• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_HUGETLB_H
3 #define _LINUX_HUGETLB_H
4 
5 #include <linux/mm.h>
6 #include <linux/mm_types.h>
7 #include <linux/mmdebug.h>
8 #include <linux/fs.h>
9 #include <linux/hugetlb_inline.h>
10 #include <linux/cgroup.h>
11 #include <linux/page_ref.h>
12 #include <linux/list.h>
13 #include <linux/kref.h>
14 #include <linux/pgtable.h>
15 #include <linux/gfp.h>
16 #include <linux/userfaultfd_k.h>
17 
18 struct ctl_table;
19 struct user_struct;
20 struct mmu_gather;
21 struct node;
22 
23 void free_huge_folio(struct folio *folio);
24 
25 #ifdef CONFIG_HUGETLB_PAGE
26 
27 #include <linux/pagemap.h>
28 #include <linux/shm.h>
29 #include <asm/tlbflush.h>
30 
31 /*
32  * For HugeTLB page, there are more metadata to save in the struct page. But
33  * the head struct page cannot meet our needs, so we have to abuse other tail
34  * struct page to store the metadata.
35  */
36 #define __NR_USED_SUBPAGE 3
37 
38 struct hugepage_subpool {
39 	spinlock_t lock;
40 	long count;
41 	long max_hpages;	/* Maximum huge pages or -1 if no maximum. */
42 	long used_hpages;	/* Used count against maximum, includes */
43 				/* both allocated and reserved pages. */
44 	struct hstate *hstate;
45 	long min_hpages;	/* Minimum huge pages or -1 if no minimum. */
46 	long rsv_hpages;	/* Pages reserved against global pool to */
47 				/* satisfy minimum size. */
48 };
49 
50 struct resv_map {
51 	struct kref refs;
52 	spinlock_t lock;
53 	struct list_head regions;
54 	long adds_in_progress;
55 	struct list_head region_cache;
56 	long region_cache_count;
57 	struct rw_semaphore rw_sema;
58 #ifdef CONFIG_CGROUP_HUGETLB
59 	/*
60 	 * On private mappings, the counter to uncharge reservations is stored
61 	 * here. If these fields are 0, then either the mapping is shared, or
62 	 * cgroup accounting is disabled for this resv_map.
63 	 */
64 	struct page_counter *reservation_counter;
65 	unsigned long pages_per_hpage;
66 	struct cgroup_subsys_state *css;
67 #endif
68 };
69 
70 /*
71  * Region tracking -- allows tracking of reservations and instantiated pages
72  *                    across the pages in a mapping.
73  *
74  * The region data structures are embedded into a resv_map and protected
75  * by a resv_map's lock.  The set of regions within the resv_map represent
76  * reservations for huge pages, or huge pages that have already been
77  * instantiated within the map.  The from and to elements are huge page
78  * indices into the associated mapping.  from indicates the starting index
79  * of the region.  to represents the first index past the end of  the region.
80  *
81  * For example, a file region structure with from == 0 and to == 4 represents
82  * four huge pages in a mapping.  It is important to note that the to element
83  * represents the first element past the end of the region. This is used in
84  * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
85  *
86  * Interval notation of the form [from, to) will be used to indicate that
87  * the endpoint from is inclusive and to is exclusive.
88  */
89 struct file_region {
90 	struct list_head link;
91 	long from;
92 	long to;
93 #ifdef CONFIG_CGROUP_HUGETLB
94 	/*
95 	 * On shared mappings, each reserved region appears as a struct
96 	 * file_region in resv_map. These fields hold the info needed to
97 	 * uncharge each reservation.
98 	 */
99 	struct page_counter *reservation_counter;
100 	struct cgroup_subsys_state *css;
101 #endif
102 };
103 
104 struct hugetlb_vma_lock {
105 	struct kref refs;
106 	struct rw_semaphore rw_sema;
107 	struct vm_area_struct *vma;
108 };
109 
110 extern struct resv_map *resv_map_alloc(void);
111 void resv_map_release(struct kref *ref);
112 
113 extern spinlock_t hugetlb_lock;
114 extern int hugetlb_max_hstate __read_mostly;
115 #define for_each_hstate(h) \
116 	for ((h) = hstates; (h) < &hstates[hugetlb_max_hstate]; (h)++)
117 
118 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
119 						long min_hpages);
120 void hugepage_put_subpool(struct hugepage_subpool *spool);
121 
122 void hugetlb_dup_vma_private(struct vm_area_struct *vma);
123 void clear_vma_resv_huge_pages(struct vm_area_struct *vma);
124 int move_hugetlb_page_tables(struct vm_area_struct *vma,
125 			     struct vm_area_struct *new_vma,
126 			     unsigned long old_addr, unsigned long new_addr,
127 			     unsigned long len);
128 int copy_hugetlb_page_range(struct mm_struct *, struct mm_struct *,
129 			    struct vm_area_struct *, struct vm_area_struct *);
130 void unmap_hugepage_range(struct vm_area_struct *,
131 			  unsigned long, unsigned long, struct page *,
132 			  zap_flags_t);
133 void __unmap_hugepage_range(struct mmu_gather *tlb,
134 			  struct vm_area_struct *vma,
135 			  unsigned long start, unsigned long end,
136 			  struct page *ref_page, zap_flags_t zap_flags);
137 void hugetlb_report_meminfo(struct seq_file *);
138 int hugetlb_report_node_meminfo(char *buf, int len, int nid);
139 void hugetlb_show_meminfo_node(int nid);
140 unsigned long hugetlb_total_pages(void);
141 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
142 			unsigned long address, unsigned int flags);
143 #ifdef CONFIG_USERFAULTFD
144 int hugetlb_mfill_atomic_pte(pte_t *dst_pte,
145 			     struct vm_area_struct *dst_vma,
146 			     unsigned long dst_addr,
147 			     unsigned long src_addr,
148 			     uffd_flags_t flags,
149 			     struct folio **foliop);
150 #endif /* CONFIG_USERFAULTFD */
151 bool hugetlb_reserve_pages(struct inode *inode, long from, long to,
152 						struct vm_area_struct *vma,
153 						vm_flags_t vm_flags);
154 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
155 						long freed);
156 bool isolate_hugetlb(struct folio *folio, struct list_head *list);
157 int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison);
158 int get_huge_page_for_hwpoison(unsigned long pfn, int flags,
159 				bool *migratable_cleared);
160 void folio_putback_active_hugetlb(struct folio *folio);
161 void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason);
162 void hugetlb_fix_reserve_counts(struct inode *inode);
163 extern struct mutex *hugetlb_fault_mutex_table;
164 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx);
165 
166 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
167 		      unsigned long addr, pud_t *pud);
168 bool hugetlbfs_pagecache_present(struct hstate *h,
169 				 struct vm_area_struct *vma,
170 				 unsigned long address);
171 
172 struct address_space *hugetlb_folio_mapping_lock_write(struct folio *folio);
173 
174 extern int sysctl_hugetlb_shm_group;
175 extern struct list_head huge_boot_pages[MAX_NUMNODES];
176 
177 /* arch callbacks */
178 
179 #ifndef CONFIG_HIGHPTE
180 /*
181  * pte_offset_huge() and pte_alloc_huge() are helpers for those architectures
182  * which may go down to the lowest PTE level in their huge_pte_offset() and
183  * huge_pte_alloc(): to avoid reliance on pte_offset_map() without pte_unmap().
184  */
pte_offset_huge(pmd_t * pmd,unsigned long address)185 static inline pte_t *pte_offset_huge(pmd_t *pmd, unsigned long address)
186 {
187 	return pte_offset_kernel(pmd, address);
188 }
pte_alloc_huge(struct mm_struct * mm,pmd_t * pmd,unsigned long address)189 static inline pte_t *pte_alloc_huge(struct mm_struct *mm, pmd_t *pmd,
190 				    unsigned long address)
191 {
192 	return pte_alloc(mm, pmd) ? NULL : pte_offset_huge(pmd, address);
193 }
194 #endif
195 
196 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
197 			unsigned long addr, unsigned long sz);
198 /*
199  * huge_pte_offset(): Walk the hugetlb pgtable until the last level PTE.
200  * Returns the pte_t* if found, or NULL if the address is not mapped.
201  *
202  * IMPORTANT: we should normally not directly call this function, instead
203  * this is only a common interface to implement arch-specific
204  * walker. Please use hugetlb_walk() instead, because that will attempt to
205  * verify the locking for you.
206  *
207  * Since this function will walk all the pgtable pages (including not only
208  * high-level pgtable page, but also PUD entry that can be unshared
209  * concurrently for VM_SHARED), the caller of this function should be
210  * responsible of its thread safety.  One can follow this rule:
211  *
212  *  (1) For private mappings: pmd unsharing is not possible, so holding the
213  *      mmap_lock for either read or write is sufficient. Most callers
214  *      already hold the mmap_lock, so normally, no special action is
215  *      required.
216  *
217  *  (2) For shared mappings: pmd unsharing is possible (so the PUD-ranged
218  *      pgtable page can go away from under us!  It can be done by a pmd
219  *      unshare with a follow up munmap() on the other process), then we
220  *      need either:
221  *
222  *     (2.1) hugetlb vma lock read or write held, to make sure pmd unshare
223  *           won't happen upon the range (it also makes sure the pte_t we
224  *           read is the right and stable one), or,
225  *
226  *     (2.2) hugetlb mapping i_mmap_rwsem lock held read or write, to make
227  *           sure even if unshare happened the racy unmap() will wait until
228  *           i_mmap_rwsem is released.
229  *
230  * Option (2.1) is the safest, which guarantees pte stability from pmd
231  * sharing pov, until the vma lock released.  Option (2.2) doesn't protect
232  * a concurrent pmd unshare, but it makes sure the pgtable page is safe to
233  * access.
234  */
235 pte_t *huge_pte_offset(struct mm_struct *mm,
236 		       unsigned long addr, unsigned long sz);
237 unsigned long hugetlb_mask_last_page(struct hstate *h);
238 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
239 				unsigned long addr, pte_t *ptep);
240 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
241 				unsigned long *start, unsigned long *end);
242 
243 extern void __hugetlb_zap_begin(struct vm_area_struct *vma,
244 				unsigned long *begin, unsigned long *end);
245 extern void __hugetlb_zap_end(struct vm_area_struct *vma,
246 			      struct zap_details *details);
247 
hugetlb_zap_begin(struct vm_area_struct * vma,unsigned long * start,unsigned long * end)248 static inline void hugetlb_zap_begin(struct vm_area_struct *vma,
249 				     unsigned long *start, unsigned long *end)
250 {
251 	if (is_vm_hugetlb_page(vma))
252 		__hugetlb_zap_begin(vma, start, end);
253 }
254 
hugetlb_zap_end(struct vm_area_struct * vma,struct zap_details * details)255 static inline void hugetlb_zap_end(struct vm_area_struct *vma,
256 				   struct zap_details *details)
257 {
258 	if (is_vm_hugetlb_page(vma))
259 		__hugetlb_zap_end(vma, details);
260 }
261 
262 void hugetlb_vma_lock_read(struct vm_area_struct *vma);
263 void hugetlb_vma_unlock_read(struct vm_area_struct *vma);
264 void hugetlb_vma_lock_write(struct vm_area_struct *vma);
265 void hugetlb_vma_unlock_write(struct vm_area_struct *vma);
266 int hugetlb_vma_trylock_write(struct vm_area_struct *vma);
267 void hugetlb_vma_assert_locked(struct vm_area_struct *vma);
268 void hugetlb_vma_lock_release(struct kref *kref);
269 long hugetlb_change_protection(struct vm_area_struct *vma,
270 		unsigned long address, unsigned long end, pgprot_t newprot,
271 		unsigned long cp_flags);
272 bool is_hugetlb_entry_migration(pte_t pte);
273 bool is_hugetlb_entry_hwpoisoned(pte_t pte);
274 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma);
275 void hugetlb_split(struct vm_area_struct *vma, unsigned long addr);
276 
277 #else /* !CONFIG_HUGETLB_PAGE */
278 
hugetlb_dup_vma_private(struct vm_area_struct * vma)279 static inline void hugetlb_dup_vma_private(struct vm_area_struct *vma)
280 {
281 }
282 
clear_vma_resv_huge_pages(struct vm_area_struct * vma)283 static inline void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
284 {
285 }
286 
hugetlb_total_pages(void)287 static inline unsigned long hugetlb_total_pages(void)
288 {
289 	return 0;
290 }
291 
hugetlb_folio_mapping_lock_write(struct folio * folio)292 static inline struct address_space *hugetlb_folio_mapping_lock_write(
293 							struct folio *folio)
294 {
295 	return NULL;
296 }
297 
huge_pmd_unshare(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)298 static inline int huge_pmd_unshare(struct mm_struct *mm,
299 					struct vm_area_struct *vma,
300 					unsigned long addr, pte_t *ptep)
301 {
302 	return 0;
303 }
304 
adjust_range_if_pmd_sharing_possible(struct vm_area_struct * vma,unsigned long * start,unsigned long * end)305 static inline void adjust_range_if_pmd_sharing_possible(
306 				struct vm_area_struct *vma,
307 				unsigned long *start, unsigned long *end)
308 {
309 }
310 
hugetlb_zap_begin(struct vm_area_struct * vma,unsigned long * start,unsigned long * end)311 static inline void hugetlb_zap_begin(
312 				struct vm_area_struct *vma,
313 				unsigned long *start, unsigned long *end)
314 {
315 }
316 
hugetlb_zap_end(struct vm_area_struct * vma,struct zap_details * details)317 static inline void hugetlb_zap_end(
318 				struct vm_area_struct *vma,
319 				struct zap_details *details)
320 {
321 }
322 
copy_hugetlb_page_range(struct mm_struct * dst,struct mm_struct * src,struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma)323 static inline int copy_hugetlb_page_range(struct mm_struct *dst,
324 					  struct mm_struct *src,
325 					  struct vm_area_struct *dst_vma,
326 					  struct vm_area_struct *src_vma)
327 {
328 	BUG();
329 	return 0;
330 }
331 
move_hugetlb_page_tables(struct vm_area_struct * vma,struct vm_area_struct * new_vma,unsigned long old_addr,unsigned long new_addr,unsigned long len)332 static inline int move_hugetlb_page_tables(struct vm_area_struct *vma,
333 					   struct vm_area_struct *new_vma,
334 					   unsigned long old_addr,
335 					   unsigned long new_addr,
336 					   unsigned long len)
337 {
338 	BUG();
339 	return 0;
340 }
341 
hugetlb_report_meminfo(struct seq_file * m)342 static inline void hugetlb_report_meminfo(struct seq_file *m)
343 {
344 }
345 
hugetlb_report_node_meminfo(char * buf,int len,int nid)346 static inline int hugetlb_report_node_meminfo(char *buf, int len, int nid)
347 {
348 	return 0;
349 }
350 
hugetlb_show_meminfo_node(int nid)351 static inline void hugetlb_show_meminfo_node(int nid)
352 {
353 }
354 
prepare_hugepage_range(struct file * file,unsigned long addr,unsigned long len)355 static inline int prepare_hugepage_range(struct file *file,
356 				unsigned long addr, unsigned long len)
357 {
358 	return -EINVAL;
359 }
360 
hugetlb_vma_lock_read(struct vm_area_struct * vma)361 static inline void hugetlb_vma_lock_read(struct vm_area_struct *vma)
362 {
363 }
364 
hugetlb_vma_unlock_read(struct vm_area_struct * vma)365 static inline void hugetlb_vma_unlock_read(struct vm_area_struct *vma)
366 {
367 }
368 
hugetlb_vma_lock_write(struct vm_area_struct * vma)369 static inline void hugetlb_vma_lock_write(struct vm_area_struct *vma)
370 {
371 }
372 
hugetlb_vma_unlock_write(struct vm_area_struct * vma)373 static inline void hugetlb_vma_unlock_write(struct vm_area_struct *vma)
374 {
375 }
376 
hugetlb_vma_trylock_write(struct vm_area_struct * vma)377 static inline int hugetlb_vma_trylock_write(struct vm_area_struct *vma)
378 {
379 	return 1;
380 }
381 
hugetlb_vma_assert_locked(struct vm_area_struct * vma)382 static inline void hugetlb_vma_assert_locked(struct vm_area_struct *vma)
383 {
384 }
385 
is_hugepage_only_range(struct mm_struct * mm,unsigned long addr,unsigned long len)386 static inline int is_hugepage_only_range(struct mm_struct *mm,
387 					unsigned long addr, unsigned long len)
388 {
389 	return 0;
390 }
391 
hugetlb_free_pgd_range(struct mmu_gather * tlb,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)392 static inline void hugetlb_free_pgd_range(struct mmu_gather *tlb,
393 				unsigned long addr, unsigned long end,
394 				unsigned long floor, unsigned long ceiling)
395 {
396 	BUG();
397 }
398 
399 #ifdef CONFIG_USERFAULTFD
hugetlb_mfill_atomic_pte(pte_t * dst_pte,struct vm_area_struct * dst_vma,unsigned long dst_addr,unsigned long src_addr,uffd_flags_t flags,struct folio ** foliop)400 static inline int hugetlb_mfill_atomic_pte(pte_t *dst_pte,
401 					   struct vm_area_struct *dst_vma,
402 					   unsigned long dst_addr,
403 					   unsigned long src_addr,
404 					   uffd_flags_t flags,
405 					   struct folio **foliop)
406 {
407 	BUG();
408 	return 0;
409 }
410 #endif /* CONFIG_USERFAULTFD */
411 
huge_pte_offset(struct mm_struct * mm,unsigned long addr,unsigned long sz)412 static inline pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr,
413 					unsigned long sz)
414 {
415 	return NULL;
416 }
417 
isolate_hugetlb(struct folio * folio,struct list_head * list)418 static inline bool isolate_hugetlb(struct folio *folio, struct list_head *list)
419 {
420 	return false;
421 }
422 
get_hwpoison_hugetlb_folio(struct folio * folio,bool * hugetlb,bool unpoison)423 static inline int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison)
424 {
425 	return 0;
426 }
427 
get_huge_page_for_hwpoison(unsigned long pfn,int flags,bool * migratable_cleared)428 static inline int get_huge_page_for_hwpoison(unsigned long pfn, int flags,
429 					bool *migratable_cleared)
430 {
431 	return 0;
432 }
433 
folio_putback_active_hugetlb(struct folio * folio)434 static inline void folio_putback_active_hugetlb(struct folio *folio)
435 {
436 }
437 
move_hugetlb_state(struct folio * old_folio,struct folio * new_folio,int reason)438 static inline void move_hugetlb_state(struct folio *old_folio,
439 					struct folio *new_folio, int reason)
440 {
441 }
442 
hugetlb_change_protection(struct vm_area_struct * vma,unsigned long address,unsigned long end,pgprot_t newprot,unsigned long cp_flags)443 static inline long hugetlb_change_protection(
444 			struct vm_area_struct *vma, unsigned long address,
445 			unsigned long end, pgprot_t newprot,
446 			unsigned long cp_flags)
447 {
448 	return 0;
449 }
450 
__unmap_hugepage_range(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long start,unsigned long end,struct page * ref_page,zap_flags_t zap_flags)451 static inline void __unmap_hugepage_range(struct mmu_gather *tlb,
452 			struct vm_area_struct *vma, unsigned long start,
453 			unsigned long end, struct page *ref_page,
454 			zap_flags_t zap_flags)
455 {
456 	BUG();
457 }
458 
hugetlb_fault(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long address,unsigned int flags)459 static inline vm_fault_t hugetlb_fault(struct mm_struct *mm,
460 			struct vm_area_struct *vma, unsigned long address,
461 			unsigned int flags)
462 {
463 	BUG();
464 	return 0;
465 }
466 
hugetlb_unshare_all_pmds(struct vm_area_struct * vma)467 static inline void hugetlb_unshare_all_pmds(struct vm_area_struct *vma) { }
468 
hugetlb_split(struct vm_area_struct * vma,unsigned long addr)469 static inline void hugetlb_split(struct vm_area_struct *vma, unsigned long addr) {}
470 
471 #endif /* !CONFIG_HUGETLB_PAGE */
472 
473 #ifndef pgd_write
pgd_write(pgd_t pgd)474 static inline int pgd_write(pgd_t pgd)
475 {
476 	BUG();
477 	return 0;
478 }
479 #endif
480 
481 #define HUGETLB_ANON_FILE "anon_hugepage"
482 
483 enum {
484 	/*
485 	 * The file will be used as an shm file so shmfs accounting rules
486 	 * apply
487 	 */
488 	HUGETLB_SHMFS_INODE     = 1,
489 	/*
490 	 * The file is being created on the internal vfs mount and shmfs
491 	 * accounting rules do not apply
492 	 */
493 	HUGETLB_ANONHUGE_INODE  = 2,
494 };
495 
496 #ifdef CONFIG_HUGETLBFS
497 struct hugetlbfs_sb_info {
498 	long	max_inodes;   /* inodes allowed */
499 	long	free_inodes;  /* inodes free */
500 	spinlock_t	stat_lock;
501 	struct hstate *hstate;
502 	struct hugepage_subpool *spool;
503 	kuid_t	uid;
504 	kgid_t	gid;
505 	umode_t mode;
506 };
507 
HUGETLBFS_SB(struct super_block * sb)508 static inline struct hugetlbfs_sb_info *HUGETLBFS_SB(struct super_block *sb)
509 {
510 	return sb->s_fs_info;
511 }
512 
513 struct hugetlbfs_inode_info {
514 	struct inode vfs_inode;
515 	unsigned int seals;
516 };
517 
HUGETLBFS_I(struct inode * inode)518 static inline struct hugetlbfs_inode_info *HUGETLBFS_I(struct inode *inode)
519 {
520 	return container_of(inode, struct hugetlbfs_inode_info, vfs_inode);
521 }
522 
523 extern const struct vm_operations_struct hugetlb_vm_ops;
524 struct file *hugetlb_file_setup(const char *name, size_t size, vm_flags_t acct,
525 				int creat_flags, int page_size_log);
526 
is_file_hugepages(const struct file * file)527 static inline bool is_file_hugepages(const struct file *file)
528 {
529 	return file->f_op->fop_flags & FOP_HUGE_PAGES;
530 }
531 
hstate_inode(struct inode * i)532 static inline struct hstate *hstate_inode(struct inode *i)
533 {
534 	return HUGETLBFS_SB(i->i_sb)->hstate;
535 }
536 #else /* !CONFIG_HUGETLBFS */
537 
538 #define is_file_hugepages(file)			false
539 static inline struct file *
hugetlb_file_setup(const char * name,size_t size,vm_flags_t acctflag,int creat_flags,int page_size_log)540 hugetlb_file_setup(const char *name, size_t size, vm_flags_t acctflag,
541 		int creat_flags, int page_size_log)
542 {
543 	return ERR_PTR(-ENOSYS);
544 }
545 
hstate_inode(struct inode * i)546 static inline struct hstate *hstate_inode(struct inode *i)
547 {
548 	return NULL;
549 }
550 #endif /* !CONFIG_HUGETLBFS */
551 
552 #ifdef HAVE_ARCH_HUGETLB_UNMAPPED_AREA
553 unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
554 					unsigned long len, unsigned long pgoff,
555 					unsigned long flags);
556 #endif /* HAVE_ARCH_HUGETLB_UNMAPPED_AREA */
557 
558 unsigned long
559 generic_hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
560 				  unsigned long len, unsigned long pgoff,
561 				  unsigned long flags);
562 
563 /*
564  * huegtlb page specific state flags.  These flags are located in page.private
565  * of the hugetlb head page.  Functions created via the below macros should be
566  * used to manipulate these flags.
567  *
568  * HPG_restore_reserve - Set when a hugetlb page consumes a reservation at
569  *	allocation time.  Cleared when page is fully instantiated.  Free
570  *	routine checks flag to restore a reservation on error paths.
571  *	Synchronization:  Examined or modified by code that knows it has
572  *	the only reference to page.  i.e. After allocation but before use
573  *	or when the page is being freed.
574  * HPG_migratable  - Set after a newly allocated page is added to the page
575  *	cache and/or page tables.  Indicates the page is a candidate for
576  *	migration.
577  *	Synchronization:  Initially set after new page allocation with no
578  *	locking.  When examined and modified during migration processing
579  *	(isolate, migrate, putback) the hugetlb_lock is held.
580  * HPG_temporary - Set on a page that is temporarily allocated from the buddy
581  *	allocator.  Typically used for migration target pages when no pages
582  *	are available in the pool.  The hugetlb free page path will
583  *	immediately free pages with this flag set to the buddy allocator.
584  *	Synchronization: Can be set after huge page allocation from buddy when
585  *	code knows it has only reference.  All other examinations and
586  *	modifications require hugetlb_lock.
587  * HPG_freed - Set when page is on the free lists.
588  *	Synchronization: hugetlb_lock held for examination and modification.
589  * HPG_vmemmap_optimized - Set when the vmemmap pages of the page are freed.
590  * HPG_raw_hwp_unreliable - Set when the hugetlb page has a hwpoison sub-page
591  *     that is not tracked by raw_hwp_page list.
592  */
593 enum hugetlb_page_flags {
594 	HPG_restore_reserve = 0,
595 	HPG_migratable,
596 	HPG_temporary,
597 	HPG_freed,
598 	HPG_vmemmap_optimized,
599 	HPG_raw_hwp_unreliable,
600 	__NR_HPAGEFLAGS,
601 };
602 
603 /*
604  * Macros to create test, set and clear function definitions for
605  * hugetlb specific page flags.
606  */
607 #ifdef CONFIG_HUGETLB_PAGE
608 #define TESTHPAGEFLAG(uname, flname)				\
609 static __always_inline						\
610 bool folio_test_hugetlb_##flname(struct folio *folio)		\
611 	{	void *private = &folio->private;		\
612 		return test_bit(HPG_##flname, private);		\
613 	}
614 
615 #define SETHPAGEFLAG(uname, flname)				\
616 static __always_inline						\
617 void folio_set_hugetlb_##flname(struct folio *folio)		\
618 	{	void *private = &folio->private;		\
619 		set_bit(HPG_##flname, private);			\
620 	}
621 
622 #define CLEARHPAGEFLAG(uname, flname)				\
623 static __always_inline						\
624 void folio_clear_hugetlb_##flname(struct folio *folio)		\
625 	{	void *private = &folio->private;		\
626 		clear_bit(HPG_##flname, private);		\
627 	}
628 #else
629 #define TESTHPAGEFLAG(uname, flname)				\
630 static inline bool						\
631 folio_test_hugetlb_##flname(struct folio *folio)		\
632 	{ return 0; }
633 
634 #define SETHPAGEFLAG(uname, flname)				\
635 static inline void						\
636 folio_set_hugetlb_##flname(struct folio *folio) 		\
637 	{ }
638 
639 #define CLEARHPAGEFLAG(uname, flname)				\
640 static inline void						\
641 folio_clear_hugetlb_##flname(struct folio *folio)		\
642 	{ }
643 #endif
644 
645 #define HPAGEFLAG(uname, flname)				\
646 	TESTHPAGEFLAG(uname, flname)				\
647 	SETHPAGEFLAG(uname, flname)				\
648 	CLEARHPAGEFLAG(uname, flname)				\
649 
650 /*
651  * Create functions associated with hugetlb page flags
652  */
653 HPAGEFLAG(RestoreReserve, restore_reserve)
654 HPAGEFLAG(Migratable, migratable)
655 HPAGEFLAG(Temporary, temporary)
656 HPAGEFLAG(Freed, freed)
657 HPAGEFLAG(VmemmapOptimized, vmemmap_optimized)
658 HPAGEFLAG(RawHwpUnreliable, raw_hwp_unreliable)
659 
660 #ifdef CONFIG_HUGETLB_PAGE
661 
662 #define HSTATE_NAME_LEN 32
663 /* Defines one hugetlb page size */
664 struct hstate {
665 	struct mutex resize_lock;
666 	struct lock_class_key resize_key;
667 	int next_nid_to_alloc;
668 	int next_nid_to_free;
669 	unsigned int order;
670 	unsigned int demote_order;
671 	unsigned long mask;
672 	unsigned long max_huge_pages;
673 	unsigned long nr_huge_pages;
674 	unsigned long free_huge_pages;
675 	unsigned long resv_huge_pages;
676 	unsigned long surplus_huge_pages;
677 	unsigned long nr_overcommit_huge_pages;
678 	struct list_head hugepage_activelist;
679 	struct list_head hugepage_freelists[MAX_NUMNODES];
680 	unsigned int max_huge_pages_node[MAX_NUMNODES];
681 	unsigned int nr_huge_pages_node[MAX_NUMNODES];
682 	unsigned int free_huge_pages_node[MAX_NUMNODES];
683 	unsigned int surplus_huge_pages_node[MAX_NUMNODES];
684 	char name[HSTATE_NAME_LEN];
685 };
686 
687 struct huge_bootmem_page {
688 	struct list_head list;
689 	struct hstate *hstate;
690 };
691 
692 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list);
693 void wait_for_freed_hugetlb_folios(void);
694 struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma,
695 				unsigned long addr, int avoid_reserve);
696 struct folio *alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid,
697 				nodemask_t *nmask, gfp_t gfp_mask,
698 				bool allow_alloc_fallback);
699 struct folio *alloc_hugetlb_folio_reserve(struct hstate *h, int preferred_nid,
700 					  nodemask_t *nmask, gfp_t gfp_mask);
701 
702 int hugetlb_add_to_page_cache(struct folio *folio, struct address_space *mapping,
703 			pgoff_t idx);
704 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
705 				unsigned long address, struct folio *folio);
706 
707 /* arch callback */
708 int __init __alloc_bootmem_huge_page(struct hstate *h, int nid);
709 int __init alloc_bootmem_huge_page(struct hstate *h, int nid);
710 bool __init hugetlb_node_alloc_supported(void);
711 
712 void __init hugetlb_add_hstate(unsigned order);
713 bool __init arch_hugetlb_valid_size(unsigned long size);
714 struct hstate *size_to_hstate(unsigned long size);
715 
716 #ifndef HUGE_MAX_HSTATE
717 #define HUGE_MAX_HSTATE 1
718 #endif
719 
720 extern struct hstate hstates[HUGE_MAX_HSTATE];
721 extern unsigned int default_hstate_idx;
722 
723 #define default_hstate (hstates[default_hstate_idx])
724 
hugetlb_folio_subpool(struct folio * folio)725 static inline struct hugepage_subpool *hugetlb_folio_subpool(struct folio *folio)
726 {
727 	return folio->_hugetlb_subpool;
728 }
729 
hugetlb_set_folio_subpool(struct folio * folio,struct hugepage_subpool * subpool)730 static inline void hugetlb_set_folio_subpool(struct folio *folio,
731 					struct hugepage_subpool *subpool)
732 {
733 	folio->_hugetlb_subpool = subpool;
734 }
735 
hstate_file(struct file * f)736 static inline struct hstate *hstate_file(struct file *f)
737 {
738 	return hstate_inode(file_inode(f));
739 }
740 
hstate_sizelog(int page_size_log)741 static inline struct hstate *hstate_sizelog(int page_size_log)
742 {
743 	if (!page_size_log)
744 		return &default_hstate;
745 
746 	if (page_size_log < BITS_PER_LONG)
747 		return size_to_hstate(1UL << page_size_log);
748 
749 	return NULL;
750 }
751 
hstate_vma(struct vm_area_struct * vma)752 static inline struct hstate *hstate_vma(struct vm_area_struct *vma)
753 {
754 	return hstate_file(vma->vm_file);
755 }
756 
huge_page_size(const struct hstate * h)757 static inline unsigned long huge_page_size(const struct hstate *h)
758 {
759 	return (unsigned long)PAGE_SIZE << h->order;
760 }
761 
762 extern unsigned long vma_kernel_pagesize(struct vm_area_struct *vma);
763 
764 extern unsigned long vma_mmu_pagesize(struct vm_area_struct *vma);
765 
huge_page_mask(struct hstate * h)766 static inline unsigned long huge_page_mask(struct hstate *h)
767 {
768 	return h->mask;
769 }
770 
huge_page_order(struct hstate * h)771 static inline unsigned int huge_page_order(struct hstate *h)
772 {
773 	return h->order;
774 }
775 
huge_page_shift(struct hstate * h)776 static inline unsigned huge_page_shift(struct hstate *h)
777 {
778 	return h->order + PAGE_SHIFT;
779 }
780 
hstate_is_gigantic(struct hstate * h)781 static inline bool hstate_is_gigantic(struct hstate *h)
782 {
783 	return huge_page_order(h) > MAX_PAGE_ORDER;
784 }
785 
pages_per_huge_page(const struct hstate * h)786 static inline unsigned int pages_per_huge_page(const struct hstate *h)
787 {
788 	return 1 << h->order;
789 }
790 
blocks_per_huge_page(struct hstate * h)791 static inline unsigned int blocks_per_huge_page(struct hstate *h)
792 {
793 	return huge_page_size(h) / 512;
794 }
795 
filemap_lock_hugetlb_folio(struct hstate * h,struct address_space * mapping,pgoff_t idx)796 static inline struct folio *filemap_lock_hugetlb_folio(struct hstate *h,
797 				struct address_space *mapping, pgoff_t idx)
798 {
799 	return filemap_lock_folio(mapping, idx << huge_page_order(h));
800 }
801 
802 #include <asm/hugetlb.h>
803 
804 #ifndef is_hugepage_only_range
is_hugepage_only_range(struct mm_struct * mm,unsigned long addr,unsigned long len)805 static inline int is_hugepage_only_range(struct mm_struct *mm,
806 					unsigned long addr, unsigned long len)
807 {
808 	return 0;
809 }
810 #define is_hugepage_only_range is_hugepage_only_range
811 #endif
812 
813 #ifndef arch_clear_hugetlb_flags
arch_clear_hugetlb_flags(struct folio * folio)814 static inline void arch_clear_hugetlb_flags(struct folio *folio) { }
815 #define arch_clear_hugetlb_flags arch_clear_hugetlb_flags
816 #endif
817 
818 #ifndef arch_make_huge_pte
arch_make_huge_pte(pte_t entry,unsigned int shift,vm_flags_t flags)819 static inline pte_t arch_make_huge_pte(pte_t entry, unsigned int shift,
820 				       vm_flags_t flags)
821 {
822 	return pte_mkhuge(entry);
823 }
824 #endif
825 
folio_hstate(struct folio * folio)826 static inline struct hstate *folio_hstate(struct folio *folio)
827 {
828 	VM_BUG_ON_FOLIO(!folio_test_hugetlb(folio), folio);
829 	return size_to_hstate(folio_size(folio));
830 }
831 
hstate_index_to_shift(unsigned index)832 static inline unsigned hstate_index_to_shift(unsigned index)
833 {
834 	return hstates[index].order + PAGE_SHIFT;
835 }
836 
hstate_index(struct hstate * h)837 static inline int hstate_index(struct hstate *h)
838 {
839 	return h - hstates;
840 }
841 
842 int dissolve_free_hugetlb_folio(struct folio *folio);
843 int dissolve_free_hugetlb_folios(unsigned long start_pfn,
844 				    unsigned long end_pfn);
845 
846 #ifdef CONFIG_MEMORY_FAILURE
847 extern void folio_clear_hugetlb_hwpoison(struct folio *folio);
848 #else
folio_clear_hugetlb_hwpoison(struct folio * folio)849 static inline void folio_clear_hugetlb_hwpoison(struct folio *folio)
850 {
851 }
852 #endif
853 
854 #ifdef CONFIG_ARCH_ENABLE_HUGEPAGE_MIGRATION
855 #ifndef arch_hugetlb_migration_supported
arch_hugetlb_migration_supported(struct hstate * h)856 static inline bool arch_hugetlb_migration_supported(struct hstate *h)
857 {
858 	if ((huge_page_shift(h) == PMD_SHIFT) ||
859 		(huge_page_shift(h) == PUD_SHIFT) ||
860 			(huge_page_shift(h) == PGDIR_SHIFT))
861 		return true;
862 	else
863 		return false;
864 }
865 #endif
866 #else
arch_hugetlb_migration_supported(struct hstate * h)867 static inline bool arch_hugetlb_migration_supported(struct hstate *h)
868 {
869 	return false;
870 }
871 #endif
872 
hugepage_migration_supported(struct hstate * h)873 static inline bool hugepage_migration_supported(struct hstate *h)
874 {
875 	return arch_hugetlb_migration_supported(h);
876 }
877 
878 /*
879  * Movability check is different as compared to migration check.
880  * It determines whether or not a huge page should be placed on
881  * movable zone or not. Movability of any huge page should be
882  * required only if huge page size is supported for migration.
883  * There won't be any reason for the huge page to be movable if
884  * it is not migratable to start with. Also the size of the huge
885  * page should be large enough to be placed under a movable zone
886  * and still feasible enough to be migratable. Just the presence
887  * in movable zone does not make the migration feasible.
888  *
889  * So even though large huge page sizes like the gigantic ones
890  * are migratable they should not be movable because its not
891  * feasible to migrate them from movable zone.
892  */
hugepage_movable_supported(struct hstate * h)893 static inline bool hugepage_movable_supported(struct hstate *h)
894 {
895 	if (!hugepage_migration_supported(h))
896 		return false;
897 
898 	if (hstate_is_gigantic(h))
899 		return false;
900 	return true;
901 }
902 
903 /* Movability of hugepages depends on migration support. */
htlb_alloc_mask(struct hstate * h)904 static inline gfp_t htlb_alloc_mask(struct hstate *h)
905 {
906 	gfp_t gfp = __GFP_COMP | __GFP_NOWARN;
907 
908 	gfp |= hugepage_movable_supported(h) ? GFP_HIGHUSER_MOVABLE : GFP_HIGHUSER;
909 
910 	return gfp;
911 }
912 
htlb_modify_alloc_mask(struct hstate * h,gfp_t gfp_mask)913 static inline gfp_t htlb_modify_alloc_mask(struct hstate *h, gfp_t gfp_mask)
914 {
915 	gfp_t modified_mask = htlb_alloc_mask(h);
916 
917 	/* Some callers might want to enforce node */
918 	modified_mask |= (gfp_mask & __GFP_THISNODE);
919 
920 	modified_mask |= (gfp_mask & __GFP_NOWARN);
921 
922 	return modified_mask;
923 }
924 
htlb_allow_alloc_fallback(int reason)925 static inline bool htlb_allow_alloc_fallback(int reason)
926 {
927 	bool allowed_fallback = false;
928 
929 	/*
930 	 * Note: the memory offline, memory failure and migration syscalls will
931 	 * be allowed to fallback to other nodes due to lack of a better chioce,
932 	 * that might break the per-node hugetlb pool. While other cases will
933 	 * set the __GFP_THISNODE to avoid breaking the per-node hugetlb pool.
934 	 */
935 	switch (reason) {
936 	case MR_MEMORY_HOTPLUG:
937 	case MR_MEMORY_FAILURE:
938 	case MR_SYSCALL:
939 	case MR_MEMPOLICY_MBIND:
940 		allowed_fallback = true;
941 		break;
942 	default:
943 		break;
944 	}
945 
946 	return allowed_fallback;
947 }
948 
huge_pte_lockptr(struct hstate * h,struct mm_struct * mm,pte_t * pte)949 static inline spinlock_t *huge_pte_lockptr(struct hstate *h,
950 					   struct mm_struct *mm, pte_t *pte)
951 {
952 	const unsigned long size = huge_page_size(h);
953 
954 	VM_WARN_ON(size == PAGE_SIZE);
955 
956 	/*
957 	 * hugetlb must use the exact same PT locks as core-mm page table
958 	 * walkers would. When modifying a PTE table, hugetlb must take the
959 	 * PTE PT lock, when modifying a PMD table, hugetlb must take the PMD
960 	 * PT lock etc.
961 	 *
962 	 * The expectation is that any hugetlb folio smaller than a PMD is
963 	 * always mapped into a single PTE table and that any hugetlb folio
964 	 * smaller than a PUD (but at least as big as a PMD) is always mapped
965 	 * into a single PMD table.
966 	 *
967 	 * If that does not hold for an architecture, then that architecture
968 	 * must disable split PT locks such that all *_lockptr() functions
969 	 * will give us the same result: the per-MM PT lock.
970 	 *
971 	 * Note that with e.g., CONFIG_PGTABLE_LEVELS=2 where
972 	 * PGDIR_SIZE==P4D_SIZE==PUD_SIZE==PMD_SIZE, we'd use pud_lockptr()
973 	 * and core-mm would use pmd_lockptr(). However, in such configurations
974 	 * split PMD locks are disabled -- they don't make sense on a single
975 	 * PGDIR page table -- and the end result is the same.
976 	 */
977 	if (size >= PUD_SIZE)
978 		return pud_lockptr(mm, (pud_t *) pte);
979 	else if (size >= PMD_SIZE || IS_ENABLED(CONFIG_HIGHPTE))
980 		return pmd_lockptr(mm, (pmd_t *) pte);
981 	/* pte_alloc_huge() only applies with !CONFIG_HIGHPTE */
982 	return ptep_lockptr(mm, pte);
983 }
984 
985 #ifndef hugepages_supported
986 /*
987  * Some platform decide whether they support huge pages at boot
988  * time. Some of them, such as powerpc, set HPAGE_SHIFT to 0
989  * when there is no such support
990  */
991 #define hugepages_supported() (HPAGE_SHIFT != 0)
992 #endif
993 
994 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm);
995 
hugetlb_count_init(struct mm_struct * mm)996 static inline void hugetlb_count_init(struct mm_struct *mm)
997 {
998 	atomic_long_set(&mm->hugetlb_usage, 0);
999 }
1000 
hugetlb_count_add(long l,struct mm_struct * mm)1001 static inline void hugetlb_count_add(long l, struct mm_struct *mm)
1002 {
1003 	atomic_long_add(l, &mm->hugetlb_usage);
1004 }
1005 
hugetlb_count_sub(long l,struct mm_struct * mm)1006 static inline void hugetlb_count_sub(long l, struct mm_struct *mm)
1007 {
1008 	atomic_long_sub(l, &mm->hugetlb_usage);
1009 }
1010 
1011 #ifndef huge_ptep_modify_prot_start
1012 #define huge_ptep_modify_prot_start huge_ptep_modify_prot_start
huge_ptep_modify_prot_start(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)1013 static inline pte_t huge_ptep_modify_prot_start(struct vm_area_struct *vma,
1014 						unsigned long addr, pte_t *ptep)
1015 {
1016 	unsigned long psize = huge_page_size(hstate_vma(vma));
1017 
1018 	return huge_ptep_get_and_clear(vma->vm_mm, addr, ptep, psize);
1019 }
1020 #endif
1021 
1022 #ifndef huge_ptep_modify_prot_commit
1023 #define huge_ptep_modify_prot_commit huge_ptep_modify_prot_commit
huge_ptep_modify_prot_commit(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep,pte_t old_pte,pte_t pte)1024 static inline void huge_ptep_modify_prot_commit(struct vm_area_struct *vma,
1025 						unsigned long addr, pte_t *ptep,
1026 						pte_t old_pte, pte_t pte)
1027 {
1028 	unsigned long psize = huge_page_size(hstate_vma(vma));
1029 
1030 	set_huge_pte_at(vma->vm_mm, addr, ptep, pte, psize);
1031 }
1032 #endif
1033 
1034 #ifdef CONFIG_NUMA
1035 void hugetlb_register_node(struct node *node);
1036 void hugetlb_unregister_node(struct node *node);
1037 #endif
1038 
1039 /*
1040  * Check if a given raw @page in a hugepage is HWPOISON.
1041  */
1042 bool is_raw_hwpoison_page_in_hugepage(struct page *page);
1043 
1044 #else	/* CONFIG_HUGETLB_PAGE */
1045 struct hstate {};
1046 
1047 static inline struct hugepage_subpool *hugetlb_folio_subpool(struct folio *folio)
1048 {
1049 	return NULL;
1050 }
1051 
1052 static inline struct folio *filemap_lock_hugetlb_folio(struct hstate *h,
1053 				struct address_space *mapping, pgoff_t idx)
1054 {
1055 	return NULL;
1056 }
1057 
1058 static inline int isolate_or_dissolve_huge_page(struct page *page,
1059 						struct list_head *list)
1060 {
1061 	return -ENOMEM;
1062 }
1063 
1064 static inline void wait_for_freed_hugetlb_folios(void)
1065 {
1066 }
1067 
1068 static inline struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma,
1069 					   unsigned long addr,
1070 					   int avoid_reserve)
1071 {
1072 	return NULL;
1073 }
1074 
1075 static inline struct folio *
1076 alloc_hugetlb_folio_reserve(struct hstate *h, int preferred_nid,
1077 			    nodemask_t *nmask, gfp_t gfp_mask)
1078 {
1079 	return NULL;
1080 }
1081 
1082 static inline struct folio *
1083 alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid,
1084 			nodemask_t *nmask, gfp_t gfp_mask,
1085 			bool allow_alloc_fallback)
1086 {
1087 	return NULL;
1088 }
1089 
1090 static inline int __alloc_bootmem_huge_page(struct hstate *h)
1091 {
1092 	return 0;
1093 }
1094 
1095 static inline struct hstate *hstate_file(struct file *f)
1096 {
1097 	return NULL;
1098 }
1099 
1100 static inline struct hstate *hstate_sizelog(int page_size_log)
1101 {
1102 	return NULL;
1103 }
1104 
1105 static inline struct hstate *hstate_vma(struct vm_area_struct *vma)
1106 {
1107 	return NULL;
1108 }
1109 
1110 static inline struct hstate *folio_hstate(struct folio *folio)
1111 {
1112 	return NULL;
1113 }
1114 
1115 static inline struct hstate *size_to_hstate(unsigned long size)
1116 {
1117 	return NULL;
1118 }
1119 
1120 static inline unsigned long huge_page_size(struct hstate *h)
1121 {
1122 	return PAGE_SIZE;
1123 }
1124 
1125 static inline unsigned long huge_page_mask(struct hstate *h)
1126 {
1127 	return PAGE_MASK;
1128 }
1129 
1130 static inline unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
1131 {
1132 	return PAGE_SIZE;
1133 }
1134 
1135 static inline unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
1136 {
1137 	return PAGE_SIZE;
1138 }
1139 
1140 static inline unsigned int huge_page_order(struct hstate *h)
1141 {
1142 	return 0;
1143 }
1144 
1145 static inline unsigned int huge_page_shift(struct hstate *h)
1146 {
1147 	return PAGE_SHIFT;
1148 }
1149 
1150 static inline bool hstate_is_gigantic(struct hstate *h)
1151 {
1152 	return false;
1153 }
1154 
1155 static inline unsigned int pages_per_huge_page(struct hstate *h)
1156 {
1157 	return 1;
1158 }
1159 
1160 static inline unsigned hstate_index_to_shift(unsigned index)
1161 {
1162 	return 0;
1163 }
1164 
1165 static inline int hstate_index(struct hstate *h)
1166 {
1167 	return 0;
1168 }
1169 
1170 static inline int dissolve_free_hugetlb_folio(struct folio *folio)
1171 {
1172 	return 0;
1173 }
1174 
1175 static inline int dissolve_free_hugetlb_folios(unsigned long start_pfn,
1176 					   unsigned long end_pfn)
1177 {
1178 	return 0;
1179 }
1180 
1181 static inline bool hugepage_migration_supported(struct hstate *h)
1182 {
1183 	return false;
1184 }
1185 
1186 static inline bool hugepage_movable_supported(struct hstate *h)
1187 {
1188 	return false;
1189 }
1190 
1191 static inline gfp_t htlb_alloc_mask(struct hstate *h)
1192 {
1193 	return 0;
1194 }
1195 
1196 static inline gfp_t htlb_modify_alloc_mask(struct hstate *h, gfp_t gfp_mask)
1197 {
1198 	return 0;
1199 }
1200 
1201 static inline bool htlb_allow_alloc_fallback(int reason)
1202 {
1203 	return false;
1204 }
1205 
1206 static inline spinlock_t *huge_pte_lockptr(struct hstate *h,
1207 					   struct mm_struct *mm, pte_t *pte)
1208 {
1209 	return &mm->page_table_lock;
1210 }
1211 
1212 static inline void hugetlb_count_init(struct mm_struct *mm)
1213 {
1214 }
1215 
1216 static inline void hugetlb_report_usage(struct seq_file *f, struct mm_struct *m)
1217 {
1218 }
1219 
1220 static inline void hugetlb_count_sub(long l, struct mm_struct *mm)
1221 {
1222 }
1223 
1224 static inline pte_t huge_ptep_clear_flush(struct vm_area_struct *vma,
1225 					  unsigned long addr, pte_t *ptep)
1226 {
1227 #ifdef CONFIG_MMU
1228 	return ptep_get(ptep);
1229 #else
1230 	return *ptep;
1231 #endif
1232 }
1233 
1234 static inline void set_huge_pte_at(struct mm_struct *mm, unsigned long addr,
1235 				   pte_t *ptep, pte_t pte, unsigned long sz)
1236 {
1237 }
1238 
1239 static inline void hugetlb_register_node(struct node *node)
1240 {
1241 }
1242 
1243 static inline void hugetlb_unregister_node(struct node *node)
1244 {
1245 }
1246 
1247 static inline bool hugetlbfs_pagecache_present(
1248     struct hstate *h, struct vm_area_struct *vma, unsigned long address)
1249 {
1250 	return false;
1251 }
1252 #endif	/* CONFIG_HUGETLB_PAGE */
1253 
huge_pte_lock(struct hstate * h,struct mm_struct * mm,pte_t * pte)1254 static inline spinlock_t *huge_pte_lock(struct hstate *h,
1255 					struct mm_struct *mm, pte_t *pte)
1256 {
1257 	spinlock_t *ptl;
1258 
1259 	ptl = huge_pte_lockptr(h, mm, pte);
1260 	spin_lock(ptl);
1261 	return ptl;
1262 }
1263 
1264 #if defined(CONFIG_HUGETLB_PAGE) && defined(CONFIG_CMA)
1265 extern void __init hugetlb_cma_reserve(int order);
1266 #else
hugetlb_cma_reserve(int order)1267 static inline __init void hugetlb_cma_reserve(int order)
1268 {
1269 }
1270 #endif
1271 
1272 #ifdef CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING
hugetlb_pmd_shared(pte_t * pte)1273 static inline bool hugetlb_pmd_shared(pte_t *pte)
1274 {
1275 	return page_count(virt_to_page(pte)) > 1;
1276 }
1277 #else
hugetlb_pmd_shared(pte_t * pte)1278 static inline bool hugetlb_pmd_shared(pte_t *pte)
1279 {
1280 	return false;
1281 }
1282 #endif
1283 
1284 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr);
1285 
1286 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
1287 /*
1288  * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
1289  * implement this.
1290  */
1291 #define flush_hugetlb_tlb_range(vma, addr, end)	flush_tlb_range(vma, addr, end)
1292 #endif
1293 
__vma_shareable_lock(struct vm_area_struct * vma)1294 static inline bool __vma_shareable_lock(struct vm_area_struct *vma)
1295 {
1296 	return (vma->vm_flags & VM_MAYSHARE) && vma->vm_private_data;
1297 }
1298 
1299 bool __vma_private_lock(struct vm_area_struct *vma);
1300 
1301 /*
1302  * Safe version of huge_pte_offset() to check the locks.  See comments
1303  * above huge_pte_offset().
1304  */
1305 static inline pte_t *
hugetlb_walk(struct vm_area_struct * vma,unsigned long addr,unsigned long sz)1306 hugetlb_walk(struct vm_area_struct *vma, unsigned long addr, unsigned long sz)
1307 {
1308 #if defined(CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING) && defined(CONFIG_LOCKDEP)
1309 	struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
1310 
1311 	/*
1312 	 * If pmd sharing possible, locking needed to safely walk the
1313 	 * hugetlb pgtables.  More information can be found at the comment
1314 	 * above huge_pte_offset() in the same file.
1315 	 *
1316 	 * NOTE: lockdep_is_held() is only defined with CONFIG_LOCKDEP.
1317 	 */
1318 	if (__vma_shareable_lock(vma))
1319 		WARN_ON_ONCE(!lockdep_is_held(&vma_lock->rw_sema) &&
1320 			     !lockdep_is_held(
1321 				 &vma->vm_file->f_mapping->i_mmap_rwsem));
1322 #endif
1323 	return huge_pte_offset(vma->vm_mm, addr, sz);
1324 }
1325 
1326 #endif /* _LINUX_HUGETLB_H */
1327