• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 #ifndef __KVM_HOST_H
3 #define __KVM_HOST_H
4 
5 
6 #include <linux/types.h>
7 #include <linux/hardirq.h>
8 #include <linux/list.h>
9 #include <linux/mutex.h>
10 #include <linux/spinlock.h>
11 #include <linux/signal.h>
12 #include <linux/sched.h>
13 #include <linux/sched/stat.h>
14 #include <linux/bug.h>
15 #include <linux/minmax.h>
16 #include <linux/mm.h>
17 #include <linux/mmu_notifier.h>
18 #include <linux/preempt.h>
19 #include <linux/msi.h>
20 #include <linux/slab.h>
21 #include <linux/vmalloc.h>
22 #include <linux/rcupdate.h>
23 #include <linux/ratelimit.h>
24 #include <linux/err.h>
25 #include <linux/irqflags.h>
26 #include <linux/context_tracking.h>
27 #include <linux/irqbypass.h>
28 #include <linux/rcuwait.h>
29 #include <linux/refcount.h>
30 #include <linux/nospec.h>
31 #include <linux/notifier.h>
32 #include <linux/ftrace.h>
33 #include <linux/hashtable.h>
34 #include <linux/instrumentation.h>
35 #include <linux/interval_tree.h>
36 #include <linux/rbtree.h>
37 #include <linux/xarray.h>
38 #include <asm/signal.h>
39 
40 #include <linux/kvm.h>
41 #include <linux/kvm_para.h>
42 
43 #include <linux/kvm_types.h>
44 
45 #include <asm/kvm_host.h>
46 #include <linux/kvm_dirty_ring.h>
47 
48 #ifndef KVM_MAX_VCPU_IDS
49 #define KVM_MAX_VCPU_IDS KVM_MAX_VCPUS
50 #endif
51 
52 /*
53  * The bit 16 ~ bit 31 of kvm_userspace_memory_region::flags are internally
54  * used in kvm, other bits are visible for userspace which are defined in
55  * include/linux/kvm_h.
56  */
57 #define KVM_MEMSLOT_INVALID	(1UL << 16)
58 
59 /*
60  * Bit 63 of the memslot generation number is an "update in-progress flag",
61  * e.g. is temporarily set for the duration of kvm_swap_active_memslots().
62  * This flag effectively creates a unique generation number that is used to
63  * mark cached memslot data, e.g. MMIO accesses, as potentially being stale,
64  * i.e. may (or may not) have come from the previous memslots generation.
65  *
66  * This is necessary because the actual memslots update is not atomic with
67  * respect to the generation number update.  Updating the generation number
68  * first would allow a vCPU to cache a spte from the old memslots using the
69  * new generation number, and updating the generation number after switching
70  * to the new memslots would allow cache hits using the old generation number
71  * to reference the defunct memslots.
72  *
73  * This mechanism is used to prevent getting hits in KVM's caches while a
74  * memslot update is in-progress, and to prevent cache hits *after* updating
75  * the actual generation number against accesses that were inserted into the
76  * cache *before* the memslots were updated.
77  */
78 #define KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS	BIT_ULL(63)
79 
80 /* Two fragments for cross MMIO pages. */
81 #define KVM_MAX_MMIO_FRAGMENTS	2
82 
83 #ifndef KVM_MAX_NR_ADDRESS_SPACES
84 #define KVM_MAX_NR_ADDRESS_SPACES	1
85 #endif
86 
87 /*
88  * For the normal pfn, the highest 12 bits should be zero,
89  * so we can mask bit 62 ~ bit 52  to indicate the error pfn,
90  * mask bit 63 to indicate the noslot pfn.
91  */
92 #define KVM_PFN_ERR_MASK	(0x7ffULL << 52)
93 #define KVM_PFN_ERR_NOSLOT_MASK	(0xfffULL << 52)
94 #define KVM_PFN_NOSLOT		(0x1ULL << 63)
95 
96 #define KVM_PFN_ERR_FAULT	(KVM_PFN_ERR_MASK)
97 #define KVM_PFN_ERR_HWPOISON	(KVM_PFN_ERR_MASK + 1)
98 #define KVM_PFN_ERR_RO_FAULT	(KVM_PFN_ERR_MASK + 2)
99 #define KVM_PFN_ERR_SIGPENDING	(KVM_PFN_ERR_MASK + 3)
100 
101 /*
102  * error pfns indicate that the gfn is in slot but faild to
103  * translate it to pfn on host.
104  */
is_error_pfn(kvm_pfn_t pfn)105 static inline bool is_error_pfn(kvm_pfn_t pfn)
106 {
107 	return !!(pfn & KVM_PFN_ERR_MASK);
108 }
109 
110 /*
111  * KVM_PFN_ERR_SIGPENDING indicates that fetching the PFN was interrupted
112  * by a pending signal.  Note, the signal may or may not be fatal.
113  */
is_sigpending_pfn(kvm_pfn_t pfn)114 static inline bool is_sigpending_pfn(kvm_pfn_t pfn)
115 {
116 	return pfn == KVM_PFN_ERR_SIGPENDING;
117 }
118 
119 /*
120  * error_noslot pfns indicate that the gfn can not be
121  * translated to pfn - it is not in slot or failed to
122  * translate it to pfn.
123  */
is_error_noslot_pfn(kvm_pfn_t pfn)124 static inline bool is_error_noslot_pfn(kvm_pfn_t pfn)
125 {
126 	return !!(pfn & KVM_PFN_ERR_NOSLOT_MASK);
127 }
128 
129 /* noslot pfn indicates that the gfn is not in slot. */
is_noslot_pfn(kvm_pfn_t pfn)130 static inline bool is_noslot_pfn(kvm_pfn_t pfn)
131 {
132 	return pfn == KVM_PFN_NOSLOT;
133 }
134 
135 /*
136  * architectures with KVM_HVA_ERR_BAD other than PAGE_OFFSET (e.g. s390)
137  * provide own defines and kvm_is_error_hva
138  */
139 #ifndef KVM_HVA_ERR_BAD
140 
141 #define KVM_HVA_ERR_BAD		(PAGE_OFFSET)
142 #define KVM_HVA_ERR_RO_BAD	(PAGE_OFFSET + PAGE_SIZE)
143 
kvm_is_error_hva(unsigned long addr)144 static inline bool kvm_is_error_hva(unsigned long addr)
145 {
146 	return addr >= PAGE_OFFSET;
147 }
148 
149 #endif
150 
kvm_is_error_gpa(gpa_t gpa)151 static inline bool kvm_is_error_gpa(gpa_t gpa)
152 {
153 	return gpa == INVALID_GPA;
154 }
155 
156 #define KVM_ERR_PTR_BAD_PAGE	(ERR_PTR(-ENOENT))
157 
is_error_page(struct page * page)158 static inline bool is_error_page(struct page *page)
159 {
160 	return IS_ERR(page);
161 }
162 
163 #define KVM_REQUEST_MASK           GENMASK(7,0)
164 #define KVM_REQUEST_NO_WAKEUP      BIT(8)
165 #define KVM_REQUEST_WAIT           BIT(9)
166 #define KVM_REQUEST_NO_ACTION      BIT(10)
167 /*
168  * Architecture-independent vcpu->requests bit members
169  * Bits 3-7 are reserved for more arch-independent bits.
170  */
171 #define KVM_REQ_TLB_FLUSH		(0 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
172 #define KVM_REQ_VM_DEAD			(1 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
173 #define KVM_REQ_UNBLOCK			2
174 #define KVM_REQ_DIRTY_RING_SOFT_FULL	3
175 #define KVM_REQUEST_ARCH_BASE		8
176 
177 /*
178  * KVM_REQ_OUTSIDE_GUEST_MODE exists is purely as way to force the vCPU to
179  * OUTSIDE_GUEST_MODE.  KVM_REQ_OUTSIDE_GUEST_MODE differs from a vCPU "kick"
180  * in that it ensures the vCPU has reached OUTSIDE_GUEST_MODE before continuing
181  * on.  A kick only guarantees that the vCPU is on its way out, e.g. a previous
182  * kick may have set vcpu->mode to EXITING_GUEST_MODE, and so there's no
183  * guarantee the vCPU received an IPI and has actually exited guest mode.
184  */
185 #define KVM_REQ_OUTSIDE_GUEST_MODE	(KVM_REQUEST_NO_ACTION | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
186 
187 #define KVM_ARCH_REQ_FLAGS(nr, flags) ({ \
188 	BUILD_BUG_ON((unsigned)(nr) >= (sizeof_field(struct kvm_vcpu, requests) * 8) - KVM_REQUEST_ARCH_BASE); \
189 	(unsigned)(((nr) + KVM_REQUEST_ARCH_BASE) | (flags)); \
190 })
191 #define KVM_ARCH_REQ(nr)           KVM_ARCH_REQ_FLAGS(nr, 0)
192 
193 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
194 				 unsigned long *vcpu_bitmap);
195 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req);
196 
197 #define KVM_USERSPACE_IRQ_SOURCE_ID		0
198 #define KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID	1
199 
200 extern struct mutex kvm_lock;
201 extern struct list_head vm_list;
202 
203 struct kvm_io_range {
204 	gpa_t addr;
205 	int len;
206 	struct kvm_io_device *dev;
207 };
208 
209 #define NR_IOBUS_DEVS 1000
210 
211 struct kvm_io_bus {
212 	int dev_count;
213 	int ioeventfd_count;
214 	struct rcu_head rcu;
215 	struct kvm_io_range range[];
216 };
217 
218 enum kvm_bus {
219 	KVM_MMIO_BUS,
220 	KVM_PIO_BUS,
221 	KVM_VIRTIO_CCW_NOTIFY_BUS,
222 	KVM_FAST_MMIO_BUS,
223 	KVM_NR_BUSES
224 };
225 
226 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
227 		     int len, const void *val);
228 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
229 			    gpa_t addr, int len, const void *val, long cookie);
230 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
231 		    int len, void *val);
232 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
233 			    int len, struct kvm_io_device *dev);
234 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
235 			      struct kvm_io_device *dev);
236 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
237 					 gpa_t addr);
238 
239 #ifdef CONFIG_KVM_ASYNC_PF
240 struct kvm_async_pf {
241 	struct work_struct work;
242 	struct list_head link;
243 	struct list_head queue;
244 	struct kvm_vcpu *vcpu;
245 	gpa_t cr2_or_gpa;
246 	unsigned long addr;
247 	struct kvm_arch_async_pf arch;
248 	bool   wakeup_all;
249 	bool notpresent_injected;
250 };
251 
252 void kvm_clear_async_pf_completion_queue(struct kvm_vcpu *vcpu);
253 void kvm_check_async_pf_completion(struct kvm_vcpu *vcpu);
254 bool kvm_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
255 			unsigned long hva, struct kvm_arch_async_pf *arch);
256 int kvm_async_pf_wakeup_all(struct kvm_vcpu *vcpu);
257 #endif
258 
259 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
260 union kvm_mmu_notifier_arg {
261 	unsigned long attributes;
262 };
263 
264 enum kvm_gfn_range_filter {
265 	KVM_FILTER_SHARED		= BIT(0),
266 	KVM_FILTER_PRIVATE		= BIT(1),
267 };
268 
269 struct kvm_gfn_range {
270 	struct kvm_memory_slot *slot;
271 	gfn_t start;
272 	gfn_t end;
273 	union kvm_mmu_notifier_arg arg;
274 	enum kvm_gfn_range_filter attr_filter;
275 	bool may_block;
276 };
277 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range);
278 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
279 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
280 #endif
281 
282 enum {
283 	OUTSIDE_GUEST_MODE,
284 	IN_GUEST_MODE,
285 	EXITING_GUEST_MODE,
286 	READING_SHADOW_PAGE_TABLES,
287 };
288 
289 #define KVM_UNMAPPED_PAGE	((void *) 0x500 + POISON_POINTER_DELTA)
290 
291 struct kvm_host_map {
292 	/*
293 	 * Only valid if the 'pfn' is managed by the host kernel (i.e. There is
294 	 * a 'struct page' for it. When using mem= kernel parameter some memory
295 	 * can be used as guest memory but they are not managed by host
296 	 * kernel).
297 	 * If 'pfn' is not managed by the host kernel, this field is
298 	 * initialized to KVM_UNMAPPED_PAGE.
299 	 */
300 	struct page *page;
301 	void *hva;
302 	kvm_pfn_t pfn;
303 	kvm_pfn_t gfn;
304 };
305 
306 /*
307  * Used to check if the mapping is valid or not. Never use 'kvm_host_map'
308  * directly to check for that.
309  */
kvm_vcpu_mapped(struct kvm_host_map * map)310 static inline bool kvm_vcpu_mapped(struct kvm_host_map *map)
311 {
312 	return !!map->hva;
313 }
314 
kvm_vcpu_can_poll(ktime_t cur,ktime_t stop)315 static inline bool kvm_vcpu_can_poll(ktime_t cur, ktime_t stop)
316 {
317 	return single_task_running() && !need_resched() && ktime_before(cur, stop);
318 }
319 
320 /*
321  * Sometimes a large or cross-page mmio needs to be broken up into separate
322  * exits for userspace servicing.
323  */
324 struct kvm_mmio_fragment {
325 	gpa_t gpa;
326 	void *data;
327 	unsigned len;
328 };
329 
330 struct kvm_vcpu {
331 	struct kvm *kvm;
332 #ifdef CONFIG_PREEMPT_NOTIFIERS
333 	struct preempt_notifier preempt_notifier;
334 #endif
335 	int cpu;
336 	int vcpu_id; /* id given by userspace at creation */
337 	int vcpu_idx; /* index into kvm->vcpu_array */
338 	int ____srcu_idx; /* Don't use this directly.  You've been warned. */
339 #ifdef CONFIG_PROVE_RCU
340 	int srcu_depth;
341 #endif
342 	int mode;
343 	u64 requests;
344 	unsigned long guest_debug;
345 
346 	struct mutex mutex;
347 	struct kvm_run *run;
348 
349 #ifndef __KVM_HAVE_ARCH_WQP
350 	struct rcuwait wait;
351 #endif
352 	struct pid __rcu *pid;
353 	int sigset_active;
354 	sigset_t sigset;
355 	unsigned int halt_poll_ns;
356 	bool valid_wakeup;
357 
358 #ifdef CONFIG_HAS_IOMEM
359 	int mmio_needed;
360 	int mmio_read_completed;
361 	int mmio_is_write;
362 	int mmio_cur_fragment;
363 	int mmio_nr_fragments;
364 	struct kvm_mmio_fragment mmio_fragments[KVM_MAX_MMIO_FRAGMENTS];
365 #endif
366 
367 #ifdef CONFIG_KVM_ASYNC_PF
368 	struct {
369 		u32 queued;
370 		struct list_head queue;
371 		struct list_head done;
372 		spinlock_t lock;
373 	} async_pf;
374 #endif
375 
376 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
377 	/*
378 	 * Cpu relax intercept or pause loop exit optimization
379 	 * in_spin_loop: set when a vcpu does a pause loop exit
380 	 *  or cpu relax intercepted.
381 	 * dy_eligible: indicates whether vcpu is eligible for directed yield.
382 	 */
383 	struct {
384 		bool in_spin_loop;
385 		bool dy_eligible;
386 	} spin_loop;
387 #endif
388 	bool wants_to_run;
389 	bool preempted;
390 	bool ready;
391 	bool scheduled_out;
392 	struct kvm_vcpu_arch arch;
393 	struct kvm_vcpu_stat stat;
394 	char stats_id[KVM_STATS_NAME_SIZE];
395 	struct kvm_dirty_ring dirty_ring;
396 
397 	/*
398 	 * The most recently used memslot by this vCPU and the slots generation
399 	 * for which it is valid.
400 	 * No wraparound protection is needed since generations won't overflow in
401 	 * thousands of years, even assuming 1M memslot operations per second.
402 	 */
403 	struct kvm_memory_slot *last_used_slot;
404 	u64 last_used_slot_gen;
405 };
406 
407 /*
408  * Start accounting time towards a guest.
409  * Must be called before entering guest context.
410  */
guest_timing_enter_irqoff(void)411 static __always_inline void guest_timing_enter_irqoff(void)
412 {
413 	/*
414 	 * This is running in ioctl context so its safe to assume that it's the
415 	 * stime pending cputime to flush.
416 	 */
417 	instrumentation_begin();
418 	vtime_account_guest_enter();
419 	instrumentation_end();
420 }
421 
422 /*
423  * Enter guest context and enter an RCU extended quiescent state.
424  *
425  * Between guest_context_enter_irqoff() and guest_context_exit_irqoff() it is
426  * unsafe to use any code which may directly or indirectly use RCU, tracing
427  * (including IRQ flag tracing), or lockdep. All code in this period must be
428  * non-instrumentable.
429  */
guest_context_enter_irqoff(void)430 static __always_inline void guest_context_enter_irqoff(void)
431 {
432 	/*
433 	 * KVM does not hold any references to rcu protected data when it
434 	 * switches CPU into a guest mode. In fact switching to a guest mode
435 	 * is very similar to exiting to userspace from rcu point of view. In
436 	 * addition CPU may stay in a guest mode for quite a long time (up to
437 	 * one time slice). Lets treat guest mode as quiescent state, just like
438 	 * we do with user-mode execution.
439 	 */
440 	if (!context_tracking_guest_enter()) {
441 		instrumentation_begin();
442 		rcu_virt_note_context_switch();
443 		instrumentation_end();
444 	}
445 }
446 
447 /*
448  * Deprecated. Architectures should move to guest_timing_enter_irqoff() and
449  * guest_state_enter_irqoff().
450  */
guest_enter_irqoff(void)451 static __always_inline void guest_enter_irqoff(void)
452 {
453 	guest_timing_enter_irqoff();
454 	guest_context_enter_irqoff();
455 }
456 
457 /**
458  * guest_state_enter_irqoff - Fixup state when entering a guest
459  *
460  * Entry to a guest will enable interrupts, but the kernel state is interrupts
461  * disabled when this is invoked. Also tell RCU about it.
462  *
463  * 1) Trace interrupts on state
464  * 2) Invoke context tracking if enabled to adjust RCU state
465  * 3) Tell lockdep that interrupts are enabled
466  *
467  * Invoked from architecture specific code before entering a guest.
468  * Must be called with interrupts disabled and the caller must be
469  * non-instrumentable.
470  * The caller has to invoke guest_timing_enter_irqoff() before this.
471  *
472  * Note: this is analogous to exit_to_user_mode().
473  */
guest_state_enter_irqoff(void)474 static __always_inline void guest_state_enter_irqoff(void)
475 {
476 	instrumentation_begin();
477 	trace_hardirqs_on_prepare();
478 	lockdep_hardirqs_on_prepare();
479 	instrumentation_end();
480 
481 	guest_context_enter_irqoff();
482 	lockdep_hardirqs_on(CALLER_ADDR0);
483 }
484 
485 /*
486  * Exit guest context and exit an RCU extended quiescent state.
487  *
488  * Between guest_context_enter_irqoff() and guest_context_exit_irqoff() it is
489  * unsafe to use any code which may directly or indirectly use RCU, tracing
490  * (including IRQ flag tracing), or lockdep. All code in this period must be
491  * non-instrumentable.
492  */
guest_context_exit_irqoff(void)493 static __always_inline void guest_context_exit_irqoff(void)
494 {
495 	/*
496 	 * Guest mode is treated as a quiescent state, see
497 	 * guest_context_enter_irqoff() for more details.
498 	 */
499 	if (!context_tracking_guest_exit()) {
500 		instrumentation_begin();
501 		rcu_virt_note_context_switch();
502 		instrumentation_end();
503 	}
504 }
505 
506 /*
507  * Stop accounting time towards a guest.
508  * Must be called after exiting guest context.
509  */
guest_timing_exit_irqoff(void)510 static __always_inline void guest_timing_exit_irqoff(void)
511 {
512 	instrumentation_begin();
513 	/* Flush the guest cputime we spent on the guest */
514 	vtime_account_guest_exit();
515 	instrumentation_end();
516 }
517 
518 /*
519  * Deprecated. Architectures should move to guest_state_exit_irqoff() and
520  * guest_timing_exit_irqoff().
521  */
guest_exit_irqoff(void)522 static __always_inline void guest_exit_irqoff(void)
523 {
524 	guest_context_exit_irqoff();
525 	guest_timing_exit_irqoff();
526 }
527 
guest_exit(void)528 static inline void guest_exit(void)
529 {
530 	unsigned long flags;
531 
532 	local_irq_save(flags);
533 	guest_exit_irqoff();
534 	local_irq_restore(flags);
535 }
536 
537 /**
538  * guest_state_exit_irqoff - Establish state when returning from guest mode
539  *
540  * Entry from a guest disables interrupts, but guest mode is traced as
541  * interrupts enabled. Also with NO_HZ_FULL RCU might be idle.
542  *
543  * 1) Tell lockdep that interrupts are disabled
544  * 2) Invoke context tracking if enabled to reactivate RCU
545  * 3) Trace interrupts off state
546  *
547  * Invoked from architecture specific code after exiting a guest.
548  * Must be invoked with interrupts disabled and the caller must be
549  * non-instrumentable.
550  * The caller has to invoke guest_timing_exit_irqoff() after this.
551  *
552  * Note: this is analogous to enter_from_user_mode().
553  */
guest_state_exit_irqoff(void)554 static __always_inline void guest_state_exit_irqoff(void)
555 {
556 	lockdep_hardirqs_off(CALLER_ADDR0);
557 	guest_context_exit_irqoff();
558 
559 	instrumentation_begin();
560 	trace_hardirqs_off_finish();
561 	instrumentation_end();
562 }
563 
kvm_vcpu_exiting_guest_mode(struct kvm_vcpu * vcpu)564 static inline int kvm_vcpu_exiting_guest_mode(struct kvm_vcpu *vcpu)
565 {
566 	/*
567 	 * The memory barrier ensures a previous write to vcpu->requests cannot
568 	 * be reordered with the read of vcpu->mode.  It pairs with the general
569 	 * memory barrier following the write of vcpu->mode in VCPU RUN.
570 	 */
571 	smp_mb__before_atomic();
572 	return cmpxchg(&vcpu->mode, IN_GUEST_MODE, EXITING_GUEST_MODE);
573 }
574 
575 /*
576  * Some of the bitops functions do not support too long bitmaps.
577  * This number must be determined not to exceed such limits.
578  */
579 #define KVM_MEM_MAX_NR_PAGES ((1UL << 31) - 1)
580 
581 /*
582  * Since at idle each memslot belongs to two memslot sets it has to contain
583  * two embedded nodes for each data structure that it forms a part of.
584  *
585  * Two memslot sets (one active and one inactive) are necessary so the VM
586  * continues to run on one memslot set while the other is being modified.
587  *
588  * These two memslot sets normally point to the same set of memslots.
589  * They can, however, be desynchronized when performing a memslot management
590  * operation by replacing the memslot to be modified by its copy.
591  * After the operation is complete, both memslot sets once again point to
592  * the same, common set of memslot data.
593  *
594  * The memslots themselves are independent of each other so they can be
595  * individually added or deleted.
596  */
597 struct kvm_memory_slot {
598 	struct hlist_node id_node[2];
599 	struct interval_tree_node hva_node[2];
600 	struct rb_node gfn_node[2];
601 	gfn_t base_gfn;
602 	unsigned long npages;
603 	unsigned long *dirty_bitmap;
604 	struct kvm_arch_memory_slot arch;
605 	unsigned long userspace_addr;
606 	u32 flags;
607 	short id;
608 	u16 as_id;
609 
610 #ifdef CONFIG_KVM_PRIVATE_MEM
611 	struct {
612 		struct file __rcu *file;
613 		pgoff_t pgoff;
614 	} gmem;
615 #endif
616 };
617 
kvm_slot_can_be_private(const struct kvm_memory_slot * slot)618 static inline bool kvm_slot_can_be_private(const struct kvm_memory_slot *slot)
619 {
620 	return slot && (slot->flags & KVM_MEM_GUEST_MEMFD);
621 }
622 
kvm_slot_dirty_track_enabled(const struct kvm_memory_slot * slot)623 static inline bool kvm_slot_dirty_track_enabled(const struct kvm_memory_slot *slot)
624 {
625 	return slot->flags & KVM_MEM_LOG_DIRTY_PAGES;
626 }
627 
kvm_dirty_bitmap_bytes(struct kvm_memory_slot * memslot)628 static inline unsigned long kvm_dirty_bitmap_bytes(struct kvm_memory_slot *memslot)
629 {
630 	return ALIGN(memslot->npages, BITS_PER_LONG) / 8;
631 }
632 
kvm_second_dirty_bitmap(struct kvm_memory_slot * memslot)633 static inline unsigned long *kvm_second_dirty_bitmap(struct kvm_memory_slot *memslot)
634 {
635 	unsigned long len = kvm_dirty_bitmap_bytes(memslot);
636 
637 	return memslot->dirty_bitmap + len / sizeof(*memslot->dirty_bitmap);
638 }
639 
640 #ifndef KVM_DIRTY_LOG_MANUAL_CAPS
641 #define KVM_DIRTY_LOG_MANUAL_CAPS KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE
642 #endif
643 
644 struct kvm_s390_adapter_int {
645 	u64 ind_addr;
646 	u64 summary_addr;
647 	u64 ind_offset;
648 	u32 summary_offset;
649 	u32 adapter_id;
650 };
651 
652 struct kvm_hv_sint {
653 	u32 vcpu;
654 	u32 sint;
655 };
656 
657 struct kvm_xen_evtchn {
658 	u32 port;
659 	u32 vcpu_id;
660 	int vcpu_idx;
661 	u32 priority;
662 };
663 
664 struct kvm_kernel_irq_routing_entry {
665 	u32 gsi;
666 	u32 type;
667 	int (*set)(struct kvm_kernel_irq_routing_entry *e,
668 		   struct kvm *kvm, int irq_source_id, int level,
669 		   bool line_status);
670 	union {
671 		struct {
672 			unsigned irqchip;
673 			unsigned pin;
674 		} irqchip;
675 		struct {
676 			u32 address_lo;
677 			u32 address_hi;
678 			u32 data;
679 			u32 flags;
680 			u32 devid;
681 		} msi;
682 		struct kvm_s390_adapter_int adapter;
683 		struct kvm_hv_sint hv_sint;
684 		struct kvm_xen_evtchn xen_evtchn;
685 	};
686 	struct hlist_node link;
687 };
688 
689 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
690 struct kvm_irq_routing_table {
691 	int chip[KVM_NR_IRQCHIPS][KVM_IRQCHIP_NUM_PINS];
692 	u32 nr_rt_entries;
693 	/*
694 	 * Array indexed by gsi. Each entry contains list of irq chips
695 	 * the gsi is connected to.
696 	 */
697 	struct hlist_head map[] __counted_by(nr_rt_entries);
698 };
699 #endif
700 
701 bool kvm_arch_irqchip_in_kernel(struct kvm *kvm);
702 
703 #ifndef KVM_INTERNAL_MEM_SLOTS
704 #define KVM_INTERNAL_MEM_SLOTS 0
705 #endif
706 
707 #define KVM_MEM_SLOTS_NUM SHRT_MAX
708 #define KVM_USER_MEM_SLOTS (KVM_MEM_SLOTS_NUM - KVM_INTERNAL_MEM_SLOTS)
709 
710 #if KVM_MAX_NR_ADDRESS_SPACES == 1
kvm_arch_nr_memslot_as_ids(struct kvm * kvm)711 static inline int kvm_arch_nr_memslot_as_ids(struct kvm *kvm)
712 {
713 	return KVM_MAX_NR_ADDRESS_SPACES;
714 }
715 
kvm_arch_vcpu_memslots_id(struct kvm_vcpu * vcpu)716 static inline int kvm_arch_vcpu_memslots_id(struct kvm_vcpu *vcpu)
717 {
718 	return 0;
719 }
720 #endif
721 
722 /*
723  * Arch code must define kvm_arch_has_private_mem if support for private memory
724  * is enabled.
725  */
726 #if !defined(kvm_arch_has_private_mem) && !IS_ENABLED(CONFIG_KVM_PRIVATE_MEM)
kvm_arch_has_private_mem(struct kvm * kvm)727 static inline bool kvm_arch_has_private_mem(struct kvm *kvm)
728 {
729 	return false;
730 }
731 #endif
732 
733 #ifndef kvm_arch_has_readonly_mem
kvm_arch_has_readonly_mem(struct kvm * kvm)734 static inline bool kvm_arch_has_readonly_mem(struct kvm *kvm)
735 {
736 	return IS_ENABLED(CONFIG_HAVE_KVM_READONLY_MEM);
737 }
738 #endif
739 
740 struct kvm_memslots {
741 	u64 generation;
742 	atomic_long_t last_used_slot;
743 	struct rb_root_cached hva_tree;
744 	struct rb_root gfn_tree;
745 	/*
746 	 * The mapping table from slot id to memslot.
747 	 *
748 	 * 7-bit bucket count matches the size of the old id to index array for
749 	 * 512 slots, while giving good performance with this slot count.
750 	 * Higher bucket counts bring only small performance improvements but
751 	 * always result in higher memory usage (even for lower memslot counts).
752 	 */
753 	DECLARE_HASHTABLE(id_hash, 7);
754 	int node_idx;
755 };
756 
757 struct kvm {
758 #ifdef KVM_HAVE_MMU_RWLOCK
759 	rwlock_t mmu_lock;
760 #else
761 	spinlock_t mmu_lock;
762 #endif /* KVM_HAVE_MMU_RWLOCK */
763 
764 	struct mutex slots_lock;
765 
766 	/*
767 	 * Protects the arch-specific fields of struct kvm_memory_slots in
768 	 * use by the VM. To be used under the slots_lock (above) or in a
769 	 * kvm->srcu critical section where acquiring the slots_lock would
770 	 * lead to deadlock with the synchronize_srcu in
771 	 * kvm_swap_active_memslots().
772 	 */
773 	struct mutex slots_arch_lock;
774 	struct mm_struct *mm; /* userspace tied to this vm */
775 	unsigned long nr_memslot_pages;
776 	/* The two memslot sets - active and inactive (per address space) */
777 	struct kvm_memslots __memslots[KVM_MAX_NR_ADDRESS_SPACES][2];
778 	/* The current active memslot set for each address space */
779 	struct kvm_memslots __rcu *memslots[KVM_MAX_NR_ADDRESS_SPACES];
780 	struct xarray vcpu_array;
781 	/*
782 	 * Protected by slots_lock, but can be read outside if an
783 	 * incorrect answer is acceptable.
784 	 */
785 	atomic_t nr_memslots_dirty_logging;
786 
787 	/* Used to wait for completion of MMU notifiers.  */
788 	spinlock_t mn_invalidate_lock;
789 	unsigned long mn_active_invalidate_count;
790 	struct rcuwait mn_memslots_update_rcuwait;
791 
792 	/* For management / invalidation of gfn_to_pfn_caches */
793 	spinlock_t gpc_lock;
794 	struct list_head gpc_list;
795 
796 	/*
797 	 * created_vcpus is protected by kvm->lock, and is incremented
798 	 * at the beginning of KVM_CREATE_VCPU.  online_vcpus is only
799 	 * incremented after storing the kvm_vcpu pointer in vcpus,
800 	 * and is accessed atomically.
801 	 */
802 	atomic_t online_vcpus;
803 	int max_vcpus;
804 	int created_vcpus;
805 	int last_boosted_vcpu;
806 	struct list_head vm_list;
807 	struct mutex lock;
808 	struct kvm_io_bus __rcu *buses[KVM_NR_BUSES];
809 #ifdef CONFIG_HAVE_KVM_IRQCHIP
810 	struct {
811 		spinlock_t        lock;
812 		struct list_head  items;
813 		/* resampler_list update side is protected by resampler_lock. */
814 		struct list_head  resampler_list;
815 		struct mutex      resampler_lock;
816 	} irqfds;
817 #endif
818 	struct list_head ioeventfds;
819 	struct kvm_vm_stat stat;
820 	struct kvm_arch arch;
821 	refcount_t users_count;
822 #ifdef CONFIG_KVM_MMIO
823 	struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
824 	spinlock_t ring_lock;
825 	struct list_head coalesced_zones;
826 #endif
827 
828 	struct mutex irq_lock;
829 #ifdef CONFIG_HAVE_KVM_IRQCHIP
830 	/*
831 	 * Update side is protected by irq_lock.
832 	 */
833 	struct kvm_irq_routing_table __rcu *irq_routing;
834 
835 	struct hlist_head irq_ack_notifier_list;
836 #endif
837 
838 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
839 	struct mmu_notifier mmu_notifier;
840 	unsigned long mmu_invalidate_seq;
841 	long mmu_invalidate_in_progress;
842 	gfn_t mmu_invalidate_range_start;
843 	gfn_t mmu_invalidate_range_end;
844 #endif
845 	struct list_head devices;
846 	u64 manual_dirty_log_protect;
847 	struct dentry *debugfs_dentry;
848 	struct kvm_stat_data **debugfs_stat_data;
849 	struct srcu_struct srcu;
850 	struct srcu_struct irq_srcu;
851 	pid_t userspace_pid;
852 	bool override_halt_poll_ns;
853 	unsigned int max_halt_poll_ns;
854 	u32 dirty_ring_size;
855 	bool dirty_ring_with_bitmap;
856 	bool vm_bugged;
857 	bool vm_dead;
858 
859 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
860 	struct notifier_block pm_notifier;
861 #endif
862 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
863 	/* Protected by slots_locks (for writes) and RCU (for reads) */
864 	struct xarray mem_attr_array;
865 #endif
866 	char stats_id[KVM_STATS_NAME_SIZE];
867 };
868 
869 #define kvm_err(fmt, ...) \
870 	pr_err("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
871 #define kvm_info(fmt, ...) \
872 	pr_info("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
873 #define kvm_debug(fmt, ...) \
874 	pr_debug("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
875 #define kvm_debug_ratelimited(fmt, ...) \
876 	pr_debug_ratelimited("kvm [%i]: " fmt, task_pid_nr(current), \
877 			     ## __VA_ARGS__)
878 #define kvm_pr_unimpl(fmt, ...) \
879 	pr_err_ratelimited("kvm [%i]: " fmt, \
880 			   task_tgid_nr(current), ## __VA_ARGS__)
881 
882 /* The guest did something we don't support. */
883 #define vcpu_unimpl(vcpu, fmt, ...)					\
884 	kvm_pr_unimpl("vcpu%i, guest rIP: 0x%lx " fmt,			\
885 			(vcpu)->vcpu_id, kvm_rip_read(vcpu), ## __VA_ARGS__)
886 
887 #define vcpu_debug(vcpu, fmt, ...)					\
888 	kvm_debug("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
889 #define vcpu_debug_ratelimited(vcpu, fmt, ...)				\
890 	kvm_debug_ratelimited("vcpu%i " fmt, (vcpu)->vcpu_id,           \
891 			      ## __VA_ARGS__)
892 #define vcpu_err(vcpu, fmt, ...)					\
893 	kvm_err("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
894 
kvm_vm_dead(struct kvm * kvm)895 static inline void kvm_vm_dead(struct kvm *kvm)
896 {
897 	kvm->vm_dead = true;
898 	kvm_make_all_cpus_request(kvm, KVM_REQ_VM_DEAD);
899 }
900 
kvm_vm_bugged(struct kvm * kvm)901 static inline void kvm_vm_bugged(struct kvm *kvm)
902 {
903 	kvm->vm_bugged = true;
904 	kvm_vm_dead(kvm);
905 }
906 
907 
908 #define KVM_BUG(cond, kvm, fmt...)				\
909 ({								\
910 	bool __ret = !!(cond);					\
911 								\
912 	if (WARN_ONCE(__ret && !(kvm)->vm_bugged, fmt))		\
913 		kvm_vm_bugged(kvm);				\
914 	unlikely(__ret);					\
915 })
916 
917 #define KVM_BUG_ON(cond, kvm)					\
918 ({								\
919 	bool __ret = !!(cond);					\
920 								\
921 	if (WARN_ON_ONCE(__ret && !(kvm)->vm_bugged))		\
922 		kvm_vm_bugged(kvm);				\
923 	unlikely(__ret);					\
924 })
925 
926 /*
927  * Note, "data corruption" refers to corruption of host kernel data structures,
928  * not guest data.  Guest data corruption, suspected or confirmed, that is tied
929  * and contained to a single VM should *never* BUG() and potentially panic the
930  * host, i.e. use this variant of KVM_BUG() if and only if a KVM data structure
931  * is corrupted and that corruption can have a cascading effect to other parts
932  * of the hosts and/or to other VMs.
933  */
934 #define KVM_BUG_ON_DATA_CORRUPTION(cond, kvm)			\
935 ({								\
936 	bool __ret = !!(cond);					\
937 								\
938 	if (IS_ENABLED(CONFIG_BUG_ON_DATA_CORRUPTION))		\
939 		BUG_ON(__ret);					\
940 	else if (WARN_ON_ONCE(__ret && !(kvm)->vm_bugged))	\
941 		kvm_vm_bugged(kvm);				\
942 	unlikely(__ret);					\
943 })
944 
kvm_vcpu_srcu_read_lock(struct kvm_vcpu * vcpu)945 static inline void kvm_vcpu_srcu_read_lock(struct kvm_vcpu *vcpu)
946 {
947 #ifdef CONFIG_PROVE_RCU
948 	WARN_ONCE(vcpu->srcu_depth++,
949 		  "KVM: Illegal vCPU srcu_idx LOCK, depth=%d", vcpu->srcu_depth - 1);
950 #endif
951 	vcpu->____srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
952 }
953 
kvm_vcpu_srcu_read_unlock(struct kvm_vcpu * vcpu)954 static inline void kvm_vcpu_srcu_read_unlock(struct kvm_vcpu *vcpu)
955 {
956 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->____srcu_idx);
957 
958 #ifdef CONFIG_PROVE_RCU
959 	WARN_ONCE(--vcpu->srcu_depth,
960 		  "KVM: Illegal vCPU srcu_idx UNLOCK, depth=%d", vcpu->srcu_depth);
961 #endif
962 }
963 
kvm_dirty_log_manual_protect_and_init_set(struct kvm * kvm)964 static inline bool kvm_dirty_log_manual_protect_and_init_set(struct kvm *kvm)
965 {
966 	return !!(kvm->manual_dirty_log_protect & KVM_DIRTY_LOG_INITIALLY_SET);
967 }
968 
kvm_get_bus(struct kvm * kvm,enum kvm_bus idx)969 static inline struct kvm_io_bus *kvm_get_bus(struct kvm *kvm, enum kvm_bus idx)
970 {
971 	return srcu_dereference_check(kvm->buses[idx], &kvm->srcu,
972 				      lockdep_is_held(&kvm->slots_lock) ||
973 				      !refcount_read(&kvm->users_count));
974 }
975 
kvm_get_vcpu(struct kvm * kvm,int i)976 static inline struct kvm_vcpu *kvm_get_vcpu(struct kvm *kvm, int i)
977 {
978 	int num_vcpus = atomic_read(&kvm->online_vcpus);
979 
980 	/*
981 	 * Explicitly verify the target vCPU is online, as the anti-speculation
982 	 * logic only limits the CPU's ability to speculate, e.g. given a "bad"
983 	 * index, clamping the index to 0 would return vCPU0, not NULL.
984 	 */
985 	if (i >= num_vcpus)
986 		return NULL;
987 
988 	i = array_index_nospec(i, num_vcpus);
989 
990 	/* Pairs with smp_wmb() in kvm_vm_ioctl_create_vcpu.  */
991 	smp_rmb();
992 	return xa_load(&kvm->vcpu_array, i);
993 }
994 
995 #define kvm_for_each_vcpu(idx, vcpup, kvm)		   \
996 	xa_for_each_range(&kvm->vcpu_array, idx, vcpup, 0, \
997 			  (atomic_read(&kvm->online_vcpus) - 1))
998 
kvm_get_vcpu_by_id(struct kvm * kvm,int id)999 static inline struct kvm_vcpu *kvm_get_vcpu_by_id(struct kvm *kvm, int id)
1000 {
1001 	struct kvm_vcpu *vcpu = NULL;
1002 	unsigned long i;
1003 
1004 	if (id < 0)
1005 		return NULL;
1006 	if (id < KVM_MAX_VCPUS)
1007 		vcpu = kvm_get_vcpu(kvm, id);
1008 	if (vcpu && vcpu->vcpu_id == id)
1009 		return vcpu;
1010 	kvm_for_each_vcpu(i, vcpu, kvm)
1011 		if (vcpu->vcpu_id == id)
1012 			return vcpu;
1013 	return NULL;
1014 }
1015 
1016 void kvm_destroy_vcpus(struct kvm *kvm);
1017 
1018 void vcpu_load(struct kvm_vcpu *vcpu);
1019 void vcpu_put(struct kvm_vcpu *vcpu);
1020 
1021 #ifdef __KVM_HAVE_IOAPIC
1022 void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm);
1023 void kvm_arch_post_irq_routing_update(struct kvm *kvm);
1024 #else
kvm_arch_post_irq_ack_notifier_list_update(struct kvm * kvm)1025 static inline void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm)
1026 {
1027 }
kvm_arch_post_irq_routing_update(struct kvm * kvm)1028 static inline void kvm_arch_post_irq_routing_update(struct kvm *kvm)
1029 {
1030 }
1031 #endif
1032 
1033 #ifdef CONFIG_HAVE_KVM_IRQCHIP
1034 int kvm_irqfd_init(void);
1035 void kvm_irqfd_exit(void);
1036 #else
kvm_irqfd_init(void)1037 static inline int kvm_irqfd_init(void)
1038 {
1039 	return 0;
1040 }
1041 
kvm_irqfd_exit(void)1042 static inline void kvm_irqfd_exit(void)
1043 {
1044 }
1045 #endif
1046 int kvm_init(unsigned vcpu_size, unsigned vcpu_align, struct module *module);
1047 void kvm_exit(void);
1048 
1049 void kvm_get_kvm(struct kvm *kvm);
1050 bool kvm_get_kvm_safe(struct kvm *kvm);
1051 void kvm_put_kvm(struct kvm *kvm);
1052 bool file_is_kvm(struct file *file);
1053 void kvm_put_kvm_no_destroy(struct kvm *kvm);
1054 
__kvm_memslots(struct kvm * kvm,int as_id)1055 static inline struct kvm_memslots *__kvm_memslots(struct kvm *kvm, int as_id)
1056 {
1057 	as_id = array_index_nospec(as_id, KVM_MAX_NR_ADDRESS_SPACES);
1058 	return srcu_dereference_check(kvm->memslots[as_id], &kvm->srcu,
1059 			lockdep_is_held(&kvm->slots_lock) ||
1060 			!refcount_read(&kvm->users_count));
1061 }
1062 
kvm_memslots(struct kvm * kvm)1063 static inline struct kvm_memslots *kvm_memslots(struct kvm *kvm)
1064 {
1065 	return __kvm_memslots(kvm, 0);
1066 }
1067 
kvm_vcpu_memslots(struct kvm_vcpu * vcpu)1068 static inline struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu)
1069 {
1070 	int as_id = kvm_arch_vcpu_memslots_id(vcpu);
1071 
1072 	return __kvm_memslots(vcpu->kvm, as_id);
1073 }
1074 
kvm_memslots_empty(struct kvm_memslots * slots)1075 static inline bool kvm_memslots_empty(struct kvm_memslots *slots)
1076 {
1077 	return RB_EMPTY_ROOT(&slots->gfn_tree);
1078 }
1079 
1080 bool kvm_are_all_memslots_empty(struct kvm *kvm);
1081 
1082 #define kvm_for_each_memslot(memslot, bkt, slots)			      \
1083 	hash_for_each(slots->id_hash, bkt, memslot, id_node[slots->node_idx]) \
1084 		if (WARN_ON_ONCE(!memslot->npages)) {			      \
1085 		} else
1086 
1087 static inline
id_to_memslot(struct kvm_memslots * slots,int id)1088 struct kvm_memory_slot *id_to_memslot(struct kvm_memslots *slots, int id)
1089 {
1090 	struct kvm_memory_slot *slot;
1091 	int idx = slots->node_idx;
1092 
1093 	hash_for_each_possible(slots->id_hash, slot, id_node[idx], id) {
1094 		if (slot->id == id)
1095 			return slot;
1096 	}
1097 
1098 	return NULL;
1099 }
1100 
1101 /* Iterator used for walking memslots that overlap a gfn range. */
1102 struct kvm_memslot_iter {
1103 	struct kvm_memslots *slots;
1104 	struct rb_node *node;
1105 	struct kvm_memory_slot *slot;
1106 };
1107 
kvm_memslot_iter_next(struct kvm_memslot_iter * iter)1108 static inline void kvm_memslot_iter_next(struct kvm_memslot_iter *iter)
1109 {
1110 	iter->node = rb_next(iter->node);
1111 	if (!iter->node)
1112 		return;
1113 
1114 	iter->slot = container_of(iter->node, struct kvm_memory_slot, gfn_node[iter->slots->node_idx]);
1115 }
1116 
kvm_memslot_iter_start(struct kvm_memslot_iter * iter,struct kvm_memslots * slots,gfn_t start)1117 static inline void kvm_memslot_iter_start(struct kvm_memslot_iter *iter,
1118 					  struct kvm_memslots *slots,
1119 					  gfn_t start)
1120 {
1121 	int idx = slots->node_idx;
1122 	struct rb_node *tmp;
1123 	struct kvm_memory_slot *slot;
1124 
1125 	iter->slots = slots;
1126 
1127 	/*
1128 	 * Find the so called "upper bound" of a key - the first node that has
1129 	 * its key strictly greater than the searched one (the start gfn in our case).
1130 	 */
1131 	iter->node = NULL;
1132 	for (tmp = slots->gfn_tree.rb_node; tmp; ) {
1133 		slot = container_of(tmp, struct kvm_memory_slot, gfn_node[idx]);
1134 		if (start < slot->base_gfn) {
1135 			iter->node = tmp;
1136 			tmp = tmp->rb_left;
1137 		} else {
1138 			tmp = tmp->rb_right;
1139 		}
1140 	}
1141 
1142 	/*
1143 	 * Find the slot with the lowest gfn that can possibly intersect with
1144 	 * the range, so we'll ideally have slot start <= range start
1145 	 */
1146 	if (iter->node) {
1147 		/*
1148 		 * A NULL previous node means that the very first slot
1149 		 * already has a higher start gfn.
1150 		 * In this case slot start > range start.
1151 		 */
1152 		tmp = rb_prev(iter->node);
1153 		if (tmp)
1154 			iter->node = tmp;
1155 	} else {
1156 		/* a NULL node below means no slots */
1157 		iter->node = rb_last(&slots->gfn_tree);
1158 	}
1159 
1160 	if (iter->node) {
1161 		iter->slot = container_of(iter->node, struct kvm_memory_slot, gfn_node[idx]);
1162 
1163 		/*
1164 		 * It is possible in the slot start < range start case that the
1165 		 * found slot ends before or at range start (slot end <= range start)
1166 		 * and so it does not overlap the requested range.
1167 		 *
1168 		 * In such non-overlapping case the next slot (if it exists) will
1169 		 * already have slot start > range start, otherwise the logic above
1170 		 * would have found it instead of the current slot.
1171 		 */
1172 		if (iter->slot->base_gfn + iter->slot->npages <= start)
1173 			kvm_memslot_iter_next(iter);
1174 	}
1175 }
1176 
kvm_memslot_iter_is_valid(struct kvm_memslot_iter * iter,gfn_t end)1177 static inline bool kvm_memslot_iter_is_valid(struct kvm_memslot_iter *iter, gfn_t end)
1178 {
1179 	if (!iter->node)
1180 		return false;
1181 
1182 	/*
1183 	 * If this slot starts beyond or at the end of the range so does
1184 	 * every next one
1185 	 */
1186 	return iter->slot->base_gfn < end;
1187 }
1188 
1189 /* Iterate over each memslot at least partially intersecting [start, end) range */
1190 #define kvm_for_each_memslot_in_gfn_range(iter, slots, start, end)	\
1191 	for (kvm_memslot_iter_start(iter, slots, start);		\
1192 	     kvm_memslot_iter_is_valid(iter, end);			\
1193 	     kvm_memslot_iter_next(iter))
1194 
1195 /*
1196  * KVM_SET_USER_MEMORY_REGION ioctl allows the following operations:
1197  * - create a new memory slot
1198  * - delete an existing memory slot
1199  * - modify an existing memory slot
1200  *   -- move it in the guest physical memory space
1201  *   -- just change its flags
1202  *
1203  * Since flags can be changed by some of these operations, the following
1204  * differentiation is the best we can do for __kvm_set_memory_region():
1205  */
1206 enum kvm_mr_change {
1207 	KVM_MR_CREATE,
1208 	KVM_MR_DELETE,
1209 	KVM_MR_MOVE,
1210 	KVM_MR_FLAGS_ONLY,
1211 };
1212 
1213 int kvm_set_memory_region(struct kvm *kvm,
1214 			  const struct kvm_userspace_memory_region2 *mem);
1215 int __kvm_set_memory_region(struct kvm *kvm,
1216 			    const struct kvm_userspace_memory_region2 *mem);
1217 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot);
1218 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen);
1219 int kvm_arch_prepare_memory_region(struct kvm *kvm,
1220 				const struct kvm_memory_slot *old,
1221 				struct kvm_memory_slot *new,
1222 				enum kvm_mr_change change);
1223 void kvm_arch_commit_memory_region(struct kvm *kvm,
1224 				struct kvm_memory_slot *old,
1225 				const struct kvm_memory_slot *new,
1226 				enum kvm_mr_change change);
1227 /* flush all memory translations */
1228 void kvm_arch_flush_shadow_all(struct kvm *kvm);
1229 /* flush memory translations pointing to 'slot' */
1230 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
1231 				   struct kvm_memory_slot *slot);
1232 
1233 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1234 			    struct page **pages, int nr_pages);
1235 
1236 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn);
1237 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn);
1238 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable);
1239 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn);
1240 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, gfn_t gfn,
1241 				      bool *writable);
1242 void kvm_release_page_clean(struct page *page);
1243 void kvm_release_page_dirty(struct page *page);
1244 
1245 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn);
1246 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1247 		      bool *writable);
1248 kvm_pfn_t gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn);
1249 kvm_pfn_t gfn_to_pfn_memslot_atomic(const struct kvm_memory_slot *slot, gfn_t gfn);
1250 kvm_pfn_t __gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn,
1251 			       bool atomic, bool interruptible, bool *async,
1252 			       bool write_fault, bool *writable, hva_t *hva);
1253 
1254 void kvm_release_pfn_clean(kvm_pfn_t pfn);
1255 void kvm_release_pfn_dirty(kvm_pfn_t pfn);
1256 void kvm_set_pfn_dirty(kvm_pfn_t pfn);
1257 void kvm_set_pfn_accessed(kvm_pfn_t pfn);
1258 
1259 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty);
1260 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1261 			int len);
1262 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len);
1263 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1264 			   void *data, unsigned long len);
1265 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1266 				 void *data, unsigned int offset,
1267 				 unsigned long len);
1268 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1269 			 int offset, int len);
1270 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1271 		    unsigned long len);
1272 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1273 			   void *data, unsigned long len);
1274 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1275 				  void *data, unsigned int offset,
1276 				  unsigned long len);
1277 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1278 			      gpa_t gpa, unsigned long len);
1279 
1280 #define __kvm_get_guest(kvm, gfn, offset, v)				\
1281 ({									\
1282 	unsigned long __addr = gfn_to_hva(kvm, gfn);			\
1283 	typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset);	\
1284 	int __ret = -EFAULT;						\
1285 									\
1286 	if (!kvm_is_error_hva(__addr))					\
1287 		__ret = get_user(v, __uaddr);				\
1288 	__ret;								\
1289 })
1290 
1291 #define kvm_get_guest(kvm, gpa, v)					\
1292 ({									\
1293 	gpa_t __gpa = gpa;						\
1294 	struct kvm *__kvm = kvm;					\
1295 									\
1296 	__kvm_get_guest(__kvm, __gpa >> PAGE_SHIFT,			\
1297 			offset_in_page(__gpa), v);			\
1298 })
1299 
1300 #define __kvm_put_guest(kvm, gfn, offset, v)				\
1301 ({									\
1302 	unsigned long __addr = gfn_to_hva(kvm, gfn);			\
1303 	typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset);	\
1304 	int __ret = -EFAULT;						\
1305 									\
1306 	if (!kvm_is_error_hva(__addr))					\
1307 		__ret = put_user(v, __uaddr);				\
1308 	if (!__ret)							\
1309 		mark_page_dirty(kvm, gfn);				\
1310 	__ret;								\
1311 })
1312 
1313 #define kvm_put_guest(kvm, gpa, v)					\
1314 ({									\
1315 	gpa_t __gpa = gpa;						\
1316 	struct kvm *__kvm = kvm;					\
1317 									\
1318 	__kvm_put_guest(__kvm, __gpa >> PAGE_SHIFT,			\
1319 			offset_in_page(__gpa), v);			\
1320 })
1321 
1322 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len);
1323 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn);
1324 struct kvm_memory_slot *gfn_to_memslot_prot(struct kvm *kvm, gfn_t gfn, bool *writable);
1325 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn);
1326 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn);
1327 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn);
1328 void mark_page_dirty_in_slot(struct kvm *kvm, const struct kvm_memory_slot *memslot, gfn_t gfn);
1329 void mark_page_dirty(struct kvm *kvm, gfn_t gfn);
1330 
1331 struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu);
1332 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn);
1333 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gpa_t gpa, struct kvm_host_map *map);
1334 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty);
1335 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn);
1336 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable);
1337 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, int offset,
1338 			     int len);
1339 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
1340 			       unsigned long len);
1341 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
1342 			unsigned long len);
1343 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, const void *data,
1344 			      int offset, int len);
1345 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1346 			 unsigned long len);
1347 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn);
1348 
1349 /**
1350  * kvm_gpc_init - initialize gfn_to_pfn_cache.
1351  *
1352  * @gpc:	   struct gfn_to_pfn_cache object.
1353  * @kvm:	   pointer to kvm instance.
1354  *
1355  * This sets up a gfn_to_pfn_cache by initializing locks and assigning the
1356  * immutable attributes.  Note, the cache must be zero-allocated (or zeroed by
1357  * the caller before init).
1358  */
1359 void kvm_gpc_init(struct gfn_to_pfn_cache *gpc, struct kvm *kvm);
1360 
1361 /**
1362  * kvm_gpc_activate - prepare a cached kernel mapping and HPA for a given guest
1363  *                    physical address.
1364  *
1365  * @gpc:	   struct gfn_to_pfn_cache object.
1366  * @gpa:	   guest physical address to map.
1367  * @len:	   sanity check; the range being access must fit a single page.
1368  *
1369  * @return:	   0 for success.
1370  *		   -EINVAL for a mapping which would cross a page boundary.
1371  *		   -EFAULT for an untranslatable guest physical address.
1372  *
1373  * This primes a gfn_to_pfn_cache and links it into the @gpc->kvm's list for
1374  * invalidations to be processed.  Callers are required to use kvm_gpc_check()
1375  * to ensure that the cache is valid before accessing the target page.
1376  */
1377 int kvm_gpc_activate(struct gfn_to_pfn_cache *gpc, gpa_t gpa, unsigned long len);
1378 
1379 /**
1380  * kvm_gpc_activate_hva - prepare a cached kernel mapping and HPA for a given HVA.
1381  *
1382  * @gpc:          struct gfn_to_pfn_cache object.
1383  * @hva:          userspace virtual address to map.
1384  * @len:          sanity check; the range being access must fit a single page.
1385  *
1386  * @return:       0 for success.
1387  *                -EINVAL for a mapping which would cross a page boundary.
1388  *                -EFAULT for an untranslatable guest physical address.
1389  *
1390  * The semantics of this function are the same as those of kvm_gpc_activate(). It
1391  * merely bypasses a layer of address translation.
1392  */
1393 int kvm_gpc_activate_hva(struct gfn_to_pfn_cache *gpc, unsigned long hva, unsigned long len);
1394 
1395 /**
1396  * kvm_gpc_check - check validity of a gfn_to_pfn_cache.
1397  *
1398  * @gpc:	   struct gfn_to_pfn_cache object.
1399  * @len:	   sanity check; the range being access must fit a single page.
1400  *
1401  * @return:	   %true if the cache is still valid and the address matches.
1402  *		   %false if the cache is not valid.
1403  *
1404  * Callers outside IN_GUEST_MODE context should hold a read lock on @gpc->lock
1405  * while calling this function, and then continue to hold the lock until the
1406  * access is complete.
1407  *
1408  * Callers in IN_GUEST_MODE may do so without locking, although they should
1409  * still hold a read lock on kvm->scru for the memslot checks.
1410  */
1411 bool kvm_gpc_check(struct gfn_to_pfn_cache *gpc, unsigned long len);
1412 
1413 /**
1414  * kvm_gpc_refresh - update a previously initialized cache.
1415  *
1416  * @gpc:	   struct gfn_to_pfn_cache object.
1417  * @len:	   sanity check; the range being access must fit a single page.
1418  *
1419  * @return:	   0 for success.
1420  *		   -EINVAL for a mapping which would cross a page boundary.
1421  *		   -EFAULT for an untranslatable guest physical address.
1422  *
1423  * This will attempt to refresh a gfn_to_pfn_cache. Note that a successful
1424  * return from this function does not mean the page can be immediately
1425  * accessed because it may have raced with an invalidation. Callers must
1426  * still lock and check the cache status, as this function does not return
1427  * with the lock still held to permit access.
1428  */
1429 int kvm_gpc_refresh(struct gfn_to_pfn_cache *gpc, unsigned long len);
1430 
1431 /**
1432  * kvm_gpc_deactivate - deactivate and unlink a gfn_to_pfn_cache.
1433  *
1434  * @gpc:	   struct gfn_to_pfn_cache object.
1435  *
1436  * This removes a cache from the VM's list to be processed on MMU notifier
1437  * invocation.
1438  */
1439 void kvm_gpc_deactivate(struct gfn_to_pfn_cache *gpc);
1440 
kvm_gpc_is_gpa_active(struct gfn_to_pfn_cache * gpc)1441 static inline bool kvm_gpc_is_gpa_active(struct gfn_to_pfn_cache *gpc)
1442 {
1443 	return gpc->active && !kvm_is_error_gpa(gpc->gpa);
1444 }
1445 
kvm_gpc_is_hva_active(struct gfn_to_pfn_cache * gpc)1446 static inline bool kvm_gpc_is_hva_active(struct gfn_to_pfn_cache *gpc)
1447 {
1448 	return gpc->active && kvm_is_error_gpa(gpc->gpa);
1449 }
1450 
1451 void kvm_sigset_activate(struct kvm_vcpu *vcpu);
1452 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu);
1453 
1454 void kvm_vcpu_halt(struct kvm_vcpu *vcpu);
1455 bool kvm_vcpu_block(struct kvm_vcpu *vcpu);
1456 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu);
1457 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu);
1458 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu);
1459 void kvm_vcpu_kick(struct kvm_vcpu *vcpu);
1460 int kvm_vcpu_yield_to(struct kvm_vcpu *target);
1461 void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu, bool yield_to_kernel_mode);
1462 
1463 void kvm_flush_remote_tlbs(struct kvm *kvm);
1464 void kvm_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages);
1465 void kvm_flush_remote_tlbs_memslot(struct kvm *kvm,
1466 				   const struct kvm_memory_slot *memslot);
1467 
1468 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
1469 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min);
1470 int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min);
1471 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc);
1472 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc);
1473 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc);
1474 #endif
1475 
1476 void kvm_mmu_invalidate_begin(struct kvm *kvm);
1477 void kvm_mmu_invalidate_range_add(struct kvm *kvm, gfn_t start, gfn_t end);
1478 void kvm_mmu_invalidate_end(struct kvm *kvm);
1479 bool kvm_mmu_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range);
1480 
1481 long kvm_arch_dev_ioctl(struct file *filp,
1482 			unsigned int ioctl, unsigned long arg);
1483 long kvm_arch_vcpu_ioctl(struct file *filp,
1484 			 unsigned int ioctl, unsigned long arg);
1485 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf);
1486 
1487 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext);
1488 
1489 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1490 					struct kvm_memory_slot *slot,
1491 					gfn_t gfn_offset,
1492 					unsigned long mask);
1493 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot);
1494 
1495 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1496 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log);
1497 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
1498 		      int *is_dirty, struct kvm_memory_slot **memslot);
1499 #endif
1500 
1501 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
1502 			bool line_status);
1503 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
1504 			    struct kvm_enable_cap *cap);
1505 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg);
1506 long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
1507 			      unsigned long arg);
1508 
1509 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
1510 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
1511 
1512 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1513 				    struct kvm_translation *tr);
1514 
1515 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
1516 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
1517 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1518 				  struct kvm_sregs *sregs);
1519 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
1520 				  struct kvm_sregs *sregs);
1521 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
1522 				    struct kvm_mp_state *mp_state);
1523 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
1524 				    struct kvm_mp_state *mp_state);
1525 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
1526 					struct kvm_guest_debug *dbg);
1527 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu);
1528 
1529 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu);
1530 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu);
1531 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id);
1532 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu);
1533 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu);
1534 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu);
1535 
1536 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
1537 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state);
1538 #endif
1539 
1540 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
1541 void kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry);
1542 #else
kvm_create_vcpu_debugfs(struct kvm_vcpu * vcpu)1543 static inline void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu) {}
1544 #endif
1545 
1546 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
1547 /*
1548  * kvm_arch_{enable,disable}_virtualization() are called on one CPU, under
1549  * kvm_usage_lock, immediately after/before 0=>1 and 1=>0 transitions of
1550  * kvm_usage_count, i.e. at the beginning of the generic hardware enabling
1551  * sequence, and at the end of the generic hardware disabling sequence.
1552  */
1553 void kvm_arch_enable_virtualization(void);
1554 void kvm_arch_disable_virtualization(void);
1555 /*
1556  * kvm_arch_{enable,disable}_virtualization_cpu() are called on "every" CPU to
1557  * do the actual twiddling of hardware bits.  The hooks are called on all
1558  * online CPUs when KVM enables/disabled virtualization, and on a single CPU
1559  * when that CPU is onlined/offlined (including for Resume/Suspend).
1560  */
1561 int kvm_arch_enable_virtualization_cpu(void);
1562 void kvm_arch_disable_virtualization_cpu(void);
1563 #endif
1564 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu);
1565 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu);
1566 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu);
1567 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu);
1568 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu);
1569 bool kvm_arch_vcpu_preempted_in_kernel(struct kvm_vcpu *vcpu);
1570 int kvm_arch_post_init_vm(struct kvm *kvm);
1571 void kvm_arch_pre_destroy_vm(struct kvm *kvm);
1572 void kvm_arch_create_vm_debugfs(struct kvm *kvm);
1573 
1574 #ifndef __KVM_HAVE_ARCH_VM_ALLOC
1575 /*
1576  * All architectures that want to use vzalloc currently also
1577  * need their own kvm_arch_alloc_vm implementation.
1578  */
kvm_arch_alloc_vm(void)1579 static inline struct kvm *kvm_arch_alloc_vm(void)
1580 {
1581 	return kzalloc(sizeof(struct kvm), GFP_KERNEL_ACCOUNT);
1582 }
1583 #endif
1584 
__kvm_arch_free_vm(struct kvm * kvm)1585 static inline void __kvm_arch_free_vm(struct kvm *kvm)
1586 {
1587 	kvfree(kvm);
1588 }
1589 
1590 #ifndef __KVM_HAVE_ARCH_VM_FREE
kvm_arch_free_vm(struct kvm * kvm)1591 static inline void kvm_arch_free_vm(struct kvm *kvm)
1592 {
1593 	__kvm_arch_free_vm(kvm);
1594 }
1595 #endif
1596 
1597 #ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS
kvm_arch_flush_remote_tlbs(struct kvm * kvm)1598 static inline int kvm_arch_flush_remote_tlbs(struct kvm *kvm)
1599 {
1600 	return -ENOTSUPP;
1601 }
1602 #else
1603 int kvm_arch_flush_remote_tlbs(struct kvm *kvm);
1604 #endif
1605 
1606 #ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS_RANGE
kvm_arch_flush_remote_tlbs_range(struct kvm * kvm,gfn_t gfn,u64 nr_pages)1607 static inline int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm,
1608 						    gfn_t gfn, u64 nr_pages)
1609 {
1610 	return -EOPNOTSUPP;
1611 }
1612 #else
1613 int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages);
1614 #endif
1615 
1616 #ifdef __KVM_HAVE_ARCH_NONCOHERENT_DMA
1617 void kvm_arch_register_noncoherent_dma(struct kvm *kvm);
1618 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm);
1619 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm);
1620 #else
kvm_arch_register_noncoherent_dma(struct kvm * kvm)1621 static inline void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
1622 {
1623 }
1624 
kvm_arch_unregister_noncoherent_dma(struct kvm * kvm)1625 static inline void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
1626 {
1627 }
1628 
kvm_arch_has_noncoherent_dma(struct kvm * kvm)1629 static inline bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
1630 {
1631 	return false;
1632 }
1633 #endif
1634 #ifdef __KVM_HAVE_ARCH_ASSIGNED_DEVICE
1635 void kvm_arch_start_assignment(struct kvm *kvm);
1636 void kvm_arch_end_assignment(struct kvm *kvm);
1637 bool kvm_arch_has_assigned_device(struct kvm *kvm);
1638 #else
kvm_arch_start_assignment(struct kvm * kvm)1639 static inline void kvm_arch_start_assignment(struct kvm *kvm)
1640 {
1641 }
1642 
kvm_arch_end_assignment(struct kvm * kvm)1643 static inline void kvm_arch_end_assignment(struct kvm *kvm)
1644 {
1645 }
1646 
kvm_arch_has_assigned_device(struct kvm * kvm)1647 static __always_inline bool kvm_arch_has_assigned_device(struct kvm *kvm)
1648 {
1649 	return false;
1650 }
1651 #endif
1652 
1653 #ifdef __KVM_HAVE_ARCH_ASSIGNED_DEVICE_GROUP
1654 int kvm_arch_assign_device(struct device *dev);
1655 int kvm_arch_assign_group(struct iommu_group *group);
1656 void kvm_arch_reclaim_device(struct device *dev);
1657 void kvm_arch_reclaim_group(struct iommu_group *group);
1658 #else
kvm_arch_assign_device(struct device * dev)1659 static inline int kvm_arch_assign_device(struct device *dev)
1660 {
1661 	return 0;
1662 }
1663 
kvm_arch_assign_group(struct iommu_group * group)1664 static inline int kvm_arch_assign_group(struct iommu_group *group)
1665 {
1666 	return 0;
1667 }
1668 
kvm_arch_reclaim_device(struct device * dev)1669 static inline void kvm_arch_reclaim_device(struct device *dev)
1670 {
1671 }
1672 
kvm_arch_reclaim_group(struct iommu_group * group)1673 static inline void kvm_arch_reclaim_group(struct iommu_group *group)
1674 {
1675 }
1676 #endif
1677 
kvm_arch_vcpu_get_wait(struct kvm_vcpu * vcpu)1678 static inline struct rcuwait *kvm_arch_vcpu_get_wait(struct kvm_vcpu *vcpu)
1679 {
1680 #ifdef __KVM_HAVE_ARCH_WQP
1681 	return vcpu->arch.waitp;
1682 #else
1683 	return &vcpu->wait;
1684 #endif
1685 }
1686 
1687 /*
1688  * Wake a vCPU if necessary, but don't do any stats/metadata updates.  Returns
1689  * true if the vCPU was blocking and was awakened, false otherwise.
1690  */
__kvm_vcpu_wake_up(struct kvm_vcpu * vcpu)1691 static inline bool __kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
1692 {
1693 	return !!rcuwait_wake_up(kvm_arch_vcpu_get_wait(vcpu));
1694 }
1695 
kvm_vcpu_is_blocking(struct kvm_vcpu * vcpu)1696 static inline bool kvm_vcpu_is_blocking(struct kvm_vcpu *vcpu)
1697 {
1698 	return rcuwait_active(kvm_arch_vcpu_get_wait(vcpu));
1699 }
1700 
1701 #ifdef __KVM_HAVE_ARCH_INTC_INITIALIZED
1702 /*
1703  * returns true if the virtual interrupt controller is initialized and
1704  * ready to accept virtual IRQ. On some architectures the virtual interrupt
1705  * controller is dynamically instantiated and this is not always true.
1706  */
1707 bool kvm_arch_intc_initialized(struct kvm *kvm);
1708 #else
kvm_arch_intc_initialized(struct kvm * kvm)1709 static inline bool kvm_arch_intc_initialized(struct kvm *kvm)
1710 {
1711 	return true;
1712 }
1713 #endif
1714 
1715 #ifdef CONFIG_GUEST_PERF_EVENTS
1716 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu);
1717 
1718 void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void));
1719 void kvm_unregister_perf_callbacks(void);
1720 #else
kvm_register_perf_callbacks(void * ign)1721 static inline void kvm_register_perf_callbacks(void *ign) {}
kvm_unregister_perf_callbacks(void)1722 static inline void kvm_unregister_perf_callbacks(void) {}
1723 #endif /* CONFIG_GUEST_PERF_EVENTS */
1724 
1725 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type);
1726 void kvm_arch_destroy_vm(struct kvm *kvm);
1727 void kvm_arch_sync_events(struct kvm *kvm);
1728 
1729 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu);
1730 
1731 struct page *kvm_pfn_to_refcounted_page(kvm_pfn_t pfn);
1732 bool kvm_is_zone_device_page(struct page *page);
1733 
1734 struct kvm_irq_ack_notifier {
1735 	struct hlist_node link;
1736 	unsigned gsi;
1737 	void (*irq_acked)(struct kvm_irq_ack_notifier *kian);
1738 };
1739 
1740 int kvm_irq_map_gsi(struct kvm *kvm,
1741 		    struct kvm_kernel_irq_routing_entry *entries, int gsi);
1742 int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin);
1743 
1744 int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level,
1745 		bool line_status);
1746 int kvm_set_msi(struct kvm_kernel_irq_routing_entry *irq_entry, struct kvm *kvm,
1747 		int irq_source_id, int level, bool line_status);
1748 int kvm_arch_set_irq_inatomic(struct kvm_kernel_irq_routing_entry *e,
1749 			       struct kvm *kvm, int irq_source_id,
1750 			       int level, bool line_status);
1751 bool kvm_irq_has_notifier(struct kvm *kvm, unsigned irqchip, unsigned pin);
1752 void kvm_notify_acked_gsi(struct kvm *kvm, int gsi);
1753 void kvm_notify_acked_irq(struct kvm *kvm, unsigned irqchip, unsigned pin);
1754 void kvm_register_irq_ack_notifier(struct kvm *kvm,
1755 				   struct kvm_irq_ack_notifier *kian);
1756 void kvm_unregister_irq_ack_notifier(struct kvm *kvm,
1757 				   struct kvm_irq_ack_notifier *kian);
1758 int kvm_request_irq_source_id(struct kvm *kvm);
1759 void kvm_free_irq_source_id(struct kvm *kvm, int irq_source_id);
1760 bool kvm_arch_irqfd_allowed(struct kvm *kvm, struct kvm_irqfd *args);
1761 
1762 /*
1763  * Returns a pointer to the memslot if it contains gfn.
1764  * Otherwise returns NULL.
1765  */
1766 static inline struct kvm_memory_slot *
try_get_memslot(struct kvm_memory_slot * slot,gfn_t gfn)1767 try_get_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1768 {
1769 	if (!slot)
1770 		return NULL;
1771 
1772 	if (gfn >= slot->base_gfn && gfn < slot->base_gfn + slot->npages)
1773 		return slot;
1774 	else
1775 		return NULL;
1776 }
1777 
1778 /*
1779  * Returns a pointer to the memslot that contains gfn. Otherwise returns NULL.
1780  *
1781  * With "approx" set returns the memslot also when the address falls
1782  * in a hole. In that case one of the memslots bordering the hole is
1783  * returned.
1784  */
1785 static inline struct kvm_memory_slot *
search_memslots(struct kvm_memslots * slots,gfn_t gfn,bool approx)1786 search_memslots(struct kvm_memslots *slots, gfn_t gfn, bool approx)
1787 {
1788 	struct kvm_memory_slot *slot;
1789 	struct rb_node *node;
1790 	int idx = slots->node_idx;
1791 
1792 	slot = NULL;
1793 	for (node = slots->gfn_tree.rb_node; node; ) {
1794 		slot = container_of(node, struct kvm_memory_slot, gfn_node[idx]);
1795 		if (gfn >= slot->base_gfn) {
1796 			if (gfn < slot->base_gfn + slot->npages)
1797 				return slot;
1798 			node = node->rb_right;
1799 		} else
1800 			node = node->rb_left;
1801 	}
1802 
1803 	return approx ? slot : NULL;
1804 }
1805 
1806 static inline struct kvm_memory_slot *
____gfn_to_memslot(struct kvm_memslots * slots,gfn_t gfn,bool approx)1807 ____gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn, bool approx)
1808 {
1809 	struct kvm_memory_slot *slot;
1810 
1811 	slot = (struct kvm_memory_slot *)atomic_long_read(&slots->last_used_slot);
1812 	slot = try_get_memslot(slot, gfn);
1813 	if (slot)
1814 		return slot;
1815 
1816 	slot = search_memslots(slots, gfn, approx);
1817 	if (slot) {
1818 		atomic_long_set(&slots->last_used_slot, (unsigned long)slot);
1819 		return slot;
1820 	}
1821 
1822 	return NULL;
1823 }
1824 
1825 /*
1826  * __gfn_to_memslot() and its descendants are here to allow arch code to inline
1827  * the lookups in hot paths.  gfn_to_memslot() itself isn't here as an inline
1828  * because that would bloat other code too much.
1829  */
1830 static inline struct kvm_memory_slot *
__gfn_to_memslot(struct kvm_memslots * slots,gfn_t gfn)1831 __gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn)
1832 {
1833 	return ____gfn_to_memslot(slots, gfn, false);
1834 }
1835 
1836 static inline unsigned long
__gfn_to_hva_memslot(const struct kvm_memory_slot * slot,gfn_t gfn)1837 __gfn_to_hva_memslot(const struct kvm_memory_slot *slot, gfn_t gfn)
1838 {
1839 	/*
1840 	 * The index was checked originally in search_memslots.  To avoid
1841 	 * that a malicious guest builds a Spectre gadget out of e.g. page
1842 	 * table walks, do not let the processor speculate loads outside
1843 	 * the guest's registered memslots.
1844 	 */
1845 	unsigned long offset = gfn - slot->base_gfn;
1846 	offset = array_index_nospec(offset, slot->npages);
1847 	return slot->userspace_addr + offset * PAGE_SIZE;
1848 }
1849 
memslot_id(struct kvm * kvm,gfn_t gfn)1850 static inline int memslot_id(struct kvm *kvm, gfn_t gfn)
1851 {
1852 	return gfn_to_memslot(kvm, gfn)->id;
1853 }
1854 
1855 static inline gfn_t
hva_to_gfn_memslot(unsigned long hva,struct kvm_memory_slot * slot)1856 hva_to_gfn_memslot(unsigned long hva, struct kvm_memory_slot *slot)
1857 {
1858 	gfn_t gfn_offset = (hva - slot->userspace_addr) >> PAGE_SHIFT;
1859 
1860 	return slot->base_gfn + gfn_offset;
1861 }
1862 
gfn_to_gpa(gfn_t gfn)1863 static inline gpa_t gfn_to_gpa(gfn_t gfn)
1864 {
1865 	return (gpa_t)gfn << PAGE_SHIFT;
1866 }
1867 
gpa_to_gfn(gpa_t gpa)1868 static inline gfn_t gpa_to_gfn(gpa_t gpa)
1869 {
1870 	return (gfn_t)(gpa >> PAGE_SHIFT);
1871 }
1872 
pfn_to_hpa(kvm_pfn_t pfn)1873 static inline hpa_t pfn_to_hpa(kvm_pfn_t pfn)
1874 {
1875 	return (hpa_t)pfn << PAGE_SHIFT;
1876 }
1877 
kvm_is_gpa_in_memslot(struct kvm * kvm,gpa_t gpa)1878 static inline bool kvm_is_gpa_in_memslot(struct kvm *kvm, gpa_t gpa)
1879 {
1880 	unsigned long hva = gfn_to_hva(kvm, gpa_to_gfn(gpa));
1881 
1882 	return !kvm_is_error_hva(hva);
1883 }
1884 
kvm_gpc_mark_dirty_in_slot(struct gfn_to_pfn_cache * gpc)1885 static inline void kvm_gpc_mark_dirty_in_slot(struct gfn_to_pfn_cache *gpc)
1886 {
1887 	lockdep_assert_held(&gpc->lock);
1888 
1889 	if (!gpc->memslot)
1890 		return;
1891 
1892 	mark_page_dirty_in_slot(gpc->kvm, gpc->memslot, gpa_to_gfn(gpc->gpa));
1893 }
1894 
1895 enum kvm_stat_kind {
1896 	KVM_STAT_VM,
1897 	KVM_STAT_VCPU,
1898 };
1899 
1900 struct kvm_stat_data {
1901 	struct kvm *kvm;
1902 	const struct _kvm_stats_desc *desc;
1903 	enum kvm_stat_kind kind;
1904 };
1905 
1906 struct _kvm_stats_desc {
1907 	struct kvm_stats_desc desc;
1908 	char name[KVM_STATS_NAME_SIZE];
1909 };
1910 
1911 #define STATS_DESC_COMMON(type, unit, base, exp, sz, bsz)		       \
1912 	.flags = type | unit | base |					       \
1913 		 BUILD_BUG_ON_ZERO(type & ~KVM_STATS_TYPE_MASK) |	       \
1914 		 BUILD_BUG_ON_ZERO(unit & ~KVM_STATS_UNIT_MASK) |	       \
1915 		 BUILD_BUG_ON_ZERO(base & ~KVM_STATS_BASE_MASK),	       \
1916 	.exponent = exp,						       \
1917 	.size = sz,							       \
1918 	.bucket_size = bsz
1919 
1920 #define VM_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz)	       \
1921 	{								       \
1922 		{							       \
1923 			STATS_DESC_COMMON(type, unit, base, exp, sz, bsz),     \
1924 			.offset = offsetof(struct kvm_vm_stat, generic.stat)   \
1925 		},							       \
1926 		.name = #stat,						       \
1927 	}
1928 #define VCPU_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz)	       \
1929 	{								       \
1930 		{							       \
1931 			STATS_DESC_COMMON(type, unit, base, exp, sz, bsz),     \
1932 			.offset = offsetof(struct kvm_vcpu_stat, generic.stat) \
1933 		},							       \
1934 		.name = #stat,						       \
1935 	}
1936 #define VM_STATS_DESC(stat, type, unit, base, exp, sz, bsz)		       \
1937 	{								       \
1938 		{							       \
1939 			STATS_DESC_COMMON(type, unit, base, exp, sz, bsz),     \
1940 			.offset = offsetof(struct kvm_vm_stat, stat)	       \
1941 		},							       \
1942 		.name = #stat,						       \
1943 	}
1944 #define VCPU_STATS_DESC(stat, type, unit, base, exp, sz, bsz)		       \
1945 	{								       \
1946 		{							       \
1947 			STATS_DESC_COMMON(type, unit, base, exp, sz, bsz),     \
1948 			.offset = offsetof(struct kvm_vcpu_stat, stat)	       \
1949 		},							       \
1950 		.name = #stat,						       \
1951 	}
1952 /* SCOPE: VM, VM_GENERIC, VCPU, VCPU_GENERIC */
1953 #define STATS_DESC(SCOPE, stat, type, unit, base, exp, sz, bsz)		       \
1954 	SCOPE##_STATS_DESC(stat, type, unit, base, exp, sz, bsz)
1955 
1956 #define STATS_DESC_CUMULATIVE(SCOPE, name, unit, base, exponent)	       \
1957 	STATS_DESC(SCOPE, name, KVM_STATS_TYPE_CUMULATIVE,		       \
1958 		unit, base, exponent, 1, 0)
1959 #define STATS_DESC_INSTANT(SCOPE, name, unit, base, exponent)		       \
1960 	STATS_DESC(SCOPE, name, KVM_STATS_TYPE_INSTANT,			       \
1961 		unit, base, exponent, 1, 0)
1962 #define STATS_DESC_PEAK(SCOPE, name, unit, base, exponent)		       \
1963 	STATS_DESC(SCOPE, name, KVM_STATS_TYPE_PEAK,			       \
1964 		unit, base, exponent, 1, 0)
1965 #define STATS_DESC_LINEAR_HIST(SCOPE, name, unit, base, exponent, sz, bsz)     \
1966 	STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LINEAR_HIST,		       \
1967 		unit, base, exponent, sz, bsz)
1968 #define STATS_DESC_LOG_HIST(SCOPE, name, unit, base, exponent, sz)	       \
1969 	STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LOG_HIST,		       \
1970 		unit, base, exponent, sz, 0)
1971 
1972 /* Cumulative counter, read/write */
1973 #define STATS_DESC_COUNTER(SCOPE, name)					       \
1974 	STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_NONE,		       \
1975 		KVM_STATS_BASE_POW10, 0)
1976 /* Instantaneous counter, read only */
1977 #define STATS_DESC_ICOUNTER(SCOPE, name)				       \
1978 	STATS_DESC_INSTANT(SCOPE, name, KVM_STATS_UNIT_NONE,		       \
1979 		KVM_STATS_BASE_POW10, 0)
1980 /* Peak counter, read/write */
1981 #define STATS_DESC_PCOUNTER(SCOPE, name)				       \
1982 	STATS_DESC_PEAK(SCOPE, name, KVM_STATS_UNIT_NONE,		       \
1983 		KVM_STATS_BASE_POW10, 0)
1984 
1985 /* Instantaneous boolean value, read only */
1986 #define STATS_DESC_IBOOLEAN(SCOPE, name)				       \
1987 	STATS_DESC_INSTANT(SCOPE, name, KVM_STATS_UNIT_BOOLEAN,		       \
1988 		KVM_STATS_BASE_POW10, 0)
1989 /* Peak (sticky) boolean value, read/write */
1990 #define STATS_DESC_PBOOLEAN(SCOPE, name)				       \
1991 	STATS_DESC_PEAK(SCOPE, name, KVM_STATS_UNIT_BOOLEAN,		       \
1992 		KVM_STATS_BASE_POW10, 0)
1993 
1994 /* Cumulative time in nanosecond */
1995 #define STATS_DESC_TIME_NSEC(SCOPE, name)				       \
1996 	STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_SECONDS,	       \
1997 		KVM_STATS_BASE_POW10, -9)
1998 /* Linear histogram for time in nanosecond */
1999 #define STATS_DESC_LINHIST_TIME_NSEC(SCOPE, name, sz, bsz)		       \
2000 	STATS_DESC_LINEAR_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS,	       \
2001 		KVM_STATS_BASE_POW10, -9, sz, bsz)
2002 /* Logarithmic histogram for time in nanosecond */
2003 #define STATS_DESC_LOGHIST_TIME_NSEC(SCOPE, name, sz)			       \
2004 	STATS_DESC_LOG_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS,	       \
2005 		KVM_STATS_BASE_POW10, -9, sz)
2006 
2007 #define KVM_GENERIC_VM_STATS()						       \
2008 	STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush),		       \
2009 	STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush_requests)
2010 
2011 #define KVM_GENERIC_VCPU_STATS()					       \
2012 	STATS_DESC_COUNTER(VCPU_GENERIC, halt_successful_poll),		       \
2013 	STATS_DESC_COUNTER(VCPU_GENERIC, halt_attempted_poll),		       \
2014 	STATS_DESC_COUNTER(VCPU_GENERIC, halt_poll_invalid),		       \
2015 	STATS_DESC_COUNTER(VCPU_GENERIC, halt_wakeup),			       \
2016 	STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_success_ns),	       \
2017 	STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_ns),		       \
2018 	STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_wait_ns),		       \
2019 	STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_success_hist,     \
2020 			HALT_POLL_HIST_COUNT),				       \
2021 	STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_hist,	       \
2022 			HALT_POLL_HIST_COUNT),				       \
2023 	STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_wait_hist,	       \
2024 			HALT_POLL_HIST_COUNT),				       \
2025 	STATS_DESC_IBOOLEAN(VCPU_GENERIC, blocking)
2026 
2027 ssize_t kvm_stats_read(char *id, const struct kvm_stats_header *header,
2028 		       const struct _kvm_stats_desc *desc,
2029 		       void *stats, size_t size_stats,
2030 		       char __user *user_buffer, size_t size, loff_t *offset);
2031 
2032 /**
2033  * kvm_stats_linear_hist_update() - Update bucket value for linear histogram
2034  * statistics data.
2035  *
2036  * @data: start address of the stats data
2037  * @size: the number of bucket of the stats data
2038  * @value: the new value used to update the linear histogram's bucket
2039  * @bucket_size: the size (width) of a bucket
2040  */
kvm_stats_linear_hist_update(u64 * data,size_t size,u64 value,size_t bucket_size)2041 static inline void kvm_stats_linear_hist_update(u64 *data, size_t size,
2042 						u64 value, size_t bucket_size)
2043 {
2044 	size_t index = div64_u64(value, bucket_size);
2045 
2046 	index = min(index, size - 1);
2047 	++data[index];
2048 }
2049 
2050 /**
2051  * kvm_stats_log_hist_update() - Update bucket value for logarithmic histogram
2052  * statistics data.
2053  *
2054  * @data: start address of the stats data
2055  * @size: the number of bucket of the stats data
2056  * @value: the new value used to update the logarithmic histogram's bucket
2057  */
kvm_stats_log_hist_update(u64 * data,size_t size,u64 value)2058 static inline void kvm_stats_log_hist_update(u64 *data, size_t size, u64 value)
2059 {
2060 	size_t index = fls64(value);
2061 
2062 	index = min(index, size - 1);
2063 	++data[index];
2064 }
2065 
2066 #define KVM_STATS_LINEAR_HIST_UPDATE(array, value, bsize)		       \
2067 	kvm_stats_linear_hist_update(array, ARRAY_SIZE(array), value, bsize)
2068 #define KVM_STATS_LOG_HIST_UPDATE(array, value)				       \
2069 	kvm_stats_log_hist_update(array, ARRAY_SIZE(array), value)
2070 
2071 
2072 extern const struct kvm_stats_header kvm_vm_stats_header;
2073 extern const struct _kvm_stats_desc kvm_vm_stats_desc[];
2074 extern const struct kvm_stats_header kvm_vcpu_stats_header;
2075 extern const struct _kvm_stats_desc kvm_vcpu_stats_desc[];
2076 
2077 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
mmu_invalidate_retry(struct kvm * kvm,unsigned long mmu_seq)2078 static inline int mmu_invalidate_retry(struct kvm *kvm, unsigned long mmu_seq)
2079 {
2080 	if (unlikely(kvm->mmu_invalidate_in_progress))
2081 		return 1;
2082 	/*
2083 	 * Ensure the read of mmu_invalidate_in_progress happens before
2084 	 * the read of mmu_invalidate_seq.  This interacts with the
2085 	 * smp_wmb() in mmu_notifier_invalidate_range_end to make sure
2086 	 * that the caller either sees the old (non-zero) value of
2087 	 * mmu_invalidate_in_progress or the new (incremented) value of
2088 	 * mmu_invalidate_seq.
2089 	 *
2090 	 * PowerPC Book3s HV KVM calls this under a per-page lock rather
2091 	 * than under kvm->mmu_lock, for scalability, so can't rely on
2092 	 * kvm->mmu_lock to keep things ordered.
2093 	 */
2094 	smp_rmb();
2095 	if (kvm->mmu_invalidate_seq != mmu_seq)
2096 		return 1;
2097 	return 0;
2098 }
2099 
mmu_invalidate_retry_gfn(struct kvm * kvm,unsigned long mmu_seq,gfn_t gfn)2100 static inline int mmu_invalidate_retry_gfn(struct kvm *kvm,
2101 					   unsigned long mmu_seq,
2102 					   gfn_t gfn)
2103 {
2104 	lockdep_assert_held(&kvm->mmu_lock);
2105 	/*
2106 	 * If mmu_invalidate_in_progress is non-zero, then the range maintained
2107 	 * by kvm_mmu_notifier_invalidate_range_start contains all addresses
2108 	 * that might be being invalidated. Note that it may include some false
2109 	 * positives, due to shortcuts when handing concurrent invalidations.
2110 	 */
2111 	if (unlikely(kvm->mmu_invalidate_in_progress)) {
2112 		/*
2113 		 * Dropping mmu_lock after bumping mmu_invalidate_in_progress
2114 		 * but before updating the range is a KVM bug.
2115 		 */
2116 		if (WARN_ON_ONCE(kvm->mmu_invalidate_range_start == INVALID_GPA ||
2117 				 kvm->mmu_invalidate_range_end == INVALID_GPA))
2118 			return 1;
2119 
2120 		if (gfn >= kvm->mmu_invalidate_range_start &&
2121 		    gfn < kvm->mmu_invalidate_range_end)
2122 			return 1;
2123 	}
2124 
2125 	if (kvm->mmu_invalidate_seq != mmu_seq)
2126 		return 1;
2127 	return 0;
2128 }
2129 
2130 /*
2131  * This lockless version of the range-based retry check *must* be paired with a
2132  * call to the locked version after acquiring mmu_lock, i.e. this is safe to
2133  * use only as a pre-check to avoid contending mmu_lock.  This version *will*
2134  * get false negatives and false positives.
2135  */
mmu_invalidate_retry_gfn_unsafe(struct kvm * kvm,unsigned long mmu_seq,gfn_t gfn)2136 static inline bool mmu_invalidate_retry_gfn_unsafe(struct kvm *kvm,
2137 						   unsigned long mmu_seq,
2138 						   gfn_t gfn)
2139 {
2140 	/*
2141 	 * Use READ_ONCE() to ensure the in-progress flag and sequence counter
2142 	 * are always read from memory, e.g. so that checking for retry in a
2143 	 * loop won't result in an infinite retry loop.  Don't force loads for
2144 	 * start+end, as the key to avoiding infinite retry loops is observing
2145 	 * the 1=>0 transition of in-progress, i.e. getting false negatives
2146 	 * due to stale start+end values is acceptable.
2147 	 */
2148 	if (unlikely(READ_ONCE(kvm->mmu_invalidate_in_progress)) &&
2149 	    gfn >= kvm->mmu_invalidate_range_start &&
2150 	    gfn < kvm->mmu_invalidate_range_end)
2151 		return true;
2152 
2153 	return READ_ONCE(kvm->mmu_invalidate_seq) != mmu_seq;
2154 }
2155 #endif
2156 
2157 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2158 
2159 #define KVM_MAX_IRQ_ROUTES 4096 /* might need extension/rework in the future */
2160 
2161 bool kvm_arch_can_set_irq_routing(struct kvm *kvm);
2162 int kvm_set_irq_routing(struct kvm *kvm,
2163 			const struct kvm_irq_routing_entry *entries,
2164 			unsigned nr,
2165 			unsigned flags);
2166 int kvm_init_irq_routing(struct kvm *kvm);
2167 int kvm_set_routing_entry(struct kvm *kvm,
2168 			  struct kvm_kernel_irq_routing_entry *e,
2169 			  const struct kvm_irq_routing_entry *ue);
2170 void kvm_free_irq_routing(struct kvm *kvm);
2171 
2172 #else
2173 
kvm_free_irq_routing(struct kvm * kvm)2174 static inline void kvm_free_irq_routing(struct kvm *kvm) {}
2175 
kvm_init_irq_routing(struct kvm * kvm)2176 static inline int kvm_init_irq_routing(struct kvm *kvm)
2177 {
2178 	return 0;
2179 }
2180 
2181 #endif
2182 
2183 int kvm_send_userspace_msi(struct kvm *kvm, struct kvm_msi *msi);
2184 
2185 void kvm_eventfd_init(struct kvm *kvm);
2186 int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args);
2187 
2188 #ifdef CONFIG_HAVE_KVM_IRQCHIP
2189 int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args);
2190 void kvm_irqfd_release(struct kvm *kvm);
2191 bool kvm_notify_irqfd_resampler(struct kvm *kvm,
2192 				unsigned int irqchip,
2193 				unsigned int pin);
2194 void kvm_irq_routing_update(struct kvm *);
2195 #else
kvm_irqfd(struct kvm * kvm,struct kvm_irqfd * args)2196 static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args)
2197 {
2198 	return -EINVAL;
2199 }
2200 
kvm_irqfd_release(struct kvm * kvm)2201 static inline void kvm_irqfd_release(struct kvm *kvm) {}
2202 
kvm_notify_irqfd_resampler(struct kvm * kvm,unsigned int irqchip,unsigned int pin)2203 static inline bool kvm_notify_irqfd_resampler(struct kvm *kvm,
2204 					      unsigned int irqchip,
2205 					      unsigned int pin)
2206 {
2207 	return false;
2208 }
2209 #endif /* CONFIG_HAVE_KVM_IRQCHIP */
2210 
2211 void kvm_arch_irq_routing_update(struct kvm *kvm);
2212 
__kvm_make_request(int req,struct kvm_vcpu * vcpu)2213 static inline void __kvm_make_request(int req, struct kvm_vcpu *vcpu)
2214 {
2215 	/*
2216 	 * Ensure the rest of the request is published to kvm_check_request's
2217 	 * caller.  Paired with the smp_mb__after_atomic in kvm_check_request.
2218 	 */
2219 	smp_wmb();
2220 	set_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
2221 }
2222 
kvm_make_request(int req,struct kvm_vcpu * vcpu)2223 static __always_inline void kvm_make_request(int req, struct kvm_vcpu *vcpu)
2224 {
2225 	/*
2226 	 * Request that don't require vCPU action should never be logged in
2227 	 * vcpu->requests.  The vCPU won't clear the request, so it will stay
2228 	 * logged indefinitely and prevent the vCPU from entering the guest.
2229 	 */
2230 	BUILD_BUG_ON(!__builtin_constant_p(req) ||
2231 		     (req & KVM_REQUEST_NO_ACTION));
2232 
2233 	__kvm_make_request(req, vcpu);
2234 }
2235 
kvm_request_pending(struct kvm_vcpu * vcpu)2236 static inline bool kvm_request_pending(struct kvm_vcpu *vcpu)
2237 {
2238 	return READ_ONCE(vcpu->requests);
2239 }
2240 
kvm_test_request(int req,struct kvm_vcpu * vcpu)2241 static inline bool kvm_test_request(int req, struct kvm_vcpu *vcpu)
2242 {
2243 	return test_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
2244 }
2245 
kvm_clear_request(int req,struct kvm_vcpu * vcpu)2246 static inline void kvm_clear_request(int req, struct kvm_vcpu *vcpu)
2247 {
2248 	clear_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
2249 }
2250 
kvm_check_request(int req,struct kvm_vcpu * vcpu)2251 static inline bool kvm_check_request(int req, struct kvm_vcpu *vcpu)
2252 {
2253 	if (kvm_test_request(req, vcpu)) {
2254 		kvm_clear_request(req, vcpu);
2255 
2256 		/*
2257 		 * Ensure the rest of the request is visible to kvm_check_request's
2258 		 * caller.  Paired with the smp_wmb in kvm_make_request.
2259 		 */
2260 		smp_mb__after_atomic();
2261 		return true;
2262 	} else {
2263 		return false;
2264 	}
2265 }
2266 
2267 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
2268 extern bool kvm_rebooting;
2269 #endif
2270 
2271 extern unsigned int halt_poll_ns;
2272 extern unsigned int halt_poll_ns_grow;
2273 extern unsigned int halt_poll_ns_grow_start;
2274 extern unsigned int halt_poll_ns_shrink;
2275 
2276 struct kvm_device {
2277 	const struct kvm_device_ops *ops;
2278 	struct kvm *kvm;
2279 	void *private;
2280 	struct list_head vm_node;
2281 };
2282 
2283 /* create, destroy, and name are mandatory */
2284 struct kvm_device_ops {
2285 	const char *name;
2286 
2287 	/*
2288 	 * create is called holding kvm->lock and any operations not suitable
2289 	 * to do while holding the lock should be deferred to init (see
2290 	 * below).
2291 	 */
2292 	int (*create)(struct kvm_device *dev, u32 type);
2293 
2294 	/*
2295 	 * init is called after create if create is successful and is called
2296 	 * outside of holding kvm->lock.
2297 	 */
2298 	void (*init)(struct kvm_device *dev);
2299 
2300 	/*
2301 	 * Destroy is responsible for freeing dev.
2302 	 *
2303 	 * Destroy may be called before or after destructors are called
2304 	 * on emulated I/O regions, depending on whether a reference is
2305 	 * held by a vcpu or other kvm component that gets destroyed
2306 	 * after the emulated I/O.
2307 	 */
2308 	void (*destroy)(struct kvm_device *dev);
2309 
2310 	/*
2311 	 * Release is an alternative method to free the device. It is
2312 	 * called when the device file descriptor is closed. Once
2313 	 * release is called, the destroy method will not be called
2314 	 * anymore as the device is removed from the device list of
2315 	 * the VM. kvm->lock is held.
2316 	 */
2317 	void (*release)(struct kvm_device *dev);
2318 
2319 	int (*set_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
2320 	int (*get_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
2321 	int (*has_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
2322 	long (*ioctl)(struct kvm_device *dev, unsigned int ioctl,
2323 		      unsigned long arg);
2324 	int (*mmap)(struct kvm_device *dev, struct vm_area_struct *vma);
2325 };
2326 
2327 struct kvm_device *kvm_device_from_filp(struct file *filp);
2328 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type);
2329 void kvm_unregister_device_ops(u32 type);
2330 
2331 extern struct kvm_device_ops kvm_mpic_ops;
2332 extern struct kvm_device_ops kvm_arm_vgic_v2_ops;
2333 extern struct kvm_device_ops kvm_arm_vgic_v3_ops;
2334 
2335 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2336 
kvm_vcpu_set_in_spin_loop(struct kvm_vcpu * vcpu,bool val)2337 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
2338 {
2339 	vcpu->spin_loop.in_spin_loop = val;
2340 }
kvm_vcpu_set_dy_eligible(struct kvm_vcpu * vcpu,bool val)2341 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
2342 {
2343 	vcpu->spin_loop.dy_eligible = val;
2344 }
2345 
2346 #else /* !CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
2347 
kvm_vcpu_set_in_spin_loop(struct kvm_vcpu * vcpu,bool val)2348 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
2349 {
2350 }
2351 
kvm_vcpu_set_dy_eligible(struct kvm_vcpu * vcpu,bool val)2352 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
2353 {
2354 }
2355 #endif /* CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
2356 
kvm_is_visible_memslot(struct kvm_memory_slot * memslot)2357 static inline bool kvm_is_visible_memslot(struct kvm_memory_slot *memslot)
2358 {
2359 	return (memslot && memslot->id < KVM_USER_MEM_SLOTS &&
2360 		!(memslot->flags & KVM_MEMSLOT_INVALID));
2361 }
2362 
2363 struct kvm_vcpu *kvm_get_running_vcpu(void);
2364 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void);
2365 
2366 #if IS_ENABLED(CONFIG_HAVE_KVM_IRQ_BYPASS)
2367 bool kvm_arch_has_irq_bypass(void);
2368 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *,
2369 			   struct irq_bypass_producer *);
2370 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *,
2371 			   struct irq_bypass_producer *);
2372 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *);
2373 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *);
2374 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
2375 				  uint32_t guest_irq, bool set);
2376 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *,
2377 				  struct kvm_kernel_irq_routing_entry *);
2378 #endif /* CONFIG_HAVE_KVM_IRQ_BYPASS */
2379 
2380 #ifdef CONFIG_HAVE_KVM_INVALID_WAKEUPS
2381 /* If we wakeup during the poll time, was it a sucessful poll? */
vcpu_valid_wakeup(struct kvm_vcpu * vcpu)2382 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
2383 {
2384 	return vcpu->valid_wakeup;
2385 }
2386 
2387 #else
vcpu_valid_wakeup(struct kvm_vcpu * vcpu)2388 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
2389 {
2390 	return true;
2391 }
2392 #endif /* CONFIG_HAVE_KVM_INVALID_WAKEUPS */
2393 
2394 #ifdef CONFIG_HAVE_KVM_NO_POLL
2395 /* Callback that tells if we must not poll */
2396 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu);
2397 #else
kvm_arch_no_poll(struct kvm_vcpu * vcpu)2398 static inline bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
2399 {
2400 	return false;
2401 }
2402 #endif /* CONFIG_HAVE_KVM_NO_POLL */
2403 
2404 #ifdef CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL
2405 long kvm_arch_vcpu_async_ioctl(struct file *filp,
2406 			       unsigned int ioctl, unsigned long arg);
2407 #else
kvm_arch_vcpu_async_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)2408 static inline long kvm_arch_vcpu_async_ioctl(struct file *filp,
2409 					     unsigned int ioctl,
2410 					     unsigned long arg)
2411 {
2412 	return -ENOIOCTLCMD;
2413 }
2414 #endif /* CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL */
2415 
2416 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm);
2417 
2418 #ifdef CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE
2419 int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu);
2420 #else
kvm_arch_vcpu_run_pid_change(struct kvm_vcpu * vcpu)2421 static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu)
2422 {
2423 	return 0;
2424 }
2425 #endif /* CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE */
2426 
2427 #ifdef CONFIG_KVM_XFER_TO_GUEST_WORK
kvm_handle_signal_exit(struct kvm_vcpu * vcpu)2428 static inline void kvm_handle_signal_exit(struct kvm_vcpu *vcpu)
2429 {
2430 	vcpu->run->exit_reason = KVM_EXIT_INTR;
2431 	vcpu->stat.signal_exits++;
2432 }
2433 #endif /* CONFIG_KVM_XFER_TO_GUEST_WORK */
2434 
2435 /*
2436  * If more than one page is being (un)accounted, @virt must be the address of
2437  * the first page of a block of pages what were allocated together (i.e
2438  * accounted together).
2439  *
2440  * kvm_account_pgtable_pages() is thread-safe because mod_lruvec_page_state()
2441  * is thread-safe.
2442  */
kvm_account_pgtable_pages(void * virt,int nr)2443 static inline void kvm_account_pgtable_pages(void *virt, int nr)
2444 {
2445 	mod_lruvec_page_state(virt_to_page(virt), NR_SECONDARY_PAGETABLE, nr);
2446 }
2447 
2448 /*
2449  * This defines how many reserved entries we want to keep before we
2450  * kick the vcpu to the userspace to avoid dirty ring full.  This
2451  * value can be tuned to higher if e.g. PML is enabled on the host.
2452  */
2453 #define  KVM_DIRTY_RING_RSVD_ENTRIES  64
2454 
2455 /* Max number of entries allowed for each kvm dirty ring */
2456 #define  KVM_DIRTY_RING_MAX_ENTRIES  65536
2457 
kvm_prepare_memory_fault_exit(struct kvm_vcpu * vcpu,gpa_t gpa,gpa_t size,bool is_write,bool is_exec,bool is_private)2458 static inline void kvm_prepare_memory_fault_exit(struct kvm_vcpu *vcpu,
2459 						 gpa_t gpa, gpa_t size,
2460 						 bool is_write, bool is_exec,
2461 						 bool is_private)
2462 {
2463 	vcpu->run->exit_reason = KVM_EXIT_MEMORY_FAULT;
2464 	vcpu->run->memory_fault.gpa = gpa;
2465 	vcpu->run->memory_fault.size = size;
2466 
2467 	/* RWX flags are not (yet) defined or communicated to userspace. */
2468 	vcpu->run->memory_fault.flags = 0;
2469 	if (is_private)
2470 		vcpu->run->memory_fault.flags |= KVM_MEMORY_EXIT_FLAG_PRIVATE;
2471 }
2472 
2473 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
kvm_get_memory_attributes(struct kvm * kvm,gfn_t gfn)2474 static inline unsigned long kvm_get_memory_attributes(struct kvm *kvm, gfn_t gfn)
2475 {
2476 	return xa_to_value(xa_load(&kvm->mem_attr_array, gfn));
2477 }
2478 
2479 bool kvm_range_has_memory_attributes(struct kvm *kvm, gfn_t start, gfn_t end,
2480 				     unsigned long mask, unsigned long attrs);
2481 bool kvm_arch_pre_set_memory_attributes(struct kvm *kvm,
2482 					struct kvm_gfn_range *range);
2483 bool kvm_arch_post_set_memory_attributes(struct kvm *kvm,
2484 					 struct kvm_gfn_range *range);
2485 
kvm_mem_is_private(struct kvm * kvm,gfn_t gfn)2486 static inline bool kvm_mem_is_private(struct kvm *kvm, gfn_t gfn)
2487 {
2488 	return IS_ENABLED(CONFIG_KVM_PRIVATE_MEM) &&
2489 	       kvm_get_memory_attributes(kvm, gfn) & KVM_MEMORY_ATTRIBUTE_PRIVATE;
2490 }
2491 #else
kvm_mem_is_private(struct kvm * kvm,gfn_t gfn)2492 static inline bool kvm_mem_is_private(struct kvm *kvm, gfn_t gfn)
2493 {
2494 	return false;
2495 }
2496 #endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */
2497 
2498 #ifdef CONFIG_KVM_PRIVATE_MEM
2499 int kvm_gmem_get_pfn(struct kvm *kvm, struct kvm_memory_slot *slot,
2500 		     gfn_t gfn, kvm_pfn_t *pfn, int *max_order);
2501 #else
kvm_gmem_get_pfn(struct kvm * kvm,struct kvm_memory_slot * slot,gfn_t gfn,kvm_pfn_t * pfn,int * max_order)2502 static inline int kvm_gmem_get_pfn(struct kvm *kvm,
2503 				   struct kvm_memory_slot *slot, gfn_t gfn,
2504 				   kvm_pfn_t *pfn, int *max_order)
2505 {
2506 	KVM_BUG_ON(1, kvm);
2507 	return -EIO;
2508 }
2509 #endif /* CONFIG_KVM_PRIVATE_MEM */
2510 
2511 #ifdef CONFIG_HAVE_KVM_ARCH_GMEM_PREPARE
2512 int kvm_arch_gmem_prepare(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn, int max_order);
2513 #endif
2514 
2515 #ifdef CONFIG_KVM_GENERIC_PRIVATE_MEM
2516 /**
2517  * kvm_gmem_populate() - Populate/prepare a GPA range with guest data
2518  *
2519  * @kvm: KVM instance
2520  * @gfn: starting GFN to be populated
2521  * @src: userspace-provided buffer containing data to copy into GFN range
2522  *       (passed to @post_populate, and incremented on each iteration
2523  *       if not NULL)
2524  * @npages: number of pages to copy from userspace-buffer
2525  * @post_populate: callback to issue for each gmem page that backs the GPA
2526  *                 range
2527  * @opaque: opaque data to pass to @post_populate callback
2528  *
2529  * This is primarily intended for cases where a gmem-backed GPA range needs
2530  * to be initialized with userspace-provided data prior to being mapped into
2531  * the guest as a private page. This should be called with the slots->lock
2532  * held so that caller-enforced invariants regarding the expected memory
2533  * attributes of the GPA range do not race with KVM_SET_MEMORY_ATTRIBUTES.
2534  *
2535  * Returns the number of pages that were populated.
2536  */
2537 typedef int (*kvm_gmem_populate_cb)(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn,
2538 				    void __user *src, int order, void *opaque);
2539 
2540 long kvm_gmem_populate(struct kvm *kvm, gfn_t gfn, void __user *src, long npages,
2541 		       kvm_gmem_populate_cb post_populate, void *opaque);
2542 #endif
2543 
2544 #ifdef CONFIG_HAVE_KVM_ARCH_GMEM_INVALIDATE
2545 void kvm_arch_gmem_invalidate(kvm_pfn_t start, kvm_pfn_t end);
2546 #endif
2547 
2548 #ifdef CONFIG_KVM_GENERIC_PRE_FAULT_MEMORY
2549 long kvm_arch_vcpu_pre_fault_memory(struct kvm_vcpu *vcpu,
2550 				    struct kvm_pre_fault_memory *range);
2551 #endif
2552 
2553 #endif
2554