1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/filemap.c
4 *
5 * Copyright (C) 1994-1999 Linus Torvalds
6 */
7
8 /*
9 * This file handles the generic file mmap semantics used by
10 * most "normal" filesystems (but you don't /have/ to use this:
11 * the NFS filesystem used to do this differently, for example)
12 */
13 #include <linux/export.h>
14 #include <linux/compiler.h>
15 #include <linux/dax.h>
16 #include <linux/fs.h>
17 #include <linux/sched/signal.h>
18 #include <linux/uaccess.h>
19 #include <linux/capability.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/gfp.h>
22 #include <linux/mm.h>
23 #include <linux/swap.h>
24 #include <linux/swapops.h>
25 #include <linux/syscalls.h>
26 #include <linux/mman.h>
27 #include <linux/pagemap.h>
28 #include <linux/file.h>
29 #include <linux/uio.h>
30 #include <linux/error-injection.h>
31 #include <linux/hash.h>
32 #include <linux/writeback.h>
33 #include <linux/backing-dev.h>
34 #include <linux/pagevec.h>
35 #include <linux/security.h>
36 #include <linux/cpuset.h>
37 #include <linux/hugetlb.h>
38 #include <linux/memcontrol.h>
39 #include <linux/cleancache.h>
40 #include <linux/shmem_fs.h>
41 #include <linux/rmap.h>
42 #include <linux/delayacct.h>
43 #include <linux/psi.h>
44 #include <linux/ramfs.h>
45 #include <linux/page_idle.h>
46 #include <linux/page_size_compat.h>
47 #include <linux/migrate.h>
48 #include <linux/pipe_fs_i.h>
49 #include <linux/splice.h>
50 #include <linux/rcupdate_wait.h>
51 #include <linux/sched/mm.h>
52 #include <asm/pgalloc.h>
53 #include <asm/tlbflush.h>
54 #include "internal.h"
55
56 #define CREATE_TRACE_POINTS
57 #include <trace/events/filemap.h>
58
59 #undef CREATE_TRACE_POINTS
60 #include <trace/hooks/mm.h>
61
62 /*
63 * FIXME: remove all knowledge of the buffer layer from the core VM
64 */
65 #include <linux/buffer_head.h> /* for try_to_free_buffers */
66
67 #include <asm/mman.h>
68
69 #include "swap.h"
70
_trace_android_rvh_mapping_shrinkable(bool * shrinkable)71 void _trace_android_rvh_mapping_shrinkable(bool *shrinkable)
72 {
73 trace_android_rvh_mapping_shrinkable(shrinkable);
74 }
75 EXPORT_SYMBOL_GPL(_trace_android_rvh_mapping_shrinkable);
76
77 /*
78 * Shared mappings implemented 30.11.1994. It's not fully working yet,
79 * though.
80 *
81 * Shared mappings now work. 15.8.1995 Bruno.
82 *
83 * finished 'unifying' the page and buffer cache and SMP-threaded the
84 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
85 *
86 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
87 */
88
89 /*
90 * Lock ordering:
91 *
92 * ->i_mmap_rwsem (truncate_pagecache)
93 * ->private_lock (__free_pte->block_dirty_folio)
94 * ->swap_lock (exclusive_swap_page, others)
95 * ->i_pages lock
96 *
97 * ->i_rwsem
98 * ->invalidate_lock (acquired by fs in truncate path)
99 * ->i_mmap_rwsem (truncate->unmap_mapping_range)
100 *
101 * ->mmap_lock
102 * ->i_mmap_rwsem
103 * ->page_table_lock or pte_lock (various, mainly in memory.c)
104 * ->i_pages lock (arch-dependent flush_dcache_mmap_lock)
105 *
106 * ->mmap_lock
107 * ->invalidate_lock (filemap_fault)
108 * ->lock_page (filemap_fault, access_process_vm)
109 *
110 * ->i_rwsem (generic_perform_write)
111 * ->mmap_lock (fault_in_readable->do_page_fault)
112 *
113 * bdi->wb.list_lock
114 * sb_lock (fs/fs-writeback.c)
115 * ->i_pages lock (__sync_single_inode)
116 *
117 * ->i_mmap_rwsem
118 * ->anon_vma.lock (vma_merge)
119 *
120 * ->anon_vma.lock
121 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
122 *
123 * ->page_table_lock or pte_lock
124 * ->swap_lock (try_to_unmap_one)
125 * ->private_lock (try_to_unmap_one)
126 * ->i_pages lock (try_to_unmap_one)
127 * ->lruvec->lru_lock (follow_page_mask->mark_page_accessed)
128 * ->lruvec->lru_lock (check_pte_range->folio_isolate_lru)
129 * ->private_lock (folio_remove_rmap_pte->set_page_dirty)
130 * ->i_pages lock (folio_remove_rmap_pte->set_page_dirty)
131 * bdi.wb->list_lock (folio_remove_rmap_pte->set_page_dirty)
132 * ->inode->i_lock (folio_remove_rmap_pte->set_page_dirty)
133 * ->memcg->move_lock (folio_remove_rmap_pte->folio_memcg_lock)
134 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
135 * ->inode->i_lock (zap_pte_range->set_page_dirty)
136 * ->private_lock (zap_pte_range->block_dirty_folio)
137 */
138
139 /* Export tracepoints that act as a bare tracehook */
140 EXPORT_TRACEPOINT_SYMBOL_GPL(mm_filemap_delete_from_page_cache);
141 EXPORT_TRACEPOINT_SYMBOL_GPL(mm_filemap_add_to_page_cache);
142
mapping_set_update(struct xa_state * xas,struct address_space * mapping)143 static void mapping_set_update(struct xa_state *xas,
144 struct address_space *mapping)
145 {
146 if (dax_mapping(mapping) || shmem_mapping(mapping))
147 return;
148 xas_set_update(xas, workingset_update_node);
149 xas_set_lru(xas, &shadow_nodes);
150 }
151
page_cache_delete(struct address_space * mapping,struct folio * folio,void * shadow)152 static void page_cache_delete(struct address_space *mapping,
153 struct folio *folio, void *shadow)
154 {
155 XA_STATE(xas, &mapping->i_pages, folio->index);
156 long nr = 1;
157
158 mapping_set_update(&xas, mapping);
159
160 xas_set_order(&xas, folio->index, folio_order(folio));
161 nr = folio_nr_pages(folio);
162
163 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
164
165 xas_store(&xas, shadow);
166 xas_init_marks(&xas);
167
168 folio->mapping = NULL;
169 /* Leave page->index set: truncation lookup relies upon it */
170 mapping->nrpages -= nr;
171 }
172
filemap_unaccount_folio(struct address_space * mapping,struct folio * folio)173 static void filemap_unaccount_folio(struct address_space *mapping,
174 struct folio *folio)
175 {
176 long nr;
177
178 /*
179 * if we're uptodate, flush out into the cleancache, otherwise
180 * invalidate any existing cleancache entries. We can't leave
181 * stale data around in the cleancache once our page is gone
182 */
183 if (folio_test_uptodate(folio) && folio_test_mappedtodisk(folio))
184 cleancache_put_page(&folio->page);
185 else
186 cleancache_invalidate_page(mapping, &folio->page);
187
188 VM_BUG_ON_FOLIO(folio_mapped(folio), folio);
189 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(folio_mapped(folio))) {
190 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n",
191 current->comm, folio_pfn(folio));
192 dump_page(&folio->page, "still mapped when deleted");
193 dump_stack();
194 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
195
196 if (mapping_exiting(mapping) && !folio_test_large(folio)) {
197 int mapcount = folio_mapcount(folio);
198
199 if (folio_ref_count(folio) >= mapcount + 2) {
200 /*
201 * All vmas have already been torn down, so it's
202 * a good bet that actually the page is unmapped
203 * and we'd rather not leak it: if we're wrong,
204 * another bad page check should catch it later.
205 */
206 atomic_set(&folio->_mapcount, -1);
207 folio_ref_sub(folio, mapcount);
208 }
209 }
210 }
211
212 /* hugetlb folios do not participate in page cache accounting. */
213 if (folio_test_hugetlb(folio))
214 return;
215
216 nr = folio_nr_pages(folio);
217
218 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr);
219 if (folio_test_swapbacked(folio)) {
220 __lruvec_stat_mod_folio(folio, NR_SHMEM, -nr);
221 trace_android_vh_shmem_mod_shmem(folio->mapping, -nr);
222 if (folio_test_pmd_mappable(folio))
223 __lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, -nr);
224 } else if (folio_test_pmd_mappable(folio)) {
225 __lruvec_stat_mod_folio(folio, NR_FILE_THPS, -nr);
226 filemap_nr_thps_dec(mapping);
227 }
228
229 /*
230 * At this point folio must be either written or cleaned by
231 * truncate. Dirty folio here signals a bug and loss of
232 * unwritten data - on ordinary filesystems.
233 *
234 * But it's harmless on in-memory filesystems like tmpfs; and can
235 * occur when a driver which did get_user_pages() sets page dirty
236 * before putting it, while the inode is being finally evicted.
237 *
238 * Below fixes dirty accounting after removing the folio entirely
239 * but leaves the dirty flag set: it has no effect for truncated
240 * folio and anyway will be cleared before returning folio to
241 * buddy allocator.
242 */
243 if (WARN_ON_ONCE(folio_test_dirty(folio) &&
244 mapping_can_writeback(mapping)))
245 folio_account_cleaned(folio, inode_to_wb(mapping->host));
246 }
247
248 /*
249 * Delete a page from the page cache and free it. Caller has to make
250 * sure the page is locked and that nobody else uses it - or that usage
251 * is safe. The caller must hold the i_pages lock.
252 */
__filemap_remove_folio(struct folio * folio,void * shadow)253 void __filemap_remove_folio(struct folio *folio, void *shadow)
254 {
255 struct address_space *mapping = folio->mapping;
256
257 trace_mm_filemap_delete_from_page_cache(folio);
258 filemap_unaccount_folio(mapping, folio);
259 page_cache_delete(mapping, folio, shadow);
260 }
261
filemap_free_folio(struct address_space * mapping,struct folio * folio)262 void filemap_free_folio(struct address_space *mapping, struct folio *folio)
263 {
264 void (*free_folio)(struct folio *);
265 int refs = 1;
266
267 free_folio = mapping->a_ops->free_folio;
268 if (free_folio)
269 free_folio(folio);
270
271 if (folio_test_large(folio))
272 refs = folio_nr_pages(folio);
273 folio_put_refs(folio, refs);
274 }
275
276 /**
277 * filemap_remove_folio - Remove folio from page cache.
278 * @folio: The folio.
279 *
280 * This must be called only on folios that are locked and have been
281 * verified to be in the page cache. It will never put the folio into
282 * the free list because the caller has a reference on the page.
283 */
filemap_remove_folio(struct folio * folio)284 void filemap_remove_folio(struct folio *folio)
285 {
286 struct address_space *mapping = folio->mapping;
287
288 BUG_ON(!folio_test_locked(folio));
289 spin_lock(&mapping->host->i_lock);
290 xa_lock_irq(&mapping->i_pages);
291 __filemap_remove_folio(folio, NULL);
292 xa_unlock_irq(&mapping->i_pages);
293 if (mapping_shrinkable(mapping))
294 inode_add_lru(mapping->host);
295 spin_unlock(&mapping->host->i_lock);
296
297 filemap_free_folio(mapping, folio);
298 }
299
300 /*
301 * page_cache_delete_batch - delete several folios from page cache
302 * @mapping: the mapping to which folios belong
303 * @fbatch: batch of folios to delete
304 *
305 * The function walks over mapping->i_pages and removes folios passed in
306 * @fbatch from the mapping. The function expects @fbatch to be sorted
307 * by page index and is optimised for it to be dense.
308 * It tolerates holes in @fbatch (mapping entries at those indices are not
309 * modified).
310 *
311 * The function expects the i_pages lock to be held.
312 */
page_cache_delete_batch(struct address_space * mapping,struct folio_batch * fbatch)313 static void page_cache_delete_batch(struct address_space *mapping,
314 struct folio_batch *fbatch)
315 {
316 XA_STATE(xas, &mapping->i_pages, fbatch->folios[0]->index);
317 long total_pages = 0;
318 int i = 0;
319 struct folio *folio;
320
321 mapping_set_update(&xas, mapping);
322 xas_for_each(&xas, folio, ULONG_MAX) {
323 if (i >= folio_batch_count(fbatch))
324 break;
325
326 /* A swap/dax/shadow entry got inserted? Skip it. */
327 if (xa_is_value(folio))
328 continue;
329 /*
330 * A page got inserted in our range? Skip it. We have our
331 * pages locked so they are protected from being removed.
332 * If we see a page whose index is higher than ours, it
333 * means our page has been removed, which shouldn't be
334 * possible because we're holding the PageLock.
335 */
336 if (folio != fbatch->folios[i]) {
337 VM_BUG_ON_FOLIO(folio->index >
338 fbatch->folios[i]->index, folio);
339 continue;
340 }
341
342 WARN_ON_ONCE(!folio_test_locked(folio));
343
344 folio->mapping = NULL;
345 /* Leave folio->index set: truncation lookup relies on it */
346
347 i++;
348 xas_store(&xas, NULL);
349 total_pages += folio_nr_pages(folio);
350 }
351 mapping->nrpages -= total_pages;
352 }
353
delete_from_page_cache_batch(struct address_space * mapping,struct folio_batch * fbatch)354 void delete_from_page_cache_batch(struct address_space *mapping,
355 struct folio_batch *fbatch)
356 {
357 int i;
358
359 if (!folio_batch_count(fbatch))
360 return;
361
362 spin_lock(&mapping->host->i_lock);
363 xa_lock_irq(&mapping->i_pages);
364 for (i = 0; i < folio_batch_count(fbatch); i++) {
365 struct folio *folio = fbatch->folios[i];
366
367 trace_mm_filemap_delete_from_page_cache(folio);
368 filemap_unaccount_folio(mapping, folio);
369 }
370 page_cache_delete_batch(mapping, fbatch);
371 xa_unlock_irq(&mapping->i_pages);
372 if (mapping_shrinkable(mapping))
373 inode_add_lru(mapping->host);
374 spin_unlock(&mapping->host->i_lock);
375
376 for (i = 0; i < folio_batch_count(fbatch); i++)
377 filemap_free_folio(mapping, fbatch->folios[i]);
378 }
379
filemap_check_errors(struct address_space * mapping)380 int filemap_check_errors(struct address_space *mapping)
381 {
382 int ret = 0;
383 /* Check for outstanding write errors */
384 if (test_bit(AS_ENOSPC, &mapping->flags) &&
385 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
386 ret = -ENOSPC;
387 if (test_bit(AS_EIO, &mapping->flags) &&
388 test_and_clear_bit(AS_EIO, &mapping->flags))
389 ret = -EIO;
390 return ret;
391 }
392 EXPORT_SYMBOL(filemap_check_errors);
393
filemap_check_and_keep_errors(struct address_space * mapping)394 static int filemap_check_and_keep_errors(struct address_space *mapping)
395 {
396 /* Check for outstanding write errors */
397 if (test_bit(AS_EIO, &mapping->flags))
398 return -EIO;
399 if (test_bit(AS_ENOSPC, &mapping->flags))
400 return -ENOSPC;
401 return 0;
402 }
403
404 /**
405 * filemap_fdatawrite_wbc - start writeback on mapping dirty pages in range
406 * @mapping: address space structure to write
407 * @wbc: the writeback_control controlling the writeout
408 *
409 * Call writepages on the mapping using the provided wbc to control the
410 * writeout.
411 *
412 * Return: %0 on success, negative error code otherwise.
413 */
filemap_fdatawrite_wbc(struct address_space * mapping,struct writeback_control * wbc)414 int filemap_fdatawrite_wbc(struct address_space *mapping,
415 struct writeback_control *wbc)
416 {
417 int ret;
418
419 if (!mapping_can_writeback(mapping) ||
420 !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
421 return 0;
422
423 wbc_attach_fdatawrite_inode(wbc, mapping->host);
424 ret = do_writepages(mapping, wbc);
425 wbc_detach_inode(wbc);
426 return ret;
427 }
428 EXPORT_SYMBOL(filemap_fdatawrite_wbc);
429
430 /**
431 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
432 * @mapping: address space structure to write
433 * @start: offset in bytes where the range starts
434 * @end: offset in bytes where the range ends (inclusive)
435 * @sync_mode: enable synchronous operation
436 *
437 * Start writeback against all of a mapping's dirty pages that lie
438 * within the byte offsets <start, end> inclusive.
439 *
440 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
441 * opposed to a regular memory cleansing writeback. The difference between
442 * these two operations is that if a dirty page/buffer is encountered, it must
443 * be waited upon, and not just skipped over.
444 *
445 * Return: %0 on success, negative error code otherwise.
446 */
__filemap_fdatawrite_range(struct address_space * mapping,loff_t start,loff_t end,int sync_mode)447 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
448 loff_t end, int sync_mode)
449 {
450 struct writeback_control wbc = {
451 .sync_mode = sync_mode,
452 .nr_to_write = LONG_MAX,
453 .range_start = start,
454 .range_end = end,
455 };
456
457 return filemap_fdatawrite_wbc(mapping, &wbc);
458 }
459
__filemap_fdatawrite(struct address_space * mapping,int sync_mode)460 static inline int __filemap_fdatawrite(struct address_space *mapping,
461 int sync_mode)
462 {
463 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
464 }
465
filemap_fdatawrite(struct address_space * mapping)466 int filemap_fdatawrite(struct address_space *mapping)
467 {
468 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
469 }
470 EXPORT_SYMBOL(filemap_fdatawrite);
471
filemap_fdatawrite_range(struct address_space * mapping,loff_t start,loff_t end)472 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
473 loff_t end)
474 {
475 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
476 }
477 EXPORT_SYMBOL(filemap_fdatawrite_range);
478
479 /**
480 * filemap_fdatawrite_range_kick - start writeback on a range
481 * @mapping: target address_space
482 * @start: index to start writeback on
483 * @end: last (inclusive) index for writeback
484 *
485 * This is a non-integrity writeback helper, to start writing back folios
486 * for the indicated range.
487 *
488 * Return: %0 on success, negative error code otherwise.
489 */
filemap_fdatawrite_range_kick(struct address_space * mapping,loff_t start,loff_t end)490 int filemap_fdatawrite_range_kick(struct address_space *mapping, loff_t start,
491 loff_t end)
492 {
493 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_NONE);
494 }
495 EXPORT_SYMBOL_GPL(filemap_fdatawrite_range_kick);
496
497 /**
498 * filemap_flush - mostly a non-blocking flush
499 * @mapping: target address_space
500 *
501 * This is a mostly non-blocking flush. Not suitable for data-integrity
502 * purposes - I/O may not be started against all dirty pages.
503 *
504 * Return: %0 on success, negative error code otherwise.
505 */
filemap_flush(struct address_space * mapping)506 int filemap_flush(struct address_space *mapping)
507 {
508 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
509 }
510 EXPORT_SYMBOL(filemap_flush);
511
512 /**
513 * filemap_range_has_page - check if a page exists in range.
514 * @mapping: address space within which to check
515 * @start_byte: offset in bytes where the range starts
516 * @end_byte: offset in bytes where the range ends (inclusive)
517 *
518 * Find at least one page in the range supplied, usually used to check if
519 * direct writing in this range will trigger a writeback.
520 *
521 * Return: %true if at least one page exists in the specified range,
522 * %false otherwise.
523 */
filemap_range_has_page(struct address_space * mapping,loff_t start_byte,loff_t end_byte)524 bool filemap_range_has_page(struct address_space *mapping,
525 loff_t start_byte, loff_t end_byte)
526 {
527 struct folio *folio;
528 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
529 pgoff_t max = end_byte >> PAGE_SHIFT;
530
531 if (end_byte < start_byte)
532 return false;
533
534 rcu_read_lock();
535 for (;;) {
536 folio = xas_find(&xas, max);
537 if (xas_retry(&xas, folio))
538 continue;
539 /* Shadow entries don't count */
540 if (xa_is_value(folio))
541 continue;
542 /*
543 * We don't need to try to pin this page; we're about to
544 * release the RCU lock anyway. It is enough to know that
545 * there was a page here recently.
546 */
547 break;
548 }
549 rcu_read_unlock();
550
551 return folio != NULL;
552 }
553 EXPORT_SYMBOL(filemap_range_has_page);
554
__filemap_fdatawait_range(struct address_space * mapping,loff_t start_byte,loff_t end_byte)555 static void __filemap_fdatawait_range(struct address_space *mapping,
556 loff_t start_byte, loff_t end_byte)
557 {
558 pgoff_t index = start_byte >> PAGE_SHIFT;
559 pgoff_t end = end_byte >> PAGE_SHIFT;
560 struct folio_batch fbatch;
561 unsigned nr_folios;
562
563 folio_batch_init(&fbatch);
564
565 while (index <= end) {
566 unsigned i;
567
568 nr_folios = filemap_get_folios_tag(mapping, &index, end,
569 PAGECACHE_TAG_WRITEBACK, &fbatch);
570
571 if (!nr_folios)
572 break;
573
574 for (i = 0; i < nr_folios; i++) {
575 struct folio *folio = fbatch.folios[i];
576
577 folio_wait_writeback(folio);
578 }
579 folio_batch_release(&fbatch);
580 cond_resched();
581 }
582 }
583
584 /**
585 * filemap_fdatawait_range - wait for writeback to complete
586 * @mapping: address space structure to wait for
587 * @start_byte: offset in bytes where the range starts
588 * @end_byte: offset in bytes where the range ends (inclusive)
589 *
590 * Walk the list of under-writeback pages of the given address space
591 * in the given range and wait for all of them. Check error status of
592 * the address space and return it.
593 *
594 * Since the error status of the address space is cleared by this function,
595 * callers are responsible for checking the return value and handling and/or
596 * reporting the error.
597 *
598 * Return: error status of the address space.
599 */
filemap_fdatawait_range(struct address_space * mapping,loff_t start_byte,loff_t end_byte)600 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
601 loff_t end_byte)
602 {
603 __filemap_fdatawait_range(mapping, start_byte, end_byte);
604 return filemap_check_errors(mapping);
605 }
606 EXPORT_SYMBOL(filemap_fdatawait_range);
607
608 /**
609 * filemap_fdatawait_range_keep_errors - wait for writeback to complete
610 * @mapping: address space structure to wait for
611 * @start_byte: offset in bytes where the range starts
612 * @end_byte: offset in bytes where the range ends (inclusive)
613 *
614 * Walk the list of under-writeback pages of the given address space in the
615 * given range and wait for all of them. Unlike filemap_fdatawait_range(),
616 * this function does not clear error status of the address space.
617 *
618 * Use this function if callers don't handle errors themselves. Expected
619 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
620 * fsfreeze(8)
621 */
filemap_fdatawait_range_keep_errors(struct address_space * mapping,loff_t start_byte,loff_t end_byte)622 int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
623 loff_t start_byte, loff_t end_byte)
624 {
625 __filemap_fdatawait_range(mapping, start_byte, end_byte);
626 return filemap_check_and_keep_errors(mapping);
627 }
628 EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors);
629
630 /**
631 * file_fdatawait_range - wait for writeback to complete
632 * @file: file pointing to address space structure to wait for
633 * @start_byte: offset in bytes where the range starts
634 * @end_byte: offset in bytes where the range ends (inclusive)
635 *
636 * Walk the list of under-writeback pages of the address space that file
637 * refers to, in the given range and wait for all of them. Check error
638 * status of the address space vs. the file->f_wb_err cursor and return it.
639 *
640 * Since the error status of the file is advanced by this function,
641 * callers are responsible for checking the return value and handling and/or
642 * reporting the error.
643 *
644 * Return: error status of the address space vs. the file->f_wb_err cursor.
645 */
file_fdatawait_range(struct file * file,loff_t start_byte,loff_t end_byte)646 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
647 {
648 struct address_space *mapping = file->f_mapping;
649
650 __filemap_fdatawait_range(mapping, start_byte, end_byte);
651 return file_check_and_advance_wb_err(file);
652 }
653 EXPORT_SYMBOL(file_fdatawait_range);
654
655 /**
656 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
657 * @mapping: address space structure to wait for
658 *
659 * Walk the list of under-writeback pages of the given address space
660 * and wait for all of them. Unlike filemap_fdatawait(), this function
661 * does not clear error status of the address space.
662 *
663 * Use this function if callers don't handle errors themselves. Expected
664 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
665 * fsfreeze(8)
666 *
667 * Return: error status of the address space.
668 */
filemap_fdatawait_keep_errors(struct address_space * mapping)669 int filemap_fdatawait_keep_errors(struct address_space *mapping)
670 {
671 __filemap_fdatawait_range(mapping, 0, LLONG_MAX);
672 return filemap_check_and_keep_errors(mapping);
673 }
674 EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
675
676 /* Returns true if writeback might be needed or already in progress. */
mapping_needs_writeback(struct address_space * mapping)677 static bool mapping_needs_writeback(struct address_space *mapping)
678 {
679 return mapping->nrpages;
680 }
681
filemap_range_has_writeback(struct address_space * mapping,loff_t start_byte,loff_t end_byte)682 bool filemap_range_has_writeback(struct address_space *mapping,
683 loff_t start_byte, loff_t end_byte)
684 {
685 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
686 pgoff_t max = end_byte >> PAGE_SHIFT;
687 struct folio *folio;
688
689 if (end_byte < start_byte)
690 return false;
691
692 rcu_read_lock();
693 xas_for_each(&xas, folio, max) {
694 if (xas_retry(&xas, folio))
695 continue;
696 if (xa_is_value(folio))
697 continue;
698 if (folio_test_dirty(folio) || folio_test_locked(folio) ||
699 folio_test_writeback(folio))
700 break;
701 }
702 rcu_read_unlock();
703 return folio != NULL;
704 }
705 EXPORT_SYMBOL_GPL(filemap_range_has_writeback);
706
707 /**
708 * filemap_write_and_wait_range - write out & wait on a file range
709 * @mapping: the address_space for the pages
710 * @lstart: offset in bytes where the range starts
711 * @lend: offset in bytes where the range ends (inclusive)
712 *
713 * Write out and wait upon file offsets lstart->lend, inclusive.
714 *
715 * Note that @lend is inclusive (describes the last byte to be written) so
716 * that this function can be used to write to the very end-of-file (end = -1).
717 *
718 * Return: error status of the address space.
719 */
filemap_write_and_wait_range(struct address_space * mapping,loff_t lstart,loff_t lend)720 int filemap_write_and_wait_range(struct address_space *mapping,
721 loff_t lstart, loff_t lend)
722 {
723 int err = 0, err2;
724
725 if (lend < lstart)
726 return 0;
727
728 if (mapping_needs_writeback(mapping)) {
729 err = __filemap_fdatawrite_range(mapping, lstart, lend,
730 WB_SYNC_ALL);
731 /*
732 * Even if the above returned error, the pages may be
733 * written partially (e.g. -ENOSPC), so we wait for it.
734 * But the -EIO is special case, it may indicate the worst
735 * thing (e.g. bug) happened, so we avoid waiting for it.
736 */
737 if (err != -EIO)
738 __filemap_fdatawait_range(mapping, lstart, lend);
739 }
740 err2 = filemap_check_errors(mapping);
741 if (!err)
742 err = err2;
743 return err;
744 }
745 EXPORT_SYMBOL(filemap_write_and_wait_range);
746
__filemap_set_wb_err(struct address_space * mapping,int err)747 void __filemap_set_wb_err(struct address_space *mapping, int err)
748 {
749 errseq_t eseq = errseq_set(&mapping->wb_err, err);
750
751 trace_filemap_set_wb_err(mapping, eseq);
752 }
753 EXPORT_SYMBOL(__filemap_set_wb_err);
754
755 /**
756 * file_check_and_advance_wb_err - report wb error (if any) that was previously
757 * and advance wb_err to current one
758 * @file: struct file on which the error is being reported
759 *
760 * When userland calls fsync (or something like nfsd does the equivalent), we
761 * want to report any writeback errors that occurred since the last fsync (or
762 * since the file was opened if there haven't been any).
763 *
764 * Grab the wb_err from the mapping. If it matches what we have in the file,
765 * then just quickly return 0. The file is all caught up.
766 *
767 * If it doesn't match, then take the mapping value, set the "seen" flag in
768 * it and try to swap it into place. If it works, or another task beat us
769 * to it with the new value, then update the f_wb_err and return the error
770 * portion. The error at this point must be reported via proper channels
771 * (a'la fsync, or NFS COMMIT operation, etc.).
772 *
773 * While we handle mapping->wb_err with atomic operations, the f_wb_err
774 * value is protected by the f_lock since we must ensure that it reflects
775 * the latest value swapped in for this file descriptor.
776 *
777 * Return: %0 on success, negative error code otherwise.
778 */
file_check_and_advance_wb_err(struct file * file)779 int file_check_and_advance_wb_err(struct file *file)
780 {
781 int err = 0;
782 errseq_t old = READ_ONCE(file->f_wb_err);
783 struct address_space *mapping = file->f_mapping;
784
785 /* Locklessly handle the common case where nothing has changed */
786 if (errseq_check(&mapping->wb_err, old)) {
787 /* Something changed, must use slow path */
788 spin_lock(&file->f_lock);
789 old = file->f_wb_err;
790 err = errseq_check_and_advance(&mapping->wb_err,
791 &file->f_wb_err);
792 trace_file_check_and_advance_wb_err(file, old);
793 spin_unlock(&file->f_lock);
794 }
795
796 /*
797 * We're mostly using this function as a drop in replacement for
798 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
799 * that the legacy code would have had on these flags.
800 */
801 clear_bit(AS_EIO, &mapping->flags);
802 clear_bit(AS_ENOSPC, &mapping->flags);
803 return err;
804 }
805 EXPORT_SYMBOL(file_check_and_advance_wb_err);
806
807 /**
808 * file_write_and_wait_range - write out & wait on a file range
809 * @file: file pointing to address_space with pages
810 * @lstart: offset in bytes where the range starts
811 * @lend: offset in bytes where the range ends (inclusive)
812 *
813 * Write out and wait upon file offsets lstart->lend, inclusive.
814 *
815 * Note that @lend is inclusive (describes the last byte to be written) so
816 * that this function can be used to write to the very end-of-file (end = -1).
817 *
818 * After writing out and waiting on the data, we check and advance the
819 * f_wb_err cursor to the latest value, and return any errors detected there.
820 *
821 * Return: %0 on success, negative error code otherwise.
822 */
file_write_and_wait_range(struct file * file,loff_t lstart,loff_t lend)823 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
824 {
825 int err = 0, err2;
826 struct address_space *mapping = file->f_mapping;
827
828 if (lend < lstart)
829 return 0;
830
831 if (mapping_needs_writeback(mapping)) {
832 err = __filemap_fdatawrite_range(mapping, lstart, lend,
833 WB_SYNC_ALL);
834 /* See comment of filemap_write_and_wait() */
835 if (err != -EIO)
836 __filemap_fdatawait_range(mapping, lstart, lend);
837 }
838 err2 = file_check_and_advance_wb_err(file);
839 if (!err)
840 err = err2;
841 return err;
842 }
843 EXPORT_SYMBOL(file_write_and_wait_range);
844
845 /**
846 * replace_page_cache_folio - replace a pagecache folio with a new one
847 * @old: folio to be replaced
848 * @new: folio to replace with
849 *
850 * This function replaces a folio in the pagecache with a new one. On
851 * success it acquires the pagecache reference for the new folio and
852 * drops it for the old folio. Both the old and new folios must be
853 * locked. This function does not add the new folio to the LRU, the
854 * caller must do that.
855 *
856 * The remove + add is atomic. This function cannot fail.
857 */
replace_page_cache_folio(struct folio * old,struct folio * new)858 void replace_page_cache_folio(struct folio *old, struct folio *new)
859 {
860 struct address_space *mapping = old->mapping;
861 void (*free_folio)(struct folio *) = mapping->a_ops->free_folio;
862 pgoff_t offset = old->index;
863 XA_STATE(xas, &mapping->i_pages, offset);
864
865 VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
866 VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
867 VM_BUG_ON_FOLIO(new->mapping, new);
868
869 folio_get(new);
870 new->mapping = mapping;
871 new->index = offset;
872
873 mem_cgroup_replace_folio(old, new);
874
875 xas_lock_irq(&xas);
876 xas_store(&xas, new);
877
878 old->mapping = NULL;
879 /* hugetlb pages do not participate in page cache accounting. */
880 if (!folio_test_hugetlb(old))
881 __lruvec_stat_sub_folio(old, NR_FILE_PAGES);
882 if (!folio_test_hugetlb(new))
883 __lruvec_stat_add_folio(new, NR_FILE_PAGES);
884 if (folio_test_swapbacked(old))
885 __lruvec_stat_sub_folio(old, NR_SHMEM);
886 if (folio_test_swapbacked(new))
887 __lruvec_stat_add_folio(new, NR_SHMEM);
888 xas_unlock_irq(&xas);
889 if (free_folio)
890 free_folio(old);
891 folio_put(old);
892 }
893 EXPORT_SYMBOL_GPL(replace_page_cache_folio);
894
__filemap_add_folio(struct address_space * mapping,struct folio * folio,pgoff_t index,gfp_t gfp,void ** shadowp)895 noinline int __filemap_add_folio(struct address_space *mapping,
896 struct folio *folio, pgoff_t index, gfp_t gfp, void **shadowp)
897 {
898 XA_STATE(xas, &mapping->i_pages, index);
899 void *alloced_shadow = NULL;
900 int alloced_order = 0;
901 bool huge;
902 long nr;
903
904 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
905 VM_BUG_ON_FOLIO(folio_test_swapbacked(folio), folio);
906 VM_BUG_ON_FOLIO(folio_order(folio) < mapping_min_folio_order(mapping),
907 folio);
908 mapping_set_update(&xas, mapping);
909
910 VM_BUG_ON_FOLIO(index & (folio_nr_pages(folio) - 1), folio);
911 xas_set_order(&xas, index, folio_order(folio));
912 huge = folio_test_hugetlb(folio);
913 nr = folio_nr_pages(folio);
914
915 gfp &= GFP_RECLAIM_MASK;
916 folio_ref_add(folio, nr);
917 folio->mapping = mapping;
918 folio->index = xas.xa_index;
919
920 for (;;) {
921 int order = -1, split_order = 0;
922 void *entry, *old = NULL;
923
924 xas_lock_irq(&xas);
925 xas_for_each_conflict(&xas, entry) {
926 old = entry;
927 if (!xa_is_value(entry)) {
928 xas_set_err(&xas, -EEXIST);
929 goto unlock;
930 }
931 /*
932 * If a larger entry exists,
933 * it will be the first and only entry iterated.
934 */
935 if (order == -1)
936 order = xas_get_order(&xas);
937 }
938
939 /* entry may have changed before we re-acquire the lock */
940 if (alloced_order && (old != alloced_shadow || order != alloced_order)) {
941 xas_destroy(&xas);
942 alloced_order = 0;
943 }
944
945 if (old) {
946 if (order > 0 && order > folio_order(folio)) {
947 /* How to handle large swap entries? */
948 BUG_ON(shmem_mapping(mapping));
949 if (!alloced_order) {
950 split_order = order;
951 goto unlock;
952 }
953 xas_split(&xas, old, order);
954 xas_reset(&xas);
955 }
956 if (shadowp)
957 *shadowp = old;
958 }
959
960 xas_store(&xas, folio);
961 if (xas_error(&xas))
962 goto unlock;
963
964 mapping->nrpages += nr;
965
966 /* hugetlb pages do not participate in page cache accounting */
967 if (!huge) {
968 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr);
969 if (folio_test_pmd_mappable(folio))
970 __lruvec_stat_mod_folio(folio,
971 NR_FILE_THPS, nr);
972 }
973
974 unlock:
975 xas_unlock_irq(&xas);
976
977 /* split needed, alloc here and retry. */
978 if (split_order) {
979 xas_split_alloc(&xas, old, split_order, gfp);
980 if (xas_error(&xas))
981 goto error;
982 alloced_shadow = old;
983 alloced_order = split_order;
984 xas_reset(&xas);
985 continue;
986 }
987
988 if (!xas_nomem(&xas, gfp))
989 break;
990 }
991
992 if (xas_error(&xas))
993 goto error;
994
995 trace_mm_filemap_add_to_page_cache(folio);
996 return 0;
997 error:
998 folio->mapping = NULL;
999 /* Leave page->index set: truncation relies upon it */
1000 folio_put_refs(folio, nr);
1001 return xas_error(&xas);
1002 }
1003 ALLOW_ERROR_INJECTION(__filemap_add_folio, ERRNO);
1004
filemap_add_folio(struct address_space * mapping,struct folio * folio,pgoff_t index,gfp_t gfp)1005 int filemap_add_folio(struct address_space *mapping, struct folio *folio,
1006 pgoff_t index, gfp_t gfp)
1007 {
1008 void *shadow = NULL;
1009 int ret;
1010
1011 trace_android_vh_filemap_add_folio(mapping, folio, index);
1012 ret = mem_cgroup_charge(folio, NULL, gfp);
1013 if (ret)
1014 return ret;
1015
1016 __folio_set_locked(folio);
1017 ret = __filemap_add_folio(mapping, folio, index, gfp, &shadow);
1018 if (unlikely(ret)) {
1019 mem_cgroup_uncharge(folio);
1020 __folio_clear_locked(folio);
1021 } else {
1022 /*
1023 * The folio might have been evicted from cache only
1024 * recently, in which case it should be activated like
1025 * any other repeatedly accessed folio.
1026 * The exception is folios getting rewritten; evicting other
1027 * data from the working set, only to cache data that will
1028 * get overwritten with something else, is a waste of memory.
1029 */
1030 WARN_ON_ONCE(folio_test_active(folio));
1031 if (!(gfp & __GFP_WRITE) && shadow)
1032 workingset_refault(folio, shadow);
1033 folio_add_lru(folio);
1034 }
1035 return ret;
1036 }
1037 EXPORT_SYMBOL_GPL(filemap_add_folio);
1038
1039 #ifdef CONFIG_NUMA
filemap_alloc_folio_noprof(gfp_t gfp,unsigned int order)1040 struct folio *filemap_alloc_folio_noprof(gfp_t gfp, unsigned int order)
1041 {
1042 int n;
1043 struct folio *folio;
1044
1045 if (cpuset_do_page_mem_spread()) {
1046 unsigned int cpuset_mems_cookie;
1047 do {
1048 cpuset_mems_cookie = read_mems_allowed_begin();
1049 n = cpuset_mem_spread_node();
1050 folio = __folio_alloc_node_noprof(gfp, order, n);
1051 } while (!folio && read_mems_allowed_retry(cpuset_mems_cookie));
1052
1053 return folio;
1054 }
1055 return folio_alloc_noprof(gfp, order);
1056 }
1057 EXPORT_SYMBOL(filemap_alloc_folio_noprof);
1058 #endif
1059
1060 /*
1061 * filemap_invalidate_lock_two - lock invalidate_lock for two mappings
1062 *
1063 * Lock exclusively invalidate_lock of any passed mapping that is not NULL.
1064 *
1065 * @mapping1: the first mapping to lock
1066 * @mapping2: the second mapping to lock
1067 */
filemap_invalidate_lock_two(struct address_space * mapping1,struct address_space * mapping2)1068 void filemap_invalidate_lock_two(struct address_space *mapping1,
1069 struct address_space *mapping2)
1070 {
1071 if (mapping1 > mapping2)
1072 swap(mapping1, mapping2);
1073 if (mapping1)
1074 down_write(&mapping1->invalidate_lock);
1075 if (mapping2 && mapping1 != mapping2)
1076 down_write_nested(&mapping2->invalidate_lock, 1);
1077 }
1078 EXPORT_SYMBOL(filemap_invalidate_lock_two);
1079
1080 /*
1081 * filemap_invalidate_unlock_two - unlock invalidate_lock for two mappings
1082 *
1083 * Unlock exclusive invalidate_lock of any passed mapping that is not NULL.
1084 *
1085 * @mapping1: the first mapping to unlock
1086 * @mapping2: the second mapping to unlock
1087 */
filemap_invalidate_unlock_two(struct address_space * mapping1,struct address_space * mapping2)1088 void filemap_invalidate_unlock_two(struct address_space *mapping1,
1089 struct address_space *mapping2)
1090 {
1091 if (mapping1)
1092 up_write(&mapping1->invalidate_lock);
1093 if (mapping2 && mapping1 != mapping2)
1094 up_write(&mapping2->invalidate_lock);
1095 }
1096 EXPORT_SYMBOL(filemap_invalidate_unlock_two);
1097
1098 /*
1099 * In order to wait for pages to become available there must be
1100 * waitqueues associated with pages. By using a hash table of
1101 * waitqueues where the bucket discipline is to maintain all
1102 * waiters on the same queue and wake all when any of the pages
1103 * become available, and for the woken contexts to check to be
1104 * sure the appropriate page became available, this saves space
1105 * at a cost of "thundering herd" phenomena during rare hash
1106 * collisions.
1107 */
1108 #define PAGE_WAIT_TABLE_BITS 8
1109 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
1110 static wait_queue_head_t folio_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
1111
folio_waitqueue(struct folio * folio)1112 static wait_queue_head_t *folio_waitqueue(struct folio *folio)
1113 {
1114 return &folio_wait_table[hash_ptr(folio, PAGE_WAIT_TABLE_BITS)];
1115 }
1116
pagecache_init(void)1117 void __init pagecache_init(void)
1118 {
1119 int i;
1120
1121 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
1122 init_waitqueue_head(&folio_wait_table[i]);
1123
1124 page_writeback_init();
1125 }
1126
1127 /*
1128 * The page wait code treats the "wait->flags" somewhat unusually, because
1129 * we have multiple different kinds of waits, not just the usual "exclusive"
1130 * one.
1131 *
1132 * We have:
1133 *
1134 * (a) no special bits set:
1135 *
1136 * We're just waiting for the bit to be released, and when a waker
1137 * calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up,
1138 * and remove it from the wait queue.
1139 *
1140 * Simple and straightforward.
1141 *
1142 * (b) WQ_FLAG_EXCLUSIVE:
1143 *
1144 * The waiter is waiting to get the lock, and only one waiter should
1145 * be woken up to avoid any thundering herd behavior. We'll set the
1146 * WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue.
1147 *
1148 * This is the traditional exclusive wait.
1149 *
1150 * (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM:
1151 *
1152 * The waiter is waiting to get the bit, and additionally wants the
1153 * lock to be transferred to it for fair lock behavior. If the lock
1154 * cannot be taken, we stop walking the wait queue without waking
1155 * the waiter.
1156 *
1157 * This is the "fair lock handoff" case, and in addition to setting
1158 * WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see
1159 * that it now has the lock.
1160 */
wake_page_function(wait_queue_entry_t * wait,unsigned mode,int sync,void * arg)1161 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
1162 {
1163 unsigned int flags;
1164 struct wait_page_key *key = arg;
1165 struct wait_page_queue *wait_page
1166 = container_of(wait, struct wait_page_queue, wait);
1167
1168 if (!wake_page_match(wait_page, key))
1169 return 0;
1170
1171 /*
1172 * If it's a lock handoff wait, we get the bit for it, and
1173 * stop walking (and do not wake it up) if we can't.
1174 */
1175 flags = wait->flags;
1176 if (flags & WQ_FLAG_EXCLUSIVE) {
1177 if (test_bit(key->bit_nr, &key->folio->flags))
1178 return -1;
1179 if (flags & WQ_FLAG_CUSTOM) {
1180 if (test_and_set_bit(key->bit_nr, &key->folio->flags))
1181 return -1;
1182 flags |= WQ_FLAG_DONE;
1183 }
1184 }
1185
1186 /*
1187 * We are holding the wait-queue lock, but the waiter that
1188 * is waiting for this will be checking the flags without
1189 * any locking.
1190 *
1191 * So update the flags atomically, and wake up the waiter
1192 * afterwards to avoid any races. This store-release pairs
1193 * with the load-acquire in folio_wait_bit_common().
1194 */
1195 smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN);
1196 wake_up_state(wait->private, mode);
1197
1198 /*
1199 * Ok, we have successfully done what we're waiting for,
1200 * and we can unconditionally remove the wait entry.
1201 *
1202 * Note that this pairs with the "finish_wait()" in the
1203 * waiter, and has to be the absolute last thing we do.
1204 * After this list_del_init(&wait->entry) the wait entry
1205 * might be de-allocated and the process might even have
1206 * exited.
1207 */
1208 list_del_init_careful(&wait->entry);
1209 return (flags & WQ_FLAG_EXCLUSIVE) != 0;
1210 }
1211
folio_wake_bit(struct folio * folio,int bit_nr)1212 static void folio_wake_bit(struct folio *folio, int bit_nr)
1213 {
1214 wait_queue_head_t *q = folio_waitqueue(folio);
1215 struct wait_page_key key;
1216 unsigned long flags;
1217
1218 key.folio = folio;
1219 key.bit_nr = bit_nr;
1220 key.page_match = 0;
1221
1222 spin_lock_irqsave(&q->lock, flags);
1223 __wake_up_locked_key(q, TASK_NORMAL, &key);
1224
1225 /*
1226 * It's possible to miss clearing waiters here, when we woke our page
1227 * waiters, but the hashed waitqueue has waiters for other pages on it.
1228 * That's okay, it's a rare case. The next waker will clear it.
1229 *
1230 * Note that, depending on the page pool (buddy, hugetlb, ZONE_DEVICE,
1231 * other), the flag may be cleared in the course of freeing the page;
1232 * but that is not required for correctness.
1233 */
1234 if (!waitqueue_active(q) || !key.page_match)
1235 folio_clear_waiters(folio);
1236
1237 spin_unlock_irqrestore(&q->lock, flags);
1238 }
1239
1240 /*
1241 * A choice of three behaviors for folio_wait_bit_common():
1242 */
1243 enum behavior {
1244 EXCLUSIVE, /* Hold ref to page and take the bit when woken, like
1245 * __folio_lock() waiting on then setting PG_locked.
1246 */
1247 SHARED, /* Hold ref to page and check the bit when woken, like
1248 * folio_wait_writeback() waiting on PG_writeback.
1249 */
1250 DROP, /* Drop ref to page before wait, no check when woken,
1251 * like folio_put_wait_locked() on PG_locked.
1252 */
1253 };
1254
1255 /*
1256 * Attempt to check (or get) the folio flag, and mark us done
1257 * if successful.
1258 */
folio_trylock_flag(struct folio * folio,int bit_nr,struct wait_queue_entry * wait)1259 static inline bool folio_trylock_flag(struct folio *folio, int bit_nr,
1260 struct wait_queue_entry *wait)
1261 {
1262 if (wait->flags & WQ_FLAG_EXCLUSIVE) {
1263 if (test_and_set_bit(bit_nr, &folio->flags))
1264 return false;
1265 } else if (test_bit(bit_nr, &folio->flags))
1266 return false;
1267
1268 wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE;
1269 return true;
1270 }
1271
1272 /* How many times do we accept lock stealing from under a waiter? */
1273 int sysctl_page_lock_unfairness = 5;
1274
folio_wait_bit_common(struct folio * folio,int bit_nr,int state,enum behavior behavior)1275 static inline int folio_wait_bit_common(struct folio *folio, int bit_nr,
1276 int state, enum behavior behavior)
1277 {
1278 wait_queue_head_t *q = folio_waitqueue(folio);
1279 int unfairness = sysctl_page_lock_unfairness;
1280 struct wait_page_queue wait_page;
1281 wait_queue_entry_t *wait = &wait_page.wait;
1282 bool thrashing = false;
1283 unsigned long pflags;
1284 bool in_thrashing;
1285
1286 if (bit_nr == PG_locked &&
1287 !folio_test_uptodate(folio) && folio_test_workingset(folio)) {
1288 delayacct_thrashing_start(&in_thrashing);
1289 psi_memstall_enter(&pflags);
1290 thrashing = true;
1291 }
1292
1293 init_wait(wait);
1294 wait->func = wake_page_function;
1295 wait_page.folio = folio;
1296 wait_page.bit_nr = bit_nr;
1297
1298 repeat:
1299 wait->flags = 0;
1300 if (behavior == EXCLUSIVE) {
1301 wait->flags = WQ_FLAG_EXCLUSIVE;
1302 if (--unfairness < 0)
1303 wait->flags |= WQ_FLAG_CUSTOM;
1304 }
1305
1306 /*
1307 * Do one last check whether we can get the
1308 * page bit synchronously.
1309 *
1310 * Do the folio_set_waiters() marking before that
1311 * to let any waker we _just_ missed know they
1312 * need to wake us up (otherwise they'll never
1313 * even go to the slow case that looks at the
1314 * page queue), and add ourselves to the wait
1315 * queue if we need to sleep.
1316 *
1317 * This part needs to be done under the queue
1318 * lock to avoid races.
1319 */
1320 spin_lock_irq(&q->lock);
1321 folio_set_waiters(folio);
1322 if (!folio_trylock_flag(folio, bit_nr, wait))
1323 __add_wait_queue_entry_tail(q, wait);
1324 spin_unlock_irq(&q->lock);
1325
1326 /*
1327 * From now on, all the logic will be based on
1328 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to
1329 * see whether the page bit testing has already
1330 * been done by the wake function.
1331 *
1332 * We can drop our reference to the folio.
1333 */
1334 if (behavior == DROP)
1335 folio_put(folio);
1336
1337 /*
1338 * Note that until the "finish_wait()", or until
1339 * we see the WQ_FLAG_WOKEN flag, we need to
1340 * be very careful with the 'wait->flags', because
1341 * we may race with a waker that sets them.
1342 */
1343 for (;;) {
1344 unsigned int flags;
1345
1346 set_current_state(state);
1347
1348 /* Loop until we've been woken or interrupted */
1349 flags = smp_load_acquire(&wait->flags);
1350 if (!(flags & WQ_FLAG_WOKEN)) {
1351 if (signal_pending_state(state, current))
1352 break;
1353
1354 io_schedule();
1355 continue;
1356 }
1357
1358 /* If we were non-exclusive, we're done */
1359 if (behavior != EXCLUSIVE)
1360 break;
1361
1362 /* If the waker got the lock for us, we're done */
1363 if (flags & WQ_FLAG_DONE)
1364 break;
1365
1366 /*
1367 * Otherwise, if we're getting the lock, we need to
1368 * try to get it ourselves.
1369 *
1370 * And if that fails, we'll have to retry this all.
1371 */
1372 if (unlikely(test_and_set_bit(bit_nr, folio_flags(folio, 0))))
1373 goto repeat;
1374
1375 wait->flags |= WQ_FLAG_DONE;
1376 break;
1377 }
1378
1379 /*
1380 * If a signal happened, this 'finish_wait()' may remove the last
1381 * waiter from the wait-queues, but the folio waiters bit will remain
1382 * set. That's ok. The next wakeup will take care of it, and trying
1383 * to do it here would be difficult and prone to races.
1384 */
1385 finish_wait(q, wait);
1386
1387 if (thrashing) {
1388 delayacct_thrashing_end(&in_thrashing);
1389 psi_memstall_leave(&pflags);
1390 }
1391
1392 /*
1393 * NOTE! The wait->flags weren't stable until we've done the
1394 * 'finish_wait()', and we could have exited the loop above due
1395 * to a signal, and had a wakeup event happen after the signal
1396 * test but before the 'finish_wait()'.
1397 *
1398 * So only after the finish_wait() can we reliably determine
1399 * if we got woken up or not, so we can now figure out the final
1400 * return value based on that state without races.
1401 *
1402 * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive
1403 * waiter, but an exclusive one requires WQ_FLAG_DONE.
1404 */
1405 if (behavior == EXCLUSIVE)
1406 return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR;
1407
1408 return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR;
1409 }
1410
1411 #ifdef CONFIG_MIGRATION
1412 /**
1413 * migration_entry_wait_on_locked - Wait for a migration entry to be removed
1414 * @entry: migration swap entry.
1415 * @ptl: already locked ptl. This function will drop the lock.
1416 *
1417 * Wait for a migration entry referencing the given page to be removed. This is
1418 * equivalent to put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE) except
1419 * this can be called without taking a reference on the page. Instead this
1420 * should be called while holding the ptl for the migration entry referencing
1421 * the page.
1422 *
1423 * Returns after unlocking the ptl.
1424 *
1425 * This follows the same logic as folio_wait_bit_common() so see the comments
1426 * there.
1427 */
migration_entry_wait_on_locked(swp_entry_t entry,spinlock_t * ptl)1428 void migration_entry_wait_on_locked(swp_entry_t entry, spinlock_t *ptl)
1429 __releases(ptl)
1430 {
1431 struct wait_page_queue wait_page;
1432 wait_queue_entry_t *wait = &wait_page.wait;
1433 bool thrashing = false;
1434 unsigned long pflags;
1435 bool in_thrashing;
1436 wait_queue_head_t *q;
1437 struct folio *folio = pfn_swap_entry_folio(entry);
1438
1439 q = folio_waitqueue(folio);
1440 if (!folio_test_uptodate(folio) && folio_test_workingset(folio)) {
1441 delayacct_thrashing_start(&in_thrashing);
1442 psi_memstall_enter(&pflags);
1443 thrashing = true;
1444 }
1445
1446 init_wait(wait);
1447 wait->func = wake_page_function;
1448 wait_page.folio = folio;
1449 wait_page.bit_nr = PG_locked;
1450 wait->flags = 0;
1451
1452 spin_lock_irq(&q->lock);
1453 folio_set_waiters(folio);
1454 if (!folio_trylock_flag(folio, PG_locked, wait))
1455 __add_wait_queue_entry_tail(q, wait);
1456 spin_unlock_irq(&q->lock);
1457
1458 /*
1459 * If a migration entry exists for the page the migration path must hold
1460 * a valid reference to the page, and it must take the ptl to remove the
1461 * migration entry. So the page is valid until the ptl is dropped.
1462 */
1463 spin_unlock(ptl);
1464
1465 for (;;) {
1466 unsigned int flags;
1467
1468 set_current_state(TASK_UNINTERRUPTIBLE);
1469
1470 /* Loop until we've been woken or interrupted */
1471 flags = smp_load_acquire(&wait->flags);
1472 if (!(flags & WQ_FLAG_WOKEN)) {
1473 if (signal_pending_state(TASK_UNINTERRUPTIBLE, current))
1474 break;
1475
1476 io_schedule();
1477 continue;
1478 }
1479 break;
1480 }
1481
1482 finish_wait(q, wait);
1483
1484 if (thrashing) {
1485 delayacct_thrashing_end(&in_thrashing);
1486 psi_memstall_leave(&pflags);
1487 }
1488 }
1489 #endif
1490
folio_wait_bit(struct folio * folio,int bit_nr)1491 void folio_wait_bit(struct folio *folio, int bit_nr)
1492 {
1493 folio_wait_bit_common(folio, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
1494 }
1495 EXPORT_SYMBOL(folio_wait_bit);
1496
folio_wait_bit_killable(struct folio * folio,int bit_nr)1497 int folio_wait_bit_killable(struct folio *folio, int bit_nr)
1498 {
1499 return folio_wait_bit_common(folio, bit_nr, TASK_KILLABLE, SHARED);
1500 }
1501 EXPORT_SYMBOL(folio_wait_bit_killable);
1502
1503 /**
1504 * folio_put_wait_locked - Drop a reference and wait for it to be unlocked
1505 * @folio: The folio to wait for.
1506 * @state: The sleep state (TASK_KILLABLE, TASK_UNINTERRUPTIBLE, etc).
1507 *
1508 * The caller should hold a reference on @folio. They expect the page to
1509 * become unlocked relatively soon, but do not wish to hold up migration
1510 * (for example) by holding the reference while waiting for the folio to
1511 * come unlocked. After this function returns, the caller should not
1512 * dereference @folio.
1513 *
1514 * Return: 0 if the folio was unlocked or -EINTR if interrupted by a signal.
1515 */
folio_put_wait_locked(struct folio * folio,int state)1516 static int folio_put_wait_locked(struct folio *folio, int state)
1517 {
1518 return folio_wait_bit_common(folio, PG_locked, state, DROP);
1519 }
1520
1521 /**
1522 * folio_add_wait_queue - Add an arbitrary waiter to a folio's wait queue
1523 * @folio: Folio defining the wait queue of interest
1524 * @waiter: Waiter to add to the queue
1525 *
1526 * Add an arbitrary @waiter to the wait queue for the nominated @folio.
1527 */
folio_add_wait_queue(struct folio * folio,wait_queue_entry_t * waiter)1528 void folio_add_wait_queue(struct folio *folio, wait_queue_entry_t *waiter)
1529 {
1530 wait_queue_head_t *q = folio_waitqueue(folio);
1531 unsigned long flags;
1532
1533 spin_lock_irqsave(&q->lock, flags);
1534 __add_wait_queue_entry_tail(q, waiter);
1535 folio_set_waiters(folio);
1536 spin_unlock_irqrestore(&q->lock, flags);
1537 }
1538 EXPORT_SYMBOL_GPL(folio_add_wait_queue);
1539
1540 /**
1541 * folio_unlock - Unlock a locked folio.
1542 * @folio: The folio.
1543 *
1544 * Unlocks the folio and wakes up any thread sleeping on the page lock.
1545 *
1546 * Context: May be called from interrupt or process context. May not be
1547 * called from NMI context.
1548 */
folio_unlock(struct folio * folio)1549 void folio_unlock(struct folio *folio)
1550 {
1551 /* Bit 7 allows x86 to check the byte's sign bit */
1552 BUILD_BUG_ON(PG_waiters != 7);
1553 BUILD_BUG_ON(PG_locked > 7);
1554 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1555 if (folio_xor_flags_has_waiters(folio, 1 << PG_locked))
1556 folio_wake_bit(folio, PG_locked);
1557 }
1558 EXPORT_SYMBOL(folio_unlock);
1559
1560 /**
1561 * folio_end_read - End read on a folio.
1562 * @folio: The folio.
1563 * @success: True if all reads completed successfully.
1564 *
1565 * When all reads against a folio have completed, filesystems should
1566 * call this function to let the pagecache know that no more reads
1567 * are outstanding. This will unlock the folio and wake up any thread
1568 * sleeping on the lock. The folio will also be marked uptodate if all
1569 * reads succeeded.
1570 *
1571 * Context: May be called from interrupt or process context. May not be
1572 * called from NMI context.
1573 */
folio_end_read(struct folio * folio,bool success)1574 void folio_end_read(struct folio *folio, bool success)
1575 {
1576 unsigned long mask = 1 << PG_locked;
1577
1578 /* Must be in bottom byte for x86 to work */
1579 BUILD_BUG_ON(PG_uptodate > 7);
1580 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1581 VM_BUG_ON_FOLIO(folio_test_uptodate(folio), folio);
1582
1583 if (likely(success))
1584 mask |= 1 << PG_uptodate;
1585 if (folio_xor_flags_has_waiters(folio, mask))
1586 folio_wake_bit(folio, PG_locked);
1587 }
1588 EXPORT_SYMBOL(folio_end_read);
1589
1590 /**
1591 * folio_end_private_2 - Clear PG_private_2 and wake any waiters.
1592 * @folio: The folio.
1593 *
1594 * Clear the PG_private_2 bit on a folio and wake up any sleepers waiting for
1595 * it. The folio reference held for PG_private_2 being set is released.
1596 *
1597 * This is, for example, used when a netfs folio is being written to a local
1598 * disk cache, thereby allowing writes to the cache for the same folio to be
1599 * serialised.
1600 */
folio_end_private_2(struct folio * folio)1601 void folio_end_private_2(struct folio *folio)
1602 {
1603 VM_BUG_ON_FOLIO(!folio_test_private_2(folio), folio);
1604 clear_bit_unlock(PG_private_2, folio_flags(folio, 0));
1605 folio_wake_bit(folio, PG_private_2);
1606 folio_put(folio);
1607 }
1608 EXPORT_SYMBOL(folio_end_private_2);
1609
1610 /**
1611 * folio_wait_private_2 - Wait for PG_private_2 to be cleared on a folio.
1612 * @folio: The folio to wait on.
1613 *
1614 * Wait for PG_private_2 to be cleared on a folio.
1615 */
folio_wait_private_2(struct folio * folio)1616 void folio_wait_private_2(struct folio *folio)
1617 {
1618 while (folio_test_private_2(folio))
1619 folio_wait_bit(folio, PG_private_2);
1620 }
1621 EXPORT_SYMBOL(folio_wait_private_2);
1622
1623 /**
1624 * folio_wait_private_2_killable - Wait for PG_private_2 to be cleared on a folio.
1625 * @folio: The folio to wait on.
1626 *
1627 * Wait for PG_private_2 to be cleared on a folio or until a fatal signal is
1628 * received by the calling task.
1629 *
1630 * Return:
1631 * - 0 if successful.
1632 * - -EINTR if a fatal signal was encountered.
1633 */
folio_wait_private_2_killable(struct folio * folio)1634 int folio_wait_private_2_killable(struct folio *folio)
1635 {
1636 int ret = 0;
1637
1638 while (folio_test_private_2(folio)) {
1639 ret = folio_wait_bit_killable(folio, PG_private_2);
1640 if (ret < 0)
1641 break;
1642 }
1643
1644 return ret;
1645 }
1646 EXPORT_SYMBOL(folio_wait_private_2_killable);
1647
filemap_end_dropbehind(struct folio * folio)1648 static void filemap_end_dropbehind(struct folio *folio)
1649 {
1650 struct address_space *mapping = folio->mapping;
1651
1652 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1653
1654 if (folio_test_writeback(folio) || folio_test_dirty(folio))
1655 return;
1656 if (!folio_test_clear_dropbehind(folio))
1657 return;
1658 if (mapping)
1659 folio_unmap_invalidate(mapping, folio, 0);
1660 }
1661
1662 /*
1663 * If folio was marked as dropbehind, then pages should be dropped when writeback
1664 * completes. Do that now. If we fail, it's likely because of a big folio -
1665 * just reset dropbehind for that case and latter completions should invalidate.
1666 */
filemap_end_dropbehind_write(struct folio * folio)1667 static void filemap_end_dropbehind_write(struct folio *folio)
1668 {
1669 if (!folio_test_dropbehind(folio))
1670 return;
1671
1672 /*
1673 * Hitting !in_task() should not happen off RWF_DONTCACHE writeback,
1674 * but can happen if normal writeback just happens to find dirty folios
1675 * that were created as part of uncached writeback, and that writeback
1676 * would otherwise not need non-IRQ handling. Just skip the
1677 * invalidation in that case.
1678 */
1679 if (in_task() && folio_trylock(folio)) {
1680 filemap_end_dropbehind(folio);
1681 folio_unlock(folio);
1682 }
1683 }
1684
1685 /**
1686 * folio_end_writeback - End writeback against a folio.
1687 * @folio: The folio.
1688 *
1689 * The folio must actually be under writeback.
1690 *
1691 * Context: May be called from process or interrupt context.
1692 */
folio_end_writeback(struct folio * folio)1693 void folio_end_writeback(struct folio *folio)
1694 {
1695 VM_BUG_ON_FOLIO(!folio_test_writeback(folio), folio);
1696
1697 /*
1698 * folio_test_clear_reclaim() could be used here but it is an
1699 * atomic operation and overkill in this particular case. Failing
1700 * to shuffle a folio marked for immediate reclaim is too mild
1701 * a gain to justify taking an atomic operation penalty at the
1702 * end of every folio writeback.
1703 */
1704 if (folio_test_reclaim(folio)) {
1705 folio_clear_reclaim(folio);
1706 folio_rotate_reclaimable(folio);
1707 }
1708
1709 /*
1710 * Writeback does not hold a folio reference of its own, relying
1711 * on truncation to wait for the clearing of PG_writeback.
1712 * But here we must make sure that the folio is not freed and
1713 * reused before the folio_wake_bit().
1714 */
1715 folio_get(folio);
1716 if (__folio_end_writeback(folio))
1717 folio_wake_bit(folio, PG_writeback);
1718
1719 filemap_end_dropbehind_write(folio);
1720 acct_reclaim_writeback(folio);
1721 folio_put(folio);
1722 }
1723 EXPORT_SYMBOL(folio_end_writeback);
1724
1725 /**
1726 * __folio_lock - Get a lock on the folio, assuming we need to sleep to get it.
1727 * @folio: The folio to lock
1728 */
__folio_lock(struct folio * folio)1729 void __folio_lock(struct folio *folio)
1730 {
1731 folio_wait_bit_common(folio, PG_locked, TASK_UNINTERRUPTIBLE,
1732 EXCLUSIVE);
1733 }
1734 EXPORT_SYMBOL(__folio_lock);
1735
__folio_lock_killable(struct folio * folio)1736 int __folio_lock_killable(struct folio *folio)
1737 {
1738 return folio_wait_bit_common(folio, PG_locked, TASK_KILLABLE,
1739 EXCLUSIVE);
1740 }
1741 EXPORT_SYMBOL_GPL(__folio_lock_killable);
1742
__folio_lock_async(struct folio * folio,struct wait_page_queue * wait)1743 static int __folio_lock_async(struct folio *folio, struct wait_page_queue *wait)
1744 {
1745 struct wait_queue_head *q = folio_waitqueue(folio);
1746 int ret;
1747
1748 wait->folio = folio;
1749 wait->bit_nr = PG_locked;
1750
1751 spin_lock_irq(&q->lock);
1752 __add_wait_queue_entry_tail(q, &wait->wait);
1753 folio_set_waiters(folio);
1754 ret = !folio_trylock(folio);
1755 /*
1756 * If we were successful now, we know we're still on the
1757 * waitqueue as we're still under the lock. This means it's
1758 * safe to remove and return success, we know the callback
1759 * isn't going to trigger.
1760 */
1761 if (!ret)
1762 __remove_wait_queue(q, &wait->wait);
1763 else
1764 ret = -EIOCBQUEUED;
1765 spin_unlock_irq(&q->lock);
1766 return ret;
1767 }
1768
1769 /*
1770 * Return values:
1771 * 0 - folio is locked.
1772 * non-zero - folio is not locked.
1773 * mmap_lock or per-VMA lock has been released (mmap_read_unlock() or
1774 * vma_end_read()), unless flags had both FAULT_FLAG_ALLOW_RETRY and
1775 * FAULT_FLAG_RETRY_NOWAIT set, in which case the lock is still held.
1776 *
1777 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 0
1778 * with the folio locked and the mmap_lock/per-VMA lock is left unperturbed.
1779 */
__folio_lock_or_retry(struct folio * folio,struct vm_fault * vmf)1780 vm_fault_t __folio_lock_or_retry(struct folio *folio, struct vm_fault *vmf)
1781 {
1782 unsigned int flags = vmf->flags;
1783
1784 if (fault_flag_allow_retry_first(flags)) {
1785 /*
1786 * CAUTION! In this case, mmap_lock/per-VMA lock is not
1787 * released even though returning VM_FAULT_RETRY.
1788 */
1789 if (flags & FAULT_FLAG_RETRY_NOWAIT)
1790 return VM_FAULT_RETRY;
1791
1792 release_fault_lock(vmf);
1793 if (flags & FAULT_FLAG_KILLABLE)
1794 folio_wait_locked_killable(folio);
1795 else
1796 folio_wait_locked(folio);
1797 return VM_FAULT_RETRY;
1798 }
1799 if (flags & FAULT_FLAG_KILLABLE) {
1800 bool ret;
1801
1802 ret = __folio_lock_killable(folio);
1803 if (ret) {
1804 release_fault_lock(vmf);
1805 return VM_FAULT_RETRY;
1806 }
1807 } else {
1808 __folio_lock(folio);
1809 }
1810
1811 return 0;
1812 }
1813
1814 /**
1815 * page_cache_next_miss() - Find the next gap in the page cache.
1816 * @mapping: Mapping.
1817 * @index: Index.
1818 * @max_scan: Maximum range to search.
1819 *
1820 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1821 * gap with the lowest index.
1822 *
1823 * This function may be called under the rcu_read_lock. However, this will
1824 * not atomically search a snapshot of the cache at a single point in time.
1825 * For example, if a gap is created at index 5, then subsequently a gap is
1826 * created at index 10, page_cache_next_miss covering both indices may
1827 * return 10 if called under the rcu_read_lock.
1828 *
1829 * Return: The index of the gap if found, otherwise an index outside the
1830 * range specified (in which case 'return - index >= max_scan' will be true).
1831 * In the rare case of index wrap-around, 0 will be returned.
1832 */
page_cache_next_miss(struct address_space * mapping,pgoff_t index,unsigned long max_scan)1833 pgoff_t page_cache_next_miss(struct address_space *mapping,
1834 pgoff_t index, unsigned long max_scan)
1835 {
1836 XA_STATE(xas, &mapping->i_pages, index);
1837 unsigned long nr = max_scan;
1838
1839 while (nr--) {
1840 void *entry = xas_next(&xas);
1841 if (!entry || xa_is_value(entry))
1842 return xas.xa_index;
1843 if (xas.xa_index == 0)
1844 return 0;
1845 }
1846
1847 return index + max_scan;
1848 }
1849 EXPORT_SYMBOL(page_cache_next_miss);
1850
1851 /**
1852 * page_cache_prev_miss() - Find the previous gap in the page cache.
1853 * @mapping: Mapping.
1854 * @index: Index.
1855 * @max_scan: Maximum range to search.
1856 *
1857 * Search the range [max(index - max_scan + 1, 0), index] for the
1858 * gap with the highest index.
1859 *
1860 * This function may be called under the rcu_read_lock. However, this will
1861 * not atomically search a snapshot of the cache at a single point in time.
1862 * For example, if a gap is created at index 10, then subsequently a gap is
1863 * created at index 5, page_cache_prev_miss() covering both indices may
1864 * return 5 if called under the rcu_read_lock.
1865 *
1866 * Return: The index of the gap if found, otherwise an index outside the
1867 * range specified (in which case 'index - return >= max_scan' will be true).
1868 * In the rare case of wrap-around, ULONG_MAX will be returned.
1869 */
page_cache_prev_miss(struct address_space * mapping,pgoff_t index,unsigned long max_scan)1870 pgoff_t page_cache_prev_miss(struct address_space *mapping,
1871 pgoff_t index, unsigned long max_scan)
1872 {
1873 XA_STATE(xas, &mapping->i_pages, index);
1874
1875 while (max_scan--) {
1876 void *entry = xas_prev(&xas);
1877 if (!entry || xa_is_value(entry))
1878 break;
1879 if (xas.xa_index == ULONG_MAX)
1880 break;
1881 }
1882
1883 return xas.xa_index;
1884 }
1885 EXPORT_SYMBOL(page_cache_prev_miss);
1886
1887 /*
1888 * Lockless page cache protocol:
1889 * On the lookup side:
1890 * 1. Load the folio from i_pages
1891 * 2. Increment the refcount if it's not zero
1892 * 3. If the folio is not found by xas_reload(), put the refcount and retry
1893 *
1894 * On the removal side:
1895 * A. Freeze the page (by zeroing the refcount if nobody else has a reference)
1896 * B. Remove the page from i_pages
1897 * C. Return the page to the page allocator
1898 *
1899 * This means that any page may have its reference count temporarily
1900 * increased by a speculative page cache (or GUP-fast) lookup as it can
1901 * be allocated by another user before the RCU grace period expires.
1902 * Because the refcount temporarily acquired here may end up being the
1903 * last refcount on the page, any page allocation must be freeable by
1904 * folio_put().
1905 */
1906
1907 /*
1908 * filemap_get_entry - Get a page cache entry.
1909 * @mapping: the address_space to search
1910 * @index: The page cache index.
1911 *
1912 * Looks up the page cache entry at @mapping & @index. If it is a folio,
1913 * it is returned with an increased refcount. If it is a shadow entry
1914 * of a previously evicted folio, or a swap entry from shmem/tmpfs,
1915 * it is returned without further action.
1916 *
1917 * Return: The folio, swap or shadow entry, %NULL if nothing is found.
1918 */
filemap_get_entry(struct address_space * mapping,pgoff_t index)1919 void *filemap_get_entry(struct address_space *mapping, pgoff_t index)
1920 {
1921 XA_STATE(xas, &mapping->i_pages, index);
1922 struct folio *folio;
1923
1924 rcu_read_lock();
1925 repeat:
1926 xas_reset(&xas);
1927 folio = xas_load(&xas);
1928 if (xas_retry(&xas, folio))
1929 goto repeat;
1930 /*
1931 * A shadow entry of a recently evicted page, or a swap entry from
1932 * shmem/tmpfs. Return it without attempting to raise page count.
1933 */
1934 if (!folio || xa_is_value(folio))
1935 goto out;
1936
1937 if (!folio_try_get(folio))
1938 goto repeat;
1939
1940 if (unlikely(folio != xas_reload(&xas))) {
1941 folio_put(folio);
1942 goto repeat;
1943 }
1944 out:
1945 rcu_read_unlock();
1946
1947 return folio;
1948 }
1949
1950 /**
1951 * __filemap_get_folio - Find and get a reference to a folio.
1952 * @mapping: The address_space to search.
1953 * @index: The page index.
1954 * @fgp_flags: %FGP flags modify how the folio is returned.
1955 * @gfp: Memory allocation flags to use if %FGP_CREAT is specified.
1956 *
1957 * Looks up the page cache entry at @mapping & @index.
1958 *
1959 * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even
1960 * if the %GFP flags specified for %FGP_CREAT are atomic.
1961 *
1962 * If this function returns a folio, it is returned with an increased refcount.
1963 *
1964 * Return: The found folio or an ERR_PTR() otherwise.
1965 */
__filemap_get_folio(struct address_space * mapping,pgoff_t index,fgf_t fgp_flags,gfp_t gfp)1966 struct folio *__filemap_get_folio(struct address_space *mapping, pgoff_t index,
1967 fgf_t fgp_flags, gfp_t gfp)
1968 {
1969 struct folio *folio;
1970
1971 repeat:
1972 folio = filemap_get_entry(mapping, index);
1973 if (xa_is_value(folio))
1974 folio = NULL;
1975 trace_android_vh_filemap_get_folio(mapping, index, fgp_flags,
1976 gfp, folio);
1977 if (!folio)
1978 goto no_page;
1979
1980 if (fgp_flags & FGP_LOCK) {
1981 if (fgp_flags & FGP_NOWAIT) {
1982 if (!folio_trylock(folio)) {
1983 folio_put(folio);
1984 return ERR_PTR(-EAGAIN);
1985 }
1986 } else {
1987 folio_lock(folio);
1988 }
1989
1990 /* Has the page been truncated? */
1991 if (unlikely(folio->mapping != mapping)) {
1992 folio_unlock(folio);
1993 folio_put(folio);
1994 goto repeat;
1995 }
1996 VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
1997 }
1998
1999 if (fgp_flags & FGP_ACCESSED)
2000 folio_mark_accessed(folio);
2001 else if (fgp_flags & FGP_WRITE) {
2002 /* Clear idle flag for buffer write */
2003 if (folio_test_idle(folio))
2004 folio_clear_idle(folio);
2005 }
2006
2007 if (fgp_flags & FGP_STABLE)
2008 folio_wait_stable(folio);
2009 no_page:
2010 if (!folio && (fgp_flags & FGP_CREAT)) {
2011 unsigned int min_order = mapping_min_folio_order(mapping);
2012 unsigned int order = max(min_order, FGF_GET_ORDER(fgp_flags));
2013 int err;
2014 index = mapping_align_index(mapping, index);
2015
2016 if ((fgp_flags & FGP_WRITE) && mapping_can_writeback(mapping))
2017 gfp |= __GFP_WRITE;
2018 if (fgp_flags & FGP_NOFS)
2019 gfp &= ~__GFP_FS;
2020 if (fgp_flags & FGP_NOWAIT) {
2021 gfp &= ~GFP_KERNEL;
2022 gfp |= GFP_NOWAIT | __GFP_NOWARN;
2023 }
2024
2025 trace_android_vh_filemap_get_folio_gfp(mapping, fgp_flags, &gfp);
2026
2027 if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
2028 fgp_flags |= FGP_LOCK;
2029
2030 if (order > mapping_max_folio_order(mapping))
2031 order = mapping_max_folio_order(mapping);
2032 /* If we're not aligned, allocate a smaller folio */
2033 if (index & ((1UL << order) - 1))
2034 order = __ffs(index);
2035
2036 do {
2037 gfp_t alloc_gfp = gfp;
2038
2039 err = -ENOMEM;
2040 if (order > min_order)
2041 alloc_gfp |= __GFP_NORETRY | __GFP_NOWARN;
2042 folio = filemap_alloc_folio(alloc_gfp, order);
2043 if (!folio)
2044 continue;
2045
2046 /* Init accessed so avoid atomic mark_page_accessed later */
2047 if (fgp_flags & FGP_ACCESSED)
2048 __folio_set_referenced(folio);
2049 if (fgp_flags & FGP_DONTCACHE)
2050 __folio_set_dropbehind(folio);
2051
2052 err = filemap_add_folio(mapping, folio, index, gfp);
2053 if (!err)
2054 break;
2055 folio_put(folio);
2056 folio = NULL;
2057 } while (order-- > min_order);
2058
2059 if (err == -EEXIST)
2060 goto repeat;
2061 if (err) {
2062 /*
2063 * When NOWAIT I/O fails to allocate folios this could
2064 * be due to a nonblocking memory allocation and not
2065 * because the system actually is out of memory.
2066 * Return -EAGAIN so that there caller retries in a
2067 * blocking fashion instead of propagating -ENOMEM
2068 * to the application.
2069 */
2070 if ((fgp_flags & FGP_NOWAIT) && err == -ENOMEM)
2071 err = -EAGAIN;
2072 return ERR_PTR(err);
2073 }
2074 /*
2075 * filemap_add_folio locks the page, and for mmap
2076 * we expect an unlocked page.
2077 */
2078 if (folio && (fgp_flags & FGP_FOR_MMAP))
2079 folio_unlock(folio);
2080 }
2081
2082 if (!folio)
2083 return ERR_PTR(-ENOENT);
2084 /* not an uncached lookup, clear uncached if set */
2085 if (folio_test_dropbehind(folio) && !(fgp_flags & FGP_DONTCACHE))
2086 folio_clear_dropbehind(folio);
2087 return folio;
2088 }
2089 EXPORT_SYMBOL(__filemap_get_folio);
2090
find_get_entry(struct xa_state * xas,pgoff_t max,xa_mark_t mark)2091 static inline struct folio *find_get_entry(struct xa_state *xas, pgoff_t max,
2092 xa_mark_t mark)
2093 {
2094 struct folio *folio;
2095
2096 retry:
2097 if (mark == XA_PRESENT)
2098 folio = xas_find(xas, max);
2099 else
2100 folio = xas_find_marked(xas, max, mark);
2101
2102 if (xas_retry(xas, folio))
2103 goto retry;
2104 /*
2105 * A shadow entry of a recently evicted page, a swap
2106 * entry from shmem/tmpfs or a DAX entry. Return it
2107 * without attempting to raise page count.
2108 */
2109 if (!folio || xa_is_value(folio))
2110 return folio;
2111
2112 if (!folio_try_get(folio))
2113 goto reset;
2114
2115 if (unlikely(folio != xas_reload(xas))) {
2116 folio_put(folio);
2117 goto reset;
2118 }
2119
2120 return folio;
2121 reset:
2122 xas_reset(xas);
2123 goto retry;
2124 }
2125
2126 /**
2127 * find_get_entries - gang pagecache lookup
2128 * @mapping: The address_space to search
2129 * @start: The starting page cache index
2130 * @end: The final page index (inclusive).
2131 * @fbatch: Where the resulting entries are placed.
2132 * @indices: The cache indices corresponding to the entries in @entries
2133 *
2134 * find_get_entries() will search for and return a batch of entries in
2135 * the mapping. The entries are placed in @fbatch. find_get_entries()
2136 * takes a reference on any actual folios it returns.
2137 *
2138 * The entries have ascending indexes. The indices may not be consecutive
2139 * due to not-present entries or large folios.
2140 *
2141 * Any shadow entries of evicted folios, or swap entries from
2142 * shmem/tmpfs, are included in the returned array.
2143 *
2144 * Return: The number of entries which were found.
2145 */
find_get_entries(struct address_space * mapping,pgoff_t * start,pgoff_t end,struct folio_batch * fbatch,pgoff_t * indices)2146 unsigned find_get_entries(struct address_space *mapping, pgoff_t *start,
2147 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices)
2148 {
2149 XA_STATE(xas, &mapping->i_pages, *start);
2150 struct folio *folio;
2151
2152 rcu_read_lock();
2153 while ((folio = find_get_entry(&xas, end, XA_PRESENT)) != NULL) {
2154 indices[fbatch->nr] = xas.xa_index;
2155 if (!folio_batch_add(fbatch, folio))
2156 break;
2157 }
2158
2159 if (folio_batch_count(fbatch)) {
2160 unsigned long nr;
2161 int idx = folio_batch_count(fbatch) - 1;
2162
2163 folio = fbatch->folios[idx];
2164 if (!xa_is_value(folio))
2165 nr = folio_nr_pages(folio);
2166 else
2167 nr = 1 << xa_get_order(&mapping->i_pages, indices[idx]);
2168 *start = round_down(indices[idx] + nr, nr);
2169 }
2170 rcu_read_unlock();
2171
2172 return folio_batch_count(fbatch);
2173 }
2174
2175 /**
2176 * find_lock_entries - Find a batch of pagecache entries.
2177 * @mapping: The address_space to search.
2178 * @start: The starting page cache index.
2179 * @end: The final page index (inclusive).
2180 * @fbatch: Where the resulting entries are placed.
2181 * @indices: The cache indices of the entries in @fbatch.
2182 *
2183 * find_lock_entries() will return a batch of entries from @mapping.
2184 * Swap, shadow and DAX entries are included. Folios are returned
2185 * locked and with an incremented refcount. Folios which are locked
2186 * by somebody else or under writeback are skipped. Folios which are
2187 * partially outside the range are not returned.
2188 *
2189 * The entries have ascending indexes. The indices may not be consecutive
2190 * due to not-present entries, large folios, folios which could not be
2191 * locked or folios under writeback.
2192 *
2193 * Return: The number of entries which were found.
2194 */
find_lock_entries(struct address_space * mapping,pgoff_t * start,pgoff_t end,struct folio_batch * fbatch,pgoff_t * indices)2195 unsigned find_lock_entries(struct address_space *mapping, pgoff_t *start,
2196 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices)
2197 {
2198 XA_STATE(xas, &mapping->i_pages, *start);
2199 struct folio *folio;
2200
2201 rcu_read_lock();
2202 while ((folio = find_get_entry(&xas, end, XA_PRESENT))) {
2203 unsigned long base;
2204 unsigned long nr;
2205
2206 if (!xa_is_value(folio)) {
2207 nr = folio_nr_pages(folio);
2208 base = folio->index;
2209 /* Omit large folio which begins before the start */
2210 if (base < *start)
2211 goto put;
2212 /* Omit large folio which extends beyond the end */
2213 if (base + nr - 1 > end)
2214 goto put;
2215 if (!folio_trylock(folio))
2216 goto put;
2217 if (folio->mapping != mapping ||
2218 folio_test_writeback(folio))
2219 goto unlock;
2220 VM_BUG_ON_FOLIO(!folio_contains(folio, xas.xa_index),
2221 folio);
2222 } else {
2223 nr = 1 << xas_get_order(&xas);
2224 base = xas.xa_index & ~(nr - 1);
2225 /* Omit order>0 value which begins before the start */
2226 if (base < *start)
2227 continue;
2228 /* Omit order>0 value which extends beyond the end */
2229 if (base + nr - 1 > end)
2230 break;
2231 }
2232
2233 /* Update start now so that last update is correct on return */
2234 *start = base + nr;
2235 indices[fbatch->nr] = xas.xa_index;
2236 if (!folio_batch_add(fbatch, folio))
2237 break;
2238 continue;
2239 unlock:
2240 folio_unlock(folio);
2241 put:
2242 folio_put(folio);
2243 }
2244 rcu_read_unlock();
2245
2246 return folio_batch_count(fbatch);
2247 }
2248
2249 /**
2250 * filemap_get_folios - Get a batch of folios
2251 * @mapping: The address_space to search
2252 * @start: The starting page index
2253 * @end: The final page index (inclusive)
2254 * @fbatch: The batch to fill.
2255 *
2256 * Search for and return a batch of folios in the mapping starting at
2257 * index @start and up to index @end (inclusive). The folios are returned
2258 * in @fbatch with an elevated reference count.
2259 *
2260 * Return: The number of folios which were found.
2261 * We also update @start to index the next folio for the traversal.
2262 */
filemap_get_folios(struct address_space * mapping,pgoff_t * start,pgoff_t end,struct folio_batch * fbatch)2263 unsigned filemap_get_folios(struct address_space *mapping, pgoff_t *start,
2264 pgoff_t end, struct folio_batch *fbatch)
2265 {
2266 return filemap_get_folios_tag(mapping, start, end, XA_PRESENT, fbatch);
2267 }
2268 EXPORT_SYMBOL(filemap_get_folios);
2269
2270 /**
2271 * filemap_get_folios_contig - Get a batch of contiguous folios
2272 * @mapping: The address_space to search
2273 * @start: The starting page index
2274 * @end: The final page index (inclusive)
2275 * @fbatch: The batch to fill
2276 *
2277 * filemap_get_folios_contig() works exactly like filemap_get_folios(),
2278 * except the returned folios are guaranteed to be contiguous. This may
2279 * not return all contiguous folios if the batch gets filled up.
2280 *
2281 * Return: The number of folios found.
2282 * Also update @start to be positioned for traversal of the next folio.
2283 */
2284
filemap_get_folios_contig(struct address_space * mapping,pgoff_t * start,pgoff_t end,struct folio_batch * fbatch)2285 unsigned filemap_get_folios_contig(struct address_space *mapping,
2286 pgoff_t *start, pgoff_t end, struct folio_batch *fbatch)
2287 {
2288 XA_STATE(xas, &mapping->i_pages, *start);
2289 unsigned long nr;
2290 struct folio *folio;
2291
2292 rcu_read_lock();
2293
2294 for (folio = xas_load(&xas); folio && xas.xa_index <= end;
2295 folio = xas_next(&xas)) {
2296 if (xas_retry(&xas, folio))
2297 continue;
2298 /*
2299 * If the entry has been swapped out, we can stop looking.
2300 * No current caller is looking for DAX entries.
2301 */
2302 if (xa_is_value(folio))
2303 goto update_start;
2304
2305 /* If we landed in the middle of a THP, continue at its end. */
2306 if (xa_is_sibling(folio))
2307 goto update_start;
2308
2309 if (!folio_try_get(folio))
2310 goto retry;
2311
2312 if (unlikely(folio != xas_reload(&xas)))
2313 goto put_folio;
2314
2315 if (!folio_batch_add(fbatch, folio)) {
2316 nr = folio_nr_pages(folio);
2317 *start = folio->index + nr;
2318 goto out;
2319 }
2320 xas_advance(&xas, folio_next_index(folio) - 1);
2321 continue;
2322 put_folio:
2323 folio_put(folio);
2324
2325 retry:
2326 xas_reset(&xas);
2327 }
2328
2329 update_start:
2330 nr = folio_batch_count(fbatch);
2331
2332 if (nr) {
2333 folio = fbatch->folios[nr - 1];
2334 *start = folio_next_index(folio);
2335 }
2336 out:
2337 rcu_read_unlock();
2338 return folio_batch_count(fbatch);
2339 }
2340 EXPORT_SYMBOL(filemap_get_folios_contig);
2341
2342 /**
2343 * filemap_get_folios_tag - Get a batch of folios matching @tag
2344 * @mapping: The address_space to search
2345 * @start: The starting page index
2346 * @end: The final page index (inclusive)
2347 * @tag: The tag index
2348 * @fbatch: The batch to fill
2349 *
2350 * The first folio may start before @start; if it does, it will contain
2351 * @start. The final folio may extend beyond @end; if it does, it will
2352 * contain @end. The folios have ascending indices. There may be gaps
2353 * between the folios if there are indices which have no folio in the
2354 * page cache. If folios are added to or removed from the page cache
2355 * while this is running, they may or may not be found by this call.
2356 * Only returns folios that are tagged with @tag.
2357 *
2358 * Return: The number of folios found.
2359 * Also update @start to index the next folio for traversal.
2360 */
filemap_get_folios_tag(struct address_space * mapping,pgoff_t * start,pgoff_t end,xa_mark_t tag,struct folio_batch * fbatch)2361 unsigned filemap_get_folios_tag(struct address_space *mapping, pgoff_t *start,
2362 pgoff_t end, xa_mark_t tag, struct folio_batch *fbatch)
2363 {
2364 XA_STATE(xas, &mapping->i_pages, *start);
2365 struct folio *folio;
2366
2367 rcu_read_lock();
2368 while ((folio = find_get_entry(&xas, end, tag)) != NULL) {
2369 /*
2370 * Shadow entries should never be tagged, but this iteration
2371 * is lockless so there is a window for page reclaim to evict
2372 * a page we saw tagged. Skip over it.
2373 */
2374 if (xa_is_value(folio))
2375 continue;
2376 if (!folio_batch_add(fbatch, folio)) {
2377 unsigned long nr = folio_nr_pages(folio);
2378 *start = folio->index + nr;
2379 goto out;
2380 }
2381 }
2382 /*
2383 * We come here when there is no page beyond @end. We take care to not
2384 * overflow the index @start as it confuses some of the callers. This
2385 * breaks the iteration when there is a page at index -1 but that is
2386 * already broke anyway.
2387 */
2388 if (end == (pgoff_t)-1)
2389 *start = (pgoff_t)-1;
2390 else
2391 *start = end + 1;
2392 out:
2393 rcu_read_unlock();
2394
2395 return folio_batch_count(fbatch);
2396 }
2397 EXPORT_SYMBOL(filemap_get_folios_tag);
2398
2399 /*
2400 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
2401 * a _large_ part of the i/o request. Imagine the worst scenario:
2402 *
2403 * ---R__________________________________________B__________
2404 * ^ reading here ^ bad block(assume 4k)
2405 *
2406 * read(R) => miss => readahead(R...B) => media error => frustrating retries
2407 * => failing the whole request => read(R) => read(R+1) =>
2408 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
2409 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
2410 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
2411 *
2412 * It is going insane. Fix it by quickly scaling down the readahead size.
2413 */
shrink_readahead_size_eio(struct file_ra_state * ra)2414 static void shrink_readahead_size_eio(struct file_ra_state *ra)
2415 {
2416 ra->ra_pages /= 4;
2417 }
2418
2419 /*
2420 * filemap_get_read_batch - Get a batch of folios for read
2421 *
2422 * Get a batch of folios which represent a contiguous range of bytes in
2423 * the file. No exceptional entries will be returned. If @index is in
2424 * the middle of a folio, the entire folio will be returned. The last
2425 * folio in the batch may have the readahead flag set or the uptodate flag
2426 * clear so that the caller can take the appropriate action.
2427 */
filemap_get_read_batch(struct address_space * mapping,pgoff_t index,pgoff_t max,struct folio_batch * fbatch)2428 static void filemap_get_read_batch(struct address_space *mapping,
2429 pgoff_t index, pgoff_t max, struct folio_batch *fbatch)
2430 {
2431 XA_STATE(xas, &mapping->i_pages, index);
2432 struct folio *folio;
2433
2434 rcu_read_lock();
2435 for (folio = xas_load(&xas); folio; folio = xas_next(&xas)) {
2436 if (xas_retry(&xas, folio))
2437 continue;
2438 if (xas.xa_index > max || xa_is_value(folio))
2439 break;
2440 if (xa_is_sibling(folio))
2441 break;
2442 if (!folio_try_get(folio))
2443 goto retry;
2444
2445 if (unlikely(folio != xas_reload(&xas)))
2446 goto put_folio;
2447
2448 if (!folio_batch_add(fbatch, folio))
2449 break;
2450 if (!folio_test_uptodate(folio))
2451 break;
2452 if (folio_test_readahead(folio))
2453 break;
2454 xas_advance(&xas, folio_next_index(folio) - 1);
2455 continue;
2456 put_folio:
2457 folio_put(folio);
2458 retry:
2459 xas_reset(&xas);
2460 }
2461 rcu_read_unlock();
2462 }
2463
filemap_read_folio(struct file * file,filler_t filler,struct folio * folio)2464 static int filemap_read_folio(struct file *file, filler_t filler,
2465 struct folio *folio)
2466 {
2467 bool workingset = folio_test_workingset(folio);
2468 unsigned long pflags;
2469 int error;
2470
2471 /* Start the actual read. The read will unlock the page. */
2472 if (unlikely(workingset))
2473 psi_memstall_enter(&pflags);
2474 error = filler(file, folio);
2475 if (unlikely(workingset))
2476 psi_memstall_leave(&pflags);
2477 if (error)
2478 return error;
2479
2480 error = folio_wait_locked_killable(folio);
2481 if (error)
2482 return error;
2483 if (folio_test_uptodate(folio))
2484 return 0;
2485 if (file)
2486 shrink_readahead_size_eio(&file->f_ra);
2487 return -EIO;
2488 }
2489
filemap_range_uptodate(struct address_space * mapping,loff_t pos,size_t count,struct folio * folio,bool need_uptodate)2490 static bool filemap_range_uptodate(struct address_space *mapping,
2491 loff_t pos, size_t count, struct folio *folio,
2492 bool need_uptodate)
2493 {
2494 if (folio_test_uptodate(folio))
2495 return true;
2496 /* pipes can't handle partially uptodate pages */
2497 if (need_uptodate)
2498 return false;
2499 if (!mapping->a_ops->is_partially_uptodate)
2500 return false;
2501 if (mapping->host->i_blkbits >= folio_shift(folio))
2502 return false;
2503
2504 if (folio_pos(folio) > pos) {
2505 count -= folio_pos(folio) - pos;
2506 pos = 0;
2507 } else {
2508 pos -= folio_pos(folio);
2509 }
2510
2511 return mapping->a_ops->is_partially_uptodate(folio, pos, count);
2512 }
2513
filemap_update_page(struct kiocb * iocb,struct address_space * mapping,size_t count,struct folio * folio,bool need_uptodate)2514 static int filemap_update_page(struct kiocb *iocb,
2515 struct address_space *mapping, size_t count,
2516 struct folio *folio, bool need_uptodate)
2517 {
2518 int error;
2519
2520 trace_android_vh_filemap_update_page(mapping, folio, iocb->ki_filp);
2521
2522 if (iocb->ki_flags & IOCB_NOWAIT) {
2523 if (!filemap_invalidate_trylock_shared(mapping))
2524 return -EAGAIN;
2525 } else {
2526 filemap_invalidate_lock_shared(mapping);
2527 }
2528
2529 if (!folio_trylock(folio)) {
2530 error = -EAGAIN;
2531 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO))
2532 goto unlock_mapping;
2533 if (!(iocb->ki_flags & IOCB_WAITQ)) {
2534 filemap_invalidate_unlock_shared(mapping);
2535 /*
2536 * This is where we usually end up waiting for a
2537 * previously submitted readahead to finish.
2538 */
2539 folio_put_wait_locked(folio, TASK_KILLABLE);
2540 return AOP_TRUNCATED_PAGE;
2541 }
2542 error = __folio_lock_async(folio, iocb->ki_waitq);
2543 if (error)
2544 goto unlock_mapping;
2545 }
2546
2547 error = AOP_TRUNCATED_PAGE;
2548 if (!folio->mapping)
2549 goto unlock;
2550
2551 error = 0;
2552 if (filemap_range_uptodate(mapping, iocb->ki_pos, count, folio,
2553 need_uptodate))
2554 goto unlock;
2555
2556 error = -EAGAIN;
2557 if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT | IOCB_WAITQ))
2558 goto unlock;
2559
2560 error = filemap_read_folio(iocb->ki_filp, mapping->a_ops->read_folio,
2561 folio);
2562 goto unlock_mapping;
2563 unlock:
2564 folio_unlock(folio);
2565 unlock_mapping:
2566 filemap_invalidate_unlock_shared(mapping);
2567 if (error == AOP_TRUNCATED_PAGE)
2568 folio_put(folio);
2569 return error;
2570 }
2571
filemap_create_folio(struct kiocb * iocb,struct folio_batch * fbatch)2572 static int filemap_create_folio(struct kiocb *iocb, struct folio_batch *fbatch)
2573 {
2574 struct address_space *mapping = iocb->ki_filp->f_mapping;
2575 struct folio *folio;
2576 int error;
2577 unsigned int min_order = mapping_min_folio_order(mapping);
2578 pgoff_t index;
2579
2580 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_WAITQ))
2581 return -EAGAIN;
2582
2583 folio = filemap_alloc_folio(mapping_gfp_mask(mapping), min_order);
2584 if (!folio)
2585 return -ENOMEM;
2586 if (iocb->ki_flags & IOCB_DONTCACHE)
2587 __folio_set_dropbehind(folio);
2588
2589 /*
2590 * Protect against truncate / hole punch. Grabbing invalidate_lock
2591 * here assures we cannot instantiate and bring uptodate new
2592 * pagecache folios after evicting page cache during truncate
2593 * and before actually freeing blocks. Note that we could
2594 * release invalidate_lock after inserting the folio into
2595 * the page cache as the locked folio would then be enough to
2596 * synchronize with hole punching. But there are code paths
2597 * such as filemap_update_page() filling in partially uptodate
2598 * pages or ->readahead() that need to hold invalidate_lock
2599 * while mapping blocks for IO so let's hold the lock here as
2600 * well to keep locking rules simple.
2601 */
2602 filemap_invalidate_lock_shared(mapping);
2603 index = (iocb->ki_pos >> (PAGE_SHIFT + min_order)) << min_order;
2604 error = filemap_add_folio(mapping, folio, index,
2605 mapping_gfp_constraint(mapping, GFP_KERNEL));
2606 if (error == -EEXIST)
2607 error = AOP_TRUNCATED_PAGE;
2608 if (error)
2609 goto error;
2610
2611 error = filemap_read_folio(iocb->ki_filp, mapping->a_ops->read_folio,
2612 folio);
2613 if (error)
2614 goto error;
2615
2616 filemap_invalidate_unlock_shared(mapping);
2617 folio_batch_add(fbatch, folio);
2618 return 0;
2619 error:
2620 filemap_invalidate_unlock_shared(mapping);
2621 folio_put(folio);
2622 return error;
2623 }
2624
filemap_readahead(struct kiocb * iocb,struct file * file,struct address_space * mapping,struct folio * folio,pgoff_t last_index)2625 static int filemap_readahead(struct kiocb *iocb, struct file *file,
2626 struct address_space *mapping, struct folio *folio,
2627 pgoff_t last_index)
2628 {
2629 DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, folio->index);
2630
2631 if (iocb->ki_flags & IOCB_NOIO)
2632 return -EAGAIN;
2633 if (iocb->ki_flags & IOCB_DONTCACHE)
2634 ractl.dropbehind = 1;
2635 page_cache_async_ra(&ractl, folio, last_index - folio->index);
2636 return 0;
2637 }
2638
filemap_get_pages(struct kiocb * iocb,size_t count,struct folio_batch * fbatch,bool need_uptodate)2639 static int filemap_get_pages(struct kiocb *iocb, size_t count,
2640 struct folio_batch *fbatch, bool need_uptodate)
2641 {
2642 struct file *filp = iocb->ki_filp;
2643 struct address_space *mapping = filp->f_mapping;
2644 pgoff_t index = iocb->ki_pos >> PAGE_SHIFT;
2645 pgoff_t last_index;
2646 struct folio *folio;
2647 unsigned int flags;
2648 int err = 0;
2649
2650 /* "last_index" is the index of the page beyond the end of the read */
2651 last_index = DIV_ROUND_UP(iocb->ki_pos + count, PAGE_SIZE);
2652 retry:
2653 if (fatal_signal_pending(current))
2654 return -EINTR;
2655
2656 filemap_get_read_batch(mapping, index, last_index - 1, fbatch);
2657 if (!folio_batch_count(fbatch)) {
2658 DEFINE_READAHEAD(ractl, filp, &filp->f_ra, mapping, index);
2659
2660 if (iocb->ki_flags & IOCB_NOIO)
2661 return -EAGAIN;
2662 if (iocb->ki_flags & IOCB_NOWAIT)
2663 flags = memalloc_noio_save();
2664 if (iocb->ki_flags & IOCB_DONTCACHE)
2665 ractl.dropbehind = 1;
2666 page_cache_sync_ra(&ractl, last_index - index);
2667 if (iocb->ki_flags & IOCB_NOWAIT)
2668 memalloc_noio_restore(flags);
2669 filemap_get_read_batch(mapping, index, last_index - 1, fbatch);
2670 }
2671 if (!folio_batch_count(fbatch)) {
2672 err = filemap_create_folio(iocb, fbatch);
2673 if (err == AOP_TRUNCATED_PAGE)
2674 goto retry;
2675 return err;
2676 }
2677
2678 folio = fbatch->folios[folio_batch_count(fbatch) - 1];
2679 if (folio_test_readahead(folio)) {
2680 err = filemap_readahead(iocb, filp, mapping, folio, last_index);
2681 if (err)
2682 goto err;
2683 }
2684 if (!folio_test_uptodate(folio)) {
2685 if ((iocb->ki_flags & IOCB_WAITQ) &&
2686 folio_batch_count(fbatch) > 1)
2687 iocb->ki_flags |= IOCB_NOWAIT;
2688 err = filemap_update_page(iocb, mapping, count, folio,
2689 need_uptodate);
2690 if (err)
2691 goto err;
2692 }
2693
2694 trace_mm_filemap_get_pages(mapping, index, last_index - 1);
2695 return 0;
2696 err:
2697 if (err < 0)
2698 folio_put(folio);
2699 if (likely(--fbatch->nr))
2700 return 0;
2701 if (err == AOP_TRUNCATED_PAGE)
2702 goto retry;
2703 return err;
2704 }
2705
pos_same_folio(loff_t pos1,loff_t pos2,struct folio * folio)2706 static inline bool pos_same_folio(loff_t pos1, loff_t pos2, struct folio *folio)
2707 {
2708 unsigned int shift = folio_shift(folio);
2709
2710 return (pos1 >> shift == pos2 >> shift);
2711 }
2712
filemap_end_dropbehind_read(struct folio * folio)2713 static void filemap_end_dropbehind_read(struct folio *folio)
2714 {
2715 if (!folio_test_dropbehind(folio))
2716 return;
2717 if (folio_test_writeback(folio) || folio_test_dirty(folio))
2718 return;
2719 if (folio_trylock(folio)) {
2720 filemap_end_dropbehind(folio);
2721 folio_unlock(folio);
2722 }
2723 }
2724
2725 /**
2726 * filemap_read - Read data from the page cache.
2727 * @iocb: The iocb to read.
2728 * @iter: Destination for the data.
2729 * @already_read: Number of bytes already read by the caller.
2730 *
2731 * Copies data from the page cache. If the data is not currently present,
2732 * uses the readahead and read_folio address_space operations to fetch it.
2733 *
2734 * Return: Total number of bytes copied, including those already read by
2735 * the caller. If an error happens before any bytes are copied, returns
2736 * a negative error number.
2737 */
filemap_read(struct kiocb * iocb,struct iov_iter * iter,ssize_t already_read)2738 ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *iter,
2739 ssize_t already_read)
2740 {
2741 struct file *filp = iocb->ki_filp;
2742 struct file_ra_state *ra = &filp->f_ra;
2743 struct address_space *mapping = filp->f_mapping;
2744 struct inode *inode = mapping->host;
2745 struct folio_batch fbatch;
2746 int i, error = 0;
2747 bool writably_mapped;
2748 loff_t isize, end_offset;
2749 loff_t last_pos = ra->prev_pos;
2750
2751 if (unlikely(iocb->ki_pos >= inode->i_sb->s_maxbytes))
2752 return 0;
2753 if (unlikely(!iov_iter_count(iter)))
2754 return 0;
2755
2756 iov_iter_truncate(iter, inode->i_sb->s_maxbytes - iocb->ki_pos);
2757 folio_batch_init(&fbatch);
2758 trace_android_vh_filemap_read(filp, iocb->ki_pos, iov_iter_count(iter));
2759
2760 do {
2761 cond_resched();
2762
2763 /*
2764 * If we've already successfully copied some data, then we
2765 * can no longer safely return -EIOCBQUEUED. Hence mark
2766 * an async read NOWAIT at that point.
2767 */
2768 if ((iocb->ki_flags & IOCB_WAITQ) && already_read)
2769 iocb->ki_flags |= IOCB_NOWAIT;
2770
2771 if (unlikely(iocb->ki_pos >= i_size_read(inode)))
2772 break;
2773
2774 error = filemap_get_pages(iocb, iter->count, &fbatch, false);
2775 if (error < 0)
2776 break;
2777
2778 /*
2779 * i_size must be checked after we know the pages are Uptodate.
2780 *
2781 * Checking i_size after the check allows us to calculate
2782 * the correct value for "nr", which means the zero-filled
2783 * part of the page is not copied back to userspace (unless
2784 * another truncate extends the file - this is desired though).
2785 */
2786 isize = i_size_read(inode);
2787 if (unlikely(iocb->ki_pos >= isize))
2788 goto put_folios;
2789 end_offset = min_t(loff_t, isize, iocb->ki_pos + iter->count);
2790
2791 /*
2792 * Once we start copying data, we don't want to be touching any
2793 * cachelines that might be contended:
2794 */
2795 writably_mapped = mapping_writably_mapped(mapping);
2796
2797 /*
2798 * When a read accesses the same folio several times, only
2799 * mark it as accessed the first time.
2800 */
2801 if (!pos_same_folio(iocb->ki_pos, last_pos - 1,
2802 fbatch.folios[0]))
2803 folio_mark_accessed(fbatch.folios[0]);
2804
2805 for (i = 0; i < folio_batch_count(&fbatch); i++) {
2806 struct folio *folio = fbatch.folios[i];
2807 size_t fsize = folio_size(folio);
2808 size_t offset = iocb->ki_pos & (fsize - 1);
2809 size_t bytes = min_t(loff_t, end_offset - iocb->ki_pos,
2810 fsize - offset);
2811 size_t copied;
2812
2813 if (end_offset < folio_pos(folio))
2814 break;
2815 if (i > 0)
2816 folio_mark_accessed(folio);
2817 /*
2818 * If users can be writing to this folio using arbitrary
2819 * virtual addresses, take care of potential aliasing
2820 * before reading the folio on the kernel side.
2821 */
2822 if (writably_mapped)
2823 flush_dcache_folio(folio);
2824
2825 copied = copy_folio_to_iter(folio, offset, bytes, iter);
2826
2827 already_read += copied;
2828 iocb->ki_pos += copied;
2829 last_pos = iocb->ki_pos;
2830
2831 if (copied < bytes) {
2832 error = -EFAULT;
2833 break;
2834 }
2835 }
2836 put_folios:
2837 for (i = 0; i < folio_batch_count(&fbatch); i++) {
2838 struct folio *folio = fbatch.folios[i];
2839
2840 filemap_end_dropbehind_read(folio);
2841 folio_put(folio);
2842 }
2843 folio_batch_init(&fbatch);
2844 } while (iov_iter_count(iter) && iocb->ki_pos < isize && !error);
2845
2846 file_accessed(filp);
2847 ra->prev_pos = last_pos;
2848 return already_read ? already_read : error;
2849 }
2850 EXPORT_SYMBOL_GPL(filemap_read);
2851
kiocb_write_and_wait(struct kiocb * iocb,size_t count)2852 int kiocb_write_and_wait(struct kiocb *iocb, size_t count)
2853 {
2854 struct address_space *mapping = iocb->ki_filp->f_mapping;
2855 loff_t pos = iocb->ki_pos;
2856 loff_t end = pos + count - 1;
2857
2858 if (iocb->ki_flags & IOCB_NOWAIT) {
2859 if (filemap_range_needs_writeback(mapping, pos, end))
2860 return -EAGAIN;
2861 return 0;
2862 }
2863
2864 return filemap_write_and_wait_range(mapping, pos, end);
2865 }
2866 EXPORT_SYMBOL_GPL(kiocb_write_and_wait);
2867
filemap_invalidate_pages(struct address_space * mapping,loff_t pos,loff_t end,bool nowait)2868 int filemap_invalidate_pages(struct address_space *mapping,
2869 loff_t pos, loff_t end, bool nowait)
2870 {
2871 int ret;
2872
2873 if (nowait) {
2874 /* we could block if there are any pages in the range */
2875 if (filemap_range_has_page(mapping, pos, end))
2876 return -EAGAIN;
2877 } else {
2878 ret = filemap_write_and_wait_range(mapping, pos, end);
2879 if (ret)
2880 return ret;
2881 }
2882
2883 /*
2884 * After a write we want buffered reads to be sure to go to disk to get
2885 * the new data. We invalidate clean cached page from the region we're
2886 * about to write. We do this *before* the write so that we can return
2887 * without clobbering -EIOCBQUEUED from ->direct_IO().
2888 */
2889 return invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT,
2890 end >> PAGE_SHIFT);
2891 }
2892
kiocb_invalidate_pages(struct kiocb * iocb,size_t count)2893 int kiocb_invalidate_pages(struct kiocb *iocb, size_t count)
2894 {
2895 struct address_space *mapping = iocb->ki_filp->f_mapping;
2896
2897 return filemap_invalidate_pages(mapping, iocb->ki_pos,
2898 iocb->ki_pos + count - 1,
2899 iocb->ki_flags & IOCB_NOWAIT);
2900 }
2901 EXPORT_SYMBOL_GPL(kiocb_invalidate_pages);
2902
2903 /**
2904 * generic_file_read_iter - generic filesystem read routine
2905 * @iocb: kernel I/O control block
2906 * @iter: destination for the data read
2907 *
2908 * This is the "read_iter()" routine for all filesystems
2909 * that can use the page cache directly.
2910 *
2911 * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall
2912 * be returned when no data can be read without waiting for I/O requests
2913 * to complete; it doesn't prevent readahead.
2914 *
2915 * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O
2916 * requests shall be made for the read or for readahead. When no data
2917 * can be read, -EAGAIN shall be returned. When readahead would be
2918 * triggered, a partial, possibly empty read shall be returned.
2919 *
2920 * Return:
2921 * * number of bytes copied, even for partial reads
2922 * * negative error code (or 0 if IOCB_NOIO) if nothing was read
2923 */
2924 ssize_t
generic_file_read_iter(struct kiocb * iocb,struct iov_iter * iter)2925 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2926 {
2927 size_t count = iov_iter_count(iter);
2928 ssize_t retval = 0;
2929
2930 if (!count)
2931 return 0; /* skip atime */
2932
2933 if (iocb->ki_flags & IOCB_DIRECT) {
2934 struct file *file = iocb->ki_filp;
2935 struct address_space *mapping = file->f_mapping;
2936 struct inode *inode = mapping->host;
2937
2938 retval = kiocb_write_and_wait(iocb, count);
2939 if (retval < 0)
2940 return retval;
2941 file_accessed(file);
2942
2943 retval = mapping->a_ops->direct_IO(iocb, iter);
2944 if (retval >= 0) {
2945 iocb->ki_pos += retval;
2946 count -= retval;
2947 }
2948 if (retval != -EIOCBQUEUED)
2949 iov_iter_revert(iter, count - iov_iter_count(iter));
2950
2951 /*
2952 * Btrfs can have a short DIO read if we encounter
2953 * compressed extents, so if there was an error, or if
2954 * we've already read everything we wanted to, or if
2955 * there was a short read because we hit EOF, go ahead
2956 * and return. Otherwise fallthrough to buffered io for
2957 * the rest of the read. Buffered reads will not work for
2958 * DAX files, so don't bother trying.
2959 */
2960 if (retval < 0 || !count || IS_DAX(inode))
2961 return retval;
2962 if (iocb->ki_pos >= i_size_read(inode))
2963 return retval;
2964 }
2965
2966 return filemap_read(iocb, iter, retval);
2967 }
2968 EXPORT_SYMBOL(generic_file_read_iter);
2969
2970 /*
2971 * Splice subpages from a folio into a pipe.
2972 */
splice_folio_into_pipe(struct pipe_inode_info * pipe,struct folio * folio,loff_t fpos,size_t size)2973 size_t splice_folio_into_pipe(struct pipe_inode_info *pipe,
2974 struct folio *folio, loff_t fpos, size_t size)
2975 {
2976 struct page *page;
2977 size_t spliced = 0, offset = offset_in_folio(folio, fpos);
2978
2979 page = folio_page(folio, offset / PAGE_SIZE);
2980 size = min(size, folio_size(folio) - offset);
2981 offset %= PAGE_SIZE;
2982
2983 while (spliced < size &&
2984 !pipe_full(pipe->head, pipe->tail, pipe->max_usage)) {
2985 struct pipe_buffer *buf = pipe_head_buf(pipe);
2986 size_t part = min_t(size_t, PAGE_SIZE - offset, size - spliced);
2987
2988 *buf = (struct pipe_buffer) {
2989 .ops = &page_cache_pipe_buf_ops,
2990 .page = page,
2991 .offset = offset,
2992 .len = part,
2993 };
2994 folio_get(folio);
2995 pipe->head++;
2996 page++;
2997 spliced += part;
2998 offset = 0;
2999 }
3000
3001 return spliced;
3002 }
3003
3004 /**
3005 * filemap_splice_read - Splice data from a file's pagecache into a pipe
3006 * @in: The file to read from
3007 * @ppos: Pointer to the file position to read from
3008 * @pipe: The pipe to splice into
3009 * @len: The amount to splice
3010 * @flags: The SPLICE_F_* flags
3011 *
3012 * This function gets folios from a file's pagecache and splices them into the
3013 * pipe. Readahead will be called as necessary to fill more folios. This may
3014 * be used for blockdevs also.
3015 *
3016 * Return: On success, the number of bytes read will be returned and *@ppos
3017 * will be updated if appropriate; 0 will be returned if there is no more data
3018 * to be read; -EAGAIN will be returned if the pipe had no space, and some
3019 * other negative error code will be returned on error. A short read may occur
3020 * if the pipe has insufficient space, we reach the end of the data or we hit a
3021 * hole.
3022 */
filemap_splice_read(struct file * in,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)3023 ssize_t filemap_splice_read(struct file *in, loff_t *ppos,
3024 struct pipe_inode_info *pipe,
3025 size_t len, unsigned int flags)
3026 {
3027 struct folio_batch fbatch;
3028 struct kiocb iocb;
3029 size_t total_spliced = 0, used, npages;
3030 loff_t isize, end_offset;
3031 bool writably_mapped;
3032 int i, error = 0;
3033
3034 if (unlikely(*ppos >= in->f_mapping->host->i_sb->s_maxbytes))
3035 return 0;
3036
3037 init_sync_kiocb(&iocb, in);
3038 iocb.ki_pos = *ppos;
3039
3040 /* Work out how much data we can actually add into the pipe */
3041 used = pipe_occupancy(pipe->head, pipe->tail);
3042 npages = max_t(ssize_t, pipe->max_usage - used, 0);
3043 len = min_t(size_t, len, npages * PAGE_SIZE);
3044
3045 folio_batch_init(&fbatch);
3046
3047 do {
3048 cond_resched();
3049
3050 if (*ppos >= i_size_read(in->f_mapping->host))
3051 break;
3052
3053 iocb.ki_pos = *ppos;
3054 error = filemap_get_pages(&iocb, len, &fbatch, true);
3055 if (error < 0)
3056 break;
3057
3058 /*
3059 * i_size must be checked after we know the pages are Uptodate.
3060 *
3061 * Checking i_size after the check allows us to calculate
3062 * the correct value for "nr", which means the zero-filled
3063 * part of the page is not copied back to userspace (unless
3064 * another truncate extends the file - this is desired though).
3065 */
3066 isize = i_size_read(in->f_mapping->host);
3067 if (unlikely(*ppos >= isize))
3068 break;
3069 end_offset = min_t(loff_t, isize, *ppos + len);
3070
3071 /*
3072 * Once we start copying data, we don't want to be touching any
3073 * cachelines that might be contended:
3074 */
3075 writably_mapped = mapping_writably_mapped(in->f_mapping);
3076
3077 for (i = 0; i < folio_batch_count(&fbatch); i++) {
3078 struct folio *folio = fbatch.folios[i];
3079 size_t n;
3080
3081 if (folio_pos(folio) >= end_offset)
3082 goto out;
3083 folio_mark_accessed(folio);
3084
3085 /*
3086 * If users can be writing to this folio using arbitrary
3087 * virtual addresses, take care of potential aliasing
3088 * before reading the folio on the kernel side.
3089 */
3090 if (writably_mapped)
3091 flush_dcache_folio(folio);
3092
3093 n = min_t(loff_t, len, isize - *ppos);
3094 n = splice_folio_into_pipe(pipe, folio, *ppos, n);
3095 if (!n)
3096 goto out;
3097 len -= n;
3098 total_spliced += n;
3099 *ppos += n;
3100 in->f_ra.prev_pos = *ppos;
3101 if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
3102 goto out;
3103 }
3104
3105 folio_batch_release(&fbatch);
3106 } while (len);
3107
3108 out:
3109 folio_batch_release(&fbatch);
3110 file_accessed(in);
3111
3112 return total_spliced ? total_spliced : error;
3113 }
3114 EXPORT_SYMBOL(filemap_splice_read);
3115
folio_seek_hole_data(struct xa_state * xas,struct address_space * mapping,struct folio * folio,loff_t start,loff_t end,bool seek_data)3116 static inline loff_t folio_seek_hole_data(struct xa_state *xas,
3117 struct address_space *mapping, struct folio *folio,
3118 loff_t start, loff_t end, bool seek_data)
3119 {
3120 const struct address_space_operations *ops = mapping->a_ops;
3121 size_t offset, bsz = i_blocksize(mapping->host);
3122
3123 if (xa_is_value(folio) || folio_test_uptodate(folio))
3124 return seek_data ? start : end;
3125 if (!ops->is_partially_uptodate)
3126 return seek_data ? end : start;
3127
3128 xas_pause(xas);
3129 rcu_read_unlock();
3130 folio_lock(folio);
3131 if (unlikely(folio->mapping != mapping))
3132 goto unlock;
3133
3134 offset = offset_in_folio(folio, start) & ~(bsz - 1);
3135
3136 do {
3137 if (ops->is_partially_uptodate(folio, offset, bsz) ==
3138 seek_data)
3139 break;
3140 start = (start + bsz) & ~((u64)bsz - 1);
3141 offset += bsz;
3142 } while (offset < folio_size(folio));
3143 unlock:
3144 folio_unlock(folio);
3145 rcu_read_lock();
3146 return start;
3147 }
3148
seek_folio_size(struct xa_state * xas,struct folio * folio)3149 static inline size_t seek_folio_size(struct xa_state *xas, struct folio *folio)
3150 {
3151 if (xa_is_value(folio))
3152 return PAGE_SIZE << xas_get_order(xas);
3153 return folio_size(folio);
3154 }
3155
3156 /**
3157 * mapping_seek_hole_data - Seek for SEEK_DATA / SEEK_HOLE in the page cache.
3158 * @mapping: Address space to search.
3159 * @start: First byte to consider.
3160 * @end: Limit of search (exclusive).
3161 * @whence: Either SEEK_HOLE or SEEK_DATA.
3162 *
3163 * If the page cache knows which blocks contain holes and which blocks
3164 * contain data, your filesystem can use this function to implement
3165 * SEEK_HOLE and SEEK_DATA. This is useful for filesystems which are
3166 * entirely memory-based such as tmpfs, and filesystems which support
3167 * unwritten extents.
3168 *
3169 * Return: The requested offset on success, or -ENXIO if @whence specifies
3170 * SEEK_DATA and there is no data after @start. There is an implicit hole
3171 * after @end - 1, so SEEK_HOLE returns @end if all the bytes between @start
3172 * and @end contain data.
3173 */
mapping_seek_hole_data(struct address_space * mapping,loff_t start,loff_t end,int whence)3174 loff_t mapping_seek_hole_data(struct address_space *mapping, loff_t start,
3175 loff_t end, int whence)
3176 {
3177 XA_STATE(xas, &mapping->i_pages, start >> PAGE_SHIFT);
3178 pgoff_t max = (end - 1) >> PAGE_SHIFT;
3179 bool seek_data = (whence == SEEK_DATA);
3180 struct folio *folio;
3181
3182 if (end <= start)
3183 return -ENXIO;
3184
3185 rcu_read_lock();
3186 while ((folio = find_get_entry(&xas, max, XA_PRESENT))) {
3187 loff_t pos = (u64)xas.xa_index << PAGE_SHIFT;
3188 size_t seek_size;
3189
3190 if (start < pos) {
3191 if (!seek_data)
3192 goto unlock;
3193 start = pos;
3194 }
3195
3196 seek_size = seek_folio_size(&xas, folio);
3197 pos = round_up((u64)pos + 1, seek_size);
3198 start = folio_seek_hole_data(&xas, mapping, folio, start, pos,
3199 seek_data);
3200 if (start < pos)
3201 goto unlock;
3202 if (start >= end)
3203 break;
3204 if (seek_size > PAGE_SIZE)
3205 xas_set(&xas, pos >> PAGE_SHIFT);
3206 if (!xa_is_value(folio))
3207 folio_put(folio);
3208 }
3209 if (seek_data)
3210 start = -ENXIO;
3211 unlock:
3212 rcu_read_unlock();
3213 if (folio && !xa_is_value(folio))
3214 folio_put(folio);
3215 if (start > end)
3216 return end;
3217 return start;
3218 }
3219
3220 #ifdef CONFIG_MMU
3221 #define MMAP_LOTSAMISS (100)
3222 /*
3223 * lock_folio_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock
3224 * @vmf - the vm_fault for this fault.
3225 * @folio - the folio to lock.
3226 * @fpin - the pointer to the file we may pin (or is already pinned).
3227 *
3228 * This works similar to lock_folio_or_retry in that it can drop the
3229 * mmap_lock. It differs in that it actually returns the folio locked
3230 * if it returns 1 and 0 if it couldn't lock the folio. If we did have
3231 * to drop the mmap_lock then fpin will point to the pinned file and
3232 * needs to be fput()'ed at a later point.
3233 */
lock_folio_maybe_drop_mmap(struct vm_fault * vmf,struct folio * folio,struct file ** fpin)3234 static int lock_folio_maybe_drop_mmap(struct vm_fault *vmf, struct folio *folio,
3235 struct file **fpin)
3236 {
3237 struct task_struct *tsk = NULL;
3238
3239 if (folio_trylock(folio))
3240 return 1;
3241
3242 /*
3243 * NOTE! This will make us return with VM_FAULT_RETRY, but with
3244 * the fault lock still held. That's how FAULT_FLAG_RETRY_NOWAIT
3245 * is supposed to work. We have way too many special cases..
3246 */
3247 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
3248 return 0;
3249
3250 *fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
3251 trace_android_vh_lock_folio_drop_mmap_start(&tsk, vmf, folio, *fpin);
3252 if (vmf->flags & FAULT_FLAG_KILLABLE) {
3253 if (__folio_lock_killable(folio)) {
3254 /*
3255 * We didn't have the right flags to drop the
3256 * fault lock, but all fault_handlers only check
3257 * for fatal signals if we return VM_FAULT_RETRY,
3258 * so we need to drop the fault lock here and
3259 * return 0 if we don't have a fpin.
3260 */
3261 if (*fpin == NULL)
3262 release_fault_lock(vmf);
3263 trace_android_vh_lock_folio_drop_mmap_end(false, &tsk, vmf, folio, *fpin);
3264 return 0;
3265 }
3266 } else
3267 __folio_lock(folio);
3268
3269 trace_android_vh_lock_folio_drop_mmap_end(true, &tsk, vmf, folio, *fpin);
3270 return 1;
3271 }
3272
3273 /*
3274 * Synchronous readahead happens when we don't even find a page in the page
3275 * cache at all. We don't want to perform IO under the mmap sem, so if we have
3276 * to drop the mmap sem we return the file that was pinned in order for us to do
3277 * that. If we didn't pin a file then we return NULL. The file that is
3278 * returned needs to be fput()'ed when we're done with it.
3279 */
do_sync_mmap_readahead(struct vm_fault * vmf)3280 static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
3281 {
3282 struct file *file = vmf->vma->vm_file;
3283 struct file_ra_state *ra = &file->f_ra;
3284 struct address_space *mapping = file->f_mapping;
3285 DEFINE_READAHEAD(ractl, file, ra, mapping, vmf->pgoff);
3286 struct file *fpin = NULL;
3287 unsigned long vm_flags = vmf->vma->vm_flags;
3288 unsigned int mmap_miss;
3289
3290 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3291 /* Use the readahead code, even if readahead is disabled */
3292 if ((vm_flags & VM_HUGEPAGE) && HPAGE_PMD_ORDER <= MAX_PAGECACHE_ORDER) {
3293 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3294 ractl._index &= ~((unsigned long)HPAGE_PMD_NR - 1);
3295 ra->size = HPAGE_PMD_NR;
3296 /*
3297 * Fetch two PMD folios, so we get the chance to actually
3298 * readahead, unless we've been told not to.
3299 */
3300 if (!(vm_flags & VM_RAND_READ))
3301 ra->size *= 2;
3302 ra->async_size = HPAGE_PMD_NR;
3303 page_cache_ra_order(&ractl, ra, HPAGE_PMD_ORDER);
3304 return fpin;
3305 }
3306 #endif
3307
3308 /* If we don't want any read-ahead, don't bother */
3309 if (vm_flags & VM_RAND_READ)
3310 return fpin;
3311 if (!ra->ra_pages)
3312 return fpin;
3313
3314 if (vm_flags & VM_SEQ_READ) {
3315 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3316 trace_android_vh_page_cache_readahead_start(file, vmf->pgoff,
3317 ra->ra_pages, true);
3318 page_cache_sync_ra(&ractl, ra->ra_pages);
3319 trace_android_vh_page_cache_readahead_end(file, vmf->pgoff);
3320 return fpin;
3321 }
3322
3323 /* Avoid banging the cache line if not needed */
3324 mmap_miss = READ_ONCE(ra->mmap_miss);
3325 if (mmap_miss < MMAP_LOTSAMISS * 10)
3326 WRITE_ONCE(ra->mmap_miss, ++mmap_miss);
3327
3328 /*
3329 * Do we miss much more than hit in this file? If so,
3330 * stop bothering with read-ahead. It will only hurt.
3331 */
3332 if (mmap_miss > MMAP_LOTSAMISS)
3333 return fpin;
3334
3335 /*
3336 * mmap read-around
3337 */
3338 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3339 ra->start = max_t(long, 0, vmf->pgoff - ra->ra_pages / 2);
3340 ra->size = ra->ra_pages;
3341 ra->async_size = ra->ra_pages / 4;
3342 trace_android_vh_tune_mmap_readaround(ra->ra_pages, vmf->pgoff,
3343 &ra->start, &ra->size, &ra->async_size);
3344 ractl._index = ra->start;
3345 trace_android_vh_page_cache_readahead_start(file, vmf->pgoff,
3346 ra->size, true);
3347 page_cache_ra_order(&ractl, ra, 0);
3348 trace_android_vh_page_cache_readahead_end(file, vmf->pgoff);
3349 return fpin;
3350 }
3351
3352 /*
3353 * Asynchronous readahead happens when we find the page and PG_readahead,
3354 * so we want to possibly extend the readahead further. We return the file that
3355 * was pinned if we have to drop the mmap_lock in order to do IO.
3356 */
do_async_mmap_readahead(struct vm_fault * vmf,struct folio * folio)3357 static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
3358 struct folio *folio)
3359 {
3360 struct file *file = vmf->vma->vm_file;
3361 struct file_ra_state *ra = &file->f_ra;
3362 DEFINE_READAHEAD(ractl, file, ra, file->f_mapping, vmf->pgoff);
3363 struct file *fpin = NULL;
3364 unsigned int mmap_miss;
3365 bool skip = false;
3366
3367 trace_android_vh_do_async_mmap_readahead(vmf, folio, &skip);
3368 if (skip)
3369 return fpin;
3370
3371 /* If we don't want any read-ahead, don't bother */
3372 if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages)
3373 return fpin;
3374
3375 mmap_miss = READ_ONCE(ra->mmap_miss);
3376 if (mmap_miss)
3377 WRITE_ONCE(ra->mmap_miss, --mmap_miss);
3378
3379 if (folio_test_readahead(folio)) {
3380 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3381 trace_android_vh_page_cache_readahead_start(file, vmf->pgoff,
3382 ra->ra_pages, false);
3383 page_cache_async_ra(&ractl, folio, ra->ra_pages);
3384 trace_android_vh_page_cache_readahead_end(file, vmf->pgoff);
3385 }
3386 return fpin;
3387 }
3388
filemap_fault_recheck_pte_none(struct vm_fault * vmf)3389 static vm_fault_t filemap_fault_recheck_pte_none(struct vm_fault *vmf)
3390 {
3391 struct vm_area_struct *vma = vmf->vma;
3392 vm_fault_t ret = 0;
3393 pte_t *ptep;
3394
3395 /*
3396 * We might have COW'ed a pagecache folio and might now have an mlocked
3397 * anon folio mapped. The original pagecache folio is not mlocked and
3398 * might have been evicted. During a read+clear/modify/write update of
3399 * the PTE, such as done in do_numa_page()/change_pte_range(), we
3400 * temporarily clear the PTE under PT lock and might detect it here as
3401 * "none" when not holding the PT lock.
3402 *
3403 * Not rechecking the PTE under PT lock could result in an unexpected
3404 * major fault in an mlock'ed region. Recheck only for this special
3405 * scenario while holding the PT lock, to not degrade non-mlocked
3406 * scenarios. Recheck the PTE without PT lock firstly, thereby reducing
3407 * the number of times we hold PT lock.
3408 */
3409 if (!(vma->vm_flags & VM_LOCKED))
3410 return 0;
3411
3412 if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID))
3413 return 0;
3414
3415 ptep = pte_offset_map_ro_nolock(vma->vm_mm, vmf->pmd, vmf->address,
3416 &vmf->ptl);
3417 if (unlikely(!ptep))
3418 return VM_FAULT_NOPAGE;
3419
3420 if (unlikely(!pte_none(ptep_get_lockless(ptep)))) {
3421 ret = VM_FAULT_NOPAGE;
3422 } else {
3423 spin_lock(vmf->ptl);
3424 if (unlikely(!pte_none(ptep_get(ptep))))
3425 ret = VM_FAULT_NOPAGE;
3426 spin_unlock(vmf->ptl);
3427 }
3428 pte_unmap(ptep);
3429 return ret;
3430 }
3431
3432 /**
3433 * filemap_fault - read in file data for page fault handling
3434 * @vmf: struct vm_fault containing details of the fault
3435 *
3436 * filemap_fault() is invoked via the vma operations vector for a
3437 * mapped memory region to read in file data during a page fault.
3438 *
3439 * The goto's are kind of ugly, but this streamlines the normal case of having
3440 * it in the page cache, and handles the special cases reasonably without
3441 * having a lot of duplicated code.
3442 *
3443 * vma->vm_mm->mmap_lock must be held on entry.
3444 *
3445 * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock
3446 * may be dropped before doing I/O or by lock_folio_maybe_drop_mmap().
3447 *
3448 * If our return value does not have VM_FAULT_RETRY set, the mmap_lock
3449 * has not been released.
3450 *
3451 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
3452 *
3453 * Return: bitwise-OR of %VM_FAULT_ codes.
3454 */
filemap_fault(struct vm_fault * vmf)3455 vm_fault_t filemap_fault(struct vm_fault *vmf)
3456 {
3457 int error;
3458 struct file *file = vmf->vma->vm_file;
3459 struct file *fpin = NULL;
3460 struct address_space *mapping = file->f_mapping;
3461 struct inode *inode = mapping->host;
3462 pgoff_t max_idx, index = vmf->pgoff;
3463 struct folio *folio;
3464 vm_fault_t ret = 0;
3465 bool mapping_locked = false;
3466
3467 max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3468 if (unlikely(index >= max_idx))
3469 return VM_FAULT_SIGBUS;
3470
3471 trace_mm_filemap_fault(mapping, index);
3472
3473 /*
3474 * Do we have something in the page cache already?
3475 */
3476 folio = filemap_get_folio(mapping, index);
3477 if (likely(!IS_ERR(folio))) {
3478 /*
3479 * We found the page, so try async readahead before waiting for
3480 * the lock.
3481 */
3482 if (!(vmf->flags & FAULT_FLAG_TRIED))
3483 fpin = do_async_mmap_readahead(vmf, folio);
3484 if (unlikely(!folio_test_uptodate(folio))) {
3485 filemap_invalidate_lock_shared(mapping);
3486 mapping_locked = true;
3487 }
3488 } else {
3489 ret = filemap_fault_recheck_pte_none(vmf);
3490 if (unlikely(ret))
3491 return ret;
3492
3493 /* No page in the page cache at all */
3494 count_vm_event(PGMAJFAULT);
3495 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
3496 ret = VM_FAULT_MAJOR;
3497 fpin = do_sync_mmap_readahead(vmf);
3498 retry_find:
3499 /*
3500 * See comment in filemap_create_folio() why we need
3501 * invalidate_lock
3502 */
3503 if (!mapping_locked) {
3504 filemap_invalidate_lock_shared(mapping);
3505 mapping_locked = true;
3506 }
3507 folio = __filemap_get_folio(mapping, index,
3508 FGP_CREAT|FGP_FOR_MMAP,
3509 vmf->gfp_mask);
3510 if (IS_ERR(folio)) {
3511 if (fpin)
3512 goto out_retry;
3513 filemap_invalidate_unlock_shared(mapping);
3514 return VM_FAULT_OOM;
3515 }
3516 }
3517
3518 if (!lock_folio_maybe_drop_mmap(vmf, folio, &fpin))
3519 goto out_retry;
3520
3521 /* Did it get truncated? */
3522 if (unlikely(folio->mapping != mapping)) {
3523 folio_unlock(folio);
3524 folio_put(folio);
3525 goto retry_find;
3526 }
3527 VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
3528
3529 /*
3530 * We have a locked folio in the page cache, now we need to check
3531 * that it's up-to-date. If not, it is going to be due to an error,
3532 * or because readahead was otherwise unable to retrieve it.
3533 */
3534 if (unlikely(!folio_test_uptodate(folio))) {
3535 /*
3536 * If the invalidate lock is not held, the folio was in cache
3537 * and uptodate and now it is not. Strange but possible since we
3538 * didn't hold the page lock all the time. Let's drop
3539 * everything, get the invalidate lock and try again.
3540 */
3541 if (!mapping_locked) {
3542 folio_unlock(folio);
3543 folio_put(folio);
3544 goto retry_find;
3545 }
3546
3547 /*
3548 * OK, the folio is really not uptodate. This can be because the
3549 * VMA has the VM_RAND_READ flag set, or because an error
3550 * arose. Let's read it in directly.
3551 */
3552 goto page_not_uptodate;
3553 }
3554
3555 /*
3556 * We've made it this far and we had to drop our mmap_lock, now is the
3557 * time to return to the upper layer and have it re-find the vma and
3558 * redo the fault.
3559 */
3560 if (fpin) {
3561 folio_unlock(folio);
3562 goto out_retry;
3563 }
3564 if (mapping_locked)
3565 filemap_invalidate_unlock_shared(mapping);
3566
3567 /*
3568 * Found the page and have a reference on it.
3569 * We must recheck i_size under page lock.
3570 */
3571 max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3572 if (unlikely(index >= max_idx)) {
3573 folio_unlock(folio);
3574 folio_put(folio);
3575 return VM_FAULT_SIGBUS;
3576 }
3577
3578 vmf->page = folio_file_page(folio, index);
3579 return ret | VM_FAULT_LOCKED;
3580
3581 page_not_uptodate:
3582 /*
3583 * Umm, take care of errors if the page isn't up-to-date.
3584 * Try to re-read it _once_. We do this synchronously,
3585 * because there really aren't any performance issues here
3586 * and we need to check for errors.
3587 */
3588 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3589 trace_android_vh_filemap_fault_start(file, vmf->pgoff);
3590 error = filemap_read_folio(file, mapping->a_ops->read_folio, folio);
3591 trace_android_vh_filemap_fault_end(file, vmf->pgoff);
3592 if (fpin)
3593 goto out_retry;
3594 folio_put(folio);
3595
3596 if (!error || error == AOP_TRUNCATED_PAGE)
3597 goto retry_find;
3598 filemap_invalidate_unlock_shared(mapping);
3599
3600 return VM_FAULT_SIGBUS;
3601
3602 out_retry:
3603 /*
3604 * We dropped the mmap_lock, we need to return to the fault handler to
3605 * re-find the vma and come back and find our hopefully still populated
3606 * page.
3607 */
3608 if (!IS_ERR(folio))
3609 folio_put(folio);
3610 if (mapping_locked)
3611 filemap_invalidate_unlock_shared(mapping);
3612 if (fpin)
3613 fput(fpin);
3614 return ret | VM_FAULT_RETRY;
3615 }
3616 EXPORT_SYMBOL(filemap_fault);
3617
filemap_map_pmd(struct vm_fault * vmf,struct folio * folio,pgoff_t start)3618 static bool filemap_map_pmd(struct vm_fault *vmf, struct folio *folio,
3619 pgoff_t start)
3620 {
3621 struct mm_struct *mm = vmf->vma->vm_mm;
3622
3623 /* Huge page is mapped? No need to proceed. */
3624 if (pmd_trans_huge(*vmf->pmd)) {
3625 folio_unlock(folio);
3626 folio_put(folio);
3627 return true;
3628 }
3629
3630 if (pmd_none(*vmf->pmd) && folio_test_pmd_mappable(folio)) {
3631 struct page *page = folio_file_page(folio, start);
3632 vm_fault_t ret = do_set_pmd(vmf, page);
3633 if (!ret) {
3634 /* The page is mapped successfully, reference consumed. */
3635 folio_unlock(folio);
3636 return true;
3637 }
3638 }
3639
3640 if (pmd_none(*vmf->pmd) && vmf->prealloc_pte)
3641 pmd_install(mm, vmf->pmd, &vmf->prealloc_pte);
3642
3643 return false;
3644 }
3645
next_uptodate_folio(struct xa_state * xas,struct address_space * mapping,pgoff_t end_pgoff)3646 static struct folio *next_uptodate_folio(struct xa_state *xas,
3647 struct address_space *mapping, pgoff_t end_pgoff)
3648 {
3649 struct folio *folio = xas_next_entry(xas, end_pgoff);
3650 unsigned long max_idx;
3651
3652 do {
3653 if (!folio)
3654 return NULL;
3655 if (xas_retry(xas, folio))
3656 continue;
3657 if (xa_is_value(folio))
3658 continue;
3659 if (folio_test_locked(folio))
3660 continue;
3661 if (!folio_try_get(folio))
3662 continue;
3663 /* Has the page moved or been split? */
3664 if (unlikely(folio != xas_reload(xas)))
3665 goto skip;
3666 if (!folio_test_uptodate(folio) || folio_test_readahead(folio))
3667 goto skip;
3668 if (!folio_trylock(folio))
3669 goto skip;
3670 if (folio->mapping != mapping)
3671 goto unlock;
3672 if (!folio_test_uptodate(folio))
3673 goto unlock;
3674 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
3675 if (xas->xa_index >= max_idx)
3676 goto unlock;
3677 return folio;
3678 unlock:
3679 folio_unlock(folio);
3680 skip:
3681 folio_put(folio);
3682 } while ((folio = xas_next_entry(xas, end_pgoff)) != NULL);
3683
3684 return NULL;
3685 }
3686
3687 /*
3688 * Map page range [start_page, start_page + nr_pages) of folio.
3689 * start_page is gotten from start by folio_page(folio, start)
3690 */
filemap_map_folio_range(struct vm_fault * vmf,struct folio * folio,unsigned long start,unsigned long addr,unsigned int nr_pages,unsigned long * rss,unsigned int * mmap_miss)3691 static vm_fault_t filemap_map_folio_range(struct vm_fault *vmf,
3692 struct folio *folio, unsigned long start,
3693 unsigned long addr, unsigned int nr_pages,
3694 unsigned long *rss, unsigned int *mmap_miss)
3695 {
3696 vm_fault_t ret = 0;
3697 struct page *page = folio_page(folio, start);
3698 unsigned int count = 0;
3699 pte_t *old_ptep = vmf->pte;
3700
3701 do {
3702 if (PageHWPoison(page + count))
3703 goto skip;
3704
3705 /*
3706 * If there are too many folios that are recently evicted
3707 * in a file, they will probably continue to be evicted.
3708 * In such situation, read-ahead is only a waste of IO.
3709 * Don't decrease mmap_miss in this scenario to make sure
3710 * we can stop read-ahead.
3711 */
3712 if (!folio_test_workingset(folio))
3713 (*mmap_miss)++;
3714
3715 /*
3716 * NOTE: If there're PTE markers, we'll leave them to be
3717 * handled in the specific fault path, and it'll prohibit the
3718 * fault-around logic.
3719 */
3720 if (!pte_none(ptep_get(&vmf->pte[count])))
3721 goto skip;
3722
3723 count++;
3724 continue;
3725 skip:
3726 if (count) {
3727 set_pte_range(vmf, folio, page, count, addr);
3728 *rss += count;
3729 folio_ref_add(folio, count);
3730 if (in_range(vmf->address, addr, count * PAGE_SIZE))
3731 ret = VM_FAULT_NOPAGE;
3732 }
3733
3734 count++;
3735 page += count;
3736 vmf->pte += count;
3737 addr += count * PAGE_SIZE;
3738 count = 0;
3739 } while (--nr_pages > 0);
3740
3741 if (count) {
3742 set_pte_range(vmf, folio, page, count, addr);
3743 *rss += count;
3744 folio_ref_add(folio, count);
3745 if (in_range(vmf->address, addr, count * PAGE_SIZE))
3746 ret = VM_FAULT_NOPAGE;
3747 }
3748
3749 vmf->pte = old_ptep;
3750
3751 return ret;
3752 }
3753
filemap_map_order0_folio(struct vm_fault * vmf,struct folio * folio,unsigned long addr,unsigned long * rss,unsigned int * mmap_miss)3754 static vm_fault_t filemap_map_order0_folio(struct vm_fault *vmf,
3755 struct folio *folio, unsigned long addr,
3756 unsigned long *rss, unsigned int *mmap_miss)
3757 {
3758 vm_fault_t ret = 0;
3759 struct page *page = &folio->page;
3760
3761 if (PageHWPoison(page))
3762 return ret;
3763
3764 /* See comment of filemap_map_folio_range() */
3765 if (!folio_test_workingset(folio))
3766 (*mmap_miss)++;
3767
3768 /*
3769 * NOTE: If there're PTE markers, we'll leave them to be
3770 * handled in the specific fault path, and it'll prohibit
3771 * the fault-around logic.
3772 */
3773 if (!pte_none(ptep_get(vmf->pte)))
3774 return ret;
3775
3776 if (vmf->address == addr)
3777 ret = VM_FAULT_NOPAGE;
3778
3779 set_pte_range(vmf, folio, page, 1, addr);
3780 (*rss)++;
3781 folio_ref_inc(folio);
3782
3783 return ret;
3784 }
3785
filemap_map_pages(struct vm_fault * vmf,pgoff_t start_pgoff,pgoff_t end_pgoff)3786 vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3787 pgoff_t start_pgoff, pgoff_t end_pgoff)
3788 {
3789 struct vm_area_struct *vma = vmf->vma;
3790 struct file *file = vma->vm_file;
3791 struct address_space *mapping = file->f_mapping;
3792 pgoff_t file_end, last_pgoff = start_pgoff;
3793 unsigned long addr;
3794 XA_STATE(xas, &mapping->i_pages, start_pgoff);
3795 struct folio *folio;
3796 vm_fault_t ret = 0;
3797 unsigned long rss = 0;
3798 unsigned int nr_pages = 0, mmap_miss = 0, mmap_miss_saved, folio_type;
3799 pgoff_t first_pgoff = 0;
3800 pgoff_t orig_start_pgoff = start_pgoff;
3801
3802 rcu_read_lock();
3803 folio = next_uptodate_folio(&xas, mapping, end_pgoff);
3804 if (!folio)
3805 goto out;
3806 first_pgoff = xas.xa_index;
3807 orig_start_pgoff = xas.xa_index;
3808
3809 if (filemap_map_pmd(vmf, folio, start_pgoff)) {
3810 ret = VM_FAULT_NOPAGE;
3811 goto out;
3812 }
3813
3814 addr = vma->vm_start + ((start_pgoff - vma->vm_pgoff) << PAGE_SHIFT);
3815 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl);
3816 if (!vmf->pte) {
3817 folio_unlock(folio);
3818 folio_put(folio);
3819 goto out;
3820 }
3821
3822 file_end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE) - 1;
3823 if (end_pgoff > file_end)
3824 end_pgoff = file_end;
3825
3826 folio_type = mm_counter_file(folio);
3827 do {
3828 unsigned long end;
3829
3830 addr += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
3831 vmf->pte += xas.xa_index - last_pgoff;
3832 last_pgoff = xas.xa_index;
3833 end = folio_next_index(folio) - 1;
3834 nr_pages = min(end, end_pgoff) - xas.xa_index + 1;
3835
3836 if (!folio_test_large(folio))
3837 ret |= filemap_map_order0_folio(vmf,
3838 folio, addr, &rss, &mmap_miss);
3839 else
3840 ret |= filemap_map_folio_range(vmf, folio,
3841 xas.xa_index - folio->index, addr,
3842 nr_pages, &rss, &mmap_miss);
3843
3844 folio_unlock(folio);
3845 folio_put(folio);
3846 } while ((folio = next_uptodate_folio(&xas, mapping, end_pgoff)) != NULL);
3847 add_mm_counter(vma->vm_mm, folio_type, rss);
3848 pte_unmap_unlock(vmf->pte, vmf->ptl);
3849 trace_mm_filemap_map_pages(mapping, start_pgoff, end_pgoff);
3850 out:
3851 rcu_read_unlock();
3852
3853 mmap_miss_saved = READ_ONCE(file->f_ra.mmap_miss);
3854 if (mmap_miss >= mmap_miss_saved)
3855 WRITE_ONCE(file->f_ra.mmap_miss, 0);
3856 else
3857 WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss_saved - mmap_miss);
3858 trace_android_vh_filemap_map_pages(file, orig_start_pgoff,
3859 first_pgoff, last_pgoff, ret);
3860
3861 return ret;
3862 }
3863 EXPORT_SYMBOL(filemap_map_pages);
3864
filemap_page_mkwrite(struct vm_fault * vmf)3865 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3866 {
3867 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
3868 struct folio *folio = page_folio(vmf->page);
3869 vm_fault_t ret = VM_FAULT_LOCKED;
3870
3871 sb_start_pagefault(mapping->host->i_sb);
3872 file_update_time(vmf->vma->vm_file);
3873 folio_lock(folio);
3874 if (folio->mapping != mapping) {
3875 folio_unlock(folio);
3876 ret = VM_FAULT_NOPAGE;
3877 goto out;
3878 }
3879 /*
3880 * We mark the folio dirty already here so that when freeze is in
3881 * progress, we are guaranteed that writeback during freezing will
3882 * see the dirty folio and writeprotect it again.
3883 */
3884 folio_mark_dirty(folio);
3885 folio_wait_stable(folio);
3886 out:
3887 sb_end_pagefault(mapping->host->i_sb);
3888 return ret;
3889 }
3890
3891 const struct vm_operations_struct generic_file_vm_ops = {
3892 .fault = filemap_fault,
3893 .map_pages = filemap_map_pages,
3894 .page_mkwrite = filemap_page_mkwrite,
3895 };
3896
3897 /* This is used for a general mmap of a disk file */
3898
generic_file_mmap(struct file * file,struct vm_area_struct * vma)3899 int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
3900 {
3901 struct address_space *mapping = file->f_mapping;
3902
3903 if (!mapping->a_ops->read_folio)
3904 return -ENOEXEC;
3905 file_accessed(file);
3906 vma->vm_ops = &generic_file_vm_ops;
3907 return 0;
3908 }
3909
3910 /*
3911 * This is for filesystems which do not implement ->writepage.
3912 */
generic_file_readonly_mmap(struct file * file,struct vm_area_struct * vma)3913 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3914 {
3915 if (vma_is_shared_maywrite(vma))
3916 return -EINVAL;
3917 return generic_file_mmap(file, vma);
3918 }
3919 #else
filemap_page_mkwrite(struct vm_fault * vmf)3920 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3921 {
3922 return VM_FAULT_SIGBUS;
3923 }
generic_file_mmap(struct file * file,struct vm_area_struct * vma)3924 int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
3925 {
3926 return -ENOSYS;
3927 }
generic_file_readonly_mmap(struct file * file,struct vm_area_struct * vma)3928 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3929 {
3930 return -ENOSYS;
3931 }
3932 #endif /* CONFIG_MMU */
3933
3934 EXPORT_SYMBOL(filemap_page_mkwrite);
3935 EXPORT_SYMBOL(generic_file_mmap);
3936 EXPORT_SYMBOL(generic_file_readonly_mmap);
3937
do_read_cache_folio(struct address_space * mapping,pgoff_t index,filler_t filler,struct file * file,gfp_t gfp)3938 static struct folio *do_read_cache_folio(struct address_space *mapping,
3939 pgoff_t index, filler_t filler, struct file *file, gfp_t gfp)
3940 {
3941 struct folio *folio;
3942 int err;
3943
3944 if (!filler)
3945 filler = mapping->a_ops->read_folio;
3946 repeat:
3947 folio = filemap_get_folio(mapping, index);
3948 if (IS_ERR(folio)) {
3949 folio = filemap_alloc_folio(gfp,
3950 mapping_min_folio_order(mapping));
3951 if (!folio)
3952 return ERR_PTR(-ENOMEM);
3953 index = mapping_align_index(mapping, index);
3954 err = filemap_add_folio(mapping, folio, index, gfp);
3955 if (unlikely(err)) {
3956 folio_put(folio);
3957 if (err == -EEXIST)
3958 goto repeat;
3959 /* Presumably ENOMEM for xarray node */
3960 return ERR_PTR(err);
3961 }
3962
3963 goto filler;
3964 }
3965 if (folio_test_uptodate(folio))
3966 goto out;
3967
3968 if (!folio_trylock(folio)) {
3969 folio_put_wait_locked(folio, TASK_UNINTERRUPTIBLE);
3970 goto repeat;
3971 }
3972
3973 /* Folio was truncated from mapping */
3974 if (!folio->mapping) {
3975 folio_unlock(folio);
3976 folio_put(folio);
3977 goto repeat;
3978 }
3979
3980 /* Someone else locked and filled the page in a very small window */
3981 if (folio_test_uptodate(folio)) {
3982 folio_unlock(folio);
3983 goto out;
3984 }
3985
3986 filler:
3987 err = filemap_read_folio(file, filler, folio);
3988 if (err) {
3989 folio_put(folio);
3990 if (err == AOP_TRUNCATED_PAGE)
3991 goto repeat;
3992 return ERR_PTR(err);
3993 }
3994
3995 out:
3996 folio_mark_accessed(folio);
3997 return folio;
3998 }
3999
4000 /**
4001 * read_cache_folio - Read into page cache, fill it if needed.
4002 * @mapping: The address_space to read from.
4003 * @index: The index to read.
4004 * @filler: Function to perform the read, or NULL to use aops->read_folio().
4005 * @file: Passed to filler function, may be NULL if not required.
4006 *
4007 * Read one page into the page cache. If it succeeds, the folio returned
4008 * will contain @index, but it may not be the first page of the folio.
4009 *
4010 * If the filler function returns an error, it will be returned to the
4011 * caller.
4012 *
4013 * Context: May sleep. Expects mapping->invalidate_lock to be held.
4014 * Return: An uptodate folio on success, ERR_PTR() on failure.
4015 */
read_cache_folio(struct address_space * mapping,pgoff_t index,filler_t filler,struct file * file)4016 struct folio *read_cache_folio(struct address_space *mapping, pgoff_t index,
4017 filler_t filler, struct file *file)
4018 {
4019 return do_read_cache_folio(mapping, index, filler, file,
4020 mapping_gfp_mask(mapping));
4021 }
4022 EXPORT_SYMBOL(read_cache_folio);
4023
4024 /**
4025 * mapping_read_folio_gfp - Read into page cache, using specified allocation flags.
4026 * @mapping: The address_space for the folio.
4027 * @index: The index that the allocated folio will contain.
4028 * @gfp: The page allocator flags to use if allocating.
4029 *
4030 * This is the same as "read_cache_folio(mapping, index, NULL, NULL)", but with
4031 * any new memory allocations done using the specified allocation flags.
4032 *
4033 * The most likely error from this function is EIO, but ENOMEM is
4034 * possible and so is EINTR. If ->read_folio returns another error,
4035 * that will be returned to the caller.
4036 *
4037 * The function expects mapping->invalidate_lock to be already held.
4038 *
4039 * Return: Uptodate folio on success, ERR_PTR() on failure.
4040 */
mapping_read_folio_gfp(struct address_space * mapping,pgoff_t index,gfp_t gfp)4041 struct folio *mapping_read_folio_gfp(struct address_space *mapping,
4042 pgoff_t index, gfp_t gfp)
4043 {
4044 return do_read_cache_folio(mapping, index, NULL, NULL, gfp);
4045 }
4046 EXPORT_SYMBOL(mapping_read_folio_gfp);
4047
do_read_cache_page(struct address_space * mapping,pgoff_t index,filler_t * filler,struct file * file,gfp_t gfp)4048 static struct page *do_read_cache_page(struct address_space *mapping,
4049 pgoff_t index, filler_t *filler, struct file *file, gfp_t gfp)
4050 {
4051 struct folio *folio;
4052
4053 folio = do_read_cache_folio(mapping, index, filler, file, gfp);
4054 if (IS_ERR(folio))
4055 return &folio->page;
4056 return folio_file_page(folio, index);
4057 }
4058
read_cache_page(struct address_space * mapping,pgoff_t index,filler_t * filler,struct file * file)4059 struct page *read_cache_page(struct address_space *mapping,
4060 pgoff_t index, filler_t *filler, struct file *file)
4061 {
4062 return do_read_cache_page(mapping, index, filler, file,
4063 mapping_gfp_mask(mapping));
4064 }
4065 EXPORT_SYMBOL(read_cache_page);
4066
4067 /**
4068 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
4069 * @mapping: the page's address_space
4070 * @index: the page index
4071 * @gfp: the page allocator flags to use if allocating
4072 *
4073 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
4074 * any new page allocations done using the specified allocation flags.
4075 *
4076 * If the page does not get brought uptodate, return -EIO.
4077 *
4078 * The function expects mapping->invalidate_lock to be already held.
4079 *
4080 * Return: up to date page on success, ERR_PTR() on failure.
4081 */
read_cache_page_gfp(struct address_space * mapping,pgoff_t index,gfp_t gfp)4082 struct page *read_cache_page_gfp(struct address_space *mapping,
4083 pgoff_t index,
4084 gfp_t gfp)
4085 {
4086 return do_read_cache_page(mapping, index, NULL, NULL, gfp);
4087 }
4088 EXPORT_SYMBOL(read_cache_page_gfp);
4089
4090 /*
4091 * Warn about a page cache invalidation failure during a direct I/O write.
4092 */
dio_warn_stale_pagecache(struct file * filp)4093 static void dio_warn_stale_pagecache(struct file *filp)
4094 {
4095 static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST);
4096 char pathname[128];
4097 char *path;
4098
4099 errseq_set(&filp->f_mapping->wb_err, -EIO);
4100 if (__ratelimit(&_rs)) {
4101 path = file_path(filp, pathname, sizeof(pathname));
4102 if (IS_ERR(path))
4103 path = "(unknown)";
4104 pr_crit("Page cache invalidation failure on direct I/O. Possible data corruption due to collision with buffered I/O!\n");
4105 pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid,
4106 current->comm);
4107 }
4108 }
4109
kiocb_invalidate_post_direct_write(struct kiocb * iocb,size_t count)4110 void kiocb_invalidate_post_direct_write(struct kiocb *iocb, size_t count)
4111 {
4112 struct address_space *mapping = iocb->ki_filp->f_mapping;
4113
4114 if (mapping->nrpages &&
4115 invalidate_inode_pages2_range(mapping,
4116 iocb->ki_pos >> PAGE_SHIFT,
4117 (iocb->ki_pos + count - 1) >> PAGE_SHIFT))
4118 dio_warn_stale_pagecache(iocb->ki_filp);
4119 }
4120
4121 ssize_t
generic_file_direct_write(struct kiocb * iocb,struct iov_iter * from)4122 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
4123 {
4124 struct address_space *mapping = iocb->ki_filp->f_mapping;
4125 size_t write_len = iov_iter_count(from);
4126 ssize_t written;
4127
4128 /*
4129 * If a page can not be invalidated, return 0 to fall back
4130 * to buffered write.
4131 */
4132 written = kiocb_invalidate_pages(iocb, write_len);
4133 if (written) {
4134 if (written == -EBUSY)
4135 return 0;
4136 return written;
4137 }
4138
4139 written = mapping->a_ops->direct_IO(iocb, from);
4140
4141 /*
4142 * Finally, try again to invalidate clean pages which might have been
4143 * cached by non-direct readahead, or faulted in by get_user_pages()
4144 * if the source of the write was an mmap'ed region of the file
4145 * we're writing. Either one is a pretty crazy thing to do,
4146 * so we don't support it 100%. If this invalidation
4147 * fails, tough, the write still worked...
4148 *
4149 * Most of the time we do not need this since dio_complete() will do
4150 * the invalidation for us. However there are some file systems that
4151 * do not end up with dio_complete() being called, so let's not break
4152 * them by removing it completely.
4153 *
4154 * Noticeable example is a blkdev_direct_IO().
4155 *
4156 * Skip invalidation for async writes or if mapping has no pages.
4157 */
4158 if (written > 0) {
4159 struct inode *inode = mapping->host;
4160 loff_t pos = iocb->ki_pos;
4161
4162 kiocb_invalidate_post_direct_write(iocb, written);
4163 pos += written;
4164 write_len -= written;
4165 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
4166 i_size_write(inode, pos);
4167 mark_inode_dirty(inode);
4168 }
4169 iocb->ki_pos = pos;
4170 }
4171 if (written != -EIOCBQUEUED)
4172 iov_iter_revert(from, write_len - iov_iter_count(from));
4173 return written;
4174 }
4175 EXPORT_SYMBOL(generic_file_direct_write);
4176
generic_perform_write(struct kiocb * iocb,struct iov_iter * i)4177 ssize_t generic_perform_write(struct kiocb *iocb, struct iov_iter *i)
4178 {
4179 struct file *file = iocb->ki_filp;
4180 loff_t pos = iocb->ki_pos;
4181 struct address_space *mapping = file->f_mapping;
4182 const struct address_space_operations *a_ops = mapping->a_ops;
4183 size_t chunk = mapping_max_folio_size(mapping);
4184 long status = 0;
4185 ssize_t written = 0;
4186
4187 do {
4188 struct folio *folio;
4189 size_t offset; /* Offset into folio */
4190 size_t bytes; /* Bytes to write to folio */
4191 size_t copied; /* Bytes copied from user */
4192 void *fsdata = NULL;
4193
4194 bytes = iov_iter_count(i);
4195 retry:
4196 offset = pos & (chunk - 1);
4197 bytes = min(chunk - offset, bytes);
4198 balance_dirty_pages_ratelimited(mapping);
4199
4200 /*
4201 * Bring in the user page that we will copy from _first_.
4202 * Otherwise there's a nasty deadlock on copying from the
4203 * same page as we're writing to, without it being marked
4204 * up-to-date.
4205 */
4206 if (unlikely(fault_in_iov_iter_readable(i, bytes) == bytes)) {
4207 status = -EFAULT;
4208 break;
4209 }
4210
4211 if (fatal_signal_pending(current)) {
4212 status = -EINTR;
4213 break;
4214 }
4215
4216 status = a_ops->write_begin(file, mapping, pos, bytes,
4217 &folio, &fsdata);
4218 if (unlikely(status < 0))
4219 break;
4220
4221 offset = offset_in_folio(folio, pos);
4222 if (bytes > folio_size(folio) - offset)
4223 bytes = folio_size(folio) - offset;
4224
4225 if (mapping_writably_mapped(mapping))
4226 flush_dcache_folio(folio);
4227
4228 copied = copy_folio_from_iter_atomic(folio, offset, bytes, i);
4229 flush_dcache_folio(folio);
4230
4231 status = a_ops->write_end(file, mapping, pos, bytes, copied,
4232 folio, fsdata);
4233 if (unlikely(status != copied)) {
4234 iov_iter_revert(i, copied - max(status, 0L));
4235 if (unlikely(status < 0))
4236 break;
4237 }
4238 trace_android_vh_io_statistics(mapping, folio->index, 1, false, false);
4239 cond_resched();
4240
4241 if (unlikely(status == 0)) {
4242 /*
4243 * A short copy made ->write_end() reject the
4244 * thing entirely. Might be memory poisoning
4245 * halfway through, might be a race with munmap,
4246 * might be severe memory pressure.
4247 */
4248 if (chunk > PAGE_SIZE)
4249 chunk /= 2;
4250 if (copied) {
4251 bytes = copied;
4252 goto retry;
4253 }
4254 } else {
4255 pos += status;
4256 written += status;
4257 }
4258 } while (iov_iter_count(i));
4259
4260 if (!written)
4261 return status;
4262 iocb->ki_pos += written;
4263 return written;
4264 }
4265 EXPORT_SYMBOL(generic_perform_write);
4266
4267 /**
4268 * __generic_file_write_iter - write data to a file
4269 * @iocb: IO state structure (file, offset, etc.)
4270 * @from: iov_iter with data to write
4271 *
4272 * This function does all the work needed for actually writing data to a
4273 * file. It does all basic checks, removes SUID from the file, updates
4274 * modification times and calls proper subroutines depending on whether we
4275 * do direct IO or a standard buffered write.
4276 *
4277 * It expects i_rwsem to be grabbed unless we work on a block device or similar
4278 * object which does not need locking at all.
4279 *
4280 * This function does *not* take care of syncing data in case of O_SYNC write.
4281 * A caller has to handle it. This is mainly due to the fact that we want to
4282 * avoid syncing under i_rwsem.
4283 *
4284 * Return:
4285 * * number of bytes written, even for truncated writes
4286 * * negative error code if no data has been written at all
4287 */
__generic_file_write_iter(struct kiocb * iocb,struct iov_iter * from)4288 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
4289 {
4290 struct file *file = iocb->ki_filp;
4291 struct address_space *mapping = file->f_mapping;
4292 struct inode *inode = mapping->host;
4293 ssize_t ret;
4294
4295 ret = file_remove_privs(file);
4296 if (ret)
4297 return ret;
4298
4299 ret = file_update_time(file);
4300 if (ret)
4301 return ret;
4302
4303 if (iocb->ki_flags & IOCB_DIRECT) {
4304 ret = generic_file_direct_write(iocb, from);
4305 /*
4306 * If the write stopped short of completing, fall back to
4307 * buffered writes. Some filesystems do this for writes to
4308 * holes, for example. For DAX files, a buffered write will
4309 * not succeed (even if it did, DAX does not handle dirty
4310 * page-cache pages correctly).
4311 */
4312 if (ret < 0 || !iov_iter_count(from) || IS_DAX(inode))
4313 return ret;
4314 return direct_write_fallback(iocb, from, ret,
4315 generic_perform_write(iocb, from));
4316 }
4317
4318 return generic_perform_write(iocb, from);
4319 }
4320 EXPORT_SYMBOL(__generic_file_write_iter);
4321
4322 /**
4323 * generic_file_write_iter - write data to a file
4324 * @iocb: IO state structure
4325 * @from: iov_iter with data to write
4326 *
4327 * This is a wrapper around __generic_file_write_iter() to be used by most
4328 * filesystems. It takes care of syncing the file in case of O_SYNC file
4329 * and acquires i_rwsem as needed.
4330 * Return:
4331 * * negative error code if no data has been written at all of
4332 * vfs_fsync_range() failed for a synchronous write
4333 * * number of bytes written, even for truncated writes
4334 */
generic_file_write_iter(struct kiocb * iocb,struct iov_iter * from)4335 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
4336 {
4337 struct file *file = iocb->ki_filp;
4338 struct inode *inode = file->f_mapping->host;
4339 ssize_t ret;
4340
4341 inode_lock(inode);
4342 ret = generic_write_checks(iocb, from);
4343 if (ret > 0)
4344 ret = __generic_file_write_iter(iocb, from);
4345 inode_unlock(inode);
4346
4347 if (ret > 0)
4348 ret = generic_write_sync(iocb, ret);
4349 return ret;
4350 }
4351 EXPORT_SYMBOL(generic_file_write_iter);
4352
4353 /**
4354 * filemap_release_folio() - Release fs-specific metadata on a folio.
4355 * @folio: The folio which the kernel is trying to free.
4356 * @gfp: Memory allocation flags (and I/O mode).
4357 *
4358 * The address_space is trying to release any data attached to a folio
4359 * (presumably at folio->private).
4360 *
4361 * This will also be called if the private_2 flag is set on a page,
4362 * indicating that the folio has other metadata associated with it.
4363 *
4364 * The @gfp argument specifies whether I/O may be performed to release
4365 * this page (__GFP_IO), and whether the call may block
4366 * (__GFP_RECLAIM & __GFP_FS).
4367 *
4368 * Return: %true if the release was successful, otherwise %false.
4369 */
filemap_release_folio(struct folio * folio,gfp_t gfp)4370 bool filemap_release_folio(struct folio *folio, gfp_t gfp)
4371 {
4372 struct address_space * const mapping = folio->mapping;
4373
4374 BUG_ON(!folio_test_locked(folio));
4375 if (!folio_needs_release(folio))
4376 return true;
4377 if (folio_test_writeback(folio))
4378 return false;
4379
4380 if (mapping && mapping->a_ops->release_folio)
4381 return mapping->a_ops->release_folio(folio, gfp);
4382 return try_to_free_buffers(folio);
4383 }
4384 EXPORT_SYMBOL(filemap_release_folio);
4385
4386 /**
4387 * filemap_invalidate_inode - Invalidate/forcibly write back a range of an inode's pagecache
4388 * @inode: The inode to flush
4389 * @flush: Set to write back rather than simply invalidate.
4390 * @start: First byte to in range.
4391 * @end: Last byte in range (inclusive), or LLONG_MAX for everything from start
4392 * onwards.
4393 *
4394 * Invalidate all the folios on an inode that contribute to the specified
4395 * range, possibly writing them back first. Whilst the operation is
4396 * undertaken, the invalidate lock is held to prevent new folios from being
4397 * installed.
4398 */
filemap_invalidate_inode(struct inode * inode,bool flush,loff_t start,loff_t end)4399 int filemap_invalidate_inode(struct inode *inode, bool flush,
4400 loff_t start, loff_t end)
4401 {
4402 struct address_space *mapping = inode->i_mapping;
4403 pgoff_t first = start >> PAGE_SHIFT;
4404 pgoff_t last = end >> PAGE_SHIFT;
4405 pgoff_t nr = end == LLONG_MAX ? ULONG_MAX : last - first + 1;
4406
4407 if (!mapping || !mapping->nrpages || end < start)
4408 goto out;
4409
4410 /* Prevent new folios from being added to the inode. */
4411 filemap_invalidate_lock(mapping);
4412
4413 if (!mapping->nrpages)
4414 goto unlock;
4415
4416 unmap_mapping_pages(mapping, first, nr, false);
4417
4418 /* Write back the data if we're asked to. */
4419 if (flush) {
4420 struct writeback_control wbc = {
4421 .sync_mode = WB_SYNC_ALL,
4422 .nr_to_write = LONG_MAX,
4423 .range_start = start,
4424 .range_end = end,
4425 };
4426
4427 filemap_fdatawrite_wbc(mapping, &wbc);
4428 }
4429
4430 /* Wait for writeback to complete on all folios and discard. */
4431 invalidate_inode_pages2_range(mapping, start / PAGE_SIZE, end / PAGE_SIZE);
4432
4433 unlock:
4434 filemap_invalidate_unlock(mapping);
4435 out:
4436 return filemap_check_errors(mapping);
4437 }
4438 EXPORT_SYMBOL_GPL(filemap_invalidate_inode);
4439
4440 #ifdef CONFIG_CACHESTAT_SYSCALL
4441 /**
4442 * filemap_cachestat() - compute the page cache statistics of a mapping
4443 * @mapping: The mapping to compute the statistics for.
4444 * @first_index: The starting page cache index.
4445 * @last_index: The final page index (inclusive).
4446 * @cs: the cachestat struct to write the result to.
4447 *
4448 * This will query the page cache statistics of a mapping in the
4449 * page range of [first_index, last_index] (inclusive). The statistics
4450 * queried include: number of dirty pages, number of pages marked for
4451 * writeback, and the number of (recently) evicted pages.
4452 */
filemap_cachestat(struct address_space * mapping,pgoff_t first_index,pgoff_t last_index,struct cachestat * cs)4453 static void filemap_cachestat(struct address_space *mapping,
4454 pgoff_t first_index, pgoff_t last_index, struct cachestat *cs)
4455 {
4456 XA_STATE(xas, &mapping->i_pages, first_index);
4457 struct folio *folio;
4458
4459 /* Flush stats (and potentially sleep) outside the RCU read section. */
4460 mem_cgroup_flush_stats_ratelimited(NULL);
4461
4462 rcu_read_lock();
4463 xas_for_each(&xas, folio, last_index) {
4464 int order;
4465 unsigned long nr_pages;
4466 pgoff_t folio_first_index, folio_last_index;
4467
4468 /*
4469 * Don't deref the folio. It is not pinned, and might
4470 * get freed (and reused) underneath us.
4471 *
4472 * We *could* pin it, but that would be expensive for
4473 * what should be a fast and lightweight syscall.
4474 *
4475 * Instead, derive all information of interest from
4476 * the rcu-protected xarray.
4477 */
4478
4479 if (xas_retry(&xas, folio))
4480 continue;
4481
4482 order = xas_get_order(&xas);
4483 nr_pages = 1 << order;
4484 folio_first_index = round_down(xas.xa_index, 1 << order);
4485 folio_last_index = folio_first_index + nr_pages - 1;
4486
4487 /* Folios might straddle the range boundaries, only count covered pages */
4488 if (folio_first_index < first_index)
4489 nr_pages -= first_index - folio_first_index;
4490
4491 if (folio_last_index > last_index)
4492 nr_pages -= folio_last_index - last_index;
4493
4494 if (xa_is_value(folio)) {
4495 /* page is evicted */
4496 void *shadow = (void *)folio;
4497 bool workingset; /* not used */
4498
4499 cs->nr_evicted += nr_pages;
4500
4501 #ifdef CONFIG_SWAP /* implies CONFIG_MMU */
4502 if (shmem_mapping(mapping)) {
4503 /* shmem file - in swap cache */
4504 swp_entry_t swp = radix_to_swp_entry(folio);
4505
4506 /* swapin error results in poisoned entry */
4507 if (non_swap_entry(swp))
4508 goto resched;
4509
4510 /*
4511 * Getting a swap entry from the shmem
4512 * inode means we beat
4513 * shmem_unuse(). rcu_read_lock()
4514 * ensures swapoff waits for us before
4515 * freeing the swapper space. However,
4516 * we can race with swapping and
4517 * invalidation, so there might not be
4518 * a shadow in the swapcache (yet).
4519 */
4520 shadow = get_shadow_from_swap_cache(swp);
4521 if (!shadow)
4522 goto resched;
4523 }
4524 #endif
4525 if (workingset_test_recent(shadow, true, &workingset, false))
4526 cs->nr_recently_evicted += nr_pages;
4527
4528 goto resched;
4529 }
4530
4531 /* page is in cache */
4532 cs->nr_cache += nr_pages;
4533
4534 if (xas_get_mark(&xas, PAGECACHE_TAG_DIRTY))
4535 cs->nr_dirty += nr_pages;
4536
4537 if (xas_get_mark(&xas, PAGECACHE_TAG_WRITEBACK))
4538 cs->nr_writeback += nr_pages;
4539
4540 resched:
4541 if (need_resched()) {
4542 xas_pause(&xas);
4543 cond_resched_rcu();
4544 }
4545 }
4546 rcu_read_unlock();
4547
4548 __adjust_cachestat_counters(cs);
4549 }
4550
4551 /*
4552 * See mincore: reveal pagecache information only for files
4553 * that the calling process has write access to, or could (if
4554 * tried) open for writing.
4555 */
can_do_cachestat(struct file * f)4556 static inline bool can_do_cachestat(struct file *f)
4557 {
4558 if (f->f_mode & FMODE_WRITE)
4559 return true;
4560 if (inode_owner_or_capable(file_mnt_idmap(f), file_inode(f)))
4561 return true;
4562 return file_permission(f, MAY_WRITE) == 0;
4563 }
4564
4565 /*
4566 * The cachestat(2) system call.
4567 *
4568 * cachestat() returns the page cache statistics of a file in the
4569 * bytes range specified by `off` and `len`: number of cached pages,
4570 * number of dirty pages, number of pages marked for writeback,
4571 * number of evicted pages, and number of recently evicted pages.
4572 *
4573 * An evicted page is a page that is previously in the page cache
4574 * but has been evicted since. A page is recently evicted if its last
4575 * eviction was recent enough that its reentry to the cache would
4576 * indicate that it is actively being used by the system, and that
4577 * there is memory pressure on the system.
4578 *
4579 * `off` and `len` must be non-negative integers. If `len` > 0,
4580 * the queried range is [`off`, `off` + `len`]. If `len` == 0,
4581 * we will query in the range from `off` to the end of the file.
4582 *
4583 * The `flags` argument is unused for now, but is included for future
4584 * extensibility. User should pass 0 (i.e no flag specified).
4585 *
4586 * Currently, hugetlbfs is not supported.
4587 *
4588 * Because the status of a page can change after cachestat() checks it
4589 * but before it returns to the application, the returned values may
4590 * contain stale information.
4591 *
4592 * return values:
4593 * zero - success
4594 * -EFAULT - cstat or cstat_range points to an illegal address
4595 * -EINVAL - invalid flags
4596 * -EBADF - invalid file descriptor
4597 * -EOPNOTSUPP - file descriptor is of a hugetlbfs file
4598 */
SYSCALL_DEFINE4(cachestat,unsigned int,fd,struct cachestat_range __user *,cstat_range,struct cachestat __user *,cstat,unsigned int,flags)4599 SYSCALL_DEFINE4(cachestat, unsigned int, fd,
4600 struct cachestat_range __user *, cstat_range,
4601 struct cachestat __user *, cstat, unsigned int, flags)
4602 {
4603 struct fd f = fdget(fd);
4604 struct address_space *mapping;
4605 struct cachestat_range csr;
4606 struct cachestat cs;
4607 pgoff_t first_index, last_index;
4608
4609 if (!fd_file(f))
4610 return -EBADF;
4611
4612 if (copy_from_user(&csr, cstat_range,
4613 sizeof(struct cachestat_range))) {
4614 fdput(f);
4615 return -EFAULT;
4616 }
4617
4618 /* hugetlbfs is not supported */
4619 if (is_file_hugepages(fd_file(f))) {
4620 fdput(f);
4621 return -EOPNOTSUPP;
4622 }
4623
4624 if (!can_do_cachestat(fd_file(f))) {
4625 fdput(f);
4626 return -EPERM;
4627 }
4628
4629 if (flags != 0) {
4630 fdput(f);
4631 return -EINVAL;
4632 }
4633
4634 first_index = csr.off >> PAGE_SHIFT;
4635 last_index =
4636 csr.len == 0 ? ULONG_MAX : (csr.off + csr.len - 1) >> PAGE_SHIFT;
4637 memset(&cs, 0, sizeof(struct cachestat));
4638 mapping = fd_file(f)->f_mapping;
4639 filemap_cachestat(mapping, first_index, last_index, &cs);
4640 fdput(f);
4641
4642 if (copy_to_user(cstat, &cs, sizeof(struct cachestat)))
4643 return -EFAULT;
4644
4645 return 0;
4646 }
4647 #endif /* CONFIG_CACHESTAT_SYSCALL */
4648