, page, vma, flags))
744 		return NULL;
745 
746 	/* Avoid dumping huge zero page */
747 	if ((flags & FOLL_DUMP) && is_huge_zero_pmd(pmdval))
748 		return ERR_PTR(-EFAULT);
749 
750 	if (pmd_protnone(*pmd) && !gup_can_follow_protnone(vma, flags))
751 		return NULL;
752 
753 	if (!pmd_write(pmdval) && gup_must_unshare(vma, flags, page))
754 		return ERR_PTR(-EMLINK);
755 
756 	VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
757 			!PageAnonExclusive(page), page);
758 
759 	ret = try_grab_folio(page_folio(page), 1, flags);
760 	if (ret)
761 		return ERR_PTR(ret);
762 
763 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
764 	if (pmd_trans_huge(pmdval) && (flags & FOLL_TOUCH))
765 		touch_pmd(vma, addr, pmd, flags & FOLL_WRITE);
766 #endif	/* CONFIG_TRANSPARENT_HUGEPAGE */
767 
768 	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
769 	ctx->page_mask = HPAGE_PMD_NR - 1;
770 
771 	return page;
772 }
773 
774 #else  /* CONFIG_PGTABLE_HAS_HUGE_LEAVES */
follow_huge_pud(struct vm_area_struct * vma,unsigned long addr,pud_t * pudp,int flags,struct follow_page_context * ctx)775 static struct page *follow_huge_pud(struct vm_area_struct *vma,
776 				    unsigned long addr, pud_t *pudp,
777 				    int flags, struct follow_page_context *ctx)
778 {
779 	return NULL;
780 }
781 
follow_huge_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmd,unsigned int flags,struct follow_page_context * ctx)782 static struct page *follow_huge_pmd(struct vm_area_struct *vma,
783 				    unsigned long addr, pmd_t *pmd,
784 				    unsigned int flags,
785 				    struct follow_page_context *ctx)
786 {
787 	return NULL;
788 }
789 #endif	/* CONFIG_PGTABLE_HAS_HUGE_LEAVES */
790 
follow_pfn_pte(struct vm_area_struct * vma,unsigned long address,pte_t * pte,unsigned int flags)791 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
792 		pte_t *pte, unsigned int flags)
793 {
794 	if (flags & FOLL_TOUCH) {
795 		pte_t orig_entry = ptep_get(pte);
796 		pte_t entry = orig_entry;
797 
798 		if (flags & FOLL_WRITE)
799 			entry = pte_mkdirty(entry);
800 		entry = pte_mkyoung(entry);
801 
802 		if (!pte_same(orig_entry, entry)) {
803 			set_pte_at(vma->vm_mm, address, pte, entry);
804 			update_mmu_cache(vma, address, pte);
805 		}
806 	}
807 
808 	/* Proper page table entry exists, but no corresponding struct page */
809 	return -EEXIST;
810 }
811 
812 /* FOLL_FORCE can write to even unwritable PTEs in COW mappings. */
can_follow_write_pte(pte_t pte,struct page * page,struct vm_area_struct * vma,unsigned int flags)813 static inline bool can_follow_write_pte(pte_t pte, struct page *page,
814 					struct vm_area_struct *vma,
815 					unsigned int flags)
816 {
817 	/* If the pte is writable, we can write to the page. */
818 	if (pte_write(pte))
819 		return true;
820 
821 	/* Maybe FOLL_FORCE is set to override it? */
822 	if (!(flags & FOLL_FORCE))
823 		return false;
824 
825 	/* But FOLL_FORCE has no effect on shared mappings */
826 	if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED))
827 		return false;
828 
829 	/* ... or read-only private ones */
830 	if (!(vma->vm_flags & VM_MAYWRITE))
831 		return false;
832 
833 	/* ... or already writable ones that just need to take a write fault */
834 	if (vma->vm_flags & VM_WRITE)
835 		return false;
836 
837 	/*
838 	 * See can_change_pte_writable(): we broke COW and could map the page
839 	 * writable if we have an exclusive anonymous page ...
840 	 */
841 	if (!page || !PageAnon(page) || !PageAnonExclusive(page))
842 		return false;
843 
844 	/* ... and a write-fault isn't required for other reasons. */
845 	if (pte_needs_soft_dirty_wp(vma, pte))
846 		return false;
847 	return !userfaultfd_pte_wp(vma, pte);
848 }
849 
follow_page_pte(struct vm_area_struct * vma,unsigned long address,pmd_t * pmd,unsigned int flags,struct dev_pagemap ** pgmap)850 static struct page *follow_page_pte(struct vm_area_struct *vma,
851 		unsigned long address, pmd_t *pmd, unsigned int flags,
852 		struct dev_pagemap **pgmap)
853 {
854 	struct mm_struct *mm = vma->vm_mm;
855 	struct folio *folio;
856 	struct page *page;
857 	spinlock_t *ptl;
858 	pte_t *ptep, pte;
859 	int ret;
860 
861 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
862 	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
863 			 (FOLL_PIN | FOLL_GET)))
864 		return ERR_PTR(-EINVAL);
865 
866 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
867 	if (!ptep)
868 		return no_page_table(vma, flags, address);
869 	pte = ptep_get(ptep);
870 	if (!pte_present(pte))
871 		goto no_page;
872 	if (pte_protnone(pte) && !gup_can_follow_protnone(vma, flags))
873 		goto no_page;
874 
875 	page = vm_normal_page(vma, address, pte);
876 
877 	/*
878 	 * We only care about anon pages in can_follow_write_pte() and don't
879 	 * have to worry about pte_devmap() because they are never anon.
880 	 */
881 	if ((flags & FOLL_WRITE) &&
882 	    !can_follow_write_pte(pte, page, vma, flags)) {
883 		page = NULL;
884 		goto out;
885 	}
886 
887 	if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) {
888 		/*
889 		 * Only return device mapping pages in the FOLL_GET or FOLL_PIN
890 		 * case since they are only valid while holding the pgmap
891 		 * reference.
892 		 */
893 		*pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
894 		if (*pgmap)
895 			page = pte_page(pte);
896 		else
897 			goto no_page;
898 	} else if (unlikely(!page)) {
899 		if (flags & FOLL_DUMP) {
900 			/* Avoid special (like zero) pages in core dumps */
901 			page = ERR_PTR(-EFAULT);
902 			goto out;
903 		}
904 
905 		if (is_zero_pfn(pte_pfn(pte))) {
906 			page = pte_page(pte);
907 		} else {
908 			ret = follow_pfn_pte(vma, address, ptep, flags);
909 			page = ERR_PTR(ret);
910 			goto out;
911 		}
912 	}
913 	folio = page_folio(page);
914 
915 	if (!pte_write(pte) && gup_must_unshare(vma, flags, page)) {
916 		page = ERR_PTR(-EMLINK);
917 		goto out;
918 	}
919 
920 	VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
921 		       !PageAnonExclusive(page), page);
922 
923 	/* try_grab_folio() does nothing unless FOLL_GET or FOLL_PIN is set. */
924 	ret = try_grab_folio(folio, 1, flags);
925 	if (unlikely(ret)) {
926 		page = ERR_PTR(ret);
927 		goto out;
928 	}
929 
930 	/*
931 	 * We need to make the page accessible if and only if we are going
932 	 * to access its content (the FOLL_PIN case).  Please see
933 	 * Documentation/core-api/pin_user_pages.rst for details.
934 	 */
935 	if (flags & FOLL_PIN) {
936 		ret = arch_make_folio_accessible(folio);
937 		if (ret) {
938 			unpin_user_page(page);
939 			page = ERR_PTR(ret);
940 			goto out;
941 		}
942 	}
943 	if (flags & FOLL_TOUCH) {
944 		if ((flags & FOLL_WRITE) &&
945 		    !pte_dirty(pte) && !PageDirty(page))
946 			set_page_dirty(page);
947 		/*
948 		 * pte_mkyoung() would be more correct here, but atomic care
949 		 * is needed to avoid losing the dirty bit: it is easier to use
950 		 * mark_page_accessed().
951 		 */
952 		mark_page_accessed(page);
953 	}
954 out:
955 	pte_unmap_unlock(ptep, ptl);
956 	return page;
957 no_page:
958 	pte_unmap_unlock(ptep, ptl);
959 	if (!pte_none(pte))
960 		return NULL;
961 	return no_page_table(vma, flags, address);
962 }
963 
follow_pmd_mask(struct vm_area_struct * vma,unsigned long address,pud_t * pudp,unsigned int flags,struct follow_page_context * ctx)964 static struct page *follow_pmd_mask(struct vm_area_struct *vma,
965 				    unsigned long address, pud_t *pudp,
966 				    unsigned int flags,
967 				    struct follow_page_context *ctx)
968 {
969 	pmd_t *pmd, pmdval;
970 	spinlock_t *ptl;
971 	struct page *page;
972 	struct mm_struct *mm = vma->vm_mm;
973 
974 	pmd = pmd_offset(pudp, address);
975 	pmdval = pmdp_get_lockless(pmd);
976 	if (pmd_none(pmdval))
977 		return no_page_table(vma, flags, address);
978 	if (!pmd_present(pmdval))
979 		return no_page_table(vma, flags, address);
980 	if (pmd_devmap(pmdval)) {
981 		ptl = pmd_lock(mm, pmd);
982 		page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
983 		spin_unlock(ptl);
984 		if (page)
985 			return page;
986 		return no_page_table(vma, flags, address);
987 	}
988 	if (likely(!pmd_leaf(pmdval)))
989 		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
990 
991 	if (pmd_protnone(pmdval) && !gup_can_follow_protnone(vma, flags))
992 		return no_page_table(vma, flags, address);
993 
994 	ptl = pmd_lock(mm, pmd);
995 	pmdval = *pmd;
996 	if (unlikely(!pmd_present(pmdval))) {
997 		spin_unlock(ptl);
998 		return no_page_table(vma, flags, address);
999 	}
1000 	if (unlikely(!pmd_leaf(pmdval))) {
1001 		spin_unlock(ptl);
1002 		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
1003 	}
1004 	if (pmd_trans_huge(pmdval) && (flags & FOLL_SPLIT_PMD)) {
1005 		spin_unlock(ptl);
1006 		split_huge_pmd(vma, pmd, address);
1007 		/* If pmd was left empty, stuff a page table in there quickly */
1008 		return pte_alloc(mm, pmd) ? ERR_PTR(-ENOMEM) :
1009 			follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
1010 	}
1011 	page = follow_huge_pmd(vma, address, pmd, flags, ctx);
1012 	spin_unlock(ptl);
1013 	return page;
1014 }
1015 
follow_pud_mask(struct vm_area_struct * vma,unsigned long address,p4d_t * p4dp,unsigned int flags,struct follow_page_context * ctx)1016 static struct page *follow_pud_mask(struct vm_area_struct *vma,
1017 				    unsigned long address, p4d_t *p4dp,
1018 				    unsigned int flags,
1019 				    struct follow_page_context *ctx)
1020 {
1021 	pud_t *pudp, pud;
1022 	spinlock_t *ptl;
1023 	struct page *page;
1024 	struct mm_struct *mm = vma->vm_mm;
1025 
1026 	pudp = pud_offset(p4dp, address);
1027 	pud = READ_ONCE(*pudp);
1028 	if (!pud_present(pud))
1029 		return no_page_table(vma, flags, address);
1030 	if (pud_leaf(pud)) {
1031 		ptl = pud_lock(mm, pudp);
1032 		page = follow_huge_pud(vma, address, pudp, flags, ctx);
1033 		spin_unlock(ptl);
1034 		if (page)
1035 			return page;
1036 		return no_page_table(vma, flags, address);
1037 	}
1038 	if (unlikely(pud_bad(pud)))
1039 		return no_page_table(vma, flags, address);
1040 
1041 	return follow_pmd_mask(vma, address, pudp, flags, ctx);
1042 }
1043 
follow_p4d_mask(struct vm_area_struct * vma,unsigned long address,pgd_t * pgdp,unsigned int flags,struct follow_page_context * ctx)1044 static struct page *follow_p4d_mask(struct vm_area_struct *vma,
1045 				    unsigned long address, pgd_t *pgdp,
1046 				    unsigned int flags,
1047 				    struct follow_page_context *ctx)
1048 {
1049 	p4d_t *p4dp, p4d;
1050 
1051 	p4dp = p4d_offset(pgdp, address);
1052 	p4d = READ_ONCE(*p4dp);
1053 	BUILD_BUG_ON(p4d_leaf(p4d));
1054 
1055 	if (!p4d_present(p4d) || p4d_bad(p4d))
1056 		return no_page_table(vma, flags, address);
1057 
1058 	return follow_pud_mask(vma, address, p4dp, flags, ctx);
1059 }
1060 
1061 /**
1062  * follow_page_mask - look up a page descriptor from a user-virtual address
1063  * @vma: vm_area_struct mapping @address
1064  * @address: virtual address to look up
1065  * @flags: flags modifying lookup behaviour
1066  * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
1067  *       pointer to output page_mask
1068  *
1069  * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1070  *
1071  * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
1072  * the device's dev_pagemap metadata to avoid repeating expensive lookups.
1073  *
1074  * When getting an anonymous page and the caller has to trigger unsharing
1075  * of a shared anonymous page first, -EMLINK is returned. The caller should
1076  * trigger a fault with FAULT_FLAG_UNSHARE set. Note that unsharing is only
1077  * relevant with FOLL_PIN and !FOLL_WRITE.
1078  *
1079  * On output, the @ctx->page_mask is set according to the size of the page.
1080  *
1081  * Return: the mapped (struct page *), %NULL if no mapping exists, or
1082  * an error pointer if there is a mapping to something not represented
1083  * by a page descriptor (see also vm_normal_page()).
1084  */
follow_page_mask(struct vm_area_struct * vma,unsigned long address,unsigned int flags,struct follow_page_context * ctx)1085 static struct page *follow_page_mask(struct vm_area_struct *vma,
1086 			      unsigned long address, unsigned int flags,
1087 			      struct follow_page_context *ctx)
1088 {
1089 	pgd_t *pgd;
1090 	struct mm_struct *mm = vma->vm_mm;
1091 	struct page *page;
1092 
1093 	vma_pgtable_walk_begin(vma);
1094 
1095 	ctx->page_mask = 0;
1096 	pgd = pgd_offset(mm, address);
1097 
1098 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1099 		page = no_page_table(vma, flags, address);
1100 	else
1101 		page = follow_p4d_mask(vma, address, pgd, flags, ctx);
1102 
1103 	vma_pgtable_walk_end(vma);
1104 
1105 	return page;
1106 }
1107 
get_gate_page(struct mm_struct * mm,unsigned long address,unsigned int gup_flags,struct vm_area_struct ** vma,struct page ** page)1108 static int get_gate_page(struct mm_struct *mm, unsigned long address,
1109 		unsigned int gup_flags, struct vm_area_struct **vma,
1110 		struct page **page)
1111 {
1112 	pgd_t *pgd;
1113 	p4d_t *p4d;
1114 	pud_t *pud;
1115 	pmd_t *pmd;
1116 	pte_t *pte;
1117 	pte_t entry;
1118 	int ret = -EFAULT;
1119 
1120 	/* user gate pages are read-only */
1121 	if (gup_flags & FOLL_WRITE)
1122 		return -EFAULT;
1123 	if (address > TASK_SIZE)
1124 		pgd = pgd_offset_k(address);
1125 	else
1126 		pgd = pgd_offset_gate(mm, address);
1127 	if (pgd_none(*pgd))
1128 		return -EFAULT;
1129 	p4d = p4d_offset(pgd, address);
1130 	if (p4d_none(*p4d))
1131 		return -EFAULT;
1132 	pud = pud_offset(p4d, address);
1133 	if (pud_none(*pud))
1134 		return -EFAULT;
1135 	pmd = pmd_offset(pud, address);
1136 	if (!pmd_present(*pmd))
1137 		return -EFAULT;
1138 	pte = pte_offset_map(pmd, address);
1139 	if (!pte)
1140 		return -EFAULT;
1141 	entry = ptep_get(pte);
1142 	if (pte_none(entry))
1143 		goto unmap;
1144 	*vma = get_gate_vma(mm);
1145 	if (!page)
1146 		goto out;
1147 	*page = vm_normal_page(*vma, address, entry);
1148 	if (!*page) {
1149 		if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(entry)))
1150 			goto unmap;
1151 		*page = pte_page(entry);
1152 	}
1153 	ret = try_grab_folio(page_folio(*page), 1, gup_flags);
1154 	if (unlikely(ret))
1155 		goto unmap;
1156 out:
1157 	ret = 0;
1158 unmap:
1159 	pte_unmap(pte);
1160 	return ret;
1161 }
1162 
1163 /*
1164  * mmap_lock must be held on entry.  If @flags has FOLL_UNLOCKABLE but not
1165  * FOLL_NOWAIT, the mmap_lock may be released.  If it is, *@locked will be set
1166  * to 0 and -EBUSY returned.
1167  */
faultin_page(struct vm_area_struct * vma,unsigned long address,unsigned int flags,bool unshare,int * locked)1168 static int faultin_page(struct vm_area_struct *vma,
1169 		unsigned long address, unsigned int flags, bool unshare,
1170 		int *locked)
1171 {
1172 	unsigned int fault_flags = 0;
1173 	vm_fault_t ret;
1174 
1175 	if (flags & FOLL_NOFAULT)
1176 		return -EFAULT;
1177 	if (flags & FOLL_WRITE)
1178 		fault_flags |= FAULT_FLAG_WRITE;
1179 	if (flags & FOLL_REMOTE)
1180 		fault_flags |= FAULT_FLAG_REMOTE;
1181 	if (flags & FOLL_UNLOCKABLE) {
1182 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1183 		/*
1184 		 * FAULT_FLAG_INTERRUPTIBLE is opt-in. GUP callers must set
1185 		 * FOLL_INTERRUPTIBLE to enable FAULT_FLAG_INTERRUPTIBLE.
1186 		 * That's because some callers may not be prepared to
1187 		 * handle early exits caused by non-fatal signals.
1188 		 */
1189 		if (flags & FOLL_INTERRUPTIBLE)
1190 			fault_flags |= FAULT_FLAG_INTERRUPTIBLE;
1191 	}
1192 	if (flags & FOLL_NOWAIT)
1193 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
1194 	if (flags & FOLL_TRIED) {
1195 		/*
1196 		 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
1197 		 * can co-exist
1198 		 */
1199 		fault_flags |= FAULT_FLAG_TRIED;
1200 	}
1201 	if (unshare) {
1202 		fault_flags |= FAULT_FLAG_UNSHARE;
1203 		/* FAULT_FLAG_WRITE and FAULT_FLAG_UNSHARE are incompatible */
1204 		VM_BUG_ON(fault_flags & FAULT_FLAG_WRITE);
1205 	}
1206 
1207 	ret = handle_mm_fault(vma, address, fault_flags, NULL);
1208 
1209 	if (ret & VM_FAULT_COMPLETED) {
1210 		/*
1211 		 * With FAULT_FLAG_RETRY_NOWAIT we'll never release the
1212 		 * mmap lock in the page fault handler. Sanity check this.
1213 		 */
1214 		WARN_ON_ONCE(fault_flags & FAULT_FLAG_RETRY_NOWAIT);
1215 		*locked = 0;
1216 
1217 		/*
1218 		 * We should do the same as VM_FAULT_RETRY, but let's not
1219 		 * return -EBUSY since that's not reflecting the reality of
1220 		 * what has happened - we've just fully completed a page
1221 		 * fault, with the mmap lock released.  Use -EAGAIN to show
1222 		 * that we want to take the mmap lock _again_.
1223 		 */
1224 		return -EAGAIN;
1225 	}
1226 
1227 	if (ret & VM_FAULT_ERROR) {
1228 		int err = vm_fault_to_errno(ret, flags);
1229 
1230 		if (err)
1231 			return err;
1232 		BUG();
1233 	}
1234 
1235 	if (ret & VM_FAULT_RETRY) {
1236 		if (!(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
1237 			*locked = 0;
1238 		return -EBUSY;
1239 	}
1240 
1241 	return 0;
1242 }
1243 
1244 /*
1245  * Writing to file-backed mappings which require folio dirty tracking using GUP
1246  * is a fundamentally broken operation, as kernel write access to GUP mappings
1247  * do not adhere to the semantics expected by a file system.
1248  *
1249  * Consider the following scenario:-
1250  *
1251  * 1. A folio is written to via GUP which write-faults the memory, notifying
1252  *    the file system and dirtying the folio.
1253  * 2. Later, writeback is triggered, resulting in the folio being cleaned and
1254  *    the PTE being marked read-only.
1255  * 3. The GUP caller writes to the folio, as it is mapped read/write via the
1256  *    direct mapping.
1257  * 4. The GUP caller, now done with the page, unpins it and sets it dirty
1258  *    (though it does not have to).
1259  *
1260  * This results in both data being written to a folio without writenotify, and
1261  * the folio being dirtied unexpectedly (if the caller decides to do so).
1262  */
writable_file_mapping_allowed(struct vm_area_struct * vma,unsigned long gup_flags)1263 static bool writable_file_mapping_allowed(struct vm_area_struct *vma,
1264 					  unsigned long gup_flags)
1265 {
1266 	/*
1267 	 * If we aren't pinning then no problematic write can occur. A long term
1268 	 * pin is the most egregious case so this is the case we disallow.
1269 	 */
1270 	if ((gup_flags & (FOLL_PIN | FOLL_LONGTERM)) !=
1271 	    (FOLL_PIN | FOLL_LONGTERM))
1272 		return true;
1273 
1274 	/*
1275 	 * If the VMA does not require dirty tracking then no problematic write
1276 	 * can occur either.
1277 	 */
1278 	return !vma_needs_dirty_tracking(vma);
1279 }
1280 
check_vma_flags(struct vm_area_struct * vma,unsigned long gup_flags)1281 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
1282 {
1283 	vm_flags_t vm_flags = vma->vm_flags;
1284 	int write = (gup_flags & FOLL_WRITE);
1285 	int foreign = (gup_flags & FOLL_REMOTE);
1286 	bool vma_anon = vma_is_anonymous(vma);
1287 
1288 	if (vm_flags & (VM_IO | VM_PFNMAP))
1289 		return -EFAULT;
1290 
1291 	if ((gup_flags & FOLL_ANON) && !vma_anon)
1292 		return -EFAULT;
1293 
1294 	if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma))
1295 		return -EOPNOTSUPP;
1296 
1297 	if ((gup_flags & FOLL_SPLIT_PMD) && is_vm_hugetlb_page(vma))
1298 		return -EOPNOTSUPP;
1299 
1300 	if (vma_is_secretmem(vma))
1301 		return -EFAULT;
1302 
1303 	if (write) {
1304 		if (!vma_anon &&
1305 		    !writable_file_mapping_allowed(vma, gup_flags))
1306 			return -EFAULT;
1307 
1308 		if (!(vm_flags & VM_WRITE) || (vm_flags & VM_SHADOW_STACK)) {
1309 			if (!(gup_flags & FOLL_FORCE))
1310 				return -EFAULT;
1311 			/* hugetlb does not support FOLL_FORCE|FOLL_WRITE. */
1312 			if (is_vm_hugetlb_page(vma))
1313 				return -EFAULT;
1314 			/*
1315 			 * We used to let the write,force case do COW in a
1316 			 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
1317 			 * set a breakpoint in a read-only mapping of an
1318 			 * executable, without corrupting the file (yet only
1319 			 * when that file had been opened for writing!).
1320 			 * Anon pages in shared mappings are surprising: now
1321 			 * just reject it.
1322 			 */
1323 			if (!is_cow_mapping(vm_flags))
1324 				return -EFAULT;
1325 		}
1326 	} else if (!(vm_flags & VM_READ)) {
1327 		if (!(gup_flags & FOLL_FORCE))
1328 			return -EFAULT;
1329 		/*
1330 		 * Is there actually any vma we can reach here which does not
1331 		 * have VM_MAYREAD set?
1332 		 */
1333 		if (!(vm_flags & VM_MAYREAD))
1334 			return -EFAULT;
1335 	}
1336 	/*
1337 	 * gups are always data accesses, not instruction
1338 	 * fetches, so execute=false here
1339 	 */
1340 	if (!arch_vma_access_permitted(vma, write, false, foreign))
1341 		return -EFAULT;
1342 	return 0;
1343 }
1344 
1345 /*
1346  * This is "vma_lookup()", but with a warning if we would have
1347  * historically expanded the stack in the GUP code.
1348  */
gup_vma_lookup(struct mm_struct * mm,unsigned long addr)1349 static struct vm_area_struct *gup_vma_lookup(struct mm_struct *mm,
1350 	 unsigned long addr)
1351 {
1352 #ifdef CONFIG_STACK_GROWSUP
1353 	return vma_lookup(mm, addr);
1354 #else
1355 	static volatile unsigned long next_warn;
1356 	struct vm_area_struct *vma;
1357 	unsigned long now, next;
1358 
1359 	vma = find_vma(mm, addr);
1360 	if (!vma || (addr >= vma->vm_start))
1361 		return vma;
1362 
1363 	/* Only warn for half-way relevant accesses */
1364 	if (!(vma->vm_flags & VM_GROWSDOWN))
1365 		return NULL;
1366 	if (vma->vm_start - addr > 65536)
1367 		return NULL;
1368 
1369 	/* Let's not warn more than once an hour.. */
1370 	now = jiffies; next = next_warn;
1371 	if (next && time_before(now, next))
1372 		return NULL;
1373 	next_warn = now + 60*60*HZ;
1374 
1375 	/* Let people know things may have changed. */
1376 	pr_warn("GUP no longer grows the stack in %s (%d): %lx-%lx (%lx)\n",
1377 		current->comm, task_pid_nr(current),
1378 		vma->vm_start, vma->vm_end, addr);
1379 	dump_stack();
1380 	return NULL;
1381 #endif
1382 }
1383 
1384 /**
1385  * __get_user_pages() - pin user pages in memory
1386  * @mm:		mm_struct of target mm
1387  * @start:	starting user address
1388  * @nr_pages:	number of pages from start to pin
1389  * @gup_flags:	flags modifying pin behaviour
1390  * @pages:	array that receives pointers to the pages pinned.
1391  *		Should be at least nr_pages long. Or NULL, if caller
1392  *		only intends to ensure the pages are faulted in.
1393  * @locked:     whether we're still with the mmap_lock held
1394  *
1395  * Returns either number of pages pinned (which may be less than the
1396  * number requested), or an error. Details about the return value:
1397  *
1398  * -- If nr_pages is 0, returns 0.
1399  * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1400  * -- If nr_pages is >0, and some pages were pinned, returns the number of
1401  *    pages pinned. Again, this may be less than nr_pages.
1402  * -- 0 return value is possible when the fault would need to be retried.
1403  *
1404  * The caller is responsible for releasing returned @pages, via put_page().
1405  *
1406  * Must be called with mmap_lock held.  It may be released.  See below.
1407  *
1408  * __get_user_pages walks a process's page tables and takes a reference to
1409  * each struct page that each user address corresponds to at a given
1410  * instant. That is, it takes the page that would be accessed if a user
1411  * thread accesses the given user virtual address at that instant.
1412  *
1413  * This does not guarantee that the page exists in the user mappings when
1414  * __get_user_pages returns, and there may even be a completely different
1415  * page there in some cases (eg. if mmapped pagecache has been invalidated
1416  * and subsequently re-faulted). However it does guarantee that the page
1417  * won't be freed completely. And mostly callers simply care that the page
1418  * contains data that was valid *at some point in time*. Typically, an IO
1419  * or similar operation cannot guarantee anything stronger anyway because
1420  * locks can't be held over the syscall boundary.
1421  *
1422  * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1423  * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1424  * appropriate) must be called after the page is finished with, and
1425  * before put_page is called.
1426  *
1427  * If FOLL_UNLOCKABLE is set without FOLL_NOWAIT then the mmap_lock may
1428  * be released. If this happens *@locked will be set to 0 on return.
1429  *
1430  * A caller using such a combination of @gup_flags must therefore hold the
1431  * mmap_lock for reading only, and recognize when it's been released. Otherwise,
1432  * it must be held for either reading or writing and will not be released.
1433  *
1434  * In most cases, get_user_pages or get_user_pages_fast should be used
1435  * instead of __get_user_pages. __get_user_pages should be used only if
1436  * you need some special @gup_flags.
1437  */
__get_user_pages(struct mm_struct * mm,unsigned long start,unsigned long nr_pages,unsigned int gup_flags,struct page ** pages,int * locked)1438 static long __get_user_pages(struct mm_struct *mm,
1439 		unsigned long start, unsigned long nr_pages,
1440 		unsigned int gup_flags, struct page **pages,
1441 		int *locked)
1442 {
1443 	long ret = 0, i = 0;
1444 	struct vm_area_struct *vma = NULL;
1445 	struct follow_page_context ctx = { NULL };
1446 
1447 	if (!nr_pages)
1448 		return 0;
1449 
1450 	start = untagged_addr_remote(mm, start);
1451 
1452 	VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
1453 
1454 	do {
1455 		struct page *page;
1456 		unsigned int page_increm;
1457 
1458 		/* first iteration or cross vma bound */
1459 		if (!vma || start >= vma->vm_end) {
1460 			/*
1461 			 * MADV_POPULATE_(READ|WRITE) wants to handle VMA
1462 			 * lookups+error reporting differently.
1463 			 */
1464 			if (gup_flags & FOLL_MADV_POPULATE) {
1465 				vma = vma_lookup(mm, start);
1466 				if (!vma) {
1467 					ret = -ENOMEM;
1468 					goto out;
1469 				}
1470 				if (check_vma_flags(vma, gup_flags)) {
1471 					ret = -EINVAL;
1472 					goto out;
1473 				}
1474 				goto retry;
1475 			}
1476 			vma = gup_vma_lookup(mm, start);
1477 			if (!vma && in_gate_area(mm, start)) {
1478 				ret = get_gate_page(mm, start & PAGE_MASK,
1479 						gup_flags, &vma,
1480 						pages ? &page : NULL);
1481 				if (ret)
1482 					goto out;
1483 				ctx.page_mask = 0;
1484 				goto next_page;
1485 			}
1486 
1487 			if (!vma) {
1488 				ret = -EFAULT;
1489 				goto out;
1490 			}
1491 			ret = check_vma_flags(vma, gup_flags);
1492 			if (ret)
1493 				goto out;
1494 		}
1495 retry:
1496 		/*
1497 		 * If we have a pending SIGKILL, don't keep faulting pages and
1498 		 * potentially allocating memory.
1499 		 */
1500 		if (fatal_signal_pending(current)) {
1501 			ret = -EINTR;
1502 			goto out;
1503 		}
1504 		cond_resched();
1505 
1506 		page = follow_page_mask(vma, start, gup_flags, &ctx);
1507 		if (!page || PTR_ERR(page) == -EMLINK) {
1508 			ret = faultin_page(vma, start, gup_flags,
1509 					   PTR_ERR(page) == -EMLINK, locked);
1510 			switch (ret) {
1511 			case 0:
1512 				goto retry;
1513 			case -EBUSY:
1514 			case -EAGAIN:
1515 				ret = 0;
1516 				fallthrough;
1517 			case -EFAULT:
1518 			case -ENOMEM:
1519 			case -EHWPOISON:
1520 				goto out;
1521 			}
1522 			BUG();
1523 		} else if (PTR_ERR(page) == -EEXIST) {
1524 			/*
1525 			 * Proper page table entry exists, but no corresponding
1526 			 * struct page. If the caller expects **pages to be
1527 			 * filled in, bail out now, because that can't be done
1528 			 * for this page.
1529 			 */
1530 			if (pages) {
1531 				ret = PTR_ERR(page);
1532 				goto out;
1533 			}
1534 		} else if (IS_ERR(page)) {
1535 			ret = PTR_ERR(page);
1536 			goto out;
1537 		}
1538 next_page:
1539 		page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
1540 		if (page_increm > nr_pages)
1541 			page_increm = nr_pages;
1542 
1543 		if (pages) {
1544 			struct page *subpage;
1545 			unsigned int j;
1546 
1547 			/*
1548 			 * This must be a large folio (and doesn't need to
1549 			 * be the whole folio; it can be part of it), do
1550 			 * the refcount work for all the subpages too.
1551 			 *
1552 			 * NOTE: here the page may not be the head page
1553 			 * e.g. when start addr is not thp-size aligned.
1554 			 * try_grab_folio() should have taken care of tail
1555 			 * pages.
1556 			 */
1557 			if (page_increm > 1) {
1558 				struct folio *folio = page_folio(page);
1559 
1560 				/*
1561 				 * Since we already hold refcount on the
1562 				 * large folio, this should never fail.
1563 				 */
1564 				if (try_grab_folio(folio, page_increm - 1,
1565 						   gup_flags)) {
1566 					/*
1567 					 * Release the 1st page ref if the
1568 					 * folio is problematic, fail hard.
1569 					 */
1570 					gup_put_folio(folio, 1, gup_flags);
1571 					ret = -EFAULT;
1572 					goto out;
1573 				}
1574 			}
1575 
1576 			for (j = 0; j < page_increm; j++) {
1577 				subpage = nth_page(page, j);
1578 				pages[i + j] = subpage;
1579 				flush_anon_page(vma, subpage, start + j * PAGE_SIZE);
1580 				flush_dcache_page(subpage);
1581 			}
1582 		}
1583 
1584 		i += page_increm;
1585 		start += page_increm * PAGE_SIZE;
1586 		nr_pages -= page_increm;
1587 	} while (nr_pages);
1588 out:
1589 	if (ctx.pgmap)
1590 		put_dev_pagemap(ctx.pgmap);
1591 	return i ? i : ret;
1592 }
1593 
vma_permits_fault(struct vm_area_struct * vma,unsigned int fault_flags)1594 static bool vma_permits_fault(struct vm_area_struct *vma,
1595 			      unsigned int fault_flags)
1596 {
1597 	bool write   = !!(fault_flags & FAULT_FLAG_WRITE);
1598 	bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
1599 	vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
1600 
1601 	if (!(vm_flags & vma->vm_flags))
1602 		return false;
1603 
1604 	/*
1605 	 * The architecture might have a hardware protection
1606 	 * mechanism other than read/write that can deny access.
1607 	 *
1608 	 * gup always represents data access, not instruction
1609 	 * fetches, so execute=false here:
1610 	 */
1611 	if (!arch_vma_access_permitted(vma, write, false, foreign))
1612 		return false;
1613 
1614 	return true;
1615 }
1616 
1617 /**
1618  * fixup_user_fault() - manually resolve a user page fault
1619  * @mm:		mm_struct of target mm
1620  * @address:	user address
1621  * @fault_flags:flags to pass down to handle_mm_fault()
1622  * @unlocked:	did we unlock the mmap_lock while retrying, maybe NULL if caller
1623  *		does not allow retry. If NULL, the caller must guarantee
1624  *		that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
1625  *
1626  * This is meant to be called in the specific scenario where for locking reasons
1627  * we try to access user memory in atomic context (within a pagefault_disable()
1628  * section), this returns -EFAULT, and we want to resolve the user fault before
1629  * trying again.
1630  *
1631  * Typically this is meant to be used by the futex code.
1632  *
1633  * The main difference with get_user_pages() is that this function will
1634  * unconditionally call handle_mm_fault() which will in turn perform all the
1635  * necessary SW fixup of the dirty and young bits in the PTE, while
1636  * get_user_pages() only guarantees to update these in the struct page.
1637  *
1638  * This is important for some architectures where those bits also gate the
1639  * access permission to the page because they are maintained in software.  On
1640  * such architectures, gup() will not be enough to make a subsequent access
1641  * succeed.
1642  *
1643  * This function will not return with an unlocked mmap_lock. So it has not the
1644  * same semantics wrt the @mm->mmap_lock as does filemap_fault().
1645  */
fixup_user_fault(struct mm_struct * mm,unsigned long address,unsigned int fault_flags,bool * unlocked)1646 int fixup_user_fault(struct mm_struct *mm,
1647 		     unsigned long address, unsigned int fault_flags,
1648 		     bool *unlocked)
1649 {
1650 	struct vm_area_struct *vma;
1651 	vm_fault_t ret;
1652 
1653 	address = untagged_addr_remote(mm, address);
1654 
1655 	if (unlocked)
1656 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1657 
1658 retry:
1659 	vma = gup_vma_lookup(mm, address);
1660 	if (!vma)
1661 		return -EFAULT;
1662 
1663 	if (!vma_permits_fault(vma, fault_flags))
1664 		return -EFAULT;
1665 
1666 	if ((fault_flags & FAULT_FLAG_KILLABLE) &&
1667 	    fatal_signal_pending(current))
1668 		return -EINTR;
1669 
1670 	ret = handle_mm_fault(vma, address, fault_flags, NULL);
1671 
1672 	if (ret & VM_FAULT_COMPLETED) {
1673 		/*
1674 		 * NOTE: it's a pity that we need to retake the lock here
1675 		 * to pair with the unlock() in the callers. Ideally we
1676 		 * could tell the callers so they do not need to unlock.
1677 		 */
1678 		mmap_read_lock(mm);
1679 		*unlocked = true;
1680 		return 0;
1681 	}
1682 
1683 	if (ret & VM_FAULT_ERROR) {
1684 		int err = vm_fault_to_errno(ret, 0);
1685 
1686 		if (err)
1687 			return err;
1688 		BUG();
1689 	}
1690 
1691 	if (ret & VM_FAULT_RETRY) {
1692 		mmap_read_lock(mm);
1693 		*unlocked = true;
1694 		fault_flags |= FAULT_FLAG_TRIED;
1695 		goto retry;
1696 	}
1697 
1698 	return 0;
1699 }
1700 EXPORT_SYMBOL_GPL(fixup_user_fault);
1701 
1702 /*
1703  * GUP always responds to fatal signals.  When FOLL_INTERRUPTIBLE is
1704  * specified, it'll also respond to generic signals.  The caller of GUP
1705  * that has FOLL_INTERRUPTIBLE should take care of the GUP interruption.
1706  */
gup_signal_pending(unsigned int flags)1707 static bool gup_signal_pending(unsigned int flags)
1708 {
1709 	if (fatal_signal_pending(current))
1710 		return true;
1711 
1712 	if (!(flags & FOLL_INTERRUPTIBLE))
1713 		return false;
1714 
1715 	return signal_pending(current);
1716 }
1717 
1718 /*
1719  * Locking: (*locked == 1) means that the mmap_lock has already been acquired by
1720  * the caller. This function may drop the mmap_lock. If it does so, then it will
1721  * set (*locked = 0).
1722  *
1723  * (*locked == 0) means that the caller expects this function to acquire and
1724  * drop the mmap_lock. Therefore, the value of *locked will still be zero when
1725  * the function returns, even though it may have changed temporarily during
1726  * function execution.
1727  *
1728  * Please note that this function, unlike __get_user_pages(), will not return 0
1729  * for nr_pages > 0, unless FOLL_NOWAIT is used.
1730  */
__get_user_pages_locked(struct mm_struct * mm,unsigned long start,unsigned long nr_pages,struct page ** pages,int * locked,unsigned int flags)1731 static __always_inline long __get_user_pages_locked(struct mm_struct *mm,
1732 						unsigned long start,
1733 						unsigned long nr_pages,
1734 						struct page **pages,
1735 						int *locked,
1736 						unsigned int flags)
1737 {
1738 	long ret, pages_done;
1739 	bool must_unlock = false;
1740 
1741 	if (!nr_pages)
1742 		return 0;
1743 
1744 	/*
1745 	 * The internal caller expects GUP to manage the lock internally and the
1746 	 * lock must be released when this returns.
1747 	 */
1748 	if (!*locked) {
1749 		if (mmap_read_lock_killable(mm))
1750 			return -EAGAIN;
1751 		must_unlock = true;
1752 		*locked = 1;
1753 	}
1754 	else
1755 		mmap_assert_locked(mm);
1756 
1757 	if (flags & FOLL_PIN)
1758 		mm_set_has_pinned_flag(&mm->flags);
1759 
1760 	/*
1761 	 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
1762 	 * is to set FOLL_GET if the caller wants pages[] filled in (but has
1763 	 * carelessly failed to specify FOLL_GET), so keep doing that, but only
1764 	 * for FOLL_GET, not for the newer FOLL_PIN.
1765 	 *
1766 	 * FOLL_PIN always expects pages to be non-null, but no need to assert
1767 	 * that here, as any failures will be obvious enough.
1768 	 */
1769 	if (pages && !(flags & FOLL_PIN))
1770 		flags |= FOLL_GET;
1771 
1772 	pages_done = 0;
1773 	for (;;) {
1774 		ret = __get_user_pages(mm, start, nr_pages, flags, pages,
1775 				       locked);
1776 		if (!(flags & FOLL_UNLOCKABLE)) {
1777 			/* VM_FAULT_RETRY couldn't trigger, bypass */
1778 			pages_done = ret;
1779 			break;
1780 		}
1781 
1782 		/* VM_FAULT_RETRY or VM_FAULT_COMPLETED cannot return errors */
1783 		if (!*locked) {
1784 			BUG_ON(ret < 0);
1785 			BUG_ON(ret >= nr_pages);
1786 		}
1787 
1788 		if (ret > 0) {
1789 			nr_pages -= ret;
1790 			pages_done += ret;
1791 			if (!nr_pages)
1792 				break;
1793 		}
1794 		if (*locked) {
1795 			/*
1796 			 * VM_FAULT_RETRY didn't trigger or it was a
1797 			 * FOLL_NOWAIT.
1798 			 */
1799 			if (!pages_done)
1800 				pages_done = ret;
1801 			break;
1802 		}
1803 		/*
1804 		 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1805 		 * For the prefault case (!pages) we only update counts.
1806 		 */
1807 		if (likely(pages))
1808 			pages += ret;
1809 		start += ret << PAGE_SHIFT;
1810 
1811 		/* The lock was temporarily dropped, so we must unlock later */
1812 		must_unlock = true;
1813 
1814 retry:
1815 		/*
1816 		 * Repeat on the address that fired VM_FAULT_RETRY
1817 		 * with both FAULT_FLAG_ALLOW_RETRY and
1818 		 * FAULT_FLAG_TRIED.  Note that GUP can be interrupted
1819 		 * by fatal signals of even common signals, depending on
1820 		 * the caller's request. So we need to check it before we
1821 		 * start trying again otherwise it can loop forever.
1822 		 */
1823 		if (gup_signal_pending(flags)) {
1824 			if (!pages_done)
1825 				pages_done = -EINTR;
1826 			break;
1827 		}
1828 
1829 		ret = mmap_read_lock_killable(mm);
1830 		if (ret) {
1831 			BUG_ON(ret > 0);
1832 			if (!pages_done)
1833 				pages_done = ret;
1834 			break;
1835 		}
1836 
1837 		*locked = 1;
1838 		ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED,
1839 				       pages, locked);
1840 		if (!*locked) {
1841 			/* Continue to retry until we succeeded */
1842 			BUG_ON(ret != 0);
1843 			goto retry;
1844 		}
1845 		if (ret != 1) {
1846 			BUG_ON(ret > 1);
1847 			if (!pages_done)
1848 				pages_done = ret;
1849 			break;
1850 		}
1851 		nr_pages--;
1852 		pages_done++;
1853 		if (!nr_pages)
1854 			break;
1855 		if (likely(pages))
1856 			pages++;
1857 		start += PAGE_SIZE;
1858 	}
1859 	if (must_unlock && *locked) {
1860 		/*
1861 		 * We either temporarily dropped the lock, or the caller
1862 		 * requested that we both acquire and drop the lock. Either way,
1863 		 * we must now unlock, and notify the caller of that state.
1864 		 */
1865 		mmap_read_unlock(mm);
1866 		*locked = 0;
1867 	}
1868 
1869 	/*
1870 	 * Failing to pin anything implies something has gone wrong (except when
1871 	 * FOLL_NOWAIT is specified).
1872 	 */
1873 	if (WARN_ON_ONCE(pages_done == 0 && !(flags & FOLL_NOWAIT)))
1874 		return -EFAULT;
1875 
1876 	return pages_done;
1877 }
1878 
1879 /**
1880  * populate_vma_page_range() -  populate a range of pages in the vma.
1881  * @vma:   target vma
1882  * @start: start address
1883  * @end:   end address
1884  * @locked: whether the mmap_lock is still held
1885  *
1886  * This takes care of mlocking the pages too if VM_LOCKED is set.
1887  *
1888  * Return either number of pages pinned in the vma, or a negative error
1889  * code on error.
1890  *
1891  * vma->vm_mm->mmap_lock must be held.
1892  *
1893  * If @locked is NULL, it may be held for read or write and will
1894  * be unperturbed.
1895  *
1896  * If @locked is non-NULL, it must held for read only and may be
1897  * released.  If it's released, *@locked will be set to 0.
1898  */
populate_vma_page_range(struct vm_area_struct * vma,unsigned long start,unsigned long end,int * locked)1899 long populate_vma_page_range(struct vm_area_struct *vma,
1900 		unsigned long start, unsigned long end, int *locked)
1901 {
1902 	struct mm_struct *mm = vma->vm_mm;
1903 	unsigned long nr_pages = (end - start) / PAGE_SIZE;
1904 	int local_locked = 1;
1905 	int gup_flags;
1906 	long ret;
1907 
1908 	VM_BUG_ON(!PAGE_ALIGNED(start));
1909 	VM_BUG_ON(!PAGE_ALIGNED(end));
1910 	VM_BUG_ON_VMA(start < vma->vm_start, vma);
1911 	VM_BUG_ON_VMA(end   > vma->vm_end, vma);
1912 	mmap_assert_locked(mm);
1913 
1914 	/*
1915 	 * Rightly or wrongly, the VM_LOCKONFAULT case has never used
1916 	 * faultin_page() to break COW, so it has no work to do here.
1917 	 */
1918 	if (vma->vm_flags & VM_LOCKONFAULT)
1919 		return nr_pages;
1920 
1921 	/* ... similarly, we've never faulted in PROT_NONE pages */
1922 	if (!vma_is_accessible(vma))
1923 		return -EFAULT;
1924 
1925 	gup_flags = FOLL_TOUCH;
1926 	/*
1927 	 * We want to touch writable mappings with a write fault in order
1928 	 * to break COW, except for shared mappings because these don't COW
1929 	 * and we would not want to dirty them for nothing.
1930 	 *
1931 	 * Otherwise, do a read fault, and use FOLL_FORCE in case it's not
1932 	 * readable (ie write-only or executable).
1933 	 */
1934 	if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1935 		gup_flags |= FOLL_WRITE;
1936 	else
1937 		gup_flags |= FOLL_FORCE;
1938 
1939 	if (locked)
1940 		gup_flags |= FOLL_UNLOCKABLE;
1941 
1942 	/*
1943 	 * We made sure addr is within a VMA, so the following will
1944 	 * not result in a stack expansion that recurses back here.
1945 	 */
1946 	ret = __get_user_pages(mm, start, nr_pages, gup_flags,
1947 			       NULL, locked ? locked : &local_locked);
1948 	lru_add_drain();
1949 	return ret;
1950 }
1951 
1952 /*
1953  * faultin_page_range() - populate (prefault) page tables inside the
1954  *			  given range readable/writable
1955  *
1956  * This takes care of mlocking the pages, too, if VM_LOCKED is set.
1957  *
1958  * @mm: the mm to populate page tables in
1959  * @start: start address
1960  * @end: end address
1961  * @write: whether to prefault readable or writable
1962  * @locked: whether the mmap_lock is still held
1963  *
1964  * Returns either number of processed pages in the MM, or a negative error
1965  * code on error (see __get_user_pages()). Note that this function reports
1966  * errors related to VMAs, such as incompatible mappings, as expected by
1967  * MADV_POPULATE_(READ|WRITE).
1968  *
1969  * The range must be page-aligned.
1970  *
1971  * mm->mmap_lock must be held. If it's released, *@locked will be set to 0.
1972  */
faultin_page_range(struct mm_struct * mm,unsigned long start,unsigned long end,bool write,int * locked)1973 long faultin_page_range(struct mm_struct *mm, unsigned long start,
1974 			unsigned long end, bool write, int *locked)
1975 {
1976 	unsigned long nr_pages = (end - start) / PAGE_SIZE;
1977 	int gup_flags;
1978 	long ret;
1979 
1980 	VM_BUG_ON(!PAGE_ALIGNED(start));
1981 	VM_BUG_ON(!PAGE_ALIGNED(end));
1982 	mmap_assert_locked(mm);
1983 
1984 	/*
1985 	 * FOLL_TOUCH: Mark page accessed and thereby young; will also mark
1986 	 *	       the page dirty with FOLL_WRITE -- which doesn't make a
1987 	 *	       difference with !FOLL_FORCE, because the page is writable
1988 	 *	       in the page table.
1989 	 * FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit
1990 	 *		  a poisoned page.
1991 	 * !FOLL_FORCE: Require proper access permissions.
1992 	 */
1993 	gup_flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_UNLOCKABLE |
1994 		    FOLL_MADV_POPULATE;
1995 	if (write)
1996 		gup_flags |= FOLL_WRITE;
1997 
1998 	ret = __get_user_pages_locked(mm, start, nr_pages, NULL, locked,
1999 				      gup_flags);
2000 	lru_add_drain();
2001 	return ret;
2002 }
2003 
2004 /*
2005  * __mm_populate - populate and/or mlock pages within a range of address space.
2006  *
2007  * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
2008  * flags. VMAs must be already marked with the desired vm_flags, and
2009  * mmap_lock must not be held.
2010  */
__mm_populate(unsigned long start,unsigned long len,int ignore_errors)2011 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
2012 {
2013 	struct mm_struct *mm = current->mm;
2014 	unsigned long end, nstart, nend;
2015 	struct vm_area_struct *vma = NULL;
2016 	int locked = 0;
2017 	long ret = 0;
2018 
2019 	end = start + len;
2020 
2021 	for (nstart = start; nstart < end; nstart = nend) {
2022 		/*
2023 		 * We want to fault in pages for [nstart; end) address range.
2024 		 * Find first corresponding VMA.
2025 		 */
2026 		if (!locked) {
2027 			locked = 1;
2028 			mmap_read_lock(mm);
2029 			vma = find_vma_intersection(mm, nstart, end);
2030 		} else if (nstart >= vma->vm_end)
2031 			vma = find_vma_intersection(mm, vma->vm_end, end);
2032 
2033 		if (!vma)
2034 			break;
2035 		/*
2036 		 * Set [nstart; nend) to intersection of desired address
2037 		 * range with the first VMA. Also, skip undesirable VMA types.
2038 		 */
2039 		nend = min(end, vma->vm_end);
2040 		if (vma->vm_flags & (VM_IO | VM_PFNMAP))
2041 			continue;
2042 		if (nstart < vma->vm_start)
2043 			nstart = vma->vm_start;
2044 		/*
2045 		 * Now fault in a range of pages. populate_vma_page_range()
2046 		 * double checks the vma flags, so that it won't mlock pages
2047 		 * if the vma was already munlocked.
2048 		 */
2049 		ret = populate_vma_page_range(vma, nstart, nend, &locked);
2050 		if (ret < 0) {
2051 			if (ignore_errors) {
2052 				ret = 0;
2053 				continue;	/* continue at next VMA */
2054 			}
2055 			break;
2056 		}
2057 		nend = nstart + ret * PAGE_SIZE;
2058 		ret = 0;
2059 	}
2060 	if (locked)
2061 		mmap_read_unlock(mm);
2062 	return ret;	/* 0 or negative error code */
2063 }
2064 #else /* CONFIG_MMU */
__get_user_pages_locked(struct mm_struct * mm,unsigned long start,unsigned long nr_pages,struct page ** pages,int * locked,unsigned int foll_flags)2065 static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start,
2066 		unsigned long nr_pages, struct page **pages,
2067 		int *locked, unsigned int foll_flags)
2068 {
2069 	struct vm_area_struct *vma;
2070 	bool must_unlock = false;
2071 	unsigned long vm_flags;
2072 	long i;
2073 
2074 	if (!nr_pages)
2075 		return 0;
2076 
2077 	/*
2078 	 * The internal caller expects GUP to manage the lock internally and the
2079 	 * lock must be released when this returns.
2080 	 */
2081 	if (!*locked) {
2082 		if (mmap_read_lock_killable(mm))
2083 			return -EAGAIN;
2084 		must_unlock = true;
2085 		*locked = 1;
2086 	}
2087 
2088 	/* calculate required read or write permissions.
2089 	 * If FOLL_FORCE is set, we only require the "MAY" flags.
2090 	 */
2091 	vm_flags  = (foll_flags & FOLL_WRITE) ?
2092 			(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
2093 	vm_flags &= (foll_flags & FOLL_FORCE) ?
2094 			(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
2095 
2096 	for (i = 0; i < nr_pages; i++) {
2097 		vma = find_vma(mm, start);
2098 		if (!vma)
2099 			break;
2100 
2101 		/* protect what we can, including chardevs */
2102 		if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
2103 		    !(vm_flags & vma->vm_flags))
2104 			break;
2105 
2106 		if (pages) {
2107 			pages[i] = virt_to_page((void *)start);
2108 			if (pages[i])
2109 				get_page(pages[i]);
2110 		}
2111 
2112 		start = (start + PAGE_SIZE) & PAGE_MASK;
2113 	}
2114 
2115 	if (must_unlock && *locked) {
2116 		mmap_read_unlock(mm);
2117 		*locked = 0;
2118 	}
2119 
2120 	return i ? : -EFAULT;
2121 }
2122 #endif /* !CONFIG_MMU */
2123 
2124 /**
2125  * fault_in_writeable - fault in userspace address range for writing
2126  * @uaddr: start of address range
2127  * @size: size of address range
2128  *
2129  * Returns the number of bytes not faulted in (like copy_to_user() and
2130  * copy_from_user()).
2131  */
fault_in_writeable(char __user * uaddr,size_t size)2132 size_t fault_in_writeable(char __user *uaddr, size_t size)
2133 {
2134 	char __user *start = uaddr, *end;
2135 
2136 	if (unlikely(size == 0))
2137 		return 0;
2138 	if (!user_write_access_begin(uaddr, size))
2139 		return size;
2140 	if (!PAGE_ALIGNED(uaddr)) {
2141 		unsafe_put_user(0, uaddr, out);
2142 		uaddr = (char __user *)PAGE_ALIGN((unsigned long)uaddr);
2143 	}
2144 	end = (char __user *)PAGE_ALIGN((unsigned long)start + size);
2145 	if (unlikely(end < start))
2146 		end = NULL;
2147 	while (uaddr != end) {
2148 		unsafe_put_user(0, uaddr, out);
2149 		uaddr += PAGE_SIZE;
2150 	}
2151 
2152 out:
2153 	user_write_access_end();
2154 	if (size > uaddr - start)
2155 		return size - (uaddr - start);
2156 	return 0;
2157 }
2158 EXPORT_SYMBOL(fault_in_writeable);
2159 
2160 /**
2161  * fault_in_subpage_writeable - fault in an address range for writing
2162  * @uaddr: start of address range
2163  * @size: size of address range
2164  *
2165  * Fault in a user address range for writing while checking for permissions at
2166  * sub-page granularity (e.g. arm64 MTE). This function should be used when
2167  * the caller cannot guarantee forward progress of a copy_to_user() loop.
2168  *
2169  * Returns the number of bytes not faulted in (like copy_to_user() and
2170  * copy_from_user()).
2171  */
fault_in_subpage_writeable(char __user * uaddr,size_t size)2172 size_t fault_in_subpage_writeable(char __user *uaddr, size_t size)
2173 {
2174 	size_t faulted_in;
2175 
2176 	/*
2177 	 * Attempt faulting in at page granularity first for page table
2178 	 * permission checking. The arch-specific probe_subpage_writeable()
2179 	 * functions may not check for this.
2180 	 */
2181 	faulted_in = size - fault_in_writeable(uaddr, size);
2182 	if (faulted_in)
2183 		faulted_in -= probe_subpage_writeable(uaddr, faulted_in);
2184 
2185 	return size - faulted_in;
2186 }
2187 EXPORT_SYMBOL(fault_in_subpage_writeable);
2188 
2189 /*
2190  * fault_in_safe_writeable - fault in an address range for writing
2191  * @uaddr: start of address range
2192  * @size: length of address range
2193  *
2194  * Faults in an address range for writing.  This is primarily useful when we
2195  * already know that some or all of the pages in the address range aren't in
2196  * memory.
2197  *
2198  * Unlike fault_in_writeable(), this function is non-destructive.
2199  *
2200  * Note that we don't pin or otherwise hold the pages referenced that we fault
2201  * in.  There's no guarantee that they'll stay in memory for any duration of
2202  * time.
2203  *
2204  * Returns the number of bytes not faulted in, like copy_to_user() and
2205  * copy_from_user().
2206  */
fault_in_safe_writeable(const char __user * uaddr,size_t size)2207 size_t fault_in_safe_writeable(const char __user *uaddr, size_t size)
2208 {
2209 	unsigned long start = (unsigned long)uaddr, end;
2210 	struct mm_struct *mm = current->mm;
2211 	bool unlocked = false;
2212 
2213 	if (unlikely(size == 0))
2214 		return 0;
2215 	end = PAGE_ALIGN(start + size);
2216 	if (end < start)
2217 		end = 0;
2218 
2219 	mmap_read_lock(mm);
2220 	do {
2221 		if (fixup_user_fault(mm, start, FAULT_FLAG_WRITE, &unlocked))
2222 			break;
2223 		start = (start + PAGE_SIZE) & PAGE_MASK;
2224 	} while (start != end);
2225 	mmap_read_unlock(mm);
2226 
2227 	if (size > start - (unsigned long)uaddr)
2228 		return size - (start - (unsigned long)uaddr);
2229 	return 0;
2230 }
2231 EXPORT_SYMBOL(fault_in_safe_writeable);
2232 
2233 /**
2234  * fault_in_readable - fault in userspace address range for reading
2235  * @uaddr: start of user address range
2236  * @size: size of user address range
2237  *
2238  * Returns the number of bytes not faulted in (like copy_to_user() and
2239  * copy_from_user()).
2240  */
fault_in_readable(const char __user * uaddr,size_t size)2241 size_t fault_in_readable(const char __user *uaddr, size_t size)
2242 {
2243 	const char __user *start = uaddr, *end;
2244 	volatile char c;
2245 
2246 	if (unlikely(size == 0))
2247 		return 0;
2248 	if (!user_read_access_begin(uaddr, size))
2249 		return size;
2250 	if (!PAGE_ALIGNED(uaddr)) {
2251 		unsafe_get_user(c, uaddr, out);
2252 		uaddr = (const char __user *)PAGE_ALIGN((unsigned long)uaddr);
2253 	}
2254 	end = (const char __user *)PAGE_ALIGN((unsigned long)start + size);
2255 	if (unlikely(end < start))
2256 		end = NULL;
2257 	while (uaddr != end) {
2258 		unsafe_get_user(c, uaddr, out);
2259 		uaddr += PAGE_SIZE;
2260 	}
2261 
2262 out:
2263 	user_read_access_end();
2264 	(void)c;
2265 	if (size > uaddr - start)
2266 		return size - (uaddr - start);
2267 	return 0;
2268 }
2269 EXPORT_SYMBOL(fault_in_readable);
2270 
2271 /**
2272  * get_dump_page() - pin user page in memory while writing it to core dump
2273  * @addr: user address
2274  *
2275  * Returns struct page pointer of user page pinned for dump,
2276  * to be freed afterwards by put_page().
2277  *
2278  * Returns NULL on any kind of failure - a hole must then be inserted into
2279  * the corefile, to preserve alignment with its headers; and also returns
2280  * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
2281  * allowing a hole to be left in the corefile to save disk space.
2282  *
2283  * Called without mmap_lock (takes and releases the mmap_lock by itself).
2284  */
2285 #ifdef CONFIG_ELF_CORE
get_dump_page(unsigned long addr)2286 struct page *get_dump_page(unsigned long addr)
2287 {
2288 	struct page *page;
2289 	int locked = 0;
2290 	int ret;
2291 
2292 	ret = __get_user_pages_locked(current->mm, addr, 1, &page, &locked,
2293 				      FOLL_FORCE | FOLL_DUMP | FOLL_GET);
2294 	return (ret == 1) ? page : NULL;
2295 }
2296 #endif /* CONFIG_ELF_CORE */
2297 
2298 #ifdef CONFIG_MIGRATION
2299 
2300 /*
2301  * An array of either pages or folios ("pofs"). Although it may seem tempting to
2302  * avoid this complication, by simply interpreting a list of folios as a list of
2303  * pages, that approach won't work in the longer term, because eventually the
2304  * layouts of struct page and struct folio will become completely different.
2305  * Furthermore, this pof approach avoids excessive page_folio() calls.
2306  */
2307 struct pages_or_folios {
2308 	union {
2309 		struct page **pages;
2310 		struct folio **folios;
2311 		void **entries;
2312 	};
2313 	bool has_folios;
2314 	long nr_entries;
2315 };
2316 
pofs_get_folio(struct pages_or_folios * pofs,long i)2317 static struct folio *pofs_get_folio(struct pages_or_folios *pofs, long i)
2318 {
2319 	if (pofs->has_folios)
2320 		return pofs->folios[i];
2321 	return page_folio(pofs->pages[i]);
2322 }
2323 
pofs_clear_entry(struct pages_or_folios * pofs,long i)2324 static void pofs_clear_entry(struct pages_or_folios *pofs, long i)
2325 {
2326 	pofs->entries[i] = NULL;
2327 }
2328 
pofs_unpin(struct pages_or_folios * pofs)2329 static void pofs_unpin(struct pages_or_folios *pofs)
2330 {
2331 	if (pofs->has_folios)
2332 		unpin_folios(pofs->folios, pofs->nr_entries);
2333 	else
2334 		unpin_user_pages(pofs->pages, pofs->nr_entries);
2335 }
2336 
pofs_next_folio(struct folio * folio,struct pages_or_folios * pofs,long * index_ptr)2337 static struct folio *pofs_next_folio(struct folio *folio,
2338 		struct pages_or_folios *pofs, long *index_ptr)
2339 {
2340 	long i = *index_ptr + 1;
2341 
2342 	if (!pofs->has_folios && folio_test_large(folio)) {
2343 		const unsigned long start_pfn = folio_pfn(folio);
2344 		const unsigned long end_pfn = start_pfn + folio_nr_pages(folio);
2345 
2346 		for (; i < pofs->nr_entries; i++) {
2347 			unsigned long pfn = page_to_pfn(pofs->pages[i]);
2348 
2349 			/* Is this page part of this folio? */
2350 			if (pfn < start_pfn || pfn >= end_pfn)
2351 				break;
2352 		}
2353 	}
2354 
2355 	if (unlikely(i == pofs->nr_entries))
2356 		return NULL;
2357 	*index_ptr = i;
2358 
2359 	return pofs_get_folio(pofs, i);
2360 }
2361 
2362 /*
2363  * Returns the number of collected folios. Return value is always >= 0.
2364  */
collect_longterm_unpinnable_folios(struct list_head * movable_folio_list,struct pages_or_folios * pofs)2365 static unsigned long collect_longterm_unpinnable_folios(
2366 		struct list_head *movable_folio_list,
2367 		struct pages_or_folios *pofs)
2368 {
2369 	unsigned long collected = 0;
2370 	struct folio *folio;
2371 	int drained = 0;
2372 	long i = 0;
2373 
2374 	for (folio = pofs_get_folio(pofs, i); folio;
2375 	     folio = pofs_next_folio(folio, pofs, &i)) {
2376 
2377 		if (folio_is_longterm_pinnable(folio))
2378 			continue;
2379 
2380 		collected++;
2381 
2382 		if (folio_is_device_coherent(folio))
2383 			continue;
2384 
2385 		if (folio_test_hugetlb(folio)) {
2386 			isolate_hugetlb(folio, movable_folio_list);
2387 			continue;
2388 		}
2389 
2390 		if (drained == 0 && folio_may_be_lru_cached(folio) &&
2391 				folio_ref_count(folio) !=
2392 				folio_expected_ref_count(folio) + 1) {
2393 			lru_add_drain();
2394 			drained = 1;
2395 		}
2396 		if (drained == 1 && folio_may_be_lru_cached(folio) &&
2397 				folio_ref_count(folio) !=
2398 				folio_expected_ref_count(folio) + 1) {
2399 			lru_add_drain_all();
2400 			drained = 2;
2401 		}
2402 
2403 		if (!folio_isolate_lru(folio))
2404 			continue;
2405 
2406 		list_add_tail(&folio->lru, movable_folio_list);
2407 		node_stat_mod_folio(folio,
2408 				    NR_ISOLATED_ANON + folio_is_file_lru(folio),
2409 				    folio_nr_pages(folio));
2410 	}
2411 
2412 	return collected;
2413 }
2414 
2415 /*
2416  * Unpins all folios and migrates device coherent folios and movable_folio_list.
2417  * Returns -EAGAIN if all folios were successfully migrated or -errno for
2418  * failure (or partial success).
2419  */
2420 static int
migrate_longterm_unpinnable_folios(struct list_head * movable_folio_list,struct pages_or_folios * pofs)2421 migrate_longterm_unpinnable_folios(struct list_head *movable_folio_list,
2422 				   struct pages_or_folios *pofs)
2423 {
2424 	int ret;
2425 	unsigned long i;
2426 
2427 	for (i = 0; i < pofs->nr_entries; i++) {
2428 		struct folio *folio = pofs_get_folio(pofs, i);
2429 
2430 		if (folio_is_device_coherent(folio)) {
2431 			/*
2432 			 * Migration will fail if the folio is pinned, so
2433 			 * convert the pin on the source folio to a normal
2434 			 * reference.
2435 			 */
2436 			pofs_clear_entry(pofs, i);
2437 			folio_get(folio);
2438 			gup_put_folio(folio, 1, FOLL_PIN);
2439 
2440 			if (migrate_device_coherent_folio(folio)) {
2441 				ret = -EBUSY;
2442 				goto err;
2443 			}
2444 
2445 			continue;
2446 		}
2447 
2448 		/*
2449 		 * We can't migrate folios with unexpected references, so drop
2450 		 * the reference obtained by __get_user_pages_locked().
2451 		 * Migrating folios have been added to movable_folio_list after
2452 		 * calling folio_isolate_lru() which takes a reference so the
2453 		 * folio won't be freed if it's migrating.
2454 		 */
2455 		unpin_folio(folio);
2456 		pofs_clear_entry(pofs, i);
2457 	}
2458 
2459 	if (!list_empty(movable_folio_list)) {
2460 		struct migration_target_control mtc = {
2461 			.nid = NUMA_NO_NODE,
2462 			.gfp_mask = GFP_USER | __GFP_NOWARN,
2463 			.reason = MR_LONGTERM_PIN,
2464 		};
2465 
2466 		if (migrate_pages(movable_folio_list, alloc_migration_target,
2467 				  NULL, (unsigned long)&mtc, MIGRATE_SYNC,
2468 				  MR_LONGTERM_PIN, NULL)) {
2469 			ret = -ENOMEM;
2470 			goto err;
2471 		}
2472 	}
2473 
2474 	putback_movable_pages(movable_folio_list);
2475 
2476 	return -EAGAIN;
2477 
2478 err:
2479 	pofs_unpin(pofs);
2480 	putback_movable_pages(movable_folio_list);
2481 
2482 	return ret;
2483 }
2484 
2485 static long
check_and_migrate_movable_pages_or_folios(struct pages_or_folios * pofs)2486 check_and_migrate_movable_pages_or_folios(struct pages_or_folios *pofs)
2487 {
2488 	LIST_HEAD(movable_folio_list);
2489 	unsigned long collected;
2490 
2491 	collected = collect_longterm_unpinnable_folios(&movable_folio_list,
2492 						       pofs);
2493 	if (!collected)
2494 		return 0;
2495 
2496 	return migrate_longterm_unpinnable_folios(&movable_folio_list, pofs);
2497 }
2498 
2499 /*
2500  * Check whether all folios are *allowed* to be pinned indefinitely (long term).
2501  * Rather confusingly, all folios in the range are required to be pinned via
2502  * FOLL_PIN, before calling this routine.
2503  *
2504  * Return values:
2505  *
2506  * 0: if everything is OK and all folios in the range are allowed to be pinned,
2507  * then this routine leaves all folios pinned and returns zero for success.
2508  *
2509  * -EAGAIN: if any folios in the range are not allowed to be pinned, then this
2510  * routine will migrate those folios away, unpin all the folios in the range. If
2511  * migration of the entire set of folios succeeds, then -EAGAIN is returned. The
2512  * caller should re-pin the entire range with FOLL_PIN and then call this
2513  * routine again.
2514  *
2515  * -ENOMEM, or any other -errno: if an error *other* than -EAGAIN occurs, this
2516  * indicates a migration failure. The caller should give up, and propagate the
2517  * error back up the call stack. The caller does not need to unpin any folios in
2518  * that case, because this routine will do the unpinning.
2519  */
check_and_migrate_movable_folios(unsigned long nr_folios,struct folio ** folios)2520 static long check_and_migrate_movable_folios(unsigned long nr_folios,
2521 					     struct folio **folios)
2522 {
2523 	struct pages_or_folios pofs = {
2524 		.folios = folios,
2525 		.has_folios = true,
2526 		.nr_entries = nr_folios,
2527 	};
2528 
2529 	return check_and_migrate_movable_pages_or_folios(&pofs);
2530 }
2531 
2532 /*
2533  * Return values and behavior are the same as those for
2534  * check_and_migrate_movable_folios().
2535  */
check_and_migrate_movable_pages(unsigned long nr_pages,struct page ** pages)2536 static long check_and_migrate_movable_pages(unsigned long nr_pages,
2537 					    struct page **pages)
2538 {
2539 	struct pages_or_folios pofs = {
2540 		.pages = pages,
2541 		.has_folios = false,
2542 		.nr_entries = nr_pages,
2543 	};
2544 
2545 	return check_and_migrate_movable_pages_or_folios(&pofs);
2546 }
2547 #else
check_and_migrate_movable_pages(unsigned long nr_pages,struct page ** pages)2548 static long check_and_migrate_movable_pages(unsigned long nr_pages,
2549 					    struct page **pages)
2550 {
2551 	return 0;
2552 }
2553 
check_and_migrate_movable_folios(unsigned long nr_folios,struct folio ** folios)2554 static long check_and_migrate_movable_folios(unsigned long nr_folios,
2555 					     struct folio **folios)
2556 {
2557 	return 0;
2558 }
2559 #endif /* CONFIG_MIGRATION */
2560 
2561 /*
2562  * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
2563  * allows us to process the FOLL_LONGTERM flag.
2564  */
__gup_longterm_locked(struct mm_struct * mm,unsigned long start,unsigned long nr_pages,struct page ** pages,int * locked,unsigned int gup_flags)2565 static long __gup_longterm_locked(struct mm_struct *mm,
2566 				  unsigned long start,
2567 				  unsigned long nr_pages,
2568 				  struct page **pages,
2569 				  int *locked,
2570 				  unsigned int gup_flags)
2571 {
2572 	unsigned int flags;
2573 	long rc, nr_pinned_pages;
2574 
2575 	if (!(gup_flags & FOLL_LONGTERM))
2576 		return __get_user_pages_locked(mm, start, nr_pages, pages,
2577 					       locked, gup_flags);
2578 
2579 	flags = memalloc_pin_save();
2580 	do {
2581 		nr_pinned_pages = __get_user_pages_locked(mm, start, nr_pages,
2582 							  pages, locked,
2583 							  gup_flags);
2584 		if (nr_pinned_pages <= 0) {
2585 			rc = nr_pinned_pages;
2586 			break;
2587 		}
2588 
2589 		/* FOLL_LONGTERM implies FOLL_PIN */
2590 		rc = check_and_migrate_movable_pages(nr_pinned_pages, pages);
2591 	} while (rc == -EAGAIN);
2592 	memalloc_pin_restore(flags);
2593 	return rc ? rc : nr_pinned_pages;
2594 }
2595 
2596 /*
2597  * Check that the given flags are valid for the exported gup/pup interface, and
2598  * update them with the required flags that the caller must have set.
2599  */
is_valid_gup_args(struct page ** pages,int * locked,unsigned int * gup_flags_p,unsigned int to_set)2600 static bool is_valid_gup_args(struct page **pages, int *locked,
2601 			      unsigned int *gup_flags_p, unsigned int to_set)
2602 {
2603 	unsigned int gup_flags = *gup_flags_p;
2604 
2605 	/*
2606 	 * These flags not allowed to be specified externally to the gup
2607 	 * interfaces:
2608 	 * - FOLL_TOUCH/FOLL_PIN/FOLL_TRIED/FOLL_FAST_ONLY are internal only
2609 	 * - FOLL_REMOTE is internal only, set in (get|pin)_user_pages_remote()
2610 	 * - FOLL_UNLOCKABLE is internal only and used if locked is !NULL
2611 	 */
2612 	if (WARN_ON_ONCE(gup_flags & INTERNAL_GUP_FLAGS))
2613 		return false;
2614 
2615 	gup_flags |= to_set;
2616 	if (locked) {
2617 		/* At the external interface locked must be set */
2618 		if (WARN_ON_ONCE(*locked != 1))
2619 			return false;
2620 
2621 		gup_flags |= FOLL_UNLOCKABLE;
2622 	}
2623 
2624 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
2625 	if (WARN_ON_ONCE((gup_flags & (FOLL_PIN | FOLL_GET)) ==
2626 			 (FOLL_PIN | FOLL_GET)))
2627 		return false;
2628 
2629 	/* LONGTERM can only be specified when pinning */
2630 	if (WARN_ON_ONCE(!(gup_flags & FOLL_PIN) && (gup_flags & FOLL_LONGTERM)))
2631 		return false;
2632 
2633 	/* Pages input must be given if using GET/PIN */
2634 	if (WARN_ON_ONCE((gup_flags & (FOLL_GET | FOLL_PIN)) && !pages))
2635 		return false;
2636 
2637 	/* We want to allow the pgmap to be hot-unplugged at all times */
2638 	if (WARN_ON_ONCE((gup_flags & FOLL_LONGTERM) &&
2639 			 (gup_flags & FOLL_PCI_P2PDMA)))
2640 		return false;
2641 
2642 	*gup_flags_p = gup_flags;
2643 	return true;
2644 }
2645 
2646 #ifdef CONFIG_MMU
2647 /**
2648  * get_user_pages_remote() - pin user pages in memory
2649  * @mm:		mm_struct of target mm
2650  * @start:	starting user address
2651  * @nr_pages:	number of pages from start to pin
2652  * @gup_flags:	flags modifying lookup behaviour
2653  * @pages:	array that receives pointers to the pages pinned.
2654  *		Should be at least nr_pages long. Or NULL, if caller
2655  *		only intends to ensure the pages are faulted in.
2656  * @locked:	pointer to lock flag indicating whether lock is held and
2657  *		subsequently whether VM_FAULT_RETRY functionality can be
2658  *		utilised. Lock must initially be held.
2659  *
2660  * Returns either number of pages pinned (which may be less than the
2661  * number requested), or an error. Details about the return value:
2662  *
2663  * -- If nr_pages is 0, returns 0.
2664  * -- If nr_pages is >0, but no pages were pinned, returns -errno.
2665  * -- If nr_pages is >0, and some pages were pinned, returns the number of
2666  *    pages pinned. Again, this may be less than nr_pages.
2667  *
2668  * The caller is responsible for releasing returned @pages, via put_page().
2669  *
2670  * Must be called with mmap_lock held for read or write.
2671  *
2672  * get_user_pages_remote walks a process's page tables and takes a reference
2673  * to each struct page that each user address corresponds to at a given
2674  * instant. That is, it takes the page that would be accessed if a user
2675  * thread accesses the given user virtual address at that instant.
2676  *
2677  * This does not guarantee that the page exists in the user mappings when
2678  * get_user_pages_remote returns, and there may even be a completely different
2679  * page there in some cases (eg. if mmapped pagecache has been invalidated
2680  * and subsequently re-faulted). However it does guarantee that the page
2681  * won't be freed completely. And mostly callers simply care that the page
2682  * contains data that was valid *at some point in time*. Typically, an IO
2683  * or similar operation cannot guarantee anything stronger anyway because
2684  * locks can't be held over the syscall boundary.
2685  *
2686  * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
2687  * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
2688  * be called after the page is finished with, and before put_page is called.
2689  *
2690  * get_user_pages_remote is typically used for fewer-copy IO operations,
2691  * to get a handle on the memory by some means other than accesses
2692  * via the user virtual addresses. The pages may be submitted for
2693  * DMA to devices or accessed via their kernel linear mapping (via the
2694  * kmap APIs). Care should be taken to use the correct cache flushing APIs.
2695  *
2696  * See also get_user_pages_fast, for performance critical applications.
2697  *
2698  * get_user_pages_remote should be phased out in favor of
2699  * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
2700  * should use get_user_pages_remote because it cannot pass
2701  * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
2702  */
get_user_pages_remote(struct mm_struct * mm,unsigned long start,unsigned long nr_pages,unsigned int gup_flags,struct page ** pages,int * locked)2703 long get_user_pages_remote(struct mm_struct *mm,
2704 		unsigned long start, unsigned long nr_pages,
2705 		unsigned int gup_flags, struct page **pages,
2706 		int *locked)
2707 {
2708 	int local_locked = 1;
2709 
2710 	if (!is_valid_gup_args(pages, locked, &gup_flags,
2711 			       FOLL_TOUCH | FOLL_REMOTE))
2712 		return -EINVAL;
2713 
2714 	return __get_user_pages_locked(mm, start, nr_pages, pages,
2715 				       locked ? locked : &local_locked,
2716 				       gup_flags);
2717 }
2718 EXPORT_SYMBOL(get_user_pages_remote);
2719 
2720 #else /* CONFIG_MMU */
get_user_pages_remote(struct mm_struct * mm,unsigned long start,unsigned long nr_pages,unsigned int gup_flags,struct page ** pages,int * locked)2721 long get_user_pages_remote(struct mm_struct *mm,
2722 			   unsigned long start, unsigned long nr_pages,
2723 			   unsigned int gup_flags, struct page **pages,
2724 			   int *locked)
2725 {
2726 	return 0;
2727 }
2728 #endif /* !CONFIG_MMU */
2729 
2730 /**
2731  * get_user_pages() - pin user pages in memory
2732  * @start:      starting user address
2733  * @nr_pages:   number of pages from start to pin
2734  * @gup_flags:  flags modifying lookup behaviour
2735  * @pages:      array that receives pointers to the pages pinned.
2736  *              Should be at least nr_pages long. Or NULL, if caller
2737  *              only intends to ensure the pages are faulted in.
2738  *
2739  * This is the same as get_user_pages_remote(), just with a less-flexible
2740  * calling convention where we assume that the mm being operated on belongs to
2741  * the current task, and doesn't allow passing of a locked parameter.  We also
2742  * obviously don't pass FOLL_REMOTE in here.
2743  */
get_user_pages(unsigned long start,unsigned long nr_pages,unsigned int gup_flags,struct page ** pages)2744 long get_user_pages(unsigned long start, unsigned long nr_pages,
2745 		    unsigned int gup_flags, struct page **pages)
2746 {
2747 	int locked = 1;
2748 
2749 	if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_TOUCH))
2750 		return -EINVAL;
2751 
2752 	return __get_user_pages_locked(current->mm, start, nr_pages, pages,
2753 				       &locked, gup_flags);
2754 }
2755 EXPORT_SYMBOL(get_user_pages);
2756 
2757 /*
2758  * get_user_pages_unlocked() is suitable to replace the form:
2759  *
2760  *      mmap_read_lock(mm);
2761  *      get_user_pages(mm, ..., pages, NULL);
2762  *      mmap_read_unlock(mm);
2763  *
2764  *  with:
2765  *
2766  *      get_user_pages_unlocked(mm, ..., pages);
2767  *
2768  * It is functionally equivalent to get_user_pages_fast so
2769  * get_user_pages_fast should be used instead if specific gup_flags
2770  * (e.g. FOLL_FORCE) are not required.
2771  */
get_user_pages_unlocked(unsigned long start,unsigned long nr_pages,struct page ** pages,unsigned int gup_flags)2772 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2773 			     struct page **pages, unsigned int gup_flags)
2774 {
2775 	int locked = 0;
2776 
2777 	if (!is_valid_gup_args(pages, NULL, &gup_flags,
2778 			       FOLL_TOUCH | FOLL_UNLOCKABLE))
2779 		return -EINVAL;
2780 
2781 	return __get_user_pages_locked(current->mm, start, nr_pages, pages,
2782 				       &locked, gup_flags);
2783 }
2784 EXPORT_SYMBOL(get_user_pages_unlocked);
2785 
2786 /*
2787  * GUP-fast
2788  *
2789  * get_user_pages_fast attempts to pin user pages by walking the page
2790  * tables directly and avoids taking locks. Thus the walker needs to be
2791  * protected from page table pages being freed from under it, and should
2792  * block any THP splits.
2793  *
2794  * One way to achieve this is to have the walker disable interrupts, and
2795  * rely on IPIs from the TLB flushing code blocking before the page table
2796  * pages are freed. This is unsuitable for architectures that do not need
2797  * to broadcast an IPI when invalidating TLBs.
2798  *
2799  * Another way to achieve this is to batch up page table containing pages
2800  * belonging to more than one mm_user, then rcu_sched a callback to free those
2801  * pages. Disabling interrupts will allow the gup_fast() walker to both block
2802  * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
2803  * (which is a relatively rare event). The code below adopts this strategy.
2804  *
2805  * Before activating this code, please be aware that the following assumptions
2806  * are currently made:
2807  *
2808  *  *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
2809  *  free pages containing page tables or TLB flushing requires IPI broadcast.
2810  *
2811  *  *) ptes can be read atomically by the architecture.
2812  *
2813  *  *) access_ok is sufficient to validate userspace address ranges.
2814  *
2815  * The last two assumptions can be relaxed by the addition of helper functions.
2816  *
2817  * This code is based heavily on the PowerPC implementation by Nick Piggin.
2818  */
2819 #ifdef CONFIG_HAVE_GUP_FAST
2820 /*
2821  * Used in the GUP-fast path to determine whether GUP is permitted to work on
2822  * a specific folio.
2823  *
2824  * This call assumes the caller has pinned the folio, that the lowest page table
2825  * level still points to this folio, and that interrupts have been disabled.
2826  *
2827  * GUP-fast must reject all secretmem folios.
2828  *
2829  * Writing to pinned file-backed dirty tracked folios is inherently problematic
2830  * (see comment describing the writable_file_mapping_allowed() function). We
2831  * therefore try to avoid the most egregious case of a long-term mapping doing
2832  * so.
2833  *
2834  * This function cannot be as thorough as that one as the VMA is not available
2835  * in the fast path, so instead we whitelist known good cases and if in doubt,
2836  * fall back to the slow path.
2837  */
gup_fast_folio_allowed(struct folio * folio,unsigned int flags)2838 static bool gup_fast_folio_allowed(struct folio *folio, unsigned int flags)
2839 {
2840 	bool reject_file_backed = false;
2841 	struct address_space *mapping;
2842 	bool check_secretmem = false;
2843 	unsigned long mapping_flags;
2844 
2845 	/*
2846 	 * If we aren't pinning then no problematic write can occur. A long term
2847 	 * pin is the most egregious case so this is the one we disallow.
2848 	 */
2849 	if ((flags & (FOLL_PIN | FOLL_LONGTERM | FOLL_WRITE)) ==
2850 	    (FOLL_PIN | FOLL_LONGTERM | FOLL_WRITE))
2851 		reject_file_backed = true;
2852 
2853 	/* We hold a folio reference, so we can safely access folio fields. */
2854 
2855 	/* secretmem folios are always order-0 folios. */
2856 	if (IS_ENABLED(CONFIG_SECRETMEM) && !folio_test_large(folio))
2857 		check_secretmem = true;
2858 
2859 	if (!reject_file_backed && !check_secretmem)
2860 		return true;
2861 
2862 	if (WARN_ON_ONCE(folio_test_slab(folio)))
2863 		return false;
2864 
2865 	/* hugetlb neither requires dirty-tracking nor can be secretmem. */
2866 	if (folio_test_hugetlb(folio))
2867 		return true;
2868 
2869 	/*
2870 	 * GUP-fast disables IRQs. When IRQS are disabled, RCU grace periods
2871 	 * cannot proceed, which means no actions performed under RCU can
2872 	 * proceed either.
2873 	 *
2874 	 * inodes and thus their mappings are freed under RCU, which means the
2875 	 * mapping cannot be freed beneath us and thus we can safely dereference
2876 	 * it.
2877 	 */
2878 	lockdep_assert_irqs_disabled();
2879 
2880 	/*
2881 	 * However, there may be operations which _alter_ the mapping, so ensure
2882 	 * we read it once and only once.
2883 	 */
2884 	mapping = READ_ONCE(folio->mapping);
2885 
2886 	/*
2887 	 * The mapping may have been truncated, in any case we cannot determine
2888 	 * if this mapping is safe - fall back to slow path to determine how to
2889 	 * proceed.
2890 	 */
2891 	if (!mapping)
2892 		return false;
2893 
2894 	/* Anonymous folios pose no problem. */
2895 	mapping_flags = (unsigned long)mapping & PAGE_MAPPING_FLAGS;
2896 	if (mapping_flags)
2897 		return mapping_flags & PAGE_MAPPING_ANON;
2898 
2899 	/*
2900 	 * At this point, we know the mapping is non-null and points to an
2901 	 * address_space object.
2902 	 */
2903 	if (check_secretmem && secretmem_mapping(mapping))
2904 		return false;
2905 	/* The only remaining allowed file system is shmem. */
2906 	return !reject_file_backed || shmem_mapping(mapping);
2907 }
2908 
gup_fast_undo_dev_pagemap(int * nr,int nr_start,unsigned int flags,struct page ** pages)2909 static void __maybe_unused gup_fast_undo_dev_pagemap(int *nr, int nr_start,
2910 		unsigned int flags, struct page **pages)
2911 {
2912 	while ((*nr) - nr_start) {
2913 		struct folio *folio = page_folio(pages[--(*nr)]);
2914 
2915 		folio_clear_referenced(folio);
2916 		gup_put_folio(folio, 1, flags);
2917 	}
2918 }
2919 
2920 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
2921 /*
2922  * GUP-fast relies on pte change detection to avoid concurrent pgtable
2923  * operations.
2924  *
2925  * To pin the page, GUP-fast needs to do below in order:
2926  * (1) pin the page (by prefetching pte), then (2) check pte not changed.
2927  *
2928  * For the rest of pgtable operations where pgtable updates can be racy
2929  * with GUP-fast, we need to do (1) clear pte, then (2) check whether page
2930  * is pinned.
2931  *
2932  * Above will work for all pte-level operations, including THP split.
2933  *
2934  * For THP collapse, it's a bit more complicated because GUP-fast may be
2935  * walking a pgtable page that is being freed (pte is still valid but pmd
2936  * can be cleared already).  To avoid race in such condition, we need to
2937  * also check pmd here to make sure pmd doesn't change (corresponds to
2938  * pmdp_collapse_flush() in the THP collapse code path).
2939  */
gup_fast_pte_range(pmd_t pmd,pmd_t * pmdp,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2940 static int gup_fast_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
2941 		unsigned long end, unsigned int flags, struct page **pages,
2942 		int *nr)
2943 {
2944 	struct dev_pagemap *pgmap = NULL;
2945 	int nr_start = *nr, ret = 0;
2946 	pte_t *ptep, *ptem;
2947 
2948 	ptem = ptep = pte_offset_map(&pmd, addr);
2949 	if (!ptep)
2950 		return 0;
2951 	do {
2952 		pte_t pte = ptep_get_lockless(ptep);
2953 		struct page *page;
2954 		struct folio *folio;
2955 
2956 		/*
2957 		 * Always fallback to ordinary GUP on PROT_NONE-mapped pages:
2958 		 * pte_access_permitted() better should reject these pages
2959 		 * either way: otherwise, GUP-fast might succeed in
2960 		 * cases where ordinary GUP would fail due to VMA access
2961 		 * permissions.
2962 		 */
2963 		if (pte_protnone(pte))
2964 			goto pte_unmap;
2965 
2966 		if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2967 			goto pte_unmap;
2968 
2969 		if (pte_devmap(pte)) {
2970 			if (unlikely(flags & FOLL_LONGTERM))
2971 				goto pte_unmap;
2972 
2973 			pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
2974 			if (unlikely(!pgmap)) {
2975 				gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages);
2976 				goto pte_unmap;
2977 			}
2978 		} else if (pte_special(pte))
2979 			goto pte_unmap;
2980 
2981 		VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2982 		page = pte_page(pte);
2983 
2984 		folio = try_grab_folio_fast(page, 1, flags);
2985 		if (!folio)
2986 			goto pte_unmap;
2987 
2988 		if (unlikely(pmd_val(pmd) != pmd_val(*pmdp)) ||
2989 		    unlikely(pte_val(pte) != pte_val(ptep_get(ptep)))) {
2990 			gup_put_folio(folio, 1, flags);
2991 			goto pte_unmap;
2992 		}
2993 
2994 		if (!gup_fast_folio_allowed(folio, flags)) {
2995 			gup_put_folio(folio, 1, flags);
2996 			goto pte_unmap;
2997 		}
2998 
2999 		if (!pte_write(pte) && gup_must_unshare(NULL, flags, page)) {
3000 			gup_put_folio(folio, 1, flags);
3001 			goto pte_unmap;
3002 		}
3003 
3004 		/*
3005 		 * We need to make the page accessible if and only if we are
3006 		 * going to access its content (the FOLL_PIN case).  Please
3007 		 * see Documentation/core-api/pin_user_pages.rst for
3008 		 * details.
3009 		 */
3010 		if (flags & FOLL_PIN) {
3011 			ret = arch_make_folio_accessible(folio);
3012 			if (ret) {
3013 				gup_put_folio(folio, 1, flags);
3014 				goto pte_unmap;
3015 			}
3016 		}
3017 		folio_set_referenced(folio);
3018 		pages[*nr] = page;
3019 		(*nr)++;
3020 	} while (ptep++, addr += PAGE_SIZE, addr != end);
3021 
3022 	ret = 1;
3023 
3024 pte_unmap:
3025 	if (pgmap)
3026 		put_dev_pagemap(pgmap);
3027 	pte_unmap(ptem);
3028 	return ret;
3029 }
3030 #else
3031 
3032 /*
3033  * If we can't determine whether or not a pte is special, then fail immediately
3034  * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
3035  * to be special.
3036  *
3037  * For a futex to be placed on a THP tail page, get_futex_key requires a
3038  * get_user_pages_fast_only implementation that can pin pages. Thus it's still
3039  * useful to have gup_fast_pmd_leaf even if we can't operate on ptes.
3040  */
gup_fast_pte_range(pmd_t pmd,pmd_t * pmdp,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)3041 static int gup_fast_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
3042 		unsigned long end, unsigned int flags, struct page **pages,
3043 		int *nr)
3044 {
3045 	return 0;
3046 }
3047 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
3048 
3049 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
gup_fast_devmap_leaf(unsigned long pfn,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)3050 static int gup_fast_devmap_leaf(unsigned long pfn, unsigned long addr,
3051 	unsigned long end, unsigned int flags, struct page **pages, int *nr)
3052 {
3053 	int nr_start = *nr;
3054 	struct dev_pagemap *pgmap = NULL;
3055 
3056 	do {
3057 		struct folio *folio;
3058 		struct page *page = pfn_to_page(pfn);
3059 
3060 		pgmap = get_dev_pagemap(pfn, pgmap);
3061 		if (unlikely(!pgmap)) {
3062 			gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages);
3063 			break;
3064 		}
3065 
3066 		if (!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)) {
3067 			gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages);
3068 			break;
3069 		}
3070 
3071 		folio = try_grab_folio_fast(page, 1, flags);
3072 		if (!folio) {
3073 			gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages);
3074 			break;
3075 		}
3076 		folio_set_referenced(folio);
3077 		pages[*nr] = page;
3078 		(*nr)++;
3079 		pfn++;
3080 	} while (addr += PAGE_SIZE, addr != end);
3081 
3082 	put_dev_pagemap(pgmap);
3083 	return addr == end;
3084 }
3085 
gup_fast_devmap_pmd_leaf(pmd_t orig,pmd_t * pmdp,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)3086 static int gup_fast_devmap_pmd_leaf(pmd_t orig, pmd_t *pmdp, unsigned long addr,
3087 		unsigned long end, unsigned int flags, struct page **pages,
3088 		int *nr)
3089 {
3090 	unsigned long fault_pfn;
3091 	int nr_start = *nr;
3092 
3093 	fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
3094 	if (!gup_fast_devmap_leaf(fault_pfn, addr, end, flags, pages, nr))
3095 		return 0;
3096 
3097 	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
3098 		gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages);
3099 		return 0;
3100 	}
3101 	return 1;
3102 }
3103 
gup_fast_devmap_pud_leaf(pud_t orig,pud_t * pudp,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)3104 static int gup_fast_devmap_pud_leaf(pud_t orig, pud_t *pudp, unsigned long addr,
3105 		unsigned long end, unsigned int flags, struct page **pages,
3106 		int *nr)
3107 {
3108 	unsigned long fault_pfn;
3109 	int nr_start = *nr;
3110 
3111 	fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
3112 	if (!gup_fast_devmap_leaf(fault_pfn, addr, end, flags, pages, nr))
3113 		return 0;
3114 
3115 	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
3116 		gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages);
3117 		return 0;
3118 	}
3119 	return 1;
3120 }
3121 #else
gup_fast_devmap_pmd_leaf(pmd_t orig,pmd_t * pmdp,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)3122 static int gup_fast_devmap_pmd_leaf(pmd_t orig, pmd_t *pmdp, unsigned long addr,
3123 		unsigned long end, unsigned int flags, struct page **pages,
3124 		int *nr)
3125 {
3126 	BUILD_BUG();
3127 	return 0;
3128 }
3129 
gup_fast_devmap_pud_leaf(pud_t pud,pud_t * pudp,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)3130 static int gup_fast_devmap_pud_leaf(pud_t pud, pud_t *pudp, unsigned long addr,
3131 		unsigned long end, unsigned int flags, struct page **pages,
3132 		int *nr)
3133 {
3134 	BUILD_BUG();
3135 	return 0;
3136 }
3137 #endif
3138 
gup_fast_pmd_leaf(pmd_t orig,pmd_t * pmdp,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)3139 static int gup_fast_pmd_leaf(pmd_t orig, pmd_t *pmdp, unsigned long addr,
3140 		unsigned long end, unsigned int flags, struct page **pages,
3141 		int *nr)
3142 {
3143 	struct page *page;
3144 	struct folio *folio;
3145 	int refs;
3146 
3147 	if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
3148 		return 0;
3149 
3150 	if (pmd_special(orig))
3151 		return 0;
3152 
3153 	if (pmd_devmap(orig)) {
3154 		if (unlikely(flags & FOLL_LONGTERM))
3155 			return 0;
3156 		return gup_fast_devmap_pmd_leaf(orig, pmdp, addr, end, flags,
3157 					        pages, nr);
3158 	}
3159 
3160 	page = pmd_page(orig);
3161 	refs = record_subpages(page, PMD_SIZE, addr, end, pages + *nr);
3162 
3163 	folio = try_grab_folio_fast(page, refs, flags);
3164 	if (!folio)
3165 		return 0;
3166 
3167 	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
3168 		gup_put_folio(folio, refs, flags);
3169 		return 0;
3170 	}
3171 
3172 	if (!gup_fast_folio_allowed(folio, flags)) {
3173 		gup_put_folio(folio, refs, flags);
3174 		return 0;
3175 	}
3176 	if (!pmd_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
3177 		gup_put_folio(folio, refs, flags);
3178 		return 0;
3179 	}
3180 
3181 	*nr += refs;
3182 	folio_set_referenced(folio);
3183 	return 1;
3184 }
3185 
gup_fast_pud_leaf(pud_t orig,pud_t * pudp,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)3186 static int gup_fast_pud_leaf(pud_t orig, pud_t *pudp, unsigned long addr,
3187 		unsigned long end, unsigned int flags, struct page **pages,
3188 		int *nr)
3189 {
3190 	struct page *page;
3191 	struct folio *folio;
3192 	int refs;
3193 
3194 	if (!pud_access_permitted(orig, flags & FOLL_WRITE))
3195 		return 0;
3196 
3197 	if (pud_special(orig))
3198 		return 0;
3199 
3200 	if (pud_devmap(orig)) {
3201 		if (unlikely(flags & FOLL_LONGTERM))
3202 			return 0;
3203 		return gup_fast_devmap_pud_leaf(orig, pudp, addr, end, flags,
3204 					        pages, nr);
3205 	}
3206 
3207 	page = pud_page(orig);
3208 	refs = record_subpages(page, PUD_SIZE, addr, end, pages + *nr);
3209 
3210 	folio = try_grab_folio_fast(page, refs, flags);
3211 	if (!folio)
3212 		return 0;
3213 
3214 	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
3215 		gup_put_folio(folio, refs, flags);
3216 		return 0;
3217 	}
3218 
3219 	if (!gup_fast_folio_allowed(folio, flags)) {
3220 		gup_put_folio(folio, refs, flags);
3221 		return 0;
3222 	}
3223 
3224 	if (!pud_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
3225 		gup_put_folio(folio, refs, flags);
3226 		return 0;
3227 	}
3228 
3229 	*nr += refs;
3230 	folio_set_referenced(folio);
3231 	return 1;
3232 }
3233 
gup_fast_pgd_leaf(pgd_t orig,pgd_t * pgdp,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)3234 static int gup_fast_pgd_leaf(pgd_t orig, pgd_t *pgdp, unsigned long addr,
3235 		unsigned long end, unsigned int flags, struct page **pages,
3236 		int *nr)
3237 {
3238 	int refs;
3239 	struct page *page;
3240 	struct folio *folio;
3241 
3242 	if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
3243 		return 0;
3244 
3245 	BUILD_BUG_ON(pgd_devmap(orig));
3246 
3247 	page = pgd_page(orig);
3248 	refs = record_subpages(page, PGDIR_SIZE, addr, end, pages + *nr);
3249 
3250 	folio = try_grab_folio_fast(page, refs, flags);
3251 	if (!folio)
3252 		return 0;
3253 
3254 	if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
3255 		gup_put_folio(folio, refs, flags);
3256 		return 0;
3257 	}
3258 
3259 	if (!pgd_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
3260 		gup_put_folio(folio, refs, flags);
3261 		return 0;
3262 	}
3263 
3264 	if (!gup_fast_folio_allowed(folio, flags)) {
3265 		gup_put_folio(folio, refs, flags);
3266 		return 0;
3267 	}
3268 
3269 	*nr += refs;
3270 	folio_set_referenced(folio);
3271 	return 1;
3272 }
3273 
gup_fast_pmd_range(pud_t * pudp,pud_t pud,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)3274 static int gup_fast_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr,
3275 		unsigned long end, unsigned int flags, struct page **pages,
3276 		int *nr)
3277 {
3278 	unsigned long next;
3279 	pmd_t *pmdp;
3280 
3281 	pmdp = pmd_offset_lockless(pudp, pud, addr);
3282 	do {
3283 		pmd_t pmd = pmdp_get_lockless(pmdp);
3284 
3285 		next = pmd_addr_end(addr, end);
3286 		if (!pmd_present(pmd))
3287 			return 0;
3288 
3289 		if (unlikely(pmd_leaf(pmd))) {
3290 			/* See gup_fast_pte_range() */
3291 			if (pmd_protnone(pmd))
3292 				return 0;
3293 
3294 			if (!gup_fast_pmd_leaf(pmd, pmdp, addr, next, flags,
3295 				pages, nr))
3296 				return 0;
3297 
3298 		} else if (!gup_fast_pte_range(pmd, pmdp, addr, next, flags,
3299 					       pages, nr))
3300 			return 0;
3301 	} while (pmdp++, addr = next, addr != end);
3302 
3303 	return 1;
3304 }
3305 
gup_fast_pud_range(p4d_t * p4dp,p4d_t p4d,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)3306 static int gup_fast_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr,
3307 		unsigned long end, unsigned int flags, struct page **pages,
3308 		int *nr)
3309 {
3310 	unsigned long next;
3311 	pud_t *pudp;
3312 
3313 	pudp = pud_offset_lockless(p4dp, p4d, addr);
3314 	do {
3315 		pud_t pud = READ_ONCE(*pudp);
3316 
3317 		next = pud_addr_end(addr, end);
3318 		if (unlikely(!pud_present(pud)))
3319 			return 0;
3320 		if (unlikely(pud_leaf(pud))) {
3321 			if (!gup_fast_pud_leaf(pud, pudp, addr, next, flags,
3322 					       pages, nr))
3323 				return 0;
3324 		} else if (!gup_fast_pmd_range(pudp, pud, addr, next, flags,
3325 					       pages, nr))
3326 			return 0;
3327 	} while (pudp++, addr = next, addr != end);
3328 
3329 	return 1;
3330 }
3331 
gup_fast_p4d_range(pgd_t * pgdp,pgd_t pgd,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)3332 static int gup_fast_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr,
3333 		unsigned long end, unsigned int flags, struct page **pages,
3334 		int *nr)
3335 {
3336 	unsigned long next;
3337 	p4d_t *p4dp;
3338 
3339 	p4dp = p4d_offset_lockless(pgdp, pgd, addr);
3340 	do {
3341 		p4d_t p4d = READ_ONCE(*p4dp);
3342 
3343 		next = p4d_addr_end(addr, end);
3344 		if (!p4d_present(p4d))
3345 			return 0;
3346 		BUILD_BUG_ON(p4d_leaf(p4d));
3347 		if (!gup_fast_pud_range(p4dp, p4d, addr, next, flags,
3348 					pages, nr))
3349 			return 0;
3350 	} while (p4dp++, addr = next, addr != end);
3351 
3352 	return 1;
3353 }
3354 
gup_fast_pgd_range(unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)3355 static void gup_fast_pgd_range(unsigned long addr, unsigned long end,
3356 		unsigned int flags, struct page **pages, int *nr)
3357 {
3358 	unsigned long next;
3359 	pgd_t *pgdp;
3360 
3361 	pgdp = pgd_offset(current->mm, addr);
3362 	do {
3363 		pgd_t pgd = READ_ONCE(*pgdp);
3364 
3365 		next = pgd_addr_end(addr, end);
3366 		if (pgd_none(pgd))
3367 			return;
3368 		if (unlikely(pgd_leaf(pgd))) {
3369 			if (!gup_fast_pgd_leaf(pgd, pgdp, addr, next, flags,
3370 					       pages, nr))
3371 				return;
3372 		} else if (!gup_fast_p4d_range(pgdp, pgd, addr, next, flags,
3373 					       pages, nr))
3374 			return;
3375 	} while (pgdp++, addr = next, addr != end);
3376 }
3377 #else
gup_fast_pgd_range(unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)3378 static inline void gup_fast_pgd_range(unsigned long addr, unsigned long end,
3379 		unsigned int flags, struct page **pages, int *nr)
3380 {
3381 }
3382 #endif /* CONFIG_HAVE_GUP_FAST */
3383 
3384 #ifndef gup_fast_permitted
3385 /*
3386  * Check if it's allowed to use get_user_pages_fast_only() for the range, or
3387  * we need to fall back to the slow version:
3388  */
gup_fast_permitted(unsigned long start,unsigned long end)3389 static bool gup_fast_permitted(unsigned long start, unsigned long end)
3390 {
3391 	return true;
3392 }
3393 #endif
3394 
gup_fast(unsigned long start,unsigned long end,unsigned int gup_flags,struct page ** pages)3395 static unsigned long gup_fast(unsigned long start, unsigned long end,
3396 		unsigned int gup_flags, struct page **pages)
3397 {
3398 	unsigned long flags;
3399 	int nr_pinned = 0;
3400 	unsigned seq;
3401 
3402 	if (!IS_ENABLED(CONFIG_HAVE_GUP_FAST) ||
3403 	    !gup_fast_permitted(start, end))
3404 		return 0;
3405 
3406 	if (gup_flags & FOLL_PIN) {
3407 		seq = raw_read_seqcount(&current->mm->write_protect_seq);
3408 		if (seq & 1)
3409 			return 0;
3410 	}
3411 
3412 	/*
3413 	 * Disable interrupts. The nested form is used, in order to allow full,
3414 	 * general purpose use of this routine.
3415 	 *
3416 	 * With interrupts disabled, we block page table pages from being freed
3417 	 * from under us. See struct mmu_table_batch comments in
3418 	 * include/asm-generic/tlb.h for more details.
3419 	 *
3420 	 * We do not adopt an rcu_read_lock() here as we also want to block IPIs
3421 	 * that come from THPs splitting.
3422 	 */
3423 	local_irq_save(flags);
3424 	gup_fast_pgd_range(start, end, gup_flags, pages, &nr_pinned);
3425 	local_irq_restore(flags);
3426 
3427 	/*
3428 	 * When pinning pages for DMA there could be a concurrent write protect
3429 	 * from fork() via copy_page_range(), in this case always fail GUP-fast.
3430 	 */
3431 	if (gup_flags & FOLL_PIN) {
3432 		if (read_seqcount_retry(&current->mm->write_protect_seq, seq)) {
3433 			gup_fast_unpin_user_pages(pages, nr_pinned);
3434 			return 0;
3435 		} else {
3436 			sanity_check_pinned_pages(pages, nr_pinned);
3437 		}
3438 	}
3439 	return nr_pinned;
3440 }
3441 
gup_fast_fallback(unsigned long start,unsigned long nr_pages,unsigned int gup_flags,struct page ** pages)3442 static int gup_fast_fallback(unsigned long start, unsigned long nr_pages,
3443 		unsigned int gup_flags, struct page **pages)
3444 {
3445 	unsigned long len, end;
3446 	unsigned long nr_pinned;
3447 	int locked = 0;
3448 	int ret;
3449 
3450 	if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
3451 				       FOLL_FORCE | FOLL_PIN | FOLL_GET |
3452 				       FOLL_FAST_ONLY | FOLL_NOFAULT |
3453 				       FOLL_PCI_P2PDMA | FOLL_HONOR_NUMA_FAULT)))
3454 		return -EINVAL;
3455 
3456 	if (gup_flags & FOLL_PIN)
3457 		mm_set_has_pinned_flag(&current->mm->flags);
3458 
3459 	if (!(gup_flags & FOLL_FAST_ONLY))
3460 		might_lock_read(&current->mm->mmap_lock);
3461 
3462 	start = untagged_addr(start) & PAGE_MASK;
3463 	len = nr_pages << PAGE_SHIFT;
3464 	if (check_add_overflow(start, len, &end))
3465 		return -EOVERFLOW;
3466 	if (end > TASK_SIZE_MAX)
3467 		return -EFAULT;
3468 	if (unlikely(!access_ok((void __user *)start, len)))
3469 		return -EFAULT;
3470 
3471 	nr_pinned = gup_fast(start, end, gup_flags, pages);
3472 	if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY)
3473 		return nr_pinned;
3474 
3475 	/* Slow path: try to get the remaining pages with get_user_pages */
3476 	start += nr_pinned << PAGE_SHIFT;
3477 	pages += nr_pinned;
3478 	ret = __gup_longterm_locked(current->mm, start, nr_pages - nr_pinned,
3479 				    pages, &locked,
3480 				    gup_flags | FOLL_TOUCH | FOLL_UNLOCKABLE);
3481 	if (ret < 0) {
3482 		/*
3483 		 * The caller has to unpin the pages we already pinned so
3484 		 * returning -errno is not an option
3485 		 */
3486 		if (nr_pinned)
3487 			return nr_pinned;
3488 		return ret;
3489 	}
3490 	return ret + nr_pinned;
3491 }
3492 
3493 /**
3494  * get_user_pages_fast_only() - pin user pages in memory
3495  * @start:      starting user address
3496  * @nr_pages:   number of pages from start to pin
3497  * @gup_flags:  flags modifying pin behaviour
3498  * @pages:      array that receives pointers to the pages pinned.
3499  *              Should be at least nr_pages long.
3500  *
3501  * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
3502  * the regular GUP.
3503  *
3504  * If the architecture does not support this function, simply return with no
3505  * pages pinned.
3506  *
3507  * Careful, careful! COW breaking can go either way, so a non-write
3508  * access can get ambiguous page results. If you call this function without
3509  * 'write' set, you'd better be sure that you're ok with that ambiguity.
3510  */
get_user_pages_fast_only(unsigned long start,int nr_pages,unsigned int gup_flags,struct page ** pages)3511 int get_user_pages_fast_only(unsigned long start, int nr_pages,
3512 			     unsigned int gup_flags, struct page **pages)
3513 {
3514 	/*
3515 	 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
3516 	 * because gup fast is always a "pin with a +1 page refcount" request.
3517 	 *
3518 	 * FOLL_FAST_ONLY is required in order to match the API description of
3519 	 * this routine: no fall back to regular ("slow") GUP.
3520 	 */
3521 	if (!is_valid_gup_args(pages, NULL, &gup_flags,
3522 			       FOLL_GET | FOLL_FAST_ONLY))
3523 		return -EINVAL;
3524 
3525 	return gup_fast_fallback(start, nr_pages, gup_flags, pages);
3526 }
3527 EXPORT_SYMBOL_GPL(get_user_pages_fast_only);
3528 
3529 /**
3530  * get_user_pages_fast() - pin user pages in memory
3531  * @start:      starting user address
3532  * @nr_pages:   number of pages from start to pin
3533  * @gup_flags:  flags modifying pin behaviour
3534  * @pages:      array that receives pointers to the pages pinned.
3535  *              Should be at least nr_pages long.
3536  *
3537  * Attempt to pin user pages in memory without taking mm->mmap_lock.
3538  * If not successful, it will fall back to taking the lock and
3539  * calling get_user_pages().
3540  *
3541  * Returns number of pages pinned. This may be fewer than the number requested.
3542  * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
3543  * -errno.
3544  */
get_user_pages_fast(unsigned long start,int nr_pages,unsigned int gup_flags,struct page ** pages)3545 int get_user_pages_fast(unsigned long start, int nr_pages,
3546 			unsigned int gup_flags, struct page **pages)
3547 {
3548 	/*
3549 	 * The caller may or may not have explicitly set FOLL_GET; either way is
3550 	 * OK. However, internally (within mm/gup.c), gup fast variants must set
3551 	 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
3552 	 * request.
3553 	 */
3554 	if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_GET))
3555 		return -EINVAL;
3556 	return gup_fast_fallback(start, nr_pages, gup_flags, pages);
3557 }
3558 EXPORT_SYMBOL_GPL(get_user_pages_fast);
3559 
3560 /**
3561  * pin_user_pages_fast() - pin user pages in memory without taking locks
3562  *
3563  * @start:      starting user address
3564  * @nr_pages:   number of pages from start to pin
3565  * @gup_flags:  flags modifying pin behaviour
3566  * @pages:      array that receives pointers to the pages pinned.
3567  *              Should be at least nr_pages long.
3568  *
3569  * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
3570  * get_user_pages_fast() for documentation on the function arguments, because
3571  * the arguments here are identical.
3572  *
3573  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3574  * see Documentation/core-api/pin_user_pages.rst for further details.
3575  *
3576  * Note that if a zero_page is amongst the returned pages, it will not have
3577  * pins in it and unpin_user_page() will not remove pins from it.
3578  */
pin_user_pages_fast(unsigned long start,int nr_pages,unsigned int gup_flags,struct page ** pages)3579 int pin_user_pages_fast(unsigned long start, int nr_pages,
3580 			unsigned int gup_flags, struct page **pages)
3581 {
3582 	if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_PIN))
3583 		return -EINVAL;
3584 	return gup_fast_fallback(start, nr_pages, gup_flags, pages);
3585 }
3586 EXPORT_SYMBOL_GPL(pin_user_pages_fast);
3587 
3588 /**
3589  * pin_user_pages_remote() - pin pages of a remote process
3590  *
3591  * @mm:		mm_struct of target mm
3592  * @start:	starting user address
3593  * @nr_pages:	number of pages from start to pin
3594  * @gup_flags:	flags modifying lookup behaviour
3595  * @pages:	array that receives pointers to the pages pinned.
3596  *		Should be at least nr_pages long.
3597  * @locked:	pointer to lock flag indicating whether lock is held and
3598  *		subsequently whether VM_FAULT_RETRY functionality can be
3599  *		utilised. Lock must initially be held.
3600  *
3601  * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
3602  * get_user_pages_remote() for documentation on the function arguments, because
3603  * the arguments here are identical.
3604  *
3605  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3606  * see Documentation/core-api/pin_user_pages.rst for details.
3607  *
3608  * Note that if a zero_page is amongst the returned pages, it will not have
3609  * pins in it and unpin_user_page*() will not remove pins from it.
3610  */
pin_user_pages_remote(struct mm_struct * mm,unsigned long start,unsigned long nr_pages,unsigned int gup_flags,struct page ** pages,int * locked)3611 long pin_user_pages_remote(struct mm_struct *mm,
3612 			   unsigned long start, unsigned long nr_pages,
3613 			   unsigned int gup_flags, struct page **pages,
3614 			   int *locked)
3615 {
3616 	int local_locked = 1;
3617 
3618 	if (!is_valid_gup_args(pages, locked, &gup_flags,
3619 			       FOLL_PIN | FOLL_TOUCH | FOLL_REMOTE))
3620 		return 0;
3621 	return __gup_longterm_locked(mm, start, nr_pages, pages,
3622 				     locked ? locked : &local_locked,
3623 				     gup_flags);
3624 }
3625 EXPORT_SYMBOL(pin_user_pages_remote);
3626 
3627 /**
3628  * pin_user_pages() - pin user pages in memory for use by other devices
3629  *
3630  * @start:	starting user address
3631  * @nr_pages:	number of pages from start to pin
3632  * @gup_flags:	flags modifying lookup behaviour
3633  * @pages:	array that receives pointers to the pages pinned.
3634  *		Should be at least nr_pages long.
3635  *
3636  * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
3637  * FOLL_PIN is set.
3638  *
3639  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3640  * see Documentation/core-api/pin_user_pages.rst for details.
3641  *
3642  * Note that if a zero_page is amongst the returned pages, it will not have
3643  * pins in it and unpin_user_page*() will not remove pins from it.
3644  */
pin_user_pages(unsigned long start,unsigned long nr_pages,unsigned int gup_flags,struct page ** pages)3645 long pin_user_pages(unsigned long start, unsigned long nr_pages,
3646 		    unsigned int gup_flags, struct page **pages)
3647 {
3648 	int locked = 1;
3649 
3650 	if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_PIN))
3651 		return 0;
3652 	return __gup_longterm_locked(current->mm, start, nr_pages,
3653 				     pages, &locked, gup_flags);
3654 }
3655 EXPORT_SYMBOL(pin_user_pages);
3656 
3657 /*
3658  * pin_user_pages_unlocked() is the FOLL_PIN variant of
3659  * get_user_pages_unlocked(). Behavior is the same, except that this one sets
3660  * FOLL_PIN and rejects FOLL_GET.
3661  *
3662  * Note that if a zero_page is amongst the returned pages, it will not have
3663  * pins in it and unpin_user_page*() will not remove pins from it.
3664  */
pin_user_pages_unlocked(unsigned long start,unsigned long nr_pages,struct page ** pages,unsigned int gup_flags)3665 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
3666 			     struct page **pages, unsigned int gup_flags)
3667 {
3668 	int locked = 0;
3669 
3670 	if (!is_valid_gup_args(pages, NULL, &gup_flags,
3671 			       FOLL_PIN | FOLL_TOUCH | FOLL_UNLOCKABLE))
3672 		return 0;
3673 
3674 	return __gup_longterm_locked(current->mm, start, nr_pages, pages,
3675 				     &locked, gup_flags);
3676 }
3677 EXPORT_SYMBOL(pin_user_pages_unlocked);
3678 
3679 /**
3680  * memfd_pin_folios() - pin folios associated with a memfd
3681  * @memfd:      the memfd whose folios are to be pinned
3682  * @start:      the first memfd offset
3683  * @end:        the last memfd offset (inclusive)
3684  * @folios:     array that receives pointers to the folios pinned
3685  * @max_folios: maximum number of entries in @folios
3686  * @offset:     the offset into the first folio
3687  *
3688  * Attempt to pin folios associated with a memfd in the contiguous range
3689  * [start, end]. Given that a memfd is either backed by shmem or hugetlb,
3690  * the folios can either be found in the page cache or need to be allocated
3691  * if necessary. Once the folios are located, they are all pinned via
3692  * FOLL_PIN and @offset is populatedwith the offset into the first folio.
3693  * And, eventually, these pinned folios must be released either using
3694  * unpin_folios() or unpin_folio().
3695  *
3696  * It must be noted that the folios may be pinned for an indefinite amount
3697  * of time. And, in most cases, the duration of time they may stay pinned
3698  * would be controlled by the userspace. This behavior is effectively the
3699  * same as using FOLL_LONGTERM with other GUP APIs.
3700  *
3701  * Returns number of folios pinned, which could be less than @max_folios
3702  * as it depends on the folio sizes that cover the range [start, end].
3703  * If no folios were pinned, it returns -errno.
3704  */
memfd_pin_folios(struct file * memfd,loff_t start,loff_t end,struct folio ** folios,unsigned int max_folios,pgoff_t * offset)3705 long memfd_pin_folios(struct file *memfd, loff_t start, loff_t end,
3706 		      struct folio **folios, unsigned int max_folios,
3707 		      pgoff_t *offset)
3708 {
3709 	unsigned int flags, nr_folios, nr_found;
3710 	unsigned int i, pgshift = PAGE_SHIFT;
3711 	pgoff_t start_idx, end_idx, next_idx;
3712 	struct folio *folio = NULL;
3713 	struct folio_batch fbatch;
3714 	struct hstate *h;
3715 	long ret = -EINVAL;
3716 
3717 	if (start < 0 || start > end || !max_folios)
3718 		return -EINVAL;
3719 
3720 	if (!memfd)
3721 		return -EINVAL;
3722 
3723 	if (!shmem_file(memfd) && !is_file_hugepages(memfd))
3724 		return -EINVAL;
3725 
3726 	if (end >= i_size_read(file_inode(memfd)))
3727 		return -EINVAL;
3728 
3729 	if (is_file_hugepages(memfd)) {
3730 		h = hstate_file(memfd);
3731 		pgshift = huge_page_shift(h);
3732 	}
3733 
3734 	flags = memalloc_pin_save();
3735 	do {
3736 		nr_folios = 0;
3737 		start_idx = start >> pgshift;
3738 		end_idx = end >> pgshift;
3739 		if (is_file_hugepages(memfd)) {
3740 			start_idx <<= huge_page_order(h);
3741 			end_idx <<= huge_page_order(h);
3742 		}
3743 
3744 		folio_batch_init(&fbatch);
3745 		while (start_idx <= end_idx && nr_folios < max_folios) {
3746 			/*
3747 			 * In most cases, we should be able to find the folios
3748 			 * in the page cache. If we cannot find them for some
3749 			 * reason, we try to allocate them and add them to the
3750 			 * page cache.
3751 			 */
3752 			nr_found = filemap_get_folios_contig(memfd->f_mapping,
3753 							     &start_idx,
3754 							     end_idx,
3755 							     &fbatch);
3756 			if (folio) {
3757 				folio_put(folio);
3758 				folio = NULL;
3759 			}
3760 
3761 			next_idx = 0;
3762 			for (i = 0; i < nr_found; i++) {
3763 				/*
3764 				 * As there can be multiple entries for a
3765 				 * given folio in the batch returned by
3766 				 * filemap_get_folios_contig(), the below
3767 				 * check is to ensure that we pin and return a
3768 				 * unique set of folios between start and end.
3769 				 */
3770 				if (next_idx &&
3771 				    next_idx != folio_index(fbatch.folios[i]))
3772 					continue;
3773 
3774 				folio = page_folio(&fbatch.folios[i]->page);
3775 
3776 				if (try_grab_folio(folio, 1, FOLL_PIN)) {
3777 					folio_batch_release(&fbatch);
3778 					ret = -EINVAL;
3779 					goto err;
3780 				}
3781 
3782 				if (nr_folios == 0)
3783 					*offset = offset_in_folio(folio, start);
3784 
3785 				folios[nr_folios] = folio;
3786 				next_idx = folio_next_index(folio);
3787 				if (++nr_folios == max_folios)
3788 					break;
3789 			}
3790 
3791 			folio = NULL;
3792 			folio_batch_release(&fbatch);
3793 			if (!nr_found) {
3794 				folio = memfd_alloc_folio(memfd, start_idx);
3795 				if (IS_ERR(folio)) {
3796 					ret = PTR_ERR(folio);
3797 					if (ret != -EEXIST)
3798 						goto err;
3799 					folio = NULL;
3800 				}
3801 			}
3802 		}
3803 
3804 		ret = check_and_migrate_movable_folios(nr_folios, folios);
3805 	} while (ret == -EAGAIN);
3806 
3807 	memalloc_pin_restore(flags);
3808 	return ret ? ret : nr_folios;
3809 err:
3810 	memalloc_pin_restore(flags);
3811 	unpin_folios(folios, nr_folios);
3812 
3813 	return ret;
3814 }
3815 EXPORT_SYMBOL_GPL(memfd_pin_folios);
3816