• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Filesystem-level keyring for fscrypt
4  *
5  * Copyright 2019 Google LLC
6  */
7 
8 /*
9  * This file implements management of fscrypt master keys in the
10  * filesystem-level keyring, including the ioctls:
11  *
12  * - FS_IOC_ADD_ENCRYPTION_KEY
13  * - FS_IOC_REMOVE_ENCRYPTION_KEY
14  * - FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS
15  * - FS_IOC_GET_ENCRYPTION_KEY_STATUS
16  *
17  * See the "User API" section of Documentation/filesystems/fscrypt.rst for more
18  * information about these ioctls.
19  */
20 
21 #include <linux/unaligned.h>
22 #include <crypto/skcipher.h>
23 #include <linux/key-type.h>
24 #include <linux/random.h>
25 #include <linux/seq_file.h>
26 
27 #include "fscrypt_private.h"
28 
29 /* The master encryption keys for a filesystem (->s_master_keys) */
30 struct fscrypt_keyring {
31 	/*
32 	 * Lock that protects ->key_hashtable.  It does *not* protect the
33 	 * fscrypt_master_key structs themselves.
34 	 */
35 	spinlock_t lock;
36 
37 	/* Hash table that maps fscrypt_key_specifier to fscrypt_master_key */
38 	struct hlist_head key_hashtable[128];
39 };
40 
wipe_master_key_secret(struct fscrypt_master_key_secret * secret)41 static void wipe_master_key_secret(struct fscrypt_master_key_secret *secret)
42 {
43 	fscrypt_destroy_hkdf(&secret->hkdf);
44 	memzero_explicit(secret, sizeof(*secret));
45 }
46 
move_master_key_secret(struct fscrypt_master_key_secret * dst,struct fscrypt_master_key_secret * src)47 static void move_master_key_secret(struct fscrypt_master_key_secret *dst,
48 				   struct fscrypt_master_key_secret *src)
49 {
50 	memcpy(dst, src, sizeof(*dst));
51 	memzero_explicit(src, sizeof(*src));
52 }
53 
fscrypt_free_master_key(struct rcu_head * head)54 static void fscrypt_free_master_key(struct rcu_head *head)
55 {
56 	struct fscrypt_master_key *mk =
57 		container_of(head, struct fscrypt_master_key, mk_rcu_head);
58 	/*
59 	 * The master key secret and any embedded subkeys should have already
60 	 * been wiped when the last active reference to the fscrypt_master_key
61 	 * struct was dropped; doing it here would be unnecessarily late.
62 	 * Nevertheless, use kfree_sensitive() in case anything was missed.
63 	 */
64 	kfree_sensitive(mk);
65 }
66 
fscrypt_put_master_key(struct fscrypt_master_key * mk)67 void fscrypt_put_master_key(struct fscrypt_master_key *mk)
68 {
69 	if (!refcount_dec_and_test(&mk->mk_struct_refs))
70 		return;
71 	/*
72 	 * No structural references left, so free ->mk_users, and also free the
73 	 * fscrypt_master_key struct itself after an RCU grace period ensures
74 	 * that concurrent keyring lookups can no longer find it.
75 	 */
76 	WARN_ON_ONCE(refcount_read(&mk->mk_active_refs) != 0);
77 	if (mk->mk_users) {
78 		/* Clear the keyring so the quota gets released right away. */
79 		keyring_clear(mk->mk_users);
80 		key_put(mk->mk_users);
81 		mk->mk_users = NULL;
82 	}
83 	call_rcu(&mk->mk_rcu_head, fscrypt_free_master_key);
84 }
85 
fscrypt_put_master_key_activeref(struct super_block * sb,struct fscrypt_master_key * mk)86 void fscrypt_put_master_key_activeref(struct super_block *sb,
87 				      struct fscrypt_master_key *mk)
88 {
89 	size_t i;
90 
91 	if (!refcount_dec_and_test(&mk->mk_active_refs))
92 		return;
93 	/*
94 	 * No active references left, so complete the full removal of this
95 	 * fscrypt_master_key struct by removing it from the keyring and
96 	 * destroying any subkeys embedded in it.
97 	 */
98 
99 	if (WARN_ON_ONCE(!sb->s_master_keys))
100 		return;
101 	spin_lock(&sb->s_master_keys->lock);
102 	hlist_del_rcu(&mk->mk_node);
103 	spin_unlock(&sb->s_master_keys->lock);
104 
105 	/*
106 	 * ->mk_active_refs == 0 implies that ->mk_present is false and
107 	 * ->mk_decrypted_inodes is empty.
108 	 */
109 	WARN_ON_ONCE(mk->mk_present);
110 	WARN_ON_ONCE(!list_empty(&mk->mk_decrypted_inodes));
111 
112 	for (i = 0; i <= FSCRYPT_MODE_MAX; i++) {
113 		fscrypt_destroy_prepared_key(
114 				sb, &mk->mk_direct_keys[i]);
115 		fscrypt_destroy_prepared_key(
116 				sb, &mk->mk_iv_ino_lblk_64_keys[i]);
117 		fscrypt_destroy_prepared_key(
118 				sb, &mk->mk_iv_ino_lblk_32_keys[i]);
119 	}
120 	memzero_explicit(&mk->mk_ino_hash_key,
121 			 sizeof(mk->mk_ino_hash_key));
122 	mk->mk_ino_hash_key_initialized = false;
123 
124 	/* Drop the structural ref associated with the active refs. */
125 	fscrypt_put_master_key(mk);
126 }
127 
128 /*
129  * This transitions the key state from present to incompletely removed, and then
130  * potentially to absent (depending on whether inodes remain).
131  */
fscrypt_initiate_key_removal(struct super_block * sb,struct fscrypt_master_key * mk)132 static void fscrypt_initiate_key_removal(struct super_block *sb,
133 					 struct fscrypt_master_key *mk)
134 {
135 	WRITE_ONCE(mk->mk_present, false);
136 	wipe_master_key_secret(&mk->mk_secret);
137 	fscrypt_put_master_key_activeref(sb, mk);
138 }
139 
valid_key_spec(const struct fscrypt_key_specifier * spec)140 static inline bool valid_key_spec(const struct fscrypt_key_specifier *spec)
141 {
142 	if (spec->__reserved)
143 		return false;
144 	return master_key_spec_len(spec) != 0;
145 }
146 
fscrypt_user_key_instantiate(struct key * key,struct key_preparsed_payload * prep)147 static int fscrypt_user_key_instantiate(struct key *key,
148 					struct key_preparsed_payload *prep)
149 {
150 	/*
151 	 * We just charge FSCRYPT_MAX_STANDARD_KEY_SIZE bytes to the user's key
152 	 * quota for each key, regardless of the exact key size.  The amount of
153 	 * memory actually used is greater than the size of the raw key anyway.
154 	 */
155 	return key_payload_reserve(key, FSCRYPT_MAX_STANDARD_KEY_SIZE);
156 }
157 
fscrypt_user_key_describe(const struct key * key,struct seq_file * m)158 static void fscrypt_user_key_describe(const struct key *key, struct seq_file *m)
159 {
160 	seq_puts(m, key->description);
161 }
162 
163 /*
164  * Type of key in ->mk_users.  Each key of this type represents a particular
165  * user who has added a particular master key.
166  *
167  * Note that the name of this key type really should be something like
168  * ".fscrypt-user" instead of simply ".fscrypt".  But the shorter name is chosen
169  * mainly for simplicity of presentation in /proc/keys when read by a non-root
170  * user.  And it is expected to be rare that a key is actually added by multiple
171  * users, since users should keep their encryption keys confidential.
172  */
173 static struct key_type key_type_fscrypt_user = {
174 	.name			= ".fscrypt",
175 	.instantiate		= fscrypt_user_key_instantiate,
176 	.describe		= fscrypt_user_key_describe,
177 };
178 
179 #define FSCRYPT_MK_USERS_DESCRIPTION_SIZE	\
180 	(CONST_STRLEN("fscrypt-") + 2 * FSCRYPT_KEY_IDENTIFIER_SIZE + \
181 	 CONST_STRLEN("-users") + 1)
182 
183 #define FSCRYPT_MK_USER_DESCRIPTION_SIZE	\
184 	(2 * FSCRYPT_KEY_IDENTIFIER_SIZE + CONST_STRLEN(".uid.") + 10 + 1)
185 
format_mk_users_keyring_description(char description[FSCRYPT_MK_USERS_DESCRIPTION_SIZE],const u8 mk_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE])186 static void format_mk_users_keyring_description(
187 			char description[FSCRYPT_MK_USERS_DESCRIPTION_SIZE],
188 			const u8 mk_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE])
189 {
190 	sprintf(description, "fscrypt-%*phN-users",
191 		FSCRYPT_KEY_IDENTIFIER_SIZE, mk_identifier);
192 }
193 
format_mk_user_description(char description[FSCRYPT_MK_USER_DESCRIPTION_SIZE],const u8 mk_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE])194 static void format_mk_user_description(
195 			char description[FSCRYPT_MK_USER_DESCRIPTION_SIZE],
196 			const u8 mk_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE])
197 {
198 
199 	sprintf(description, "%*phN.uid.%u", FSCRYPT_KEY_IDENTIFIER_SIZE,
200 		mk_identifier, __kuid_val(current_fsuid()));
201 }
202 
203 /* Create ->s_master_keys if needed.  Synchronized by fscrypt_add_key_mutex. */
allocate_filesystem_keyring(struct super_block * sb)204 static int allocate_filesystem_keyring(struct super_block *sb)
205 {
206 	struct fscrypt_keyring *keyring;
207 
208 	if (sb->s_master_keys)
209 		return 0;
210 
211 	keyring = kzalloc(sizeof(*keyring), GFP_KERNEL);
212 	if (!keyring)
213 		return -ENOMEM;
214 	spin_lock_init(&keyring->lock);
215 	/*
216 	 * Pairs with the smp_load_acquire() in fscrypt_find_master_key().
217 	 * I.e., here we publish ->s_master_keys with a RELEASE barrier so that
218 	 * concurrent tasks can ACQUIRE it.
219 	 */
220 	smp_store_release(&sb->s_master_keys, keyring);
221 	return 0;
222 }
223 
224 /*
225  * Release all encryption keys that have been added to the filesystem, along
226  * with the keyring that contains them.
227  *
228  * This is called at unmount time, after all potentially-encrypted inodes have
229  * been evicted.  The filesystem's underlying block device(s) are still
230  * available at this time; this is important because after user file accesses
231  * have been allowed, this function may need to evict keys from the keyslots of
232  * an inline crypto engine, which requires the block device(s).
233  */
fscrypt_destroy_keyring(struct super_block * sb)234 void fscrypt_destroy_keyring(struct super_block *sb)
235 {
236 	struct fscrypt_keyring *keyring = sb->s_master_keys;
237 	size_t i;
238 
239 	if (!keyring)
240 		return;
241 
242 	for (i = 0; i < ARRAY_SIZE(keyring->key_hashtable); i++) {
243 		struct hlist_head *bucket = &keyring->key_hashtable[i];
244 		struct fscrypt_master_key *mk;
245 		struct hlist_node *tmp;
246 
247 		hlist_for_each_entry_safe(mk, tmp, bucket, mk_node) {
248 			/*
249 			 * Since all potentially-encrypted inodes were already
250 			 * evicted, every key remaining in the keyring should
251 			 * have an empty inode list, and should only still be in
252 			 * the keyring due to the single active ref associated
253 			 * with ->mk_present.  There should be no structural
254 			 * refs beyond the one associated with the active ref.
255 			 */
256 			WARN_ON_ONCE(refcount_read(&mk->mk_active_refs) != 1);
257 			WARN_ON_ONCE(refcount_read(&mk->mk_struct_refs) != 1);
258 			WARN_ON_ONCE(!mk->mk_present);
259 			fscrypt_initiate_key_removal(sb, mk);
260 		}
261 	}
262 	kfree_sensitive(keyring);
263 	sb->s_master_keys = NULL;
264 }
265 
266 static struct hlist_head *
fscrypt_mk_hash_bucket(struct fscrypt_keyring * keyring,const struct fscrypt_key_specifier * mk_spec)267 fscrypt_mk_hash_bucket(struct fscrypt_keyring *keyring,
268 		       const struct fscrypt_key_specifier *mk_spec)
269 {
270 	/*
271 	 * Since key specifiers should be "random" values, it is sufficient to
272 	 * use a trivial hash function that just takes the first several bits of
273 	 * the key specifier.
274 	 */
275 	unsigned long i = get_unaligned((unsigned long *)&mk_spec->u);
276 
277 	return &keyring->key_hashtable[i % ARRAY_SIZE(keyring->key_hashtable)];
278 }
279 
280 /*
281  * Find the specified master key struct in ->s_master_keys and take a structural
282  * ref to it.  The structural ref guarantees that the key struct continues to
283  * exist, but it does *not* guarantee that ->s_master_keys continues to contain
284  * the key struct.  The structural ref needs to be dropped by
285  * fscrypt_put_master_key().  Returns NULL if the key struct is not found.
286  */
287 struct fscrypt_master_key *
fscrypt_find_master_key(struct super_block * sb,const struct fscrypt_key_specifier * mk_spec)288 fscrypt_find_master_key(struct super_block *sb,
289 			const struct fscrypt_key_specifier *mk_spec)
290 {
291 	struct fscrypt_keyring *keyring;
292 	struct hlist_head *bucket;
293 	struct fscrypt_master_key *mk;
294 
295 	/*
296 	 * Pairs with the smp_store_release() in allocate_filesystem_keyring().
297 	 * I.e., another task can publish ->s_master_keys concurrently,
298 	 * executing a RELEASE barrier.  We need to use smp_load_acquire() here
299 	 * to safely ACQUIRE the memory the other task published.
300 	 */
301 	keyring = smp_load_acquire(&sb->s_master_keys);
302 	if (keyring == NULL)
303 		return NULL; /* No keyring yet, so no keys yet. */
304 
305 	bucket = fscrypt_mk_hash_bucket(keyring, mk_spec);
306 	rcu_read_lock();
307 	switch (mk_spec->type) {
308 	case FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR:
309 		hlist_for_each_entry_rcu(mk, bucket, mk_node) {
310 			if (mk->mk_spec.type ==
311 				FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR &&
312 			    memcmp(mk->mk_spec.u.descriptor,
313 				   mk_spec->u.descriptor,
314 				   FSCRYPT_KEY_DESCRIPTOR_SIZE) == 0 &&
315 			    refcount_inc_not_zero(&mk->mk_struct_refs))
316 				goto out;
317 		}
318 		break;
319 	case FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER:
320 		hlist_for_each_entry_rcu(mk, bucket, mk_node) {
321 			if (mk->mk_spec.type ==
322 				FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER &&
323 			    memcmp(mk->mk_spec.u.identifier,
324 				   mk_spec->u.identifier,
325 				   FSCRYPT_KEY_IDENTIFIER_SIZE) == 0 &&
326 			    refcount_inc_not_zero(&mk->mk_struct_refs))
327 				goto out;
328 		}
329 		break;
330 	}
331 	mk = NULL;
332 out:
333 	rcu_read_unlock();
334 	return mk;
335 }
336 
allocate_master_key_users_keyring(struct fscrypt_master_key * mk)337 static int allocate_master_key_users_keyring(struct fscrypt_master_key *mk)
338 {
339 	char description[FSCRYPT_MK_USERS_DESCRIPTION_SIZE];
340 	struct key *keyring;
341 
342 	format_mk_users_keyring_description(description,
343 					    mk->mk_spec.u.identifier);
344 	keyring = keyring_alloc(description, GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
345 				current_cred(), KEY_POS_SEARCH |
346 				  KEY_USR_SEARCH | KEY_USR_READ | KEY_USR_VIEW,
347 				KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL);
348 	if (IS_ERR(keyring))
349 		return PTR_ERR(keyring);
350 
351 	mk->mk_users = keyring;
352 	return 0;
353 }
354 
355 /*
356  * Find the current user's "key" in the master key's ->mk_users.
357  * Returns ERR_PTR(-ENOKEY) if not found.
358  */
find_master_key_user(struct fscrypt_master_key * mk)359 static struct key *find_master_key_user(struct fscrypt_master_key *mk)
360 {
361 	char description[FSCRYPT_MK_USER_DESCRIPTION_SIZE];
362 	key_ref_t keyref;
363 
364 	format_mk_user_description(description, mk->mk_spec.u.identifier);
365 
366 	/*
367 	 * We need to mark the keyring reference as "possessed" so that we
368 	 * acquire permission to search it, via the KEY_POS_SEARCH permission.
369 	 */
370 	keyref = keyring_search(make_key_ref(mk->mk_users, true /*possessed*/),
371 				&key_type_fscrypt_user, description, false);
372 	if (IS_ERR(keyref)) {
373 		if (PTR_ERR(keyref) == -EAGAIN || /* not found */
374 		    PTR_ERR(keyref) == -EKEYREVOKED) /* recently invalidated */
375 			keyref = ERR_PTR(-ENOKEY);
376 		return ERR_CAST(keyref);
377 	}
378 	return key_ref_to_ptr(keyref);
379 }
380 
381 /*
382  * Give the current user a "key" in ->mk_users.  This charges the user's quota
383  * and marks the master key as added by the current user, so that it cannot be
384  * removed by another user with the key.  Either ->mk_sem must be held for
385  * write, or the master key must be still undergoing initialization.
386  */
add_master_key_user(struct fscrypt_master_key * mk)387 static int add_master_key_user(struct fscrypt_master_key *mk)
388 {
389 	char description[FSCRYPT_MK_USER_DESCRIPTION_SIZE];
390 	struct key *mk_user;
391 	int err;
392 
393 	format_mk_user_description(description, mk->mk_spec.u.identifier);
394 	mk_user = key_alloc(&key_type_fscrypt_user, description,
395 			    current_fsuid(), current_gid(), current_cred(),
396 			    KEY_POS_SEARCH | KEY_USR_VIEW, 0, NULL);
397 	if (IS_ERR(mk_user))
398 		return PTR_ERR(mk_user);
399 
400 	err = key_instantiate_and_link(mk_user, NULL, 0, mk->mk_users, NULL);
401 	key_put(mk_user);
402 	return err;
403 }
404 
405 /*
406  * Remove the current user's "key" from ->mk_users.
407  * ->mk_sem must be held for write.
408  *
409  * Returns 0 if removed, -ENOKEY if not found, or another -errno code.
410  */
remove_master_key_user(struct fscrypt_master_key * mk)411 static int remove_master_key_user(struct fscrypt_master_key *mk)
412 {
413 	struct key *mk_user;
414 	int err;
415 
416 	mk_user = find_master_key_user(mk);
417 	if (IS_ERR(mk_user))
418 		return PTR_ERR(mk_user);
419 	err = key_unlink(mk->mk_users, mk_user);
420 	key_put(mk_user);
421 	return err;
422 }
423 
424 /*
425  * Allocate a new fscrypt_master_key, transfer the given secret over to it, and
426  * insert it into sb->s_master_keys.
427  */
add_new_master_key(struct super_block * sb,struct fscrypt_master_key_secret * secret,const struct fscrypt_key_specifier * mk_spec)428 static int add_new_master_key(struct super_block *sb,
429 			      struct fscrypt_master_key_secret *secret,
430 			      const struct fscrypt_key_specifier *mk_spec)
431 {
432 	struct fscrypt_keyring *keyring = sb->s_master_keys;
433 	struct fscrypt_master_key *mk;
434 	int err;
435 
436 	mk = kzalloc(sizeof(*mk), GFP_KERNEL);
437 	if (!mk)
438 		return -ENOMEM;
439 
440 	init_rwsem(&mk->mk_sem);
441 	refcount_set(&mk->mk_struct_refs, 1);
442 	mk->mk_spec = *mk_spec;
443 
444 	INIT_LIST_HEAD(&mk->mk_decrypted_inodes);
445 	spin_lock_init(&mk->mk_decrypted_inodes_lock);
446 
447 	if (mk_spec->type == FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER) {
448 		err = allocate_master_key_users_keyring(mk);
449 		if (err)
450 			goto out_put;
451 		err = add_master_key_user(mk);
452 		if (err)
453 			goto out_put;
454 	}
455 
456 	move_master_key_secret(&mk->mk_secret, secret);
457 	mk->mk_present = true;
458 	refcount_set(&mk->mk_active_refs, 1); /* ->mk_present is true */
459 
460 	spin_lock(&keyring->lock);
461 	hlist_add_head_rcu(&mk->mk_node,
462 			   fscrypt_mk_hash_bucket(keyring, mk_spec));
463 	spin_unlock(&keyring->lock);
464 	return 0;
465 
466 out_put:
467 	fscrypt_put_master_key(mk);
468 	return err;
469 }
470 
471 #define KEY_DEAD	1
472 
add_existing_master_key(struct fscrypt_master_key * mk,struct fscrypt_master_key_secret * secret)473 static int add_existing_master_key(struct fscrypt_master_key *mk,
474 				   struct fscrypt_master_key_secret *secret)
475 {
476 	int err;
477 
478 	/*
479 	 * If the current user is already in ->mk_users, then there's nothing to
480 	 * do.  Otherwise, we need to add the user to ->mk_users.  (Neither is
481 	 * applicable for v1 policy keys, which have NULL ->mk_users.)
482 	 */
483 	if (mk->mk_users) {
484 		struct key *mk_user = find_master_key_user(mk);
485 
486 		if (mk_user != ERR_PTR(-ENOKEY)) {
487 			if (IS_ERR(mk_user))
488 				return PTR_ERR(mk_user);
489 			key_put(mk_user);
490 			return 0;
491 		}
492 		err = add_master_key_user(mk);
493 		if (err)
494 			return err;
495 	}
496 
497 	/* If the key is incompletely removed, make it present again. */
498 	if (!mk->mk_present) {
499 		if (!refcount_inc_not_zero(&mk->mk_active_refs)) {
500 			/*
501 			 * Raced with the last active ref being dropped, so the
502 			 * key has become, or is about to become, "absent".
503 			 * Therefore, we need to allocate a new key struct.
504 			 */
505 			return KEY_DEAD;
506 		}
507 		move_master_key_secret(&mk->mk_secret, secret);
508 		WRITE_ONCE(mk->mk_present, true);
509 	}
510 
511 	return 0;
512 }
513 
do_add_master_key(struct super_block * sb,struct fscrypt_master_key_secret * secret,const struct fscrypt_key_specifier * mk_spec)514 static int do_add_master_key(struct super_block *sb,
515 			     struct fscrypt_master_key_secret *secret,
516 			     const struct fscrypt_key_specifier *mk_spec)
517 {
518 	static DEFINE_MUTEX(fscrypt_add_key_mutex);
519 	struct fscrypt_master_key *mk;
520 	int err;
521 
522 	mutex_lock(&fscrypt_add_key_mutex); /* serialize find + link */
523 
524 	mk = fscrypt_find_master_key(sb, mk_spec);
525 	if (!mk) {
526 		/* Didn't find the key in ->s_master_keys.  Add it. */
527 		err = allocate_filesystem_keyring(sb);
528 		if (!err)
529 			err = add_new_master_key(sb, secret, mk_spec);
530 	} else {
531 		/*
532 		 * Found the key in ->s_master_keys.  Add the user to ->mk_users
533 		 * if needed, and make the key "present" again if possible.
534 		 */
535 		down_write(&mk->mk_sem);
536 		err = add_existing_master_key(mk, secret);
537 		up_write(&mk->mk_sem);
538 		if (err == KEY_DEAD) {
539 			/*
540 			 * We found a key struct, but it's already been fully
541 			 * removed.  Ignore the old struct and add a new one.
542 			 * fscrypt_add_key_mutex means we don't need to worry
543 			 * about concurrent adds.
544 			 */
545 			err = add_new_master_key(sb, secret, mk_spec);
546 		}
547 		fscrypt_put_master_key(mk);
548 	}
549 	mutex_unlock(&fscrypt_add_key_mutex);
550 	return err;
551 }
552 
add_master_key(struct super_block * sb,struct fscrypt_master_key_secret * secret,struct fscrypt_key_specifier * key_spec)553 static int add_master_key(struct super_block *sb,
554 			  struct fscrypt_master_key_secret *secret,
555 			  struct fscrypt_key_specifier *key_spec)
556 {
557 	int err;
558 
559 	if (key_spec->type == FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER) {
560 		u8 sw_secret[BLK_CRYPTO_SW_SECRET_SIZE];
561 		u8 *kdf_key = secret->raw;
562 		unsigned int kdf_key_size = secret->size;
563 		u8 keyid_kdf_ctx = HKDF_CONTEXT_KEY_IDENTIFIER;
564 
565 		/*
566 		 * For standard keys, the fscrypt master key is used directly as
567 		 * the fscrypt KDF key.  For hardware-wrapped keys, we have to
568 		 * pass the master key to the hardware to derive the KDF key,
569 		 * which is then only used to derive non-file-contents subkeys.
570 		 */
571 		if (secret->is_hw_wrapped) {
572 			err = fscrypt_derive_sw_secret(sb, secret->raw,
573 						       secret->size, sw_secret);
574 			if (err)
575 				return err;
576 			kdf_key = sw_secret;
577 			kdf_key_size = sizeof(sw_secret);
578 		}
579 		err = fscrypt_init_hkdf(&secret->hkdf, kdf_key, kdf_key_size);
580 		/*
581 		 * Now that the KDF context is initialized, the raw KDF key is
582 		 * no longer needed.
583 		 */
584 		memzero_explicit(kdf_key, kdf_key_size);
585 		if (err)
586 			return err;
587 
588 		/* Calculate the key identifier */
589 		err = fscrypt_hkdf_expand(&secret->hkdf, keyid_kdf_ctx, NULL, 0,
590 					  key_spec->u.identifier,
591 					  FSCRYPT_KEY_IDENTIFIER_SIZE);
592 		if (err)
593 			return err;
594 	}
595 	return do_add_master_key(sb, secret, key_spec);
596 }
597 
fscrypt_provisioning_key_preparse(struct key_preparsed_payload * prep)598 static int fscrypt_provisioning_key_preparse(struct key_preparsed_payload *prep)
599 {
600 	const struct fscrypt_provisioning_key_payload *payload = prep->data;
601 
602 	if (prep->datalen < sizeof(*payload) + FSCRYPT_MIN_KEY_SIZE ||
603 	    prep->datalen > sizeof(*payload) + FSCRYPT_MAX_ANY_KEY_SIZE)
604 		return -EINVAL;
605 
606 	if (payload->type != FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR &&
607 	    payload->type != FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER)
608 		return -EINVAL;
609 
610 	if (payload->__reserved)
611 		return -EINVAL;
612 
613 	prep->payload.data[0] = kmemdup(payload, prep->datalen, GFP_KERNEL);
614 	if (!prep->payload.data[0])
615 		return -ENOMEM;
616 
617 	prep->quotalen = prep->datalen;
618 	return 0;
619 }
620 
fscrypt_provisioning_key_free_preparse(struct key_preparsed_payload * prep)621 static void fscrypt_provisioning_key_free_preparse(
622 					struct key_preparsed_payload *prep)
623 {
624 	kfree_sensitive(prep->payload.data[0]);
625 }
626 
fscrypt_provisioning_key_describe(const struct key * key,struct seq_file * m)627 static void fscrypt_provisioning_key_describe(const struct key *key,
628 					      struct seq_file *m)
629 {
630 	seq_puts(m, key->description);
631 	if (key_is_positive(key)) {
632 		const struct fscrypt_provisioning_key_payload *payload =
633 			key->payload.data[0];
634 
635 		seq_printf(m, ": %u [%u]", key->datalen, payload->type);
636 	}
637 }
638 
fscrypt_provisioning_key_destroy(struct key * key)639 static void fscrypt_provisioning_key_destroy(struct key *key)
640 {
641 	kfree_sensitive(key->payload.data[0]);
642 }
643 
644 static struct key_type key_type_fscrypt_provisioning = {
645 	.name			= "fscrypt-provisioning",
646 	.preparse		= fscrypt_provisioning_key_preparse,
647 	.free_preparse		= fscrypt_provisioning_key_free_preparse,
648 	.instantiate		= generic_key_instantiate,
649 	.describe		= fscrypt_provisioning_key_describe,
650 	.destroy		= fscrypt_provisioning_key_destroy,
651 };
652 
653 /*
654  * Retrieve the raw key from the Linux keyring key specified by 'key_id', and
655  * store it into 'secret'.
656  *
657  * The key must be of type "fscrypt-provisioning" and must have the field
658  * fscrypt_provisioning_key_payload::type set to 'type', indicating that it's
659  * only usable with fscrypt with the particular KDF version identified by
660  * 'type'.  We don't use the "logon" key type because there's no way to
661  * completely restrict the use of such keys; they can be used by any kernel API
662  * that accepts "logon" keys and doesn't require a specific service prefix.
663  *
664  * The ability to specify the key via Linux keyring key is intended for cases
665  * where userspace needs to re-add keys after the filesystem is unmounted and
666  * re-mounted.  Most users should just provide the raw key directly instead.
667  */
get_keyring_key(u32 key_id,u32 type,struct fscrypt_master_key_secret * secret)668 static int get_keyring_key(u32 key_id, u32 type,
669 			   struct fscrypt_master_key_secret *secret)
670 {
671 	key_ref_t ref;
672 	struct key *key;
673 	const struct fscrypt_provisioning_key_payload *payload;
674 	int err;
675 
676 	ref = lookup_user_key(key_id, 0, KEY_NEED_SEARCH);
677 	if (IS_ERR(ref))
678 		return PTR_ERR(ref);
679 	key = key_ref_to_ptr(ref);
680 
681 	if (key->type != &key_type_fscrypt_provisioning)
682 		goto bad_key;
683 	payload = key->payload.data[0];
684 
685 	/* Don't allow fscrypt v1 keys to be used as v2 keys and vice versa. */
686 	if (payload->type != type)
687 		goto bad_key;
688 
689 	secret->size = key->datalen - sizeof(*payload);
690 	memcpy(secret->raw, payload->raw, secret->size);
691 	err = 0;
692 	goto out_put;
693 
694 bad_key:
695 	err = -EKEYREJECTED;
696 out_put:
697 	key_ref_put(ref);
698 	return err;
699 }
700 
701 /*
702  * Add a master encryption key to the filesystem, causing all files which were
703  * encrypted with it to appear "unlocked" (decrypted) when accessed.
704  *
705  * When adding a key for use by v1 encryption policies, this ioctl is
706  * privileged, and userspace must provide the 'key_descriptor'.
707  *
708  * When adding a key for use by v2+ encryption policies, this ioctl is
709  * unprivileged.  This is needed, in general, to allow non-root users to use
710  * encryption without encountering the visibility problems of process-subscribed
711  * keyrings and the inability to properly remove keys.  This works by having
712  * each key identified by its cryptographically secure hash --- the
713  * 'key_identifier'.  The cryptographic hash ensures that a malicious user
714  * cannot add the wrong key for a given identifier.  Furthermore, each added key
715  * is charged to the appropriate user's quota for the keyrings service, which
716  * prevents a malicious user from adding too many keys.  Finally, we forbid a
717  * user from removing a key while other users have added it too, which prevents
718  * a user who knows another user's key from causing a denial-of-service by
719  * removing it at an inopportune time.  (We tolerate that a user who knows a key
720  * can prevent other users from removing it.)
721  *
722  * For more details, see the "FS_IOC_ADD_ENCRYPTION_KEY" section of
723  * Documentation/filesystems/fscrypt.rst.
724  */
fscrypt_ioctl_add_key(struct file * filp,void __user * _uarg)725 int fscrypt_ioctl_add_key(struct file *filp, void __user *_uarg)
726 {
727 	struct super_block *sb = file_inode(filp)->i_sb;
728 	struct fscrypt_add_key_arg __user *uarg = _uarg;
729 	struct fscrypt_add_key_arg arg;
730 	struct fscrypt_master_key_secret secret;
731 	int err;
732 
733 	if (copy_from_user(&arg, uarg, sizeof(arg)))
734 		return -EFAULT;
735 
736 	if (!valid_key_spec(&arg.key_spec))
737 		return -EINVAL;
738 
739 	if (memchr_inv(arg.__reserved, 0, sizeof(arg.__reserved)))
740 		return -EINVAL;
741 
742 	/*
743 	 * Only root can add keys that are identified by an arbitrary descriptor
744 	 * rather than by a cryptographic hash --- since otherwise a malicious
745 	 * user could add the wrong key.
746 	 */
747 	if (arg.key_spec.type == FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR &&
748 	    !capable(CAP_SYS_ADMIN))
749 		return -EACCES;
750 
751 	memset(&secret, 0, sizeof(secret));
752 
753 	if (arg.__flags) {
754 		if (arg.__flags & ~__FSCRYPT_ADD_KEY_FLAG_HW_WRAPPED)
755 			return -EINVAL;
756 		if (arg.key_spec.type != FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER)
757 			return -EINVAL;
758 		secret.is_hw_wrapped = true;
759 	}
760 
761 	if (arg.key_id) {
762 		if (arg.raw_size != 0)
763 			return -EINVAL;
764 		err = get_keyring_key(arg.key_id, arg.key_spec.type, &secret);
765 		if (err)
766 			goto out_wipe_secret;
767 		err = -EINVAL;
768 		if (secret.size > FSCRYPT_MAX_STANDARD_KEY_SIZE &&
769 		    !secret.is_hw_wrapped)
770 			goto out_wipe_secret;
771 	} else {
772 		if (arg.raw_size < FSCRYPT_MIN_KEY_SIZE ||
773 		    arg.raw_size > (secret.is_hw_wrapped ?
774 				    FSCRYPT_MAX_HW_WRAPPED_KEY_SIZE :
775 				    FSCRYPT_MAX_STANDARD_KEY_SIZE))
776 			return -EINVAL;
777 		secret.size = arg.raw_size;
778 		err = -EFAULT;
779 		if (copy_from_user(secret.raw, uarg->raw, secret.size))
780 			goto out_wipe_secret;
781 	}
782 
783 	err = add_master_key(sb, &secret, &arg.key_spec);
784 	if (err)
785 		goto out_wipe_secret;
786 
787 	/* Return the key identifier to userspace, if applicable */
788 	err = -EFAULT;
789 	if (arg.key_spec.type == FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER &&
790 	    copy_to_user(uarg->key_spec.u.identifier, arg.key_spec.u.identifier,
791 			 FSCRYPT_KEY_IDENTIFIER_SIZE))
792 		goto out_wipe_secret;
793 	err = 0;
794 out_wipe_secret:
795 	wipe_master_key_secret(&secret);
796 	return err;
797 }
798 EXPORT_SYMBOL_GPL(fscrypt_ioctl_add_key);
799 
800 static void
fscrypt_get_test_dummy_secret(struct fscrypt_master_key_secret * secret)801 fscrypt_get_test_dummy_secret(struct fscrypt_master_key_secret *secret)
802 {
803 	static u8 test_key[FSCRYPT_MAX_STANDARD_KEY_SIZE];
804 
805 	get_random_once(test_key, sizeof(test_key));
806 
807 	memset(secret, 0, sizeof(*secret));
808 	secret->size = sizeof(test_key);
809 	memcpy(secret->raw, test_key, sizeof(test_key));
810 }
811 
fscrypt_get_test_dummy_key_identifier(u8 key_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE])812 int fscrypt_get_test_dummy_key_identifier(
813 				u8 key_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE])
814 {
815 	struct fscrypt_master_key_secret secret;
816 	int err;
817 
818 	fscrypt_get_test_dummy_secret(&secret);
819 
820 	err = fscrypt_init_hkdf(&secret.hkdf, secret.raw, secret.size);
821 	if (err)
822 		goto out;
823 	err = fscrypt_hkdf_expand(&secret.hkdf, HKDF_CONTEXT_KEY_IDENTIFIER,
824 				  NULL, 0, key_identifier,
825 				  FSCRYPT_KEY_IDENTIFIER_SIZE);
826 out:
827 	wipe_master_key_secret(&secret);
828 	return err;
829 }
830 
831 /**
832  * fscrypt_add_test_dummy_key() - add the test dummy encryption key
833  * @sb: the filesystem instance to add the key to
834  * @key_spec: the key specifier of the test dummy encryption key
835  *
836  * Add the key for the test_dummy_encryption mount option to the filesystem.  To
837  * prevent misuse of this mount option, a per-boot random key is used instead of
838  * a hardcoded one.  This makes it so that any encrypted files created using
839  * this option won't be accessible after a reboot.
840  *
841  * Return: 0 on success, -errno on failure
842  */
fscrypt_add_test_dummy_key(struct super_block * sb,struct fscrypt_key_specifier * key_spec)843 int fscrypt_add_test_dummy_key(struct super_block *sb,
844 			       struct fscrypt_key_specifier *key_spec)
845 {
846 	struct fscrypt_master_key_secret secret;
847 	int err;
848 
849 	fscrypt_get_test_dummy_secret(&secret);
850 	err = add_master_key(sb, &secret, key_spec);
851 	wipe_master_key_secret(&secret);
852 	return err;
853 }
854 
855 /*
856  * Verify that the current user has added a master key with the given identifier
857  * (returns -ENOKEY if not).  This is needed to prevent a user from encrypting
858  * their files using some other user's key which they don't actually know.
859  * Cryptographically this isn't much of a problem, but the semantics of this
860  * would be a bit weird, so it's best to just forbid it.
861  *
862  * The system administrator (CAP_FOWNER) can override this, which should be
863  * enough for any use cases where encryption policies are being set using keys
864  * that were chosen ahead of time but aren't available at the moment.
865  *
866  * Note that the key may have already removed by the time this returns, but
867  * that's okay; we just care whether the key was there at some point.
868  *
869  * Return: 0 if the key is added, -ENOKEY if it isn't, or another -errno code
870  */
fscrypt_verify_key_added(struct super_block * sb,const u8 identifier[FSCRYPT_KEY_IDENTIFIER_SIZE])871 int fscrypt_verify_key_added(struct super_block *sb,
872 			     const u8 identifier[FSCRYPT_KEY_IDENTIFIER_SIZE])
873 {
874 	struct fscrypt_key_specifier mk_spec;
875 	struct fscrypt_master_key *mk;
876 	struct key *mk_user;
877 	int err;
878 
879 	mk_spec.type = FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER;
880 	memcpy(mk_spec.u.identifier, identifier, FSCRYPT_KEY_IDENTIFIER_SIZE);
881 
882 	mk = fscrypt_find_master_key(sb, &mk_spec);
883 	if (!mk) {
884 		err = -ENOKEY;
885 		goto out;
886 	}
887 	down_read(&mk->mk_sem);
888 	mk_user = find_master_key_user(mk);
889 	if (IS_ERR(mk_user)) {
890 		err = PTR_ERR(mk_user);
891 	} else {
892 		key_put(mk_user);
893 		err = 0;
894 	}
895 	up_read(&mk->mk_sem);
896 	fscrypt_put_master_key(mk);
897 out:
898 	if (err == -ENOKEY && capable(CAP_FOWNER))
899 		err = 0;
900 	return err;
901 }
902 
903 /*
904  * Try to evict the inode's dentries from the dentry cache.  If the inode is a
905  * directory, then it can have at most one dentry; however, that dentry may be
906  * pinned by child dentries, so first try to evict the children too.
907  */
shrink_dcache_inode(struct inode * inode)908 static void shrink_dcache_inode(struct inode *inode)
909 {
910 	struct dentry *dentry;
911 
912 	if (S_ISDIR(inode->i_mode)) {
913 		dentry = d_find_any_alias(inode);
914 		if (dentry) {
915 			shrink_dcache_parent(dentry);
916 			dput(dentry);
917 		}
918 	}
919 	d_prune_aliases(inode);
920 }
921 
evict_dentries_for_decrypted_inodes(struct fscrypt_master_key * mk)922 static void evict_dentries_for_decrypted_inodes(struct fscrypt_master_key *mk)
923 {
924 	struct fscrypt_inode_info *ci;
925 	struct inode *inode;
926 	struct inode *toput_inode = NULL;
927 
928 	spin_lock(&mk->mk_decrypted_inodes_lock);
929 
930 	list_for_each_entry(ci, &mk->mk_decrypted_inodes, ci_master_key_link) {
931 		inode = ci->ci_inode;
932 		spin_lock(&inode->i_lock);
933 		if (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW)) {
934 			spin_unlock(&inode->i_lock);
935 			continue;
936 		}
937 		__iget(inode);
938 		spin_unlock(&inode->i_lock);
939 		spin_unlock(&mk->mk_decrypted_inodes_lock);
940 
941 		shrink_dcache_inode(inode);
942 		iput(toput_inode);
943 		toput_inode = inode;
944 
945 		spin_lock(&mk->mk_decrypted_inodes_lock);
946 	}
947 
948 	spin_unlock(&mk->mk_decrypted_inodes_lock);
949 	iput(toput_inode);
950 }
951 
check_for_busy_inodes(struct super_block * sb,struct fscrypt_master_key * mk)952 static int check_for_busy_inodes(struct super_block *sb,
953 				 struct fscrypt_master_key *mk)
954 {
955 	struct list_head *pos;
956 	size_t busy_count = 0;
957 	unsigned long ino;
958 	char ino_str[50] = "";
959 
960 	spin_lock(&mk->mk_decrypted_inodes_lock);
961 
962 	list_for_each(pos, &mk->mk_decrypted_inodes)
963 		busy_count++;
964 
965 	if (busy_count == 0) {
966 		spin_unlock(&mk->mk_decrypted_inodes_lock);
967 		return 0;
968 	}
969 
970 	{
971 		/* select an example file to show for debugging purposes */
972 		struct inode *inode =
973 			list_first_entry(&mk->mk_decrypted_inodes,
974 					 struct fscrypt_inode_info,
975 					 ci_master_key_link)->ci_inode;
976 		ino = inode->i_ino;
977 	}
978 	spin_unlock(&mk->mk_decrypted_inodes_lock);
979 
980 	/* If the inode is currently being created, ino may still be 0. */
981 	if (ino)
982 		snprintf(ino_str, sizeof(ino_str), ", including ino %lu", ino);
983 
984 	fscrypt_warn(NULL,
985 		     "%s: %zu inode(s) still busy after removing key with %s %*phN%s",
986 		     sb->s_id, busy_count, master_key_spec_type(&mk->mk_spec),
987 		     master_key_spec_len(&mk->mk_spec), (u8 *)&mk->mk_spec.u,
988 		     ino_str);
989 	return -EBUSY;
990 }
991 
try_to_lock_encrypted_files(struct super_block * sb,struct fscrypt_master_key * mk)992 static int try_to_lock_encrypted_files(struct super_block *sb,
993 				       struct fscrypt_master_key *mk)
994 {
995 	int err1;
996 	int err2;
997 
998 	/*
999 	 * An inode can't be evicted while it is dirty or has dirty pages.
1000 	 * Thus, we first have to clean the inodes in ->mk_decrypted_inodes.
1001 	 *
1002 	 * Just do it the easy way: call sync_filesystem().  It's overkill, but
1003 	 * it works, and it's more important to minimize the amount of caches we
1004 	 * drop than the amount of data we sync.  Also, unprivileged users can
1005 	 * already call sync_filesystem() via sys_syncfs() or sys_sync().
1006 	 */
1007 	down_read(&sb->s_umount);
1008 	err1 = sync_filesystem(sb);
1009 	up_read(&sb->s_umount);
1010 	/* If a sync error occurs, still try to evict as much as possible. */
1011 
1012 	/*
1013 	 * Inodes are pinned by their dentries, so we have to evict their
1014 	 * dentries.  shrink_dcache_sb() would suffice, but would be overkill
1015 	 * and inappropriate for use by unprivileged users.  So instead go
1016 	 * through the inodes' alias lists and try to evict each dentry.
1017 	 */
1018 	evict_dentries_for_decrypted_inodes(mk);
1019 
1020 	/*
1021 	 * evict_dentries_for_decrypted_inodes() already iput() each inode in
1022 	 * the list; any inodes for which that dropped the last reference will
1023 	 * have been evicted due to fscrypt_drop_inode() detecting the key
1024 	 * removal and telling the VFS to evict the inode.  So to finish, we
1025 	 * just need to check whether any inodes couldn't be evicted.
1026 	 */
1027 	err2 = check_for_busy_inodes(sb, mk);
1028 
1029 	return err1 ?: err2;
1030 }
1031 
1032 /*
1033  * Try to remove an fscrypt master encryption key.
1034  *
1035  * FS_IOC_REMOVE_ENCRYPTION_KEY (all_users=false) removes the current user's
1036  * claim to the key, then removes the key itself if no other users have claims.
1037  * FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS (all_users=true) always removes the
1038  * key itself.
1039  *
1040  * To "remove the key itself", first we transition the key to the "incompletely
1041  * removed" state, so that no more inodes can be unlocked with it.  Then we try
1042  * to evict all cached inodes that had been unlocked with the key.
1043  *
1044  * If all inodes were evicted, then we unlink the fscrypt_master_key from the
1045  * keyring.  Otherwise it remains in the keyring in the "incompletely removed"
1046  * state where it tracks the list of remaining inodes.  Userspace can execute
1047  * the ioctl again later to retry eviction, or alternatively can re-add the key.
1048  *
1049  * For more details, see the "Removing keys" section of
1050  * Documentation/filesystems/fscrypt.rst.
1051  */
do_remove_key(struct file * filp,void __user * _uarg,bool all_users)1052 static int do_remove_key(struct file *filp, void __user *_uarg, bool all_users)
1053 {
1054 	struct super_block *sb = file_inode(filp)->i_sb;
1055 	struct fscrypt_remove_key_arg __user *uarg = _uarg;
1056 	struct fscrypt_remove_key_arg arg;
1057 	struct fscrypt_master_key *mk;
1058 	u32 status_flags = 0;
1059 	int err;
1060 	bool inodes_remain;
1061 
1062 	if (copy_from_user(&arg, uarg, sizeof(arg)))
1063 		return -EFAULT;
1064 
1065 	if (!valid_key_spec(&arg.key_spec))
1066 		return -EINVAL;
1067 
1068 	if (memchr_inv(arg.__reserved, 0, sizeof(arg.__reserved)))
1069 		return -EINVAL;
1070 
1071 	/*
1072 	 * Only root can add and remove keys that are identified by an arbitrary
1073 	 * descriptor rather than by a cryptographic hash.
1074 	 */
1075 	if (arg.key_spec.type == FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR &&
1076 	    !capable(CAP_SYS_ADMIN))
1077 		return -EACCES;
1078 
1079 	/* Find the key being removed. */
1080 	mk = fscrypt_find_master_key(sb, &arg.key_spec);
1081 	if (!mk)
1082 		return -ENOKEY;
1083 	down_write(&mk->mk_sem);
1084 
1085 	/* If relevant, remove current user's (or all users) claim to the key */
1086 	if (mk->mk_users && mk->mk_users->keys.nr_leaves_on_tree != 0) {
1087 		if (all_users)
1088 			err = keyring_clear(mk->mk_users);
1089 		else
1090 			err = remove_master_key_user(mk);
1091 		if (err) {
1092 			up_write(&mk->mk_sem);
1093 			goto out_put_key;
1094 		}
1095 		if (mk->mk_users->keys.nr_leaves_on_tree != 0) {
1096 			/*
1097 			 * Other users have still added the key too.  We removed
1098 			 * the current user's claim to the key, but we still
1099 			 * can't remove the key itself.
1100 			 */
1101 			status_flags |=
1102 				FSCRYPT_KEY_REMOVAL_STATUS_FLAG_OTHER_USERS;
1103 			err = 0;
1104 			up_write(&mk->mk_sem);
1105 			goto out_put_key;
1106 		}
1107 	}
1108 
1109 	/* No user claims remaining.  Initiate removal of the key. */
1110 	err = -ENOKEY;
1111 	if (mk->mk_present) {
1112 		fscrypt_initiate_key_removal(sb, mk);
1113 		err = 0;
1114 	}
1115 	inodes_remain = refcount_read(&mk->mk_active_refs) > 0;
1116 	up_write(&mk->mk_sem);
1117 
1118 	if (inodes_remain) {
1119 		/* Some inodes still reference this key; try to evict them. */
1120 		err = try_to_lock_encrypted_files(sb, mk);
1121 		if (err == -EBUSY) {
1122 			status_flags |=
1123 				FSCRYPT_KEY_REMOVAL_STATUS_FLAG_FILES_BUSY;
1124 			err = 0;
1125 		}
1126 	}
1127 	/*
1128 	 * We return 0 if we successfully did something: removed a claim to the
1129 	 * key, initiated removal of the key, or tried locking the files again.
1130 	 * Users need to check the informational status flags if they care
1131 	 * whether the key has been fully removed including all files locked.
1132 	 */
1133 out_put_key:
1134 	fscrypt_put_master_key(mk);
1135 	if (err == 0)
1136 		err = put_user(status_flags, &uarg->removal_status_flags);
1137 	return err;
1138 }
1139 
fscrypt_ioctl_remove_key(struct file * filp,void __user * uarg)1140 int fscrypt_ioctl_remove_key(struct file *filp, void __user *uarg)
1141 {
1142 	return do_remove_key(filp, uarg, false);
1143 }
1144 EXPORT_SYMBOL_GPL(fscrypt_ioctl_remove_key);
1145 
fscrypt_ioctl_remove_key_all_users(struct file * filp,void __user * uarg)1146 int fscrypt_ioctl_remove_key_all_users(struct file *filp, void __user *uarg)
1147 {
1148 	if (!capable(CAP_SYS_ADMIN))
1149 		return -EACCES;
1150 	return do_remove_key(filp, uarg, true);
1151 }
1152 EXPORT_SYMBOL_GPL(fscrypt_ioctl_remove_key_all_users);
1153 
1154 /*
1155  * Retrieve the status of an fscrypt master encryption key.
1156  *
1157  * We set ->status to indicate whether the key is absent, present, or
1158  * incompletely removed.  (For an explanation of what these statuses mean and
1159  * how they are represented internally, see struct fscrypt_master_key.)  This
1160  * field allows applications to easily determine the status of an encrypted
1161  * directory without using a hack such as trying to open a regular file in it
1162  * (which can confuse the "incompletely removed" status with absent or present).
1163  *
1164  * In addition, for v2 policy keys we allow applications to determine, via
1165  * ->status_flags and ->user_count, whether the key has been added by the
1166  * current user, by other users, or by both.  Most applications should not need
1167  * this, since ordinarily only one user should know a given key.  However, if a
1168  * secret key is shared by multiple users, applications may wish to add an
1169  * already-present key to prevent other users from removing it.  This ioctl can
1170  * be used to check whether that really is the case before the work is done to
1171  * add the key --- which might e.g. require prompting the user for a passphrase.
1172  *
1173  * For more details, see the "FS_IOC_GET_ENCRYPTION_KEY_STATUS" section of
1174  * Documentation/filesystems/fscrypt.rst.
1175  */
fscrypt_ioctl_get_key_status(struct file * filp,void __user * uarg)1176 int fscrypt_ioctl_get_key_status(struct file *filp, void __user *uarg)
1177 {
1178 	struct super_block *sb = file_inode(filp)->i_sb;
1179 	struct fscrypt_get_key_status_arg arg;
1180 	struct fscrypt_master_key *mk;
1181 	int err;
1182 
1183 	if (copy_from_user(&arg, uarg, sizeof(arg)))
1184 		return -EFAULT;
1185 
1186 	if (!valid_key_spec(&arg.key_spec))
1187 		return -EINVAL;
1188 
1189 	if (memchr_inv(arg.__reserved, 0, sizeof(arg.__reserved)))
1190 		return -EINVAL;
1191 
1192 	arg.status_flags = 0;
1193 	arg.user_count = 0;
1194 	memset(arg.__out_reserved, 0, sizeof(arg.__out_reserved));
1195 
1196 	mk = fscrypt_find_master_key(sb, &arg.key_spec);
1197 	if (!mk) {
1198 		arg.status = FSCRYPT_KEY_STATUS_ABSENT;
1199 		err = 0;
1200 		goto out;
1201 	}
1202 	down_read(&mk->mk_sem);
1203 
1204 	if (!mk->mk_present) {
1205 		arg.status = refcount_read(&mk->mk_active_refs) > 0 ?
1206 			FSCRYPT_KEY_STATUS_INCOMPLETELY_REMOVED :
1207 			FSCRYPT_KEY_STATUS_ABSENT /* raced with full removal */;
1208 		err = 0;
1209 		goto out_release_key;
1210 	}
1211 
1212 	arg.status = FSCRYPT_KEY_STATUS_PRESENT;
1213 	if (mk->mk_users) {
1214 		struct key *mk_user;
1215 
1216 		arg.user_count = mk->mk_users->keys.nr_leaves_on_tree;
1217 		mk_user = find_master_key_user(mk);
1218 		if (!IS_ERR(mk_user)) {
1219 			arg.status_flags |=
1220 				FSCRYPT_KEY_STATUS_FLAG_ADDED_BY_SELF;
1221 			key_put(mk_user);
1222 		} else if (mk_user != ERR_PTR(-ENOKEY)) {
1223 			err = PTR_ERR(mk_user);
1224 			goto out_release_key;
1225 		}
1226 	}
1227 	err = 0;
1228 out_release_key:
1229 	up_read(&mk->mk_sem);
1230 	fscrypt_put_master_key(mk);
1231 out:
1232 	if (!err && copy_to_user(uarg, &arg, sizeof(arg)))
1233 		err = -EFAULT;
1234 	return err;
1235 }
1236 EXPORT_SYMBOL_GPL(fscrypt_ioctl_get_key_status);
1237 
fscrypt_init_keyring(void)1238 int __init fscrypt_init_keyring(void)
1239 {
1240 	int err;
1241 
1242 	err = register_key_type(&key_type_fscrypt_user);
1243 	if (err)
1244 		return err;
1245 
1246 	err = register_key_type(&key_type_fscrypt_provisioning);
1247 	if (err)
1248 		goto err_unregister_fscrypt_user;
1249 
1250 	return 0;
1251 
1252 err_unregister_fscrypt_user:
1253 	unregister_key_type(&key_type_fscrypt_user);
1254 	return err;
1255 }
1256