• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  *  Universal power supply monitor class
4  *
5  *  Copyright © 2007  Anton Vorontsov <cbou@mail.ru>
6  *  Copyright © 2004  Szabolcs Gyurko
7  *  Copyright © 2003  Ian Molton <spyro@f2s.com>
8  *
9  *  Modified: 2004, Oct     Szabolcs Gyurko
10  */
11 
12 #ifndef __LINUX_POWER_SUPPLY_H__
13 #define __LINUX_POWER_SUPPLY_H__
14 
15 #include <linux/device.h>
16 #include <linux/workqueue.h>
17 #include <linux/leds.h>
18 #include <linux/spinlock.h>
19 #include <linux/notifier.h>
20 #include <linux/android_kabi.h>
21 
22 /*
23  * All voltages, currents, charges, energies, time and temperatures in uV,
24  * µA, µAh, µWh, seconds and tenths of degree Celsius unless otherwise
25  * stated. It's driver's job to convert its raw values to units in which
26  * this class operates.
27  */
28 
29 /*
30  * For systems where the charger determines the maximum battery capacity
31  * the min and max fields should be used to present these values to user
32  * space. Unused/unknown fields will not appear in sysfs.
33  */
34 
35 enum {
36 	POWER_SUPPLY_STATUS_UNKNOWN = 0,
37 	POWER_SUPPLY_STATUS_CHARGING,
38 	POWER_SUPPLY_STATUS_DISCHARGING,
39 	POWER_SUPPLY_STATUS_NOT_CHARGING,
40 	POWER_SUPPLY_STATUS_FULL,
41 };
42 
43 /* What algorithm is the charger using? */
44 enum {
45 	POWER_SUPPLY_CHARGE_TYPE_UNKNOWN = 0,
46 	POWER_SUPPLY_CHARGE_TYPE_NONE,
47 	POWER_SUPPLY_CHARGE_TYPE_TRICKLE,	/* slow speed */
48 	POWER_SUPPLY_CHARGE_TYPE_FAST,		/* fast speed */
49 	POWER_SUPPLY_CHARGE_TYPE_STANDARD,	/* normal speed */
50 	POWER_SUPPLY_CHARGE_TYPE_ADAPTIVE,	/* dynamically adjusted speed */
51 	POWER_SUPPLY_CHARGE_TYPE_CUSTOM,	/* use CHARGE_CONTROL_* props */
52 	POWER_SUPPLY_CHARGE_TYPE_LONGLIFE,	/* slow speed, longer life */
53 	POWER_SUPPLY_CHARGE_TYPE_BYPASS,	/* bypassing the charger */
54 
55 	/*
56 	 * force to 50 to minimize the chances of userspace binary
57 	 * incompatibility on newer upstream kernels
58 	 */
59 	POWER_SUPPLY_CHARGE_TYPE_TAPER_EXT = 50,	/* charging in CV phase */
60 };
61 
62 enum {
63 	POWER_SUPPLY_HEALTH_UNKNOWN = 0,
64 	POWER_SUPPLY_HEALTH_GOOD,
65 	POWER_SUPPLY_HEALTH_OVERHEAT,
66 	POWER_SUPPLY_HEALTH_DEAD,
67 	POWER_SUPPLY_HEALTH_OVERVOLTAGE,
68 	POWER_SUPPLY_HEALTH_UNSPEC_FAILURE,
69 	POWER_SUPPLY_HEALTH_COLD,
70 	POWER_SUPPLY_HEALTH_WATCHDOG_TIMER_EXPIRE,
71 	POWER_SUPPLY_HEALTH_SAFETY_TIMER_EXPIRE,
72 	POWER_SUPPLY_HEALTH_OVERCURRENT,
73 	POWER_SUPPLY_HEALTH_CALIBRATION_REQUIRED,
74 	POWER_SUPPLY_HEALTH_WARM,
75 	POWER_SUPPLY_HEALTH_COOL,
76 	POWER_SUPPLY_HEALTH_HOT,
77 	POWER_SUPPLY_HEALTH_NO_BATTERY,
78 };
79 
80 enum {
81 	POWER_SUPPLY_TECHNOLOGY_UNKNOWN = 0,
82 	POWER_SUPPLY_TECHNOLOGY_NiMH,
83 	POWER_SUPPLY_TECHNOLOGY_LION,
84 	POWER_SUPPLY_TECHNOLOGY_LIPO,
85 	POWER_SUPPLY_TECHNOLOGY_LiFe,
86 	POWER_SUPPLY_TECHNOLOGY_NiCd,
87 	POWER_SUPPLY_TECHNOLOGY_LiMn,
88 };
89 
90 enum {
91 	POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN = 0,
92 	POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL,
93 	POWER_SUPPLY_CAPACITY_LEVEL_LOW,
94 	POWER_SUPPLY_CAPACITY_LEVEL_NORMAL,
95 	POWER_SUPPLY_CAPACITY_LEVEL_HIGH,
96 	POWER_SUPPLY_CAPACITY_LEVEL_FULL,
97 };
98 
99 enum {
100 	POWER_SUPPLY_SCOPE_UNKNOWN = 0,
101 	POWER_SUPPLY_SCOPE_SYSTEM,
102 	POWER_SUPPLY_SCOPE_DEVICE,
103 };
104 
105 enum power_supply_property {
106 	/* Properties of type `int' */
107 	POWER_SUPPLY_PROP_STATUS = 0,
108 	POWER_SUPPLY_PROP_CHARGE_TYPE,
109 	POWER_SUPPLY_PROP_HEALTH,
110 	POWER_SUPPLY_PROP_PRESENT,
111 	POWER_SUPPLY_PROP_ONLINE,
112 	POWER_SUPPLY_PROP_AUTHENTIC,
113 	POWER_SUPPLY_PROP_TECHNOLOGY,
114 	POWER_SUPPLY_PROP_CYCLE_COUNT,
115 	POWER_SUPPLY_PROP_VOLTAGE_MAX,
116 	POWER_SUPPLY_PROP_VOLTAGE_MIN,
117 	POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN,
118 	POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN,
119 	POWER_SUPPLY_PROP_VOLTAGE_NOW,
120 	POWER_SUPPLY_PROP_VOLTAGE_AVG,
121 	POWER_SUPPLY_PROP_VOLTAGE_OCV,
122 	POWER_SUPPLY_PROP_VOLTAGE_BOOT,
123 	POWER_SUPPLY_PROP_CURRENT_MAX,
124 	POWER_SUPPLY_PROP_CURRENT_NOW,
125 	POWER_SUPPLY_PROP_CURRENT_AVG,
126 	POWER_SUPPLY_PROP_CURRENT_BOOT,
127 	POWER_SUPPLY_PROP_POWER_NOW,
128 	POWER_SUPPLY_PROP_POWER_AVG,
129 	POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
130 	POWER_SUPPLY_PROP_CHARGE_EMPTY_DESIGN,
131 	POWER_SUPPLY_PROP_CHARGE_FULL,
132 	POWER_SUPPLY_PROP_CHARGE_EMPTY,
133 	POWER_SUPPLY_PROP_CHARGE_NOW,
134 	POWER_SUPPLY_PROP_CHARGE_AVG,
135 	POWER_SUPPLY_PROP_CHARGE_COUNTER,
136 	POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT,
137 	POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX,
138 	POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE,
139 	POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX,
140 	POWER_SUPPLY_PROP_CHARGE_CONTROL_LIMIT,
141 	POWER_SUPPLY_PROP_CHARGE_CONTROL_LIMIT_MAX,
142 	POWER_SUPPLY_PROP_CHARGE_CONTROL_START_THRESHOLD, /* in percents! */
143 	POWER_SUPPLY_PROP_CHARGE_CONTROL_END_THRESHOLD, /* in percents! */
144 	POWER_SUPPLY_PROP_CHARGE_BEHAVIOUR,
145 	POWER_SUPPLY_PROP_INPUT_CURRENT_LIMIT,
146 	POWER_SUPPLY_PROP_INPUT_VOLTAGE_LIMIT,
147 	POWER_SUPPLY_PROP_INPUT_POWER_LIMIT,
148 	POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN,
149 	POWER_SUPPLY_PROP_ENERGY_EMPTY_DESIGN,
150 	POWER_SUPPLY_PROP_ENERGY_FULL,
151 	POWER_SUPPLY_PROP_ENERGY_EMPTY,
152 	POWER_SUPPLY_PROP_ENERGY_NOW,
153 	POWER_SUPPLY_PROP_ENERGY_AVG,
154 	POWER_SUPPLY_PROP_CAPACITY, /* in percents! */
155 	POWER_SUPPLY_PROP_CAPACITY_ALERT_MIN, /* in percents! */
156 	POWER_SUPPLY_PROP_CAPACITY_ALERT_MAX, /* in percents! */
157 	POWER_SUPPLY_PROP_CAPACITY_ERROR_MARGIN, /* in percents! */
158 	POWER_SUPPLY_PROP_CAPACITY_LEVEL,
159 	POWER_SUPPLY_PROP_TEMP,
160 	POWER_SUPPLY_PROP_TEMP_MAX,
161 	POWER_SUPPLY_PROP_TEMP_MIN,
162 	POWER_SUPPLY_PROP_TEMP_ALERT_MIN,
163 	POWER_SUPPLY_PROP_TEMP_ALERT_MAX,
164 	POWER_SUPPLY_PROP_TEMP_AMBIENT,
165 	POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MIN,
166 	POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MAX,
167 	POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW,
168 	POWER_SUPPLY_PROP_TIME_TO_EMPTY_AVG,
169 	POWER_SUPPLY_PROP_TIME_TO_FULL_NOW,
170 	POWER_SUPPLY_PROP_TIME_TO_FULL_AVG,
171 	POWER_SUPPLY_PROP_TYPE, /* use power_supply.type instead */
172 	POWER_SUPPLY_PROP_USB_TYPE,
173 	POWER_SUPPLY_PROP_SCOPE,
174 	POWER_SUPPLY_PROP_PRECHARGE_CURRENT,
175 	POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT,
176 	POWER_SUPPLY_PROP_CALIBRATE,
177 	POWER_SUPPLY_PROP_MANUFACTURE_YEAR,
178 	POWER_SUPPLY_PROP_MANUFACTURE_MONTH,
179 	POWER_SUPPLY_PROP_MANUFACTURE_DAY,
180 	/* Properties of type `const char *' */
181 	POWER_SUPPLY_PROP_MODEL_NAME,
182 	POWER_SUPPLY_PROP_MANUFACTURER,
183 	POWER_SUPPLY_PROP_SERIAL_NUMBER,
184 	/*
185 	 * Properties of type `int'. Appended at the end of list to minimize ABI
186 	 * breakage.
187 	 */
188 	POWER_SUPPLY_PROP_USBIF_VENDOR_ID,
189 	POWER_SUPPLY_PROP_USBIF_PRODUCT_ID,
190 };
191 
192 enum power_supply_type {
193 	POWER_SUPPLY_TYPE_UNKNOWN = 0,
194 	POWER_SUPPLY_TYPE_BATTERY,
195 	POWER_SUPPLY_TYPE_UPS,
196 	POWER_SUPPLY_TYPE_MAINS,
197 	POWER_SUPPLY_TYPE_USB,			/* Standard Downstream Port */
198 	POWER_SUPPLY_TYPE_USB_DCP,		/* Dedicated Charging Port */
199 	POWER_SUPPLY_TYPE_USB_CDP,		/* Charging Downstream Port */
200 	POWER_SUPPLY_TYPE_USB_ACA,		/* Accessory Charger Adapters */
201 	POWER_SUPPLY_TYPE_USB_TYPE_C,		/* Type C Port */
202 	POWER_SUPPLY_TYPE_USB_PD,		/* Power Delivery Port */
203 	POWER_SUPPLY_TYPE_USB_PD_DRP,		/* PD Dual Role Port */
204 	POWER_SUPPLY_TYPE_APPLE_BRICK_ID,	/* Apple Charging Method */
205 	POWER_SUPPLY_TYPE_WIRELESS,		/* Wireless */
206 };
207 
208 enum power_supply_usb_type {
209 	POWER_SUPPLY_USB_TYPE_UNKNOWN = 0,
210 	POWER_SUPPLY_USB_TYPE_SDP,		/* Standard Downstream Port */
211 	POWER_SUPPLY_USB_TYPE_DCP,		/* Dedicated Charging Port */
212 	POWER_SUPPLY_USB_TYPE_CDP,		/* Charging Downstream Port */
213 	POWER_SUPPLY_USB_TYPE_ACA,		/* Accessory Charger Adapters */
214 	POWER_SUPPLY_USB_TYPE_C,		/* Type C Port */
215 	POWER_SUPPLY_USB_TYPE_PD,		/* Power Delivery Port */
216 	POWER_SUPPLY_USB_TYPE_PD_DRP,		/* PD Dual Role Port */
217 	POWER_SUPPLY_USB_TYPE_PD_PPS,		/* PD Programmable Power Supply */
218 	POWER_SUPPLY_USB_TYPE_APPLE_BRICK_ID,	/* Apple Charging Method */
219 };
220 
221 enum power_supply_charge_behaviour {
222 	POWER_SUPPLY_CHARGE_BEHAVIOUR_AUTO = 0,
223 	POWER_SUPPLY_CHARGE_BEHAVIOUR_INHIBIT_CHARGE,
224 	POWER_SUPPLY_CHARGE_BEHAVIOUR_FORCE_DISCHARGE,
225 };
226 
227 enum power_supply_notifier_events {
228 	PSY_EVENT_PROP_CHANGED,
229 };
230 
231 union power_supply_propval {
232 	int intval;
233 	const char *strval;
234 };
235 
236 struct device_node;
237 struct power_supply;
238 
239 /* Run-time specific power supply configuration */
240 struct power_supply_config {
241 	struct device_node *of_node;
242 	struct fwnode_handle *fwnode;
243 
244 	/* Driver private data */
245 	void *drv_data;
246 
247 	/* Device specific sysfs attributes */
248 	const struct attribute_group **attr_grp;
249 
250 	char **supplied_to;
251 	size_t num_supplicants;
252 
253 	ANDROID_KABI_RESERVE(1);
254 };
255 
256 /* Description of power supply */
257 struct power_supply_desc {
258 	const char *name;
259 	enum power_supply_type type;
260 	u8 charge_behaviours;
261 	u32 usb_types;
262 	const enum power_supply_property *properties;
263 	size_t num_properties;
264 
265 	/*
266 	 * Functions for drivers implementing power supply class.
267 	 * These shouldn't be called directly by other drivers for accessing
268 	 * this power supply. Instead use power_supply_*() functions (for
269 	 * example power_supply_get_property()).
270 	 */
271 	int (*get_property)(struct power_supply *psy,
272 			    enum power_supply_property psp,
273 			    union power_supply_propval *val);
274 	int (*set_property)(struct power_supply *psy,
275 			    enum power_supply_property psp,
276 			    const union power_supply_propval *val);
277 	/*
278 	 * property_is_writeable() will be called during registration
279 	 * of power supply. If this happens during device probe then it must
280 	 * not access internal data of device (because probe did not end).
281 	 */
282 	int (*property_is_writeable)(struct power_supply *psy,
283 				     enum power_supply_property psp);
284 	void (*external_power_changed)(struct power_supply *psy);
285 	void (*set_charged)(struct power_supply *psy);
286 
287 	/*
288 	 * Set if thermal zone should not be created for this power supply.
289 	 * For example for virtual supplies forwarding calls to actual
290 	 * sensors or other supplies.
291 	 */
292 	bool no_thermal;
293 	/* For APM emulation, think legacy userspace. */
294 	int use_for_apm;
295 
296 	ANDROID_KABI_RESERVE(1);
297 };
298 
299 struct power_supply {
300 	const struct power_supply_desc *desc;
301 
302 	char **supplied_to;
303 	size_t num_supplicants;
304 
305 	char **supplied_from;
306 	size_t num_supplies;
307 	struct device_node *of_node;
308 
309 	/* Driver private data */
310 	void *drv_data;
311 
312 	/* private */
313 	struct device dev;
314 	struct work_struct changed_work;
315 	struct delayed_work deferred_register_work;
316 	spinlock_t changed_lock;
317 	bool changed;
318 	bool initialized;
319 	bool removing;
320 	atomic_t use_cnt;
321 	struct power_supply_battery_info *battery_info;
322 #ifdef CONFIG_THERMAL
323 	struct thermal_zone_device *tzd;
324 	struct thermal_cooling_device *tcd;
325 #endif
326 
327 #ifdef CONFIG_LEDS_TRIGGERS
328 	struct led_trigger *trig;
329 	struct led_trigger *charging_trig;
330 	struct led_trigger *full_trig;
331 	struct led_trigger *charging_blink_full_solid_trig;
332 	struct led_trigger *charging_orange_full_green_trig;
333 #endif
334 
335 	ANDROID_KABI_RESERVE(1);
336 };
337 
338 /*
339  * This is recommended structure to specify static power supply parameters.
340  * Generic one, parametrizable for different power supplies. Power supply
341  * class itself does not use it, but that's what implementing most platform
342  * drivers, should try reuse for consistency.
343  */
344 
345 struct power_supply_info {
346 	const char *name;
347 	int technology;
348 	int voltage_max_design;
349 	int voltage_min_design;
350 	int charge_full_design;
351 	int charge_empty_design;
352 	int energy_full_design;
353 	int energy_empty_design;
354 	int use_for_apm;
355 	ANDROID_KABI_RESERVE(1);
356 };
357 
358 struct power_supply_battery_ocv_table {
359 	int ocv;	/* microVolts */
360 	int capacity;	/* percent */
361 };
362 
363 struct power_supply_resistance_temp_table {
364 	int temp;	/* celsius */
365 	int resistance;	/* internal resistance percent */
366 };
367 
368 struct power_supply_vbat_ri_table {
369 	int vbat_uv;	/* Battery voltage in microvolt */
370 	int ri_uohm;	/* Internal resistance in microohm */
371 };
372 
373 /**
374  * struct power_supply_maintenance_charge_table - setting for maintenace charging
375  * @charge_current_max_ua: maintenance charging current that is used to keep
376  *   the charge of the battery full as current is consumed after full charging.
377  *   The corresponding charge_voltage_max_uv is used as a safeguard: when we
378  *   reach this voltage the maintenance charging current is turned off. It is
379  *   turned back on if we fall below this voltage.
380  * @charge_voltage_max_uv: maintenance charging voltage that is usually a bit
381  *   lower than the constant_charge_voltage_max_uv. We can apply this settings
382  *   charge_current_max_ua until we get back up to this voltage.
383  * @safety_timer_minutes: maintenance charging safety timer, with an expiry
384  *   time in minutes. We will only use maintenance charging in this setting
385  *   for a certain amount of time, then we will first move to the next
386  *   maintenance charge current and voltage pair in respective array and wait
387  *   for the next safety timer timeout, or, if we reached the last maintencance
388  *   charging setting, disable charging until we reach
389  *   charge_restart_voltage_uv and restart ordinary CC/CV charging from there.
390  *   These timers should be chosen to align with the typical discharge curve
391  *   for the battery.
392  *
393  * Ordinary CC/CV charging will stop charging when the charge current goes
394  * below charge_term_current_ua, and then restart it (if the device is still
395  * plugged into the charger) at charge_restart_voltage_uv. This happens in most
396  * consumer products because the power usage while connected to a charger is
397  * not zero, and devices are not manufactured to draw power directly from the
398  * charger: instead they will at all times dissipate the battery a little, like
399  * the power used in standby mode. This will over time give a charge graph
400  * such as this:
401  *
402  * Energy
403  *  ^      ...        ...      ...      ...      ...      ...      ...
404  *  |    .   .       .  .     .  .     .  .     .  .     .  .     .
405  *  |  ..     .   ..     .  ..    .  ..    .  ..    .  ..    .  ..
406  *  |.          ..        ..       ..       ..       ..       ..
407  *  +-------------------------------------------------------------------> t
408  *
409  * Practically this means that the Li-ions are wandering back and forth in the
410  * battery and this causes degeneration of the battery anode and cathode.
411  * To prolong the life of the battery, maintenance charging is applied after
412  * reaching charge_term_current_ua to hold up the charge in the battery while
413  * consuming power, thus lowering the wear on the battery:
414  *
415  * Energy
416  *  ^      .......................................
417  *  |    .                                        ......................
418  *  |  ..
419  *  |.
420  *  +-------------------------------------------------------------------> t
421  *
422  * Maintenance charging uses the voltages from this table: a table of settings
423  * is traversed using a slightly lower current and voltage than what is used for
424  * CC/CV charging. The maintenance charging will for safety reasons not go on
425  * indefinately: we lower the current and voltage with successive maintenance
426  * settings, then disable charging completely after we reach the last one,
427  * and after that we do not restart charging until we reach
428  * charge_restart_voltage_uv (see struct power_supply_battery_info) and restart
429  * ordinary CC/CV charging from there.
430  *
431  * As an example, a Samsung EB425161LA Lithium-Ion battery is CC/CV charged
432  * at 900mA to 4340mV, then maintenance charged at 600mA and 4150mV for up to
433  * 60 hours, then maintenance charged at 600mA and 4100mV for up to 200 hours.
434  * After this the charge cycle is restarted waiting for
435  * charge_restart_voltage_uv.
436  *
437  * For most mobile electronics this type of maintenance charging is enough for
438  * the user to disconnect the device and make use of it before both maintenance
439  * charging cycles are complete, if the current and voltage has been chosen
440  * appropriately. These need to be determined from battery discharge curves
441  * and expected standby current.
442  *
443  * If the voltage anyway drops to charge_restart_voltage_uv during maintenance
444  * charging, ordinary CC/CV charging is restarted. This can happen if the
445  * device is e.g. actively used during charging, so more current is drawn than
446  * the expected stand-by current. Also overvoltage protection will be applied
447  * as usual.
448  */
449 struct power_supply_maintenance_charge_table {
450 	int charge_current_max_ua;
451 	int charge_voltage_max_uv;
452 	int charge_safety_timer_minutes;
453 };
454 
455 #define POWER_SUPPLY_OCV_TEMP_MAX 20
456 
457 /**
458  * struct power_supply_battery_info - information about batteries
459  * @technology: from the POWER_SUPPLY_TECHNOLOGY_* enum
460  * @energy_full_design_uwh: energy content when fully charged in microwatt
461  *   hours
462  * @charge_full_design_uah: charge content when fully charged in microampere
463  *   hours
464  * @voltage_min_design_uv: minimum voltage across the poles when the battery
465  *   is at minimum voltage level in microvolts. If the voltage drops below this
466  *   level the battery will need precharging when using CC/CV charging.
467  * @voltage_max_design_uv: voltage across the poles when the battery is fully
468  *   charged in microvolts. This is the "nominal voltage" i.e. the voltage
469  *   printed on the label of the battery.
470  * @tricklecharge_current_ua: the tricklecharge current used when trickle
471  *   charging the battery in microamperes. This is the charging phase when the
472  *   battery is completely empty and we need to carefully trickle in some
473  *   charge until we reach the precharging voltage.
474  * @precharge_current_ua: current to use in the precharge phase in microamperes,
475  *   the precharge rate is limited by limiting the current to this value.
476  * @precharge_voltage_max_uv: the maximum voltage allowed when precharging in
477  *   microvolts. When we pass this voltage we will nominally switch over to the
478  *   CC (constant current) charging phase defined by constant_charge_current_ua
479  *   and constant_charge_voltage_max_uv.
480  * @charge_term_current_ua: when the current in the CV (constant voltage)
481  *   charging phase drops below this value in microamperes the charging will
482  *   terminate completely and not restart until the voltage over the battery
483  *   poles reach charge_restart_voltage_uv unless we use maintenance charging.
484  * @charge_restart_voltage_uv: when the battery has been fully charged by
485  *   CC/CV charging and charging has been disabled, and the voltage subsequently
486  *   drops below this value in microvolts, the charging will be restarted
487  *   (typically using CV charging).
488  * @overvoltage_limit_uv: If the voltage exceeds the nominal voltage
489  *   voltage_max_design_uv and we reach this voltage level, all charging must
490  *   stop and emergency procedures take place, such as shutting down the system
491  *   in some cases.
492  * @constant_charge_current_max_ua: current in microamperes to use in the CC
493  *   (constant current) charging phase. The charging rate is limited
494  *   by this current. This is the main charging phase and as the current is
495  *   constant into the battery the voltage slowly ascends to
496  *   constant_charge_voltage_max_uv.
497  * @constant_charge_voltage_max_uv: voltage in microvolts signifying the end of
498  *   the CC (constant current) charging phase and the beginning of the CV
499  *   (constant voltage) charging phase.
500  * @maintenance_charge: an array of maintenance charging settings to be used
501  *   after the main CC/CV charging phase is complete.
502  * @maintenance_charge_size: the number of maintenance charging settings in
503  *   maintenance_charge.
504  * @alert_low_temp_charge_current_ua: The charging current to use if the battery
505  *   enters low alert temperature, i.e. if the internal temperature is between
506  *   temp_alert_min and temp_min. No matter the charging phase, this
507  *   and alert_high_temp_charge_voltage_uv will be applied.
508  * @alert_low_temp_charge_voltage_uv: Same as alert_low_temp_charge_current_ua,
509  *   but for the charging voltage.
510  * @alert_high_temp_charge_current_ua: The charging current to use if the
511  *   battery enters high alert temperature, i.e. if the internal temperature is
512  *   between temp_alert_max and temp_max. No matter the charging phase, this
513  *   and alert_high_temp_charge_voltage_uv will be applied, usually lowering
514  *   the charging current as an evasive manouver.
515  * @alert_high_temp_charge_voltage_uv: Same as
516  *   alert_high_temp_charge_current_ua, but for the charging voltage.
517  * @factory_internal_resistance_uohm: the internal resistance of the battery
518  *   at fabrication time, expressed in microohms. This resistance will vary
519  *   depending on the lifetime and charge of the battery, so this is just a
520  *   nominal ballpark figure. This internal resistance is given for the state
521  *   when the battery is discharging.
522  * @factory_internal_resistance_charging_uohm: the internal resistance of the
523  *   battery at fabrication time while charging, expressed in microohms.
524  *   The charging process will affect the internal resistance of the battery
525  *   so this value provides a better resistance under these circumstances.
526  *   This resistance will vary depending on the lifetime and charge of the
527  *   battery, so this is just a nominal ballpark figure.
528  * @ocv_temp: array indicating the open circuit voltage (OCV) capacity
529  *   temperature indices. This is an array of temperatures in degrees Celsius
530  *   indicating which capacity table to use for a certain temperature, since
531  *   the capacity for reasons of chemistry will be different at different
532  *   temperatures. Determining capacity is a multivariate problem and the
533  *   temperature is the first variable we determine.
534  * @temp_ambient_alert_min: the battery will go outside of operating conditions
535  *   when the ambient temperature goes below this temperature in degrees
536  *   Celsius.
537  * @temp_ambient_alert_max: the battery will go outside of operating conditions
538  *   when the ambient temperature goes above this temperature in degrees
539  *   Celsius.
540  * @temp_alert_min: the battery should issue an alert if the internal
541  *   temperature goes below this temperature in degrees Celsius.
542  * @temp_alert_max: the battery should issue an alert if the internal
543  *   temperature goes above this temperature in degrees Celsius.
544  * @temp_min: the battery will go outside of operating conditions when
545  *   the internal temperature goes below this temperature in degrees Celsius.
546  *   Normally this means the system should shut down.
547  * @temp_max: the battery will go outside of operating conditions when
548  *   the internal temperature goes above this temperature in degrees Celsius.
549  *   Normally this means the system should shut down.
550  * @ocv_table: for each entry in ocv_temp there is a corresponding entry in
551  *   ocv_table and a size for each entry in ocv_table_size. These arrays
552  *   determine the capacity in percent in relation to the voltage in microvolts
553  *   at the indexed temperature.
554  * @ocv_table_size: for each entry in ocv_temp this array is giving the size of
555  *   each entry in the array of capacity arrays in ocv_table.
556  * @resist_table: this is a table that correlates a battery temperature to the
557  *   expected internal resistance at this temperature. The resistance is given
558  *   as a percentage of factory_internal_resistance_uohm. Knowing the
559  *   resistance of the battery is usually necessary for calculating the open
560  *   circuit voltage (OCV) that is then used with the ocv_table to calculate
561  *   the capacity of the battery. The resist_table must be ordered descending
562  *   by temperature: highest temperature with lowest resistance first, lowest
563  *   temperature with highest resistance last.
564  * @resist_table_size: the number of items in the resist_table.
565  * @vbat2ri_discharging: this is a table that correlates Battery voltage (VBAT)
566  *   to internal resistance (Ri). The resistance is given in microohm for the
567  *   corresponding voltage in microvolts. The internal resistance is used to
568  *   determine the open circuit voltage so that we can determine the capacity
569  *   of the battery. These voltages to resistance tables apply when the battery
570  *   is discharging. The table must be ordered descending by voltage: highest
571  *   voltage first.
572  * @vbat2ri_discharging_size: the number of items in the vbat2ri_discharging
573  *   table.
574  * @vbat2ri_charging: same function as vbat2ri_discharging but for the state
575  *   when the battery is charging. Being under charge changes the battery's
576  *   internal resistance characteristics so a separate table is needed.*
577  *   The table must be ordered descending by voltage: highest voltage first.
578  * @vbat2ri_charging_size: the number of items in the vbat2ri_charging
579  *   table.
580  * @bti_resistance_ohm: The Battery Type Indicator (BIT) nominal resistance
581  *   in ohms for this battery, if an identification resistor is mounted
582  *   between a third battery terminal and ground. This scheme is used by a lot
583  *   of mobile device batteries.
584  * @bti_resistance_tolerance: The tolerance in percent of the BTI resistance,
585  *   for example 10 for +/- 10%, if the bti_resistance is set to 7000 and the
586  *   tolerance is 10% we will detect a proper battery if the BTI resistance
587  *   is between 6300 and 7700 Ohm.
588  *
589  * This is the recommended struct to manage static battery parameters,
590  * populated by power_supply_get_battery_info(). Most platform drivers should
591  * use these for consistency.
592  *
593  * Its field names must correspond to elements in enum power_supply_property.
594  * The default field value is -EINVAL or NULL for pointers.
595  *
596  * CC/CV CHARGING:
597  *
598  * The charging parameters here assume a CC/CV charging scheme. This method
599  * is most common with Lithium Ion batteries (other methods are possible) and
600  * looks as follows:
601  *
602  * ^ Battery voltage
603  * |                                               --- overvoltage_limit_uv
604  * |
605  * |                    ...................................................
606  * |                 .. constant_charge_voltage_max_uv
607  * |              ..
608  * |             .
609  * |            .
610  * |           .
611  * |          .
612  * |         .
613  * |     .. precharge_voltage_max_uv
614  * |  ..
615  * |. (trickle charging)
616  * +------------------------------------------------------------------> time
617  *
618  * ^ Current into the battery
619  * |
620  * |      ............. constant_charge_current_max_ua
621  * |      .            .
622  * |      .             .
623  * |      .              .
624  * |      .               .
625  * |      .                ..
626  * |      .                  ....
627  * |      .                       .....
628  * |    ... precharge_current_ua       .......  charge_term_current_ua
629  * |    .                                    .
630  * |    .                                    .
631  * |.... tricklecharge_current_ua            .
632  * |                                         .
633  * +-----------------------------------------------------------------> time
634  *
635  * These diagrams are synchronized on time and the voltage and current
636  * follow each other.
637  *
638  * With CC/CV charging commence over time like this for an empty battery:
639  *
640  * 1. When the battery is completely empty it may need to be charged with
641  *    an especially small current so that electrons just "trickle in",
642  *    this is the tricklecharge_current_ua.
643  *
644  * 2. Next a small initial pre-charge current (precharge_current_ua)
645  *    is applied if the voltage is below precharge_voltage_max_uv until we
646  *    reach precharge_voltage_max_uv. CAUTION: in some texts this is referred
647  *    to as "trickle charging" but the use in the Linux kernel is different
648  *    see below!
649  *
650  * 3. Then the main charging current is applied, which is called the constant
651  *    current (CC) phase. A current regulator is set up to allow
652  *    constant_charge_current_max_ua of current to flow into the battery.
653  *    The chemical reaction in the battery will make the voltage go up as
654  *    charge goes into the battery. This current is applied until we reach
655  *    the constant_charge_voltage_max_uv voltage.
656  *
657  * 4. At this voltage we switch over to the constant voltage (CV) phase. This
658  *    means we allow current to go into the battery, but we keep the voltage
659  *    fixed. This current will continue to charge the battery while keeping
660  *    the voltage the same. A chemical reaction in the battery goes on
661  *    storing energy without affecting the voltage. Over time the current
662  *    will slowly drop and when we reach charge_term_current_ua we will
663  *    end the constant voltage phase.
664  *
665  * After this the battery is fully charged, and if we do not support maintenance
666  * charging, the charging will not restart until power dissipation makes the
667  * voltage fall so that we reach charge_restart_voltage_uv and at this point
668  * we restart charging at the appropriate phase, usually this will be inside
669  * the CV phase.
670  *
671  * If we support maintenance charging the voltage is however kept high after
672  * the CV phase with a very low current. This is meant to let the same charge
673  * go in for usage while the charger is still connected, mainly for
674  * dissipation for the power consuming entity while connected to the
675  * charger.
676  *
677  * All charging MUST terminate if the overvoltage_limit_uv is ever reached.
678  * Overcharging Lithium Ion cells can be DANGEROUS and lead to fire or
679  * explosions.
680  *
681  * DETERMINING BATTERY CAPACITY:
682  *
683  * Several members of the struct deal with trying to determine the remaining
684  * capacity in the battery, usually as a percentage of charge. In practice
685  * many chargers uses a so-called fuel gauge or coloumb counter that measure
686  * how much charge goes into the battery and how much goes out (+/- leak
687  * consumption). This does not help if we do not know how much capacity the
688  * battery has to begin with, such as when it is first used or was taken out
689  * and charged in a separate charger. Therefore many capacity algorithms use
690  * the open circuit voltage with a look-up table to determine the rough
691  * capacity of the battery. The open circuit voltage can be conceptualized
692  * with an ideal voltage source (V) in series with an internal resistance (Ri)
693  * like this:
694  *
695  *      +-------> IBAT >----------------+
696  *      |                    ^          |
697  *     [ ] Ri                |          |
698  *      |                    | VBAT     |
699  *      o <----------        |          |
700  *     +|           ^        |         [ ] Rload
701  *    .---.         |        |          |
702  *    | V |         | OCV    |          |
703  *    '---'         |        |          |
704  *      |           |        |          |
705  *  GND +-------------------------------+
706  *
707  * If we disconnect the load (here simplified as a fixed resistance Rload)
708  * and measure VBAT with a infinite impedance voltage meter we will get
709  * VBAT = OCV and this assumption is sometimes made even under load, assuming
710  * Rload is insignificant. However this will be of dubious quality because the
711  * load is rarely that small and Ri is strongly nonlinear depending on
712  * temperature and how much capacity is left in the battery due to the
713  * chemistry involved.
714  *
715  * In many practical applications we cannot just disconnect the battery from
716  * the load, so instead we often try to measure the instantaneous IBAT (the
717  * current out from the battery), estimate the Ri and thus calculate the
718  * voltage drop over Ri and compensate like this:
719  *
720  *   OCV = VBAT - (IBAT * Ri)
721  *
722  * The tables vbat2ri_discharging and vbat2ri_charging are used to determine
723  * (by interpolation) the Ri from the VBAT under load. These curves are highly
724  * nonlinear and may need many datapoints but can be found in datasheets for
725  * some batteries. This gives the compensated open circuit voltage (OCV) for
726  * the battery even under load. Using this method will also compensate for
727  * temperature changes in the environment: this will also make the internal
728  * resistance change, and it will affect the VBAT under load, so correlating
729  * VBAT to Ri takes both remaining capacity and temperature into consideration.
730  *
731  * Alternatively a manufacturer can specify how the capacity of the battery
732  * is dependent on the battery temperature which is the main factor affecting
733  * Ri. As we know all checmical reactions are faster when it is warm and slower
734  * when it is cold. You can put in 1500mAh and only get 800mAh out before the
735  * voltage drops too low for example. This effect is also highly nonlinear and
736  * the purpose of the table resist_table: this will take a temperature and
737  * tell us how big percentage of Ri the specified temperature correlates to.
738  * Usually we have 100% of the factory_internal_resistance_uohm at 25 degrees
739  * Celsius.
740  *
741  * The power supply class itself doesn't use this struct as of now.
742  */
743 
744 struct power_supply_battery_info {
745 	unsigned int technology;
746 	int energy_full_design_uwh;
747 	int charge_full_design_uah;
748 	int voltage_min_design_uv;
749 	int voltage_max_design_uv;
750 	int tricklecharge_current_ua;
751 	int precharge_current_ua;
752 	int precharge_voltage_max_uv;
753 	int charge_term_current_ua;
754 	int charge_restart_voltage_uv;
755 	int overvoltage_limit_uv;
756 	int constant_charge_current_max_ua;
757 	int constant_charge_voltage_max_uv;
758 	const struct power_supply_maintenance_charge_table *maintenance_charge;
759 	int maintenance_charge_size;
760 	int alert_low_temp_charge_current_ua;
761 	int alert_low_temp_charge_voltage_uv;
762 	int alert_high_temp_charge_current_ua;
763 	int alert_high_temp_charge_voltage_uv;
764 	int factory_internal_resistance_uohm;
765 	int factory_internal_resistance_charging_uohm;
766 	int ocv_temp[POWER_SUPPLY_OCV_TEMP_MAX];
767 	int temp_ambient_alert_min;
768 	int temp_ambient_alert_max;
769 	int temp_alert_min;
770 	int temp_alert_max;
771 	int temp_min;
772 	int temp_max;
773 	struct power_supply_battery_ocv_table *ocv_table[POWER_SUPPLY_OCV_TEMP_MAX];
774 	int ocv_table_size[POWER_SUPPLY_OCV_TEMP_MAX];
775 	struct power_supply_resistance_temp_table *resist_table;
776 	int resist_table_size;
777 	const struct power_supply_vbat_ri_table *vbat2ri_discharging;
778 	int vbat2ri_discharging_size;
779 	const struct power_supply_vbat_ri_table *vbat2ri_charging;
780 	int vbat2ri_charging_size;
781 	int bti_resistance_ohm;
782 	int bti_resistance_tolerance;
783 	ANDROID_KABI_RESERVE(1);
784 };
785 
786 extern int power_supply_reg_notifier(struct notifier_block *nb);
787 extern void power_supply_unreg_notifier(struct notifier_block *nb);
788 #if IS_ENABLED(CONFIG_POWER_SUPPLY)
789 extern struct power_supply *power_supply_get_by_name(const char *name);
790 extern void power_supply_put(struct power_supply *psy);
791 #else
power_supply_put(struct power_supply * psy)792 static inline void power_supply_put(struct power_supply *psy) {}
power_supply_get_by_name(const char * name)793 static inline struct power_supply *power_supply_get_by_name(const char *name)
794 { return NULL; }
795 #endif
796 #ifdef CONFIG_OF
797 extern struct power_supply *power_supply_get_by_phandle(struct device_node *np,
798 							const char *property);
799 extern int power_supply_get_by_phandle_array(struct device_node *np,
800 					     const char *property,
801 					     struct power_supply **psy,
802 					     ssize_t size);
803 extern struct power_supply *devm_power_supply_get_by_phandle(
804 				    struct device *dev, const char *property);
805 #else /* !CONFIG_OF */
806 static inline struct power_supply *
power_supply_get_by_phandle(struct device_node * np,const char * property)807 power_supply_get_by_phandle(struct device_node *np, const char *property)
808 { return NULL; }
809 static inline int
power_supply_get_by_phandle_array(struct device_node * np,const char * property,struct power_supply ** psy,int size)810 power_supply_get_by_phandle_array(struct device_node *np,
811 				  const char *property,
812 				  struct power_supply **psy,
813 				  int size)
814 { return 0; }
815 static inline struct power_supply *
devm_power_supply_get_by_phandle(struct device * dev,const char * property)816 devm_power_supply_get_by_phandle(struct device *dev, const char *property)
817 { return NULL; }
818 #endif /* CONFIG_OF */
819 
820 extern const enum power_supply_property power_supply_battery_info_properties[];
821 extern const size_t power_supply_battery_info_properties_size;
822 extern int power_supply_get_battery_info(struct power_supply *psy,
823 					 struct power_supply_battery_info **info_out);
824 extern void power_supply_put_battery_info(struct power_supply *psy,
825 					  struct power_supply_battery_info *info);
826 extern bool power_supply_battery_info_has_prop(struct power_supply_battery_info *info,
827 					       enum power_supply_property psp);
828 extern int power_supply_battery_info_get_prop(struct power_supply_battery_info *info,
829 					      enum power_supply_property psp,
830 					      union power_supply_propval *val);
831 extern int power_supply_ocv2cap_simple(struct power_supply_battery_ocv_table *table,
832 				       int table_len, int ocv);
833 extern struct power_supply_battery_ocv_table *
834 power_supply_find_ocv2cap_table(struct power_supply_battery_info *info,
835 				int temp, int *table_len);
836 extern int power_supply_batinfo_ocv2cap(struct power_supply_battery_info *info,
837 					int ocv, int temp);
838 extern int
839 power_supply_temp2resist_simple(struct power_supply_resistance_temp_table *table,
840 				int table_len, int temp);
841 extern int power_supply_vbat2ri(struct power_supply_battery_info *info,
842 				int vbat_uv, bool charging);
843 extern const struct power_supply_maintenance_charge_table *
844 power_supply_get_maintenance_charging_setting(struct power_supply_battery_info *info, int index);
845 extern bool power_supply_battery_bti_in_range(struct power_supply_battery_info *info,
846 					      int resistance);
847 extern void power_supply_changed(struct power_supply *psy);
848 extern int power_supply_am_i_supplied(struct power_supply *psy);
849 int power_supply_get_property_from_supplier(struct power_supply *psy,
850 					    enum power_supply_property psp,
851 					    union power_supply_propval *val);
852 extern int power_supply_set_battery_charged(struct power_supply *psy);
853 
854 static inline bool
power_supply_supports_maintenance_charging(struct power_supply_battery_info * info)855 power_supply_supports_maintenance_charging(struct power_supply_battery_info *info)
856 {
857 	const struct power_supply_maintenance_charge_table *mt;
858 
859 	mt = power_supply_get_maintenance_charging_setting(info, 0);
860 
861 	return (mt != NULL);
862 }
863 
864 static inline bool
power_supply_supports_vbat2ri(struct power_supply_battery_info * info)865 power_supply_supports_vbat2ri(struct power_supply_battery_info *info)
866 {
867 	return ((info->vbat2ri_discharging != NULL) &&
868 		info->vbat2ri_discharging_size > 0);
869 }
870 
871 static inline bool
power_supply_supports_temp2ri(struct power_supply_battery_info * info)872 power_supply_supports_temp2ri(struct power_supply_battery_info *info)
873 {
874 	return ((info->resist_table != NULL) &&
875 		info->resist_table_size > 0);
876 }
877 
878 #ifdef CONFIG_POWER_SUPPLY
879 extern int power_supply_is_system_supplied(void);
880 #else
power_supply_is_system_supplied(void)881 static inline int power_supply_is_system_supplied(void) { return -ENOSYS; }
882 #endif
883 
884 extern int power_supply_get_property(struct power_supply *psy,
885 			    enum power_supply_property psp,
886 			    union power_supply_propval *val);
887 #if IS_ENABLED(CONFIG_POWER_SUPPLY)
888 extern int power_supply_set_property(struct power_supply *psy,
889 			    enum power_supply_property psp,
890 			    const union power_supply_propval *val);
891 #else
power_supply_set_property(struct power_supply * psy,enum power_supply_property psp,const union power_supply_propval * val)892 static inline int power_supply_set_property(struct power_supply *psy,
893 			    enum power_supply_property psp,
894 			    const union power_supply_propval *val)
895 { return 0; }
896 #endif
897 extern int power_supply_property_is_writeable(struct power_supply *psy,
898 					enum power_supply_property psp);
899 extern void power_supply_external_power_changed(struct power_supply *psy);
900 
901 extern struct power_supply *__must_check
902 power_supply_register(struct device *parent,
903 				 const struct power_supply_desc *desc,
904 				 const struct power_supply_config *cfg);
905 extern struct power_supply *__must_check
906 power_supply_register_no_ws(struct device *parent,
907 				 const struct power_supply_desc *desc,
908 				 const struct power_supply_config *cfg);
909 extern struct power_supply *__must_check
910 devm_power_supply_register(struct device *parent,
911 				 const struct power_supply_desc *desc,
912 				 const struct power_supply_config *cfg);
913 extern struct power_supply *__must_check
914 devm_power_supply_register_no_ws(struct device *parent,
915 				 const struct power_supply_desc *desc,
916 				 const struct power_supply_config *cfg);
917 extern void power_supply_unregister(struct power_supply *psy);
918 extern int power_supply_powers(struct power_supply *psy, struct device *dev);
919 
920 #define to_power_supply(device) container_of(device, struct power_supply, dev)
921 
922 extern void *power_supply_get_drvdata(struct power_supply *psy);
923 extern int power_supply_for_each_device(void *data, int (*fn)(struct device *dev, void *data));
924 
power_supply_is_amp_property(enum power_supply_property psp)925 static inline bool power_supply_is_amp_property(enum power_supply_property psp)
926 {
927 	switch (psp) {
928 	case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN:
929 	case POWER_SUPPLY_PROP_CHARGE_EMPTY_DESIGN:
930 	case POWER_SUPPLY_PROP_CHARGE_FULL:
931 	case POWER_SUPPLY_PROP_CHARGE_EMPTY:
932 	case POWER_SUPPLY_PROP_CHARGE_NOW:
933 	case POWER_SUPPLY_PROP_CHARGE_AVG:
934 	case POWER_SUPPLY_PROP_CHARGE_COUNTER:
935 	case POWER_SUPPLY_PROP_PRECHARGE_CURRENT:
936 	case POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT:
937 	case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT:
938 	case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX:
939 	case POWER_SUPPLY_PROP_CURRENT_MAX:
940 	case POWER_SUPPLY_PROP_CURRENT_NOW:
941 	case POWER_SUPPLY_PROP_CURRENT_AVG:
942 	case POWER_SUPPLY_PROP_CURRENT_BOOT:
943 		return true;
944 	default:
945 		break;
946 	}
947 
948 	return false;
949 }
950 
power_supply_is_watt_property(enum power_supply_property psp)951 static inline bool power_supply_is_watt_property(enum power_supply_property psp)
952 {
953 	switch (psp) {
954 	case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN:
955 	case POWER_SUPPLY_PROP_ENERGY_EMPTY_DESIGN:
956 	case POWER_SUPPLY_PROP_ENERGY_FULL:
957 	case POWER_SUPPLY_PROP_ENERGY_EMPTY:
958 	case POWER_SUPPLY_PROP_ENERGY_NOW:
959 	case POWER_SUPPLY_PROP_ENERGY_AVG:
960 	case POWER_SUPPLY_PROP_VOLTAGE_MAX:
961 	case POWER_SUPPLY_PROP_VOLTAGE_MIN:
962 	case POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN:
963 	case POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN:
964 	case POWER_SUPPLY_PROP_VOLTAGE_NOW:
965 	case POWER_SUPPLY_PROP_VOLTAGE_AVG:
966 	case POWER_SUPPLY_PROP_VOLTAGE_OCV:
967 	case POWER_SUPPLY_PROP_VOLTAGE_BOOT:
968 	case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE:
969 	case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX:
970 	case POWER_SUPPLY_PROP_POWER_NOW:
971 		return true;
972 	default:
973 		break;
974 	}
975 
976 	return false;
977 }
978 
979 #ifdef CONFIG_POWER_SUPPLY_HWMON
980 int power_supply_add_hwmon_sysfs(struct power_supply *psy);
981 void power_supply_remove_hwmon_sysfs(struct power_supply *psy);
982 #else
power_supply_add_hwmon_sysfs(struct power_supply * psy)983 static inline int power_supply_add_hwmon_sysfs(struct power_supply *psy)
984 {
985 	return 0;
986 }
987 
988 static inline
power_supply_remove_hwmon_sysfs(struct power_supply * psy)989 void power_supply_remove_hwmon_sysfs(struct power_supply *psy) {}
990 #endif
991 
992 #ifdef CONFIG_SYSFS
993 ssize_t power_supply_charge_behaviour_show(struct device *dev,
994 					   unsigned int available_behaviours,
995 					   enum power_supply_charge_behaviour behaviour,
996 					   char *buf);
997 
998 int power_supply_charge_behaviour_parse(unsigned int available_behaviours, const char *buf);
999 #else
1000 static inline
power_supply_charge_behaviour_show(struct device * dev,unsigned int available_behaviours,enum power_supply_charge_behaviour behaviour,char * buf)1001 ssize_t power_supply_charge_behaviour_show(struct device *dev,
1002 					   unsigned int available_behaviours,
1003 					   enum power_supply_charge_behaviour behaviour,
1004 					   char *buf)
1005 {
1006 	return -EOPNOTSUPP;
1007 }
1008 
power_supply_charge_behaviour_parse(unsigned int available_behaviours,const char * buf)1009 static inline int power_supply_charge_behaviour_parse(unsigned int available_behaviours,
1010 						      const char *buf)
1011 {
1012 	return -EOPNOTSUPP;
1013 }
1014 #endif
1015 
1016 #endif /* __LINUX_POWER_SUPPLY_H__ */
1017