1 /* SPDX-License-Identifier: GPL-2.0-only */
2 #ifndef __KVM_HOST_H
3 #define __KVM_HOST_H
4
5
6 #include <linux/types.h>
7 #include <linux/hardirq.h>
8 #include <linux/list.h>
9 #include <linux/mutex.h>
10 #include <linux/spinlock.h>
11 #include <linux/signal.h>
12 #include <linux/sched.h>
13 #include <linux/sched/stat.h>
14 #include <linux/bug.h>
15 #include <linux/minmax.h>
16 #include <linux/mm.h>
17 #include <linux/mmu_notifier.h>
18 #include <linux/preempt.h>
19 #include <linux/msi.h>
20 #include <linux/slab.h>
21 #include <linux/vmalloc.h>
22 #include <linux/rcupdate.h>
23 #include <linux/ratelimit.h>
24 #include <linux/err.h>
25 #include <linux/irqflags.h>
26 #include <linux/context_tracking.h>
27 #include <linux/irqbypass.h>
28 #include <linux/rcuwait.h>
29 #include <linux/refcount.h>
30 #include <linux/nospec.h>
31 #include <linux/notifier.h>
32 #include <linux/ftrace.h>
33 #include <linux/hashtable.h>
34 #include <linux/instrumentation.h>
35 #include <linux/interval_tree.h>
36 #include <linux/rbtree.h>
37 #include <linux/xarray.h>
38 #include <asm/signal.h>
39
40 #include <linux/kvm.h>
41 #include <linux/kvm_para.h>
42
43 #include <linux/kvm_types.h>
44
45 #include <asm/kvm_host.h>
46 #include <linux/kvm_dirty_ring.h>
47
48 #ifndef KVM_MAX_VCPU_IDS
49 #define KVM_MAX_VCPU_IDS KVM_MAX_VCPUS
50 #endif
51
52 /*
53 * The bit 16 ~ bit 31 of kvm_userspace_memory_region::flags are internally
54 * used in kvm, other bits are visible for userspace which are defined in
55 * include/linux/kvm_h.
56 */
57 #define KVM_MEMSLOT_INVALID (1UL << 16)
58
59 /*
60 * Bit 63 of the memslot generation number is an "update in-progress flag",
61 * e.g. is temporarily set for the duration of kvm_swap_active_memslots().
62 * This flag effectively creates a unique generation number that is used to
63 * mark cached memslot data, e.g. MMIO accesses, as potentially being stale,
64 * i.e. may (or may not) have come from the previous memslots generation.
65 *
66 * This is necessary because the actual memslots update is not atomic with
67 * respect to the generation number update. Updating the generation number
68 * first would allow a vCPU to cache a spte from the old memslots using the
69 * new generation number, and updating the generation number after switching
70 * to the new memslots would allow cache hits using the old generation number
71 * to reference the defunct memslots.
72 *
73 * This mechanism is used to prevent getting hits in KVM's caches while a
74 * memslot update is in-progress, and to prevent cache hits *after* updating
75 * the actual generation number against accesses that were inserted into the
76 * cache *before* the memslots were updated.
77 */
78 #define KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS BIT_ULL(63)
79
80 /* Two fragments for cross MMIO pages. */
81 #define KVM_MAX_MMIO_FRAGMENTS 2
82
83 #ifndef KVM_MAX_NR_ADDRESS_SPACES
84 #define KVM_MAX_NR_ADDRESS_SPACES 1
85 #endif
86
87 /*
88 * For the normal pfn, the highest 12 bits should be zero,
89 * so we can mask bit 62 ~ bit 52 to indicate the error pfn,
90 * mask bit 63 to indicate the noslot pfn.
91 */
92 #define KVM_PFN_ERR_MASK (0x7ffULL << 52)
93 #define KVM_PFN_ERR_NOSLOT_MASK (0xfffULL << 52)
94 #define KVM_PFN_NOSLOT (0x1ULL << 63)
95
96 #define KVM_PFN_ERR_FAULT (KVM_PFN_ERR_MASK)
97 #define KVM_PFN_ERR_HWPOISON (KVM_PFN_ERR_MASK + 1)
98 #define KVM_PFN_ERR_RO_FAULT (KVM_PFN_ERR_MASK + 2)
99 #define KVM_PFN_ERR_SIGPENDING (KVM_PFN_ERR_MASK + 3)
100
101 /*
102 * error pfns indicate that the gfn is in slot but faild to
103 * translate it to pfn on host.
104 */
is_error_pfn(kvm_pfn_t pfn)105 static inline bool is_error_pfn(kvm_pfn_t pfn)
106 {
107 return !!(pfn & KVM_PFN_ERR_MASK);
108 }
109
110 /*
111 * KVM_PFN_ERR_SIGPENDING indicates that fetching the PFN was interrupted
112 * by a pending signal. Note, the signal may or may not be fatal.
113 */
is_sigpending_pfn(kvm_pfn_t pfn)114 static inline bool is_sigpending_pfn(kvm_pfn_t pfn)
115 {
116 return pfn == KVM_PFN_ERR_SIGPENDING;
117 }
118
119 /*
120 * error_noslot pfns indicate that the gfn can not be
121 * translated to pfn - it is not in slot or failed to
122 * translate it to pfn.
123 */
is_error_noslot_pfn(kvm_pfn_t pfn)124 static inline bool is_error_noslot_pfn(kvm_pfn_t pfn)
125 {
126 return !!(pfn & KVM_PFN_ERR_NOSLOT_MASK);
127 }
128
129 /* noslot pfn indicates that the gfn is not in slot. */
is_noslot_pfn(kvm_pfn_t pfn)130 static inline bool is_noslot_pfn(kvm_pfn_t pfn)
131 {
132 return pfn == KVM_PFN_NOSLOT;
133 }
134
135 /*
136 * architectures with KVM_HVA_ERR_BAD other than PAGE_OFFSET (e.g. s390)
137 * provide own defines and kvm_is_error_hva
138 */
139 #ifndef KVM_HVA_ERR_BAD
140
141 #define KVM_HVA_ERR_BAD (PAGE_OFFSET)
142 #define KVM_HVA_ERR_RO_BAD (PAGE_OFFSET + PAGE_SIZE)
143
kvm_is_error_hva(unsigned long addr)144 static inline bool kvm_is_error_hva(unsigned long addr)
145 {
146 return addr >= PAGE_OFFSET;
147 }
148
149 #endif
150
kvm_is_error_gpa(gpa_t gpa)151 static inline bool kvm_is_error_gpa(gpa_t gpa)
152 {
153 return gpa == INVALID_GPA;
154 }
155
156 #define KVM_ERR_PTR_BAD_PAGE (ERR_PTR(-ENOENT))
157
is_error_page(struct page * page)158 static inline bool is_error_page(struct page *page)
159 {
160 return IS_ERR(page);
161 }
162
163 #define KVM_REQUEST_MASK GENMASK(7,0)
164 #define KVM_REQUEST_NO_WAKEUP BIT(8)
165 #define KVM_REQUEST_WAIT BIT(9)
166 #define KVM_REQUEST_NO_ACTION BIT(10)
167 /*
168 * Architecture-independent vcpu->requests bit members
169 * Bits 3-7 are reserved for more arch-independent bits.
170 */
171 #define KVM_REQ_TLB_FLUSH (0 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
172 #define KVM_REQ_VM_DEAD (1 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
173 #define KVM_REQ_UNBLOCK 2
174 #define KVM_REQ_DIRTY_RING_SOFT_FULL 3
175 #define KVM_REQUEST_ARCH_BASE 8
176
177 /*
178 * KVM_REQ_OUTSIDE_GUEST_MODE exists is purely as way to force the vCPU to
179 * OUTSIDE_GUEST_MODE. KVM_REQ_OUTSIDE_GUEST_MODE differs from a vCPU "kick"
180 * in that it ensures the vCPU has reached OUTSIDE_GUEST_MODE before continuing
181 * on. A kick only guarantees that the vCPU is on its way out, e.g. a previous
182 * kick may have set vcpu->mode to EXITING_GUEST_MODE, and so there's no
183 * guarantee the vCPU received an IPI and has actually exited guest mode.
184 */
185 #define KVM_REQ_OUTSIDE_GUEST_MODE (KVM_REQUEST_NO_ACTION | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
186
187 #define KVM_ARCH_REQ_FLAGS(nr, flags) ({ \
188 BUILD_BUG_ON((unsigned)(nr) >= (sizeof_field(struct kvm_vcpu, requests) * 8) - KVM_REQUEST_ARCH_BASE); \
189 (unsigned)(((nr) + KVM_REQUEST_ARCH_BASE) | (flags)); \
190 })
191 #define KVM_ARCH_REQ(nr) KVM_ARCH_REQ_FLAGS(nr, 0)
192
193 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
194 unsigned long *vcpu_bitmap);
195 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req);
196
197 #define KVM_USERSPACE_IRQ_SOURCE_ID 0
198 #define KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID 1
199
200 extern struct mutex kvm_lock;
201 extern struct list_head vm_list;
202
203 struct kvm_io_range {
204 gpa_t addr;
205 int len;
206 struct kvm_io_device *dev;
207 };
208
209 #define NR_IOBUS_DEVS 1000
210
211 struct kvm_io_bus {
212 int dev_count;
213 int ioeventfd_count;
214 struct rcu_head rcu;
215 struct kvm_io_range range[];
216 };
217
218 enum kvm_bus {
219 KVM_MMIO_BUS,
220 KVM_PIO_BUS,
221 KVM_VIRTIO_CCW_NOTIFY_BUS,
222 KVM_FAST_MMIO_BUS,
223 KVM_NR_BUSES
224 };
225
226 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
227 int len, const void *val);
228 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
229 gpa_t addr, int len, const void *val, long cookie);
230 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
231 int len, void *val);
232 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
233 int len, struct kvm_io_device *dev);
234 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
235 struct kvm_io_device *dev);
236 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
237 gpa_t addr);
238
239 #ifdef CONFIG_KVM_ASYNC_PF
240 struct kvm_async_pf {
241 struct work_struct work;
242 struct list_head link;
243 struct list_head queue;
244 struct kvm_vcpu *vcpu;
245 gpa_t cr2_or_gpa;
246 unsigned long addr;
247 struct kvm_arch_async_pf arch;
248 bool wakeup_all;
249 bool notpresent_injected;
250 };
251
252 void kvm_clear_async_pf_completion_queue(struct kvm_vcpu *vcpu);
253 void kvm_check_async_pf_completion(struct kvm_vcpu *vcpu);
254 bool kvm_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
255 unsigned long hva, struct kvm_arch_async_pf *arch);
256 int kvm_async_pf_wakeup_all(struct kvm_vcpu *vcpu);
257 #endif
258
259 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
260 union kvm_mmu_notifier_arg {
261 unsigned long attributes;
262 };
263
264 enum kvm_gfn_range_filter {
265 KVM_FILTER_SHARED = BIT(0),
266 KVM_FILTER_PRIVATE = BIT(1),
267 };
268
269 struct kvm_gfn_range {
270 struct kvm_memory_slot *slot;
271 gfn_t start;
272 gfn_t end;
273 union kvm_mmu_notifier_arg arg;
274 enum kvm_gfn_range_filter attr_filter;
275 bool may_block;
276 };
277 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range);
278 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
279 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
280 #endif
281
282 enum {
283 OUTSIDE_GUEST_MODE,
284 IN_GUEST_MODE,
285 EXITING_GUEST_MODE,
286 READING_SHADOW_PAGE_TABLES,
287 };
288
289 #define KVM_UNMAPPED_PAGE ((void *) 0x500 + POISON_POINTER_DELTA)
290
291 struct kvm_host_map {
292 /*
293 * Only valid if the 'pfn' is managed by the host kernel (i.e. There is
294 * a 'struct page' for it. When using mem= kernel parameter some memory
295 * can be used as guest memory but they are not managed by host
296 * kernel).
297 * If 'pfn' is not managed by the host kernel, this field is
298 * initialized to KVM_UNMAPPED_PAGE.
299 */
300 struct page *page;
301 void *hva;
302 kvm_pfn_t pfn;
303 kvm_pfn_t gfn;
304 };
305
306 /*
307 * Used to check if the mapping is valid or not. Never use 'kvm_host_map'
308 * directly to check for that.
309 */
kvm_vcpu_mapped(struct kvm_host_map * map)310 static inline bool kvm_vcpu_mapped(struct kvm_host_map *map)
311 {
312 return !!map->hva;
313 }
314
kvm_vcpu_can_poll(ktime_t cur,ktime_t stop)315 static inline bool kvm_vcpu_can_poll(ktime_t cur, ktime_t stop)
316 {
317 return single_task_running() && !need_resched() && ktime_before(cur, stop);
318 }
319
320 /*
321 * Sometimes a large or cross-page mmio needs to be broken up into separate
322 * exits for userspace servicing.
323 */
324 struct kvm_mmio_fragment {
325 gpa_t gpa;
326 void *data;
327 unsigned len;
328 };
329
330 struct kvm_vcpu {
331 struct kvm *kvm;
332 #ifdef CONFIG_PREEMPT_NOTIFIERS
333 struct preempt_notifier preempt_notifier;
334 #endif
335 int cpu;
336 int vcpu_id; /* id given by userspace at creation */
337 int vcpu_idx; /* index into kvm->vcpu_array */
338 int ____srcu_idx; /* Don't use this directly. You've been warned. */
339 #ifdef CONFIG_PROVE_RCU
340 int srcu_depth;
341 #endif
342 int mode;
343 u64 requests;
344 unsigned long guest_debug;
345
346 struct mutex mutex;
347 struct kvm_run *run;
348
349 #ifndef __KVM_HAVE_ARCH_WQP
350 struct rcuwait wait;
351 #endif
352 struct pid __rcu *pid;
353 int sigset_active;
354 sigset_t sigset;
355 unsigned int halt_poll_ns;
356 bool valid_wakeup;
357
358 #ifdef CONFIG_HAS_IOMEM
359 int mmio_needed;
360 int mmio_read_completed;
361 int mmio_is_write;
362 int mmio_cur_fragment;
363 int mmio_nr_fragments;
364 struct kvm_mmio_fragment mmio_fragments[KVM_MAX_MMIO_FRAGMENTS];
365 #endif
366
367 #ifdef CONFIG_KVM_ASYNC_PF
368 struct {
369 u32 queued;
370 struct list_head queue;
371 struct list_head done;
372 spinlock_t lock;
373 } async_pf;
374 #endif
375
376 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
377 /*
378 * Cpu relax intercept or pause loop exit optimization
379 * in_spin_loop: set when a vcpu does a pause loop exit
380 * or cpu relax intercepted.
381 * dy_eligible: indicates whether vcpu is eligible for directed yield.
382 */
383 struct {
384 bool in_spin_loop;
385 bool dy_eligible;
386 } spin_loop;
387 #endif
388 bool wants_to_run;
389 bool preempted;
390 bool ready;
391 bool scheduled_out;
392 struct kvm_vcpu_arch arch;
393 struct kvm_vcpu_stat stat;
394 char stats_id[KVM_STATS_NAME_SIZE];
395 struct kvm_dirty_ring dirty_ring;
396
397 /*
398 * The most recently used memslot by this vCPU and the slots generation
399 * for which it is valid.
400 * No wraparound protection is needed since generations won't overflow in
401 * thousands of years, even assuming 1M memslot operations per second.
402 */
403 struct kvm_memory_slot *last_used_slot;
404 u64 last_used_slot_gen;
405 };
406
407 /*
408 * Start accounting time towards a guest.
409 * Must be called before entering guest context.
410 */
guest_timing_enter_irqoff(void)411 static __always_inline void guest_timing_enter_irqoff(void)
412 {
413 /*
414 * This is running in ioctl context so its safe to assume that it's the
415 * stime pending cputime to flush.
416 */
417 instrumentation_begin();
418 vtime_account_guest_enter();
419 instrumentation_end();
420 }
421
422 /*
423 * Enter guest context and enter an RCU extended quiescent state.
424 *
425 * Between guest_context_enter_irqoff() and guest_context_exit_irqoff() it is
426 * unsafe to use any code which may directly or indirectly use RCU, tracing
427 * (including IRQ flag tracing), or lockdep. All code in this period must be
428 * non-instrumentable.
429 */
guest_context_enter_irqoff(void)430 static __always_inline void guest_context_enter_irqoff(void)
431 {
432 /*
433 * KVM does not hold any references to rcu protected data when it
434 * switches CPU into a guest mode. In fact switching to a guest mode
435 * is very similar to exiting to userspace from rcu point of view. In
436 * addition CPU may stay in a guest mode for quite a long time (up to
437 * one time slice). Lets treat guest mode as quiescent state, just like
438 * we do with user-mode execution.
439 */
440 if (!context_tracking_guest_enter()) {
441 instrumentation_begin();
442 rcu_virt_note_context_switch();
443 instrumentation_end();
444 }
445 }
446
447 /*
448 * Deprecated. Architectures should move to guest_timing_enter_irqoff() and
449 * guest_state_enter_irqoff().
450 */
guest_enter_irqoff(void)451 static __always_inline void guest_enter_irqoff(void)
452 {
453 guest_timing_enter_irqoff();
454 guest_context_enter_irqoff();
455 }
456
457 /**
458 * guest_state_enter_irqoff - Fixup state when entering a guest
459 *
460 * Entry to a guest will enable interrupts, but the kernel state is interrupts
461 * disabled when this is invoked. Also tell RCU about it.
462 *
463 * 1) Trace interrupts on state
464 * 2) Invoke context tracking if enabled to adjust RCU state
465 * 3) Tell lockdep that interrupts are enabled
466 *
467 * Invoked from architecture specific code before entering a guest.
468 * Must be called with interrupts disabled and the caller must be
469 * non-instrumentable.
470 * The caller has to invoke guest_timing_enter_irqoff() before this.
471 *
472 * Note: this is analogous to exit_to_user_mode().
473 */
guest_state_enter_irqoff(void)474 static __always_inline void guest_state_enter_irqoff(void)
475 {
476 instrumentation_begin();
477 trace_hardirqs_on_prepare();
478 lockdep_hardirqs_on_prepare();
479 instrumentation_end();
480
481 guest_context_enter_irqoff();
482 lockdep_hardirqs_on(CALLER_ADDR0);
483 }
484
485 /*
486 * Exit guest context and exit an RCU extended quiescent state.
487 *
488 * Between guest_context_enter_irqoff() and guest_context_exit_irqoff() it is
489 * unsafe to use any code which may directly or indirectly use RCU, tracing
490 * (including IRQ flag tracing), or lockdep. All code in this period must be
491 * non-instrumentable.
492 */
guest_context_exit_irqoff(void)493 static __always_inline void guest_context_exit_irqoff(void)
494 {
495 /*
496 * Guest mode is treated as a quiescent state, see
497 * guest_context_enter_irqoff() for more details.
498 */
499 if (!context_tracking_guest_exit()) {
500 instrumentation_begin();
501 rcu_virt_note_context_switch();
502 instrumentation_end();
503 }
504 }
505
506 /*
507 * Stop accounting time towards a guest.
508 * Must be called after exiting guest context.
509 */
guest_timing_exit_irqoff(void)510 static __always_inline void guest_timing_exit_irqoff(void)
511 {
512 instrumentation_begin();
513 /* Flush the guest cputime we spent on the guest */
514 vtime_account_guest_exit();
515 instrumentation_end();
516 }
517
518 /*
519 * Deprecated. Architectures should move to guest_state_exit_irqoff() and
520 * guest_timing_exit_irqoff().
521 */
guest_exit_irqoff(void)522 static __always_inline void guest_exit_irqoff(void)
523 {
524 guest_context_exit_irqoff();
525 guest_timing_exit_irqoff();
526 }
527
guest_exit(void)528 static inline void guest_exit(void)
529 {
530 unsigned long flags;
531
532 local_irq_save(flags);
533 guest_exit_irqoff();
534 local_irq_restore(flags);
535 }
536
537 /**
538 * guest_state_exit_irqoff - Establish state when returning from guest mode
539 *
540 * Entry from a guest disables interrupts, but guest mode is traced as
541 * interrupts enabled. Also with NO_HZ_FULL RCU might be idle.
542 *
543 * 1) Tell lockdep that interrupts are disabled
544 * 2) Invoke context tracking if enabled to reactivate RCU
545 * 3) Trace interrupts off state
546 *
547 * Invoked from architecture specific code after exiting a guest.
548 * Must be invoked with interrupts disabled and the caller must be
549 * non-instrumentable.
550 * The caller has to invoke guest_timing_exit_irqoff() after this.
551 *
552 * Note: this is analogous to enter_from_user_mode().
553 */
guest_state_exit_irqoff(void)554 static __always_inline void guest_state_exit_irqoff(void)
555 {
556 lockdep_hardirqs_off(CALLER_ADDR0);
557 guest_context_exit_irqoff();
558
559 instrumentation_begin();
560 trace_hardirqs_off_finish();
561 instrumentation_end();
562 }
563
kvm_vcpu_exiting_guest_mode(struct kvm_vcpu * vcpu)564 static inline int kvm_vcpu_exiting_guest_mode(struct kvm_vcpu *vcpu)
565 {
566 /*
567 * The memory barrier ensures a previous write to vcpu->requests cannot
568 * be reordered with the read of vcpu->mode. It pairs with the general
569 * memory barrier following the write of vcpu->mode in VCPU RUN.
570 */
571 smp_mb__before_atomic();
572 return cmpxchg(&vcpu->mode, IN_GUEST_MODE, EXITING_GUEST_MODE);
573 }
574
575 /*
576 * Some of the bitops functions do not support too long bitmaps.
577 * This number must be determined not to exceed such limits.
578 */
579 #define KVM_MEM_MAX_NR_PAGES ((1UL << 31) - 1)
580
581 /*
582 * Since at idle each memslot belongs to two memslot sets it has to contain
583 * two embedded nodes for each data structure that it forms a part of.
584 *
585 * Two memslot sets (one active and one inactive) are necessary so the VM
586 * continues to run on one memslot set while the other is being modified.
587 *
588 * These two memslot sets normally point to the same set of memslots.
589 * They can, however, be desynchronized when performing a memslot management
590 * operation by replacing the memslot to be modified by its copy.
591 * After the operation is complete, both memslot sets once again point to
592 * the same, common set of memslot data.
593 *
594 * The memslots themselves are independent of each other so they can be
595 * individually added or deleted.
596 */
597 struct kvm_memory_slot {
598 struct hlist_node id_node[2];
599 struct interval_tree_node hva_node[2];
600 struct rb_node gfn_node[2];
601 gfn_t base_gfn;
602 unsigned long npages;
603 unsigned long *dirty_bitmap;
604 struct kvm_arch_memory_slot arch;
605 unsigned long userspace_addr;
606 u32 flags;
607 short id;
608 u16 as_id;
609
610 #ifdef CONFIG_KVM_PRIVATE_MEM
611 struct {
612 struct file __rcu *file;
613 pgoff_t pgoff;
614 } gmem;
615 #endif
616 };
617
kvm_slot_can_be_private(const struct kvm_memory_slot * slot)618 static inline bool kvm_slot_can_be_private(const struct kvm_memory_slot *slot)
619 {
620 return slot && (slot->flags & KVM_MEM_GUEST_MEMFD);
621 }
622
kvm_slot_dirty_track_enabled(const struct kvm_memory_slot * slot)623 static inline bool kvm_slot_dirty_track_enabled(const struct kvm_memory_slot *slot)
624 {
625 return slot->flags & KVM_MEM_LOG_DIRTY_PAGES;
626 }
627
kvm_dirty_bitmap_bytes(struct kvm_memory_slot * memslot)628 static inline unsigned long kvm_dirty_bitmap_bytes(struct kvm_memory_slot *memslot)
629 {
630 return ALIGN(memslot->npages, BITS_PER_LONG) / 8;
631 }
632
kvm_second_dirty_bitmap(struct kvm_memory_slot * memslot)633 static inline unsigned long *kvm_second_dirty_bitmap(struct kvm_memory_slot *memslot)
634 {
635 unsigned long len = kvm_dirty_bitmap_bytes(memslot);
636
637 return memslot->dirty_bitmap + len / sizeof(*memslot->dirty_bitmap);
638 }
639
640 #ifndef KVM_DIRTY_LOG_MANUAL_CAPS
641 #define KVM_DIRTY_LOG_MANUAL_CAPS KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE
642 #endif
643
644 struct kvm_s390_adapter_int {
645 u64 ind_addr;
646 u64 summary_addr;
647 u64 ind_offset;
648 u32 summary_offset;
649 u32 adapter_id;
650 };
651
652 struct kvm_hv_sint {
653 u32 vcpu;
654 u32 sint;
655 };
656
657 struct kvm_xen_evtchn {
658 u32 port;
659 u32 vcpu_id;
660 int vcpu_idx;
661 u32 priority;
662 };
663
664 struct kvm_kernel_irq_routing_entry {
665 u32 gsi;
666 u32 type;
667 int (*set)(struct kvm_kernel_irq_routing_entry *e,
668 struct kvm *kvm, int irq_source_id, int level,
669 bool line_status);
670 union {
671 struct {
672 unsigned irqchip;
673 unsigned pin;
674 } irqchip;
675 struct {
676 u32 address_lo;
677 u32 address_hi;
678 u32 data;
679 u32 flags;
680 u32 devid;
681 } msi;
682 struct kvm_s390_adapter_int adapter;
683 struct kvm_hv_sint hv_sint;
684 struct kvm_xen_evtchn xen_evtchn;
685 };
686 struct hlist_node link;
687 };
688
689 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
690 struct kvm_irq_routing_table {
691 int chip[KVM_NR_IRQCHIPS][KVM_IRQCHIP_NUM_PINS];
692 u32 nr_rt_entries;
693 /*
694 * Array indexed by gsi. Each entry contains list of irq chips
695 * the gsi is connected to.
696 */
697 struct hlist_head map[] __counted_by(nr_rt_entries);
698 };
699 #endif
700
701 bool kvm_arch_irqchip_in_kernel(struct kvm *kvm);
702
703 #ifndef KVM_INTERNAL_MEM_SLOTS
704 #define KVM_INTERNAL_MEM_SLOTS 0
705 #endif
706
707 #define KVM_MEM_SLOTS_NUM SHRT_MAX
708 #define KVM_USER_MEM_SLOTS (KVM_MEM_SLOTS_NUM - KVM_INTERNAL_MEM_SLOTS)
709
710 #if KVM_MAX_NR_ADDRESS_SPACES == 1
kvm_arch_nr_memslot_as_ids(struct kvm * kvm)711 static inline int kvm_arch_nr_memslot_as_ids(struct kvm *kvm)
712 {
713 return KVM_MAX_NR_ADDRESS_SPACES;
714 }
715
kvm_arch_vcpu_memslots_id(struct kvm_vcpu * vcpu)716 static inline int kvm_arch_vcpu_memslots_id(struct kvm_vcpu *vcpu)
717 {
718 return 0;
719 }
720 #endif
721
722 /*
723 * Arch code must define kvm_arch_has_private_mem if support for private memory
724 * is enabled.
725 */
726 #if !defined(kvm_arch_has_private_mem) && !IS_ENABLED(CONFIG_KVM_PRIVATE_MEM)
kvm_arch_has_private_mem(struct kvm * kvm)727 static inline bool kvm_arch_has_private_mem(struct kvm *kvm)
728 {
729 return false;
730 }
731 #endif
732
733 #ifndef kvm_arch_has_readonly_mem
kvm_arch_has_readonly_mem(struct kvm * kvm)734 static inline bool kvm_arch_has_readonly_mem(struct kvm *kvm)
735 {
736 return IS_ENABLED(CONFIG_HAVE_KVM_READONLY_MEM);
737 }
738 #endif
739
740 struct kvm_memslots {
741 u64 generation;
742 atomic_long_t last_used_slot;
743 struct rb_root_cached hva_tree;
744 struct rb_root gfn_tree;
745 /*
746 * The mapping table from slot id to memslot.
747 *
748 * 7-bit bucket count matches the size of the old id to index array for
749 * 512 slots, while giving good performance with this slot count.
750 * Higher bucket counts bring only small performance improvements but
751 * always result in higher memory usage (even for lower memslot counts).
752 */
753 DECLARE_HASHTABLE(id_hash, 7);
754 int node_idx;
755 };
756
757 struct kvm {
758 #ifdef KVM_HAVE_MMU_RWLOCK
759 rwlock_t mmu_lock;
760 #else
761 spinlock_t mmu_lock;
762 #endif /* KVM_HAVE_MMU_RWLOCK */
763
764 struct mutex slots_lock;
765
766 /*
767 * Protects the arch-specific fields of struct kvm_memory_slots in
768 * use by the VM. To be used under the slots_lock (above) or in a
769 * kvm->srcu critical section where acquiring the slots_lock would
770 * lead to deadlock with the synchronize_srcu in
771 * kvm_swap_active_memslots().
772 */
773 struct mutex slots_arch_lock;
774 struct mm_struct *mm; /* userspace tied to this vm */
775 unsigned long nr_memslot_pages;
776 /* The two memslot sets - active and inactive (per address space) */
777 struct kvm_memslots __memslots[KVM_MAX_NR_ADDRESS_SPACES][2];
778 /* The current active memslot set for each address space */
779 struct kvm_memslots __rcu *memslots[KVM_MAX_NR_ADDRESS_SPACES];
780 struct xarray vcpu_array;
781 /*
782 * Protected by slots_lock, but can be read outside if an
783 * incorrect answer is acceptable.
784 */
785 atomic_t nr_memslots_dirty_logging;
786
787 /* Used to wait for completion of MMU notifiers. */
788 spinlock_t mn_invalidate_lock;
789 unsigned long mn_active_invalidate_count;
790 struct rcuwait mn_memslots_update_rcuwait;
791
792 /* For management / invalidation of gfn_to_pfn_caches */
793 spinlock_t gpc_lock;
794 struct list_head gpc_list;
795
796 /*
797 * created_vcpus is protected by kvm->lock, and is incremented
798 * at the beginning of KVM_CREATE_VCPU. online_vcpus is only
799 * incremented after storing the kvm_vcpu pointer in vcpus,
800 * and is accessed atomically.
801 */
802 atomic_t online_vcpus;
803 int max_vcpus;
804 int created_vcpus;
805 int last_boosted_vcpu;
806 struct list_head vm_list;
807 struct mutex lock;
808 struct kvm_io_bus __rcu *buses[KVM_NR_BUSES];
809 #ifdef CONFIG_HAVE_KVM_IRQCHIP
810 struct {
811 spinlock_t lock;
812 struct list_head items;
813 /* resampler_list update side is protected by resampler_lock. */
814 struct list_head resampler_list;
815 struct mutex resampler_lock;
816 } irqfds;
817 #endif
818 struct list_head ioeventfds;
819 struct kvm_vm_stat stat;
820 struct kvm_arch arch;
821 refcount_t users_count;
822 #ifdef CONFIG_KVM_MMIO
823 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
824 spinlock_t ring_lock;
825 struct list_head coalesced_zones;
826 #endif
827
828 struct mutex irq_lock;
829 #ifdef CONFIG_HAVE_KVM_IRQCHIP
830 /*
831 * Update side is protected by irq_lock.
832 */
833 struct kvm_irq_routing_table __rcu *irq_routing;
834
835 struct hlist_head irq_ack_notifier_list;
836 #endif
837
838 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
839 struct mmu_notifier mmu_notifier;
840 unsigned long mmu_invalidate_seq;
841 long mmu_invalidate_in_progress;
842 gfn_t mmu_invalidate_range_start;
843 gfn_t mmu_invalidate_range_end;
844 #endif
845 struct list_head devices;
846 u64 manual_dirty_log_protect;
847 struct dentry *debugfs_dentry;
848 struct kvm_stat_data **debugfs_stat_data;
849 struct srcu_struct srcu;
850 struct srcu_struct irq_srcu;
851 pid_t userspace_pid;
852 bool override_halt_poll_ns;
853 unsigned int max_halt_poll_ns;
854 u32 dirty_ring_size;
855 bool dirty_ring_with_bitmap;
856 bool vm_bugged;
857 bool vm_dead;
858
859 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
860 struct notifier_block pm_notifier;
861 #endif
862 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
863 /* Protected by slots_locks (for writes) and RCU (for reads) */
864 struct xarray mem_attr_array;
865 #endif
866 char stats_id[KVM_STATS_NAME_SIZE];
867 };
868
869 #define kvm_err(fmt, ...) \
870 pr_err("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
871 #define kvm_info(fmt, ...) \
872 pr_info("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
873 #define kvm_debug(fmt, ...) \
874 pr_debug("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
875 #define kvm_debug_ratelimited(fmt, ...) \
876 pr_debug_ratelimited("kvm [%i]: " fmt, task_pid_nr(current), \
877 ## __VA_ARGS__)
878 #define kvm_pr_unimpl(fmt, ...) \
879 pr_err_ratelimited("kvm [%i]: " fmt, \
880 task_tgid_nr(current), ## __VA_ARGS__)
881
882 /* The guest did something we don't support. */
883 #define vcpu_unimpl(vcpu, fmt, ...) \
884 kvm_pr_unimpl("vcpu%i, guest rIP: 0x%lx " fmt, \
885 (vcpu)->vcpu_id, kvm_rip_read(vcpu), ## __VA_ARGS__)
886
887 #define vcpu_debug(vcpu, fmt, ...) \
888 kvm_debug("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
889 #define vcpu_debug_ratelimited(vcpu, fmt, ...) \
890 kvm_debug_ratelimited("vcpu%i " fmt, (vcpu)->vcpu_id, \
891 ## __VA_ARGS__)
892 #define vcpu_err(vcpu, fmt, ...) \
893 kvm_err("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
894
kvm_vm_dead(struct kvm * kvm)895 static inline void kvm_vm_dead(struct kvm *kvm)
896 {
897 kvm->vm_dead = true;
898 kvm_make_all_cpus_request(kvm, KVM_REQ_VM_DEAD);
899 }
900
kvm_vm_bugged(struct kvm * kvm)901 static inline void kvm_vm_bugged(struct kvm *kvm)
902 {
903 kvm->vm_bugged = true;
904 kvm_vm_dead(kvm);
905 }
906
907
908 #define KVM_BUG(cond, kvm, fmt...) \
909 ({ \
910 bool __ret = !!(cond); \
911 \
912 if (WARN_ONCE(__ret && !(kvm)->vm_bugged, fmt)) \
913 kvm_vm_bugged(kvm); \
914 unlikely(__ret); \
915 })
916
917 #define KVM_BUG_ON(cond, kvm) \
918 ({ \
919 bool __ret = !!(cond); \
920 \
921 if (WARN_ON_ONCE(__ret && !(kvm)->vm_bugged)) \
922 kvm_vm_bugged(kvm); \
923 unlikely(__ret); \
924 })
925
926 /*
927 * Note, "data corruption" refers to corruption of host kernel data structures,
928 * not guest data. Guest data corruption, suspected or confirmed, that is tied
929 * and contained to a single VM should *never* BUG() and potentially panic the
930 * host, i.e. use this variant of KVM_BUG() if and only if a KVM data structure
931 * is corrupted and that corruption can have a cascading effect to other parts
932 * of the hosts and/or to other VMs.
933 */
934 #define KVM_BUG_ON_DATA_CORRUPTION(cond, kvm) \
935 ({ \
936 bool __ret = !!(cond); \
937 \
938 if (IS_ENABLED(CONFIG_BUG_ON_DATA_CORRUPTION)) \
939 BUG_ON(__ret); \
940 else if (WARN_ON_ONCE(__ret && !(kvm)->vm_bugged)) \
941 kvm_vm_bugged(kvm); \
942 unlikely(__ret); \
943 })
944
kvm_vcpu_srcu_read_lock(struct kvm_vcpu * vcpu)945 static inline void kvm_vcpu_srcu_read_lock(struct kvm_vcpu *vcpu)
946 {
947 #ifdef CONFIG_PROVE_RCU
948 WARN_ONCE(vcpu->srcu_depth++,
949 "KVM: Illegal vCPU srcu_idx LOCK, depth=%d", vcpu->srcu_depth - 1);
950 #endif
951 vcpu->____srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
952 }
953
kvm_vcpu_srcu_read_unlock(struct kvm_vcpu * vcpu)954 static inline void kvm_vcpu_srcu_read_unlock(struct kvm_vcpu *vcpu)
955 {
956 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->____srcu_idx);
957
958 #ifdef CONFIG_PROVE_RCU
959 WARN_ONCE(--vcpu->srcu_depth,
960 "KVM: Illegal vCPU srcu_idx UNLOCK, depth=%d", vcpu->srcu_depth);
961 #endif
962 }
963
kvm_dirty_log_manual_protect_and_init_set(struct kvm * kvm)964 static inline bool kvm_dirty_log_manual_protect_and_init_set(struct kvm *kvm)
965 {
966 return !!(kvm->manual_dirty_log_protect & KVM_DIRTY_LOG_INITIALLY_SET);
967 }
968
kvm_get_bus(struct kvm * kvm,enum kvm_bus idx)969 static inline struct kvm_io_bus *kvm_get_bus(struct kvm *kvm, enum kvm_bus idx)
970 {
971 return srcu_dereference_check(kvm->buses[idx], &kvm->srcu,
972 lockdep_is_held(&kvm->slots_lock) ||
973 !refcount_read(&kvm->users_count));
974 }
975
kvm_get_vcpu(struct kvm * kvm,int i)976 static inline struct kvm_vcpu *kvm_get_vcpu(struct kvm *kvm, int i)
977 {
978 int num_vcpus = atomic_read(&kvm->online_vcpus);
979
980 /*
981 * Explicitly verify the target vCPU is online, as the anti-speculation
982 * logic only limits the CPU's ability to speculate, e.g. given a "bad"
983 * index, clamping the index to 0 would return vCPU0, not NULL.
984 */
985 if (i >= num_vcpus)
986 return NULL;
987
988 i = array_index_nospec(i, num_vcpus);
989
990 /* Pairs with smp_wmb() in kvm_vm_ioctl_create_vcpu. */
991 smp_rmb();
992 return xa_load(&kvm->vcpu_array, i);
993 }
994
995 #define kvm_for_each_vcpu(idx, vcpup, kvm) \
996 xa_for_each_range(&kvm->vcpu_array, idx, vcpup, 0, \
997 (atomic_read(&kvm->online_vcpus) - 1))
998
kvm_get_vcpu_by_id(struct kvm * kvm,int id)999 static inline struct kvm_vcpu *kvm_get_vcpu_by_id(struct kvm *kvm, int id)
1000 {
1001 struct kvm_vcpu *vcpu = NULL;
1002 unsigned long i;
1003
1004 if (id < 0)
1005 return NULL;
1006 if (id < KVM_MAX_VCPUS)
1007 vcpu = kvm_get_vcpu(kvm, id);
1008 if (vcpu && vcpu->vcpu_id == id)
1009 return vcpu;
1010 kvm_for_each_vcpu(i, vcpu, kvm)
1011 if (vcpu->vcpu_id == id)
1012 return vcpu;
1013 return NULL;
1014 }
1015
1016 void kvm_destroy_vcpus(struct kvm *kvm);
1017
1018 void vcpu_load(struct kvm_vcpu *vcpu);
1019 void vcpu_put(struct kvm_vcpu *vcpu);
1020
1021 #ifdef __KVM_HAVE_IOAPIC
1022 void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm);
1023 void kvm_arch_post_irq_routing_update(struct kvm *kvm);
1024 #else
kvm_arch_post_irq_ack_notifier_list_update(struct kvm * kvm)1025 static inline void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm)
1026 {
1027 }
kvm_arch_post_irq_routing_update(struct kvm * kvm)1028 static inline void kvm_arch_post_irq_routing_update(struct kvm *kvm)
1029 {
1030 }
1031 #endif
1032
1033 #ifdef CONFIG_HAVE_KVM_IRQCHIP
1034 int kvm_irqfd_init(void);
1035 void kvm_irqfd_exit(void);
1036 #else
kvm_irqfd_init(void)1037 static inline int kvm_irqfd_init(void)
1038 {
1039 return 0;
1040 }
1041
kvm_irqfd_exit(void)1042 static inline void kvm_irqfd_exit(void)
1043 {
1044 }
1045 #endif
1046 int kvm_init(unsigned vcpu_size, unsigned vcpu_align, struct module *module);
1047 void kvm_exit(void);
1048
1049 void kvm_get_kvm(struct kvm *kvm);
1050 bool kvm_get_kvm_safe(struct kvm *kvm);
1051 void kvm_put_kvm(struct kvm *kvm);
1052 bool file_is_kvm(struct file *file);
1053 void kvm_put_kvm_no_destroy(struct kvm *kvm);
1054
__kvm_memslots(struct kvm * kvm,int as_id)1055 static inline struct kvm_memslots *__kvm_memslots(struct kvm *kvm, int as_id)
1056 {
1057 as_id = array_index_nospec(as_id, KVM_MAX_NR_ADDRESS_SPACES);
1058 return srcu_dereference_check(kvm->memslots[as_id], &kvm->srcu,
1059 lockdep_is_held(&kvm->slots_lock) ||
1060 !refcount_read(&kvm->users_count));
1061 }
1062
kvm_memslots(struct kvm * kvm)1063 static inline struct kvm_memslots *kvm_memslots(struct kvm *kvm)
1064 {
1065 return __kvm_memslots(kvm, 0);
1066 }
1067
kvm_vcpu_memslots(struct kvm_vcpu * vcpu)1068 static inline struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu)
1069 {
1070 int as_id = kvm_arch_vcpu_memslots_id(vcpu);
1071
1072 return __kvm_memslots(vcpu->kvm, as_id);
1073 }
1074
kvm_memslots_empty(struct kvm_memslots * slots)1075 static inline bool kvm_memslots_empty(struct kvm_memslots *slots)
1076 {
1077 return RB_EMPTY_ROOT(&slots->gfn_tree);
1078 }
1079
1080 bool kvm_are_all_memslots_empty(struct kvm *kvm);
1081
1082 #define kvm_for_each_memslot(memslot, bkt, slots) \
1083 hash_for_each(slots->id_hash, bkt, memslot, id_node[slots->node_idx]) \
1084 if (WARN_ON_ONCE(!memslot->npages)) { \
1085 } else
1086
1087 static inline
id_to_memslot(struct kvm_memslots * slots,int id)1088 struct kvm_memory_slot *id_to_memslot(struct kvm_memslots *slots, int id)
1089 {
1090 struct kvm_memory_slot *slot;
1091 int idx = slots->node_idx;
1092
1093 hash_for_each_possible(slots->id_hash, slot, id_node[idx], id) {
1094 if (slot->id == id)
1095 return slot;
1096 }
1097
1098 return NULL;
1099 }
1100
1101 /* Iterator used for walking memslots that overlap a gfn range. */
1102 struct kvm_memslot_iter {
1103 struct kvm_memslots *slots;
1104 struct rb_node *node;
1105 struct kvm_memory_slot *slot;
1106 };
1107
kvm_memslot_iter_next(struct kvm_memslot_iter * iter)1108 static inline void kvm_memslot_iter_next(struct kvm_memslot_iter *iter)
1109 {
1110 iter->node = rb_next(iter->node);
1111 if (!iter->node)
1112 return;
1113
1114 iter->slot = container_of(iter->node, struct kvm_memory_slot, gfn_node[iter->slots->node_idx]);
1115 }
1116
kvm_memslot_iter_start(struct kvm_memslot_iter * iter,struct kvm_memslots * slots,gfn_t start)1117 static inline void kvm_memslot_iter_start(struct kvm_memslot_iter *iter,
1118 struct kvm_memslots *slots,
1119 gfn_t start)
1120 {
1121 int idx = slots->node_idx;
1122 struct rb_node *tmp;
1123 struct kvm_memory_slot *slot;
1124
1125 iter->slots = slots;
1126
1127 /*
1128 * Find the so called "upper bound" of a key - the first node that has
1129 * its key strictly greater than the searched one (the start gfn in our case).
1130 */
1131 iter->node = NULL;
1132 for (tmp = slots->gfn_tree.rb_node; tmp; ) {
1133 slot = container_of(tmp, struct kvm_memory_slot, gfn_node[idx]);
1134 if (start < slot->base_gfn) {
1135 iter->node = tmp;
1136 tmp = tmp->rb_left;
1137 } else {
1138 tmp = tmp->rb_right;
1139 }
1140 }
1141
1142 /*
1143 * Find the slot with the lowest gfn that can possibly intersect with
1144 * the range, so we'll ideally have slot start <= range start
1145 */
1146 if (iter->node) {
1147 /*
1148 * A NULL previous node means that the very first slot
1149 * already has a higher start gfn.
1150 * In this case slot start > range start.
1151 */
1152 tmp = rb_prev(iter->node);
1153 if (tmp)
1154 iter->node = tmp;
1155 } else {
1156 /* a NULL node below means no slots */
1157 iter->node = rb_last(&slots->gfn_tree);
1158 }
1159
1160 if (iter->node) {
1161 iter->slot = container_of(iter->node, struct kvm_memory_slot, gfn_node[idx]);
1162
1163 /*
1164 * It is possible in the slot start < range start case that the
1165 * found slot ends before or at range start (slot end <= range start)
1166 * and so it does not overlap the requested range.
1167 *
1168 * In such non-overlapping case the next slot (if it exists) will
1169 * already have slot start > range start, otherwise the logic above
1170 * would have found it instead of the current slot.
1171 */
1172 if (iter->slot->base_gfn + iter->slot->npages <= start)
1173 kvm_memslot_iter_next(iter);
1174 }
1175 }
1176
kvm_memslot_iter_is_valid(struct kvm_memslot_iter * iter,gfn_t end)1177 static inline bool kvm_memslot_iter_is_valid(struct kvm_memslot_iter *iter, gfn_t end)
1178 {
1179 if (!iter->node)
1180 return false;
1181
1182 /*
1183 * If this slot starts beyond or at the end of the range so does
1184 * every next one
1185 */
1186 return iter->slot->base_gfn < end;
1187 }
1188
1189 /* Iterate over each memslot at least partially intersecting [start, end) range */
1190 #define kvm_for_each_memslot_in_gfn_range(iter, slots, start, end) \
1191 for (kvm_memslot_iter_start(iter, slots, start); \
1192 kvm_memslot_iter_is_valid(iter, end); \
1193 kvm_memslot_iter_next(iter))
1194
1195 /*
1196 * KVM_SET_USER_MEMORY_REGION ioctl allows the following operations:
1197 * - create a new memory slot
1198 * - delete an existing memory slot
1199 * - modify an existing memory slot
1200 * -- move it in the guest physical memory space
1201 * -- just change its flags
1202 *
1203 * Since flags can be changed by some of these operations, the following
1204 * differentiation is the best we can do for __kvm_set_memory_region():
1205 */
1206 enum kvm_mr_change {
1207 KVM_MR_CREATE,
1208 KVM_MR_DELETE,
1209 KVM_MR_MOVE,
1210 KVM_MR_FLAGS_ONLY,
1211 };
1212
1213 int kvm_set_memory_region(struct kvm *kvm,
1214 const struct kvm_userspace_memory_region2 *mem);
1215 int __kvm_set_memory_region(struct kvm *kvm,
1216 const struct kvm_userspace_memory_region2 *mem);
1217 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot);
1218 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen);
1219 int kvm_arch_prepare_memory_region(struct kvm *kvm,
1220 const struct kvm_memory_slot *old,
1221 struct kvm_memory_slot *new,
1222 enum kvm_mr_change change);
1223 void kvm_arch_commit_memory_region(struct kvm *kvm,
1224 struct kvm_memory_slot *old,
1225 const struct kvm_memory_slot *new,
1226 enum kvm_mr_change change);
1227 /* flush all memory translations */
1228 void kvm_arch_flush_shadow_all(struct kvm *kvm);
1229 /* flush memory translations pointing to 'slot' */
1230 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
1231 struct kvm_memory_slot *slot);
1232
1233 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1234 struct page **pages, int nr_pages);
1235
1236 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn);
1237 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn);
1238 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable);
1239 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn);
1240 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, gfn_t gfn,
1241 bool *writable);
1242 void kvm_release_page_clean(struct page *page);
1243 void kvm_release_page_dirty(struct page *page);
1244
1245 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn);
1246 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1247 bool *writable);
1248 kvm_pfn_t gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn);
1249 kvm_pfn_t gfn_to_pfn_memslot_atomic(const struct kvm_memory_slot *slot, gfn_t gfn);
1250 kvm_pfn_t __gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn,
1251 bool atomic, bool interruptible, bool *async,
1252 bool write_fault, bool *writable, hva_t *hva);
1253
1254 void kvm_release_pfn_clean(kvm_pfn_t pfn);
1255 void kvm_release_pfn_dirty(kvm_pfn_t pfn);
1256 void kvm_set_pfn_dirty(kvm_pfn_t pfn);
1257 void kvm_set_pfn_accessed(kvm_pfn_t pfn);
1258
1259 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty);
1260 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1261 int len);
1262 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len);
1263 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1264 void *data, unsigned long len);
1265 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1266 void *data, unsigned int offset,
1267 unsigned long len);
1268 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1269 int offset, int len);
1270 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1271 unsigned long len);
1272 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1273 void *data, unsigned long len);
1274 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1275 void *data, unsigned int offset,
1276 unsigned long len);
1277 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1278 gpa_t gpa, unsigned long len);
1279
1280 #define __kvm_get_guest(kvm, gfn, offset, v) \
1281 ({ \
1282 unsigned long __addr = gfn_to_hva(kvm, gfn); \
1283 typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset); \
1284 int __ret = -EFAULT; \
1285 \
1286 if (!kvm_is_error_hva(__addr)) \
1287 __ret = get_user(v, __uaddr); \
1288 __ret; \
1289 })
1290
1291 #define kvm_get_guest(kvm, gpa, v) \
1292 ({ \
1293 gpa_t __gpa = gpa; \
1294 struct kvm *__kvm = kvm; \
1295 \
1296 __kvm_get_guest(__kvm, __gpa >> PAGE_SHIFT, \
1297 offset_in_page(__gpa), v); \
1298 })
1299
1300 #define __kvm_put_guest(kvm, gfn, offset, v) \
1301 ({ \
1302 unsigned long __addr = gfn_to_hva(kvm, gfn); \
1303 typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset); \
1304 int __ret = -EFAULT; \
1305 \
1306 if (!kvm_is_error_hva(__addr)) \
1307 __ret = put_user(v, __uaddr); \
1308 if (!__ret) \
1309 mark_page_dirty(kvm, gfn); \
1310 __ret; \
1311 })
1312
1313 #define kvm_put_guest(kvm, gpa, v) \
1314 ({ \
1315 gpa_t __gpa = gpa; \
1316 struct kvm *__kvm = kvm; \
1317 \
1318 __kvm_put_guest(__kvm, __gpa >> PAGE_SHIFT, \
1319 offset_in_page(__gpa), v); \
1320 })
1321
1322 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len);
1323 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn);
1324 struct kvm_memory_slot *gfn_to_memslot_prot(struct kvm *kvm, gfn_t gfn, bool *writable);
1325 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn);
1326 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn);
1327 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn);
1328 void mark_page_dirty_in_slot(struct kvm *kvm, const struct kvm_memory_slot *memslot, gfn_t gfn);
1329 void mark_page_dirty(struct kvm *kvm, gfn_t gfn);
1330
1331 struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu);
1332 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn);
1333 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gpa_t gpa, struct kvm_host_map *map);
1334 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty);
1335 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn);
1336 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable);
1337 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, int offset,
1338 int len);
1339 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
1340 unsigned long len);
1341 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
1342 unsigned long len);
1343 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, const void *data,
1344 int offset, int len);
1345 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1346 unsigned long len);
1347 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn);
1348
1349 /**
1350 * kvm_gpc_init - initialize gfn_to_pfn_cache.
1351 *
1352 * @gpc: struct gfn_to_pfn_cache object.
1353 * @kvm: pointer to kvm instance.
1354 *
1355 * This sets up a gfn_to_pfn_cache by initializing locks and assigning the
1356 * immutable attributes. Note, the cache must be zero-allocated (or zeroed by
1357 * the caller before init).
1358 */
1359 void kvm_gpc_init(struct gfn_to_pfn_cache *gpc, struct kvm *kvm);
1360
1361 /**
1362 * kvm_gpc_activate - prepare a cached kernel mapping and HPA for a given guest
1363 * physical address.
1364 *
1365 * @gpc: struct gfn_to_pfn_cache object.
1366 * @gpa: guest physical address to map.
1367 * @len: sanity check; the range being access must fit a single page.
1368 *
1369 * @return: 0 for success.
1370 * -EINVAL for a mapping which would cross a page boundary.
1371 * -EFAULT for an untranslatable guest physical address.
1372 *
1373 * This primes a gfn_to_pfn_cache and links it into the @gpc->kvm's list for
1374 * invalidations to be processed. Callers are required to use kvm_gpc_check()
1375 * to ensure that the cache is valid before accessing the target page.
1376 */
1377 int kvm_gpc_activate(struct gfn_to_pfn_cache *gpc, gpa_t gpa, unsigned long len);
1378
1379 /**
1380 * kvm_gpc_activate_hva - prepare a cached kernel mapping and HPA for a given HVA.
1381 *
1382 * @gpc: struct gfn_to_pfn_cache object.
1383 * @hva: userspace virtual address to map.
1384 * @len: sanity check; the range being access must fit a single page.
1385 *
1386 * @return: 0 for success.
1387 * -EINVAL for a mapping which would cross a page boundary.
1388 * -EFAULT for an untranslatable guest physical address.
1389 *
1390 * The semantics of this function are the same as those of kvm_gpc_activate(). It
1391 * merely bypasses a layer of address translation.
1392 */
1393 int kvm_gpc_activate_hva(struct gfn_to_pfn_cache *gpc, unsigned long hva, unsigned long len);
1394
1395 /**
1396 * kvm_gpc_check - check validity of a gfn_to_pfn_cache.
1397 *
1398 * @gpc: struct gfn_to_pfn_cache object.
1399 * @len: sanity check; the range being access must fit a single page.
1400 *
1401 * @return: %true if the cache is still valid and the address matches.
1402 * %false if the cache is not valid.
1403 *
1404 * Callers outside IN_GUEST_MODE context should hold a read lock on @gpc->lock
1405 * while calling this function, and then continue to hold the lock until the
1406 * access is complete.
1407 *
1408 * Callers in IN_GUEST_MODE may do so without locking, although they should
1409 * still hold a read lock on kvm->scru for the memslot checks.
1410 */
1411 bool kvm_gpc_check(struct gfn_to_pfn_cache *gpc, unsigned long len);
1412
1413 /**
1414 * kvm_gpc_refresh - update a previously initialized cache.
1415 *
1416 * @gpc: struct gfn_to_pfn_cache object.
1417 * @len: sanity check; the range being access must fit a single page.
1418 *
1419 * @return: 0 for success.
1420 * -EINVAL for a mapping which would cross a page boundary.
1421 * -EFAULT for an untranslatable guest physical address.
1422 *
1423 * This will attempt to refresh a gfn_to_pfn_cache. Note that a successful
1424 * return from this function does not mean the page can be immediately
1425 * accessed because it may have raced with an invalidation. Callers must
1426 * still lock and check the cache status, as this function does not return
1427 * with the lock still held to permit access.
1428 */
1429 int kvm_gpc_refresh(struct gfn_to_pfn_cache *gpc, unsigned long len);
1430
1431 /**
1432 * kvm_gpc_deactivate - deactivate and unlink a gfn_to_pfn_cache.
1433 *
1434 * @gpc: struct gfn_to_pfn_cache object.
1435 *
1436 * This removes a cache from the VM's list to be processed on MMU notifier
1437 * invocation.
1438 */
1439 void kvm_gpc_deactivate(struct gfn_to_pfn_cache *gpc);
1440
kvm_gpc_is_gpa_active(struct gfn_to_pfn_cache * gpc)1441 static inline bool kvm_gpc_is_gpa_active(struct gfn_to_pfn_cache *gpc)
1442 {
1443 return gpc->active && !kvm_is_error_gpa(gpc->gpa);
1444 }
1445
kvm_gpc_is_hva_active(struct gfn_to_pfn_cache * gpc)1446 static inline bool kvm_gpc_is_hva_active(struct gfn_to_pfn_cache *gpc)
1447 {
1448 return gpc->active && kvm_is_error_gpa(gpc->gpa);
1449 }
1450
1451 void kvm_sigset_activate(struct kvm_vcpu *vcpu);
1452 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu);
1453
1454 void kvm_vcpu_halt(struct kvm_vcpu *vcpu);
1455 bool kvm_vcpu_block(struct kvm_vcpu *vcpu);
1456 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu);
1457 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu);
1458 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu);
1459 void kvm_vcpu_kick(struct kvm_vcpu *vcpu);
1460 int kvm_vcpu_yield_to(struct kvm_vcpu *target);
1461 void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu, bool yield_to_kernel_mode);
1462
1463 void kvm_flush_remote_tlbs(struct kvm *kvm);
1464 void kvm_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages);
1465 void kvm_flush_remote_tlbs_memslot(struct kvm *kvm,
1466 const struct kvm_memory_slot *memslot);
1467
1468 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
1469 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min);
1470 int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min);
1471 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc);
1472 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc);
1473 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc);
1474 #endif
1475
1476 void kvm_mmu_invalidate_begin(struct kvm *kvm);
1477 void kvm_mmu_invalidate_range_add(struct kvm *kvm, gfn_t start, gfn_t end);
1478 void kvm_mmu_invalidate_end(struct kvm *kvm);
1479 bool kvm_mmu_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range);
1480
1481 long kvm_arch_dev_ioctl(struct file *filp,
1482 unsigned int ioctl, unsigned long arg);
1483 long kvm_arch_vcpu_ioctl(struct file *filp,
1484 unsigned int ioctl, unsigned long arg);
1485 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf);
1486
1487 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext);
1488
1489 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1490 struct kvm_memory_slot *slot,
1491 gfn_t gfn_offset,
1492 unsigned long mask);
1493 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot);
1494
1495 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1496 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log);
1497 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
1498 int *is_dirty, struct kvm_memory_slot **memslot);
1499 #endif
1500
1501 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
1502 bool line_status);
1503 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
1504 struct kvm_enable_cap *cap);
1505 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg);
1506 long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
1507 unsigned long arg);
1508
1509 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
1510 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
1511
1512 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1513 struct kvm_translation *tr);
1514
1515 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
1516 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
1517 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1518 struct kvm_sregs *sregs);
1519 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
1520 struct kvm_sregs *sregs);
1521 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
1522 struct kvm_mp_state *mp_state);
1523 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
1524 struct kvm_mp_state *mp_state);
1525 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
1526 struct kvm_guest_debug *dbg);
1527 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu);
1528
1529 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu);
1530 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu);
1531 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id);
1532 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu);
1533 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu);
1534 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu);
1535
1536 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
1537 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state);
1538 #endif
1539
1540 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
1541 void kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry);
1542 #else
kvm_create_vcpu_debugfs(struct kvm_vcpu * vcpu)1543 static inline void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu) {}
1544 #endif
1545
1546 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
1547 /*
1548 * kvm_arch_{enable,disable}_virtualization() are called on one CPU, under
1549 * kvm_usage_lock, immediately after/before 0=>1 and 1=>0 transitions of
1550 * kvm_usage_count, i.e. at the beginning of the generic hardware enabling
1551 * sequence, and at the end of the generic hardware disabling sequence.
1552 */
1553 void kvm_arch_enable_virtualization(void);
1554 void kvm_arch_disable_virtualization(void);
1555 /*
1556 * kvm_arch_{enable,disable}_virtualization_cpu() are called on "every" CPU to
1557 * do the actual twiddling of hardware bits. The hooks are called on all
1558 * online CPUs when KVM enables/disabled virtualization, and on a single CPU
1559 * when that CPU is onlined/offlined (including for Resume/Suspend).
1560 */
1561 int kvm_arch_enable_virtualization_cpu(void);
1562 void kvm_arch_disable_virtualization_cpu(void);
1563 #endif
1564 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu);
1565 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu);
1566 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu);
1567 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu);
1568 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu);
1569 bool kvm_arch_vcpu_preempted_in_kernel(struct kvm_vcpu *vcpu);
1570 int kvm_arch_post_init_vm(struct kvm *kvm);
1571 void kvm_arch_pre_destroy_vm(struct kvm *kvm);
1572 void kvm_arch_create_vm_debugfs(struct kvm *kvm);
1573
1574 #ifndef __KVM_HAVE_ARCH_VM_ALLOC
1575 /*
1576 * All architectures that want to use vzalloc currently also
1577 * need their own kvm_arch_alloc_vm implementation.
1578 */
kvm_arch_alloc_vm(void)1579 static inline struct kvm *kvm_arch_alloc_vm(void)
1580 {
1581 return kzalloc(sizeof(struct kvm), GFP_KERNEL_ACCOUNT);
1582 }
1583 #endif
1584
__kvm_arch_free_vm(struct kvm * kvm)1585 static inline void __kvm_arch_free_vm(struct kvm *kvm)
1586 {
1587 kvfree(kvm);
1588 }
1589
1590 #ifndef __KVM_HAVE_ARCH_VM_FREE
kvm_arch_free_vm(struct kvm * kvm)1591 static inline void kvm_arch_free_vm(struct kvm *kvm)
1592 {
1593 __kvm_arch_free_vm(kvm);
1594 }
1595 #endif
1596
1597 #ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS
kvm_arch_flush_remote_tlbs(struct kvm * kvm)1598 static inline int kvm_arch_flush_remote_tlbs(struct kvm *kvm)
1599 {
1600 return -ENOTSUPP;
1601 }
1602 #else
1603 int kvm_arch_flush_remote_tlbs(struct kvm *kvm);
1604 #endif
1605
1606 #ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS_RANGE
kvm_arch_flush_remote_tlbs_range(struct kvm * kvm,gfn_t gfn,u64 nr_pages)1607 static inline int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm,
1608 gfn_t gfn, u64 nr_pages)
1609 {
1610 return -EOPNOTSUPP;
1611 }
1612 #else
1613 int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages);
1614 #endif
1615
1616 #ifdef __KVM_HAVE_ARCH_NONCOHERENT_DMA
1617 void kvm_arch_register_noncoherent_dma(struct kvm *kvm);
1618 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm);
1619 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm);
1620 #else
kvm_arch_register_noncoherent_dma(struct kvm * kvm)1621 static inline void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
1622 {
1623 }
1624
kvm_arch_unregister_noncoherent_dma(struct kvm * kvm)1625 static inline void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
1626 {
1627 }
1628
kvm_arch_has_noncoherent_dma(struct kvm * kvm)1629 static inline bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
1630 {
1631 return false;
1632 }
1633 #endif
1634 #ifdef __KVM_HAVE_ARCH_ASSIGNED_DEVICE
1635 void kvm_arch_start_assignment(struct kvm *kvm);
1636 void kvm_arch_end_assignment(struct kvm *kvm);
1637 bool kvm_arch_has_assigned_device(struct kvm *kvm);
1638 #else
kvm_arch_start_assignment(struct kvm * kvm)1639 static inline void kvm_arch_start_assignment(struct kvm *kvm)
1640 {
1641 }
1642
kvm_arch_end_assignment(struct kvm * kvm)1643 static inline void kvm_arch_end_assignment(struct kvm *kvm)
1644 {
1645 }
1646
kvm_arch_has_assigned_device(struct kvm * kvm)1647 static __always_inline bool kvm_arch_has_assigned_device(struct kvm *kvm)
1648 {
1649 return false;
1650 }
1651 #endif
1652
1653 #ifdef __KVM_HAVE_ARCH_ASSIGNED_DEVICE_GROUP
1654 int kvm_arch_assign_device(struct device *dev);
1655 int kvm_arch_assign_group(struct iommu_group *group);
1656 void kvm_arch_reclaim_device(struct device *dev);
1657 void kvm_arch_reclaim_group(struct iommu_group *group);
1658 #else
kvm_arch_assign_device(struct device * dev)1659 static inline int kvm_arch_assign_device(struct device *dev)
1660 {
1661 return 0;
1662 }
1663
kvm_arch_assign_group(struct iommu_group * group)1664 static inline int kvm_arch_assign_group(struct iommu_group *group)
1665 {
1666 return 0;
1667 }
1668
kvm_arch_reclaim_device(struct device * dev)1669 static inline void kvm_arch_reclaim_device(struct device *dev)
1670 {
1671 }
1672
kvm_arch_reclaim_group(struct iommu_group * group)1673 static inline void kvm_arch_reclaim_group(struct iommu_group *group)
1674 {
1675 }
1676 #endif
1677
kvm_arch_vcpu_get_wait(struct kvm_vcpu * vcpu)1678 static inline struct rcuwait *kvm_arch_vcpu_get_wait(struct kvm_vcpu *vcpu)
1679 {
1680 #ifdef __KVM_HAVE_ARCH_WQP
1681 return vcpu->arch.waitp;
1682 #else
1683 return &vcpu->wait;
1684 #endif
1685 }
1686
1687 /*
1688 * Wake a vCPU if necessary, but don't do any stats/metadata updates. Returns
1689 * true if the vCPU was blocking and was awakened, false otherwise.
1690 */
__kvm_vcpu_wake_up(struct kvm_vcpu * vcpu)1691 static inline bool __kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
1692 {
1693 return !!rcuwait_wake_up(kvm_arch_vcpu_get_wait(vcpu));
1694 }
1695
kvm_vcpu_is_blocking(struct kvm_vcpu * vcpu)1696 static inline bool kvm_vcpu_is_blocking(struct kvm_vcpu *vcpu)
1697 {
1698 return rcuwait_active(kvm_arch_vcpu_get_wait(vcpu));
1699 }
1700
1701 #ifdef __KVM_HAVE_ARCH_INTC_INITIALIZED
1702 /*
1703 * returns true if the virtual interrupt controller is initialized and
1704 * ready to accept virtual IRQ. On some architectures the virtual interrupt
1705 * controller is dynamically instantiated and this is not always true.
1706 */
1707 bool kvm_arch_intc_initialized(struct kvm *kvm);
1708 #else
kvm_arch_intc_initialized(struct kvm * kvm)1709 static inline bool kvm_arch_intc_initialized(struct kvm *kvm)
1710 {
1711 return true;
1712 }
1713 #endif
1714
1715 #ifdef CONFIG_GUEST_PERF_EVENTS
1716 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu);
1717
1718 void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void));
1719 void kvm_unregister_perf_callbacks(void);
1720 #else
kvm_register_perf_callbacks(void * ign)1721 static inline void kvm_register_perf_callbacks(void *ign) {}
kvm_unregister_perf_callbacks(void)1722 static inline void kvm_unregister_perf_callbacks(void) {}
1723 #endif /* CONFIG_GUEST_PERF_EVENTS */
1724
1725 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type);
1726 void kvm_arch_destroy_vm(struct kvm *kvm);
1727 void kvm_arch_sync_events(struct kvm *kvm);
1728
1729 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu);
1730
1731 struct page *kvm_pfn_to_refcounted_page(kvm_pfn_t pfn);
1732 bool kvm_is_zone_device_page(struct page *page);
1733
1734 struct kvm_irq_ack_notifier {
1735 struct hlist_node link;
1736 unsigned gsi;
1737 void (*irq_acked)(struct kvm_irq_ack_notifier *kian);
1738 };
1739
1740 int kvm_irq_map_gsi(struct kvm *kvm,
1741 struct kvm_kernel_irq_routing_entry *entries, int gsi);
1742 int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin);
1743
1744 int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level,
1745 bool line_status);
1746 int kvm_set_msi(struct kvm_kernel_irq_routing_entry *irq_entry, struct kvm *kvm,
1747 int irq_source_id, int level, bool line_status);
1748 int kvm_arch_set_irq_inatomic(struct kvm_kernel_irq_routing_entry *e,
1749 struct kvm *kvm, int irq_source_id,
1750 int level, bool line_status);
1751 bool kvm_irq_has_notifier(struct kvm *kvm, unsigned irqchip, unsigned pin);
1752 void kvm_notify_acked_gsi(struct kvm *kvm, int gsi);
1753 void kvm_notify_acked_irq(struct kvm *kvm, unsigned irqchip, unsigned pin);
1754 void kvm_register_irq_ack_notifier(struct kvm *kvm,
1755 struct kvm_irq_ack_notifier *kian);
1756 void kvm_unregister_irq_ack_notifier(struct kvm *kvm,
1757 struct kvm_irq_ack_notifier *kian);
1758 int kvm_request_irq_source_id(struct kvm *kvm);
1759 void kvm_free_irq_source_id(struct kvm *kvm, int irq_source_id);
1760 bool kvm_arch_irqfd_allowed(struct kvm *kvm, struct kvm_irqfd *args);
1761
1762 /*
1763 * Returns a pointer to the memslot if it contains gfn.
1764 * Otherwise returns NULL.
1765 */
1766 static inline struct kvm_memory_slot *
try_get_memslot(struct kvm_memory_slot * slot,gfn_t gfn)1767 try_get_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1768 {
1769 if (!slot)
1770 return NULL;
1771
1772 if (gfn >= slot->base_gfn && gfn < slot->base_gfn + slot->npages)
1773 return slot;
1774 else
1775 return NULL;
1776 }
1777
1778 /*
1779 * Returns a pointer to the memslot that contains gfn. Otherwise returns NULL.
1780 *
1781 * With "approx" set returns the memslot also when the address falls
1782 * in a hole. In that case one of the memslots bordering the hole is
1783 * returned.
1784 */
1785 static inline struct kvm_memory_slot *
search_memslots(struct kvm_memslots * slots,gfn_t gfn,bool approx)1786 search_memslots(struct kvm_memslots *slots, gfn_t gfn, bool approx)
1787 {
1788 struct kvm_memory_slot *slot;
1789 struct rb_node *node;
1790 int idx = slots->node_idx;
1791
1792 slot = NULL;
1793 for (node = slots->gfn_tree.rb_node; node; ) {
1794 slot = container_of(node, struct kvm_memory_slot, gfn_node[idx]);
1795 if (gfn >= slot->base_gfn) {
1796 if (gfn < slot->base_gfn + slot->npages)
1797 return slot;
1798 node = node->rb_right;
1799 } else
1800 node = node->rb_left;
1801 }
1802
1803 return approx ? slot : NULL;
1804 }
1805
1806 static inline struct kvm_memory_slot *
____gfn_to_memslot(struct kvm_memslots * slots,gfn_t gfn,bool approx)1807 ____gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn, bool approx)
1808 {
1809 struct kvm_memory_slot *slot;
1810
1811 slot = (struct kvm_memory_slot *)atomic_long_read(&slots->last_used_slot);
1812 slot = try_get_memslot(slot, gfn);
1813 if (slot)
1814 return slot;
1815
1816 slot = search_memslots(slots, gfn, approx);
1817 if (slot) {
1818 atomic_long_set(&slots->last_used_slot, (unsigned long)slot);
1819 return slot;
1820 }
1821
1822 return NULL;
1823 }
1824
1825 /*
1826 * __gfn_to_memslot() and its descendants are here to allow arch code to inline
1827 * the lookups in hot paths. gfn_to_memslot() itself isn't here as an inline
1828 * because that would bloat other code too much.
1829 */
1830 static inline struct kvm_memory_slot *
__gfn_to_memslot(struct kvm_memslots * slots,gfn_t gfn)1831 __gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn)
1832 {
1833 return ____gfn_to_memslot(slots, gfn, false);
1834 }
1835
1836 static inline unsigned long
__gfn_to_hva_memslot(const struct kvm_memory_slot * slot,gfn_t gfn)1837 __gfn_to_hva_memslot(const struct kvm_memory_slot *slot, gfn_t gfn)
1838 {
1839 /*
1840 * The index was checked originally in search_memslots. To avoid
1841 * that a malicious guest builds a Spectre gadget out of e.g. page
1842 * table walks, do not let the processor speculate loads outside
1843 * the guest's registered memslots.
1844 */
1845 unsigned long offset = gfn - slot->base_gfn;
1846 offset = array_index_nospec(offset, slot->npages);
1847 return slot->userspace_addr + offset * PAGE_SIZE;
1848 }
1849
memslot_id(struct kvm * kvm,gfn_t gfn)1850 static inline int memslot_id(struct kvm *kvm, gfn_t gfn)
1851 {
1852 return gfn_to_memslot(kvm, gfn)->id;
1853 }
1854
1855 static inline gfn_t
hva_to_gfn_memslot(unsigned long hva,struct kvm_memory_slot * slot)1856 hva_to_gfn_memslot(unsigned long hva, struct kvm_memory_slot *slot)
1857 {
1858 gfn_t gfn_offset = (hva - slot->userspace_addr) >> PAGE_SHIFT;
1859
1860 return slot->base_gfn + gfn_offset;
1861 }
1862
gfn_to_gpa(gfn_t gfn)1863 static inline gpa_t gfn_to_gpa(gfn_t gfn)
1864 {
1865 return (gpa_t)gfn << PAGE_SHIFT;
1866 }
1867
gpa_to_gfn(gpa_t gpa)1868 static inline gfn_t gpa_to_gfn(gpa_t gpa)
1869 {
1870 return (gfn_t)(gpa >> PAGE_SHIFT);
1871 }
1872
pfn_to_hpa(kvm_pfn_t pfn)1873 static inline hpa_t pfn_to_hpa(kvm_pfn_t pfn)
1874 {
1875 return (hpa_t)pfn << PAGE_SHIFT;
1876 }
1877
kvm_is_gpa_in_memslot(struct kvm * kvm,gpa_t gpa)1878 static inline bool kvm_is_gpa_in_memslot(struct kvm *kvm, gpa_t gpa)
1879 {
1880 unsigned long hva = gfn_to_hva(kvm, gpa_to_gfn(gpa));
1881
1882 return !kvm_is_error_hva(hva);
1883 }
1884
kvm_gpc_mark_dirty_in_slot(struct gfn_to_pfn_cache * gpc)1885 static inline void kvm_gpc_mark_dirty_in_slot(struct gfn_to_pfn_cache *gpc)
1886 {
1887 lockdep_assert_held(&gpc->lock);
1888
1889 if (!gpc->memslot)
1890 return;
1891
1892 mark_page_dirty_in_slot(gpc->kvm, gpc->memslot, gpa_to_gfn(gpc->gpa));
1893 }
1894
1895 enum kvm_stat_kind {
1896 KVM_STAT_VM,
1897 KVM_STAT_VCPU,
1898 };
1899
1900 struct kvm_stat_data {
1901 struct kvm *kvm;
1902 const struct _kvm_stats_desc *desc;
1903 enum kvm_stat_kind kind;
1904 };
1905
1906 struct _kvm_stats_desc {
1907 struct kvm_stats_desc desc;
1908 char name[KVM_STATS_NAME_SIZE];
1909 };
1910
1911 #define STATS_DESC_COMMON(type, unit, base, exp, sz, bsz) \
1912 .flags = type | unit | base | \
1913 BUILD_BUG_ON_ZERO(type & ~KVM_STATS_TYPE_MASK) | \
1914 BUILD_BUG_ON_ZERO(unit & ~KVM_STATS_UNIT_MASK) | \
1915 BUILD_BUG_ON_ZERO(base & ~KVM_STATS_BASE_MASK), \
1916 .exponent = exp, \
1917 .size = sz, \
1918 .bucket_size = bsz
1919
1920 #define VM_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \
1921 { \
1922 { \
1923 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \
1924 .offset = offsetof(struct kvm_vm_stat, generic.stat) \
1925 }, \
1926 .name = #stat, \
1927 }
1928 #define VCPU_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \
1929 { \
1930 { \
1931 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \
1932 .offset = offsetof(struct kvm_vcpu_stat, generic.stat) \
1933 }, \
1934 .name = #stat, \
1935 }
1936 #define VM_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \
1937 { \
1938 { \
1939 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \
1940 .offset = offsetof(struct kvm_vm_stat, stat) \
1941 }, \
1942 .name = #stat, \
1943 }
1944 #define VCPU_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \
1945 { \
1946 { \
1947 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \
1948 .offset = offsetof(struct kvm_vcpu_stat, stat) \
1949 }, \
1950 .name = #stat, \
1951 }
1952 /* SCOPE: VM, VM_GENERIC, VCPU, VCPU_GENERIC */
1953 #define STATS_DESC(SCOPE, stat, type, unit, base, exp, sz, bsz) \
1954 SCOPE##_STATS_DESC(stat, type, unit, base, exp, sz, bsz)
1955
1956 #define STATS_DESC_CUMULATIVE(SCOPE, name, unit, base, exponent) \
1957 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_CUMULATIVE, \
1958 unit, base, exponent, 1, 0)
1959 #define STATS_DESC_INSTANT(SCOPE, name, unit, base, exponent) \
1960 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_INSTANT, \
1961 unit, base, exponent, 1, 0)
1962 #define STATS_DESC_PEAK(SCOPE, name, unit, base, exponent) \
1963 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_PEAK, \
1964 unit, base, exponent, 1, 0)
1965 #define STATS_DESC_LINEAR_HIST(SCOPE, name, unit, base, exponent, sz, bsz) \
1966 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LINEAR_HIST, \
1967 unit, base, exponent, sz, bsz)
1968 #define STATS_DESC_LOG_HIST(SCOPE, name, unit, base, exponent, sz) \
1969 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LOG_HIST, \
1970 unit, base, exponent, sz, 0)
1971
1972 /* Cumulative counter, read/write */
1973 #define STATS_DESC_COUNTER(SCOPE, name) \
1974 STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_NONE, \
1975 KVM_STATS_BASE_POW10, 0)
1976 /* Instantaneous counter, read only */
1977 #define STATS_DESC_ICOUNTER(SCOPE, name) \
1978 STATS_DESC_INSTANT(SCOPE, name, KVM_STATS_UNIT_NONE, \
1979 KVM_STATS_BASE_POW10, 0)
1980 /* Peak counter, read/write */
1981 #define STATS_DESC_PCOUNTER(SCOPE, name) \
1982 STATS_DESC_PEAK(SCOPE, name, KVM_STATS_UNIT_NONE, \
1983 KVM_STATS_BASE_POW10, 0)
1984
1985 /* Instantaneous boolean value, read only */
1986 #define STATS_DESC_IBOOLEAN(SCOPE, name) \
1987 STATS_DESC_INSTANT(SCOPE, name, KVM_STATS_UNIT_BOOLEAN, \
1988 KVM_STATS_BASE_POW10, 0)
1989 /* Peak (sticky) boolean value, read/write */
1990 #define STATS_DESC_PBOOLEAN(SCOPE, name) \
1991 STATS_DESC_PEAK(SCOPE, name, KVM_STATS_UNIT_BOOLEAN, \
1992 KVM_STATS_BASE_POW10, 0)
1993
1994 /* Cumulative time in nanosecond */
1995 #define STATS_DESC_TIME_NSEC(SCOPE, name) \
1996 STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_SECONDS, \
1997 KVM_STATS_BASE_POW10, -9)
1998 /* Linear histogram for time in nanosecond */
1999 #define STATS_DESC_LINHIST_TIME_NSEC(SCOPE, name, sz, bsz) \
2000 STATS_DESC_LINEAR_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS, \
2001 KVM_STATS_BASE_POW10, -9, sz, bsz)
2002 /* Logarithmic histogram for time in nanosecond */
2003 #define STATS_DESC_LOGHIST_TIME_NSEC(SCOPE, name, sz) \
2004 STATS_DESC_LOG_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS, \
2005 KVM_STATS_BASE_POW10, -9, sz)
2006
2007 #define KVM_GENERIC_VM_STATS() \
2008 STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush), \
2009 STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush_requests)
2010
2011 #define KVM_GENERIC_VCPU_STATS() \
2012 STATS_DESC_COUNTER(VCPU_GENERIC, halt_successful_poll), \
2013 STATS_DESC_COUNTER(VCPU_GENERIC, halt_attempted_poll), \
2014 STATS_DESC_COUNTER(VCPU_GENERIC, halt_poll_invalid), \
2015 STATS_DESC_COUNTER(VCPU_GENERIC, halt_wakeup), \
2016 STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_success_ns), \
2017 STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_ns), \
2018 STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_wait_ns), \
2019 STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_success_hist, \
2020 HALT_POLL_HIST_COUNT), \
2021 STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_hist, \
2022 HALT_POLL_HIST_COUNT), \
2023 STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_wait_hist, \
2024 HALT_POLL_HIST_COUNT), \
2025 STATS_DESC_IBOOLEAN(VCPU_GENERIC, blocking)
2026
2027 ssize_t kvm_stats_read(char *id, const struct kvm_stats_header *header,
2028 const struct _kvm_stats_desc *desc,
2029 void *stats, size_t size_stats,
2030 char __user *user_buffer, size_t size, loff_t *offset);
2031
2032 /**
2033 * kvm_stats_linear_hist_update() - Update bucket value for linear histogram
2034 * statistics data.
2035 *
2036 * @data: start address of the stats data
2037 * @size: the number of bucket of the stats data
2038 * @value: the new value used to update the linear histogram's bucket
2039 * @bucket_size: the size (width) of a bucket
2040 */
kvm_stats_linear_hist_update(u64 * data,size_t size,u64 value,size_t bucket_size)2041 static inline void kvm_stats_linear_hist_update(u64 *data, size_t size,
2042 u64 value, size_t bucket_size)
2043 {
2044 size_t index = div64_u64(value, bucket_size);
2045
2046 index = min(index, size - 1);
2047 ++data[index];
2048 }
2049
2050 /**
2051 * kvm_stats_log_hist_update() - Update bucket value for logarithmic histogram
2052 * statistics data.
2053 *
2054 * @data: start address of the stats data
2055 * @size: the number of bucket of the stats data
2056 * @value: the new value used to update the logarithmic histogram's bucket
2057 */
kvm_stats_log_hist_update(u64 * data,size_t size,u64 value)2058 static inline void kvm_stats_log_hist_update(u64 *data, size_t size, u64 value)
2059 {
2060 size_t index = fls64(value);
2061
2062 index = min(index, size - 1);
2063 ++data[index];
2064 }
2065
2066 #define KVM_STATS_LINEAR_HIST_UPDATE(array, value, bsize) \
2067 kvm_stats_linear_hist_update(array, ARRAY_SIZE(array), value, bsize)
2068 #define KVM_STATS_LOG_HIST_UPDATE(array, value) \
2069 kvm_stats_log_hist_update(array, ARRAY_SIZE(array), value)
2070
2071
2072 extern const struct kvm_stats_header kvm_vm_stats_header;
2073 extern const struct _kvm_stats_desc kvm_vm_stats_desc[];
2074 extern const struct kvm_stats_header kvm_vcpu_stats_header;
2075 extern const struct _kvm_stats_desc kvm_vcpu_stats_desc[];
2076
2077 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
mmu_invalidate_retry(struct kvm * kvm,unsigned long mmu_seq)2078 static inline int mmu_invalidate_retry(struct kvm *kvm, unsigned long mmu_seq)
2079 {
2080 if (unlikely(kvm->mmu_invalidate_in_progress))
2081 return 1;
2082 /*
2083 * Ensure the read of mmu_invalidate_in_progress happens before
2084 * the read of mmu_invalidate_seq. This interacts with the
2085 * smp_wmb() in mmu_notifier_invalidate_range_end to make sure
2086 * that the caller either sees the old (non-zero) value of
2087 * mmu_invalidate_in_progress or the new (incremented) value of
2088 * mmu_invalidate_seq.
2089 *
2090 * PowerPC Book3s HV KVM calls this under a per-page lock rather
2091 * than under kvm->mmu_lock, for scalability, so can't rely on
2092 * kvm->mmu_lock to keep things ordered.
2093 */
2094 smp_rmb();
2095 if (kvm->mmu_invalidate_seq != mmu_seq)
2096 return 1;
2097 return 0;
2098 }
2099
mmu_invalidate_retry_gfn(struct kvm * kvm,unsigned long mmu_seq,gfn_t gfn)2100 static inline int mmu_invalidate_retry_gfn(struct kvm *kvm,
2101 unsigned long mmu_seq,
2102 gfn_t gfn)
2103 {
2104 lockdep_assert_held(&kvm->mmu_lock);
2105 /*
2106 * If mmu_invalidate_in_progress is non-zero, then the range maintained
2107 * by kvm_mmu_notifier_invalidate_range_start contains all addresses
2108 * that might be being invalidated. Note that it may include some false
2109 * positives, due to shortcuts when handing concurrent invalidations.
2110 */
2111 if (unlikely(kvm->mmu_invalidate_in_progress)) {
2112 /*
2113 * Dropping mmu_lock after bumping mmu_invalidate_in_progress
2114 * but before updating the range is a KVM bug.
2115 */
2116 if (WARN_ON_ONCE(kvm->mmu_invalidate_range_start == INVALID_GPA ||
2117 kvm->mmu_invalidate_range_end == INVALID_GPA))
2118 return 1;
2119
2120 if (gfn >= kvm->mmu_invalidate_range_start &&
2121 gfn < kvm->mmu_invalidate_range_end)
2122 return 1;
2123 }
2124
2125 if (kvm->mmu_invalidate_seq != mmu_seq)
2126 return 1;
2127 return 0;
2128 }
2129
2130 /*
2131 * This lockless version of the range-based retry check *must* be paired with a
2132 * call to the locked version after acquiring mmu_lock, i.e. this is safe to
2133 * use only as a pre-check to avoid contending mmu_lock. This version *will*
2134 * get false negatives and false positives.
2135 */
mmu_invalidate_retry_gfn_unsafe(struct kvm * kvm,unsigned long mmu_seq,gfn_t gfn)2136 static inline bool mmu_invalidate_retry_gfn_unsafe(struct kvm *kvm,
2137 unsigned long mmu_seq,
2138 gfn_t gfn)
2139 {
2140 /*
2141 * Use READ_ONCE() to ensure the in-progress flag and sequence counter
2142 * are always read from memory, e.g. so that checking for retry in a
2143 * loop won't result in an infinite retry loop. Don't force loads for
2144 * start+end, as the key to avoiding infinite retry loops is observing
2145 * the 1=>0 transition of in-progress, i.e. getting false negatives
2146 * due to stale start+end values is acceptable.
2147 */
2148 if (unlikely(READ_ONCE(kvm->mmu_invalidate_in_progress)) &&
2149 gfn >= kvm->mmu_invalidate_range_start &&
2150 gfn < kvm->mmu_invalidate_range_end)
2151 return true;
2152
2153 return READ_ONCE(kvm->mmu_invalidate_seq) != mmu_seq;
2154 }
2155 #endif
2156
2157 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2158
2159 #define KVM_MAX_IRQ_ROUTES 4096 /* might need extension/rework in the future */
2160
2161 bool kvm_arch_can_set_irq_routing(struct kvm *kvm);
2162 int kvm_set_irq_routing(struct kvm *kvm,
2163 const struct kvm_irq_routing_entry *entries,
2164 unsigned nr,
2165 unsigned flags);
2166 int kvm_init_irq_routing(struct kvm *kvm);
2167 int kvm_set_routing_entry(struct kvm *kvm,
2168 struct kvm_kernel_irq_routing_entry *e,
2169 const struct kvm_irq_routing_entry *ue);
2170 void kvm_free_irq_routing(struct kvm *kvm);
2171
2172 #else
2173
kvm_free_irq_routing(struct kvm * kvm)2174 static inline void kvm_free_irq_routing(struct kvm *kvm) {}
2175
kvm_init_irq_routing(struct kvm * kvm)2176 static inline int kvm_init_irq_routing(struct kvm *kvm)
2177 {
2178 return 0;
2179 }
2180
2181 #endif
2182
2183 int kvm_send_userspace_msi(struct kvm *kvm, struct kvm_msi *msi);
2184
2185 void kvm_eventfd_init(struct kvm *kvm);
2186 int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args);
2187
2188 #ifdef CONFIG_HAVE_KVM_IRQCHIP
2189 int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args);
2190 void kvm_irqfd_release(struct kvm *kvm);
2191 bool kvm_notify_irqfd_resampler(struct kvm *kvm,
2192 unsigned int irqchip,
2193 unsigned int pin);
2194 void kvm_irq_routing_update(struct kvm *);
2195 #else
kvm_irqfd(struct kvm * kvm,struct kvm_irqfd * args)2196 static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args)
2197 {
2198 return -EINVAL;
2199 }
2200
kvm_irqfd_release(struct kvm * kvm)2201 static inline void kvm_irqfd_release(struct kvm *kvm) {}
2202
kvm_notify_irqfd_resampler(struct kvm * kvm,unsigned int irqchip,unsigned int pin)2203 static inline bool kvm_notify_irqfd_resampler(struct kvm *kvm,
2204 unsigned int irqchip,
2205 unsigned int pin)
2206 {
2207 return false;
2208 }
2209 #endif /* CONFIG_HAVE_KVM_IRQCHIP */
2210
2211 void kvm_arch_irq_routing_update(struct kvm *kvm);
2212
__kvm_make_request(int req,struct kvm_vcpu * vcpu)2213 static inline void __kvm_make_request(int req, struct kvm_vcpu *vcpu)
2214 {
2215 /*
2216 * Ensure the rest of the request is published to kvm_check_request's
2217 * caller. Paired with the smp_mb__after_atomic in kvm_check_request.
2218 */
2219 smp_wmb();
2220 set_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
2221 }
2222
kvm_make_request(int req,struct kvm_vcpu * vcpu)2223 static __always_inline void kvm_make_request(int req, struct kvm_vcpu *vcpu)
2224 {
2225 /*
2226 * Request that don't require vCPU action should never be logged in
2227 * vcpu->requests. The vCPU won't clear the request, so it will stay
2228 * logged indefinitely and prevent the vCPU from entering the guest.
2229 */
2230 BUILD_BUG_ON(!__builtin_constant_p(req) ||
2231 (req & KVM_REQUEST_NO_ACTION));
2232
2233 __kvm_make_request(req, vcpu);
2234 }
2235
kvm_request_pending(struct kvm_vcpu * vcpu)2236 static inline bool kvm_request_pending(struct kvm_vcpu *vcpu)
2237 {
2238 return READ_ONCE(vcpu->requests);
2239 }
2240
kvm_test_request(int req,struct kvm_vcpu * vcpu)2241 static inline bool kvm_test_request(int req, struct kvm_vcpu *vcpu)
2242 {
2243 return test_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
2244 }
2245
kvm_clear_request(int req,struct kvm_vcpu * vcpu)2246 static inline void kvm_clear_request(int req, struct kvm_vcpu *vcpu)
2247 {
2248 clear_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
2249 }
2250
kvm_check_request(int req,struct kvm_vcpu * vcpu)2251 static inline bool kvm_check_request(int req, struct kvm_vcpu *vcpu)
2252 {
2253 if (kvm_test_request(req, vcpu)) {
2254 kvm_clear_request(req, vcpu);
2255
2256 /*
2257 * Ensure the rest of the request is visible to kvm_check_request's
2258 * caller. Paired with the smp_wmb in kvm_make_request.
2259 */
2260 smp_mb__after_atomic();
2261 return true;
2262 } else {
2263 return false;
2264 }
2265 }
2266
2267 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
2268 extern bool kvm_rebooting;
2269 #endif
2270
2271 extern unsigned int halt_poll_ns;
2272 extern unsigned int halt_poll_ns_grow;
2273 extern unsigned int halt_poll_ns_grow_start;
2274 extern unsigned int halt_poll_ns_shrink;
2275
2276 struct kvm_device {
2277 const struct kvm_device_ops *ops;
2278 struct kvm *kvm;
2279 void *private;
2280 struct list_head vm_node;
2281 };
2282
2283 /* create, destroy, and name are mandatory */
2284 struct kvm_device_ops {
2285 const char *name;
2286
2287 /*
2288 * create is called holding kvm->lock and any operations not suitable
2289 * to do while holding the lock should be deferred to init (see
2290 * below).
2291 */
2292 int (*create)(struct kvm_device *dev, u32 type);
2293
2294 /*
2295 * init is called after create if create is successful and is called
2296 * outside of holding kvm->lock.
2297 */
2298 void (*init)(struct kvm_device *dev);
2299
2300 /*
2301 * Destroy is responsible for freeing dev.
2302 *
2303 * Destroy may be called before or after destructors are called
2304 * on emulated I/O regions, depending on whether a reference is
2305 * held by a vcpu or other kvm component that gets destroyed
2306 * after the emulated I/O.
2307 */
2308 void (*destroy)(struct kvm_device *dev);
2309
2310 /*
2311 * Release is an alternative method to free the device. It is
2312 * called when the device file descriptor is closed. Once
2313 * release is called, the destroy method will not be called
2314 * anymore as the device is removed from the device list of
2315 * the VM. kvm->lock is held.
2316 */
2317 void (*release)(struct kvm_device *dev);
2318
2319 int (*set_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
2320 int (*get_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
2321 int (*has_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
2322 long (*ioctl)(struct kvm_device *dev, unsigned int ioctl,
2323 unsigned long arg);
2324 int (*mmap)(struct kvm_device *dev, struct vm_area_struct *vma);
2325 };
2326
2327 struct kvm_device *kvm_device_from_filp(struct file *filp);
2328 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type);
2329 void kvm_unregister_device_ops(u32 type);
2330
2331 extern struct kvm_device_ops kvm_mpic_ops;
2332 extern struct kvm_device_ops kvm_arm_vgic_v2_ops;
2333 extern struct kvm_device_ops kvm_arm_vgic_v3_ops;
2334
2335 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2336
kvm_vcpu_set_in_spin_loop(struct kvm_vcpu * vcpu,bool val)2337 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
2338 {
2339 vcpu->spin_loop.in_spin_loop = val;
2340 }
kvm_vcpu_set_dy_eligible(struct kvm_vcpu * vcpu,bool val)2341 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
2342 {
2343 vcpu->spin_loop.dy_eligible = val;
2344 }
2345
2346 #else /* !CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
2347
kvm_vcpu_set_in_spin_loop(struct kvm_vcpu * vcpu,bool val)2348 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
2349 {
2350 }
2351
kvm_vcpu_set_dy_eligible(struct kvm_vcpu * vcpu,bool val)2352 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
2353 {
2354 }
2355 #endif /* CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
2356
kvm_is_visible_memslot(struct kvm_memory_slot * memslot)2357 static inline bool kvm_is_visible_memslot(struct kvm_memory_slot *memslot)
2358 {
2359 return (memslot && memslot->id < KVM_USER_MEM_SLOTS &&
2360 !(memslot->flags & KVM_MEMSLOT_INVALID));
2361 }
2362
2363 struct kvm_vcpu *kvm_get_running_vcpu(void);
2364 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void);
2365
2366 #if IS_ENABLED(CONFIG_HAVE_KVM_IRQ_BYPASS)
2367 bool kvm_arch_has_irq_bypass(void);
2368 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *,
2369 struct irq_bypass_producer *);
2370 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *,
2371 struct irq_bypass_producer *);
2372 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *);
2373 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *);
2374 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
2375 uint32_t guest_irq, bool set);
2376 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *,
2377 struct kvm_kernel_irq_routing_entry *);
2378 #endif /* CONFIG_HAVE_KVM_IRQ_BYPASS */
2379
2380 #ifdef CONFIG_HAVE_KVM_INVALID_WAKEUPS
2381 /* If we wakeup during the poll time, was it a sucessful poll? */
vcpu_valid_wakeup(struct kvm_vcpu * vcpu)2382 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
2383 {
2384 return vcpu->valid_wakeup;
2385 }
2386
2387 #else
vcpu_valid_wakeup(struct kvm_vcpu * vcpu)2388 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
2389 {
2390 return true;
2391 }
2392 #endif /* CONFIG_HAVE_KVM_INVALID_WAKEUPS */
2393
2394 #ifdef CONFIG_HAVE_KVM_NO_POLL
2395 /* Callback that tells if we must not poll */
2396 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu);
2397 #else
kvm_arch_no_poll(struct kvm_vcpu * vcpu)2398 static inline bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
2399 {
2400 return false;
2401 }
2402 #endif /* CONFIG_HAVE_KVM_NO_POLL */
2403
2404 #ifdef CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL
2405 long kvm_arch_vcpu_async_ioctl(struct file *filp,
2406 unsigned int ioctl, unsigned long arg);
2407 #else
kvm_arch_vcpu_async_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)2408 static inline long kvm_arch_vcpu_async_ioctl(struct file *filp,
2409 unsigned int ioctl,
2410 unsigned long arg)
2411 {
2412 return -ENOIOCTLCMD;
2413 }
2414 #endif /* CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL */
2415
2416 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm);
2417
2418 #ifdef CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE
2419 int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu);
2420 #else
kvm_arch_vcpu_run_pid_change(struct kvm_vcpu * vcpu)2421 static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu)
2422 {
2423 return 0;
2424 }
2425 #endif /* CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE */
2426
2427 #ifdef CONFIG_KVM_XFER_TO_GUEST_WORK
kvm_handle_signal_exit(struct kvm_vcpu * vcpu)2428 static inline void kvm_handle_signal_exit(struct kvm_vcpu *vcpu)
2429 {
2430 vcpu->run->exit_reason = KVM_EXIT_INTR;
2431 vcpu->stat.signal_exits++;
2432 }
2433 #endif /* CONFIG_KVM_XFER_TO_GUEST_WORK */
2434
2435 /*
2436 * If more than one page is being (un)accounted, @virt must be the address of
2437 * the first page of a block of pages what were allocated together (i.e
2438 * accounted together).
2439 *
2440 * kvm_account_pgtable_pages() is thread-safe because mod_lruvec_page_state()
2441 * is thread-safe.
2442 */
kvm_account_pgtable_pages(void * virt,int nr)2443 static inline void kvm_account_pgtable_pages(void *virt, int nr)
2444 {
2445 mod_lruvec_page_state(virt_to_page(virt), NR_SECONDARY_PAGETABLE, nr);
2446 }
2447
2448 /*
2449 * This defines how many reserved entries we want to keep before we
2450 * kick the vcpu to the userspace to avoid dirty ring full. This
2451 * value can be tuned to higher if e.g. PML is enabled on the host.
2452 */
2453 #define KVM_DIRTY_RING_RSVD_ENTRIES 64
2454
2455 /* Max number of entries allowed for each kvm dirty ring */
2456 #define KVM_DIRTY_RING_MAX_ENTRIES 65536
2457
kvm_prepare_memory_fault_exit(struct kvm_vcpu * vcpu,gpa_t gpa,gpa_t size,bool is_write,bool is_exec,bool is_private)2458 static inline void kvm_prepare_memory_fault_exit(struct kvm_vcpu *vcpu,
2459 gpa_t gpa, gpa_t size,
2460 bool is_write, bool is_exec,
2461 bool is_private)
2462 {
2463 vcpu->run->exit_reason = KVM_EXIT_MEMORY_FAULT;
2464 vcpu->run->memory_fault.gpa = gpa;
2465 vcpu->run->memory_fault.size = size;
2466
2467 /* RWX flags are not (yet) defined or communicated to userspace. */
2468 vcpu->run->memory_fault.flags = 0;
2469 if (is_private)
2470 vcpu->run->memory_fault.flags |= KVM_MEMORY_EXIT_FLAG_PRIVATE;
2471 }
2472
2473 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
kvm_get_memory_attributes(struct kvm * kvm,gfn_t gfn)2474 static inline unsigned long kvm_get_memory_attributes(struct kvm *kvm, gfn_t gfn)
2475 {
2476 return xa_to_value(xa_load(&kvm->mem_attr_array, gfn));
2477 }
2478
2479 bool kvm_range_has_memory_attributes(struct kvm *kvm, gfn_t start, gfn_t end,
2480 unsigned long mask, unsigned long attrs);
2481 bool kvm_arch_pre_set_memory_attributes(struct kvm *kvm,
2482 struct kvm_gfn_range *range);
2483 bool kvm_arch_post_set_memory_attributes(struct kvm *kvm,
2484 struct kvm_gfn_range *range);
2485
kvm_mem_is_private(struct kvm * kvm,gfn_t gfn)2486 static inline bool kvm_mem_is_private(struct kvm *kvm, gfn_t gfn)
2487 {
2488 return IS_ENABLED(CONFIG_KVM_PRIVATE_MEM) &&
2489 kvm_get_memory_attributes(kvm, gfn) & KVM_MEMORY_ATTRIBUTE_PRIVATE;
2490 }
2491 #else
kvm_mem_is_private(struct kvm * kvm,gfn_t gfn)2492 static inline bool kvm_mem_is_private(struct kvm *kvm, gfn_t gfn)
2493 {
2494 return false;
2495 }
2496 #endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */
2497
2498 #ifdef CONFIG_KVM_PRIVATE_MEM
2499 int kvm_gmem_get_pfn(struct kvm *kvm, struct kvm_memory_slot *slot,
2500 gfn_t gfn, kvm_pfn_t *pfn, int *max_order);
2501 #else
kvm_gmem_get_pfn(struct kvm * kvm,struct kvm_memory_slot * slot,gfn_t gfn,kvm_pfn_t * pfn,int * max_order)2502 static inline int kvm_gmem_get_pfn(struct kvm *kvm,
2503 struct kvm_memory_slot *slot, gfn_t gfn,
2504 kvm_pfn_t *pfn, int *max_order)
2505 {
2506 KVM_BUG_ON(1, kvm);
2507 return -EIO;
2508 }
2509 #endif /* CONFIG_KVM_PRIVATE_MEM */
2510
2511 #ifdef CONFIG_HAVE_KVM_ARCH_GMEM_PREPARE
2512 int kvm_arch_gmem_prepare(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn, int max_order);
2513 #endif
2514
2515 #ifdef CONFIG_KVM_GENERIC_PRIVATE_MEM
2516 /**
2517 * kvm_gmem_populate() - Populate/prepare a GPA range with guest data
2518 *
2519 * @kvm: KVM instance
2520 * @gfn: starting GFN to be populated
2521 * @src: userspace-provided buffer containing data to copy into GFN range
2522 * (passed to @post_populate, and incremented on each iteration
2523 * if not NULL)
2524 * @npages: number of pages to copy from userspace-buffer
2525 * @post_populate: callback to issue for each gmem page that backs the GPA
2526 * range
2527 * @opaque: opaque data to pass to @post_populate callback
2528 *
2529 * This is primarily intended for cases where a gmem-backed GPA range needs
2530 * to be initialized with userspace-provided data prior to being mapped into
2531 * the guest as a private page. This should be called with the slots->lock
2532 * held so that caller-enforced invariants regarding the expected memory
2533 * attributes of the GPA range do not race with KVM_SET_MEMORY_ATTRIBUTES.
2534 *
2535 * Returns the number of pages that were populated.
2536 */
2537 typedef int (*kvm_gmem_populate_cb)(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn,
2538 void __user *src, int order, void *opaque);
2539
2540 long kvm_gmem_populate(struct kvm *kvm, gfn_t gfn, void __user *src, long npages,
2541 kvm_gmem_populate_cb post_populate, void *opaque);
2542 #endif
2543
2544 #ifdef CONFIG_HAVE_KVM_ARCH_GMEM_INVALIDATE
2545 void kvm_arch_gmem_invalidate(kvm_pfn_t start, kvm_pfn_t end);
2546 #endif
2547
2548 #ifdef CONFIG_KVM_GENERIC_PRE_FAULT_MEMORY
2549 long kvm_arch_vcpu_pre_fault_memory(struct kvm_vcpu *vcpu,
2550 struct kvm_pre_fault_memory *range);
2551 #endif
2552
2553 #endif
2554