1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 1993 Linus Torvalds
4 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
5 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
6 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
7 * Numa awareness, Christoph Lameter, SGI, June 2005
8 * Improving global KVA allocator, Uladzislau Rezki, Sony, May 2019
9 */
10
11 #include <linux/vmalloc.h>
12 #include <linux/mm.h>
13 #include <linux/module.h>
14 #include <linux/highmem.h>
15 #include <linux/sched/signal.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/interrupt.h>
19 #include <linux/proc_fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/set_memory.h>
22 #include <linux/debugobjects.h>
23 #include <linux/kallsyms.h>
24 #include <linux/list.h>
25 #include <linux/notifier.h>
26 #include <linux/rbtree.h>
27 #include <linux/xarray.h>
28 #include <linux/io.h>
29 #include <linux/rcupdate.h>
30 #include <linux/pfn.h>
31 #include <linux/kmemleak.h>
32 #include <linux/atomic.h>
33 #include <linux/compiler.h>
34 #include <linux/memcontrol.h>
35 #include <linux/llist.h>
36 #include <linux/uio.h>
37 #include <linux/bitops.h>
38 #include <linux/rbtree_augmented.h>
39 #include <linux/overflow.h>
40 #include <linux/pgtable.h>
41 #include <linux/hugetlb.h>
42 #include <linux/sched/mm.h>
43 #include <asm/tlbflush.h>
44 #include <asm/shmparam.h>
45 #include <linux/page_owner.h>
46
47 #define CREATE_TRACE_POINTS
48 #include <trace/events/vmalloc.h>
49
50 #undef CREATE_TRACE_POINTS
51 #include <trace/hooks/mm.h>
52
53 #include "internal.h"
54 #include "pgalloc-track.h"
55
56 #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
57 static unsigned int __ro_after_init ioremap_max_page_shift = BITS_PER_LONG - 1;
58
set_nohugeiomap(char * str)59 static int __init set_nohugeiomap(char *str)
60 {
61 ioremap_max_page_shift = PAGE_SHIFT;
62 return 0;
63 }
64 early_param("nohugeiomap", set_nohugeiomap);
65 #else /* CONFIG_HAVE_ARCH_HUGE_VMAP */
66 static const unsigned int ioremap_max_page_shift = PAGE_SHIFT;
67 #endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */
68
69 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
70 static bool __ro_after_init vmap_allow_huge = true;
71
set_nohugevmalloc(char * str)72 static int __init set_nohugevmalloc(char *str)
73 {
74 vmap_allow_huge = false;
75 return 0;
76 }
77 early_param("nohugevmalloc", set_nohugevmalloc);
78 #else /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */
79 static const bool vmap_allow_huge = false;
80 #endif /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */
81
is_vmalloc_addr(const void * x)82 bool is_vmalloc_addr(const void *x)
83 {
84 unsigned long addr = (unsigned long)kasan_reset_tag(x);
85
86 return addr >= VMALLOC_START && addr < VMALLOC_END;
87 }
88 EXPORT_SYMBOL(is_vmalloc_addr);
89
90 struct vfree_deferred {
91 struct llist_head list;
92 struct work_struct wq;
93 };
94 static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
95
96 /*** Page table manipulation functions ***/
vmap_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,phys_addr_t phys_addr,pgprot_t prot,unsigned int max_page_shift,pgtbl_mod_mask * mask)97 static int vmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
98 phys_addr_t phys_addr, pgprot_t prot,
99 unsigned int max_page_shift, pgtbl_mod_mask *mask)
100 {
101 pte_t *pte;
102 u64 pfn;
103 struct page *page;
104 unsigned long size = PAGE_SIZE;
105
106 pfn = phys_addr >> PAGE_SHIFT;
107 pte = pte_alloc_kernel_track(pmd, addr, mask);
108 if (!pte)
109 return -ENOMEM;
110 do {
111 if (unlikely(!pte_none(ptep_get(pte)))) {
112 if (pfn_valid(pfn)) {
113 page = pfn_to_page(pfn);
114 dump_page(page, "remapping already mapped page");
115 }
116 BUG();
117 }
118
119 #ifdef CONFIG_HUGETLB_PAGE
120 size = arch_vmap_pte_range_map_size(addr, end, pfn, max_page_shift);
121 if (size != PAGE_SIZE) {
122 pte_t entry = pfn_pte(pfn, prot);
123
124 entry = arch_make_huge_pte(entry, ilog2(size), 0);
125 set_huge_pte_at(&init_mm, addr, pte, entry, size);
126 pfn += PFN_DOWN(size);
127 continue;
128 }
129 #endif
130 set_pte_at(&init_mm, addr, pte, pfn_pte(pfn, prot));
131 pfn++;
132 } while (pte += PFN_DOWN(size), addr += size, addr != end);
133 *mask |= PGTBL_PTE_MODIFIED;
134 return 0;
135 }
136
vmap_try_huge_pmd(pmd_t * pmd,unsigned long addr,unsigned long end,phys_addr_t phys_addr,pgprot_t prot,unsigned int max_page_shift)137 static int vmap_try_huge_pmd(pmd_t *pmd, unsigned long addr, unsigned long end,
138 phys_addr_t phys_addr, pgprot_t prot,
139 unsigned int max_page_shift)
140 {
141 if (max_page_shift < PMD_SHIFT)
142 return 0;
143
144 if (!arch_vmap_pmd_supported(prot))
145 return 0;
146
147 if ((end - addr) != PMD_SIZE)
148 return 0;
149
150 if (!IS_ALIGNED(addr, PMD_SIZE))
151 return 0;
152
153 if (!IS_ALIGNED(phys_addr, PMD_SIZE))
154 return 0;
155
156 if (pmd_present(*pmd) && !pmd_free_pte_page(pmd, addr))
157 return 0;
158
159 return pmd_set_huge(pmd, phys_addr, prot);
160 }
161
vmap_pmd_range(pud_t * pud,unsigned long addr,unsigned long end,phys_addr_t phys_addr,pgprot_t prot,unsigned int max_page_shift,pgtbl_mod_mask * mask)162 static int vmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
163 phys_addr_t phys_addr, pgprot_t prot,
164 unsigned int max_page_shift, pgtbl_mod_mask *mask)
165 {
166 pmd_t *pmd;
167 unsigned long next;
168
169 pmd = pmd_alloc_track(&init_mm, pud, addr, mask);
170 if (!pmd)
171 return -ENOMEM;
172 do {
173 next = pmd_addr_end(addr, end);
174
175 if (vmap_try_huge_pmd(pmd, addr, next, phys_addr, prot,
176 max_page_shift)) {
177 *mask |= PGTBL_PMD_MODIFIED;
178 continue;
179 }
180
181 if (vmap_pte_range(pmd, addr, next, phys_addr, prot, max_page_shift, mask))
182 return -ENOMEM;
183 } while (pmd++, phys_addr += (next - addr), addr = next, addr != end);
184 return 0;
185 }
186
vmap_try_huge_pud(pud_t * pud,unsigned long addr,unsigned long end,phys_addr_t phys_addr,pgprot_t prot,unsigned int max_page_shift)187 static int vmap_try_huge_pud(pud_t *pud, unsigned long addr, unsigned long end,
188 phys_addr_t phys_addr, pgprot_t prot,
189 unsigned int max_page_shift)
190 {
191 if (max_page_shift < PUD_SHIFT)
192 return 0;
193
194 if (!arch_vmap_pud_supported(prot))
195 return 0;
196
197 if ((end - addr) != PUD_SIZE)
198 return 0;
199
200 if (!IS_ALIGNED(addr, PUD_SIZE))
201 return 0;
202
203 if (!IS_ALIGNED(phys_addr, PUD_SIZE))
204 return 0;
205
206 if (pud_present(*pud) && !pud_free_pmd_page(pud, addr))
207 return 0;
208
209 return pud_set_huge(pud, phys_addr, prot);
210 }
211
vmap_pud_range(p4d_t * p4d,unsigned long addr,unsigned long end,phys_addr_t phys_addr,pgprot_t prot,unsigned int max_page_shift,pgtbl_mod_mask * mask)212 static int vmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
213 phys_addr_t phys_addr, pgprot_t prot,
214 unsigned int max_page_shift, pgtbl_mod_mask *mask)
215 {
216 pud_t *pud;
217 unsigned long next;
218
219 pud = pud_alloc_track(&init_mm, p4d, addr, mask);
220 if (!pud)
221 return -ENOMEM;
222 do {
223 next = pud_addr_end(addr, end);
224
225 if (vmap_try_huge_pud(pud, addr, next, phys_addr, prot,
226 max_page_shift)) {
227 *mask |= PGTBL_PUD_MODIFIED;
228 continue;
229 }
230
231 if (vmap_pmd_range(pud, addr, next, phys_addr, prot,
232 max_page_shift, mask))
233 return -ENOMEM;
234 } while (pud++, phys_addr += (next - addr), addr = next, addr != end);
235 return 0;
236 }
237
vmap_try_huge_p4d(p4d_t * p4d,unsigned long addr,unsigned long end,phys_addr_t phys_addr,pgprot_t prot,unsigned int max_page_shift)238 static int vmap_try_huge_p4d(p4d_t *p4d, unsigned long addr, unsigned long end,
239 phys_addr_t phys_addr, pgprot_t prot,
240 unsigned int max_page_shift)
241 {
242 if (max_page_shift < P4D_SHIFT)
243 return 0;
244
245 if (!arch_vmap_p4d_supported(prot))
246 return 0;
247
248 if ((end - addr) != P4D_SIZE)
249 return 0;
250
251 if (!IS_ALIGNED(addr, P4D_SIZE))
252 return 0;
253
254 if (!IS_ALIGNED(phys_addr, P4D_SIZE))
255 return 0;
256
257 if (p4d_present(*p4d) && !p4d_free_pud_page(p4d, addr))
258 return 0;
259
260 return p4d_set_huge(p4d, phys_addr, prot);
261 }
262
vmap_p4d_range(pgd_t * pgd,unsigned long addr,unsigned long end,phys_addr_t phys_addr,pgprot_t prot,unsigned int max_page_shift,pgtbl_mod_mask * mask)263 static int vmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
264 phys_addr_t phys_addr, pgprot_t prot,
265 unsigned int max_page_shift, pgtbl_mod_mask *mask)
266 {
267 p4d_t *p4d;
268 unsigned long next;
269
270 p4d = p4d_alloc_track(&init_mm, pgd, addr, mask);
271 if (!p4d)
272 return -ENOMEM;
273 do {
274 next = p4d_addr_end(addr, end);
275
276 if (vmap_try_huge_p4d(p4d, addr, next, phys_addr, prot,
277 max_page_shift)) {
278 *mask |= PGTBL_P4D_MODIFIED;
279 continue;
280 }
281
282 if (vmap_pud_range(p4d, addr, next, phys_addr, prot,
283 max_page_shift, mask))
284 return -ENOMEM;
285 } while (p4d++, phys_addr += (next - addr), addr = next, addr != end);
286 return 0;
287 }
288
vmap_range_noflush(unsigned long addr,unsigned long end,phys_addr_t phys_addr,pgprot_t prot,unsigned int max_page_shift)289 static int vmap_range_noflush(unsigned long addr, unsigned long end,
290 phys_addr_t phys_addr, pgprot_t prot,
291 unsigned int max_page_shift)
292 {
293 pgd_t *pgd;
294 unsigned long start;
295 unsigned long next;
296 int err;
297 pgtbl_mod_mask mask = 0;
298
299 might_sleep();
300 BUG_ON(addr >= end);
301
302 start = addr;
303 pgd = pgd_offset_k(addr);
304 do {
305 next = pgd_addr_end(addr, end);
306 err = vmap_p4d_range(pgd, addr, next, phys_addr, prot,
307 max_page_shift, &mask);
308 if (err)
309 break;
310 } while (pgd++, phys_addr += (next - addr), addr = next, addr != end);
311
312 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
313 arch_sync_kernel_mappings(start, end);
314
315 return err;
316 }
317
vmap_page_range(unsigned long addr,unsigned long end,phys_addr_t phys_addr,pgprot_t prot)318 int vmap_page_range(unsigned long addr, unsigned long end,
319 phys_addr_t phys_addr, pgprot_t prot)
320 {
321 int err;
322
323 err = vmap_range_noflush(addr, end, phys_addr, pgprot_nx(prot),
324 ioremap_max_page_shift);
325 flush_cache_vmap(addr, end);
326 if (!err)
327 err = kmsan_ioremap_page_range(addr, end, phys_addr, prot,
328 ioremap_max_page_shift);
329 return err;
330 }
331
ioremap_page_range(unsigned long addr,unsigned long end,phys_addr_t phys_addr,pgprot_t prot)332 int ioremap_page_range(unsigned long addr, unsigned long end,
333 phys_addr_t phys_addr, pgprot_t prot)
334 {
335 struct vm_struct *area;
336
337 area = find_vm_area((void *)addr);
338 if (!area || !(area->flags & VM_IOREMAP)) {
339 WARN_ONCE(1, "vm_area at addr %lx is not marked as VM_IOREMAP\n", addr);
340 return -EINVAL;
341 }
342 if (addr != (unsigned long)area->addr ||
343 (void *)end != area->addr + get_vm_area_size(area)) {
344 WARN_ONCE(1, "ioremap request [%lx,%lx) doesn't match vm_area [%lx, %lx)\n",
345 addr, end, (long)area->addr,
346 (long)area->addr + get_vm_area_size(area));
347 return -ERANGE;
348 }
349 return vmap_page_range(addr, end, phys_addr, prot);
350 }
351
vunmap_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,pgtbl_mod_mask * mask)352 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
353 pgtbl_mod_mask *mask)
354 {
355 pte_t *pte;
356
357 pte = pte_offset_kernel(pmd, addr);
358 do {
359 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
360 WARN_ON(!pte_none(ptent) && !pte_present(ptent));
361 } while (pte++, addr += PAGE_SIZE, addr != end);
362 *mask |= PGTBL_PTE_MODIFIED;
363 }
364
vunmap_pmd_range(pud_t * pud,unsigned long addr,unsigned long end,pgtbl_mod_mask * mask)365 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
366 pgtbl_mod_mask *mask)
367 {
368 pmd_t *pmd;
369 unsigned long next;
370 int cleared;
371
372 pmd = pmd_offset(pud, addr);
373 do {
374 next = pmd_addr_end(addr, end);
375
376 cleared = pmd_clear_huge(pmd);
377 if (cleared || pmd_bad(*pmd))
378 *mask |= PGTBL_PMD_MODIFIED;
379
380 if (cleared)
381 continue;
382 if (pmd_none_or_clear_bad(pmd))
383 continue;
384 vunmap_pte_range(pmd, addr, next, mask);
385
386 cond_resched();
387 } while (pmd++, addr = next, addr != end);
388 }
389
vunmap_pud_range(p4d_t * p4d,unsigned long addr,unsigned long end,pgtbl_mod_mask * mask)390 static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
391 pgtbl_mod_mask *mask)
392 {
393 pud_t *pud;
394 unsigned long next;
395 int cleared;
396
397 pud = pud_offset(p4d, addr);
398 do {
399 next = pud_addr_end(addr, end);
400
401 cleared = pud_clear_huge(pud);
402 if (cleared || pud_bad(*pud))
403 *mask |= PGTBL_PUD_MODIFIED;
404
405 if (cleared)
406 continue;
407 if (pud_none_or_clear_bad(pud))
408 continue;
409 vunmap_pmd_range(pud, addr, next, mask);
410 } while (pud++, addr = next, addr != end);
411 }
412
vunmap_p4d_range(pgd_t * pgd,unsigned long addr,unsigned long end,pgtbl_mod_mask * mask)413 static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
414 pgtbl_mod_mask *mask)
415 {
416 p4d_t *p4d;
417 unsigned long next;
418
419 p4d = p4d_offset(pgd, addr);
420 do {
421 next = p4d_addr_end(addr, end);
422
423 p4d_clear_huge(p4d);
424 if (p4d_bad(*p4d))
425 *mask |= PGTBL_P4D_MODIFIED;
426
427 if (p4d_none_or_clear_bad(p4d))
428 continue;
429 vunmap_pud_range(p4d, addr, next, mask);
430 } while (p4d++, addr = next, addr != end);
431 }
432
433 /*
434 * vunmap_range_noflush is similar to vunmap_range, but does not
435 * flush caches or TLBs.
436 *
437 * The caller is responsible for calling flush_cache_vmap() before calling
438 * this function, and flush_tlb_kernel_range after it has returned
439 * successfully (and before the addresses are expected to cause a page fault
440 * or be re-mapped for something else, if TLB flushes are being delayed or
441 * coalesced).
442 *
443 * This is an internal function only. Do not use outside mm/.
444 */
__vunmap_range_noflush(unsigned long start,unsigned long end)445 void __vunmap_range_noflush(unsigned long start, unsigned long end)
446 {
447 unsigned long next;
448 pgd_t *pgd;
449 unsigned long addr = start;
450 pgtbl_mod_mask mask = 0;
451
452 BUG_ON(addr >= end);
453 pgd = pgd_offset_k(addr);
454 do {
455 next = pgd_addr_end(addr, end);
456 if (pgd_bad(*pgd))
457 mask |= PGTBL_PGD_MODIFIED;
458 if (pgd_none_or_clear_bad(pgd))
459 continue;
460 vunmap_p4d_range(pgd, addr, next, &mask);
461 } while (pgd++, addr = next, addr != end);
462
463 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
464 arch_sync_kernel_mappings(start, end);
465 }
466
vunmap_range_noflush(unsigned long start,unsigned long end)467 void vunmap_range_noflush(unsigned long start, unsigned long end)
468 {
469 kmsan_vunmap_range_noflush(start, end);
470 __vunmap_range_noflush(start, end);
471 }
472
473 /**
474 * vunmap_range - unmap kernel virtual addresses
475 * @addr: start of the VM area to unmap
476 * @end: end of the VM area to unmap (non-inclusive)
477 *
478 * Clears any present PTEs in the virtual address range, flushes TLBs and
479 * caches. Any subsequent access to the address before it has been re-mapped
480 * is a kernel bug.
481 */
vunmap_range(unsigned long addr,unsigned long end)482 void vunmap_range(unsigned long addr, unsigned long end)
483 {
484 flush_cache_vunmap(addr, end);
485 vunmap_range_noflush(addr, end);
486 flush_tlb_kernel_range(addr, end);
487 }
488
vmap_pages_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,pgprot_t prot,struct page ** pages,int * nr,pgtbl_mod_mask * mask)489 static int vmap_pages_pte_range(pmd_t *pmd, unsigned long addr,
490 unsigned long end, pgprot_t prot, struct page **pages, int *nr,
491 pgtbl_mod_mask *mask)
492 {
493 int err = 0;
494 pte_t *pte;
495
496 /*
497 * nr is a running index into the array which helps higher level
498 * callers keep track of where we're up to.
499 */
500
501 pte = pte_alloc_kernel_track(pmd, addr, mask);
502 if (!pte)
503 return -ENOMEM;
504 do {
505 struct page *page = pages[*nr];
506
507 if (WARN_ON(!pte_none(ptep_get(pte)))) {
508 err = -EBUSY;
509 break;
510 }
511 if (WARN_ON(!page)) {
512 err = -ENOMEM;
513 break;
514 }
515 if (WARN_ON(!pfn_valid(page_to_pfn(page)))) {
516 err = -EINVAL;
517 break;
518 }
519
520 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
521 (*nr)++;
522 } while (pte++, addr += PAGE_SIZE, addr != end);
523 *mask |= PGTBL_PTE_MODIFIED;
524
525 return err;
526 }
527
vmap_pages_pmd_range(pud_t * pud,unsigned long addr,unsigned long end,pgprot_t prot,struct page ** pages,int * nr,pgtbl_mod_mask * mask)528 static int vmap_pages_pmd_range(pud_t *pud, unsigned long addr,
529 unsigned long end, pgprot_t prot, struct page **pages, int *nr,
530 pgtbl_mod_mask *mask)
531 {
532 pmd_t *pmd;
533 unsigned long next;
534
535 pmd = pmd_alloc_track(&init_mm, pud, addr, mask);
536 if (!pmd)
537 return -ENOMEM;
538 do {
539 next = pmd_addr_end(addr, end);
540 if (vmap_pages_pte_range(pmd, addr, next, prot, pages, nr, mask))
541 return -ENOMEM;
542 } while (pmd++, addr = next, addr != end);
543 return 0;
544 }
545
vmap_pages_pud_range(p4d_t * p4d,unsigned long addr,unsigned long end,pgprot_t prot,struct page ** pages,int * nr,pgtbl_mod_mask * mask)546 static int vmap_pages_pud_range(p4d_t *p4d, unsigned long addr,
547 unsigned long end, pgprot_t prot, struct page **pages, int *nr,
548 pgtbl_mod_mask *mask)
549 {
550 pud_t *pud;
551 unsigned long next;
552
553 pud = pud_alloc_track(&init_mm, p4d, addr, mask);
554 if (!pud)
555 return -ENOMEM;
556 do {
557 next = pud_addr_end(addr, end);
558 if (vmap_pages_pmd_range(pud, addr, next, prot, pages, nr, mask))
559 return -ENOMEM;
560 } while (pud++, addr = next, addr != end);
561 return 0;
562 }
563
vmap_pages_p4d_range(pgd_t * pgd,unsigned long addr,unsigned long end,pgprot_t prot,struct page ** pages,int * nr,pgtbl_mod_mask * mask)564 static int vmap_pages_p4d_range(pgd_t *pgd, unsigned long addr,
565 unsigned long end, pgprot_t prot, struct page **pages, int *nr,
566 pgtbl_mod_mask *mask)
567 {
568 p4d_t *p4d;
569 unsigned long next;
570
571 p4d = p4d_alloc_track(&init_mm, pgd, addr, mask);
572 if (!p4d)
573 return -ENOMEM;
574 do {
575 next = p4d_addr_end(addr, end);
576 if (vmap_pages_pud_range(p4d, addr, next, prot, pages, nr, mask))
577 return -ENOMEM;
578 } while (p4d++, addr = next, addr != end);
579 return 0;
580 }
581
vmap_small_pages_range_noflush(unsigned long addr,unsigned long end,pgprot_t prot,struct page ** pages)582 static int vmap_small_pages_range_noflush(unsigned long addr, unsigned long end,
583 pgprot_t prot, struct page **pages)
584 {
585 unsigned long start = addr;
586 pgd_t *pgd;
587 unsigned long next;
588 int err = 0;
589 int nr = 0;
590 pgtbl_mod_mask mask = 0;
591
592 BUG_ON(addr >= end);
593 pgd = pgd_offset_k(addr);
594 do {
595 next = pgd_addr_end(addr, end);
596 if (pgd_bad(*pgd))
597 mask |= PGTBL_PGD_MODIFIED;
598 err = vmap_pages_p4d_range(pgd, addr, next, prot, pages, &nr, &mask);
599 if (err)
600 break;
601 } while (pgd++, addr = next, addr != end);
602
603 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
604 arch_sync_kernel_mappings(start, end);
605
606 return err;
607 }
608
609 /*
610 * vmap_pages_range_noflush is similar to vmap_pages_range, but does not
611 * flush caches.
612 *
613 * The caller is responsible for calling flush_cache_vmap() after this
614 * function returns successfully and before the addresses are accessed.
615 *
616 * This is an internal function only. Do not use outside mm/.
617 */
__vmap_pages_range_noflush(unsigned long addr,unsigned long end,pgprot_t prot,struct page ** pages,unsigned int page_shift)618 int __vmap_pages_range_noflush(unsigned long addr, unsigned long end,
619 pgprot_t prot, struct page **pages, unsigned int page_shift)
620 {
621 unsigned int i, nr = (end - addr) >> PAGE_SHIFT;
622
623 WARN_ON(page_shift < PAGE_SHIFT);
624
625 if (!IS_ENABLED(CONFIG_HAVE_ARCH_HUGE_VMALLOC) ||
626 page_shift == PAGE_SHIFT)
627 return vmap_small_pages_range_noflush(addr, end, prot, pages);
628
629 for (i = 0; i < nr; i += 1U << (page_shift - PAGE_SHIFT)) {
630 int err;
631
632 err = vmap_range_noflush(addr, addr + (1UL << page_shift),
633 page_to_phys(pages[i]), prot,
634 page_shift);
635 if (err)
636 return err;
637
638 addr += 1UL << page_shift;
639 }
640
641 return 0;
642 }
643
vmap_pages_range_noflush(unsigned long addr,unsigned long end,pgprot_t prot,struct page ** pages,unsigned int page_shift)644 int vmap_pages_range_noflush(unsigned long addr, unsigned long end,
645 pgprot_t prot, struct page **pages, unsigned int page_shift)
646 {
647 int ret = kmsan_vmap_pages_range_noflush(addr, end, prot, pages,
648 page_shift);
649
650 if (ret)
651 return ret;
652 return __vmap_pages_range_noflush(addr, end, prot, pages, page_shift);
653 }
654
655 /**
656 * vmap_pages_range - map pages to a kernel virtual address
657 * @addr: start of the VM area to map
658 * @end: end of the VM area to map (non-inclusive)
659 * @prot: page protection flags to use
660 * @pages: pages to map (always PAGE_SIZE pages)
661 * @page_shift: maximum shift that the pages may be mapped with, @pages must
662 * be aligned and contiguous up to at least this shift.
663 *
664 * RETURNS:
665 * 0 on success, -errno on failure.
666 */
vmap_pages_range(unsigned long addr,unsigned long end,pgprot_t prot,struct page ** pages,unsigned int page_shift)667 int vmap_pages_range(unsigned long addr, unsigned long end,
668 pgprot_t prot, struct page **pages, unsigned int page_shift)
669 {
670 int err;
671
672 err = vmap_pages_range_noflush(addr, end, prot, pages, page_shift);
673 flush_cache_vmap(addr, end);
674 return err;
675 }
676
check_sparse_vm_area(struct vm_struct * area,unsigned long start,unsigned long end)677 static int check_sparse_vm_area(struct vm_struct *area, unsigned long start,
678 unsigned long end)
679 {
680 might_sleep();
681 if (WARN_ON_ONCE(area->flags & VM_FLUSH_RESET_PERMS))
682 return -EINVAL;
683 if (WARN_ON_ONCE(area->flags & VM_NO_GUARD))
684 return -EINVAL;
685 if (WARN_ON_ONCE(!(area->flags & VM_SPARSE)))
686 return -EINVAL;
687 if ((end - start) >> PAGE_SHIFT > totalram_pages())
688 return -E2BIG;
689 if (start < (unsigned long)area->addr ||
690 (void *)end > area->addr + get_vm_area_size(area))
691 return -ERANGE;
692 return 0;
693 }
694
695 /**
696 * vm_area_map_pages - map pages inside given sparse vm_area
697 * @area: vm_area
698 * @start: start address inside vm_area
699 * @end: end address inside vm_area
700 * @pages: pages to map (always PAGE_SIZE pages)
701 */
vm_area_map_pages(struct vm_struct * area,unsigned long start,unsigned long end,struct page ** pages)702 int vm_area_map_pages(struct vm_struct *area, unsigned long start,
703 unsigned long end, struct page **pages)
704 {
705 int err;
706
707 err = check_sparse_vm_area(area, start, end);
708 if (err)
709 return err;
710
711 return vmap_pages_range(start, end, PAGE_KERNEL, pages, PAGE_SHIFT);
712 }
713
714 /**
715 * vm_area_unmap_pages - unmap pages inside given sparse vm_area
716 * @area: vm_area
717 * @start: start address inside vm_area
718 * @end: end address inside vm_area
719 */
vm_area_unmap_pages(struct vm_struct * area,unsigned long start,unsigned long end)720 void vm_area_unmap_pages(struct vm_struct *area, unsigned long start,
721 unsigned long end)
722 {
723 if (check_sparse_vm_area(area, start, end))
724 return;
725
726 vunmap_range(start, end);
727 }
728
is_vmalloc_or_module_addr(const void * x)729 int is_vmalloc_or_module_addr(const void *x)
730 {
731 /*
732 * ARM, x86-64 and sparc64 put modules in a special place,
733 * and fall back on vmalloc() if that fails. Others
734 * just put it in the vmalloc space.
735 */
736 #if defined(CONFIG_EXECMEM) && defined(MODULES_VADDR)
737 unsigned long addr = (unsigned long)kasan_reset_tag(x);
738 if (addr >= MODULES_VADDR && addr < MODULES_END)
739 return 1;
740 #endif
741 return is_vmalloc_addr(x);
742 }
743 EXPORT_SYMBOL_GPL(is_vmalloc_or_module_addr);
744
745 /*
746 * Walk a vmap address to the struct page it maps. Huge vmap mappings will
747 * return the tail page that corresponds to the base page address, which
748 * matches small vmap mappings.
749 */
vmalloc_to_page(const void * vmalloc_addr)750 struct page *vmalloc_to_page(const void *vmalloc_addr)
751 {
752 unsigned long addr = (unsigned long) vmalloc_addr;
753 struct page *page = NULL;
754 pgd_t *pgd = pgd_offset_k(addr);
755 p4d_t *p4d;
756 pud_t *pud;
757 pmd_t *pmd;
758 pte_t *ptep, pte;
759
760 /*
761 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
762 * architectures that do not vmalloc module space
763 */
764 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
765
766 if (pgd_none(*pgd))
767 return NULL;
768 if (WARN_ON_ONCE(pgd_leaf(*pgd)))
769 return NULL; /* XXX: no allowance for huge pgd */
770 if (WARN_ON_ONCE(pgd_bad(*pgd)))
771 return NULL;
772
773 p4d = p4d_offset(pgd, addr);
774 if (p4d_none(*p4d))
775 return NULL;
776 if (p4d_leaf(*p4d))
777 return p4d_page(*p4d) + ((addr & ~P4D_MASK) >> PAGE_SHIFT);
778 if (WARN_ON_ONCE(p4d_bad(*p4d)))
779 return NULL;
780
781 pud = pud_offset(p4d, addr);
782 if (pud_none(*pud))
783 return NULL;
784 if (pud_leaf(*pud))
785 return pud_page(*pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
786 if (WARN_ON_ONCE(pud_bad(*pud)))
787 return NULL;
788
789 pmd = pmd_offset(pud, addr);
790 if (pmd_none(*pmd))
791 return NULL;
792 if (pmd_leaf(*pmd))
793 return pmd_page(*pmd) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
794 if (WARN_ON_ONCE(pmd_bad(*pmd)))
795 return NULL;
796
797 ptep = pte_offset_kernel(pmd, addr);
798 pte = ptep_get(ptep);
799 if (pte_present(pte))
800 page = pte_page(pte);
801
802 return page;
803 }
804 EXPORT_SYMBOL(vmalloc_to_page);
805
806 /*
807 * Map a vmalloc()-space virtual address to the physical page frame number.
808 */
vmalloc_to_pfn(const void * vmalloc_addr)809 unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
810 {
811 return page_to_pfn(vmalloc_to_page(vmalloc_addr));
812 }
813 EXPORT_SYMBOL(vmalloc_to_pfn);
814
815
816 /*** Global kva allocator ***/
817
818 #define DEBUG_AUGMENT_PROPAGATE_CHECK 0
819 #define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0
820
821
822 static DEFINE_SPINLOCK(free_vmap_area_lock);
823 static bool vmap_initialized __read_mostly;
824
825 /*
826 * This kmem_cache is used for vmap_area objects. Instead of
827 * allocating from slab we reuse an object from this cache to
828 * make things faster. Especially in "no edge" splitting of
829 * free block.
830 */
831 static struct kmem_cache *vmap_area_cachep;
832
833 /*
834 * This linked list is used in pair with free_vmap_area_root.
835 * It gives O(1) access to prev/next to perform fast coalescing.
836 */
837 static LIST_HEAD(free_vmap_area_list);
838
839 /*
840 * This augment red-black tree represents the free vmap space.
841 * All vmap_area objects in this tree are sorted by va->va_start
842 * address. It is used for allocation and merging when a vmap
843 * object is released.
844 *
845 * Each vmap_area node contains a maximum available free block
846 * of its sub-tree, right or left. Therefore it is possible to
847 * find a lowest match of free area.
848 */
849 static struct rb_root free_vmap_area_root = RB_ROOT;
850
851 /*
852 * Preload a CPU with one object for "no edge" split case. The
853 * aim is to get rid of allocations from the atomic context, thus
854 * to use more permissive allocation masks.
855 */
856 static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node);
857
858 /*
859 * This structure defines a single, solid model where a list and
860 * rb-tree are part of one entity protected by the lock. Nodes are
861 * sorted in ascending order, thus for O(1) access to left/right
862 * neighbors a list is used as well as for sequential traversal.
863 */
864 struct rb_list {
865 struct rb_root root;
866 struct list_head head;
867 spinlock_t lock;
868 };
869
870 /*
871 * A fast size storage contains VAs up to 1M size. A pool consists
872 * of linked between each other ready to go VAs of certain sizes.
873 * An index in the pool-array corresponds to number of pages + 1.
874 */
875 #define MAX_VA_SIZE_PAGES 256
876
877 struct vmap_pool {
878 struct list_head head;
879 unsigned long len;
880 };
881
882 /*
883 * An effective vmap-node logic. Users make use of nodes instead
884 * of a global heap. It allows to balance an access and mitigate
885 * contention.
886 */
887 static struct vmap_node {
888 /* Simple size segregated storage. */
889 struct vmap_pool pool[MAX_VA_SIZE_PAGES];
890 spinlock_t pool_lock;
891 bool skip_populate;
892
893 /* Bookkeeping data of this node. */
894 struct rb_list busy;
895 struct rb_list lazy;
896
897 /*
898 * Ready-to-free areas.
899 */
900 struct list_head purge_list;
901 struct work_struct purge_work;
902 unsigned long nr_purged;
903 } single;
904
905 /*
906 * Initial setup consists of one single node, i.e. a balancing
907 * is fully disabled. Later on, after vmap is initialized these
908 * parameters are updated based on a system capacity.
909 */
910 static struct vmap_node *vmap_nodes = &single;
911 static __read_mostly unsigned int nr_vmap_nodes = 1;
912 static __read_mostly unsigned int vmap_zone_size = 1;
913
914 static inline unsigned int
addr_to_node_id(unsigned long addr)915 addr_to_node_id(unsigned long addr)
916 {
917 return (addr / vmap_zone_size) % nr_vmap_nodes;
918 }
919
920 static inline struct vmap_node *
addr_to_node(unsigned long addr)921 addr_to_node(unsigned long addr)
922 {
923 return &vmap_nodes[addr_to_node_id(addr)];
924 }
925
926 static inline struct vmap_node *
id_to_node(unsigned int id)927 id_to_node(unsigned int id)
928 {
929 return &vmap_nodes[id % nr_vmap_nodes];
930 }
931
932 /*
933 * We use the value 0 to represent "no node", that is why
934 * an encoded value will be the node-id incremented by 1.
935 * It is always greater then 0. A valid node_id which can
936 * be encoded is [0:nr_vmap_nodes - 1]. If a passed node_id
937 * is not valid 0 is returned.
938 */
939 static unsigned int
encode_vn_id(unsigned int node_id)940 encode_vn_id(unsigned int node_id)
941 {
942 /* Can store U8_MAX [0:254] nodes. */
943 if (node_id < nr_vmap_nodes)
944 return (node_id + 1) << BITS_PER_BYTE;
945
946 /* Warn and no node encoded. */
947 WARN_ONCE(1, "Encode wrong node id (%u)\n", node_id);
948 return 0;
949 }
950
951 /*
952 * Returns an encoded node-id, the valid range is within
953 * [0:nr_vmap_nodes-1] values. Otherwise nr_vmap_nodes is
954 * returned if extracted data is wrong.
955 */
956 static unsigned int
decode_vn_id(unsigned int val)957 decode_vn_id(unsigned int val)
958 {
959 unsigned int node_id = (val >> BITS_PER_BYTE) - 1;
960
961 /* Can store U8_MAX [0:254] nodes. */
962 if (node_id < nr_vmap_nodes)
963 return node_id;
964
965 /* If it was _not_ zero, warn. */
966 WARN_ONCE(node_id != UINT_MAX,
967 "Decode wrong node id (%d)\n", node_id);
968
969 return nr_vmap_nodes;
970 }
971
972 static bool
is_vn_id_valid(unsigned int node_id)973 is_vn_id_valid(unsigned int node_id)
974 {
975 if (node_id < nr_vmap_nodes)
976 return true;
977
978 return false;
979 }
980
981 static __always_inline unsigned long
va_size(struct vmap_area * va)982 va_size(struct vmap_area *va)
983 {
984 return (va->va_end - va->va_start);
985 }
986
987 static __always_inline unsigned long
get_subtree_max_size(struct rb_node * node)988 get_subtree_max_size(struct rb_node *node)
989 {
990 struct vmap_area *va;
991
992 va = rb_entry_safe(node, struct vmap_area, rb_node);
993 return va ? va->subtree_max_size : 0;
994 }
995
996 RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb,
997 struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size)
998
999 static void reclaim_and_purge_vmap_areas(void);
1000 static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
1001 static void drain_vmap_area_work(struct work_struct *work);
1002 static DECLARE_WORK(drain_vmap_work, drain_vmap_area_work);
1003
1004 static atomic_long_t nr_vmalloc_pages;
1005
vmalloc_nr_pages(void)1006 unsigned long vmalloc_nr_pages(void)
1007 {
1008 return atomic_long_read(&nr_vmalloc_pages);
1009 }
1010 EXPORT_SYMBOL_GPL(vmalloc_nr_pages);
1011
__find_vmap_area(unsigned long addr,struct rb_root * root)1012 static struct vmap_area *__find_vmap_area(unsigned long addr, struct rb_root *root)
1013 {
1014 struct rb_node *n = root->rb_node;
1015
1016 addr = (unsigned long)kasan_reset_tag((void *)addr);
1017
1018 while (n) {
1019 struct vmap_area *va;
1020
1021 va = rb_entry(n, struct vmap_area, rb_node);
1022 if (addr < va->va_start)
1023 n = n->rb_left;
1024 else if (addr >= va->va_end)
1025 n = n->rb_right;
1026 else
1027 return va;
1028 }
1029
1030 return NULL;
1031 }
1032
1033 /* Look up the first VA which satisfies addr < va_end, NULL if none. */
1034 static struct vmap_area *
__find_vmap_area_exceed_addr(unsigned long addr,struct rb_root * root)1035 __find_vmap_area_exceed_addr(unsigned long addr, struct rb_root *root)
1036 {
1037 struct vmap_area *va = NULL;
1038 struct rb_node *n = root->rb_node;
1039
1040 addr = (unsigned long)kasan_reset_tag((void *)addr);
1041
1042 while (n) {
1043 struct vmap_area *tmp;
1044
1045 tmp = rb_entry(n, struct vmap_area, rb_node);
1046 if (tmp->va_end > addr) {
1047 va = tmp;
1048 if (tmp->va_start <= addr)
1049 break;
1050
1051 n = n->rb_left;
1052 } else
1053 n = n->rb_right;
1054 }
1055
1056 return va;
1057 }
1058
1059 /*
1060 * Returns a node where a first VA, that satisfies addr < va_end, resides.
1061 * If success, a node is locked. A user is responsible to unlock it when a
1062 * VA is no longer needed to be accessed.
1063 *
1064 * Returns NULL if nothing found.
1065 */
1066 static struct vmap_node *
find_vmap_area_exceed_addr_lock(unsigned long addr,struct vmap_area ** va)1067 find_vmap_area_exceed_addr_lock(unsigned long addr, struct vmap_area **va)
1068 {
1069 unsigned long va_start_lowest;
1070 struct vmap_node *vn;
1071 int i;
1072
1073 repeat:
1074 for (i = 0, va_start_lowest = 0; i < nr_vmap_nodes; i++) {
1075 vn = &vmap_nodes[i];
1076
1077 spin_lock(&vn->busy.lock);
1078 *va = __find_vmap_area_exceed_addr(addr, &vn->busy.root);
1079
1080 if (*va)
1081 if (!va_start_lowest || (*va)->va_start < va_start_lowest)
1082 va_start_lowest = (*va)->va_start;
1083 spin_unlock(&vn->busy.lock);
1084 }
1085
1086 /*
1087 * Check if found VA exists, it might have gone away. In this case we
1088 * repeat the search because a VA has been removed concurrently and we
1089 * need to proceed to the next one, which is a rare case.
1090 */
1091 if (va_start_lowest) {
1092 vn = addr_to_node(va_start_lowest);
1093
1094 spin_lock(&vn->busy.lock);
1095 *va = __find_vmap_area(va_start_lowest, &vn->busy.root);
1096
1097 if (*va)
1098 return vn;
1099
1100 spin_unlock(&vn->busy.lock);
1101 goto repeat;
1102 }
1103
1104 return NULL;
1105 }
1106
1107 /*
1108 * This function returns back addresses of parent node
1109 * and its left or right link for further processing.
1110 *
1111 * Otherwise NULL is returned. In that case all further
1112 * steps regarding inserting of conflicting overlap range
1113 * have to be declined and actually considered as a bug.
1114 */
1115 static __always_inline struct rb_node **
find_va_links(struct vmap_area * va,struct rb_root * root,struct rb_node * from,struct rb_node ** parent)1116 find_va_links(struct vmap_area *va,
1117 struct rb_root *root, struct rb_node *from,
1118 struct rb_node **parent)
1119 {
1120 struct vmap_area *tmp_va;
1121 struct rb_node **link;
1122
1123 if (root) {
1124 link = &root->rb_node;
1125 if (unlikely(!*link)) {
1126 *parent = NULL;
1127 return link;
1128 }
1129 } else {
1130 link = &from;
1131 }
1132
1133 /*
1134 * Go to the bottom of the tree. When we hit the last point
1135 * we end up with parent rb_node and correct direction, i name
1136 * it link, where the new va->rb_node will be attached to.
1137 */
1138 do {
1139 tmp_va = rb_entry(*link, struct vmap_area, rb_node);
1140
1141 /*
1142 * During the traversal we also do some sanity check.
1143 * Trigger the BUG() if there are sides(left/right)
1144 * or full overlaps.
1145 */
1146 if (va->va_end <= tmp_va->va_start)
1147 link = &(*link)->rb_left;
1148 else if (va->va_start >= tmp_va->va_end)
1149 link = &(*link)->rb_right;
1150 else {
1151 WARN(1, "vmalloc bug: 0x%lx-0x%lx overlaps with 0x%lx-0x%lx\n",
1152 va->va_start, va->va_end, tmp_va->va_start, tmp_va->va_end);
1153
1154 return NULL;
1155 }
1156 } while (*link);
1157
1158 *parent = &tmp_va->rb_node;
1159 return link;
1160 }
1161
1162 static __always_inline struct list_head *
get_va_next_sibling(struct rb_node * parent,struct rb_node ** link)1163 get_va_next_sibling(struct rb_node *parent, struct rb_node **link)
1164 {
1165 struct list_head *list;
1166
1167 if (unlikely(!parent))
1168 /*
1169 * The red-black tree where we try to find VA neighbors
1170 * before merging or inserting is empty, i.e. it means
1171 * there is no free vmap space. Normally it does not
1172 * happen but we handle this case anyway.
1173 */
1174 return NULL;
1175
1176 list = &rb_entry(parent, struct vmap_area, rb_node)->list;
1177 return (&parent->rb_right == link ? list->next : list);
1178 }
1179
1180 static __always_inline void
__link_va(struct vmap_area * va,struct rb_root * root,struct rb_node * parent,struct rb_node ** link,struct list_head * head,bool augment)1181 __link_va(struct vmap_area *va, struct rb_root *root,
1182 struct rb_node *parent, struct rb_node **link,
1183 struct list_head *head, bool augment)
1184 {
1185 /*
1186 * VA is still not in the list, but we can
1187 * identify its future previous list_head node.
1188 */
1189 if (likely(parent)) {
1190 head = &rb_entry(parent, struct vmap_area, rb_node)->list;
1191 if (&parent->rb_right != link)
1192 head = head->prev;
1193 }
1194
1195 /* Insert to the rb-tree */
1196 rb_link_node(&va->rb_node, parent, link);
1197 if (augment) {
1198 /*
1199 * Some explanation here. Just perform simple insertion
1200 * to the tree. We do not set va->subtree_max_size to
1201 * its current size before calling rb_insert_augmented().
1202 * It is because we populate the tree from the bottom
1203 * to parent levels when the node _is_ in the tree.
1204 *
1205 * Therefore we set subtree_max_size to zero after insertion,
1206 * to let __augment_tree_propagate_from() puts everything to
1207 * the correct order later on.
1208 */
1209 rb_insert_augmented(&va->rb_node,
1210 root, &free_vmap_area_rb_augment_cb);
1211 va->subtree_max_size = 0;
1212 } else {
1213 rb_insert_color(&va->rb_node, root);
1214 }
1215
1216 /* Address-sort this list */
1217 list_add(&va->list, head);
1218 }
1219
1220 static __always_inline void
link_va(struct vmap_area * va,struct rb_root * root,struct rb_node * parent,struct rb_node ** link,struct list_head * head)1221 link_va(struct vmap_area *va, struct rb_root *root,
1222 struct rb_node *parent, struct rb_node **link,
1223 struct list_head *head)
1224 {
1225 __link_va(va, root, parent, link, head, false);
1226 }
1227
1228 static __always_inline void
link_va_augment(struct vmap_area * va,struct rb_root * root,struct rb_node * parent,struct rb_node ** link,struct list_head * head)1229 link_va_augment(struct vmap_area *va, struct rb_root *root,
1230 struct rb_node *parent, struct rb_node **link,
1231 struct list_head *head)
1232 {
1233 __link_va(va, root, parent, link, head, true);
1234 }
1235
1236 static __always_inline void
__unlink_va(struct vmap_area * va,struct rb_root * root,bool augment)1237 __unlink_va(struct vmap_area *va, struct rb_root *root, bool augment)
1238 {
1239 if (WARN_ON(RB_EMPTY_NODE(&va->rb_node)))
1240 return;
1241
1242 if (augment)
1243 rb_erase_augmented(&va->rb_node,
1244 root, &free_vmap_area_rb_augment_cb);
1245 else
1246 rb_erase(&va->rb_node, root);
1247
1248 list_del_init(&va->list);
1249 RB_CLEAR_NODE(&va->rb_node);
1250 }
1251
1252 static __always_inline void
unlink_va(struct vmap_area * va,struct rb_root * root)1253 unlink_va(struct vmap_area *va, struct rb_root *root)
1254 {
1255 __unlink_va(va, root, false);
1256 }
1257
1258 static __always_inline void
unlink_va_augment(struct vmap_area * va,struct rb_root * root)1259 unlink_va_augment(struct vmap_area *va, struct rb_root *root)
1260 {
1261 __unlink_va(va, root, true);
1262 }
1263
1264 #if DEBUG_AUGMENT_PROPAGATE_CHECK
1265 /*
1266 * Gets called when remove the node and rotate.
1267 */
1268 static __always_inline unsigned long
compute_subtree_max_size(struct vmap_area * va)1269 compute_subtree_max_size(struct vmap_area *va)
1270 {
1271 return max3(va_size(va),
1272 get_subtree_max_size(va->rb_node.rb_left),
1273 get_subtree_max_size(va->rb_node.rb_right));
1274 }
1275
1276 static void
augment_tree_propagate_check(void)1277 augment_tree_propagate_check(void)
1278 {
1279 struct vmap_area *va;
1280 unsigned long computed_size;
1281
1282 list_for_each_entry(va, &free_vmap_area_list, list) {
1283 computed_size = compute_subtree_max_size(va);
1284 if (computed_size != va->subtree_max_size)
1285 pr_emerg("tree is corrupted: %lu, %lu\n",
1286 va_size(va), va->subtree_max_size);
1287 }
1288 }
1289 #endif
1290
1291 /*
1292 * This function populates subtree_max_size from bottom to upper
1293 * levels starting from VA point. The propagation must be done
1294 * when VA size is modified by changing its va_start/va_end. Or
1295 * in case of newly inserting of VA to the tree.
1296 *
1297 * It means that __augment_tree_propagate_from() must be called:
1298 * - After VA has been inserted to the tree(free path);
1299 * - After VA has been shrunk(allocation path);
1300 * - After VA has been increased(merging path).
1301 *
1302 * Please note that, it does not mean that upper parent nodes
1303 * and their subtree_max_size are recalculated all the time up
1304 * to the root node.
1305 *
1306 * 4--8
1307 * /\
1308 * / \
1309 * / \
1310 * 2--2 8--8
1311 *
1312 * For example if we modify the node 4, shrinking it to 2, then
1313 * no any modification is required. If we shrink the node 2 to 1
1314 * its subtree_max_size is updated only, and set to 1. If we shrink
1315 * the node 8 to 6, then its subtree_max_size is set to 6 and parent
1316 * node becomes 4--6.
1317 */
1318 static __always_inline void
augment_tree_propagate_from(struct vmap_area * va)1319 augment_tree_propagate_from(struct vmap_area *va)
1320 {
1321 /*
1322 * Populate the tree from bottom towards the root until
1323 * the calculated maximum available size of checked node
1324 * is equal to its current one.
1325 */
1326 free_vmap_area_rb_augment_cb_propagate(&va->rb_node, NULL);
1327
1328 #if DEBUG_AUGMENT_PROPAGATE_CHECK
1329 augment_tree_propagate_check();
1330 #endif
1331 }
1332
1333 static void
insert_vmap_area(struct vmap_area * va,struct rb_root * root,struct list_head * head)1334 insert_vmap_area(struct vmap_area *va,
1335 struct rb_root *root, struct list_head *head)
1336 {
1337 struct rb_node **link;
1338 struct rb_node *parent;
1339
1340 link = find_va_links(va, root, NULL, &parent);
1341 if (link)
1342 link_va(va, root, parent, link, head);
1343 }
1344
1345 static void
insert_vmap_area_augment(struct vmap_area * va,struct rb_node * from,struct rb_root * root,struct list_head * head)1346 insert_vmap_area_augment(struct vmap_area *va,
1347 struct rb_node *from, struct rb_root *root,
1348 struct list_head *head)
1349 {
1350 struct rb_node **link;
1351 struct rb_node *parent;
1352
1353 if (from)
1354 link = find_va_links(va, NULL, from, &parent);
1355 else
1356 link = find_va_links(va, root, NULL, &parent);
1357
1358 if (link) {
1359 link_va_augment(va, root, parent, link, head);
1360 augment_tree_propagate_from(va);
1361 }
1362 }
1363
1364 /*
1365 * Merge de-allocated chunk of VA memory with previous
1366 * and next free blocks. If coalesce is not done a new
1367 * free area is inserted. If VA has been merged, it is
1368 * freed.
1369 *
1370 * Please note, it can return NULL in case of overlap
1371 * ranges, followed by WARN() report. Despite it is a
1372 * buggy behaviour, a system can be alive and keep
1373 * ongoing.
1374 */
1375 static __always_inline struct vmap_area *
__merge_or_add_vmap_area(struct vmap_area * va,struct rb_root * root,struct list_head * head,bool augment)1376 __merge_or_add_vmap_area(struct vmap_area *va,
1377 struct rb_root *root, struct list_head *head, bool augment)
1378 {
1379 struct vmap_area *sibling;
1380 struct list_head *next;
1381 struct rb_node **link;
1382 struct rb_node *parent;
1383 bool merged = false;
1384
1385 /*
1386 * Find a place in the tree where VA potentially will be
1387 * inserted, unless it is merged with its sibling/siblings.
1388 */
1389 link = find_va_links(va, root, NULL, &parent);
1390 if (!link)
1391 return NULL;
1392
1393 /*
1394 * Get next node of VA to check if merging can be done.
1395 */
1396 next = get_va_next_sibling(parent, link);
1397 if (unlikely(next == NULL))
1398 goto insert;
1399
1400 /*
1401 * start end
1402 * | |
1403 * |<------VA------>|<-----Next----->|
1404 * | |
1405 * start end
1406 */
1407 if (next != head) {
1408 sibling = list_entry(next, struct vmap_area, list);
1409 if (sibling->va_start == va->va_end) {
1410 sibling->va_start = va->va_start;
1411
1412 /* Free vmap_area object. */
1413 kmem_cache_free(vmap_area_cachep, va);
1414
1415 /* Point to the new merged area. */
1416 va = sibling;
1417 merged = true;
1418 }
1419 }
1420
1421 /*
1422 * start end
1423 * | |
1424 * |<-----Prev----->|<------VA------>|
1425 * | |
1426 * start end
1427 */
1428 if (next->prev != head) {
1429 sibling = list_entry(next->prev, struct vmap_area, list);
1430 if (sibling->va_end == va->va_start) {
1431 /*
1432 * If both neighbors are coalesced, it is important
1433 * to unlink the "next" node first, followed by merging
1434 * with "previous" one. Otherwise the tree might not be
1435 * fully populated if a sibling's augmented value is
1436 * "normalized" because of rotation operations.
1437 */
1438 if (merged)
1439 __unlink_va(va, root, augment);
1440
1441 sibling->va_end = va->va_end;
1442
1443 /* Free vmap_area object. */
1444 kmem_cache_free(vmap_area_cachep, va);
1445
1446 /* Point to the new merged area. */
1447 va = sibling;
1448 merged = true;
1449 }
1450 }
1451
1452 insert:
1453 if (!merged)
1454 __link_va(va, root, parent, link, head, augment);
1455
1456 return va;
1457 }
1458
1459 static __always_inline struct vmap_area *
merge_or_add_vmap_area(struct vmap_area * va,struct rb_root * root,struct list_head * head)1460 merge_or_add_vmap_area(struct vmap_area *va,
1461 struct rb_root *root, struct list_head *head)
1462 {
1463 return __merge_or_add_vmap_area(va, root, head, false);
1464 }
1465
1466 static __always_inline struct vmap_area *
merge_or_add_vmap_area_augment(struct vmap_area * va,struct rb_root * root,struct list_head * head)1467 merge_or_add_vmap_area_augment(struct vmap_area *va,
1468 struct rb_root *root, struct list_head *head)
1469 {
1470 va = __merge_or_add_vmap_area(va, root, head, true);
1471 if (va)
1472 augment_tree_propagate_from(va);
1473
1474 return va;
1475 }
1476
1477 static __always_inline bool
is_within_this_va(struct vmap_area * va,unsigned long size,unsigned long align,unsigned long vstart)1478 is_within_this_va(struct vmap_area *va, unsigned long size,
1479 unsigned long align, unsigned long vstart)
1480 {
1481 unsigned long nva_start_addr;
1482
1483 if (va->va_start > vstart)
1484 nva_start_addr = ALIGN(va->va_start, align);
1485 else
1486 nva_start_addr = ALIGN(vstart, align);
1487
1488 /* Can be overflowed due to big size or alignment. */
1489 if (nva_start_addr + size < nva_start_addr ||
1490 nva_start_addr < vstart)
1491 return false;
1492
1493 return (nva_start_addr + size <= va->va_end);
1494 }
1495
1496 /*
1497 * Find the first free block(lowest start address) in the tree,
1498 * that will accomplish the request corresponding to passing
1499 * parameters. Please note, with an alignment bigger than PAGE_SIZE,
1500 * a search length is adjusted to account for worst case alignment
1501 * overhead.
1502 */
1503 static __always_inline struct vmap_area *
find_vmap_lowest_match(struct rb_root * root,unsigned long size,unsigned long align,unsigned long vstart,bool adjust_search_size)1504 find_vmap_lowest_match(struct rb_root *root, unsigned long size,
1505 unsigned long align, unsigned long vstart, bool adjust_search_size)
1506 {
1507 struct vmap_area *va;
1508 struct rb_node *node;
1509 unsigned long length;
1510
1511 /* Start from the root. */
1512 node = root->rb_node;
1513
1514 /* Adjust the search size for alignment overhead. */
1515 length = adjust_search_size ? size + align - 1 : size;
1516
1517 while (node) {
1518 va = rb_entry(node, struct vmap_area, rb_node);
1519
1520 if (get_subtree_max_size(node->rb_left) >= length &&
1521 vstart < va->va_start) {
1522 node = node->rb_left;
1523 } else {
1524 if (is_within_this_va(va, size, align, vstart))
1525 return va;
1526
1527 /*
1528 * Does not make sense to go deeper towards the right
1529 * sub-tree if it does not have a free block that is
1530 * equal or bigger to the requested search length.
1531 */
1532 if (get_subtree_max_size(node->rb_right) >= length) {
1533 node = node->rb_right;
1534 continue;
1535 }
1536
1537 /*
1538 * OK. We roll back and find the first right sub-tree,
1539 * that will satisfy the search criteria. It can happen
1540 * due to "vstart" restriction or an alignment overhead
1541 * that is bigger then PAGE_SIZE.
1542 */
1543 while ((node = rb_parent(node))) {
1544 va = rb_entry(node, struct vmap_area, rb_node);
1545 if (is_within_this_va(va, size, align, vstart))
1546 return va;
1547
1548 if (get_subtree_max_size(node->rb_right) >= length &&
1549 vstart <= va->va_start) {
1550 /*
1551 * Shift the vstart forward. Please note, we update it with
1552 * parent's start address adding "1" because we do not want
1553 * to enter same sub-tree after it has already been checked
1554 * and no suitable free block found there.
1555 */
1556 vstart = va->va_start + 1;
1557 node = node->rb_right;
1558 break;
1559 }
1560 }
1561 }
1562 }
1563
1564 return NULL;
1565 }
1566
1567 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1568 #include <linux/random.h>
1569
1570 static struct vmap_area *
find_vmap_lowest_linear_match(struct list_head * head,unsigned long size,unsigned long align,unsigned long vstart)1571 find_vmap_lowest_linear_match(struct list_head *head, unsigned long size,
1572 unsigned long align, unsigned long vstart)
1573 {
1574 struct vmap_area *va;
1575
1576 list_for_each_entry(va, head, list) {
1577 if (!is_within_this_va(va, size, align, vstart))
1578 continue;
1579
1580 return va;
1581 }
1582
1583 return NULL;
1584 }
1585
1586 static void
find_vmap_lowest_match_check(struct rb_root * root,struct list_head * head,unsigned long size,unsigned long align)1587 find_vmap_lowest_match_check(struct rb_root *root, struct list_head *head,
1588 unsigned long size, unsigned long align)
1589 {
1590 struct vmap_area *va_1, *va_2;
1591 unsigned long vstart;
1592 unsigned int rnd;
1593
1594 get_random_bytes(&rnd, sizeof(rnd));
1595 vstart = VMALLOC_START + rnd;
1596
1597 va_1 = find_vmap_lowest_match(root, size, align, vstart, false);
1598 va_2 = find_vmap_lowest_linear_match(head, size, align, vstart);
1599
1600 if (va_1 != va_2)
1601 pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n",
1602 va_1, va_2, vstart);
1603 }
1604 #endif
1605
1606 enum fit_type {
1607 NOTHING_FIT = 0,
1608 FL_FIT_TYPE = 1, /* full fit */
1609 LE_FIT_TYPE = 2, /* left edge fit */
1610 RE_FIT_TYPE = 3, /* right edge fit */
1611 NE_FIT_TYPE = 4 /* no edge fit */
1612 };
1613
1614 static __always_inline enum fit_type
classify_va_fit_type(struct vmap_area * va,unsigned long nva_start_addr,unsigned long size)1615 classify_va_fit_type(struct vmap_area *va,
1616 unsigned long nva_start_addr, unsigned long size)
1617 {
1618 enum fit_type type;
1619
1620 /* Check if it is within VA. */
1621 if (nva_start_addr < va->va_start ||
1622 nva_start_addr + size > va->va_end)
1623 return NOTHING_FIT;
1624
1625 /* Now classify. */
1626 if (va->va_start == nva_start_addr) {
1627 if (va->va_end == nva_start_addr + size)
1628 type = FL_FIT_TYPE;
1629 else
1630 type = LE_FIT_TYPE;
1631 } else if (va->va_end == nva_start_addr + size) {
1632 type = RE_FIT_TYPE;
1633 } else {
1634 type = NE_FIT_TYPE;
1635 }
1636
1637 return type;
1638 }
1639
1640 static __always_inline int
va_clip(struct rb_root * root,struct list_head * head,struct vmap_area * va,unsigned long nva_start_addr,unsigned long size)1641 va_clip(struct rb_root *root, struct list_head *head,
1642 struct vmap_area *va, unsigned long nva_start_addr,
1643 unsigned long size)
1644 {
1645 struct vmap_area *lva = NULL;
1646 enum fit_type type = classify_va_fit_type(va, nva_start_addr, size);
1647
1648 if (type == FL_FIT_TYPE) {
1649 /*
1650 * No need to split VA, it fully fits.
1651 *
1652 * | |
1653 * V NVA V
1654 * |---------------|
1655 */
1656 unlink_va_augment(va, root);
1657 kmem_cache_free(vmap_area_cachep, va);
1658 } else if (type == LE_FIT_TYPE) {
1659 /*
1660 * Split left edge of fit VA.
1661 *
1662 * | |
1663 * V NVA V R
1664 * |-------|-------|
1665 */
1666 va->va_start += size;
1667 } else if (type == RE_FIT_TYPE) {
1668 /*
1669 * Split right edge of fit VA.
1670 *
1671 * | |
1672 * L V NVA V
1673 * |-------|-------|
1674 */
1675 va->va_end = nva_start_addr;
1676 } else if (type == NE_FIT_TYPE) {
1677 /*
1678 * Split no edge of fit VA.
1679 *
1680 * | |
1681 * L V NVA V R
1682 * |---|-------|---|
1683 */
1684 lva = __this_cpu_xchg(ne_fit_preload_node, NULL);
1685 if (unlikely(!lva)) {
1686 /*
1687 * For percpu allocator we do not do any pre-allocation
1688 * and leave it as it is. The reason is it most likely
1689 * never ends up with NE_FIT_TYPE splitting. In case of
1690 * percpu allocations offsets and sizes are aligned to
1691 * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE
1692 * are its main fitting cases.
1693 *
1694 * There are a few exceptions though, as an example it is
1695 * a first allocation (early boot up) when we have "one"
1696 * big free space that has to be split.
1697 *
1698 * Also we can hit this path in case of regular "vmap"
1699 * allocations, if "this" current CPU was not preloaded.
1700 * See the comment in alloc_vmap_area() why. If so, then
1701 * GFP_NOWAIT is used instead to get an extra object for
1702 * split purpose. That is rare and most time does not
1703 * occur.
1704 *
1705 * What happens if an allocation gets failed. Basically,
1706 * an "overflow" path is triggered to purge lazily freed
1707 * areas to free some memory, then, the "retry" path is
1708 * triggered to repeat one more time. See more details
1709 * in alloc_vmap_area() function.
1710 */
1711 lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT);
1712 if (!lva)
1713 return -1;
1714 }
1715
1716 /*
1717 * Build the remainder.
1718 */
1719 lva->va_start = va->va_start;
1720 lva->va_end = nva_start_addr;
1721
1722 /*
1723 * Shrink this VA to remaining size.
1724 */
1725 va->va_start = nva_start_addr + size;
1726 } else {
1727 return -1;
1728 }
1729
1730 if (type != FL_FIT_TYPE) {
1731 augment_tree_propagate_from(va);
1732
1733 if (lva) /* type == NE_FIT_TYPE */
1734 insert_vmap_area_augment(lva, &va->rb_node, root, head);
1735 }
1736
1737 return 0;
1738 }
1739
1740 static unsigned long
va_alloc(struct vmap_area * va,struct rb_root * root,struct list_head * head,unsigned long size,unsigned long align,unsigned long vstart,unsigned long vend)1741 va_alloc(struct vmap_area *va,
1742 struct rb_root *root, struct list_head *head,
1743 unsigned long size, unsigned long align,
1744 unsigned long vstart, unsigned long vend)
1745 {
1746 unsigned long nva_start_addr;
1747 int ret;
1748
1749 if (va->va_start > vstart)
1750 nva_start_addr = ALIGN(va->va_start, align);
1751 else
1752 nva_start_addr = ALIGN(vstart, align);
1753
1754 /* Check the "vend" restriction. */
1755 if (nva_start_addr + size > vend)
1756 return vend;
1757
1758 /* Update the free vmap_area. */
1759 ret = va_clip(root, head, va, nva_start_addr, size);
1760 if (WARN_ON_ONCE(ret))
1761 return vend;
1762
1763 return nva_start_addr;
1764 }
1765
1766 /*
1767 * Returns a start address of the newly allocated area, if success.
1768 * Otherwise a vend is returned that indicates failure.
1769 */
1770 static __always_inline unsigned long
__alloc_vmap_area(struct rb_root * root,struct list_head * head,unsigned long size,unsigned long align,unsigned long vstart,unsigned long vend)1771 __alloc_vmap_area(struct rb_root *root, struct list_head *head,
1772 unsigned long size, unsigned long align,
1773 unsigned long vstart, unsigned long vend)
1774 {
1775 bool adjust_search_size = true;
1776 unsigned long nva_start_addr;
1777 struct vmap_area *va;
1778
1779 /*
1780 * Do not adjust when:
1781 * a) align <= PAGE_SIZE, because it does not make any sense.
1782 * All blocks(their start addresses) are at least PAGE_SIZE
1783 * aligned anyway;
1784 * b) a short range where a requested size corresponds to exactly
1785 * specified [vstart:vend] interval and an alignment > PAGE_SIZE.
1786 * With adjusted search length an allocation would not succeed.
1787 */
1788 if (align <= PAGE_SIZE || (align > PAGE_SIZE && (vend - vstart) == size))
1789 adjust_search_size = false;
1790
1791 va = find_vmap_lowest_match(root, size, align, vstart, adjust_search_size);
1792 if (unlikely(!va))
1793 return vend;
1794
1795 nva_start_addr = va_alloc(va, root, head, size, align, vstart, vend);
1796 if (nva_start_addr == vend)
1797 return vend;
1798
1799 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1800 find_vmap_lowest_match_check(root, head, size, align);
1801 #endif
1802
1803 return nva_start_addr;
1804 }
1805
1806 /*
1807 * Free a region of KVA allocated by alloc_vmap_area
1808 */
free_vmap_area(struct vmap_area * va)1809 static void free_vmap_area(struct vmap_area *va)
1810 {
1811 struct vmap_node *vn = addr_to_node(va->va_start);
1812
1813 /*
1814 * Remove from the busy tree/list.
1815 */
1816 spin_lock(&vn->busy.lock);
1817 unlink_va(va, &vn->busy.root);
1818 spin_unlock(&vn->busy.lock);
1819
1820 /*
1821 * Insert/Merge it back to the free tree/list.
1822 */
1823 spin_lock(&free_vmap_area_lock);
1824 merge_or_add_vmap_area_augment(va, &free_vmap_area_root, &free_vmap_area_list);
1825 spin_unlock(&free_vmap_area_lock);
1826 }
1827
1828 static inline void
preload_this_cpu_lock(spinlock_t * lock,gfp_t gfp_mask,int node)1829 preload_this_cpu_lock(spinlock_t *lock, gfp_t gfp_mask, int node)
1830 {
1831 struct vmap_area *va = NULL, *tmp;
1832
1833 /*
1834 * Preload this CPU with one extra vmap_area object. It is used
1835 * when fit type of free area is NE_FIT_TYPE. It guarantees that
1836 * a CPU that does an allocation is preloaded.
1837 *
1838 * We do it in non-atomic context, thus it allows us to use more
1839 * permissive allocation masks to be more stable under low memory
1840 * condition and high memory pressure.
1841 */
1842 if (!this_cpu_read(ne_fit_preload_node))
1843 va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
1844
1845 spin_lock(lock);
1846
1847 tmp = NULL;
1848 if (va && !__this_cpu_try_cmpxchg(ne_fit_preload_node, &tmp, va))
1849 kmem_cache_free(vmap_area_cachep, va);
1850 }
1851
1852 static struct vmap_pool *
size_to_va_pool(struct vmap_node * vn,unsigned long size)1853 size_to_va_pool(struct vmap_node *vn, unsigned long size)
1854 {
1855 unsigned int idx = (size - 1) / PAGE_SIZE;
1856
1857 if (idx < MAX_VA_SIZE_PAGES)
1858 return &vn->pool[idx];
1859
1860 return NULL;
1861 }
1862
1863 static bool
node_pool_add_va(struct vmap_node * n,struct vmap_area * va)1864 node_pool_add_va(struct vmap_node *n, struct vmap_area *va)
1865 {
1866 struct vmap_pool *vp;
1867
1868 vp = size_to_va_pool(n, va_size(va));
1869 if (!vp)
1870 return false;
1871
1872 spin_lock(&n->pool_lock);
1873 list_add(&va->list, &vp->head);
1874 WRITE_ONCE(vp->len, vp->len + 1);
1875 spin_unlock(&n->pool_lock);
1876
1877 return true;
1878 }
1879
1880 static struct vmap_area *
node_pool_del_va(struct vmap_node * vn,unsigned long size,unsigned long align,unsigned long vstart,unsigned long vend)1881 node_pool_del_va(struct vmap_node *vn, unsigned long size,
1882 unsigned long align, unsigned long vstart,
1883 unsigned long vend)
1884 {
1885 struct vmap_area *va = NULL;
1886 struct vmap_pool *vp;
1887 int err = 0;
1888
1889 vp = size_to_va_pool(vn, size);
1890 if (!vp || list_empty(&vp->head))
1891 return NULL;
1892
1893 spin_lock(&vn->pool_lock);
1894 if (!list_empty(&vp->head)) {
1895 va = list_first_entry(&vp->head, struct vmap_area, list);
1896
1897 if (IS_ALIGNED(va->va_start, align)) {
1898 /*
1899 * Do some sanity check and emit a warning
1900 * if one of below checks detects an error.
1901 */
1902 err |= (va_size(va) != size);
1903 err |= (va->va_start < vstart);
1904 err |= (va->va_end > vend);
1905
1906 if (!WARN_ON_ONCE(err)) {
1907 list_del_init(&va->list);
1908 WRITE_ONCE(vp->len, vp->len - 1);
1909 } else {
1910 va = NULL;
1911 }
1912 } else {
1913 list_move_tail(&va->list, &vp->head);
1914 va = NULL;
1915 }
1916 }
1917 spin_unlock(&vn->pool_lock);
1918
1919 return va;
1920 }
1921
1922 static struct vmap_area *
node_alloc(unsigned long size,unsigned long align,unsigned long vstart,unsigned long vend,unsigned long * addr,unsigned int * vn_id)1923 node_alloc(unsigned long size, unsigned long align,
1924 unsigned long vstart, unsigned long vend,
1925 unsigned long *addr, unsigned int *vn_id)
1926 {
1927 struct vmap_area *va;
1928
1929 *vn_id = 0;
1930 *addr = vend;
1931
1932 /*
1933 * Fallback to a global heap if not vmalloc or there
1934 * is only one node.
1935 */
1936 if (vstart != VMALLOC_START || vend != VMALLOC_END ||
1937 nr_vmap_nodes == 1)
1938 return NULL;
1939
1940 *vn_id = raw_smp_processor_id() % nr_vmap_nodes;
1941 va = node_pool_del_va(id_to_node(*vn_id), size, align, vstart, vend);
1942 *vn_id = encode_vn_id(*vn_id);
1943
1944 if (va)
1945 *addr = va->va_start;
1946
1947 return va;
1948 }
1949
setup_vmalloc_vm(struct vm_struct * vm,struct vmap_area * va,unsigned long flags,const void * caller)1950 static inline void setup_vmalloc_vm(struct vm_struct *vm,
1951 struct vmap_area *va, unsigned long flags, const void *caller)
1952 {
1953 vm->flags = flags;
1954 vm->addr = (void *)va->va_start;
1955 vm->size = va_size(va);
1956 vm->caller = caller;
1957 va->vm = vm;
1958 trace_android_vh_save_vmalloc_stack(flags, vm);
1959 }
1960
1961 /*
1962 * Allocate a region of KVA of the specified size and alignment, within the
1963 * vstart and vend. If vm is passed in, the two will also be bound.
1964 */
alloc_vmap_area(unsigned long size,unsigned long align,unsigned long vstart,unsigned long vend,int node,gfp_t gfp_mask,unsigned long va_flags,struct vm_struct * vm)1965 static struct vmap_area *alloc_vmap_area(unsigned long size,
1966 unsigned long align,
1967 unsigned long vstart, unsigned long vend,
1968 int node, gfp_t gfp_mask,
1969 unsigned long va_flags, struct vm_struct *vm)
1970 {
1971 struct vmap_node *vn;
1972 struct vmap_area *va;
1973 unsigned long freed;
1974 unsigned long addr;
1975 unsigned int vn_id;
1976 int purged = 0;
1977 int ret;
1978
1979 if (unlikely(!size || offset_in_page(size) || !is_power_of_2(align)))
1980 return ERR_PTR(-EINVAL);
1981
1982 if (unlikely(!vmap_initialized))
1983 return ERR_PTR(-EBUSY);
1984
1985 might_sleep();
1986
1987 /*
1988 * If a VA is obtained from a global heap(if it fails here)
1989 * it is anyway marked with this "vn_id" so it is returned
1990 * to this pool's node later. Such way gives a possibility
1991 * to populate pools based on users demand.
1992 *
1993 * On success a ready to go VA is returned.
1994 */
1995 va = node_alloc(size, align, vstart, vend, &addr, &vn_id);
1996 if (!va) {
1997 gfp_mask = gfp_mask & GFP_RECLAIM_MASK;
1998
1999 va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
2000 if (unlikely(!va))
2001 return ERR_PTR(-ENOMEM);
2002
2003 /*
2004 * Only scan the relevant parts containing pointers to other objects
2005 * to avoid false negatives.
2006 */
2007 kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask);
2008 }
2009
2010 retry:
2011 if (addr == vend) {
2012 preload_this_cpu_lock(&free_vmap_area_lock, gfp_mask, node);
2013 addr = __alloc_vmap_area(&free_vmap_area_root, &free_vmap_area_list,
2014 size, align, vstart, vend);
2015 spin_unlock(&free_vmap_area_lock);
2016 }
2017
2018 trace_alloc_vmap_area(addr, size, align, vstart, vend, addr == vend);
2019
2020 /*
2021 * If an allocation fails, the "vend" address is
2022 * returned. Therefore trigger the overflow path.
2023 */
2024 if (unlikely(addr == vend))
2025 goto overflow;
2026
2027 va->va_start = addr;
2028 va->va_end = addr + size;
2029 va->vm = NULL;
2030 va->flags = (va_flags | vn_id);
2031
2032 if (vm) {
2033 vm->addr = (void *)va->va_start;
2034 vm->size = va_size(va);
2035 va->vm = vm;
2036 }
2037
2038 vn = addr_to_node(va->va_start);
2039
2040 spin_lock(&vn->busy.lock);
2041 insert_vmap_area(va, &vn->busy.root, &vn->busy.head);
2042 spin_unlock(&vn->busy.lock);
2043
2044 BUG_ON(!IS_ALIGNED(va->va_start, align));
2045 BUG_ON(va->va_start < vstart);
2046 BUG_ON(va->va_end > vend);
2047
2048 ret = kasan_populate_vmalloc(addr, size);
2049 if (ret) {
2050 free_vmap_area(va);
2051 return ERR_PTR(ret);
2052 }
2053
2054 return va;
2055
2056 overflow:
2057 if (!purged) {
2058 reclaim_and_purge_vmap_areas();
2059 purged = 1;
2060 goto retry;
2061 }
2062
2063 freed = 0;
2064 blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
2065
2066 if (freed > 0) {
2067 purged = 0;
2068 goto retry;
2069 }
2070
2071 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
2072 pr_warn("vmalloc_node_range for size %lu failed: Address range restricted to %#lx - %#lx\n",
2073 size, vstart, vend);
2074
2075 kmem_cache_free(vmap_area_cachep, va);
2076 return ERR_PTR(-EBUSY);
2077 }
2078
register_vmap_purge_notifier(struct notifier_block * nb)2079 int register_vmap_purge_notifier(struct notifier_block *nb)
2080 {
2081 return blocking_notifier_chain_register(&vmap_notify_list, nb);
2082 }
2083 EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
2084
unregister_vmap_purge_notifier(struct notifier_block * nb)2085 int unregister_vmap_purge_notifier(struct notifier_block *nb)
2086 {
2087 return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
2088 }
2089 EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
2090
2091 /*
2092 * lazy_max_pages is the maximum amount of virtual address space we gather up
2093 * before attempting to purge with a TLB flush.
2094 *
2095 * There is a tradeoff here: a larger number will cover more kernel page tables
2096 * and take slightly longer to purge, but it will linearly reduce the number of
2097 * global TLB flushes that must be performed. It would seem natural to scale
2098 * this number up linearly with the number of CPUs (because vmapping activity
2099 * could also scale linearly with the number of CPUs), however it is likely
2100 * that in practice, workloads might be constrained in other ways that mean
2101 * vmap activity will not scale linearly with CPUs. Also, I want to be
2102 * conservative and not introduce a big latency on huge systems, so go with
2103 * a less aggressive log scale. It will still be an improvement over the old
2104 * code, and it will be simple to change the scale factor if we find that it
2105 * becomes a problem on bigger systems.
2106 */
lazy_max_pages(void)2107 static unsigned long lazy_max_pages(void)
2108 {
2109 unsigned int log;
2110
2111 log = fls(num_online_cpus());
2112
2113 return log * (32UL * 1024 * 1024 / PAGE_SIZE);
2114 }
2115
2116 static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0);
2117
2118 /*
2119 * Serialize vmap purging. There is no actual critical section protected
2120 * by this lock, but we want to avoid concurrent calls for performance
2121 * reasons and to make the pcpu_get_vm_areas more deterministic.
2122 */
2123 static DEFINE_MUTEX(vmap_purge_lock);
2124
2125 /* for per-CPU blocks */
2126 static void purge_fragmented_blocks_allcpus(void);
2127 static cpumask_t purge_nodes;
2128
2129 static void
reclaim_list_global(struct list_head * head)2130 reclaim_list_global(struct list_head *head)
2131 {
2132 struct vmap_area *va, *n;
2133
2134 if (list_empty(head))
2135 return;
2136
2137 spin_lock(&free_vmap_area_lock);
2138 list_for_each_entry_safe(va, n, head, list)
2139 merge_or_add_vmap_area_augment(va,
2140 &free_vmap_area_root, &free_vmap_area_list);
2141 spin_unlock(&free_vmap_area_lock);
2142 }
2143
2144 static void
decay_va_pool_node(struct vmap_node * vn,bool full_decay)2145 decay_va_pool_node(struct vmap_node *vn, bool full_decay)
2146 {
2147 LIST_HEAD(decay_list);
2148 struct rb_root decay_root = RB_ROOT;
2149 struct vmap_area *va, *nva;
2150 unsigned long n_decay;
2151 int i;
2152
2153 for (i = 0; i < MAX_VA_SIZE_PAGES; i++) {
2154 LIST_HEAD(tmp_list);
2155
2156 if (list_empty(&vn->pool[i].head))
2157 continue;
2158
2159 /* Detach the pool, so no-one can access it. */
2160 spin_lock(&vn->pool_lock);
2161 list_replace_init(&vn->pool[i].head, &tmp_list);
2162 spin_unlock(&vn->pool_lock);
2163
2164 if (full_decay)
2165 WRITE_ONCE(vn->pool[i].len, 0);
2166
2167 /* Decay a pool by ~25% out of left objects. */
2168 n_decay = vn->pool[i].len >> 2;
2169
2170 list_for_each_entry_safe(va, nva, &tmp_list, list) {
2171 list_del_init(&va->list);
2172 merge_or_add_vmap_area(va, &decay_root, &decay_list);
2173
2174 if (!full_decay) {
2175 WRITE_ONCE(vn->pool[i].len, vn->pool[i].len - 1);
2176
2177 if (!--n_decay)
2178 break;
2179 }
2180 }
2181
2182 /*
2183 * Attach the pool back if it has been partly decayed.
2184 * Please note, it is supposed that nobody(other contexts)
2185 * can populate the pool therefore a simple list replace
2186 * operation takes place here.
2187 */
2188 if (!full_decay && !list_empty(&tmp_list)) {
2189 spin_lock(&vn->pool_lock);
2190 list_replace_init(&tmp_list, &vn->pool[i].head);
2191 spin_unlock(&vn->pool_lock);
2192 }
2193 }
2194
2195 reclaim_list_global(&decay_list);
2196 }
2197
2198 static void
kasan_release_vmalloc_node(struct vmap_node * vn)2199 kasan_release_vmalloc_node(struct vmap_node *vn)
2200 {
2201 struct vmap_area *va;
2202 unsigned long start, end;
2203
2204 start = list_first_entry(&vn->purge_list, struct vmap_area, list)->va_start;
2205 end = list_last_entry(&vn->purge_list, struct vmap_area, list)->va_end;
2206
2207 list_for_each_entry(va, &vn->purge_list, list) {
2208 if (is_vmalloc_or_module_addr((void *) va->va_start))
2209 kasan_release_vmalloc(va->va_start, va->va_end,
2210 va->va_start, va->va_end,
2211 KASAN_VMALLOC_PAGE_RANGE);
2212 }
2213
2214 kasan_release_vmalloc(start, end, start, end, KASAN_VMALLOC_TLB_FLUSH);
2215 }
2216
purge_vmap_node(struct work_struct * work)2217 static void purge_vmap_node(struct work_struct *work)
2218 {
2219 struct vmap_node *vn = container_of(work,
2220 struct vmap_node, purge_work);
2221 unsigned long nr_purged_pages = 0;
2222 struct vmap_area *va, *n_va;
2223 LIST_HEAD(local_list);
2224
2225 if (IS_ENABLED(CONFIG_KASAN_VMALLOC))
2226 kasan_release_vmalloc_node(vn);
2227
2228 vn->nr_purged = 0;
2229
2230 list_for_each_entry_safe(va, n_va, &vn->purge_list, list) {
2231 unsigned long nr = va_size(va) >> PAGE_SHIFT;
2232 unsigned int vn_id = decode_vn_id(va->flags);
2233
2234 list_del_init(&va->list);
2235
2236 nr_purged_pages += nr;
2237 vn->nr_purged++;
2238
2239 if (is_vn_id_valid(vn_id) && !vn->skip_populate)
2240 if (node_pool_add_va(vn, va))
2241 continue;
2242
2243 /* Go back to global. */
2244 list_add(&va->list, &local_list);
2245 }
2246
2247 atomic_long_sub(nr_purged_pages, &vmap_lazy_nr);
2248
2249 reclaim_list_global(&local_list);
2250 }
2251
2252 /*
2253 * Purges all lazily-freed vmap areas.
2254 */
__purge_vmap_area_lazy(unsigned long start,unsigned long end,bool full_pool_decay)2255 static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end,
2256 bool full_pool_decay)
2257 {
2258 unsigned long nr_purged_areas = 0;
2259 unsigned int nr_purge_helpers;
2260 unsigned int nr_purge_nodes;
2261 struct vmap_node *vn;
2262 int i;
2263
2264 lockdep_assert_held(&vmap_purge_lock);
2265
2266 /*
2267 * Use cpumask to mark which node has to be processed.
2268 */
2269 purge_nodes = CPU_MASK_NONE;
2270
2271 for (i = 0; i < nr_vmap_nodes; i++) {
2272 vn = &vmap_nodes[i];
2273
2274 INIT_LIST_HEAD(&vn->purge_list);
2275 vn->skip_populate = full_pool_decay;
2276 decay_va_pool_node(vn, full_pool_decay);
2277
2278 if (RB_EMPTY_ROOT(&vn->lazy.root))
2279 continue;
2280
2281 spin_lock(&vn->lazy.lock);
2282 WRITE_ONCE(vn->lazy.root.rb_node, NULL);
2283 list_replace_init(&vn->lazy.head, &vn->purge_list);
2284 spin_unlock(&vn->lazy.lock);
2285
2286 start = min(start, list_first_entry(&vn->purge_list,
2287 struct vmap_area, list)->va_start);
2288
2289 end = max(end, list_last_entry(&vn->purge_list,
2290 struct vmap_area, list)->va_end);
2291
2292 cpumask_set_cpu(i, &purge_nodes);
2293 }
2294
2295 nr_purge_nodes = cpumask_weight(&purge_nodes);
2296 if (nr_purge_nodes > 0) {
2297 flush_tlb_kernel_range(start, end);
2298
2299 /* One extra worker is per a lazy_max_pages() full set minus one. */
2300 nr_purge_helpers = atomic_long_read(&vmap_lazy_nr) / lazy_max_pages();
2301 nr_purge_helpers = clamp(nr_purge_helpers, 1U, nr_purge_nodes) - 1;
2302
2303 for_each_cpu(i, &purge_nodes) {
2304 vn = &vmap_nodes[i];
2305
2306 if (nr_purge_helpers > 0) {
2307 INIT_WORK(&vn->purge_work, purge_vmap_node);
2308
2309 if (cpumask_test_cpu(i, cpu_online_mask))
2310 schedule_work_on(i, &vn->purge_work);
2311 else
2312 schedule_work(&vn->purge_work);
2313
2314 nr_purge_helpers--;
2315 } else {
2316 vn->purge_work.func = NULL;
2317 purge_vmap_node(&vn->purge_work);
2318 nr_purged_areas += vn->nr_purged;
2319 }
2320 }
2321
2322 for_each_cpu(i, &purge_nodes) {
2323 vn = &vmap_nodes[i];
2324
2325 if (vn->purge_work.func) {
2326 flush_work(&vn->purge_work);
2327 nr_purged_areas += vn->nr_purged;
2328 }
2329 }
2330 }
2331
2332 trace_purge_vmap_area_lazy(start, end, nr_purged_areas);
2333 return nr_purged_areas > 0;
2334 }
2335
2336 /*
2337 * Reclaim vmap areas by purging fragmented blocks and purge_vmap_area_list.
2338 */
reclaim_and_purge_vmap_areas(void)2339 static void reclaim_and_purge_vmap_areas(void)
2340
2341 {
2342 mutex_lock(&vmap_purge_lock);
2343 purge_fragmented_blocks_allcpus();
2344 __purge_vmap_area_lazy(ULONG_MAX, 0, true);
2345 mutex_unlock(&vmap_purge_lock);
2346 }
2347
drain_vmap_area_work(struct work_struct * work)2348 static void drain_vmap_area_work(struct work_struct *work)
2349 {
2350 mutex_lock(&vmap_purge_lock);
2351 __purge_vmap_area_lazy(ULONG_MAX, 0, false);
2352 mutex_unlock(&vmap_purge_lock);
2353 }
2354
2355 /*
2356 * Free a vmap area, caller ensuring that the area has been unmapped,
2357 * unlinked and flush_cache_vunmap had been called for the correct
2358 * range previously.
2359 */
free_vmap_area_noflush(struct vmap_area * va)2360 static void free_vmap_area_noflush(struct vmap_area *va)
2361 {
2362 unsigned long nr_lazy_max = lazy_max_pages();
2363 unsigned long va_start = va->va_start;
2364 unsigned int vn_id = decode_vn_id(va->flags);
2365 struct vmap_node *vn;
2366 unsigned long nr_lazy;
2367
2368 if (WARN_ON_ONCE(!list_empty(&va->list)))
2369 return;
2370
2371 nr_lazy = atomic_long_add_return(va_size(va) >> PAGE_SHIFT,
2372 &vmap_lazy_nr);
2373
2374 /*
2375 * If it was request by a certain node we would like to
2376 * return it to that node, i.e. its pool for later reuse.
2377 */
2378 vn = is_vn_id_valid(vn_id) ?
2379 id_to_node(vn_id):addr_to_node(va->va_start);
2380
2381 spin_lock(&vn->lazy.lock);
2382 insert_vmap_area(va, &vn->lazy.root, &vn->lazy.head);
2383 spin_unlock(&vn->lazy.lock);
2384
2385 trace_free_vmap_area_noflush(va_start, nr_lazy, nr_lazy_max);
2386
2387 /* After this point, we may free va at any time */
2388 if (unlikely(nr_lazy > nr_lazy_max))
2389 schedule_work(&drain_vmap_work);
2390 }
2391
2392 /*
2393 * Free and unmap a vmap area
2394 */
free_unmap_vmap_area(struct vmap_area * va)2395 static void free_unmap_vmap_area(struct vmap_area *va)
2396 {
2397 flush_cache_vunmap(va->va_start, va->va_end);
2398 vunmap_range_noflush(va->va_start, va->va_end);
2399 if (debug_pagealloc_enabled_static())
2400 flush_tlb_kernel_range(va->va_start, va->va_end);
2401
2402 free_vmap_area_noflush(va);
2403 }
2404
find_vmap_area(unsigned long addr)2405 struct vmap_area *find_vmap_area(unsigned long addr)
2406 {
2407 struct vmap_node *vn;
2408 struct vmap_area *va;
2409 int i, j;
2410
2411 if (unlikely(!vmap_initialized))
2412 return NULL;
2413
2414 /*
2415 * An addr_to_node_id(addr) converts an address to a node index
2416 * where a VA is located. If VA spans several zones and passed
2417 * addr is not the same as va->va_start, what is not common, we
2418 * may need to scan extra nodes. See an example:
2419 *
2420 * <----va---->
2421 * -|-----|-----|-----|-----|-
2422 * 1 2 0 1
2423 *
2424 * VA resides in node 1 whereas it spans 1, 2 an 0. If passed
2425 * addr is within 2 or 0 nodes we should do extra work.
2426 */
2427 i = j = addr_to_node_id(addr);
2428 do {
2429 vn = &vmap_nodes[i];
2430
2431 spin_lock(&vn->busy.lock);
2432 va = __find_vmap_area(addr, &vn->busy.root);
2433 spin_unlock(&vn->busy.lock);
2434
2435 if (va)
2436 return va;
2437 } while ((i = (i + 1) % nr_vmap_nodes) != j);
2438
2439 return NULL;
2440 }
2441
find_unlink_vmap_area(unsigned long addr)2442 static struct vmap_area *find_unlink_vmap_area(unsigned long addr)
2443 {
2444 struct vmap_node *vn;
2445 struct vmap_area *va;
2446 int i, j;
2447
2448 /*
2449 * Check the comment in the find_vmap_area() about the loop.
2450 */
2451 i = j = addr_to_node_id(addr);
2452 do {
2453 vn = &vmap_nodes[i];
2454
2455 spin_lock(&vn->busy.lock);
2456 va = __find_vmap_area(addr, &vn->busy.root);
2457 if (va)
2458 unlink_va(va, &vn->busy.root);
2459 spin_unlock(&vn->busy.lock);
2460
2461 if (va)
2462 return va;
2463 } while ((i = (i + 1) % nr_vmap_nodes) != j);
2464
2465 return NULL;
2466 }
2467
2468 /*** Per cpu kva allocator ***/
2469
2470 /*
2471 * vmap space is limited especially on 32 bit architectures. Ensure there is
2472 * room for at least 16 percpu vmap blocks per CPU.
2473 */
2474 /*
2475 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
2476 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
2477 * instead (we just need a rough idea)
2478 */
2479 #if BITS_PER_LONG == 32
2480 #define VMALLOC_SPACE (128UL*1024*1024)
2481 #else
2482 #define VMALLOC_SPACE (128UL*1024*1024*1024)
2483 #endif
2484
2485 #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
2486 #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
2487 #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
2488 #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
2489 #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
2490 #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
2491 #define VMAP_BBMAP_BITS \
2492 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
2493 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
2494 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
2495
2496 #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
2497
2498 /*
2499 * Purge threshold to prevent overeager purging of fragmented blocks for
2500 * regular operations: Purge if vb->free is less than 1/4 of the capacity.
2501 */
2502 #define VMAP_PURGE_THRESHOLD (VMAP_BBMAP_BITS / 4)
2503
2504 #define VMAP_RAM 0x1 /* indicates vm_map_ram area*/
2505 #define VMAP_BLOCK 0x2 /* mark out the vmap_block sub-type*/
2506 #define VMAP_FLAGS_MASK 0x3
2507
2508 struct vmap_block_queue {
2509 spinlock_t lock;
2510 struct list_head free;
2511
2512 /*
2513 * An xarray requires an extra memory dynamically to
2514 * be allocated. If it is an issue, we can use rb-tree
2515 * instead.
2516 */
2517 struct xarray vmap_blocks;
2518 };
2519
2520 struct vmap_block {
2521 spinlock_t lock;
2522 struct vmap_area *va;
2523 unsigned long free, dirty;
2524 DECLARE_BITMAP(used_map, VMAP_BBMAP_BITS);
2525 unsigned long dirty_min, dirty_max; /*< dirty range */
2526 struct list_head free_list;
2527 struct rcu_head rcu_head;
2528 struct list_head purge;
2529 unsigned int cpu;
2530 };
2531
2532 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
2533 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
2534
2535 /*
2536 * In order to fast access to any "vmap_block" associated with a
2537 * specific address, we use a hash.
2538 *
2539 * A per-cpu vmap_block_queue is used in both ways, to serialize
2540 * an access to free block chains among CPUs(alloc path) and it
2541 * also acts as a vmap_block hash(alloc/free paths). It means we
2542 * overload it, since we already have the per-cpu array which is
2543 * used as a hash table. When used as a hash a 'cpu' passed to
2544 * per_cpu() is not actually a CPU but rather a hash index.
2545 *
2546 * A hash function is addr_to_vb_xa() which hashes any address
2547 * to a specific index(in a hash) it belongs to. This then uses a
2548 * per_cpu() macro to access an array with generated index.
2549 *
2550 * An example:
2551 *
2552 * CPU_1 CPU_2 CPU_0
2553 * | | |
2554 * V V V
2555 * 0 10 20 30 40 50 60
2556 * |------|------|------|------|------|------|...<vmap address space>
2557 * CPU0 CPU1 CPU2 CPU0 CPU1 CPU2
2558 *
2559 * - CPU_1 invokes vm_unmap_ram(6), 6 belongs to CPU0 zone, thus
2560 * it access: CPU0/INDEX0 -> vmap_blocks -> xa_lock;
2561 *
2562 * - CPU_2 invokes vm_unmap_ram(11), 11 belongs to CPU1 zone, thus
2563 * it access: CPU1/INDEX1 -> vmap_blocks -> xa_lock;
2564 *
2565 * - CPU_0 invokes vm_unmap_ram(20), 20 belongs to CPU2 zone, thus
2566 * it access: CPU2/INDEX2 -> vmap_blocks -> xa_lock.
2567 *
2568 * This technique almost always avoids lock contention on insert/remove,
2569 * however xarray spinlocks protect against any contention that remains.
2570 */
2571 static struct xarray *
addr_to_vb_xa(unsigned long addr)2572 addr_to_vb_xa(unsigned long addr)
2573 {
2574 int index = (addr / VMAP_BLOCK_SIZE) % nr_cpu_ids;
2575
2576 /*
2577 * Please note, nr_cpu_ids points on a highest set
2578 * possible bit, i.e. we never invoke cpumask_next()
2579 * if an index points on it which is nr_cpu_ids - 1.
2580 */
2581 if (!cpu_possible(index))
2582 index = cpumask_next(index, cpu_possible_mask);
2583
2584 return &per_cpu(vmap_block_queue, index).vmap_blocks;
2585 }
2586
2587 /*
2588 * We should probably have a fallback mechanism to allocate virtual memory
2589 * out of partially filled vmap blocks. However vmap block sizing should be
2590 * fairly reasonable according to the vmalloc size, so it shouldn't be a
2591 * big problem.
2592 */
2593
addr_to_vb_idx(unsigned long addr)2594 static unsigned long addr_to_vb_idx(unsigned long addr)
2595 {
2596 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
2597 addr /= VMAP_BLOCK_SIZE;
2598 return addr;
2599 }
2600
vmap_block_vaddr(unsigned long va_start,unsigned long pages_off)2601 static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
2602 {
2603 unsigned long addr;
2604
2605 addr = va_start + (pages_off << PAGE_SHIFT);
2606 BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
2607 return (void *)addr;
2608 }
2609
2610 /**
2611 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
2612 * block. Of course pages number can't exceed VMAP_BBMAP_BITS
2613 * @order: how many 2^order pages should be occupied in newly allocated block
2614 * @gfp_mask: flags for the page level allocator
2615 *
2616 * Return: virtual address in a newly allocated block or ERR_PTR(-errno)
2617 */
new_vmap_block(unsigned int order,gfp_t gfp_mask)2618 static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
2619 {
2620 struct vmap_block_queue *vbq;
2621 struct vmap_block *vb;
2622 struct vmap_area *va;
2623 struct xarray *xa;
2624 unsigned long vb_idx;
2625 int node, err;
2626 void *vaddr;
2627
2628 node = numa_node_id();
2629
2630 vb = kmalloc_node(sizeof(struct vmap_block),
2631 gfp_mask & GFP_RECLAIM_MASK, node);
2632 if (unlikely(!vb))
2633 return ERR_PTR(-ENOMEM);
2634
2635 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
2636 VMALLOC_START, VMALLOC_END,
2637 node, gfp_mask,
2638 VMAP_RAM|VMAP_BLOCK, NULL);
2639 if (IS_ERR(va)) {
2640 kfree(vb);
2641 return ERR_CAST(va);
2642 }
2643
2644 vaddr = vmap_block_vaddr(va->va_start, 0);
2645 spin_lock_init(&vb->lock);
2646 vb->va = va;
2647 /* At least something should be left free */
2648 BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
2649 bitmap_zero(vb->used_map, VMAP_BBMAP_BITS);
2650 vb->free = VMAP_BBMAP_BITS - (1UL << order);
2651 vb->dirty = 0;
2652 vb->dirty_min = VMAP_BBMAP_BITS;
2653 vb->dirty_max = 0;
2654 bitmap_set(vb->used_map, 0, (1UL << order));
2655 INIT_LIST_HEAD(&vb->free_list);
2656 vb->cpu = raw_smp_processor_id();
2657
2658 xa = addr_to_vb_xa(va->va_start);
2659 vb_idx = addr_to_vb_idx(va->va_start);
2660 err = xa_insert(xa, vb_idx, vb, gfp_mask);
2661 if (err) {
2662 kfree(vb);
2663 free_vmap_area(va);
2664 return ERR_PTR(err);
2665 }
2666 /*
2667 * list_add_tail_rcu could happened in another core
2668 * rather than vb->cpu due to task migration, which
2669 * is safe as list_add_tail_rcu will ensure the list's
2670 * integrity together with list_for_each_rcu from read
2671 * side.
2672 */
2673 vbq = per_cpu_ptr(&vmap_block_queue, vb->cpu);
2674 spin_lock(&vbq->lock);
2675 list_add_tail_rcu(&vb->free_list, &vbq->free);
2676 spin_unlock(&vbq->lock);
2677
2678 return vaddr;
2679 }
2680
free_vmap_block(struct vmap_block * vb)2681 static void free_vmap_block(struct vmap_block *vb)
2682 {
2683 struct vmap_node *vn;
2684 struct vmap_block *tmp;
2685 struct xarray *xa;
2686
2687 xa = addr_to_vb_xa(vb->va->va_start);
2688 tmp = xa_erase(xa, addr_to_vb_idx(vb->va->va_start));
2689 BUG_ON(tmp != vb);
2690
2691 vn = addr_to_node(vb->va->va_start);
2692 spin_lock(&vn->busy.lock);
2693 unlink_va(vb->va, &vn->busy.root);
2694 spin_unlock(&vn->busy.lock);
2695
2696 free_vmap_area_noflush(vb->va);
2697 kfree_rcu(vb, rcu_head);
2698 }
2699
purge_fragmented_block(struct vmap_block * vb,struct list_head * purge_list,bool force_purge)2700 static bool purge_fragmented_block(struct vmap_block *vb,
2701 struct list_head *purge_list, bool force_purge)
2702 {
2703 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, vb->cpu);
2704
2705 if (vb->free + vb->dirty != VMAP_BBMAP_BITS ||
2706 vb->dirty == VMAP_BBMAP_BITS)
2707 return false;
2708
2709 /* Don't overeagerly purge usable blocks unless requested */
2710 if (!(force_purge || vb->free < VMAP_PURGE_THRESHOLD))
2711 return false;
2712
2713 /* prevent further allocs after releasing lock */
2714 WRITE_ONCE(vb->free, 0);
2715 /* prevent purging it again */
2716 WRITE_ONCE(vb->dirty, VMAP_BBMAP_BITS);
2717 vb->dirty_min = 0;
2718 vb->dirty_max = VMAP_BBMAP_BITS;
2719 spin_lock(&vbq->lock);
2720 list_del_rcu(&vb->free_list);
2721 spin_unlock(&vbq->lock);
2722 list_add_tail(&vb->purge, purge_list);
2723 return true;
2724 }
2725
free_purged_blocks(struct list_head * purge_list)2726 static void free_purged_blocks(struct list_head *purge_list)
2727 {
2728 struct vmap_block *vb, *n_vb;
2729
2730 list_for_each_entry_safe(vb, n_vb, purge_list, purge) {
2731 list_del(&vb->purge);
2732 free_vmap_block(vb);
2733 }
2734 }
2735
purge_fragmented_blocks(int cpu)2736 static void purge_fragmented_blocks(int cpu)
2737 {
2738 LIST_HEAD(purge);
2739 struct vmap_block *vb;
2740 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
2741
2742 rcu_read_lock();
2743 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
2744 unsigned long free = READ_ONCE(vb->free);
2745 unsigned long dirty = READ_ONCE(vb->dirty);
2746
2747 if (free + dirty != VMAP_BBMAP_BITS ||
2748 dirty == VMAP_BBMAP_BITS)
2749 continue;
2750
2751 spin_lock(&vb->lock);
2752 purge_fragmented_block(vb, &purge, true);
2753 spin_unlock(&vb->lock);
2754 }
2755 rcu_read_unlock();
2756 free_purged_blocks(&purge);
2757 }
2758
purge_fragmented_blocks_allcpus(void)2759 static void purge_fragmented_blocks_allcpus(void)
2760 {
2761 int cpu;
2762
2763 for_each_possible_cpu(cpu)
2764 purge_fragmented_blocks(cpu);
2765 }
2766
vb_alloc(unsigned long size,gfp_t gfp_mask)2767 static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
2768 {
2769 struct vmap_block_queue *vbq;
2770 struct vmap_block *vb;
2771 void *vaddr = NULL;
2772 unsigned int order;
2773
2774 BUG_ON(offset_in_page(size));
2775 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
2776 if (WARN_ON(size == 0)) {
2777 /*
2778 * Allocating 0 bytes isn't what caller wants since
2779 * get_order(0) returns funny result. Just warn and terminate
2780 * early.
2781 */
2782 return ERR_PTR(-EINVAL);
2783 }
2784 order = get_order(size);
2785
2786 rcu_read_lock();
2787 vbq = raw_cpu_ptr(&vmap_block_queue);
2788 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
2789 unsigned long pages_off;
2790
2791 if (READ_ONCE(vb->free) < (1UL << order))
2792 continue;
2793
2794 spin_lock(&vb->lock);
2795 if (vb->free < (1UL << order)) {
2796 spin_unlock(&vb->lock);
2797 continue;
2798 }
2799
2800 pages_off = VMAP_BBMAP_BITS - vb->free;
2801 vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
2802 WRITE_ONCE(vb->free, vb->free - (1UL << order));
2803 bitmap_set(vb->used_map, pages_off, (1UL << order));
2804 if (vb->free == 0) {
2805 spin_lock(&vbq->lock);
2806 list_del_rcu(&vb->free_list);
2807 spin_unlock(&vbq->lock);
2808 }
2809
2810 spin_unlock(&vb->lock);
2811 break;
2812 }
2813
2814 rcu_read_unlock();
2815
2816 /* Allocate new block if nothing was found */
2817 if (!vaddr)
2818 vaddr = new_vmap_block(order, gfp_mask);
2819
2820 return vaddr;
2821 }
2822
vb_free(unsigned long addr,unsigned long size)2823 static void vb_free(unsigned long addr, unsigned long size)
2824 {
2825 unsigned long offset;
2826 unsigned int order;
2827 struct vmap_block *vb;
2828 struct xarray *xa;
2829
2830 BUG_ON(offset_in_page(size));
2831 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
2832
2833 flush_cache_vunmap(addr, addr + size);
2834
2835 order = get_order(size);
2836 offset = (addr & (VMAP_BLOCK_SIZE - 1)) >> PAGE_SHIFT;
2837
2838 xa = addr_to_vb_xa(addr);
2839 vb = xa_load(xa, addr_to_vb_idx(addr));
2840
2841 spin_lock(&vb->lock);
2842 bitmap_clear(vb->used_map, offset, (1UL << order));
2843 spin_unlock(&vb->lock);
2844
2845 vunmap_range_noflush(addr, addr + size);
2846
2847 if (debug_pagealloc_enabled_static())
2848 flush_tlb_kernel_range(addr, addr + size);
2849
2850 spin_lock(&vb->lock);
2851
2852 /* Expand the not yet TLB flushed dirty range */
2853 vb->dirty_min = min(vb->dirty_min, offset);
2854 vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
2855
2856 WRITE_ONCE(vb->dirty, vb->dirty + (1UL << order));
2857 if (vb->dirty == VMAP_BBMAP_BITS) {
2858 BUG_ON(vb->free);
2859 spin_unlock(&vb->lock);
2860 free_vmap_block(vb);
2861 } else
2862 spin_unlock(&vb->lock);
2863 }
2864
_vm_unmap_aliases(unsigned long start,unsigned long end,int flush)2865 static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush)
2866 {
2867 LIST_HEAD(purge_list);
2868 int cpu;
2869
2870 if (unlikely(!vmap_initialized))
2871 return;
2872
2873 mutex_lock(&vmap_purge_lock);
2874
2875 for_each_possible_cpu(cpu) {
2876 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
2877 struct vmap_block *vb;
2878 unsigned long idx;
2879
2880 rcu_read_lock();
2881 xa_for_each(&vbq->vmap_blocks, idx, vb) {
2882 spin_lock(&vb->lock);
2883
2884 /*
2885 * Try to purge a fragmented block first. If it's
2886 * not purgeable, check whether there is dirty
2887 * space to be flushed.
2888 */
2889 if (!purge_fragmented_block(vb, &purge_list, false) &&
2890 vb->dirty_max && vb->dirty != VMAP_BBMAP_BITS) {
2891 unsigned long va_start = vb->va->va_start;
2892 unsigned long s, e;
2893
2894 s = va_start + (vb->dirty_min << PAGE_SHIFT);
2895 e = va_start + (vb->dirty_max << PAGE_SHIFT);
2896
2897 start = min(s, start);
2898 end = max(e, end);
2899
2900 /* Prevent that this is flushed again */
2901 vb->dirty_min = VMAP_BBMAP_BITS;
2902 vb->dirty_max = 0;
2903
2904 flush = 1;
2905 }
2906 spin_unlock(&vb->lock);
2907 }
2908 rcu_read_unlock();
2909 }
2910 free_purged_blocks(&purge_list);
2911
2912 if (!__purge_vmap_area_lazy(start, end, false) && flush)
2913 flush_tlb_kernel_range(start, end);
2914 mutex_unlock(&vmap_purge_lock);
2915 }
2916
2917 /**
2918 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
2919 *
2920 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
2921 * to amortize TLB flushing overheads. What this means is that any page you
2922 * have now, may, in a former life, have been mapped into kernel virtual
2923 * address by the vmap layer and so there might be some CPUs with TLB entries
2924 * still referencing that page (additional to the regular 1:1 kernel mapping).
2925 *
2926 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
2927 * be sure that none of the pages we have control over will have any aliases
2928 * from the vmap layer.
2929 */
vm_unmap_aliases(void)2930 void vm_unmap_aliases(void)
2931 {
2932 unsigned long start = ULONG_MAX, end = 0;
2933 int flush = 0;
2934
2935 _vm_unmap_aliases(start, end, flush);
2936 }
2937 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
2938
2939 /**
2940 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
2941 * @mem: the pointer returned by vm_map_ram
2942 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
2943 */
vm_unmap_ram(const void * mem,unsigned int count)2944 void vm_unmap_ram(const void *mem, unsigned int count)
2945 {
2946 unsigned long size = (unsigned long)count << PAGE_SHIFT;
2947 unsigned long addr = (unsigned long)kasan_reset_tag(mem);
2948 struct vmap_area *va;
2949
2950 might_sleep();
2951 BUG_ON(!addr);
2952 BUG_ON(addr < VMALLOC_START);
2953 BUG_ON(addr > VMALLOC_END);
2954 BUG_ON(!PAGE_ALIGNED(addr));
2955
2956 kasan_poison_vmalloc(mem, size);
2957
2958 if (likely(count <= VMAP_MAX_ALLOC)) {
2959 debug_check_no_locks_freed(mem, size);
2960 vb_free(addr, size);
2961 return;
2962 }
2963
2964 va = find_unlink_vmap_area(addr);
2965 if (WARN_ON_ONCE(!va))
2966 return;
2967
2968 debug_check_no_locks_freed((void *)va->va_start, va_size(va));
2969 free_unmap_vmap_area(va);
2970 }
2971 EXPORT_SYMBOL(vm_unmap_ram);
2972
2973 /**
2974 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
2975 * @pages: an array of pointers to the pages to be mapped
2976 * @count: number of pages
2977 * @node: prefer to allocate data structures on this node
2978 *
2979 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
2980 * faster than vmap so it's good. But if you mix long-life and short-life
2981 * objects with vm_map_ram(), it could consume lots of address space through
2982 * fragmentation (especially on a 32bit machine). You could see failures in
2983 * the end. Please use this function for short-lived objects.
2984 *
2985 * Returns: a pointer to the address that has been mapped, or %NULL on failure
2986 */
vm_map_ram(struct page ** pages,unsigned int count,int node)2987 void *vm_map_ram(struct page **pages, unsigned int count, int node)
2988 {
2989 unsigned long size = (unsigned long)count << PAGE_SHIFT;
2990 unsigned long addr;
2991 void *mem;
2992
2993 if (likely(count <= VMAP_MAX_ALLOC)) {
2994 mem = vb_alloc(size, GFP_KERNEL);
2995 if (IS_ERR(mem))
2996 return NULL;
2997 addr = (unsigned long)mem;
2998 } else {
2999 struct vmap_area *va;
3000 va = alloc_vmap_area(size, PAGE_SIZE,
3001 VMALLOC_START, VMALLOC_END,
3002 node, GFP_KERNEL, VMAP_RAM,
3003 NULL);
3004 if (IS_ERR(va))
3005 return NULL;
3006
3007 addr = va->va_start;
3008 mem = (void *)addr;
3009 }
3010
3011 if (vmap_pages_range(addr, addr + size, PAGE_KERNEL,
3012 pages, PAGE_SHIFT) < 0) {
3013 vm_unmap_ram(mem, count);
3014 return NULL;
3015 }
3016
3017 /*
3018 * Mark the pages as accessible, now that they are mapped.
3019 * With hardware tag-based KASAN, marking is skipped for
3020 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc().
3021 */
3022 mem = kasan_unpoison_vmalloc(mem, size, KASAN_VMALLOC_PROT_NORMAL);
3023
3024 return mem;
3025 }
3026 EXPORT_SYMBOL(vm_map_ram);
3027
3028 static struct vm_struct *vmlist __initdata;
3029
vm_area_page_order(struct vm_struct * vm)3030 static inline unsigned int vm_area_page_order(struct vm_struct *vm)
3031 {
3032 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
3033 return vm->page_order;
3034 #else
3035 return 0;
3036 #endif
3037 }
3038
set_vm_area_page_order(struct vm_struct * vm,unsigned int order)3039 static inline void set_vm_area_page_order(struct vm_struct *vm, unsigned int order)
3040 {
3041 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
3042 vm->page_order = order;
3043 #else
3044 BUG_ON(order != 0);
3045 #endif
3046 }
3047
3048 /**
3049 * vm_area_add_early - add vmap area early during boot
3050 * @vm: vm_struct to add
3051 *
3052 * This function is used to add fixed kernel vm area to vmlist before
3053 * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags
3054 * should contain proper values and the other fields should be zero.
3055 *
3056 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
3057 */
vm_area_add_early(struct vm_struct * vm)3058 void __init vm_area_add_early(struct vm_struct *vm)
3059 {
3060 struct vm_struct *tmp, **p;
3061
3062 BUG_ON(vmap_initialized);
3063 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
3064 if (tmp->addr >= vm->addr) {
3065 BUG_ON(tmp->addr < vm->addr + vm->size);
3066 break;
3067 } else
3068 BUG_ON(tmp->addr + tmp->size > vm->addr);
3069 }
3070 vm->next = *p;
3071 *p = vm;
3072 }
3073
3074 /**
3075 * vm_area_register_early - register vmap area early during boot
3076 * @vm: vm_struct to register
3077 * @align: requested alignment
3078 *
3079 * This function is used to register kernel vm area before
3080 * vmalloc_init() is called. @vm->size and @vm->flags should contain
3081 * proper values on entry and other fields should be zero. On return,
3082 * vm->addr contains the allocated address.
3083 *
3084 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
3085 */
vm_area_register_early(struct vm_struct * vm,size_t align)3086 void __init vm_area_register_early(struct vm_struct *vm, size_t align)
3087 {
3088 unsigned long addr = ALIGN(VMALLOC_START, align);
3089 struct vm_struct *cur, **p;
3090
3091 BUG_ON(vmap_initialized);
3092
3093 for (p = &vmlist; (cur = *p) != NULL; p = &cur->next) {
3094 if ((unsigned long)cur->addr - addr >= vm->size)
3095 break;
3096 addr = ALIGN((unsigned long)cur->addr + cur->size, align);
3097 }
3098
3099 BUG_ON(addr > VMALLOC_END - vm->size);
3100 vm->addr = (void *)addr;
3101 vm->next = *p;
3102 *p = vm;
3103 kasan_populate_early_vm_area_shadow(vm->addr, vm->size);
3104 }
3105
clear_vm_uninitialized_flag(struct vm_struct * vm)3106 static void clear_vm_uninitialized_flag(struct vm_struct *vm)
3107 {
3108 /*
3109 * Before removing VM_UNINITIALIZED,
3110 * we should make sure that vm has proper values.
3111 * Pair with smp_rmb() in vread_iter() and vmalloc_info_show().
3112 */
3113 smp_wmb();
3114 vm->flags &= ~VM_UNINITIALIZED;
3115 }
3116
__get_vm_area_node(unsigned long size,unsigned long align,unsigned long shift,unsigned long flags,unsigned long start,unsigned long end,int node,gfp_t gfp_mask,const void * caller)3117 struct vm_struct *__get_vm_area_node(unsigned long size,
3118 unsigned long align, unsigned long shift, unsigned long flags,
3119 unsigned long start, unsigned long end, int node,
3120 gfp_t gfp_mask, const void *caller)
3121 {
3122 struct vmap_area *va;
3123 struct vm_struct *area;
3124 unsigned long requested_size = size;
3125
3126 BUG_ON(in_interrupt());
3127 size = ALIGN(size, 1ul << shift);
3128 if (unlikely(!size))
3129 return NULL;
3130
3131 if (flags & VM_IOREMAP)
3132 align = 1ul << clamp_t(int, get_count_order_long(size),
3133 PAGE_SHIFT, IOREMAP_MAX_ORDER);
3134
3135 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
3136 if (unlikely(!area))
3137 return NULL;
3138
3139 if (!(flags & VM_NO_GUARD))
3140 size += PAGE_SIZE;
3141
3142 area->flags = flags;
3143 area->caller = caller;
3144
3145 va = alloc_vmap_area(size, align, start, end, node, gfp_mask, 0, area);
3146 if (IS_ERR(va)) {
3147 kfree(area);
3148 return NULL;
3149 }
3150
3151 /*
3152 * Mark pages for non-VM_ALLOC mappings as accessible. Do it now as a
3153 * best-effort approach, as they can be mapped outside of vmalloc code.
3154 * For VM_ALLOC mappings, the pages are marked as accessible after
3155 * getting mapped in __vmalloc_node_range().
3156 * With hardware tag-based KASAN, marking is skipped for
3157 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc().
3158 */
3159 if (!(flags & VM_ALLOC))
3160 area->addr = kasan_unpoison_vmalloc(area->addr, requested_size,
3161 KASAN_VMALLOC_PROT_NORMAL);
3162
3163 return area;
3164 }
3165
__get_vm_area_caller(unsigned long size,unsigned long flags,unsigned long start,unsigned long end,const void * caller)3166 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
3167 unsigned long start, unsigned long end,
3168 const void *caller)
3169 {
3170 return __get_vm_area_node(size, 1, PAGE_SHIFT, flags, start, end,
3171 NUMA_NO_NODE, GFP_KERNEL, caller);
3172 }
3173
3174 /**
3175 * get_vm_area - reserve a contiguous kernel virtual area
3176 * @size: size of the area
3177 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
3178 *
3179 * Search an area of @size in the kernel virtual mapping area,
3180 * and reserved it for out purposes. Returns the area descriptor
3181 * on success or %NULL on failure.
3182 *
3183 * Return: the area descriptor on success or %NULL on failure.
3184 */
get_vm_area(unsigned long size,unsigned long flags)3185 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
3186 {
3187 return __get_vm_area_node(size, 1, PAGE_SHIFT, flags,
3188 VMALLOC_START, VMALLOC_END,
3189 NUMA_NO_NODE, GFP_KERNEL,
3190 __builtin_return_address(0));
3191 }
3192
get_vm_area_caller(unsigned long size,unsigned long flags,const void * caller)3193 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
3194 const void *caller)
3195 {
3196 return __get_vm_area_node(size, 1, PAGE_SHIFT, flags,
3197 VMALLOC_START, VMALLOC_END,
3198 NUMA_NO_NODE, GFP_KERNEL, caller);
3199 }
3200
3201 /**
3202 * find_vm_area - find a continuous kernel virtual area
3203 * @addr: base address
3204 *
3205 * Search for the kernel VM area starting at @addr, and return it.
3206 * It is up to the caller to do all required locking to keep the returned
3207 * pointer valid.
3208 *
3209 * Return: the area descriptor on success or %NULL on failure.
3210 */
find_vm_area(const void * addr)3211 struct vm_struct *find_vm_area(const void *addr)
3212 {
3213 struct vmap_area *va;
3214
3215 va = find_vmap_area((unsigned long)addr);
3216 if (!va)
3217 return NULL;
3218
3219 return va->vm;
3220 }
3221
3222 /**
3223 * remove_vm_area - find and remove a continuous kernel virtual area
3224 * @addr: base address
3225 *
3226 * Search for the kernel VM area starting at @addr, and remove it.
3227 * This function returns the found VM area, but using it is NOT safe
3228 * on SMP machines, except for its size or flags.
3229 *
3230 * Return: the area descriptor on success or %NULL on failure.
3231 */
remove_vm_area(const void * addr)3232 struct vm_struct *remove_vm_area(const void *addr)
3233 {
3234 struct vmap_area *va;
3235 struct vm_struct *vm;
3236
3237 might_sleep();
3238
3239 if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
3240 addr))
3241 return NULL;
3242
3243 va = find_unlink_vmap_area((unsigned long)addr);
3244 if (!va || !va->vm)
3245 return NULL;
3246 vm = va->vm;
3247
3248 debug_check_no_locks_freed(vm->addr, get_vm_area_size(vm));
3249 debug_check_no_obj_freed(vm->addr, get_vm_area_size(vm));
3250 kasan_free_module_shadow(vm);
3251 kasan_poison_vmalloc(vm->addr, get_vm_area_size(vm));
3252
3253 free_unmap_vmap_area(va);
3254 return vm;
3255 }
3256
set_area_direct_map(const struct vm_struct * area,int (* set_direct_map)(struct page * page))3257 static inline void set_area_direct_map(const struct vm_struct *area,
3258 int (*set_direct_map)(struct page *page))
3259 {
3260 int i;
3261
3262 /* HUGE_VMALLOC passes small pages to set_direct_map */
3263 for (i = 0; i < area->nr_pages; i++)
3264 if (page_address(area->pages[i]))
3265 set_direct_map(area->pages[i]);
3266 }
3267
3268 /*
3269 * Flush the vm mapping and reset the direct map.
3270 */
vm_reset_perms(struct vm_struct * area)3271 static void vm_reset_perms(struct vm_struct *area)
3272 {
3273 unsigned long start = ULONG_MAX, end = 0;
3274 unsigned int page_order = vm_area_page_order(area);
3275 int flush_dmap = 0;
3276 int i;
3277
3278 /*
3279 * Find the start and end range of the direct mappings to make sure that
3280 * the vm_unmap_aliases() flush includes the direct map.
3281 */
3282 for (i = 0; i < area->nr_pages; i += 1U << page_order) {
3283 unsigned long addr = (unsigned long)page_address(area->pages[i]);
3284
3285 if (addr) {
3286 unsigned long page_size;
3287
3288 page_size = PAGE_SIZE << page_order;
3289 start = min(addr, start);
3290 end = max(addr + page_size, end);
3291 flush_dmap = 1;
3292 }
3293 }
3294
3295 /*
3296 * Set direct map to something invalid so that it won't be cached if
3297 * there are any accesses after the TLB flush, then flush the TLB and
3298 * reset the direct map permissions to the default.
3299 */
3300 set_area_direct_map(area, set_direct_map_invalid_noflush);
3301 _vm_unmap_aliases(start, end, flush_dmap);
3302 set_area_direct_map(area, set_direct_map_default_noflush);
3303 }
3304
delayed_vfree_work(struct work_struct * w)3305 static void delayed_vfree_work(struct work_struct *w)
3306 {
3307 struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
3308 struct llist_node *t, *llnode;
3309
3310 llist_for_each_safe(llnode, t, llist_del_all(&p->list))
3311 vfree(llnode);
3312 }
3313
3314 /**
3315 * vfree_atomic - release memory allocated by vmalloc()
3316 * @addr: memory base address
3317 *
3318 * This one is just like vfree() but can be called in any atomic context
3319 * except NMIs.
3320 */
vfree_atomic(const void * addr)3321 void vfree_atomic(const void *addr)
3322 {
3323 struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);
3324
3325 BUG_ON(in_nmi());
3326 kmemleak_free(addr);
3327
3328 /*
3329 * Use raw_cpu_ptr() because this can be called from preemptible
3330 * context. Preemption is absolutely fine here, because the llist_add()
3331 * implementation is lockless, so it works even if we are adding to
3332 * another cpu's list. schedule_work() should be fine with this too.
3333 */
3334 if (addr && llist_add((struct llist_node *)addr, &p->list))
3335 schedule_work(&p->wq);
3336 }
3337
3338 /**
3339 * vfree - Release memory allocated by vmalloc()
3340 * @addr: Memory base address
3341 *
3342 * Free the virtually continuous memory area starting at @addr, as obtained
3343 * from one of the vmalloc() family of APIs. This will usually also free the
3344 * physical memory underlying the virtual allocation, but that memory is
3345 * reference counted, so it will not be freed until the last user goes away.
3346 *
3347 * If @addr is NULL, no operation is performed.
3348 *
3349 * Context:
3350 * May sleep if called *not* from interrupt context.
3351 * Must not be called in NMI context (strictly speaking, it could be
3352 * if we have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
3353 * conventions for vfree() arch-dependent would be a really bad idea).
3354 */
vfree(const void * addr)3355 void vfree(const void *addr)
3356 {
3357 bool bypass = false;
3358 struct vm_struct *vm;
3359 int i;
3360
3361 trace_android_rvh_vfree_bypass(addr, &bypass);
3362 if (bypass)
3363 return;
3364
3365 if (unlikely(in_interrupt())) {
3366 vfree_atomic(addr);
3367 return;
3368 }
3369
3370 BUG_ON(in_nmi());
3371 kmemleak_free(addr);
3372 might_sleep();
3373
3374 if (!addr)
3375 return;
3376
3377 vm = remove_vm_area(addr);
3378 if (unlikely(!vm)) {
3379 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
3380 addr);
3381 return;
3382 }
3383
3384 if (unlikely(vm->flags & VM_FLUSH_RESET_PERMS))
3385 vm_reset_perms(vm);
3386 for (i = 0; i < vm->nr_pages; i++) {
3387 struct page *page = vm->pages[i];
3388
3389 BUG_ON(!page);
3390 if (!(vm->flags & VM_MAP_PUT_PAGES))
3391 mod_memcg_page_state(page, MEMCG_VMALLOC, -1);
3392 /*
3393 * High-order allocs for huge vmallocs are split, so
3394 * can be freed as an array of order-0 allocations
3395 */
3396 __free_page(page);
3397 cond_resched();
3398 }
3399 if (!(vm->flags & VM_MAP_PUT_PAGES))
3400 atomic_long_sub(vm->nr_pages, &nr_vmalloc_pages);
3401 kvfree(vm->pages);
3402 kfree(vm);
3403 }
3404 EXPORT_SYMBOL(vfree);
3405
3406 /**
3407 * vunmap - release virtual mapping obtained by vmap()
3408 * @addr: memory base address
3409 *
3410 * Free the virtually contiguous memory area starting at @addr,
3411 * which was created from the page array passed to vmap().
3412 *
3413 * Must not be called in interrupt context.
3414 */
vunmap(const void * addr)3415 void vunmap(const void *addr)
3416 {
3417 struct vm_struct *vm;
3418
3419 BUG_ON(in_interrupt());
3420 might_sleep();
3421
3422 if (!addr)
3423 return;
3424 vm = remove_vm_area(addr);
3425 if (unlikely(!vm)) {
3426 WARN(1, KERN_ERR "Trying to vunmap() nonexistent vm area (%p)\n",
3427 addr);
3428 return;
3429 }
3430 kfree(vm);
3431 }
3432 EXPORT_SYMBOL(vunmap);
3433
3434 /**
3435 * vmap - map an array of pages into virtually contiguous space
3436 * @pages: array of page pointers
3437 * @count: number of pages to map
3438 * @flags: vm_area->flags
3439 * @prot: page protection for the mapping
3440 *
3441 * Maps @count pages from @pages into contiguous kernel virtual space.
3442 * If @flags contains %VM_MAP_PUT_PAGES the ownership of the pages array itself
3443 * (which must be kmalloc or vmalloc memory) and one reference per pages in it
3444 * are transferred from the caller to vmap(), and will be freed / dropped when
3445 * vfree() is called on the return value.
3446 *
3447 * Return: the address of the area or %NULL on failure
3448 */
vmap(struct page ** pages,unsigned int count,unsigned long flags,pgprot_t prot)3449 void *vmap(struct page **pages, unsigned int count,
3450 unsigned long flags, pgprot_t prot)
3451 {
3452 struct vm_struct *area;
3453 unsigned long addr;
3454 unsigned long size; /* In bytes */
3455
3456 might_sleep();
3457
3458 if (WARN_ON_ONCE(flags & VM_FLUSH_RESET_PERMS))
3459 return NULL;
3460
3461 /*
3462 * Your top guard is someone else's bottom guard. Not having a top
3463 * guard compromises someone else's mappings too.
3464 */
3465 if (WARN_ON_ONCE(flags & VM_NO_GUARD))
3466 flags &= ~VM_NO_GUARD;
3467
3468 if (count > totalram_pages())
3469 return NULL;
3470
3471 size = (unsigned long)count << PAGE_SHIFT;
3472 area = get_vm_area_caller(size, flags, __builtin_return_address(0));
3473 if (!area)
3474 return NULL;
3475
3476 addr = (unsigned long)area->addr;
3477 if (vmap_pages_range(addr, addr + size, pgprot_nx(prot),
3478 pages, PAGE_SHIFT) < 0) {
3479 vunmap(area->addr);
3480 return NULL;
3481 }
3482
3483 if (flags & VM_MAP_PUT_PAGES) {
3484 area->pages = pages;
3485 area->nr_pages = count;
3486 }
3487 return area->addr;
3488 }
3489 EXPORT_SYMBOL(vmap);
3490
3491 #ifdef CONFIG_VMAP_PFN
3492 struct vmap_pfn_data {
3493 unsigned long *pfns;
3494 pgprot_t prot;
3495 unsigned int idx;
3496 };
3497
vmap_pfn_apply(pte_t * pte,unsigned long addr,void * private)3498 static int vmap_pfn_apply(pte_t *pte, unsigned long addr, void *private)
3499 {
3500 struct vmap_pfn_data *data = private;
3501 unsigned long pfn = data->pfns[data->idx];
3502 pte_t ptent;
3503
3504 if (WARN_ON_ONCE(pfn_valid(pfn)))
3505 return -EINVAL;
3506
3507 ptent = pte_mkspecial(pfn_pte(pfn, data->prot));
3508 set_pte_at(&init_mm, addr, pte, ptent);
3509
3510 data->idx++;
3511 return 0;
3512 }
3513
3514 /**
3515 * vmap_pfn - map an array of PFNs into virtually contiguous space
3516 * @pfns: array of PFNs
3517 * @count: number of pages to map
3518 * @prot: page protection for the mapping
3519 *
3520 * Maps @count PFNs from @pfns into contiguous kernel virtual space and returns
3521 * the start address of the mapping.
3522 */
vmap_pfn(unsigned long * pfns,unsigned int count,pgprot_t prot)3523 void *vmap_pfn(unsigned long *pfns, unsigned int count, pgprot_t prot)
3524 {
3525 struct vmap_pfn_data data = { .pfns = pfns, .prot = pgprot_nx(prot) };
3526 struct vm_struct *area;
3527
3528 area = get_vm_area_caller(count * PAGE_SIZE, VM_IOREMAP,
3529 __builtin_return_address(0));
3530 if (!area)
3531 return NULL;
3532 if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
3533 count * PAGE_SIZE, vmap_pfn_apply, &data)) {
3534 free_vm_area(area);
3535 return NULL;
3536 }
3537
3538 flush_cache_vmap((unsigned long)area->addr,
3539 (unsigned long)area->addr + count * PAGE_SIZE);
3540
3541 return area->addr;
3542 }
3543 EXPORT_SYMBOL_GPL(vmap_pfn);
3544 #endif /* CONFIG_VMAP_PFN */
3545
3546 static inline unsigned int
vm_area_alloc_pages(gfp_t gfp,int nid,unsigned int order,unsigned int nr_pages,struct page ** pages)3547 vm_area_alloc_pages(gfp_t gfp, int nid,
3548 unsigned int order, unsigned int nr_pages, struct page **pages)
3549 {
3550 unsigned int nr_allocated = 0;
3551 struct page *page;
3552 int i;
3553
3554 /*
3555 * For order-0 pages we make use of bulk allocator, if
3556 * the page array is partly or not at all populated due
3557 * to fails, fallback to a single page allocator that is
3558 * more permissive.
3559 */
3560 if (!order) {
3561 while (nr_allocated < nr_pages) {
3562 unsigned int nr, nr_pages_request;
3563
3564 /*
3565 * A maximum allowed request is hard-coded and is 100
3566 * pages per call. That is done in order to prevent a
3567 * long preemption off scenario in the bulk-allocator
3568 * so the range is [1:100].
3569 */
3570 nr_pages_request = min(100U, nr_pages - nr_allocated);
3571
3572 /* memory allocation should consider mempolicy, we can't
3573 * wrongly use nearest node when nid == NUMA_NO_NODE,
3574 * otherwise memory may be allocated in only one node,
3575 * but mempolicy wants to alloc memory by interleaving.
3576 */
3577 if (IS_ENABLED(CONFIG_NUMA) && nid == NUMA_NO_NODE)
3578 nr = alloc_pages_bulk_array_mempolicy_noprof(gfp,
3579 nr_pages_request,
3580 pages + nr_allocated);
3581 else
3582 nr = alloc_pages_bulk_array_node_noprof(gfp, nid,
3583 nr_pages_request,
3584 pages + nr_allocated);
3585
3586 nr_allocated += nr;
3587 cond_resched();
3588
3589 /*
3590 * If zero or pages were obtained partly,
3591 * fallback to a single page allocator.
3592 */
3593 if (nr != nr_pages_request)
3594 break;
3595 }
3596 }
3597
3598 /* High-order pages or fallback path if "bulk" fails. */
3599 while (nr_allocated < nr_pages) {
3600 if (!(gfp & __GFP_NOFAIL) && fatal_signal_pending(current))
3601 break;
3602
3603 if (nid == NUMA_NO_NODE)
3604 page = alloc_pages_noprof(gfp, order);
3605 else
3606 page = alloc_pages_node_noprof(nid, gfp, order);
3607
3608 if (unlikely(!page))
3609 break;
3610
3611 /*
3612 * High-order allocations must be able to be treated as
3613 * independent small pages by callers (as they can with
3614 * small-page vmallocs). Some drivers do their own refcounting
3615 * on vmalloc_to_page() pages, some use page->mapping,
3616 * page->lru, etc.
3617 */
3618 if (order)
3619 split_page(page, order);
3620
3621 /*
3622 * Careful, we allocate and map page-order pages, but
3623 * tracking is done per PAGE_SIZE page so as to keep the
3624 * vm_struct APIs independent of the physical/mapped size.
3625 */
3626 for (i = 0; i < (1U << order); i++)
3627 pages[nr_allocated + i] = page + i;
3628
3629 cond_resched();
3630 nr_allocated += 1U << order;
3631 }
3632
3633 return nr_allocated;
3634 }
3635
__vmalloc_area_node(struct vm_struct * area,gfp_t gfp_mask,pgprot_t prot,unsigned int page_shift,int node)3636 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
3637 pgprot_t prot, unsigned int page_shift,
3638 int node)
3639 {
3640 const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
3641 bool nofail = gfp_mask & __GFP_NOFAIL;
3642 unsigned long addr = (unsigned long)area->addr;
3643 unsigned long size = get_vm_area_size(area);
3644 unsigned long array_size;
3645 unsigned int nr_small_pages = size >> PAGE_SHIFT;
3646 unsigned int page_order;
3647 unsigned int flags;
3648 int ret;
3649
3650 array_size = (unsigned long)nr_small_pages * sizeof(struct page *);
3651
3652 if (!(gfp_mask & (GFP_DMA | GFP_DMA32)))
3653 gfp_mask |= __GFP_HIGHMEM;
3654
3655 /* Please note that the recursion is strictly bounded. */
3656 if (array_size > PAGE_SIZE) {
3657 area->pages = __vmalloc_node_noprof(array_size, 1, nested_gfp, node,
3658 area->caller);
3659 } else {
3660 area->pages = kmalloc_node_noprof(array_size, nested_gfp, node);
3661 }
3662
3663 if (!area->pages) {
3664 warn_alloc(gfp_mask, NULL,
3665 "vmalloc error: size %lu, failed to allocated page array size %lu",
3666 nr_small_pages * PAGE_SIZE, array_size);
3667 free_vm_area(area);
3668 return NULL;
3669 }
3670
3671 set_vm_area_page_order(area, page_shift - PAGE_SHIFT);
3672 page_order = vm_area_page_order(area);
3673
3674 /*
3675 * High-order nofail allocations are really expensive and
3676 * potentially dangerous (pre-mature OOM, disruptive reclaim
3677 * and compaction etc.
3678 *
3679 * Please note, the __vmalloc_node_range_noprof() falls-back
3680 * to order-0 pages if high-order attempt is unsuccessful.
3681 */
3682 area->nr_pages = vm_area_alloc_pages((page_order ?
3683 gfp_mask & ~__GFP_NOFAIL : gfp_mask) | __GFP_NOWARN,
3684 node, page_order, nr_small_pages, area->pages);
3685
3686 atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
3687 if (gfp_mask & __GFP_ACCOUNT) {
3688 int i;
3689
3690 for (i = 0; i < area->nr_pages; i++)
3691 mod_memcg_page_state(area->pages[i], MEMCG_VMALLOC, 1);
3692 }
3693
3694 /*
3695 * If not enough pages were obtained to accomplish an
3696 * allocation request, free them via vfree() if any.
3697 */
3698 if (area->nr_pages != nr_small_pages) {
3699 /*
3700 * vm_area_alloc_pages() can fail due to insufficient memory but
3701 * also:-
3702 *
3703 * - a pending fatal signal
3704 * - insufficient huge page-order pages
3705 *
3706 * Since we always retry allocations at order-0 in the huge page
3707 * case a warning for either is spurious.
3708 */
3709 if (!fatal_signal_pending(current) && page_order == 0)
3710 warn_alloc(gfp_mask, NULL,
3711 "vmalloc error: size %lu, failed to allocate pages",
3712 area->nr_pages * PAGE_SIZE);
3713 goto fail;
3714 }
3715
3716 /*
3717 * page tables allocations ignore external gfp mask, enforce it
3718 * by the scope API
3719 */
3720 if ((gfp_mask & (__GFP_FS | __GFP_IO)) == __GFP_IO)
3721 flags = memalloc_nofs_save();
3722 else if ((gfp_mask & (__GFP_FS | __GFP_IO)) == 0)
3723 flags = memalloc_noio_save();
3724
3725 do {
3726 ret = vmap_pages_range(addr, addr + size, prot, area->pages,
3727 page_shift);
3728 if (nofail && (ret < 0))
3729 schedule_timeout_uninterruptible(1);
3730 } while (nofail && (ret < 0));
3731
3732 if ((gfp_mask & (__GFP_FS | __GFP_IO)) == __GFP_IO)
3733 memalloc_nofs_restore(flags);
3734 else if ((gfp_mask & (__GFP_FS | __GFP_IO)) == 0)
3735 memalloc_noio_restore(flags);
3736
3737 if (ret < 0) {
3738 warn_alloc(gfp_mask, NULL,
3739 "vmalloc error: size %lu, failed to map pages",
3740 area->nr_pages * PAGE_SIZE);
3741 goto fail;
3742 }
3743
3744 return area->addr;
3745
3746 fail:
3747 vfree(area->addr);
3748 return NULL;
3749 }
3750
3751 /**
3752 * __vmalloc_node_range - allocate virtually contiguous memory
3753 * @size: allocation size
3754 * @align: desired alignment
3755 * @start: vm area range start
3756 * @end: vm area range end
3757 * @gfp_mask: flags for the page level allocator
3758 * @prot: protection mask for the allocated pages
3759 * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD)
3760 * @node: node to use for allocation or NUMA_NO_NODE
3761 * @caller: caller's return address
3762 *
3763 * Allocate enough pages to cover @size from the page level
3764 * allocator with @gfp_mask flags. Please note that the full set of gfp
3765 * flags are not supported. GFP_KERNEL, GFP_NOFS and GFP_NOIO are all
3766 * supported.
3767 * Zone modifiers are not supported. From the reclaim modifiers
3768 * __GFP_DIRECT_RECLAIM is required (aka GFP_NOWAIT is not supported)
3769 * and only __GFP_NOFAIL is supported (i.e. __GFP_NORETRY and
3770 * __GFP_RETRY_MAYFAIL are not supported).
3771 *
3772 * __GFP_NOWARN can be used to suppress failures messages.
3773 *
3774 * Map them into contiguous kernel virtual space, using a pagetable
3775 * protection of @prot.
3776 *
3777 * Return: the address of the area or %NULL on failure
3778 */
__vmalloc_node_range_noprof(unsigned long size,unsigned long align,unsigned long start,unsigned long end,gfp_t gfp_mask,pgprot_t prot,unsigned long vm_flags,int node,const void * caller)3779 void *__vmalloc_node_range_noprof(unsigned long size, unsigned long align,
3780 unsigned long start, unsigned long end, gfp_t gfp_mask,
3781 pgprot_t prot, unsigned long vm_flags, int node,
3782 const void *caller)
3783 {
3784 struct vm_struct *area;
3785 void *ret;
3786 kasan_vmalloc_flags_t kasan_flags = KASAN_VMALLOC_NONE;
3787 unsigned long real_size = size;
3788 unsigned long real_align = align;
3789 unsigned int shift = PAGE_SHIFT;
3790
3791 if (WARN_ON_ONCE(!size))
3792 return NULL;
3793
3794 if ((size >> PAGE_SHIFT) > totalram_pages()) {
3795 warn_alloc(gfp_mask, NULL,
3796 "vmalloc error: size %lu, exceeds total pages",
3797 real_size);
3798 return NULL;
3799 }
3800
3801 if (vmap_allow_huge && (vm_flags & VM_ALLOW_HUGE_VMAP)) {
3802 unsigned long size_per_node;
3803
3804 /*
3805 * Try huge pages. Only try for PAGE_KERNEL allocations,
3806 * others like modules don't yet expect huge pages in
3807 * their allocations due to apply_to_page_range not
3808 * supporting them.
3809 */
3810
3811 size_per_node = size;
3812 if (node == NUMA_NO_NODE)
3813 size_per_node /= num_online_nodes();
3814 if (arch_vmap_pmd_supported(prot) && size_per_node >= PMD_SIZE)
3815 shift = PMD_SHIFT;
3816 else
3817 shift = arch_vmap_pte_supported_shift(size_per_node);
3818
3819 align = max(real_align, 1UL << shift);
3820 size = ALIGN(real_size, 1UL << shift);
3821 }
3822
3823 again:
3824 area = __get_vm_area_node(real_size, align, shift, VM_ALLOC |
3825 VM_UNINITIALIZED | vm_flags, start, end, node,
3826 gfp_mask, caller);
3827 if (!area) {
3828 bool nofail = gfp_mask & __GFP_NOFAIL;
3829 warn_alloc(gfp_mask, NULL,
3830 "vmalloc error: size %lu, vm_struct allocation failed%s",
3831 real_size, (nofail) ? ". Retrying." : "");
3832 if (nofail) {
3833 schedule_timeout_uninterruptible(1);
3834 goto again;
3835 }
3836 goto fail;
3837 }
3838
3839 /*
3840 * Prepare arguments for __vmalloc_area_node() and
3841 * kasan_unpoison_vmalloc().
3842 */
3843 if (pgprot_val(prot) == pgprot_val(PAGE_KERNEL)) {
3844 if (kasan_hw_tags_enabled()) {
3845 /*
3846 * Modify protection bits to allow tagging.
3847 * This must be done before mapping.
3848 */
3849 prot = arch_vmap_pgprot_tagged(prot);
3850
3851 /*
3852 * Skip page_alloc poisoning and zeroing for physical
3853 * pages backing VM_ALLOC mapping. Memory is instead
3854 * poisoned and zeroed by kasan_unpoison_vmalloc().
3855 */
3856 gfp_mask |= __GFP_SKIP_KASAN | __GFP_SKIP_ZERO;
3857 }
3858
3859 /* Take note that the mapping is PAGE_KERNEL. */
3860 kasan_flags |= KASAN_VMALLOC_PROT_NORMAL;
3861 }
3862
3863 /* Allocate physical pages and map them into vmalloc space. */
3864 ret = __vmalloc_area_node(area, gfp_mask, prot, shift, node);
3865 if (!ret)
3866 goto fail;
3867
3868 /*
3869 * Mark the pages as accessible, now that they are mapped.
3870 * The condition for setting KASAN_VMALLOC_INIT should complement the
3871 * one in post_alloc_hook() with regards to the __GFP_SKIP_ZERO check
3872 * to make sure that memory is initialized under the same conditions.
3873 * Tag-based KASAN modes only assign tags to normal non-executable
3874 * allocations, see __kasan_unpoison_vmalloc().
3875 */
3876 kasan_flags |= KASAN_VMALLOC_VM_ALLOC;
3877 if (!want_init_on_free() && want_init_on_alloc(gfp_mask) &&
3878 (gfp_mask & __GFP_SKIP_ZERO))
3879 kasan_flags |= KASAN_VMALLOC_INIT;
3880 /* KASAN_VMALLOC_PROT_NORMAL already set if required. */
3881 area->addr = kasan_unpoison_vmalloc(area->addr, real_size, kasan_flags);
3882
3883 /*
3884 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
3885 * flag. It means that vm_struct is not fully initialized.
3886 * Now, it is fully initialized, so remove this flag here.
3887 */
3888 clear_vm_uninitialized_flag(area);
3889
3890 size = PAGE_ALIGN(size);
3891 if (!(vm_flags & VM_DEFER_KMEMLEAK))
3892 kmemleak_vmalloc(area, size, gfp_mask);
3893
3894 return area->addr;
3895
3896 fail:
3897 if (shift > PAGE_SHIFT) {
3898 shift = PAGE_SHIFT;
3899 align = real_align;
3900 size = real_size;
3901 goto again;
3902 }
3903
3904 return NULL;
3905 }
3906
3907 /**
3908 * __vmalloc_node - allocate virtually contiguous memory
3909 * @size: allocation size
3910 * @align: desired alignment
3911 * @gfp_mask: flags for the page level allocator
3912 * @node: node to use for allocation or NUMA_NO_NODE
3913 * @caller: caller's return address
3914 *
3915 * Allocate enough pages to cover @size from the page level allocator with
3916 * @gfp_mask flags. Map them into contiguous kernel virtual space.
3917 *
3918 * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
3919 * and __GFP_NOFAIL are not supported
3920 *
3921 * Any use of gfp flags outside of GFP_KERNEL should be consulted
3922 * with mm people.
3923 *
3924 * Return: pointer to the allocated memory or %NULL on error
3925 */
__vmalloc_node_noprof(unsigned long size,unsigned long align,gfp_t gfp_mask,int node,const void * caller)3926 void *__vmalloc_node_noprof(unsigned long size, unsigned long align,
3927 gfp_t gfp_mask, int node, const void *caller)
3928 {
3929 void *addr = NULL;
3930
3931 trace_android_rvh_vmalloc_node_bypass(size, gfp_mask, &addr);
3932 if (addr)
3933 return addr;
3934
3935 return __vmalloc_node_range_noprof(size, align, VMALLOC_START, VMALLOC_END,
3936 gfp_mask, PAGE_KERNEL, 0, node, caller);
3937 }
3938 /*
3939 * This is only for performance analysis of vmalloc and stress purpose.
3940 * It is required by vmalloc test module, therefore do not use it other
3941 * than that.
3942 */
3943 #ifdef CONFIG_TEST_VMALLOC_MODULE
3944 EXPORT_SYMBOL_GPL(__vmalloc_node_noprof);
3945 #endif
3946
__vmalloc_noprof(unsigned long size,gfp_t gfp_mask)3947 void *__vmalloc_noprof(unsigned long size, gfp_t gfp_mask)
3948 {
3949 return __vmalloc_node_noprof(size, 1, gfp_mask, NUMA_NO_NODE,
3950 __builtin_return_address(0));
3951 }
3952 EXPORT_SYMBOL(__vmalloc_noprof);
3953
3954 /**
3955 * vmalloc - allocate virtually contiguous memory
3956 * @size: allocation size
3957 *
3958 * Allocate enough pages to cover @size from the page level
3959 * allocator and map them into contiguous kernel virtual space.
3960 *
3961 * For tight control over page level allocator and protection flags
3962 * use __vmalloc() instead.
3963 *
3964 * Return: pointer to the allocated memory or %NULL on error
3965 */
vmalloc_noprof(unsigned long size)3966 void *vmalloc_noprof(unsigned long size)
3967 {
3968 return __vmalloc_node_noprof(size, 1, GFP_KERNEL, NUMA_NO_NODE,
3969 __builtin_return_address(0));
3970 }
3971 EXPORT_SYMBOL(vmalloc_noprof);
3972
3973 /**
3974 * vmalloc_huge - allocate virtually contiguous memory, allow huge pages
3975 * @size: allocation size
3976 * @gfp_mask: flags for the page level allocator
3977 *
3978 * Allocate enough pages to cover @size from the page level
3979 * allocator and map them into contiguous kernel virtual space.
3980 * If @size is greater than or equal to PMD_SIZE, allow using
3981 * huge pages for the memory
3982 *
3983 * Return: pointer to the allocated memory or %NULL on error
3984 */
vmalloc_huge_noprof(unsigned long size,gfp_t gfp_mask)3985 void *vmalloc_huge_noprof(unsigned long size, gfp_t gfp_mask)
3986 {
3987 return __vmalloc_node_range_noprof(size, 1, VMALLOC_START, VMALLOC_END,
3988 gfp_mask, PAGE_KERNEL, VM_ALLOW_HUGE_VMAP,
3989 NUMA_NO_NODE, __builtin_return_address(0));
3990 }
3991 EXPORT_SYMBOL_GPL(vmalloc_huge_noprof);
3992
3993 /**
3994 * vzalloc - allocate virtually contiguous memory with zero fill
3995 * @size: allocation size
3996 *
3997 * Allocate enough pages to cover @size from the page level
3998 * allocator and map them into contiguous kernel virtual space.
3999 * The memory allocated is set to zero.
4000 *
4001 * For tight control over page level allocator and protection flags
4002 * use __vmalloc() instead.
4003 *
4004 * Return: pointer to the allocated memory or %NULL on error
4005 */
vzalloc_noprof(unsigned long size)4006 void *vzalloc_noprof(unsigned long size)
4007 {
4008 return __vmalloc_node_noprof(size, 1, GFP_KERNEL | __GFP_ZERO, NUMA_NO_NODE,
4009 __builtin_return_address(0));
4010 }
4011 EXPORT_SYMBOL(vzalloc_noprof);
4012
4013 /**
4014 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
4015 * @size: allocation size
4016 *
4017 * The resulting memory area is zeroed so it can be mapped to userspace
4018 * without leaking data.
4019 *
4020 * Return: pointer to the allocated memory or %NULL on error
4021 */
vmalloc_user_noprof(unsigned long size)4022 void *vmalloc_user_noprof(unsigned long size)
4023 {
4024 return __vmalloc_node_range_noprof(size, SHMLBA, VMALLOC_START, VMALLOC_END,
4025 GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL,
4026 VM_USERMAP, NUMA_NO_NODE,
4027 __builtin_return_address(0));
4028 }
4029 EXPORT_SYMBOL(vmalloc_user_noprof);
4030
4031 /**
4032 * vmalloc_node - allocate memory on a specific node
4033 * @size: allocation size
4034 * @node: numa node
4035 *
4036 * Allocate enough pages to cover @size from the page level
4037 * allocator and map them into contiguous kernel virtual space.
4038 *
4039 * For tight control over page level allocator and protection flags
4040 * use __vmalloc() instead.
4041 *
4042 * Return: pointer to the allocated memory or %NULL on error
4043 */
vmalloc_node_noprof(unsigned long size,int node)4044 void *vmalloc_node_noprof(unsigned long size, int node)
4045 {
4046 return __vmalloc_node_noprof(size, 1, GFP_KERNEL, node,
4047 __builtin_return_address(0));
4048 }
4049 EXPORT_SYMBOL(vmalloc_node_noprof);
4050
4051 /**
4052 * vzalloc_node - allocate memory on a specific node with zero fill
4053 * @size: allocation size
4054 * @node: numa node
4055 *
4056 * Allocate enough pages to cover @size from the page level
4057 * allocator and map them into contiguous kernel virtual space.
4058 * The memory allocated is set to zero.
4059 *
4060 * Return: pointer to the allocated memory or %NULL on error
4061 */
vzalloc_node_noprof(unsigned long size,int node)4062 void *vzalloc_node_noprof(unsigned long size, int node)
4063 {
4064 return __vmalloc_node_noprof(size, 1, GFP_KERNEL | __GFP_ZERO, node,
4065 __builtin_return_address(0));
4066 }
4067 EXPORT_SYMBOL(vzalloc_node_noprof);
4068
4069 /**
4070 * vrealloc - reallocate virtually contiguous memory; contents remain unchanged
4071 * @p: object to reallocate memory for
4072 * @size: the size to reallocate
4073 * @flags: the flags for the page level allocator
4074 *
4075 * If @p is %NULL, vrealloc() behaves exactly like vmalloc(). If @size is 0 and
4076 * @p is not a %NULL pointer, the object pointed to is freed.
4077 *
4078 * If __GFP_ZERO logic is requested, callers must ensure that, starting with the
4079 * initial memory allocation, every subsequent call to this API for the same
4080 * memory allocation is flagged with __GFP_ZERO. Otherwise, it is possible that
4081 * __GFP_ZERO is not fully honored by this API.
4082 *
4083 * In any case, the contents of the object pointed to are preserved up to the
4084 * lesser of the new and old sizes.
4085 *
4086 * This function must not be called concurrently with itself or vfree() for the
4087 * same memory allocation.
4088 *
4089 * Return: pointer to the allocated memory; %NULL if @size is zero or in case of
4090 * failure
4091 */
vrealloc_noprof(const void * p,size_t size,gfp_t flags)4092 void *vrealloc_noprof(const void *p, size_t size, gfp_t flags)
4093 {
4094 size_t old_size = 0;
4095 void *n;
4096
4097 if (!size) {
4098 vfree(p);
4099 return NULL;
4100 }
4101
4102 if (p) {
4103 struct vm_struct *vm;
4104
4105 vm = find_vm_area(p);
4106 if (unlikely(!vm)) {
4107 WARN(1, "Trying to vrealloc() nonexistent vm area (%p)\n", p);
4108 return NULL;
4109 }
4110
4111 old_size = get_vm_area_size(vm);
4112 }
4113
4114 /*
4115 * TODO: Shrink the vm_area, i.e. unmap and free unused pages. What
4116 * would be a good heuristic for when to shrink the vm_area?
4117 */
4118 if (size <= old_size) {
4119 /* Zero out spare memory. */
4120 if (want_init_on_alloc(flags))
4121 memset((void *)p + size, 0, old_size - size);
4122 kasan_poison_vmalloc(p + size, old_size - size);
4123 kasan_unpoison_vmalloc(p, size, KASAN_VMALLOC_PROT_NORMAL);
4124 return (void *)p;
4125 }
4126
4127 /* TODO: Grow the vm_area, i.e. allocate and map additional pages. */
4128 n = __vmalloc_noprof(size, flags);
4129 if (!n)
4130 return NULL;
4131
4132 if (p) {
4133 memcpy(n, p, old_size);
4134 vfree(p);
4135 }
4136
4137 return n;
4138 }
4139
4140 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
4141 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
4142 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
4143 #define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
4144 #else
4145 /*
4146 * 64b systems should always have either DMA or DMA32 zones. For others
4147 * GFP_DMA32 should do the right thing and use the normal zone.
4148 */
4149 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
4150 #endif
4151
4152 /**
4153 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
4154 * @size: allocation size
4155 *
4156 * Allocate enough 32bit PA addressable pages to cover @size from the
4157 * page level allocator and map them into contiguous kernel virtual space.
4158 *
4159 * Return: pointer to the allocated memory or %NULL on error
4160 */
vmalloc_32_noprof(unsigned long size)4161 void *vmalloc_32_noprof(unsigned long size)
4162 {
4163 return __vmalloc_node_noprof(size, 1, GFP_VMALLOC32, NUMA_NO_NODE,
4164 __builtin_return_address(0));
4165 }
4166 EXPORT_SYMBOL(vmalloc_32_noprof);
4167
4168 /**
4169 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
4170 * @size: allocation size
4171 *
4172 * The resulting memory area is 32bit addressable and zeroed so it can be
4173 * mapped to userspace without leaking data.
4174 *
4175 * Return: pointer to the allocated memory or %NULL on error
4176 */
vmalloc_32_user_noprof(unsigned long size)4177 void *vmalloc_32_user_noprof(unsigned long size)
4178 {
4179 return __vmalloc_node_range_noprof(size, SHMLBA, VMALLOC_START, VMALLOC_END,
4180 GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
4181 VM_USERMAP, NUMA_NO_NODE,
4182 __builtin_return_address(0));
4183 }
4184 EXPORT_SYMBOL(vmalloc_32_user_noprof);
4185
4186 /*
4187 * Atomically zero bytes in the iterator.
4188 *
4189 * Returns the number of zeroed bytes.
4190 */
zero_iter(struct iov_iter * iter,size_t count)4191 static size_t zero_iter(struct iov_iter *iter, size_t count)
4192 {
4193 size_t remains = count;
4194
4195 while (remains > 0) {
4196 size_t num, copied;
4197
4198 num = min_t(size_t, remains, PAGE_SIZE);
4199 copied = copy_page_to_iter_nofault(ZERO_PAGE(0), 0, num, iter);
4200 remains -= copied;
4201
4202 if (copied < num)
4203 break;
4204 }
4205
4206 return count - remains;
4207 }
4208
4209 /*
4210 * small helper routine, copy contents to iter from addr.
4211 * If the page is not present, fill zero.
4212 *
4213 * Returns the number of copied bytes.
4214 */
aligned_vread_iter(struct iov_iter * iter,const char * addr,size_t count)4215 static size_t aligned_vread_iter(struct iov_iter *iter,
4216 const char *addr, size_t count)
4217 {
4218 size_t remains = count;
4219 struct page *page;
4220
4221 while (remains > 0) {
4222 unsigned long offset, length;
4223 size_t copied = 0;
4224
4225 offset = offset_in_page(addr);
4226 length = PAGE_SIZE - offset;
4227 if (length > remains)
4228 length = remains;
4229 page = vmalloc_to_page(addr);
4230 /*
4231 * To do safe access to this _mapped_ area, we need lock. But
4232 * adding lock here means that we need to add overhead of
4233 * vmalloc()/vfree() calls for this _debug_ interface, rarely
4234 * used. Instead of that, we'll use an local mapping via
4235 * copy_page_to_iter_nofault() and accept a small overhead in
4236 * this access function.
4237 */
4238 if (page)
4239 copied = copy_page_to_iter_nofault(page, offset,
4240 length, iter);
4241 else
4242 copied = zero_iter(iter, length);
4243
4244 addr += copied;
4245 remains -= copied;
4246
4247 if (copied != length)
4248 break;
4249 }
4250
4251 return count - remains;
4252 }
4253
4254 /*
4255 * Read from a vm_map_ram region of memory.
4256 *
4257 * Returns the number of copied bytes.
4258 */
vmap_ram_vread_iter(struct iov_iter * iter,const char * addr,size_t count,unsigned long flags)4259 static size_t vmap_ram_vread_iter(struct iov_iter *iter, const char *addr,
4260 size_t count, unsigned long flags)
4261 {
4262 char *start;
4263 struct vmap_block *vb;
4264 struct xarray *xa;
4265 unsigned long offset;
4266 unsigned int rs, re;
4267 size_t remains, n;
4268
4269 /*
4270 * If it's area created by vm_map_ram() interface directly, but
4271 * not further subdividing and delegating management to vmap_block,
4272 * handle it here.
4273 */
4274 if (!(flags & VMAP_BLOCK))
4275 return aligned_vread_iter(iter, addr, count);
4276
4277 remains = count;
4278
4279 /*
4280 * Area is split into regions and tracked with vmap_block, read out
4281 * each region and zero fill the hole between regions.
4282 */
4283 xa = addr_to_vb_xa((unsigned long) addr);
4284 vb = xa_load(xa, addr_to_vb_idx((unsigned long)addr));
4285 if (!vb)
4286 goto finished_zero;
4287
4288 spin_lock(&vb->lock);
4289 if (bitmap_empty(vb->used_map, VMAP_BBMAP_BITS)) {
4290 spin_unlock(&vb->lock);
4291 goto finished_zero;
4292 }
4293
4294 for_each_set_bitrange(rs, re, vb->used_map, VMAP_BBMAP_BITS) {
4295 size_t copied;
4296
4297 if (remains == 0)
4298 goto finished;
4299
4300 start = vmap_block_vaddr(vb->va->va_start, rs);
4301
4302 if (addr < start) {
4303 size_t to_zero = min_t(size_t, start - addr, remains);
4304 size_t zeroed = zero_iter(iter, to_zero);
4305
4306 addr += zeroed;
4307 remains -= zeroed;
4308
4309 if (remains == 0 || zeroed != to_zero)
4310 goto finished;
4311 }
4312
4313 /*it could start reading from the middle of used region*/
4314 offset = offset_in_page(addr);
4315 n = ((re - rs + 1) << PAGE_SHIFT) - offset;
4316 if (n > remains)
4317 n = remains;
4318
4319 copied = aligned_vread_iter(iter, start + offset, n);
4320
4321 addr += copied;
4322 remains -= copied;
4323
4324 if (copied != n)
4325 goto finished;
4326 }
4327
4328 spin_unlock(&vb->lock);
4329
4330 finished_zero:
4331 /* zero-fill the left dirty or free regions */
4332 return count - remains + zero_iter(iter, remains);
4333 finished:
4334 /* We couldn't copy/zero everything */
4335 spin_unlock(&vb->lock);
4336 return count - remains;
4337 }
4338
4339 /**
4340 * vread_iter() - read vmalloc area in a safe way to an iterator.
4341 * @iter: the iterator to which data should be written.
4342 * @addr: vm address.
4343 * @count: number of bytes to be read.
4344 *
4345 * This function checks that addr is a valid vmalloc'ed area, and
4346 * copy data from that area to a given buffer. If the given memory range
4347 * of [addr...addr+count) includes some valid address, data is copied to
4348 * proper area of @buf. If there are memory holes, they'll be zero-filled.
4349 * IOREMAP area is treated as memory hole and no copy is done.
4350 *
4351 * If [addr...addr+count) doesn't includes any intersects with alive
4352 * vm_struct area, returns 0. @buf should be kernel's buffer.
4353 *
4354 * Note: In usual ops, vread() is never necessary because the caller
4355 * should know vmalloc() area is valid and can use memcpy().
4356 * This is for routines which have to access vmalloc area without
4357 * any information, as /proc/kcore.
4358 *
4359 * Return: number of bytes for which addr and buf should be increased
4360 * (same number as @count) or %0 if [addr...addr+count) doesn't
4361 * include any intersection with valid vmalloc area
4362 */
vread_iter(struct iov_iter * iter,const char * addr,size_t count)4363 long vread_iter(struct iov_iter *iter, const char *addr, size_t count)
4364 {
4365 struct vmap_node *vn;
4366 struct vmap_area *va;
4367 struct vm_struct *vm;
4368 char *vaddr;
4369 size_t n, size, flags, remains;
4370 unsigned long next;
4371
4372 addr = kasan_reset_tag(addr);
4373
4374 /* Don't allow overflow */
4375 if ((unsigned long) addr + count < count)
4376 count = -(unsigned long) addr;
4377
4378 remains = count;
4379
4380 vn = find_vmap_area_exceed_addr_lock((unsigned long) addr, &va);
4381 if (!vn)
4382 goto finished_zero;
4383
4384 /* no intersects with alive vmap_area */
4385 if ((unsigned long)addr + remains <= va->va_start)
4386 goto finished_zero;
4387
4388 do {
4389 size_t copied;
4390
4391 if (remains == 0)
4392 goto finished;
4393
4394 vm = va->vm;
4395 flags = va->flags & VMAP_FLAGS_MASK;
4396 /*
4397 * VMAP_BLOCK indicates a sub-type of vm_map_ram area, need
4398 * be set together with VMAP_RAM.
4399 */
4400 WARN_ON(flags == VMAP_BLOCK);
4401
4402 if (!vm && !flags)
4403 goto next_va;
4404
4405 if (vm && (vm->flags & VM_UNINITIALIZED))
4406 goto next_va;
4407
4408 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
4409 smp_rmb();
4410
4411 vaddr = (char *) va->va_start;
4412 size = vm ? get_vm_area_size(vm) : va_size(va);
4413
4414 if (addr >= vaddr + size)
4415 goto next_va;
4416
4417 if (addr < vaddr) {
4418 size_t to_zero = min_t(size_t, vaddr - addr, remains);
4419 size_t zeroed = zero_iter(iter, to_zero);
4420
4421 addr += zeroed;
4422 remains -= zeroed;
4423
4424 if (remains == 0 || zeroed != to_zero)
4425 goto finished;
4426 }
4427
4428 n = vaddr + size - addr;
4429 if (n > remains)
4430 n = remains;
4431
4432 if (flags & VMAP_RAM)
4433 copied = vmap_ram_vread_iter(iter, addr, n, flags);
4434 else if (!(vm && (vm->flags & (VM_IOREMAP | VM_SPARSE))))
4435 copied = aligned_vread_iter(iter, addr, n);
4436 else /* IOREMAP | SPARSE area is treated as memory hole */
4437 copied = zero_iter(iter, n);
4438
4439 addr += copied;
4440 remains -= copied;
4441
4442 if (copied != n)
4443 goto finished;
4444
4445 next_va:
4446 next = va->va_end;
4447 spin_unlock(&vn->busy.lock);
4448 } while ((vn = find_vmap_area_exceed_addr_lock(next, &va)));
4449
4450 finished_zero:
4451 if (vn)
4452 spin_unlock(&vn->busy.lock);
4453
4454 /* zero-fill memory holes */
4455 return count - remains + zero_iter(iter, remains);
4456 finished:
4457 /* Nothing remains, or We couldn't copy/zero everything. */
4458 if (vn)
4459 spin_unlock(&vn->busy.lock);
4460
4461 return count - remains;
4462 }
4463
4464 /**
4465 * remap_vmalloc_range_partial - map vmalloc pages to userspace
4466 * @vma: vma to cover
4467 * @uaddr: target user address to start at
4468 * @kaddr: virtual address of vmalloc kernel memory
4469 * @pgoff: offset from @kaddr to start at
4470 * @size: size of map area
4471 *
4472 * Returns: 0 for success, -Exxx on failure
4473 *
4474 * This function checks that @kaddr is a valid vmalloc'ed area,
4475 * and that it is big enough to cover the range starting at
4476 * @uaddr in @vma. Will return failure if that criteria isn't
4477 * met.
4478 *
4479 * Similar to remap_pfn_range() (see mm/memory.c)
4480 */
remap_vmalloc_range_partial(struct vm_area_struct * vma,unsigned long uaddr,void * kaddr,unsigned long pgoff,unsigned long size)4481 int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
4482 void *kaddr, unsigned long pgoff,
4483 unsigned long size)
4484 {
4485 struct vm_struct *area;
4486 unsigned long off;
4487 unsigned long end_index;
4488
4489 if (check_shl_overflow(pgoff, PAGE_SHIFT, &off))
4490 return -EINVAL;
4491
4492 size = PAGE_ALIGN(size);
4493
4494 if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
4495 return -EINVAL;
4496
4497 area = find_vm_area(kaddr);
4498 if (!area)
4499 return -EINVAL;
4500
4501 if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT)))
4502 return -EINVAL;
4503
4504 if (check_add_overflow(size, off, &end_index) ||
4505 end_index > get_vm_area_size(area))
4506 return -EINVAL;
4507 kaddr += off;
4508
4509 do {
4510 struct page *page = vmalloc_to_page(kaddr);
4511 int ret;
4512
4513 ret = vm_insert_page(vma, uaddr, page);
4514 if (ret)
4515 return ret;
4516
4517 uaddr += PAGE_SIZE;
4518 kaddr += PAGE_SIZE;
4519 size -= PAGE_SIZE;
4520 } while (size > 0);
4521
4522 vm_flags_set(vma, VM_DONTEXPAND | VM_DONTDUMP);
4523
4524 return 0;
4525 }
4526
4527 /**
4528 * remap_vmalloc_range - map vmalloc pages to userspace
4529 * @vma: vma to cover (map full range of vma)
4530 * @addr: vmalloc memory
4531 * @pgoff: number of pages into addr before first page to map
4532 *
4533 * Returns: 0 for success, -Exxx on failure
4534 *
4535 * This function checks that addr is a valid vmalloc'ed area, and
4536 * that it is big enough to cover the vma. Will return failure if
4537 * that criteria isn't met.
4538 *
4539 * Similar to remap_pfn_range() (see mm/memory.c)
4540 */
remap_vmalloc_range(struct vm_area_struct * vma,void * addr,unsigned long pgoff)4541 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
4542 unsigned long pgoff)
4543 {
4544 return remap_vmalloc_range_partial(vma, vma->vm_start,
4545 addr, pgoff,
4546 vma->vm_end - vma->vm_start);
4547 }
4548 EXPORT_SYMBOL(remap_vmalloc_range);
4549
free_vm_area(struct vm_struct * area)4550 void free_vm_area(struct vm_struct *area)
4551 {
4552 struct vm_struct *ret;
4553 ret = remove_vm_area(area->addr);
4554 BUG_ON(ret != area);
4555 kfree(area);
4556 }
4557 EXPORT_SYMBOL_GPL(free_vm_area);
4558
4559 #ifdef CONFIG_SMP
node_to_va(struct rb_node * n)4560 static struct vmap_area *node_to_va(struct rb_node *n)
4561 {
4562 return rb_entry_safe(n, struct vmap_area, rb_node);
4563 }
4564
4565 /**
4566 * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to
4567 * @addr: target address
4568 *
4569 * Returns: vmap_area if it is found. If there is no such area
4570 * the first highest(reverse order) vmap_area is returned
4571 * i.e. va->va_start < addr && va->va_end < addr or NULL
4572 * if there are no any areas before @addr.
4573 */
4574 static struct vmap_area *
pvm_find_va_enclose_addr(unsigned long addr)4575 pvm_find_va_enclose_addr(unsigned long addr)
4576 {
4577 struct vmap_area *va, *tmp;
4578 struct rb_node *n;
4579
4580 n = free_vmap_area_root.rb_node;
4581 va = NULL;
4582
4583 while (n) {
4584 tmp = rb_entry(n, struct vmap_area, rb_node);
4585 if (tmp->va_start <= addr) {
4586 va = tmp;
4587 if (tmp->va_end >= addr)
4588 break;
4589
4590 n = n->rb_right;
4591 } else {
4592 n = n->rb_left;
4593 }
4594 }
4595
4596 return va;
4597 }
4598
4599 /**
4600 * pvm_determine_end_from_reverse - find the highest aligned address
4601 * of free block below VMALLOC_END
4602 * @va:
4603 * in - the VA we start the search(reverse order);
4604 * out - the VA with the highest aligned end address.
4605 * @align: alignment for required highest address
4606 *
4607 * Returns: determined end address within vmap_area
4608 */
4609 static unsigned long
pvm_determine_end_from_reverse(struct vmap_area ** va,unsigned long align)4610 pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align)
4611 {
4612 unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
4613 unsigned long addr;
4614
4615 if (likely(*va)) {
4616 list_for_each_entry_from_reverse((*va),
4617 &free_vmap_area_list, list) {
4618 addr = min((*va)->va_end & ~(align - 1), vmalloc_end);
4619 if ((*va)->va_start < addr)
4620 return addr;
4621 }
4622 }
4623
4624 return 0;
4625 }
4626
4627 /**
4628 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
4629 * @offsets: array containing offset of each area
4630 * @sizes: array containing size of each area
4631 * @nr_vms: the number of areas to allocate
4632 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
4633 *
4634 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
4635 * vm_structs on success, %NULL on failure
4636 *
4637 * Percpu allocator wants to use congruent vm areas so that it can
4638 * maintain the offsets among percpu areas. This function allocates
4639 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to
4640 * be scattered pretty far, distance between two areas easily going up
4641 * to gigabytes. To avoid interacting with regular vmallocs, these
4642 * areas are allocated from top.
4643 *
4644 * Despite its complicated look, this allocator is rather simple. It
4645 * does everything top-down and scans free blocks from the end looking
4646 * for matching base. While scanning, if any of the areas do not fit the
4647 * base address is pulled down to fit the area. Scanning is repeated till
4648 * all the areas fit and then all necessary data structures are inserted
4649 * and the result is returned.
4650 */
pcpu_get_vm_areas(const unsigned long * offsets,const size_t * sizes,int nr_vms,size_t align)4651 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
4652 const size_t *sizes, int nr_vms,
4653 size_t align)
4654 {
4655 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
4656 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
4657 struct vmap_area **vas, *va;
4658 struct vm_struct **vms;
4659 int area, area2, last_area, term_area;
4660 unsigned long base, start, size, end, last_end, orig_start, orig_end;
4661 bool purged = false;
4662
4663 /* verify parameters and allocate data structures */
4664 BUG_ON(offset_in_page(align) || !is_power_of_2(align));
4665 for (last_area = 0, area = 0; area < nr_vms; area++) {
4666 start = offsets[area];
4667 end = start + sizes[area];
4668
4669 /* is everything aligned properly? */
4670 BUG_ON(!IS_ALIGNED(offsets[area], align));
4671 BUG_ON(!IS_ALIGNED(sizes[area], align));
4672
4673 /* detect the area with the highest address */
4674 if (start > offsets[last_area])
4675 last_area = area;
4676
4677 for (area2 = area + 1; area2 < nr_vms; area2++) {
4678 unsigned long start2 = offsets[area2];
4679 unsigned long end2 = start2 + sizes[area2];
4680
4681 BUG_ON(start2 < end && start < end2);
4682 }
4683 }
4684 last_end = offsets[last_area] + sizes[last_area];
4685
4686 if (vmalloc_end - vmalloc_start < last_end) {
4687 WARN_ON(true);
4688 return NULL;
4689 }
4690
4691 vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
4692 vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
4693 if (!vas || !vms)
4694 goto err_free2;
4695
4696 for (area = 0; area < nr_vms; area++) {
4697 vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL);
4698 vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
4699 if (!vas[area] || !vms[area])
4700 goto err_free;
4701 }
4702 retry:
4703 spin_lock(&free_vmap_area_lock);
4704
4705 /* start scanning - we scan from the top, begin with the last area */
4706 area = term_area = last_area;
4707 start = offsets[area];
4708 end = start + sizes[area];
4709
4710 va = pvm_find_va_enclose_addr(vmalloc_end);
4711 base = pvm_determine_end_from_reverse(&va, align) - end;
4712
4713 while (true) {
4714 /*
4715 * base might have underflowed, add last_end before
4716 * comparing.
4717 */
4718 if (base + last_end < vmalloc_start + last_end)
4719 goto overflow;
4720
4721 /*
4722 * Fitting base has not been found.
4723 */
4724 if (va == NULL)
4725 goto overflow;
4726
4727 /*
4728 * If required width exceeds current VA block, move
4729 * base downwards and then recheck.
4730 */
4731 if (base + end > va->va_end) {
4732 base = pvm_determine_end_from_reverse(&va, align) - end;
4733 term_area = area;
4734 continue;
4735 }
4736
4737 /*
4738 * If this VA does not fit, move base downwards and recheck.
4739 */
4740 if (base + start < va->va_start) {
4741 va = node_to_va(rb_prev(&va->rb_node));
4742 base = pvm_determine_end_from_reverse(&va, align) - end;
4743 term_area = area;
4744 continue;
4745 }
4746
4747 /*
4748 * This area fits, move on to the previous one. If
4749 * the previous one is the terminal one, we're done.
4750 */
4751 area = (area + nr_vms - 1) % nr_vms;
4752 if (area == term_area)
4753 break;
4754
4755 start = offsets[area];
4756 end = start + sizes[area];
4757 va = pvm_find_va_enclose_addr(base + end);
4758 }
4759
4760 /* we've found a fitting base, insert all va's */
4761 for (area = 0; area < nr_vms; area++) {
4762 int ret;
4763
4764 start = base + offsets[area];
4765 size = sizes[area];
4766
4767 va = pvm_find_va_enclose_addr(start);
4768 if (WARN_ON_ONCE(va == NULL))
4769 /* It is a BUG(), but trigger recovery instead. */
4770 goto recovery;
4771
4772 ret = va_clip(&free_vmap_area_root,
4773 &free_vmap_area_list, va, start, size);
4774 if (WARN_ON_ONCE(unlikely(ret)))
4775 /* It is a BUG(), but trigger recovery instead. */
4776 goto recovery;
4777
4778 /* Allocated area. */
4779 va = vas[area];
4780 va->va_start = start;
4781 va->va_end = start + size;
4782 }
4783
4784 spin_unlock(&free_vmap_area_lock);
4785
4786 /* populate the kasan shadow space */
4787 for (area = 0; area < nr_vms; area++) {
4788 if (kasan_populate_vmalloc(vas[area]->va_start, sizes[area]))
4789 goto err_free_shadow;
4790 }
4791
4792 /* insert all vm's */
4793 for (area = 0; area < nr_vms; area++) {
4794 struct vmap_node *vn = addr_to_node(vas[area]->va_start);
4795
4796 spin_lock(&vn->busy.lock);
4797 insert_vmap_area(vas[area], &vn->busy.root, &vn->busy.head);
4798 setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
4799 pcpu_get_vm_areas);
4800 spin_unlock(&vn->busy.lock);
4801 }
4802
4803 /*
4804 * Mark allocated areas as accessible. Do it now as a best-effort
4805 * approach, as they can be mapped outside of vmalloc code.
4806 * With hardware tag-based KASAN, marking is skipped for
4807 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc().
4808 */
4809 for (area = 0; area < nr_vms; area++)
4810 vms[area]->addr = kasan_unpoison_vmalloc(vms[area]->addr,
4811 vms[area]->size, KASAN_VMALLOC_PROT_NORMAL);
4812
4813 kfree(vas);
4814 return vms;
4815
4816 recovery:
4817 /*
4818 * Remove previously allocated areas. There is no
4819 * need in removing these areas from the busy tree,
4820 * because they are inserted only on the final step
4821 * and when pcpu_get_vm_areas() is success.
4822 */
4823 while (area--) {
4824 orig_start = vas[area]->va_start;
4825 orig_end = vas[area]->va_end;
4826 va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root,
4827 &free_vmap_area_list);
4828 if (va)
4829 kasan_release_vmalloc(orig_start, orig_end,
4830 va->va_start, va->va_end,
4831 KASAN_VMALLOC_PAGE_RANGE | KASAN_VMALLOC_TLB_FLUSH);
4832 vas[area] = NULL;
4833 }
4834
4835 overflow:
4836 spin_unlock(&free_vmap_area_lock);
4837 if (!purged) {
4838 reclaim_and_purge_vmap_areas();
4839 purged = true;
4840
4841 /* Before "retry", check if we recover. */
4842 for (area = 0; area < nr_vms; area++) {
4843 if (vas[area])
4844 continue;
4845
4846 vas[area] = kmem_cache_zalloc(
4847 vmap_area_cachep, GFP_KERNEL);
4848 if (!vas[area])
4849 goto err_free;
4850 }
4851
4852 goto retry;
4853 }
4854
4855 err_free:
4856 for (area = 0; area < nr_vms; area++) {
4857 if (vas[area])
4858 kmem_cache_free(vmap_area_cachep, vas[area]);
4859
4860 kfree(vms[area]);
4861 }
4862 err_free2:
4863 kfree(vas);
4864 kfree(vms);
4865 return NULL;
4866
4867 err_free_shadow:
4868 spin_lock(&free_vmap_area_lock);
4869 /*
4870 * We release all the vmalloc shadows, even the ones for regions that
4871 * hadn't been successfully added. This relies on kasan_release_vmalloc
4872 * being able to tolerate this case.
4873 */
4874 for (area = 0; area < nr_vms; area++) {
4875 orig_start = vas[area]->va_start;
4876 orig_end = vas[area]->va_end;
4877 va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root,
4878 &free_vmap_area_list);
4879 if (va)
4880 kasan_release_vmalloc(orig_start, orig_end,
4881 va->va_start, va->va_end,
4882 KASAN_VMALLOC_PAGE_RANGE | KASAN_VMALLOC_TLB_FLUSH);
4883 vas[area] = NULL;
4884 kfree(vms[area]);
4885 }
4886 spin_unlock(&free_vmap_area_lock);
4887 kfree(vas);
4888 kfree(vms);
4889 return NULL;
4890 }
4891
4892 /**
4893 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
4894 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
4895 * @nr_vms: the number of allocated areas
4896 *
4897 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
4898 */
pcpu_free_vm_areas(struct vm_struct ** vms,int nr_vms)4899 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
4900 {
4901 int i;
4902
4903 for (i = 0; i < nr_vms; i++)
4904 free_vm_area(vms[i]);
4905 kfree(vms);
4906 }
4907 #endif /* CONFIG_SMP */
4908
4909 #ifdef CONFIG_PRINTK
vmalloc_dump_obj(void * object)4910 bool vmalloc_dump_obj(void *object)
4911 {
4912 const void *caller;
4913 struct vm_struct *vm;
4914 struct vmap_area *va;
4915 struct vmap_node *vn;
4916 unsigned long addr;
4917 unsigned int nr_pages;
4918
4919 addr = PAGE_ALIGN((unsigned long) object);
4920 vn = addr_to_node(addr);
4921
4922 if (!spin_trylock(&vn->busy.lock))
4923 return false;
4924
4925 va = __find_vmap_area(addr, &vn->busy.root);
4926 if (!va || !va->vm) {
4927 spin_unlock(&vn->busy.lock);
4928 return false;
4929 }
4930
4931 vm = va->vm;
4932 addr = (unsigned long) vm->addr;
4933 caller = vm->caller;
4934 nr_pages = vm->nr_pages;
4935 spin_unlock(&vn->busy.lock);
4936
4937 pr_cont(" %u-page vmalloc region starting at %#lx allocated at %pS\n",
4938 nr_pages, addr, caller);
4939
4940 return true;
4941 }
4942 #endif
4943
4944 #ifdef CONFIG_PROC_FS
4945
4946 /*
4947 * Print number of pages allocated on each memory node.
4948 *
4949 * This function can only be called if CONFIG_NUMA is enabled
4950 * and VM_UNINITIALIZED bit in v->flags is disabled.
4951 */
show_numa_info(struct seq_file * m,struct vm_struct * v,unsigned int * counters)4952 static void show_numa_info(struct seq_file *m, struct vm_struct *v,
4953 unsigned int *counters)
4954 {
4955 unsigned int nr;
4956 unsigned int step = 1U << vm_area_page_order(v);
4957
4958 if (!counters)
4959 return;
4960
4961 memset(counters, 0, nr_node_ids * sizeof(unsigned int));
4962
4963 for (nr = 0; nr < v->nr_pages; nr += step)
4964 counters[page_to_nid(v->pages[nr])] += step;
4965 for_each_node_state(nr, N_HIGH_MEMORY)
4966 if (counters[nr])
4967 seq_printf(m, " N%u=%u", nr, counters[nr]);
4968 }
4969
show_purge_info(struct seq_file * m)4970 static void show_purge_info(struct seq_file *m)
4971 {
4972 struct vmap_node *vn;
4973 struct vmap_area *va;
4974 int i;
4975
4976 for (i = 0; i < nr_vmap_nodes; i++) {
4977 vn = &vmap_nodes[i];
4978
4979 spin_lock(&vn->lazy.lock);
4980 list_for_each_entry(va, &vn->lazy.head, list) {
4981 seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n",
4982 (void *)va->va_start, (void *)va->va_end,
4983 va_size(va));
4984 }
4985 spin_unlock(&vn->lazy.lock);
4986 }
4987 }
4988
vmalloc_info_show(struct seq_file * m,void * p)4989 static int vmalloc_info_show(struct seq_file *m, void *p)
4990 {
4991 struct vmap_node *vn;
4992 struct vmap_area *va;
4993 struct vm_struct *v;
4994 int i;
4995 unsigned int *counters;
4996
4997 if (IS_ENABLED(CONFIG_NUMA))
4998 counters = kmalloc(nr_node_ids * sizeof(unsigned int), GFP_KERNEL);
4999
5000 for (i = 0; i < nr_vmap_nodes; i++) {
5001 vn = &vmap_nodes[i];
5002
5003 spin_lock(&vn->busy.lock);
5004 list_for_each_entry(va, &vn->busy.head, list) {
5005 if (!va->vm) {
5006 if (va->flags & VMAP_RAM)
5007 seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n",
5008 (void *)va->va_start, (void *)va->va_end,
5009 va_size(va));
5010
5011 continue;
5012 }
5013
5014 v = va->vm;
5015 if (v->flags & VM_UNINITIALIZED)
5016 continue;
5017
5018 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
5019 smp_rmb();
5020
5021 seq_printf(m, "0x%pK-0x%pK %7ld",
5022 v->addr, v->addr + v->size, v->size);
5023
5024 if (v->caller)
5025 seq_printf(m, " %pS", v->caller);
5026
5027 if (v->nr_pages)
5028 seq_printf(m, " pages=%d", v->nr_pages);
5029
5030 if (v->phys_addr)
5031 seq_printf(m, " phys=%pa", &v->phys_addr);
5032
5033 if (v->flags & VM_IOREMAP)
5034 seq_puts(m, " ioremap");
5035
5036 if (v->flags & VM_SPARSE)
5037 seq_puts(m, " sparse");
5038
5039 if (v->flags & VM_ALLOC)
5040 seq_puts(m, " vmalloc");
5041
5042 if (v->flags & VM_MAP)
5043 seq_puts(m, " vmap");
5044
5045 if (v->flags & VM_USERMAP)
5046 seq_puts(m, " user");
5047
5048 if (v->flags & VM_DMA_COHERENT)
5049 seq_puts(m, " dma-coherent");
5050
5051 if (is_vmalloc_addr(v->pages))
5052 seq_puts(m, " vpages");
5053
5054 if (IS_ENABLED(CONFIG_NUMA))
5055 show_numa_info(m, v, counters);
5056
5057 trace_android_vh_show_stack_hash(m, v);
5058 seq_putc(m, '\n');
5059 }
5060 spin_unlock(&vn->busy.lock);
5061 }
5062
5063 /*
5064 * As a final step, dump "unpurged" areas.
5065 */
5066 show_purge_info(m);
5067 if (IS_ENABLED(CONFIG_NUMA))
5068 kfree(counters);
5069 return 0;
5070 }
5071
proc_vmalloc_init(void)5072 static int __init proc_vmalloc_init(void)
5073 {
5074 proc_create_single("vmallocinfo", 0400, NULL, vmalloc_info_show);
5075 return 0;
5076 }
5077 module_init(proc_vmalloc_init);
5078
5079 #endif
5080
vmap_init_free_space(void)5081 static void __init vmap_init_free_space(void)
5082 {
5083 unsigned long vmap_start = 1;
5084 const unsigned long vmap_end = ULONG_MAX;
5085 struct vmap_area *free;
5086 struct vm_struct *busy;
5087
5088 /*
5089 * B F B B B F
5090 * -|-----|.....|-----|-----|-----|.....|-
5091 * | The KVA space |
5092 * |<--------------------------------->|
5093 */
5094 for (busy = vmlist; busy; busy = busy->next) {
5095 if ((unsigned long) busy->addr - vmap_start > 0) {
5096 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
5097 if (!WARN_ON_ONCE(!free)) {
5098 free->va_start = vmap_start;
5099 free->va_end = (unsigned long) busy->addr;
5100
5101 insert_vmap_area_augment(free, NULL,
5102 &free_vmap_area_root,
5103 &free_vmap_area_list);
5104 }
5105 }
5106
5107 vmap_start = (unsigned long) busy->addr + busy->size;
5108 }
5109
5110 if (vmap_end - vmap_start > 0) {
5111 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
5112 if (!WARN_ON_ONCE(!free)) {
5113 free->va_start = vmap_start;
5114 free->va_end = vmap_end;
5115
5116 insert_vmap_area_augment(free, NULL,
5117 &free_vmap_area_root,
5118 &free_vmap_area_list);
5119 }
5120 }
5121 }
5122
vmap_init_nodes(void)5123 static void vmap_init_nodes(void)
5124 {
5125 struct vmap_node *vn;
5126 int i, n;
5127
5128 #if BITS_PER_LONG == 64
5129 /*
5130 * A high threshold of max nodes is fixed and bound to 128,
5131 * thus a scale factor is 1 for systems where number of cores
5132 * are less or equal to specified threshold.
5133 *
5134 * As for NUMA-aware notes. For bigger systems, for example
5135 * NUMA with multi-sockets, where we can end-up with thousands
5136 * of cores in total, a "sub-numa-clustering" should be added.
5137 *
5138 * In this case a NUMA domain is considered as a single entity
5139 * with dedicated sub-nodes in it which describe one group or
5140 * set of cores. Therefore a per-domain purging is supposed to
5141 * be added as well as a per-domain balancing.
5142 */
5143 n = clamp_t(unsigned int, num_possible_cpus(), 1, 128);
5144
5145 if (n > 1) {
5146 vn = kmalloc_array(n, sizeof(*vn), GFP_NOWAIT | __GFP_NOWARN);
5147 if (vn) {
5148 /* Node partition is 16 pages. */
5149 vmap_zone_size = (1 << 4) * PAGE_SIZE;
5150 nr_vmap_nodes = n;
5151 vmap_nodes = vn;
5152 } else {
5153 pr_err("Failed to allocate an array. Disable a node layer\n");
5154 }
5155 }
5156 #endif
5157
5158 for (n = 0; n < nr_vmap_nodes; n++) {
5159 vn = &vmap_nodes[n];
5160 vn->busy.root = RB_ROOT;
5161 INIT_LIST_HEAD(&vn->busy.head);
5162 spin_lock_init(&vn->busy.lock);
5163
5164 vn->lazy.root = RB_ROOT;
5165 INIT_LIST_HEAD(&vn->lazy.head);
5166 spin_lock_init(&vn->lazy.lock);
5167
5168 for (i = 0; i < MAX_VA_SIZE_PAGES; i++) {
5169 INIT_LIST_HEAD(&vn->pool[i].head);
5170 WRITE_ONCE(vn->pool[i].len, 0);
5171 }
5172
5173 spin_lock_init(&vn->pool_lock);
5174 }
5175 }
5176
5177 static unsigned long
vmap_node_shrink_count(struct shrinker * shrink,struct shrink_control * sc)5178 vmap_node_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
5179 {
5180 unsigned long count;
5181 struct vmap_node *vn;
5182 int i, j;
5183
5184 for (count = 0, i = 0; i < nr_vmap_nodes; i++) {
5185 vn = &vmap_nodes[i];
5186
5187 for (j = 0; j < MAX_VA_SIZE_PAGES; j++)
5188 count += READ_ONCE(vn->pool[j].len);
5189 }
5190
5191 return count ? count : SHRINK_EMPTY;
5192 }
5193
5194 static unsigned long
vmap_node_shrink_scan(struct shrinker * shrink,struct shrink_control * sc)5195 vmap_node_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
5196 {
5197 int i;
5198
5199 for (i = 0; i < nr_vmap_nodes; i++)
5200 decay_va_pool_node(&vmap_nodes[i], true);
5201
5202 return SHRINK_STOP;
5203 }
5204
vmalloc_init(void)5205 void __init vmalloc_init(void)
5206 {
5207 struct shrinker *vmap_node_shrinker;
5208 struct vmap_area *va;
5209 struct vmap_node *vn;
5210 struct vm_struct *tmp;
5211 int i;
5212
5213 /*
5214 * Create the cache for vmap_area objects.
5215 */
5216 vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC);
5217
5218 for_each_possible_cpu(i) {
5219 struct vmap_block_queue *vbq;
5220 struct vfree_deferred *p;
5221
5222 vbq = &per_cpu(vmap_block_queue, i);
5223 spin_lock_init(&vbq->lock);
5224 INIT_LIST_HEAD(&vbq->free);
5225 p = &per_cpu(vfree_deferred, i);
5226 init_llist_head(&p->list);
5227 INIT_WORK(&p->wq, delayed_vfree_work);
5228 xa_init(&vbq->vmap_blocks);
5229 }
5230
5231 /*
5232 * Setup nodes before importing vmlist.
5233 */
5234 vmap_init_nodes();
5235
5236 /* Import existing vmlist entries. */
5237 for (tmp = vmlist; tmp; tmp = tmp->next) {
5238 va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
5239 if (WARN_ON_ONCE(!va))
5240 continue;
5241
5242 va->va_start = (unsigned long)tmp->addr;
5243 va->va_end = va->va_start + tmp->size;
5244 va->vm = tmp;
5245
5246 vn = addr_to_node(va->va_start);
5247 insert_vmap_area(va, &vn->busy.root, &vn->busy.head);
5248 }
5249
5250 /*
5251 * Now we can initialize a free vmap space.
5252 */
5253 vmap_init_free_space();
5254 vmap_initialized = true;
5255
5256 vmap_node_shrinker = shrinker_alloc(0, "vmap-node");
5257 if (!vmap_node_shrinker) {
5258 pr_err("Failed to allocate vmap-node shrinker!\n");
5259 return;
5260 }
5261
5262 vmap_node_shrinker->count_objects = vmap_node_shrink_count;
5263 vmap_node_shrinker->scan_objects = vmap_node_shrink_scan;
5264 shrinker_register(vmap_node_shrinker);
5265 }
5266