• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /* internal.h: mm/ internal definitions
3  *
4  * Copyright (C) 2004 Red Hat, Inc. All Rights Reserved.
5  * Written by David Howells (dhowells@redhat.com)
6  */
7 #ifndef __MM_INTERNAL_H
8 #define __MM_INTERNAL_H
9 
10 #include <linux/fs.h>
11 #include <linux/khugepaged.h>
12 #include <linux/mm.h>
13 #include <linux/mm_inline.h>
14 #include <linux/pagemap.h>
15 #include <linux/pagewalk.h>
16 #include <linux/rmap.h>
17 #include <linux/swap.h>
18 #include <linux/swapops.h>
19 #include <linux/swap_cgroup.h>
20 #include <linux/tracepoint-defs.h>
21 
22 /* Internal core VMA manipulation functions. */
23 #include "vma.h"
24 
25 struct folio_batch;
26 
27 /*
28  * The set of flags that only affect watermark checking and reclaim
29  * behaviour. This is used by the MM to obey the caller constraints
30  * about IO, FS and watermark checking while ignoring placement
31  * hints such as HIGHMEM usage.
32  */
33 #define GFP_RECLAIM_MASK (__GFP_RECLAIM|__GFP_HIGH|__GFP_IO|__GFP_FS|\
34 			__GFP_NOWARN|__GFP_RETRY_MAYFAIL|__GFP_NOFAIL|\
35 			__GFP_NORETRY|__GFP_MEMALLOC|__GFP_NOMEMALLOC|\
36 			__GFP_NOLOCKDEP)
37 
38 /* The GFP flags allowed during early boot */
39 #define GFP_BOOT_MASK (__GFP_BITS_MASK & ~(__GFP_RECLAIM|__GFP_IO|__GFP_FS))
40 
41 /* Control allocation cpuset and node placement constraints */
42 #define GFP_CONSTRAINT_MASK (__GFP_HARDWALL|__GFP_THISNODE)
43 
44 /* Do not use these with a slab allocator */
45 #define GFP_SLAB_BUG_MASK (__GFP_DMA32|__GFP_HIGHMEM|~__GFP_BITS_MASK)
46 
47 /*
48  * Different from WARN_ON_ONCE(), no warning will be issued
49  * when we specify __GFP_NOWARN.
50  */
51 #define WARN_ON_ONCE_GFP(cond, gfp)	({				\
52 	static bool __section(".data..once") __warned;			\
53 	int __ret_warn_once = !!(cond);					\
54 									\
55 	if (unlikely(!(gfp & __GFP_NOWARN) && __ret_warn_once && !__warned)) { \
56 		__warned = true;					\
57 		WARN_ON(1);						\
58 	}								\
59 	unlikely(__ret_warn_once);					\
60 })
61 
62 void page_writeback_init(void);
63 
64 /*
65  * If a 16GB hugetlb folio were mapped by PTEs of all of its 4kB pages,
66  * its nr_pages_mapped would be 0x400000: choose the ENTIRELY_MAPPED bit
67  * above that range, instead of 2*(PMD_SIZE/PAGE_SIZE).  Hugetlb currently
68  * leaves nr_pages_mapped at 0, but avoid surprise if it participates later.
69  */
70 #define ENTIRELY_MAPPED		0x800000
71 #define FOLIO_PAGES_MAPPED	(ENTIRELY_MAPPED - 1)
72 
73 /*
74  * Flags passed to __show_mem() and show_free_areas() to suppress output in
75  * various contexts.
76  */
77 #define SHOW_MEM_FILTER_NODES		(0x0001u)	/* disallowed nodes */
78 
79 /*
80  * How many individual pages have an elevated _mapcount.  Excludes
81  * the folio's entire_mapcount.
82  *
83  * Don't use this function outside of debugging code.
84  */
folio_nr_pages_mapped(const struct folio * folio)85 static inline int folio_nr_pages_mapped(const struct folio *folio)
86 {
87 	return atomic_read(&folio->_nr_pages_mapped) & FOLIO_PAGES_MAPPED;
88 }
89 
90 /*
91  * Retrieve the first entry of a folio based on a provided entry within the
92  * folio. We cannot rely on folio->swap as there is no guarantee that it has
93  * been initialized. Used for calling arch_swap_restore()
94  */
folio_swap(swp_entry_t entry,const struct folio * folio)95 static inline swp_entry_t folio_swap(swp_entry_t entry,
96 		const struct folio *folio)
97 {
98 	swp_entry_t swap = {
99 		.val = ALIGN_DOWN(entry.val, folio_nr_pages(folio)),
100 	};
101 
102 	return swap;
103 }
104 
folio_raw_mapping(const struct folio * folio)105 static inline void *folio_raw_mapping(const struct folio *folio)
106 {
107 	unsigned long mapping = (unsigned long)folio->mapping;
108 
109 	return (void *)(mapping & ~PAGE_MAPPING_FLAGS);
110 }
111 
112 /*
113  * This is a file-backed mapping, and is about to be memory mapped - invoke its
114  * mmap hook and safely handle error conditions. On error, VMA hooks will be
115  * mutated.
116  *
117  * @file: File which backs the mapping.
118  * @vma:  VMA which we are mapping.
119  *
120  * Returns: 0 if success, error otherwise.
121  */
mmap_file(struct file * file,struct vm_area_struct * vma)122 static inline int mmap_file(struct file *file, struct vm_area_struct *vma)
123 {
124 	int err = call_mmap(file, vma);
125 
126 	if (likely(!err))
127 		return 0;
128 
129 	/*
130 	 * OK, we tried to call the file hook for mmap(), but an error
131 	 * arose. The mapping is in an inconsistent state and we most not invoke
132 	 * any further hooks on it.
133 	 */
134 	vma->vm_ops = &vma_dummy_vm_ops;
135 
136 	return err;
137 }
138 
139 /*
140  * If the VMA has a close hook then close it, and since closing it might leave
141  * it in an inconsistent state which makes the use of any hooks suspect, clear
142  * them down by installing dummy empty hooks.
143  */
vma_close(struct vm_area_struct * vma)144 static inline void vma_close(struct vm_area_struct *vma)
145 {
146 	if (vma->vm_ops && vma->vm_ops->close) {
147 		vma->vm_ops->close(vma);
148 
149 		/*
150 		 * The mapping is in an inconsistent state, and no further hooks
151 		 * may be invoked upon it.
152 		 */
153 		vma->vm_ops = &vma_dummy_vm_ops;
154 	}
155 }
156 
157 #ifdef CONFIG_MMU
158 
159 /* Flags for folio_pte_batch(). */
160 typedef int __bitwise fpb_t;
161 
162 /* Compare PTEs after pte_mkclean(), ignoring the dirty bit. */
163 #define FPB_IGNORE_DIRTY		((__force fpb_t)BIT(0))
164 
165 /* Compare PTEs after pte_clear_soft_dirty(), ignoring the soft-dirty bit. */
166 #define FPB_IGNORE_SOFT_DIRTY		((__force fpb_t)BIT(1))
167 
__pte_batch_clear_ignored(pte_t pte,fpb_t flags)168 static inline pte_t __pte_batch_clear_ignored(pte_t pte, fpb_t flags)
169 {
170 	if (flags & FPB_IGNORE_DIRTY)
171 		pte = pte_mkclean(pte);
172 	if (likely(flags & FPB_IGNORE_SOFT_DIRTY))
173 		pte = pte_clear_soft_dirty(pte);
174 	return pte_wrprotect(pte_mkold(pte));
175 }
176 
177 /**
178  * folio_pte_batch - detect a PTE batch for a large folio
179  * @folio: The large folio to detect a PTE batch for.
180  * @addr: The user virtual address the first page is mapped at.
181  * @start_ptep: Page table pointer for the first entry.
182  * @pte: Page table entry for the first page.
183  * @max_nr: The maximum number of table entries to consider.
184  * @flags: Flags to modify the PTE batch semantics.
185  * @any_writable: Optional pointer to indicate whether any entry except the
186  *		  first one is writable.
187  * @any_young: Optional pointer to indicate whether any entry except the
188  *		  first one is young.
189  * @any_dirty: Optional pointer to indicate whether any entry except the
190  *		  first one is dirty.
191  *
192  * Detect a PTE batch: consecutive (present) PTEs that map consecutive
193  * pages of the same large folio.
194  *
195  * All PTEs inside a PTE batch have the same PTE bits set, excluding the PFN,
196  * the accessed bit, writable bit, dirty bit (with FPB_IGNORE_DIRTY) and
197  * soft-dirty bit (with FPB_IGNORE_SOFT_DIRTY).
198  *
199  * start_ptep must map any page of the folio. max_nr must be at least one and
200  * must be limited by the caller so scanning cannot exceed a single page table.
201  *
202  * Return: the number of table entries in the batch.
203  */
folio_pte_batch(struct folio * folio,unsigned long addr,pte_t * start_ptep,pte_t pte,int max_nr,fpb_t flags,bool * any_writable,bool * any_young,bool * any_dirty)204 static inline int folio_pte_batch(struct folio *folio, unsigned long addr,
205 		pte_t *start_ptep, pte_t pte, int max_nr, fpb_t flags,
206 		bool *any_writable, bool *any_young, bool *any_dirty)
207 {
208 	pte_t expected_pte, *ptep;
209 	bool writable, young, dirty;
210 	int nr, cur_nr;
211 
212 	if (any_writable)
213 		*any_writable = false;
214 	if (any_young)
215 		*any_young = false;
216 	if (any_dirty)
217 		*any_dirty = false;
218 
219 	VM_WARN_ON_FOLIO(!pte_present(pte), folio);
220 	VM_WARN_ON_FOLIO(!folio_test_large(folio) || max_nr < 1, folio);
221 	VM_WARN_ON_FOLIO(page_folio(pfn_to_page(pte_pfn(pte))) != folio, folio);
222 
223 	/* Limit max_nr to the actual remaining PFNs in the folio we could batch. */
224 	max_nr = min_t(unsigned long, max_nr,
225 		       folio_pfn(folio) + folio_nr_pages(folio) - pte_pfn(pte));
226 
227 	nr = pte_batch_hint(start_ptep, pte);
228 	expected_pte = __pte_batch_clear_ignored(pte_advance_pfn(pte, nr), flags);
229 	ptep = start_ptep + nr;
230 
231 	while (nr < max_nr) {
232 		pte = ptep_get(ptep);
233 		if (any_writable)
234 			writable = !!pte_write(pte);
235 		if (any_young)
236 			young = !!pte_young(pte);
237 		if (any_dirty)
238 			dirty = !!pte_dirty(pte);
239 		pte = __pte_batch_clear_ignored(pte, flags);
240 
241 		if (!pte_same(pte, expected_pte))
242 			break;
243 
244 		if (any_writable)
245 			*any_writable |= writable;
246 		if (any_young)
247 			*any_young |= young;
248 		if (any_dirty)
249 			*any_dirty |= dirty;
250 
251 		cur_nr = pte_batch_hint(ptep, pte);
252 		expected_pte = pte_advance_pfn(expected_pte, cur_nr);
253 		ptep += cur_nr;
254 		nr += cur_nr;
255 	}
256 
257 	return min(nr, max_nr);
258 }
259 
260 /**
261  * pte_move_swp_offset - Move the swap entry offset field of a swap pte
262  *	 forward or backward by delta
263  * @pte: The initial pte state; is_swap_pte(pte) must be true and
264  *	 non_swap_entry() must be false.
265  * @delta: The direction and the offset we are moving; forward if delta
266  *	 is positive; backward if delta is negative
267  *
268  * Moves the swap offset, while maintaining all other fields, including
269  * swap type, and any swp pte bits. The resulting pte is returned.
270  */
pte_move_swp_offset(pte_t pte,long delta)271 static inline pte_t pte_move_swp_offset(pte_t pte, long delta)
272 {
273 	swp_entry_t entry = pte_to_swp_entry(pte);
274 	pte_t new = __swp_entry_to_pte(__swp_entry(swp_type(entry),
275 						   (swp_offset(entry) + delta)));
276 
277 	if (pte_swp_soft_dirty(pte))
278 		new = pte_swp_mksoft_dirty(new);
279 	if (pte_swp_exclusive(pte))
280 		new = pte_swp_mkexclusive(new);
281 	if (pte_swp_uffd_wp(pte))
282 		new = pte_swp_mkuffd_wp(new);
283 
284 	return new;
285 }
286 
287 
288 /**
289  * pte_next_swp_offset - Increment the swap entry offset field of a swap pte.
290  * @pte: The initial pte state; is_swap_pte(pte) must be true and
291  *	 non_swap_entry() must be false.
292  *
293  * Increments the swap offset, while maintaining all other fields, including
294  * swap type, and any swp pte bits. The resulting pte is returned.
295  */
pte_next_swp_offset(pte_t pte)296 static inline pte_t pte_next_swp_offset(pte_t pte)
297 {
298 	return pte_move_swp_offset(pte, 1);
299 }
300 
301 /**
302  * swap_pte_batch - detect a PTE batch for a set of contiguous swap entries
303  * @start_ptep: Page table pointer for the first entry.
304  * @max_nr: The maximum number of table entries to consider.
305  * @pte: Page table entry for the first entry.
306  *
307  * Detect a batch of contiguous swap entries: consecutive (non-present) PTEs
308  * containing swap entries all with consecutive offsets and targeting the same
309  * swap type, all with matching swp pte bits.
310  *
311  * max_nr must be at least one and must be limited by the caller so scanning
312  * cannot exceed a single page table.
313  *
314  * Return: the number of table entries in the batch.
315  */
swap_pte_batch(pte_t * start_ptep,int max_nr,pte_t pte)316 static inline int swap_pte_batch(pte_t *start_ptep, int max_nr, pte_t pte)
317 {
318 	pte_t expected_pte = pte_next_swp_offset(pte);
319 	const pte_t *end_ptep = start_ptep + max_nr;
320 	swp_entry_t entry = pte_to_swp_entry(pte);
321 	pte_t *ptep = start_ptep + 1;
322 	unsigned short cgroup_id;
323 
324 	VM_WARN_ON(max_nr < 1);
325 	VM_WARN_ON(!is_swap_pte(pte));
326 	VM_WARN_ON(non_swap_entry(entry));
327 
328 	cgroup_id = lookup_swap_cgroup_id(entry);
329 	while (ptep < end_ptep) {
330 		pte = ptep_get(ptep);
331 
332 		if (!pte_same(pte, expected_pte))
333 			break;
334 		if (lookup_swap_cgroup_id(pte_to_swp_entry(pte)) != cgroup_id)
335 			break;
336 		expected_pte = pte_next_swp_offset(expected_pte);
337 		ptep++;
338 	}
339 
340 	return ptep - start_ptep;
341 }
342 #endif /* CONFIG_MMU */
343 
344 void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio,
345 						int nr_throttled);
acct_reclaim_writeback(struct folio * folio)346 static inline void acct_reclaim_writeback(struct folio *folio)
347 {
348 	pg_data_t *pgdat = folio_pgdat(folio);
349 	int nr_throttled = atomic_read(&pgdat->nr_writeback_throttled);
350 
351 	if (nr_throttled)
352 		__acct_reclaim_writeback(pgdat, folio, nr_throttled);
353 }
354 
wake_throttle_isolated(pg_data_t * pgdat)355 static inline void wake_throttle_isolated(pg_data_t *pgdat)
356 {
357 	wait_queue_head_t *wqh;
358 
359 	wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_ISOLATED];
360 	if (waitqueue_active(wqh))
361 		wake_up(wqh);
362 }
363 
364 vm_fault_t __vmf_anon_prepare(struct vm_fault *vmf);
vmf_anon_prepare(struct vm_fault * vmf)365 static inline vm_fault_t vmf_anon_prepare(struct vm_fault *vmf)
366 {
367 	vm_fault_t ret = __vmf_anon_prepare(vmf);
368 
369 	if (unlikely(ret & VM_FAULT_RETRY))
370 		vma_end_read(vmf->vma);
371 	return ret;
372 }
373 
374 vm_fault_t do_swap_page(struct vm_fault *vmf);
375 void folio_rotate_reclaimable(struct folio *folio);
376 bool __folio_end_writeback(struct folio *folio);
377 void deactivate_file_folio(struct folio *folio);
378 void folio_activate(struct folio *folio);
379 
380 void free_pgtables(struct mmu_gather *tlb, struct ma_state *mas,
381 		   struct vm_area_struct *start_vma, unsigned long floor,
382 		   unsigned long ceiling, bool mm_wr_locked);
383 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte);
384 
385 struct zap_details;
386 void unmap_page_range(struct mmu_gather *tlb,
387 			     struct vm_area_struct *vma,
388 			     unsigned long addr, unsigned long end,
389 			     struct zap_details *details);
390 int folio_unmap_invalidate(struct address_space *mapping, struct folio *folio,
391 			   gfp_t gfp);
392 
393 void page_cache_ra_order(struct readahead_control *, struct file_ra_state *,
394 		unsigned int order);
395 void force_page_cache_ra(struct readahead_control *, unsigned long nr);
force_page_cache_readahead(struct address_space * mapping,struct file * file,pgoff_t index,unsigned long nr_to_read)396 static inline void force_page_cache_readahead(struct address_space *mapping,
397 		struct file *file, pgoff_t index, unsigned long nr_to_read)
398 {
399 	DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, index);
400 	force_page_cache_ra(&ractl, nr_to_read);
401 }
402 
403 unsigned find_lock_entries(struct address_space *mapping, pgoff_t *start,
404 		pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices);
405 unsigned find_get_entries(struct address_space *mapping, pgoff_t *start,
406 		pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices);
407 void filemap_free_folio(struct address_space *mapping, struct folio *folio);
408 int truncate_inode_folio(struct address_space *mapping, struct folio *folio);
409 bool truncate_inode_partial_folio(struct folio *folio, loff_t start,
410 		loff_t end);
411 long mapping_evict_folio(struct address_space *mapping, struct folio *folio);
412 unsigned long mapping_try_invalidate(struct address_space *mapping,
413 		pgoff_t start, pgoff_t end, unsigned long *nr_failed);
414 
415 /**
416  * folio_evictable - Test whether a folio is evictable.
417  * @folio: The folio to test.
418  *
419  * Test whether @folio is evictable -- i.e., should be placed on
420  * active/inactive lists vs unevictable list.
421  *
422  * Reasons folio might not be evictable:
423  * 1. folio's mapping marked unevictable
424  * 2. One of the pages in the folio is part of an mlocked VMA
425  */
folio_evictable(struct folio * folio)426 static inline bool folio_evictable(struct folio *folio)
427 {
428 	bool ret;
429 
430 	/* Prevent address_space of inode and swap cache from being freed */
431 	rcu_read_lock();
432 	ret = !mapping_unevictable(folio_mapping(folio)) &&
433 			!folio_test_mlocked(folio);
434 	rcu_read_unlock();
435 	return ret;
436 }
437 
438 /*
439  * Turn a non-refcounted page (->_refcount == 0) into refcounted with
440  * a count of one.
441  */
set_page_refcounted(struct page * page)442 static inline void set_page_refcounted(struct page *page)
443 {
444 	VM_BUG_ON_PAGE(PageTail(page), page);
445 	VM_BUG_ON_PAGE(page_ref_count(page), page);
446 	set_page_count(page, 1);
447 }
448 
449 /*
450  * Return true if a folio needs ->release_folio() calling upon it.
451  */
folio_needs_release(struct folio * folio)452 static inline bool folio_needs_release(struct folio *folio)
453 {
454 	struct address_space *mapping = folio_mapping(folio);
455 
456 	return folio_has_private(folio) ||
457 		(mapping && mapping_release_always(mapping));
458 }
459 
460 extern unsigned long highest_memmap_pfn;
461 
462 /*
463  * Maximum number of reclaim retries without progress before the OOM
464  * killer is consider the only way forward.
465  */
466 #define MAX_RECLAIM_RETRIES 16
467 
468 /*
469  * in mm/vmscan.c:
470  */
471 bool folio_isolate_lru(struct folio *folio);
472 void folio_putback_lru(struct folio *folio);
473 extern void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason);
474 
475 /*
476  * in mm/rmap.c:
477  */
478 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address);
479 
480 /*
481  * in mm/page_alloc.c
482  */
483 #define K(x) ((x) << (PAGE_SHIFT-10))
484 
485 extern char * const zone_names[MAX_NR_ZONES];
486 
487 /* perform sanity checks on struct pages being allocated or freed */
488 DECLARE_STATIC_KEY_MAYBE(CONFIG_DEBUG_VM, check_pages_enabled);
489 
490 extern int min_free_kbytes;
491 
492 void setup_per_zone_wmarks(void);
493 void calculate_min_free_kbytes(void);
494 int __meminit init_per_zone_wmark_min(void);
495 void page_alloc_sysctl_init(void);
496 
497 /*
498  * Structure for holding the mostly immutable allocation parameters passed
499  * between functions involved in allocations, including the alloc_pages*
500  * family of functions.
501  *
502  * nodemask, migratetype and highest_zoneidx are initialized only once in
503  * __alloc_pages() and then never change.
504  *
505  * zonelist, preferred_zone and highest_zoneidx are set first in
506  * __alloc_pages() for the fast path, and might be later changed
507  * in __alloc_pages_slowpath(). All other functions pass the whole structure
508  * by a const pointer.
509  */
510 struct alloc_context {
511 	struct zonelist *zonelist;
512 	nodemask_t *nodemask;
513 	struct zoneref *preferred_zoneref;
514 	int migratetype;
515 
516 	/*
517 	 * highest_zoneidx represents highest usable zone index of
518 	 * the allocation request. Due to the nature of the zone,
519 	 * memory on lower zone than the highest_zoneidx will be
520 	 * protected by lowmem_reserve[highest_zoneidx].
521 	 *
522 	 * highest_zoneidx is also used by reclaim/compaction to limit
523 	 * the target zone since higher zone than this index cannot be
524 	 * usable for this allocation request.
525 	 */
526 	enum zone_type highest_zoneidx;
527 	bool spread_dirty_pages;
528 };
529 
530 /*
531  * This function returns the order of a free page in the buddy system. In
532  * general, page_zone(page)->lock must be held by the caller to prevent the
533  * page from being allocated in parallel and returning garbage as the order.
534  * If a caller does not hold page_zone(page)->lock, it must guarantee that the
535  * page cannot be allocated or merged in parallel. Alternatively, it must
536  * handle invalid values gracefully, and use buddy_order_unsafe() below.
537  */
buddy_order(struct page * page)538 static inline unsigned int buddy_order(struct page *page)
539 {
540 	/* PageBuddy() must be checked by the caller */
541 	return page_private(page);
542 }
543 
544 /*
545  * Like buddy_order(), but for callers who cannot afford to hold the zone lock.
546  * PageBuddy() should be checked first by the caller to minimize race window,
547  * and invalid values must be handled gracefully.
548  *
549  * READ_ONCE is used so that if the caller assigns the result into a local
550  * variable and e.g. tests it for valid range before using, the compiler cannot
551  * decide to remove the variable and inline the page_private(page) multiple
552  * times, potentially observing different values in the tests and the actual
553  * use of the result.
554  */
555 #define buddy_order_unsafe(page)	READ_ONCE(page_private(page))
556 
557 /*
558  * This function checks whether a page is free && is the buddy
559  * we can coalesce a page and its buddy if
560  * (a) the buddy is not in a hole (check before calling!) &&
561  * (b) the buddy is in the buddy system &&
562  * (c) a page and its buddy have the same order &&
563  * (d) a page and its buddy are in the same zone.
564  *
565  * For recording whether a page is in the buddy system, we set PageBuddy.
566  * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
567  *
568  * For recording page's order, we use page_private(page).
569  */
page_is_buddy(struct page * page,struct page * buddy,unsigned int order)570 static inline bool page_is_buddy(struct page *page, struct page *buddy,
571 				 unsigned int order)
572 {
573 	if (!page_is_guard(buddy) && !PageBuddy(buddy))
574 		return false;
575 
576 	if (buddy_order(buddy) != order)
577 		return false;
578 
579 	/*
580 	 * zone check is done late to avoid uselessly calculating
581 	 * zone/node ids for pages that could never merge.
582 	 */
583 	if (page_zone_id(page) != page_zone_id(buddy))
584 		return false;
585 
586 	VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
587 
588 	return true;
589 }
590 
591 /*
592  * Locate the struct page for both the matching buddy in our
593  * pair (buddy1) and the combined O(n+1) page they form (page).
594  *
595  * 1) Any buddy B1 will have an order O twin B2 which satisfies
596  * the following equation:
597  *     B2 = B1 ^ (1 << O)
598  * For example, if the starting buddy (buddy2) is #8 its order
599  * 1 buddy is #10:
600  *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
601  *
602  * 2) Any buddy B will have an order O+1 parent P which
603  * satisfies the following equation:
604  *     P = B & ~(1 << O)
605  *
606  * Assumption: *_mem_map is contiguous at least up to MAX_PAGE_ORDER
607  */
608 static inline unsigned long
__find_buddy_pfn(unsigned long page_pfn,unsigned int order)609 __find_buddy_pfn(unsigned long page_pfn, unsigned int order)
610 {
611 	return page_pfn ^ (1 << order);
612 }
613 
614 /*
615  * Find the buddy of @page and validate it.
616  * @page: The input page
617  * @pfn: The pfn of the page, it saves a call to page_to_pfn() when the
618  *       function is used in the performance-critical __free_one_page().
619  * @order: The order of the page
620  * @buddy_pfn: The output pointer to the buddy pfn, it also saves a call to
621  *             page_to_pfn().
622  *
623  * The found buddy can be a non PageBuddy, out of @page's zone, or its order is
624  * not the same as @page. The validation is necessary before use it.
625  *
626  * Return: the found buddy page or NULL if not found.
627  */
find_buddy_page_pfn(struct page * page,unsigned long pfn,unsigned int order,unsigned long * buddy_pfn)628 static inline struct page *find_buddy_page_pfn(struct page *page,
629 			unsigned long pfn, unsigned int order, unsigned long *buddy_pfn)
630 {
631 	unsigned long __buddy_pfn = __find_buddy_pfn(pfn, order);
632 	struct page *buddy;
633 
634 	buddy = page + (__buddy_pfn - pfn);
635 	if (buddy_pfn)
636 		*buddy_pfn = __buddy_pfn;
637 
638 	if (page_is_buddy(page, buddy, order))
639 		return buddy;
640 	return NULL;
641 }
642 
643 extern struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
644 				unsigned long end_pfn, struct zone *zone);
645 
pageblock_pfn_to_page(unsigned long start_pfn,unsigned long end_pfn,struct zone * zone)646 static inline struct page *pageblock_pfn_to_page(unsigned long start_pfn,
647 				unsigned long end_pfn, struct zone *zone)
648 {
649 	if (zone->contiguous)
650 		return pfn_to_page(start_pfn);
651 
652 	return __pageblock_pfn_to_page(start_pfn, end_pfn, zone);
653 }
654 
655 void set_zone_contiguous(struct zone *zone);
656 
clear_zone_contiguous(struct zone * zone)657 static inline void clear_zone_contiguous(struct zone *zone)
658 {
659 	zone->contiguous = false;
660 }
661 
662 extern int __isolate_free_page(struct page *page, unsigned int order);
663 extern void __putback_isolated_page(struct page *page, unsigned int order,
664 				    int mt);
665 extern void memblock_free_pages(struct page *page, unsigned long pfn,
666 					unsigned int order);
667 extern void __free_pages_core(struct page *page, unsigned int order,
668 		enum meminit_context context);
669 
670 /*
671  * This will have no effect, other than possibly generating a warning, if the
672  * caller passes in a non-large folio.
673  */
folio_set_order(struct folio * folio,unsigned int order)674 static inline void folio_set_order(struct folio *folio, unsigned int order)
675 {
676 	if (WARN_ON_ONCE(!order || !folio_test_large(folio)))
677 		return;
678 
679 	folio->_flags_1 = (folio->_flags_1 & ~0xffUL) | order;
680 #ifdef CONFIG_64BIT
681 	folio->_folio_nr_pages = 1U << order;
682 #endif
683 }
684 
685 bool __folio_unqueue_deferred_split(struct folio *folio);
folio_unqueue_deferred_split(struct folio * folio)686 static inline bool folio_unqueue_deferred_split(struct folio *folio)
687 {
688 	if (folio_order(folio) <= 1 || !folio_test_large_rmappable(folio))
689 		return false;
690 
691 	/*
692 	 * At this point, there is no one trying to add the folio to
693 	 * deferred_list. If folio is not in deferred_list, it's safe
694 	 * to check without acquiring the split_queue_lock.
695 	 */
696 	if (data_race(list_empty(&folio->_deferred_list)))
697 		return false;
698 
699 	return __folio_unqueue_deferred_split(folio);
700 }
701 
page_rmappable_folio(struct page * page)702 static inline struct folio *page_rmappable_folio(struct page *page)
703 {
704 	struct folio *folio = (struct folio *)page;
705 
706 	if (folio && folio_test_large(folio))
707 		folio_set_large_rmappable(folio);
708 	return folio;
709 }
710 
prep_compound_head(struct page * page,unsigned int order)711 static inline void prep_compound_head(struct page *page, unsigned int order)
712 {
713 	struct folio *folio = (struct folio *)page;
714 
715 	folio_set_order(folio, order);
716 	atomic_set(&folio->_large_mapcount, -1);
717 	atomic_set(&folio->_entire_mapcount, -1);
718 	atomic_set(&folio->_nr_pages_mapped, 0);
719 	atomic_set(&folio->_pincount, 0);
720 	if (order > 1)
721 		INIT_LIST_HEAD(&folio->_deferred_list);
722 }
723 
prep_compound_tail(struct page * head,int tail_idx)724 static inline void prep_compound_tail(struct page *head, int tail_idx)
725 {
726 	struct page *p = head + tail_idx;
727 
728 	p->mapping = TAIL_MAPPING;
729 	set_compound_head(p, head);
730 	set_page_private(p, 0);
731 }
732 
733 extern void prep_compound_page(struct page *page, unsigned int order);
734 
735 extern void post_alloc_hook(struct page *page, unsigned int order,
736 					gfp_t gfp_flags);
737 extern bool free_pages_prepare(struct page *page, unsigned int order);
738 
739 extern int user_min_free_kbytes;
740 
741 void free_unref_page(struct page *page, unsigned int order);
742 void free_unref_folios(struct folio_batch *fbatch);
743 
744 extern void zone_pcp_reset(struct zone *zone);
745 extern void zone_pcp_disable(struct zone *zone);
746 extern void zone_pcp_enable(struct zone *zone);
747 extern void zone_pcp_init(struct zone *zone);
748 
749 extern void *memmap_alloc(phys_addr_t size, phys_addr_t align,
750 			  phys_addr_t min_addr,
751 			  int nid, bool exact_nid);
752 
753 void memmap_init_range(unsigned long, int, unsigned long, unsigned long,
754 		unsigned long, enum meminit_context, struct vmem_altmap *, int);
755 
756 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
757 
758 /*
759  * in mm/compaction.c
760  */
761 /*
762  * compact_control is used to track pages being migrated and the free pages
763  * they are being migrated to during memory compaction. The free_pfn starts
764  * at the end of a zone and migrate_pfn begins at the start. Movable pages
765  * are moved to the end of a zone during a compaction run and the run
766  * completes when free_pfn <= migrate_pfn
767  */
768 struct compact_control {
769 	struct list_head freepages[NR_PAGE_ORDERS];	/* List of free pages to migrate to */
770 	struct list_head migratepages;	/* List of pages being migrated */
771 	unsigned int nr_freepages;	/* Number of isolated free pages */
772 	unsigned int nr_migratepages;	/* Number of pages to migrate */
773 	unsigned long free_pfn;		/* isolate_freepages search base */
774 	/*
775 	 * Acts as an in/out parameter to page isolation for migration.
776 	 * isolate_migratepages uses it as a search base.
777 	 * isolate_migratepages_block will update the value to the next pfn
778 	 * after the last isolated one.
779 	 */
780 	unsigned long migrate_pfn;
781 	unsigned long fast_start_pfn;	/* a pfn to start linear scan from */
782 	struct zone *zone;
783 	unsigned long total_migrate_scanned;
784 	unsigned long total_free_scanned;
785 	unsigned short fast_search_fail;/* failures to use free list searches */
786 	short search_order;		/* order to start a fast search at */
787 	const gfp_t gfp_mask;		/* gfp mask of a direct compactor */
788 	int order;			/* order a direct compactor needs */
789 	int migratetype;		/* migratetype of direct compactor */
790 	const unsigned int alloc_flags;	/* alloc flags of a direct compactor */
791 	const int highest_zoneidx;	/* zone index of a direct compactor */
792 	enum migrate_mode mode;		/* Async or sync migration mode */
793 	bool ignore_skip_hint;		/* Scan blocks even if marked skip */
794 	bool no_set_skip_hint;		/* Don't mark blocks for skipping */
795 	bool ignore_block_suitable;	/* Scan blocks considered unsuitable */
796 	bool direct_compaction;		/* False from kcompactd or /proc/... */
797 	bool proactive_compaction;	/* kcompactd proactive compaction */
798 	bool whole_zone;		/* Whole zone should/has been scanned */
799 	bool contended;			/* Signal lock contention */
800 	bool finish_pageblock;		/* Scan the remainder of a pageblock. Used
801 					 * when there are potentially transient
802 					 * isolation or migration failures to
803 					 * ensure forward progress.
804 					 */
805 	bool alloc_contig;		/* alloc_contig_range allocation */
806 };
807 
808 /*
809  * Used in direct compaction when a page should be taken from the freelists
810  * immediately when one is created during the free path.
811  */
812 struct capture_control {
813 	struct compact_control *cc;
814 	struct page *page;
815 };
816 
817 unsigned long
818 isolate_freepages_range(struct compact_control *cc,
819 			unsigned long start_pfn, unsigned long end_pfn);
820 int
821 isolate_migratepages_range(struct compact_control *cc,
822 			   unsigned long low_pfn, unsigned long end_pfn);
823 
824 int __alloc_contig_migrate_range(struct compact_control *cc,
825 					unsigned long start, unsigned long end,
826 					int migratetype);
827 
828 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
829 void init_cma_reserved_pageblock(struct page *page);
830 
831 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
832 
833 int find_suitable_fallback(struct free_area *area, unsigned int order,
834 			   int migratetype, bool claimable);
835 
free_area_empty(struct free_area * area,int migratetype)836 static inline bool free_area_empty(struct free_area *area, int migratetype)
837 {
838 	return list_empty(&area->free_list[migratetype]);
839 }
840 
841 /* mm/util.c */
842 struct anon_vma *folio_anon_vma(struct folio *folio);
843 
844 #ifdef CONFIG_MMU
845 void unmap_mapping_folio(struct folio *folio);
846 extern long populate_vma_page_range(struct vm_area_struct *vma,
847 		unsigned long start, unsigned long end, int *locked);
848 extern long faultin_page_range(struct mm_struct *mm, unsigned long start,
849 		unsigned long end, bool write, int *locked);
850 extern bool mlock_future_ok(struct mm_struct *mm, unsigned long flags,
851 			       unsigned long bytes);
852 
853 /*
854  * NOTE: This function can't tell whether the folio is "fully mapped" in the
855  * range.
856  * "fully mapped" means all the pages of folio is associated with the page
857  * table of range while this function just check whether the folio range is
858  * within the range [start, end). Function caller needs to do page table
859  * check if it cares about the page table association.
860  *
861  * Typical usage (like mlock or madvise) is:
862  * Caller knows at least 1 page of folio is associated with page table of VMA
863  * and the range [start, end) is intersect with the VMA range. Caller wants
864  * to know whether the folio is fully associated with the range. It calls
865  * this function to check whether the folio is in the range first. Then checks
866  * the page table to know whether the folio is fully mapped to the range.
867  */
868 static inline bool
folio_within_range(struct folio * folio,struct vm_area_struct * vma,unsigned long start,unsigned long end)869 folio_within_range(struct folio *folio, struct vm_area_struct *vma,
870 		unsigned long start, unsigned long end)
871 {
872 	pgoff_t pgoff, addr;
873 	unsigned long vma_pglen = vma_pages(vma);
874 
875 	VM_WARN_ON_FOLIO(folio_test_ksm(folio), folio);
876 	if (start > end)
877 		return false;
878 
879 	if (start < vma->vm_start)
880 		start = vma->vm_start;
881 
882 	if (end > vma->vm_end)
883 		end = vma->vm_end;
884 
885 	pgoff = folio_pgoff(folio);
886 
887 	/* if folio start address is not in vma range */
888 	if (!in_range(pgoff, vma->vm_pgoff, vma_pglen))
889 		return false;
890 
891 	addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
892 
893 	return !(addr < start || end - addr < folio_size(folio));
894 }
895 
896 static inline bool
folio_within_vma(struct folio * folio,struct vm_area_struct * vma)897 folio_within_vma(struct folio *folio, struct vm_area_struct *vma)
898 {
899 	return folio_within_range(folio, vma, vma->vm_start, vma->vm_end);
900 }
901 
902 /*
903  * mlock_vma_folio() and munlock_vma_folio():
904  * should be called with vma's mmap_lock held for read or write,
905  * under page table lock for the pte/pmd being added or removed.
906  *
907  * mlock is usually called at the end of folio_add_*_rmap_*(), munlock at
908  * the end of folio_remove_rmap_*(); but new anon folios are managed by
909  * folio_add_lru_vma() calling mlock_new_folio().
910  */
911 void mlock_folio(struct folio *folio);
mlock_vma_folio(struct folio * folio,struct vm_area_struct * vma)912 static inline void mlock_vma_folio(struct folio *folio,
913 				struct vm_area_struct *vma)
914 {
915 	/*
916 	 * The VM_SPECIAL check here serves two purposes.
917 	 * 1) VM_IO check prevents migration from double-counting during mlock.
918 	 * 2) Although mmap_region() and mlock_fixup() take care that VM_LOCKED
919 	 *    is never left set on a VM_SPECIAL vma, there is an interval while
920 	 *    file->f_op->mmap() is using vm_insert_page(s), when VM_LOCKED may
921 	 *    still be set while VM_SPECIAL bits are added: so ignore it then.
922 	 */
923 	if (unlikely((vma->vm_flags & (VM_LOCKED|VM_SPECIAL)) == VM_LOCKED))
924 		mlock_folio(folio);
925 }
926 
927 void munlock_folio(struct folio *folio);
munlock_vma_folio(struct folio * folio,struct vm_area_struct * vma)928 static inline void munlock_vma_folio(struct folio *folio,
929 					struct vm_area_struct *vma)
930 {
931 	/*
932 	 * munlock if the function is called. Ideally, we should only
933 	 * do munlock if any page of folio is unmapped from VMA and
934 	 * cause folio not fully mapped to VMA.
935 	 *
936 	 * But it's not easy to confirm that's the situation. So we
937 	 * always munlock the folio and page reclaim will correct it
938 	 * if it's wrong.
939 	 */
940 	if (unlikely(vma->vm_flags & VM_LOCKED))
941 		munlock_folio(folio);
942 }
943 
944 void mlock_new_folio(struct folio *folio);
945 bool need_mlock_drain(int cpu);
946 void mlock_drain_local(void);
947 void mlock_drain_remote(int cpu);
948 
949 extern pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma);
950 
951 /**
952  * vma_address - Find the virtual address a page range is mapped at
953  * @vma: The vma which maps this object.
954  * @pgoff: The page offset within its object.
955  * @nr_pages: The number of pages to consider.
956  *
957  * If any page in this range is mapped by this VMA, return the first address
958  * where any of these pages appear.  Otherwise, return -EFAULT.
959  */
vma_address(struct vm_area_struct * vma,pgoff_t pgoff,unsigned long nr_pages)960 static inline unsigned long vma_address(struct vm_area_struct *vma,
961 		pgoff_t pgoff, unsigned long nr_pages)
962 {
963 	unsigned long address;
964 
965 	if (pgoff >= vma->vm_pgoff) {
966 		address = vma->vm_start +
967 			((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
968 		/* Check for address beyond vma (or wrapped through 0?) */
969 		if (address < vma->vm_start || address >= vma->vm_end)
970 			address = -EFAULT;
971 	} else if (pgoff + nr_pages - 1 >= vma->vm_pgoff) {
972 		/* Test above avoids possibility of wrap to 0 on 32-bit */
973 		address = vma->vm_start;
974 	} else {
975 		address = -EFAULT;
976 	}
977 	return address;
978 }
979 
980 /*
981  * Then at what user virtual address will none of the range be found in vma?
982  * Assumes that vma_address() already returned a good starting address.
983  */
vma_address_end(struct page_vma_mapped_walk * pvmw)984 static inline unsigned long vma_address_end(struct page_vma_mapped_walk *pvmw)
985 {
986 	struct vm_area_struct *vma = pvmw->vma;
987 	pgoff_t pgoff;
988 	unsigned long address;
989 
990 	/* Common case, plus ->pgoff is invalid for KSM */
991 	if (pvmw->nr_pages == 1)
992 		return pvmw->address + PAGE_SIZE;
993 
994 	pgoff = pvmw->pgoff + pvmw->nr_pages;
995 	address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
996 	/* Check for address beyond vma (or wrapped through 0?) */
997 	if (address < vma->vm_start || address > vma->vm_end)
998 		address = vma->vm_end;
999 	return address;
1000 }
1001 
maybe_unlock_mmap_for_io(struct vm_fault * vmf,struct file * fpin)1002 static inline struct file *maybe_unlock_mmap_for_io(struct vm_fault *vmf,
1003 						    struct file *fpin)
1004 {
1005 	int flags = vmf->flags;
1006 
1007 	if (fpin)
1008 		return fpin;
1009 
1010 	/*
1011 	 * FAULT_FLAG_RETRY_NOWAIT means we don't want to wait on page locks or
1012 	 * anything, so we only pin the file and drop the mmap_lock if only
1013 	 * FAULT_FLAG_ALLOW_RETRY is set, while this is the first attempt.
1014 	 */
1015 	if (fault_flag_allow_retry_first(flags) &&
1016 	    !(flags & FAULT_FLAG_RETRY_NOWAIT)) {
1017 		fpin = get_file(vmf->vma->vm_file);
1018 		release_fault_lock(vmf);
1019 	}
1020 	return fpin;
1021 }
1022 #else /* !CONFIG_MMU */
unmap_mapping_folio(struct folio * folio)1023 static inline void unmap_mapping_folio(struct folio *folio) { }
mlock_new_folio(struct folio * folio)1024 static inline void mlock_new_folio(struct folio *folio) { }
need_mlock_drain(int cpu)1025 static inline bool need_mlock_drain(int cpu) { return false; }
mlock_drain_local(void)1026 static inline void mlock_drain_local(void) { }
mlock_drain_remote(int cpu)1027 static inline void mlock_drain_remote(int cpu) { }
vunmap_range_noflush(unsigned long start,unsigned long end)1028 static inline void vunmap_range_noflush(unsigned long start, unsigned long end)
1029 {
1030 }
1031 #endif /* !CONFIG_MMU */
1032 
1033 /* Memory initialisation debug and verification */
1034 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1035 DECLARE_STATIC_KEY_TRUE(deferred_pages);
1036 
1037 bool __init deferred_grow_zone(struct zone *zone, unsigned int order);
1038 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1039 
1040 enum mminit_level {
1041 	MMINIT_WARNING,
1042 	MMINIT_VERIFY,
1043 	MMINIT_TRACE
1044 };
1045 
1046 #ifdef CONFIG_DEBUG_MEMORY_INIT
1047 
1048 extern int mminit_loglevel;
1049 
1050 #define mminit_dprintk(level, prefix, fmt, arg...) \
1051 do { \
1052 	if (level < mminit_loglevel) { \
1053 		if (level <= MMINIT_WARNING) \
1054 			pr_warn("mminit::" prefix " " fmt, ##arg);	\
1055 		else \
1056 			printk(KERN_DEBUG "mminit::" prefix " " fmt, ##arg); \
1057 	} \
1058 } while (0)
1059 
1060 extern void mminit_verify_pageflags_layout(void);
1061 extern void mminit_verify_zonelist(void);
1062 #else
1063 
mminit_dprintk(enum mminit_level level,const char * prefix,const char * fmt,...)1064 static inline void mminit_dprintk(enum mminit_level level,
1065 				const char *prefix, const char *fmt, ...)
1066 {
1067 }
1068 
mminit_verify_pageflags_layout(void)1069 static inline void mminit_verify_pageflags_layout(void)
1070 {
1071 }
1072 
mminit_verify_zonelist(void)1073 static inline void mminit_verify_zonelist(void)
1074 {
1075 }
1076 #endif /* CONFIG_DEBUG_MEMORY_INIT */
1077 
1078 #define NODE_RECLAIM_NOSCAN	-2
1079 #define NODE_RECLAIM_FULL	-1
1080 #define NODE_RECLAIM_SOME	0
1081 #define NODE_RECLAIM_SUCCESS	1
1082 
1083 #ifdef CONFIG_NUMA
1084 extern int node_reclaim(struct pglist_data *, gfp_t, unsigned int);
1085 extern int find_next_best_node(int node, nodemask_t *used_node_mask);
1086 #else
node_reclaim(struct pglist_data * pgdat,gfp_t mask,unsigned int order)1087 static inline int node_reclaim(struct pglist_data *pgdat, gfp_t mask,
1088 				unsigned int order)
1089 {
1090 	return NODE_RECLAIM_NOSCAN;
1091 }
find_next_best_node(int node,nodemask_t * used_node_mask)1092 static inline int find_next_best_node(int node, nodemask_t *used_node_mask)
1093 {
1094 	return NUMA_NO_NODE;
1095 }
1096 #endif
1097 
1098 /*
1099  * mm/memory-failure.c
1100  */
1101 #ifdef CONFIG_MEMORY_FAILURE
1102 int unmap_poisoned_folio(struct folio *folio, unsigned long pfn, bool must_kill);
1103 void shake_folio(struct folio *folio);
1104 extern int hwpoison_filter(struct page *p);
1105 
1106 extern u32 hwpoison_filter_dev_major;
1107 extern u32 hwpoison_filter_dev_minor;
1108 extern u64 hwpoison_filter_flags_mask;
1109 extern u64 hwpoison_filter_flags_value;
1110 extern u64 hwpoison_filter_memcg;
1111 extern u32 hwpoison_filter_enable;
1112 #define MAGIC_HWPOISON	0x48575053U	/* HWPS */
1113 void SetPageHWPoisonTakenOff(struct page *page);
1114 void ClearPageHWPoisonTakenOff(struct page *page);
1115 bool take_page_off_buddy(struct page *page);
1116 bool put_page_back_buddy(struct page *page);
1117 struct task_struct *task_early_kill(struct task_struct *tsk, int force_early);
1118 void add_to_kill_ksm(struct task_struct *tsk, struct page *p,
1119 		     struct vm_area_struct *vma, struct list_head *to_kill,
1120 		     unsigned long ksm_addr);
1121 unsigned long page_mapped_in_vma(struct page *page, struct vm_area_struct *vma);
1122 
1123 #else
unmap_poisoned_folio(struct folio * folio,unsigned long pfn,bool must_kill)1124 static inline int unmap_poisoned_folio(struct folio *folio, unsigned long pfn, bool must_kill)
1125 {
1126 	return -EBUSY;
1127 }
1128 #endif
1129 
1130 extern unsigned long  __must_check vm_mmap_pgoff(struct file *, unsigned long,
1131         unsigned long, unsigned long,
1132         unsigned long, unsigned long);
1133 
1134 extern void set_pageblock_order(void);
1135 struct folio *alloc_migrate_folio(struct folio *src, unsigned long private);
1136 unsigned long reclaim_pages(struct list_head *folio_list);
1137 unsigned int reclaim_clean_pages_from_list(struct zone *zone,
1138 					    struct list_head *folio_list);
1139 /* The ALLOC_WMARK bits are used as an index to zone->watermark */
1140 #define ALLOC_WMARK_MIN		WMARK_MIN
1141 #define ALLOC_WMARK_LOW		WMARK_LOW
1142 #define ALLOC_WMARK_HIGH	WMARK_HIGH
1143 #define ALLOC_NO_WATERMARKS	0x04 /* don't check watermarks at all */
1144 
1145 /* Mask to get the watermark bits */
1146 #define ALLOC_WMARK_MASK	(ALLOC_NO_WATERMARKS-1)
1147 
1148 /*
1149  * Only MMU archs have async oom victim reclaim - aka oom_reaper so we
1150  * cannot assume a reduced access to memory reserves is sufficient for
1151  * !MMU
1152  */
1153 #ifdef CONFIG_MMU
1154 #define ALLOC_OOM		0x08
1155 #else
1156 #define ALLOC_OOM		ALLOC_NO_WATERMARKS
1157 #endif
1158 
1159 #define ALLOC_NON_BLOCK		 0x10 /* Caller cannot block. Allow access
1160 				       * to 25% of the min watermark or
1161 				       * 62.5% if __GFP_HIGH is set.
1162 				       */
1163 #define ALLOC_MIN_RESERVE	 0x20 /* __GFP_HIGH set. Allow access to 50%
1164 				       * of the min watermark.
1165 				       */
1166 #define ALLOC_CPUSET		 0x40 /* check for correct cpuset */
1167 #define ALLOC_CMA		 0x80 /* allow allocations from CMA areas */
1168 #ifdef CONFIG_ZONE_DMA32
1169 #define ALLOC_NOFRAGMENT	0x100 /* avoid mixing pageblock types */
1170 #else
1171 #define ALLOC_NOFRAGMENT	  0x0
1172 #endif
1173 #define ALLOC_HIGHATOMIC	0x200 /* Allows access to MIGRATE_HIGHATOMIC */
1174 #define ALLOC_KSWAPD		0x800 /* allow waking of kswapd, __GFP_KSWAPD_RECLAIM set */
1175 
1176 /* Flags that allow allocations below the min watermark. */
1177 #define ALLOC_RESERVES (ALLOC_NON_BLOCK|ALLOC_MIN_RESERVE|ALLOC_HIGHATOMIC|ALLOC_OOM)
1178 
1179 enum ttu_flags;
1180 struct tlbflush_unmap_batch;
1181 
1182 
1183 /*
1184  * only for MM internal work items which do not depend on
1185  * any allocations or locks which might depend on allocations
1186  */
1187 extern struct workqueue_struct *mm_percpu_wq;
1188 
1189 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
1190 void try_to_unmap_flush(void);
1191 void try_to_unmap_flush_dirty(void);
1192 void flush_tlb_batched_pending(struct mm_struct *mm);
1193 #else
try_to_unmap_flush(void)1194 static inline void try_to_unmap_flush(void)
1195 {
1196 }
try_to_unmap_flush_dirty(void)1197 static inline void try_to_unmap_flush_dirty(void)
1198 {
1199 }
flush_tlb_batched_pending(struct mm_struct * mm)1200 static inline void flush_tlb_batched_pending(struct mm_struct *mm)
1201 {
1202 }
1203 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
1204 
1205 extern const struct trace_print_flags pageflag_names[];
1206 extern const struct trace_print_flags vmaflag_names[];
1207 extern const struct trace_print_flags gfpflag_names[];
1208 
is_migrate_highatomic(enum migratetype migratetype)1209 static inline bool is_migrate_highatomic(enum migratetype migratetype)
1210 {
1211 	return migratetype == MIGRATE_HIGHATOMIC;
1212 }
1213 
1214 void setup_zone_pageset(struct zone *zone);
1215 
1216 struct migration_target_control {
1217 	int nid;		/* preferred node id */
1218 	nodemask_t *nmask;
1219 	gfp_t gfp_mask;
1220 	enum migrate_reason reason;
1221 };
1222 
1223 /*
1224  * mm/filemap.c
1225  */
1226 size_t splice_folio_into_pipe(struct pipe_inode_info *pipe,
1227 			      struct folio *folio, loff_t fpos, size_t size);
1228 
1229 /*
1230  * mm/vmalloc.c
1231  */
1232 #ifdef CONFIG_MMU
1233 void __init vmalloc_init(void);
1234 int __must_check vmap_pages_range_noflush(unsigned long addr, unsigned long end,
1235                 pgprot_t prot, struct page **pages, unsigned int page_shift);
1236 #else
vmalloc_init(void)1237 static inline void vmalloc_init(void)
1238 {
1239 }
1240 
1241 static inline
vmap_pages_range_noflush(unsigned long addr,unsigned long end,pgprot_t prot,struct page ** pages,unsigned int page_shift)1242 int __must_check vmap_pages_range_noflush(unsigned long addr, unsigned long end,
1243                 pgprot_t prot, struct page **pages, unsigned int page_shift)
1244 {
1245 	return -EINVAL;
1246 }
1247 #endif
1248 
1249 int __must_check __vmap_pages_range_noflush(unsigned long addr,
1250 			       unsigned long end, pgprot_t prot,
1251 			       struct page **pages, unsigned int page_shift);
1252 
1253 void vunmap_range_noflush(unsigned long start, unsigned long end);
1254 
1255 void __vunmap_range_noflush(unsigned long start, unsigned long end);
1256 
1257 int numa_migrate_check(struct folio *folio, struct vm_fault *vmf,
1258 		      unsigned long addr, int *flags, bool writable,
1259 		      int *last_cpupid);
1260 
1261 void free_zone_device_folio(struct folio *folio);
1262 int migrate_device_coherent_folio(struct folio *folio);
1263 
1264 struct vm_struct *__get_vm_area_node(unsigned long size,
1265 				     unsigned long align, unsigned long shift,
1266 				     unsigned long flags, unsigned long start,
1267 				     unsigned long end, int node, gfp_t gfp_mask,
1268 				     const void *caller);
1269 
1270 /*
1271  * mm/gup.c
1272  */
1273 int __must_check try_grab_folio(struct folio *folio, int refs,
1274 				unsigned int flags);
1275 
1276 /*
1277  * mm/huge_memory.c
1278  */
1279 void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1280 	       pud_t *pud, bool write);
1281 void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
1282 	       pmd_t *pmd, bool write);
1283 
1284 enum {
1285 	/* mark page accessed */
1286 	FOLL_TOUCH = 1 << 16,
1287 	/* a retry, previous pass started an IO */
1288 	FOLL_TRIED = 1 << 17,
1289 	/* we are working on non-current tsk/mm */
1290 	FOLL_REMOTE = 1 << 18,
1291 	/* pages must be released via unpin_user_page */
1292 	FOLL_PIN = 1 << 19,
1293 	/* gup_fast: prevent fall-back to slow gup */
1294 	FOLL_FAST_ONLY = 1 << 20,
1295 	/* allow unlocking the mmap lock */
1296 	FOLL_UNLOCKABLE = 1 << 21,
1297 	/* VMA lookup+checks compatible with MADV_POPULATE_(READ|WRITE) */
1298 	FOLL_MADV_POPULATE = 1 << 22,
1299 };
1300 
1301 #define INTERNAL_GUP_FLAGS (FOLL_TOUCH | FOLL_TRIED | FOLL_REMOTE | FOLL_PIN | \
1302 			    FOLL_FAST_ONLY | FOLL_UNLOCKABLE | \
1303 			    FOLL_MADV_POPULATE)
1304 
1305 /*
1306  * Indicates for which pages that are write-protected in the page table,
1307  * whether GUP has to trigger unsharing via FAULT_FLAG_UNSHARE such that the
1308  * GUP pin will remain consistent with the pages mapped into the page tables
1309  * of the MM.
1310  *
1311  * Temporary unmapping of PageAnonExclusive() pages or clearing of
1312  * PageAnonExclusive() has to protect against concurrent GUP:
1313  * * Ordinary GUP: Using the PT lock
1314  * * GUP-fast and fork(): mm->write_protect_seq
1315  * * GUP-fast and KSM or temporary unmapping (swap, migration): see
1316  *    folio_try_share_anon_rmap_*()
1317  *
1318  * Must be called with the (sub)page that's actually referenced via the
1319  * page table entry, which might not necessarily be the head page for a
1320  * PTE-mapped THP.
1321  *
1322  * If the vma is NULL, we're coming from the GUP-fast path and might have
1323  * to fallback to the slow path just to lookup the vma.
1324  */
gup_must_unshare(struct vm_area_struct * vma,unsigned int flags,struct page * page)1325 static inline bool gup_must_unshare(struct vm_area_struct *vma,
1326 				    unsigned int flags, struct page *page)
1327 {
1328 	/*
1329 	 * FOLL_WRITE is implicitly handled correctly as the page table entry
1330 	 * has to be writable -- and if it references (part of) an anonymous
1331 	 * folio, that part is required to be marked exclusive.
1332 	 */
1333 	if ((flags & (FOLL_WRITE | FOLL_PIN)) != FOLL_PIN)
1334 		return false;
1335 	/*
1336 	 * Note: PageAnon(page) is stable until the page is actually getting
1337 	 * freed.
1338 	 */
1339 	if (!PageAnon(page)) {
1340 		/*
1341 		 * We only care about R/O long-term pining: R/O short-term
1342 		 * pinning does not have the semantics to observe successive
1343 		 * changes through the process page tables.
1344 		 */
1345 		if (!(flags & FOLL_LONGTERM))
1346 			return false;
1347 
1348 		/* We really need the vma ... */
1349 		if (!vma)
1350 			return true;
1351 
1352 		/*
1353 		 * ... because we only care about writable private ("COW")
1354 		 * mappings where we have to break COW early.
1355 		 */
1356 		return is_cow_mapping(vma->vm_flags);
1357 	}
1358 
1359 	/* Paired with a memory barrier in folio_try_share_anon_rmap_*(). */
1360 	if (IS_ENABLED(CONFIG_HAVE_GUP_FAST))
1361 		smp_rmb();
1362 
1363 	/*
1364 	 * Note that PageKsm() pages cannot be exclusive, and consequently,
1365 	 * cannot get pinned.
1366 	 */
1367 	return !PageAnonExclusive(page);
1368 }
1369 
1370 extern bool mirrored_kernelcore;
1371 extern bool memblock_has_mirror(void);
1372 
vma_set_range(struct vm_area_struct * vma,unsigned long start,unsigned long end,pgoff_t pgoff)1373 static __always_inline void vma_set_range(struct vm_area_struct *vma,
1374 					  unsigned long start, unsigned long end,
1375 					  pgoff_t pgoff)
1376 {
1377 	vma->vm_start = start;
1378 	vma->vm_end = end;
1379 	vma->vm_pgoff = pgoff;
1380 }
1381 
vma_soft_dirty_enabled(struct vm_area_struct * vma)1382 static inline bool vma_soft_dirty_enabled(struct vm_area_struct *vma)
1383 {
1384 	/*
1385 	 * NOTE: we must check this before VM_SOFTDIRTY on soft-dirty
1386 	 * enablements, because when without soft-dirty being compiled in,
1387 	 * VM_SOFTDIRTY is defined as 0x0, then !(vm_flags & VM_SOFTDIRTY)
1388 	 * will be constantly true.
1389 	 */
1390 	if (!IS_ENABLED(CONFIG_MEM_SOFT_DIRTY))
1391 		return false;
1392 
1393 	/*
1394 	 * Soft-dirty is kind of special: its tracking is enabled when the
1395 	 * vma flags not set.
1396 	 */
1397 	return !(vma->vm_flags & VM_SOFTDIRTY);
1398 }
1399 
pmd_needs_soft_dirty_wp(struct vm_area_struct * vma,pmd_t pmd)1400 static inline bool pmd_needs_soft_dirty_wp(struct vm_area_struct *vma, pmd_t pmd)
1401 {
1402 	return vma_soft_dirty_enabled(vma) && !pmd_soft_dirty(pmd);
1403 }
1404 
pte_needs_soft_dirty_wp(struct vm_area_struct * vma,pte_t pte)1405 static inline bool pte_needs_soft_dirty_wp(struct vm_area_struct *vma, pte_t pte)
1406 {
1407 	return vma_soft_dirty_enabled(vma) && !pte_soft_dirty(pte);
1408 }
1409 
1410 void __meminit __init_single_page(struct page *page, unsigned long pfn,
1411 				unsigned long zone, int nid);
1412 
1413 /* shrinker related functions */
1414 unsigned long shrink_slab(gfp_t gfp_mask, int nid, struct mem_cgroup *memcg,
1415 			  int priority);
1416 
1417 #ifdef CONFIG_64BIT
can_do_mseal(unsigned long flags)1418 static inline int can_do_mseal(unsigned long flags)
1419 {
1420 	if (flags)
1421 		return -EINVAL;
1422 
1423 	return 0;
1424 }
1425 
1426 #else
can_do_mseal(unsigned long flags)1427 static inline int can_do_mseal(unsigned long flags)
1428 {
1429 	return -EPERM;
1430 }
1431 #endif
1432 
1433 #ifdef CONFIG_SHRINKER_DEBUG
shrinker_debugfs_name_alloc(struct shrinker * shrinker,const char * fmt,va_list ap)1434 static inline __printf(2, 0) int shrinker_debugfs_name_alloc(
1435 			struct shrinker *shrinker, const char *fmt, va_list ap)
1436 {
1437 	shrinker->name = kvasprintf_const(GFP_KERNEL, fmt, ap);
1438 
1439 	return shrinker->name ? 0 : -ENOMEM;
1440 }
1441 
shrinker_debugfs_name_free(struct shrinker * shrinker)1442 static inline void shrinker_debugfs_name_free(struct shrinker *shrinker)
1443 {
1444 	kfree_const(shrinker->name);
1445 	shrinker->name = NULL;
1446 }
1447 
1448 extern int shrinker_debugfs_add(struct shrinker *shrinker);
1449 extern struct dentry *shrinker_debugfs_detach(struct shrinker *shrinker,
1450 					      int *debugfs_id);
1451 extern void shrinker_debugfs_remove(struct dentry *debugfs_entry,
1452 				    int debugfs_id);
1453 #else /* CONFIG_SHRINKER_DEBUG */
shrinker_debugfs_add(struct shrinker * shrinker)1454 static inline int shrinker_debugfs_add(struct shrinker *shrinker)
1455 {
1456 	return 0;
1457 }
shrinker_debugfs_name_alloc(struct shrinker * shrinker,const char * fmt,va_list ap)1458 static inline int shrinker_debugfs_name_alloc(struct shrinker *shrinker,
1459 					      const char *fmt, va_list ap)
1460 {
1461 	return 0;
1462 }
shrinker_debugfs_name_free(struct shrinker * shrinker)1463 static inline void shrinker_debugfs_name_free(struct shrinker *shrinker)
1464 {
1465 }
shrinker_debugfs_detach(struct shrinker * shrinker,int * debugfs_id)1466 static inline struct dentry *shrinker_debugfs_detach(struct shrinker *shrinker,
1467 						     int *debugfs_id)
1468 {
1469 	*debugfs_id = -1;
1470 	return NULL;
1471 }
shrinker_debugfs_remove(struct dentry * debugfs_entry,int debugfs_id)1472 static inline void shrinker_debugfs_remove(struct dentry *debugfs_entry,
1473 					   int debugfs_id)
1474 {
1475 }
1476 #endif /* CONFIG_SHRINKER_DEBUG */
1477 
1478 /* Only track the nodes of mappings with shadow entries */
1479 void workingset_update_node(struct xa_node *node);
1480 extern struct list_lru shadow_nodes;
1481 
1482 /* mremap.c */
1483 unsigned long move_page_tables(struct vm_area_struct *vma,
1484 	unsigned long old_addr, struct vm_area_struct *new_vma,
1485 	unsigned long new_addr, unsigned long len,
1486 	bool need_rmap_locks, bool for_stack);
1487 
1488 #ifdef CONFIG_UNACCEPTED_MEMORY
1489 void accept_page(struct page *page);
1490 #else /* CONFIG_UNACCEPTED_MEMORY */
accept_page(struct page * page)1491 static inline void accept_page(struct page *page)
1492 {
1493 }
1494 #endif /* CONFIG_UNACCEPTED_MEMORY */
1495 
1496 /* pagewalk.c */
1497 int walk_page_range_mm(struct mm_struct *mm, unsigned long start,
1498 		unsigned long end, const struct mm_walk_ops *ops,
1499 		void *private);
1500 
1501 #endif	/* __MM_INTERNAL_H */
1502